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Abstract 

Vehicular communications is a topic of interest in the race towards autonomous cars. 
Parallel, there is a future need to move towards higher frequencies in vehicular 
communications. In the same way, computer vision is becoming every time more used in 
automotive applications. In this thesis, I propose a system capable to track the position of 
a given car on a road with a camera and a wireless radio link in the V-band. For this I have 
developed some computer vision and image segmentation approaches with Gaussian 
mixture model for background estimation, erosion and epipolar geometry. Also, from a V-
band wireless link and a signal analyser, a Doppler shift estimate has been obtained from 
a measurement campaign. Finally, a Kalman filter has been implemented for tracking the 
car’s position with a highly accurate performance. 

 
 
 
 
 
 

Kurzfassung 

Fahrzeugkommunikation ist ein wichtiges Thema im Kontext von autonomen Fahrzeugen. 
Parallel dazu besteht in der Fahrzeugkommunikation ein zukünftiger Bedarf nach der 
Verwendung von höheren Frequenzen. Ebenso wird Computervision in 
Automobilanwendungen immer häufiger eingesetzt. In dieser Diplomarbeit schlage ich ein 
System vor, das die Position eines Autos auf einer Straße mit einer Kamera und einer 
drahtlosen Funkverbindung im V-Band verfolgen kann. Hierfür habe ich einige Ansätze zur 
Bildverarbeitung und Bildsegmentierung mit einer Gaußschen Mischverteilung für die 
Hintergrundschätzung, Erosion und epipolare Geometrie entwickelt. Außerdem wurde von 
einer V-Band-Funkverbindung und einem Signalanalysator die Doppler-Verschiebung 
geschätzt. Schließlich wurde ein Kalman-Filter implementiert, um die Position des 
Fahrzeugs mit hoher Genauigkeit zu verfolgen. 
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1. Introduction 

Enhancing driving experience has been a topic in which many stakeholders have been 
working on. Making a quick review to the recent history of cars evolution in the last decades, 
at one point power steering was added for driving. Then cameras and distance sensors 
appeared for parking assistance. More research brought us very accurate depth 
measurements with cameras and different computer vision approaches such as Ada-Boost 
algorithms [1] [2]. Parallel to that and thanks to a huge research on the topic, the usage of 
unlicensed 5.9 GHz band for vehicular communications was allowed through the standard 
IEEE 802.11p [3]. These huge steps brought the well-known Tesla cars, which are 
nowadays the most autonomous cars. 

However, there are two reasons that indicate that moving towards higher frequencies when 
referring to vehicular communications could be convenient. Firstly, there is a constant 
increase of data to be transmitted in vehicular communications. This leads to a higher 
throughput to transmit it in the same time [4]. Secondly, vehicular applications are growing 
nowadays. This means that the 5.9 GHz band in a couple of years will have to be shared 
among an exponentially increasing number of vehicles [5]. This can make us run out of 
radio resources. Moving towards higher frequencies would provide us of more throughput 
to share among the increasing number of users we expect to have.  

There is another reason why radio applications are important in vehicular communications. 
Even though computer vision has improved its performance exponentially when referring 
to image segmentation and recognition (as we can see in the increase of biometrics 
applications), it still cannot provide the benefits radio applications can. Going deeper into 
a real case, Tesla cars perform their long-distance car detection through radar, so cameras 
do not seem to be a feasible option for cases where a long braking distance is needed.  

In the framework of moving towards higher frequencies, V-band has become an interesting 
option. The unlicensed 60 GHz band is available worldwide and provides very high 
throughput. Moreover, it has the standard IEEE 802.11ad that regulates it.  

In this latest framework the need arises to perform wide research towards autonomous car. 
One necessary application for autonomous cars, which is the main goal of this thesis, is 
vehicle tracking. Here, this goal is tackled using video frames and wireless radio data at V-
band.  

For developing this system, the measurements taken place on 25th September 2018 in 
Vienna downtown are used. The goal is approached in two independent ways, with video 
frames and with wireless radio data.  

For processing video data, different image processing tools have been used. To isolate the 
car from the image, a background estimation using a Gaussian mixture model is 
implemented. Then, an erosion stage is used to remove artifacts and unwanted objects in 
the foreground detected image. After that, (as it is needed to measure some distances from 
the road to the camera), epipolar geometry is used to relate calibration images with the 
video ones. Finally, a first position estimation with the eroded image and some distance 
measured points has been made. 

Parallel to that, from the wireless radio data, a frequency shift estimate is obtained using 
the techniques described in [6]. With this estimate and the position estimation previously 
done, a Kalman filter is implemented for fusing both data and provide us position and 
velocity tracking. 
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1.1. Background research  

Going more in detail about the race of the last decades towards autonomous car it can be 
pointed out that vehicular communications and its architecture has been a popular topic 
among research for autonomous driving [7] [8] [9] [10] [11] [12]. In the past, research on 
the influence of the environment to wireless communications at higher frequencies has also 
been a popular focus [13]. 

The time-critical nature of road safety applications has imposed the need to accurately 
design the operation and performance of wireless vehicular communication systems [7]. 
This need has showed that vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) 
communication should go towards the usage of mm-wave [14] [15] [16]. In [16], an 
exhaustive study of the angle-of-arrival (AOA), angle-of-departure (AOD) and RMS delay 
spread is realised to evaluate the feasibility of the usage of radar in 28 GHz and 38 GHz 
band. In [15], a location of a car relative to a base station (BS) is performed through an 
AOA and AOD estimation. In [17], a characterization of 5.2 GHz channel in highway is 
performed. In [18], analysis and characterization of all elements taking part in a 
communications link at 5.9 GHz in V2X environment are performed. 

Going in depth on the 60 GHz band, measurements of cars driving at constant speed and 
a fixed distance have been performed in [19]. In [20] and [21]  the effect of overtaking cars 
in an urban environment in the 60 GHz band is shown.  

The usage of cameras to detect moving cars has been a topic of research for the last 
decades [1], [22]. A radar system is combined with a camera applying Ada-Boost algorithm 
to perform car detection in [1]. However, this is not a joint estimation. In this case, the radar 
selects a region of interest (ROI) and afterwards Ada-Boost algorithm is performed. Other 
ranging methods such as lidar are used for identifying the ROI. For instance, in [2], a lidar 
structure is used to define the ROI and then, as well as in [1], Ada-Boost algorithm is used. 
In [23] a joint estimation is performed with lidar and a 3D camera that uses convolutional 
neural networks (CNN). An independent 76 GHz radar and camera car detection is 
performed in [22]. In that case, the radar itself is not used to estimate the velocity of the car 
and the computer vision (CV) technique used is support vector machine (SVM). In [24], 
using stereo images, different CV approaches are evaluated where the histogram of 
oriented gradients (HOG) is selected for the best recall/precision trade-off. Also using 
stereo images, a lane detector is implemented in [25], using a Hough transform. 

