TECHNISCHE
UNIVERSITAT
WIEN

MASTERARBEIT

Archiving Digital Maps with GeoPackage and Vector-tile
Dissemination

Ausgefiihrt am Department fiir
Geodisie und Geoinformation
der Technischen Universitat Wien

unter der Anleitung von
Univ.Prof. Mag.rer.nat. Dr.rer.nat. Georg Gartner, TU Wien
und
Dipl.-Ing. Dr. Markus Jobst, Bundesamt fir Eich- und Vermessungswesen
Dr.-Ing. Christian Murphy, TU Minchen

durch
Yunnan Chen
Schulwinkel 4, Stuttgart

28.03.2019

Unterschrift (Student)

TECHNISCHE
UNIVERSITAT
WIEN

MASTER’S THESIS

Archiving Digital Maps with GeoPackage and Vector-tile
Dissemination

Conducted at the Department of
Geodesy and Geoinformation
Technical University Vienna

Under the supervision of
Univ.Prof. Mag.rer.nat. Dr.rer.nat. Georg Gartner, TU Vienna
and
Dipl.-Ing. Dr. Markus Jobst, Federal Office of Metrology and Surveying
Dr.-Ing. Christian Murphy, TU Munich

by
Yunnan Chen
Schulwinkel 4, Stuttgart

28.03.2019

Signature (Student)

Statement of Authorship

Herewith | declare that | am the sole author of the submitted Master’s thesis entitled:
“Archiving Digital Maps with GeoPackage and Vector-tile Dissemination”

I have fully referenced the ideas and work of others, whether published or unpublished. Literal or
analogous citations are clearly marked as such.

Vienna, 28.03.2019 Yunnan Chen

Acknowledgements

The last two years in the International Cartography M.Sc. programme have been such a
special journey. This master’s thesis could not be accomplished without the supports of many
people.

First, I would like to express my sincere gratitude and appreciation to my first supervisor
and the deputy head of Information Management Department at Austrian Federal Office for
Metrology and Surveying, Dr. Markus Jobst, who has been providing marvelous guidance, ideas,
support, and suggestions in the last few months.

I would also like to show my sincere appreciation to the Chair of the Research Group of
Cartography at TU Wien, Prof. Georg Gartner. Thank you for all your incredible help and support
along the way.

Special thanks go to Dr.-Ing. Christian Murphy, Dr. Corné van Elzakker, and M.Sc. Juliane
Cron, M.Sc. Francisco Porras for your kind help, support, and suggestions during the thesis
assessment meetings.

Last, I would like to thank my family and friends for their unconditional support during
this master’s program.

Abstract

The preservation of digital maps has been a long-term challenge for the cartographic
community, GIS industry, and related mapping agencies. As a special type of digital data, digital
maps not only contains geospatial datasets, but also requires the metadata and styling information
associated with datasets. However, research has shown that most digital mapping archive projects
in the world are using the shapefile and GeoTIFF format to store geospatial data, which cannot
completely fulfill the principles of digital map preservation. Thus, an alternative method is
necessary to satisfy the need for digital map preservation.

This thesis proposes a new approach to archive digital maps using GeoPackage format and
to disseminate digital maps using vector tile format. For this thesis, a case study was conducted
using the Austrian Cartographic Model with national map styling. The new approach allows the
archiving and sharing processes to be conducted in a free, cross-platform, and open-source
environment using QGIS and Geoserver. In addition, a Python script has been developed to provide
a user-friendly interface and to minimize the human effort during the process of embedding
metadata.

Based on the results from the case study, this thesis proposes an innovative approach to
embed relevant metadata for future usage in digital maps using GeoPackage and to embed styling
from GeoPackage when distributing digital maps that use vector-tile format. It also shows the
possibility of using Python scripts to automate the procedure of embedding relevant information
into GeoPackage.

Keywords: Digital Map Preservation, Geopackage, Metadata, Map Style, Vector Tile, Python

Table of Contents

ACKNOWIBAGEMENES ... e et e e e ra e e st e e anteee e i
N oS - Vo TSRS v
ST OF FIQUIES ...ttt et ekttt et et e nne e viii
TS 0 o] L= SRR IX
F N o] o] 1=V 4 T OSSPSR X
IO 110 o L1 T (o] oSSR 1
1.1 BACKGIOUNT ...ttt ettt 1
1.2 Motivation and Problem Statementcooive e 1
1.3 Research Questions and OBJECTIVEcouiiiiiiiii s 3
1.4 OVEIVIEW OF CONTENTSvieiiiie ettt ettt e e e e et e et e e nnte e e nntaeeantaeeanneeeenes 4

2. Literature Review and Theoretical Backgroundccooioiiiiiiiiiiiii e 5
2.1 Principle of Digital Maps Preservation and Archiving..........ccccooveiieniiiiniiienee e 5
2.2 Status Quo and Challenge of Archiving Digital Mapscccccoiieiiiiniiiiiee e, 7
2.2.1 Historical Situation and Challenge of Archiving Digital Maps............ccccvevveviieeiinnnnn. 7
2.2.2 Modern Situation and Challenge of Archiving Digital Maps.........ccccccccveevieeiiieesinnnn, 9

2.3 Evaluation of Geospatial Data Format for Archiving PUIPOSEccccccveevivveeiieee e, 12
2.3.1 Vector Data Format — Shapefile.........c..coouii i 12
2.3.2 Raster Data Format — GEOTIFFoooiiiie e 14
2.3.3 Alternative Data Format for Future Digital Maps Archiving and Dissemination 15