1.2. Outline 

This work is structured as follows: in the second chapter, the main tools used to achieve 
the goal are presented. In that section, starting from a main scheme of the system designed, 
the main characteristics of each stage of the system are explained. Also, in some of them 
preliminary results are provided, which are considered afterwards.  

In the third chapter, results are provided starting from a brief description of a coarse position 
estimate and a radial velocity estimate. After that, data fusion of these first results with a 
Kalman filter is described. Furthermore, Kalman filter performance is compared to an 
alternative extended Kalman filter. 

Finally, some conclusions about the results obtained are provided as well as mentioning 
some possible research paths.  
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2. Methodology 

The aim of this section is to explain the employed tools to get a position and velocity 
estimate of a moving car, which is the main objective of this thesis. 

For achieving this goal, two data sources are used. One of them is a 360 degrees video 
camera. The other one is a wireless radio communication system consisting of a transmitter 
array placed on top of a car and a receiver at a fixed position.  

The camera is the GoXtreme Full Dome 360º, which has the following main features [26]. 

Double lens (220º each) 

1920x960 pixels @30 fps video 

3008x1504 px still image resolution 

4MP sensor 2x 

360º angle 

WiFi function 

Table 1: main parameters of Full Dome 360º 

The transmitter of the communication system is an array placed on top of a car transmitting 
data continuously in V-Band. This transmitter array is formed by two transmitters, 
transmitter 1 with 0º beam elevation in 𝑧 axis and transmitter 2 with 15º beam elevation in 
𝑧 axis. Axis are defined in Figure 12. On the receive site, the known transmit signal is 
captured with a R&S FSW67 signal analyser (SA). The parameters of the wireless 
communications system are summarized in the following table. 

Parameter Value 

Centre frequency 𝑓୘ଡ଼ = 60.15 GHz 

Number of TX antennas 2 

Bandwidth 100 MHz 

Transmit antennas 20 dBi conical horn 

Receive antenna omnidirectional 

Recording time 𝑇୰ୣୡ = 3.6 s 

Segment time length 𝑇ୱୣ୥ = 0.83ms 

Table 2: main parameters of the wireless channel 

To synchronise both data sources, a light barrier on the road has been placed 24 m far 
away from the receiver. When the car is on the road it continuously transmits the 
transmission signal. Once it goes through the light barrier, a trigger activates the recording 
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of the SA and also flashes a green light that it is seen from the camera to align recorded 
video frames with the radio signal. It must be highlighted that the transmitter array is located 
1.8 m above the road and that the receiver is located 5 m above the road. It is also 
noticeable that the transmitter is 2.9 m behind the car hood. This means that when the car 
goes through the light barrier, the distance between the transmitter and the receiver is 26.9 
m in 𝑦 axis. 

 

Figure 1: aligned recording frame 

Figure 1 shows the trigger moment where the signal analyser receives the activation signal 
and LEDs are flashing for a visual marker in the recorded video frames.  

The approach chosen for implementing the tracker has been to fuse a coarse position 
estimate coming from the video frames with a processed Doppler shift estimate obtained 
in [6], as it is shown in Figure 2. 
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Figure 2: proposed system block scheme 

Firstly, a background estimation is made from the recorded video, which helps to split the 
image into foreground and background. Secondly, different artifacts and unwanted objects 
are filtered through an erosion stage. Additionally, epipolar geometry has been applied due 
to the fact that, at the day of the measurements, it was not possible to take distances from 
the road to the SA. This arose the need of having to take some calibration images and 
relate video frames and calibration images with the fundamental matrix. Thirdly, an 
evaluation for each frame has been performed to know if the car had gone through the 
points of known distances. 

Regardless of the position estimation through camera data, wireless communication data 
in the course of channel estimation described as in [6] has been obtained. This data 
consists on a received power estimate contribution for each transmitter, a noise power 
estimate and a Doppler shift estimate for each transmitter. The Doppler shift estimates are 
used afterwards to obtain an estimate of the lateral velocity of the car. 

A Kalman filter and an extended Kalman filter are proposed to fuse the coarse position 
estimate obtained from camera data and the wireless radio data.  

2.1. Camera data 

The aim of this part is to explain the employed tools to extract the position of the car from 
the camera data.  

Prior to this explanation, it is interesting to give some insights about some concepts that 
are assumed to be known later on.  

Pinhole camera model: describes the mathematical relationship between the coordinates 
of a point in three-dimensional space and its projection onto the image plane in an ideal 
pinhole camera [27]. 

Stereoscopy: is a technique for creating or enhancing the illusion of depth in an image by 
means of stereopsis for binocular vision [28]. 

fundamental matrix 
computation 

(2.1.2.1) 

background 
estimation 

(2.1.1) 

filtering- 
erosion 
(2.1.3) 

coarse position 
estimate (3.1) 

recorded video 
frames 

calibration frames reference points 

Doppler shift pre-
processing  (2.2.1) 

fine position and 
velocity estimation 

(3.3) 

channel measured data [6] 
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Epipolar geometry: is the geometry of stereovision. Assuming that two cameras view a 
3D scene from two distinct positions, there are a number of geometric relations between 
the 3D points and their projections onto the 2D images that lead to constraints between the 
image points [28]. These relations are derived based on the assumption that the cameras 
can be approximated by the pinhole camera model [28] 

Epipole: is the point of intersection of the line joining the camera centres with the image 
plane. 

Epipolar plane: contains the baseline. There is a one-parameter family of epipolar planes 
[28]. 

Epipolar line: is the intersection of an epipolar plane with the image plane [28].  

8-points algorithm: is an algorithm used in computer vision to estimate the essential 
matrix or the fundamental matrix related to a stereo camera pair from a set of corresponding 
image points [28]. The algorithm’s name derives from the fact that it estimates the 
fundamental matrix form a set of eight corresponding image points.  

It is relevant to note that, since the target is to know where the car is and the car is the only 
movement object of interest, frames can be decomposed into background and foreground, 
where the car is. 

2.1.1. Background estimation 

One practical way to get data from the video sequences is to isolate the car. This is feasible 
as it is the only moving object to differentiate between foreground (FG) and background 
(BG). For doing this, a background estimator has been selected, which can also be seen 
as a foreground detector.  

To get a detection of the foreground, an estimation of the background is performed to then 
subtract it from the image of interest following the method presented in  [29] and in [30].  

Let 𝑥௧  be the value of a pixel at a given time in a defined coordinate system. To do 
background estimation, it is necessary to decide whether this pixel belongs to FG or BG. 

Given a pixel 𝑥௧ we can model the probability of being included either in FG or BG. Making 
the Bayesian estimate we get to 

 𝑅 =
୮(஻ீ|௫೟)

୮(ிீ|௫೟)
=

୮(௫೟|஻ீ)୮(஻ீ)

୮(௫೟|ிீ)୮(ிீ)
. (1) 

Where 𝑅 is defined as the ratio between the probability of a known pixel to be background 
and the probability of a known pixel to be foreground. 

Following the reasoning described in [31], assuming no prior knowledge about FG and BG 
(i.e. p(𝐵𝐺) = p(𝐹𝐺) ), and also assuming that p(𝑥௧|𝐹𝐺)  has a uniform distribution (i.e. 

p൫𝑥௧ห𝐹𝐺൯ = 𝛾), then it is decided that 𝑥௧ belongs to BG if  

 p൫𝑥௧ห𝐵𝐺൯ > 𝛾, (2) 

Which can also be expressed as p൫𝑥௧ห𝐵𝐺൯ > p൫𝑥௧ห𝐹𝐺൯. 

As explained in [31] it is necessary to create a model of p൫𝑥௧ห𝐵𝐺൯. This model is estimated 
from a training set considering only the previous L frames. The choice of L has been done 
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through an educated guess. However, it is interesting to note that large L in static scenarios 
will provide a exact model estimation, but in dynamic background scenarios (e.g. with many 
changes of light or image planes from one frame to the following one) a large L may lead 
to an interpretation of many pixels as false FG.  

The model created from p൫𝑥௧ห𝐵𝐺൯ is called background model. But, as there are only L 
training frames, this background model is just a background estimation model, as it 
depends on the previous L frames.  

After having done several research, the model selected to estimate the background has 
been a Gaussian mixture model. This model consists on a weighted sum of K variables 
with Gaussian distribution, mean 𝑚௜ and covariance ∑௜.  

For the implementation of the model, the foreground detection function provided by Matlab 
2017b computer vision system toolbox [32] has been selected. This method consists on 
creating a foreground mask from subtracting a previously estimated background.  

For the model execution, several parameters have to be fixed. In this work all the 
parameters except K and L have been kept to the default value Matlab 2017b computer 
vision system toolbox had [32]. After an educated guess, the number of Gaussians has 
been set to 3 as it is the lowest number that provides a good performance when the car is 
far away. Number of training frames L has been set to 20, as it was the maximum number 
frames where the car can be estimated from a long distance and still being able to estimate 
it in the “test” frames. Parameters used are summarized in Table 3. 

 

Parameter Value 

Number of Gaussians (K) 3 

Minimum background ratio 0.7 

Learning rate 0.005 

Initial covariance 30 

Number of training frames (L) 20 

Table 3: parameters used for foreground detection 
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Figure 3: in the left-hand side, background estimated frame. In the right-hand side, original frame 

In Figure 3, background estimation for the measurements site is shown. The right-hand 
side shows a selected frame for background estimation. The left-hand side shows the result 
of background estimation. The car is well estimated. Some unwanted objects, like the man 
walking through, can still be seen. This can be further improved by defining a ROI.  

2.1.2. Epipolar geometry 

Epipolar geometry is the intrinsic projective geometry between two views [28]. In this case, 
the need for applying epipolar geometry arises from the fact that the at day of the 
measurements it was not possible to measure distances between the SA and the road. 
Then, another day distances were measured and videos were recorded with the same 
camera. However, even trying to set the camera taking the calibration frames in the same 
position as the measurement day, some offsets could not have been avoided, so both 
measurement and calibration images have been treated as two different views. To correct 
these offsets, epipolar geometry has been used.  

From the left-hand side scheme in Figure 4 it is possible to state the reasoning detailed in 
[28]: let a point 𝑃 in 3-dimensional space be projected in  𝑥 in one image and 𝑥ᇱ in another. 
To see the relation between them, it should be noted that 𝑥, 𝑥ᇱ, space point 𝑃, and camera 
centres 𝐶 and 𝐶ᇱ are coplanar [28]. Let me define this plane as 𝜋. The rays projected from 
𝑥 and 𝑥ᇱ intersect at 𝑃, and the rays are coplanar lying in 𝜋. This property is the most 
important for looking for a correspondence between the two views [28].  

A correspondence connects two points from two different views, which refer to the same 
point in real coordinates. 

Moving now to the right-hand side scheme of Figure 4, assuming that only 𝑥 is known. If 
we look for 𝑥ᇱ, we should consider that the plane 𝜋 is defined by the baseline 𝑏 and the ray 
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defined by 𝑥 [28]. We also know that the ray corresponding to the unknown point 𝑥′ lies in 
𝜋, then 𝑥ᇱ lies on the line of intersection 𝑙ᇱ of 𝜋 with the second image plane [28]. This line 
𝑙ᇱ  is the image in the second view of the ray projected from 𝑥 . It is the epipolar line 
corresponding to 𝑥 [28]. 

 

 

Figure 4: epipolar geometry schemes. 

 

 

Figure 5: example of an epipolar line computation 

In Figure 5 a real example of the theoretical development above can be seen.  
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In the left-hand side, a point P in world coordinates is projected into the red marker in the 
calibration image. The distance from P to the centre of the calibration image is known. Then, 
the goal is to find P in the measurement image. For this the epipolar line of the red marker 
is computed. This line is drawn in the measurement image (right-hand side of Figure 5). 

2.1.2.1. Fundamental matrix  

To compute epipolar lines from one image to another it is needed to compute the 
fundamental matrix.  

The fundamental matrix 𝐹 encapsulates the epipolar geometry. It is a 3x3 matrix of rank 2. 
If a point in 3D space ( and homogeneous coordinates) 𝑃 is imaged as 𝑥 = [𝑢 𝑣 1]் in 
the first view and 𝑥ᇱ = [𝑢ᇱ 𝑣ᇱ 1]் in the second, then the image points satisfy the relation 
𝑥ᇱ்𝐹𝑥 = 0, which is decomposed in Equation (3) [28]. 

 
[𝑢ᇱ 𝑣ᇱ 1] ൥

𝐹ଵଵ 𝐹ଵଶ 𝐹ଵଷ

𝐹ଶଵ 𝐹ଶଶ 𝐹ଶଷ

𝐹ଷଵ 𝐹ଷଶ 𝐹ଷଷ

൩ ቈ
𝑢
𝑣
1

቉ = 0 
(3) 

Equation (3) is reformulated to 

 

[𝑢𝑢ᇱ 𝑣𝑢ᇱ 𝑢ᇱ 𝑢𝑣ᇱ 𝑣𝑣ᇱ 𝑣ᇱ 𝑢 𝑣 1]

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐹ଵଵ

𝐹ଵଶ

𝐹ଵଷ

𝐹ଶଵ

𝐹ଶଶ

𝐹ଶଷ

𝐹ଷଵ

𝐹ଷଶ

𝐹ଷଷ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 0. 

 

 

(4) 

Using this property and in order to estimate this matrix from two images, we use the 8-
points algorithm. This algorithm consists on introducing 8 pairs of different and known 𝑥 
and 𝑥ᇱ. Then, Equation (4) allows to reformulate 
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𝑣଼𝑣଼

ᇱ

𝑣ଵ
ᇱ

⋮
𝑣଼

ᇱ

𝑢ଵ

⋮
𝑢଼

𝑣ଵ

⋮
𝑣଼

1
⋮
1

൩

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐹ଵଵ

𝐹ଵଶ

𝐹ଵଷ

𝐹ଶଵ

𝐹ଶଶ

𝐹ଶଷ

𝐹ଷଵ

𝐹ଷଶ

𝐹ଷଷ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 0. 

 

 

(5) 

On the day of the wireless radio measurements it was not possible to compute some 
distances from the ground to the SA. This meant that there was a zone of interest on the 
road (from the direction arrows to the stop line) where no reference could be taken. To 
create these references, calibration images were taken separately. Afterwards the 
fundamental matrix was computed to relate the 3D points (ground) with two 2D points (the 
one of the calibration image and the video frame). The ends of the lines in Figure 6 are the 
correspondences that were taken. 
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Figure 6: correspondences of points in calibration (left-hand side) and measurement (right-hand side) images 

Once the fundamental matrix was estimated, points of the road with known distances to 
the calibration camera were selected (left-hand side of Figure 7). Using the fundamental 
matrix, I computed the epipolar lines of every of these points in the measurement image 
(right-hand side in Figure 7). As the selected points were intentionally at the boundary of 
the road, this let us conclude that the equivalent points will be the intersection of the 
boundary of the road with the epipolar lines, as it can be seen in right-hand side in  Figure 
7. 
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Figure 7: measured points in the calibration image (left-hand side) and their epipolar lines in the measurement 
image (right-hand side) 

In the left-hand side of Figure 7, measured points in the calibration image are shown. For 
each point, its epipolar line in the image taken from the measurement’s day has been 
computed, and shown in the right-hand side.  

The distance between more points on the road and the traffic light was measured to have 
more distance marks without having to compute the equivalent point in the video frames. 

2.1.3. Filtering - Erosion 

To remove the different artifacts and unwanted objects, a filtering stage has to be 
implemented. In this thesis, an erosion stage has been implemented. Erosion is a filtering 
in which the output image will have in its centred pixel the infimum of the points of a filtered 
area of the input image. The element that defines this area is called structuring element 
(SE). 

In a formal expression, the erosion of a binary image A given by a binary structuring 
element B can be expressed as. 

 

 

(6) 

 

 

Where 𝐴ି௕ denotes the translation of 𝐴 by −𝑏 and     is the erosion operator. 

To illustrate it with a dummy example, let A be a 7x7 matrix such as 
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𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1

1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
1
0
1
1
1

1
1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
1
1
1
1
1⎦

⎥
⎥
⎥
⎥
⎥
⎤

. 

 

(7) 

 

 

Where 1 expresses the (0,0) position. 

Let 𝐵 be a structuring element such as 

 
𝐵 = ൥

1 1 1
1 1 1

1 1 1

൩. 
 

(8) 

 

 

Applying zero padding to 𝐴, after eroding 𝐴 by 𝐵, the result is as follows 

 

𝐶 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0

0
0
0
0
0
0

0
1
1
1
1
1
0

0
1
0
0
0
1
0

0
1
0
0
0
1
0

0
1
0
0
0
1
0

0
1
1
1
1
1
0

0
0
0
0
0
0
0⎦

⎥
⎥
⎥
⎥
⎥
⎤

. 

 

(9) 

 

 

From (9) it can be seen that the frame of 0s is due to zero padding. Also, the 0 in (7) in the 
middle when doing the erosion ends up being a 3x3 square of 0s in (9), as 3x3 is the size 
of the structuring element. 

In our case, 3 different structuring elements were proposed and investigated further. 

 

Figure 8: different structuring elements analysed 
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From Figure 8 it can be seen that structuring element 1 is a 7x7 squared matrix. Then the 
eroded image will have in each pixel the infimum of the given pixels and the 3 closest 
neighbours in each direction. In the second structuring element the resulting image will 
have in each pixel the infimum of the pixel located 3 pixels left-hand side and 3 up and the 
pixel located 3 pixels away at right-hand side. Finally, in the third structuring element, 
output image has in each pixel the minimum of the pixels of the 3 closest pixels in the input 
image pixel’s columns.  

The result of applying each structuring element to a given foreground detection image is 
shown in Figure 9. 

 

Figure 9: from top to bottom and left to right: background estimated frame. BG estimated frame afterwards 
being eroded with the first SE. BG estimated frame afterwards being eroded with the second SE. BG 

estimated frame afterwards being eroded with the third SE. 

 

The second structuring element removes few artifacts as long as the image is being eroded 
with just one pixel. However, it keeps very well the accuracy of the front car hood. Then, 
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both first and third SE provide a similar performance removing the artifacts, even none of 
them can remove accurately the unwanted elements. However, there are still some 
noticeable differences because of the fact that the first SE also erodes in the horizontal 
component, removing more artifacts and unwanted objects.  

Deciding which SE should be chosen leads to a trade-off. Removing as many artifacts as 
possible lead to a cleaner image. However, this procedure leads to a loss of accuracy when 
estimating the position of the image. As a high accuracy is needed, the second SE has 
been chosen. Furthermore, as it is only checked if the car goes through the line that divide 
the lanes, many of these artifacts are not crucial.   

 

2.2. Wireless radio data 

The aim of this section is to explain the techniques used to estimate the velocity from the 
recorded radio data. For this, a short introduction of the acquired data is done before 
providing the notation of the extended Kalman filtering. 

The acquired wireless radio data comes from an urban scenario (as it can be seen in Figure 
10), in which the transmitter is an antenna array located on top of a moving car. The 
receiver is positioned at the crossroads, at 5m height. The goal is to estimate the velocity 
of the moving vehicle during its approach to the crossroads. The receiver is a Rohde and 
Schwarz signal analyser (SA) located next to a traffic light. The centre frequency of both 
transmitter and receiver is at 60.15 GHz. More details of the setup can be seen in [6]. 

 

 

Figure 10: wireless channel setup 
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From the measurement evaluation performed in [6] an estimation of the received power 
contribution of each of the transmitters 𝑃ோ,௜ = [𝑃ோ,௜,଴, … , 𝑃ோ,௜,ௌିଵ] is obtained, as well as an 
estimate of the noise power 𝑃௡ = [𝑃௡,଴, … , 𝑃௡,ௌିଵ]. It is important to note that index i stands 
for the transmitter and each component of the vectors stand for the segment of time the 
sample is referring to. The number of segments is S, which translates to a recording time 
of 3.6 s. Having the estimate of the received power and the noise, leads to define the signal-
to-noise ratio (SNR) for each transmitter as follows 

 𝑆𝑁𝑅௜ = 𝑃ோ,௜ 𝑃௡⁄ . (10) 

 

Furthermore, a Doppler frequency shift estimate for each transmitter is obtained in every 
segment 𝑓መୈ୭୮୮,୧ = [𝑓መୈ୭୮୮,୧,଴, … , 𝑓መୈ୭୮୮,୧,ௌିଵ], which allows to estimate the radial velocity of the 

car, due to Doppler shift. 

 

2.2.1. Doppler shift pre-processing 

From the acquired wireless radio data, a Doppler shift frequency estimate for each 
transmitter is obtained. This provides an estimate of the radial velocity of the car with 
respect to the receiver according to 

 

 𝑓ୈ୭୮୮ =
௙౐౔

௖
𝑣௥. (11) 

From (11), 𝑓ୈ୭୮୮  is the Doppler frequency shift, 𝑓୘ଡ଼  the transmission frequency, c the 

speed of the light in vacuum and 𝑣௥ the radial velocity estimate.  

In this case, and defining the angles 𝛼 and 𝛽 as in Figure 11, 𝑣௥  can be expressed as: 

 𝑣௥ = 𝑣௬ cos𝛼 cos𝛽. (12) 

Where in (12) 𝑣௬, is the velocity of the car along 𝑦 axis, defining the axis as in Figure 12. 
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Figure 11: side and top view scheme of the measurement scenario 

 

 

Figure 12: axis definition with street view coordinates 

The angle  𝛼 in Figure 11 is the angle between 𝑦 axis and the visual line of sight (LOS) 
between the transmitter and the receiver projected onto the 𝑥𝑦 plane. Then 𝛽 in Figure 11 

SIDE VIEW

TX

1.8m

5m

RX

𝛽

3.93m

2.9m

RX

𝛼

TOP VIEW 𝑦 axis

𝑦 axis

𝑧 axis

𝑥 axis
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is the angle between 𝑦 axis at the transmitter height, and the LOS between the transmitter 
and the receiver projected onto the 𝑦𝑧 plane.   

The estimate of the Doppler shift and the coarse position estimate from the camera data 
are used as inputs for the Kalman tracker, which is used for fine position and velocity 
estimation. 

 

2.2.2. Extended Kalman filter 

Here the notation for our Kalman filter is introduced. 

The transition equation is given by 

 𝑥௞ାଵ = 𝐴 𝑥௞ + 𝑤. (13) 

 

Where 𝐴 is a matrix that expresses the evolution of the parameters to be estimated.  𝐴 is 

a model of the dynamics of the system parameters. The vector 𝑥  represents the 
parameters to be estimated and the index k expresses the evolving time. 

In addition, to allow a model mismatch, a noise term 𝑤 is added. This vector contains as 
many components as parameters to be estimated and each component follows a Gaussian 
distribution with 0 mean and variance 𝜎௪௜

ଶ. This variance is a free parameter which must 
be adjusted. This captures the uncertainty of the model. The covariance matrix of 𝑤 is 

 𝑊 = 𝐸ൣ𝑤𝑤ு൧, (14) 

 

which is chosen empirically, considering how trustable the parameter’s evolution in time is. 
On the one side, setting a low variance means that it won’t adapt to sudden changes, but 
on the other side, setting a high variance means that it might not follow the model accurately.  

The measurements equation is given by 

 𝑧௞ =  𝑔(𝑥௞) + 𝑛. (15) 

Where 𝑧௞ is the vector of measurements obtained, 𝑔(. ) expresses the relationship of the 
measurement and the parameters vector, and 𝑛 is a noise vector.  

In case of having linear relationship, 𝑔(. ) is expressed as a matrix 𝐺, which is the case of 

Kalman filtering. 

When 𝑔(. ) is not a linear function, then it’s linearized by 

 
𝐺௞ = ቈ

𝜕𝑔(𝑥௞)

𝜕𝑥௞,ଵ
,
𝜕𝑔(𝑥௞)

𝜕𝑥௞,ଶ
,
𝜕𝑔(𝑥௞)

𝜕𝑥௞,ଷ
቉, 

(16) 
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where the second index in the denominator shows the thi  component of the parameter’s 
vector. 

The noise vector 𝑛 in (15) expresses the uncertainty of the measurements. From the 
estimated parameters, a linear combination of them is performed to get the measurements 
with a certain noise term 𝑛 . This vector contains as many components as observations we 
have, and each component is a Gaussian noise of 0 mean and variance 𝜎௡௜

ଶ. 

The covariance matrix of 𝑛 is again 

 𝐶 = 𝐸ൣ𝑛𝑛ு൧, (17) 

 

which is chosen intentionally to reflect the noise of the measurements taken. 

Furthermore, to update 𝑥 in time considering the estimation error, the error covariance 
matrix 𝑃 and the gain matrix 𝐾 are defined respectively.  

In this thesis, a Kalman filter and an extended Kalman filter have been implemented. Both 
of them have as input 𝑥ො୮୭ୱ and 𝑦ො୮୭ୱ estimated from the coarse position estimate stage. 

Angles 𝛼 and 𝛽 (described in Figure 11) have also been estimated applying trigonometric 
ratios. It is necessary to remark that the time between radio data segments is not the time 
between video frames. The interval between segments is  𝑇ୱୣ୥ = 0.83 ms .and between 

frames is 1 30ൗ  seconds. 

In Kalman filtering 𝑥 and 𝑦 position (𝑥୮୭ୱand 𝑦୮୭ୱ respectively) as well as the velocity along 

𝑦 axis 𝑣௬ are estimated. It must be noted that the velocity estimate is the one along 𝑦 axis 

and not the radial velocity. This is due to the inputs 𝑞ଵ and 𝑞ଶ where 𝑓ୈ୭୮୮,୧,୩ is already 

divided by the product of the cosines of the two angles as Kalman filter only admits linear 
relations. However, in extended Kalman filtering the input is the estimated parameters from 
the coarse position estimation and 𝑓ୈ୭୮୮,୧ as defined in (11), which is linearized in 𝐺௞ 

Parameters are summarized in Table 4. 

Kalman filter Extended Kalman filter 

𝑥௞ = [𝑥୮୭ୱ,௞ 𝑦୮୭ୱ,௞ 𝑣௬,௞]் 𝑥௞ = [𝑥୮୭ୱ,௞ 𝑦୮୭ୱ,௞ 𝑧୮୭ୱ,௞ 𝑣௬,௞ cosα௞ cos𝛽௞]் 

 

𝐴 = ൥
1 0 0
0 1 𝑇ୱୣ୥

0 0 1

൩ 𝐴௞ =

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0
0 1 0 𝑎൫𝑥௞൯ 0 0

0
0
0
0

0
0
0
0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1 ⎦

⎥
⎥
⎥
⎥
⎤

 

 



 

 25

 

𝐺 =

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0
0 1 0

0 0
𝑓 ௫

𝑐

0 0
𝑓 ௫

𝑐 ⎦
⎥
⎥
⎥
⎥
⎤

 𝐺௞ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

1 0

0
𝜕𝑓஽௢௣௣,ଵ,௞

𝜕𝑥௞,ସ

0 0
𝜕𝑓஽௢௣௣,ଵ,௞

𝜕𝑥௞,ହ

𝜕𝑓஽௢௣௣,ଵ,௞

𝜕𝑥௞,଺

0
0

0
0

0 0

0
0

𝜕𝑓஽௢௣௣,ଶ,௞

𝜕𝑥௞,ସ

0
0 0

𝜕𝑓஽௢௣௣,ଶ,௞

𝜕𝑥௞,ହ

1

𝜕𝑓஽௢௣௣,ଶ,௞

𝜕𝑥௞,଺

0
0 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝑧௞ = [𝑥ො୮୭ୱ,௞ 𝑦ො୮୭ୱ,௞ 𝑞ଵ,௞(𝛼௞ , 𝛽௞) 𝑞ଶ,௞(𝛼௞ , 𝛽௞)]் 𝑧௞ = [𝑥ො୮୭ୱ,௞ 𝑦ො୮୭ୱ,௞ 𝑧̂୮୭ୱ,௞ 𝑓ୈ୭୮୮,ଵ,௞ 𝑓ୈ୭୮୮,ଶ,௞ cos (αෝ௞) cos (𝛽መ௞)]் 

𝐾௞ = 𝑃௞  𝐺ு(𝐶 + 𝐺 𝑃௞  𝐺ு)ିଵ 

𝑃௞ = (𝐼ଶ − 𝐾𝐺) 𝑃෠௞ 

 
𝑎൫𝑥௞൯ =

𝑇ୱୣ୥

𝑥ହ,௞𝑥଺,௞
 

𝑞௜,௞(𝛼௞, 𝛽௞)

=
𝑓ୈ୭୮୮,௜,௞

cos (𝛼ො௞)cos (𝛽መ௞)
൘  

 

 𝜕𝑓ୈ୭୮୮

𝜕𝑥௞,ସ
=

𝑓 ௫

𝑐
𝑥௞,ହ𝑥௞,଺ 

 𝜕𝑓ୈ୭୮୮

𝜕𝑥௞,ହ
=

𝑓 ௫

𝑐
𝑥௞,ସ𝑥௞,଺ 

 𝜕𝑓ୈ୭୮୮

𝜕𝑥௞,଺
=

𝑓 ௫

𝑐
𝑥௞,ହ𝑥௞,ସ 

Table 4: Kalman filter and EKF equations definition 
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3. Results 

The aim of this section is to present and evaluate the different results obtained from the 
measurements taken for the thesis. The measured scenario and the measurement setup 
are similar as in [6]. The only difference from [6] is that in this work additionally video data 
is being used.  

As explained in Chapter 2, to synchronise both the camera and the SA, a light barrier has 
been set 24 m away from the SA position. When the car goes through this light barrier, a 
trigger activates the recording of the SA and also flashes a green light that it is seen from 
the camera to align recorded frames. This allows to align both data sources.  

The SA and the 360º camera are placed on top of a traffic light, 5 meters above the road 
level.  

The recording time from the SA has been set to 3.6s, which let us acquire 4298 segments 
of data. Within that time 108 frames are captured by the camera, as the frame rate is 30 
fps. The software used for all post-processing and evaluation stage has been Matlab 
version 2017b. 

3.1. Tracking results 

3.1.1. Coarse position estimation 

From the images taken in the calibration stage, reference points are obtained. These 
references can be seen in Figure 13. Blue points are the selected afterwards in Figure 15. 

 

 

Figure 13: reference marks 



 

 27

To make the position estimate, an evaluation for each of the eroded frames is done to 
check which references the car, as foreground, has passed. For points between two marks, 
the trajectory of the car is linearly interpolated. The results of an exemplary measurement 
run are shown in Figure 14. 

 

Figure 14: coarse trajectory estimate 

The red line shows the trajectory of the car position during the measurement. The positions 
are relative to the previously defined coordinate system. For real world coordinates, further 
corrections are necessary. The real-world coordinates of the blue marked points of Figure 
13 have been obtained using ViennaGIS, and the result is shown in Figure 15. The 
trajectory is exported to Google Maps. 
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Figure 15: map pointing the coordinates associated to some of our points of interest 

To understand the image, it should be noted that the blue marked locations match with 
selected locations placed in Figure 13. The title of the locations, which is also below each 
location, is the elapsed time for passing the light barrier in seconds when the car went 
through the checkpoints.    

3.1.2. Velocity estimate through Doppler shift estimate 

As explained in Section 2.2, from the radio data acquired using [6], a Doppler shift 
frequency estimate 𝑓ୈ୭୮୮,୧ is obtained for the received signal from each transmitter. From 

this estimate a Kalman filter has been developed having both 𝑓ୈ୭୮୮,୧ as inputs and 𝑣௥ as 

estimate. As in this case just 𝑣௥ is estimated, matrix 𝐴 turns into a scalar value 𝑎 in (18). 

For the same reason, 𝐺 turns into a vector of two components 𝑔 in (19), where each of the 

components stands for each 𝑓ୈ୭୮ ,୧.  

This estimation is done for both transmitters. 

The Kalman filter matrices are as follows 

 𝑎 = 1, (18) 

 

 
𝑔 = ൤

𝑓 ௑ 𝑐⁄

𝑓 ௑ 𝑐⁄
൨. 

(19) 

 

As the velocity evolution of the car cannot be predicted, no time evolution model is 
proposed and no previous knowledge can be applied. In the measurement’s equation the 
conversion from the Doppler frequency shift to the radial velocity is made applying (11). 
The central transmitted frequency 𝑓 ௑  has been assumed the same both transmitters.  
Selected variance and initialization parameters are summarized in Table 5. 

Exported trajectory estimate 
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Value Parameter 

Velocity variance (𝜎௪
ଶ) 0.1 

Measurements variance for transmitter 1 
(𝜎௡ଵ

ଶ) 
700 

Measurements variance for transmitter 2 
(𝜎௡ଶ

ଶ) 
200 

Velocity initialization (m/s) 10 

Table 5: first Kalman radial velocity estimate 

A high velocity initialization has been chosen to check how fast the Kalman filter could 
adapt to sudden changes. Also, as it is known that the time between samples is lower than 
a millisecond, car velocity cannot change a lot. This is why the velocity variance chosen 
has been low.  

Results are shown in Figure 16 and Figure 17. 

 

 

Figure 16: frequency input of the Kalman filter for both transmitters 
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Figure 17: result of the radial velocity estimate for both transmitters 

 

The behaviour of the Kalman filter parameter can be seen. Peaks at erroneous frequency 
shift estimate due to fading holes of the wireless channel have been smoothed. This has 
happened because of having set the variance of the measurements far higher than the 
initial state. This means that if the input sample is very different from the one according to 
(13), the model should trust only a variance of the order of the initial state. Then, sudden 
variations are being removed. Another point to remark is that the measurement variance 
of the Doppler frequency estimate from transmitter 2 is lower than transmitter 1 as the 
signal is smoother with less peaks. This can be explained with the 15º beam-elevation 
being less susceptible to fading due to spatial filtering of the road environment. 

3.1.3. Joint estimation 

Finally, after getting the results of the coarse position estimate, two algorithms have been 
developed to make a joint estimate of position and velocity: a Kalman filter and an extended 
Kalman filter.  

3.1.3.1. Kalman filter estimate 

Having the model described in Table 4, inputs have been the coarse position estimate and 
the frequency shift estimate. The parameters have been adjusted as follows in Table 6. 

The choice of the 𝜎௪ଷ
ଶ  variance comes from taking into account the time between 

frequency shift segments. It must be noted that 𝜎௪ଷ
ଶ is lower than in Section 3.1.2. This is 

done taking into consideration that Kalman filtering reduces the general weighted estimate 
error. After adding  𝑥୮୭ୱ,୩  and 𝑦୮୭ୱ,୩   to the parameter’s vector, the estimation error 

increases. As the radial velocity estimate in Section 3.1.2 was quite steady, 𝑣௬ has been 

assumed to be quite steady too and for this 𝜎௪ଷ
ଶ has been chosen far lower than 𝜎௪ଵ

ଶ and 
𝜎௪ଶ

ଶ. 
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As in Section 3.1.2, 𝜎௡ସ
ଶ is lower than 𝜎௡ଷ

ଶ as the frequency shift estimate is more reliable 
for transmitter 2.  

 

Parameter Value 

𝑥 𝑎𝑥𝑖𝑠 state variance (𝜎௪ଵ
ଶ) 0.01 

𝑦 𝑎𝑥𝑖𝑠 state variance (𝜎௪ଶ
ଶ) 0.2 

Velocity state variance (𝜎௪ଷ
ଶ) 1𝑒 − 3 

𝑥 axis measurement variance (𝜎௡ଵ
ଶ) 0.5 

𝑦 axis measurement variance (𝜎௡ଶ
ଶ) 0.4 

Frequency measurement variance (𝜎௡ଷ
ଶ) 700 

Frequency measurement variance (𝜎௡ସ
ଶ) 200 

Table 6: joint position and velocity estimate Kalman filter parameters 

 

 

Figure 18: velocity estimate with Kalman filter 

 

An increasing velocity estimate 𝑣௬ can be observed in comparison to radial velocity 𝑣௥ in 

Figure 18. Using (12) an explanation can be obtained. In the right-hand side image of 
Figure 16 it can be seen how the velocity decreases as the car goes towards the SA. 
However, considering angles 𝛼 and  𝛽, velocity increases. However, having introduced 
position estimate leads to a less accurate velocity estimate, as Kalman filtering reduces 
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general estimation error. This means that the estimation error is now weighted for every 
transmitter. 

Even though no direct comparison between radial velocity from the frequency shift estimate 
and velocity along y axis from camera data is possible, this last estimate can be compared 
with the velocity estimate from the coarse position estimate. The results of the comparison 
can be found in Figure 19 and in Figure 20. 

 

Figure 19: velocity estimate from camera data 

 

 

Figure 20: Velocity estimate over time with Kalman filtering 
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In Figure 19 it can be seen how the coarse position estimate leads to a very abrupted 
velocity estimate, which can’t match with the real velocity of the car.  Therefore, the usage 
of the wireless radio data is necessary to get a plausible estimate.  

To check the accuracy of the car velocity estimate, the average estimated velocity from 

Figure 20 has been computed, which has turned out to be 6.1414 
୫

ୱ
. This means that in 

3.6 s the distance covered is 22.1 m. Now, the distance from the light barrier until the last 
frame (which is placed at 2 m distance), has turned out to be  22 m which is quite accurate. 

3.1.3.2. Estimate with extended Kalman filter 

Once seen that Kalman filtering has a promising performance, some improvements have 
been introduced.  

One of the techniques used in the last approach has been the usage of the coarse position 
estimate to compute the angles. For improving this, an extended Kalman filter has been 
developed. The objective of this technique is to estimate in every iteration 𝛼 and 𝛽  defined 
in Figure 11 from the finely estimated position estimate. The extended Kalman filter is 
defined by the model expressed in Table 4.  

As we did in Section 3.1.3.1 parameters must be adjusted, and it has been done as 
summarized in Table 7. Parameters from Table 6 have been kept with the same value, but 
new parameters have been added.  

Parameter Value 

𝑥 𝑎𝑥𝑖𝑠 state variance (𝜎௪ଵ
ଶ) 0.01 

𝑦 𝑎𝑥𝑖𝑠 state variance (𝜎௪ଶ
ଶ) 0.2 

Velocity state variance (𝜎௪ସ
ଶ) 1𝑒 − 3 

Angles state variance (𝜎௪ହ,଺
ଶ) 1𝑒 − 4 

𝑥 𝑎𝑥𝑖𝑠 measurement variance (𝜎௡ଵ
ଶ) 0.5 

𝑦 𝑎𝑥𝑖𝑠 measurement variance (𝜎௡ଶ
ଶ) 0.4 

Frequency measurement variance (𝜎௡ସ
ଶ) 700 

Frequency measurement variance (𝜎௡ହ
ଶ) 200 

Angles measurement variance (𝜎௡଺,଻
ଶ) 1𝑒 − 4 

Table 7: extended Kalman filter parameters 

It must be remarked from the parameter’s selection that the variances of both angles are 
the same for both equations. This has been done to assume the same degree of ignorance 
for both coarse position estimate and transition equation.   
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Figure 21: distance estimate along 𝑦 axis from transmitter to receiver 

 

 

Figure 22: estimate of the cosines of  𝛼 and 𝛽 over time using extended Kalman filter 

 

Figure 21 and Figure 22 show the estimate of the 𝑦 axis position estimate and  𝛼 and 𝛽 
angles respectively.  It can be extracted from Figure 21 that the 𝑦 axis position estimate is 
quite linear. This was expectable as long as in Figure 20 the velocity estimate was quite 
steady. In Figure 22 the estimate of 𝛼 and 𝛽 over time is plotted. Angle 𝛽 is well estimated. 
However, angle 𝛼 is noisy. This happens because the movement along 𝑥 axis is assumed 
to change during time due to a not completely straight-line driving. The frequency 
measurements error is translated to an estimate error of 𝛼. 
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A comparison of the performance of Kalman filtering and extended Kalman filtering is done 
in Figure 23, where both velocities estimates are plotted to appreciate better the differences. 

 

Figure 23: velocity estimate with Kalman filter and with EKF 

As it can be seen in Figure 23 both estimates are similar. However, as EKF estimates also 
angles 𝛼 and 𝛽, it can correct the error introduced by the computation of the angles and it 
is less sensitive to sudden changes. To get more insights about how much do the estimates 
differ, the mean square root difference has been computed. This metric has been defined 
as follows 

 

diffୖ୑ୗ = ඨ
∑ (𝑣௬,௄ி,௞ − 𝑣௬,ா௄ி,௞)ଶௌିଵ

௞ୀ଴

𝑆
. 

(20) 

  

Where 𝑣௬,௄ி,௞ stands for every segment of the estimated velocity using Kalman filtering and 
𝑣௬,ா௄ி,௞ stands for every segment of the estimated velocity using extended Kalman filtering. 

The result of computing (20) is 0.05 m/s, which is due mainly to a better correction in the 
peaks using extended Kalman filtering.  

 

3.2. Applications of vehicle tracking 

Position estimate from Kalman filtering allows to transform the time index into a position 
index which was not possible so far in [6]. This allows for instance the plot of the received 
signal-to-noise ratio (SNR) over the estimated distance, as it is done in Figure 24.  



 

 36

 

Figure 24: plot of the SNR over the line-of-sight estimated distance 

 

The SNR in Figure 24 is shown for each of the two transmitters over their estimated visual 
line-of-sight (LOS) distance to the receiver. Results differ for both transmitters. Firstly, one 
reason for having these different results is that the different beam elevations of the 
antennas caused that destructive interference took place at different positions for each 
transmitter. It is interesting to see how this effect has influence also in the frequency 
estimate in Figure 16. Secondly, it can also be observed that the 15º elevation beam of 
transmitter 2 provides on average higher SNR when the car approaches the receiver. 
Spatial filtering near the receiver is more relevant for transmitter 1 and the corresponding 
received signal gets weaker.  

It is also interesting to get more insights about the signal-power-to-noise ratio (SNR) 
depending on the estimated distance. For this, in Figure 25 a coverage map has of the 
road has been built. It must be noticed that, as only 108 frames were taken, 41 segments 
are averaged for SNR per frame to reach alignment.  
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Figure 25: in the left-hand side, SNR coverage map for transmitter 1. In the right-hand side coverage map for 
transmitter 2 

Figure 25 shows how results in SNR differ between transmitters as it was explained in 
Figure 24. 

Another interesting result to compute is the SNR with selection diversity, which is taking 
the sample of the signal with most power of both transmitters.  

To illustrate this, Figure 26 shows the selection diversity plotted together with the SNR for 
each of the transmitters. 

0<SNR<10dB 10<SNR<15dB 15<SNR<20dB 20<SNR<25dB 

Coverage map for SNR from transmitter 1 Coverage map for SNR from transmitter 2 
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Figure 26: selection diversity plot with both SNR estimates from both transmitters 

It can be seen in Figure 26, that the 15º beam elevation of transmitter 2 is less susceptible 
to fading due to spatial filtering, which means that the signal is better on average. Therefore, 
as destructive interferences took place in different positions for each transmitter, selection 
diversity avoids these interferences, having always a good SNR. 

Finally, the same overlay method as shown in Figure 25, is now done for SNR with selection 
diversity in Figure 27.  
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Figure 27: coverage map of selection diversity plot 

 

  

Coverage map for SNR with selection diversity 

0<SNR<10dB  10dB<SNR<15dB   15dB<SNR<20dB   20dB<SNR<25dB 
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4. Conclusions and future development 

The aim of this thesis was to develop a system able to track the position and velocity of a 
moving car in an urban environment with two data sources: a camera and a wireless 
communication link formed by a transmitter array on top of a car and a signal analyser (SA) 
acting as receiver. The system has been evaluated with measurements taken place in 
Vienna downtown the 25th of September 2018. For this, a 360º camera has been chosen 
and the communication link employed on the transmitter side an antenna array of 2 
directional elements and on the receiver side an omnidirectional antenna. The 
communication link operated in the V-frequency band.  

For developing this system, an estimate from each source has been done in an 
independent way. From camera data side, two different stages have been used. For 
isolating the car, a Gaussian mixture model for background extraction has been 
implemented followed by an erosion. These techniques have been successful as I was able 
to isolate the car in the region of interest.  

Parallel to this approach, calibration images have been taken to get references of the 
distance between points on the road and the receiver. Also, these images have been used 
to get the distance of some points to the SA through epipolar geometry. Both techniques 
have allowed to make a position estimate of the car of interest. 

From the communications link side, using radio data from [6], a Doppler shift estimation 
has been obtained for 2 transmitters. Both estimates have been fed as inputs for a Kalman 
filter to track position and velocity of the car. 

As shown in the results chapter, the usage of this system has provided an accurate 
estimate of the velocity as well as the car position. Furthermore, using the data provided 
by [6], the received SNR has been printed along the road. We have also seen that EKF 
gives a slightly better performance than Kalman filtering.  

As further development of this thesis there are many issues that could be interesting to 
face in the long term. However, I think that the most crucial ones are a different image 
processing approach and a study of the antenna orientation relating it with the received 
power would be really interesting. For camera data, it would be intriguing to observe the 
position estimation using for example CNN or Ada-Boost algorithm, that where mentioned 
in the state of the art. From fine position estimate, taking into account that coarse position 
estimation may not have a Gaussian noise, it would be interesting to evaluate the 
performance of other kind of filters such as particle filters.  

 

As a final opinion of this thesis, I think that the goal was ambitious in the sense of having 
had to work directly with measurements and also having to face computer vision and image 
segmentation issues what were completely new and we had to learn from scratch. 
Nonetheless, a complete solution has been set out and some paths have been considered 
to keep researching. 
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