3. Methodology and Case STUYccoiueieiiiiee et e e e e e b e e anneas 18
3.1 Case Study Background and SCENAIOccuveeiireeiiieeciiieesiie e sie e se e e e e srae e 18
3.2.1 OVerview Of APPrOACKcccuiiiiiie et 19
3.2.2 Operating System and Software ENVIrONMENt.............ccccoovreiiiie e 19
3.2.2.1 PYthOn ENVIFONIMENTccuviiiiiiec ettt nae e naee e 19

3.2.3 0riginal DataSet REVIEWcciiuiiiiiiee ittt ettt e e e srae e 20
3.2.4 Geospatial Data FOrmat CONVEISIONccoiuieeiiieeciee e 22
3.2.5 Extracting Metadata from PDFcooiiiiiic e 23
3.2.6 InSerting Metadata.............cooiuiiiiiiii e 24
3.2.7 Editing Style iN QGISo 29

Vi

3.2.8 Adding Style iNt0 GEOPACKAGEeiiuieiiieiiiieiee et 31

3.2.9 Uploading GeoPackage t0 GEOSEIVENcciuiiiiieiiieirieiire ettt 31
3.2.10 Importing Style and Digital Maps Distributioncccccoviiiiniiiiieee 32

A RBSUILS ...ttt 34
4.1 Archiving Digital Maps With GEOPACKAGEcueeiiiiiiiiiieiiie e 34
4.2 Vector TilesS DISSEMINALIONeoiuiiiiieiii ettt 36
4.3 Python Script for Automatically Embedding Metadata..............cccoveviiniiiiieiiienee e 36
5. DiscuSSION aNd FULUIE WOTK..........oiiiiiiiiiiieiit et 38
5.1 Character ENCOUING ISSUB......c..uiiiiiiiieiieeie ettt ettt 39
5.2 Map Labeling and Symbology ISSUEc.coiuiiiiiiiiiiiiee e 39
5.3 Geodata QUANITY ISSUEccuvieiieiiie ittt 40
B. CONCIUSION ...ttt ettt ettt e et et e e be e e beesnbeentee s 42
7. LISt OF RETEIBICES ...ttt et e e be e e st 44
AADPPEINTIX .ttt bbbttt Rt bt bttt ettt anb e ntee s 47

Vil

List of Figures

Figure 1-1 Austria Map Online (AMap Online) — A Web Map Viewer hosted by BEV 2
Figure 2-1. Five principles for the preservation of geospatial data (Clark, 2016)............c.cccceeeuee. 6
Figure 2-2. Geo-archiving Lifecyle(Shaon,2011)........c.cccuiiiiiiieiiiiiiesie e 6
Figure 2-3. Example of Spatial Index (Zaslavsky, 2001)cccooiiiiiiiiiinieiie e 9
Figure 2-5. The NGDA architecture at the Stanford University (Erwin & Sweetkind-Singer,

400) SRR STSPPRURS 10
Figure 2-4. The NGDA architecture at the UCSB (Erwin & Sweetkind-Singer, 2009)............... 10
Figure 2-6. GeoMAPP Partners (North Carolina Center for Geographic Information and Analysis
& North Carolina Department of Cultural Resources, 2011).........ccccevvieniiiiieniienieeee e 12
Figure 2-7. Support of Metadata on Geoportal of MSDIS WeDSItec.cccoviiiiiiiiiiiiiieiee, 13
Figure 2-8. GeoPackage Tables Overview (OGC, 2018).........cccuirieiiieiiieiieiiee e 15
Figure 3-1. WOIKFIOW OVEIVIEBWcc.uiiiiiiiiieiiieie ettt 18
Figure 3-2. Original DataSet OVEIVIEWcoiuiiiiiiiiieiiie sttt 20
Figure 3-3. Example of Metadata in BEV PDF Page 22cccoceeiiiieiiiie e siee e 21
Figure 3-4. Package Layer TOOI BOX iN QIScooiiiiiiiiecie e 22
Figure 3-5. gpkg_contents table in output GeoPackage using DB Brower for SQLite................. 22
Figure 3-6. Metadata Overview of KM1000_polbnd_area Layer in BEV PDF............ccccceevveeen. 26
Figure 3-7. INSPIRE XML with Original Format in GeoPackage............c.cccveevvveeiineeiiiee i, 29
Figure 3-8. Style Editing Process in QGIS..........coiiii i 30
Figure 3-9. Additional Cartographic Representations created to match the National Map Style .30
Figure 3-10. Add Layer Style to GeoPackage in QGIScoovve i 31
Figure 3-11. Uploaded style in SLD format in Geoserver Style Eitor.............ccccevvvveeviieeiinnenn, 32
Figure 3-12. Sharing Digital Maps in Vector Tiles Format in GeoServer 2.15cccccveevneeenn 33
Figure 4-1. Data Size COMPAIISONceeiiiiieiiiiee et e eiie e e st e st e e st e e st eessta e e e srbeeesraeeesnreeeaseeeas 34
Figure 4-2. Viewing Embedded Metadata through DB Brower SQIitecccceevvveeviieeinnnnn, 35
Figure 4-3. Preview of the Published Digital Maps in GEOSEIVErcccovvveevieeeiiie e, 36
Figure 4-4. View of the GUI for the Python Scripts in MacOS and Windows 10 37
Figure 5-1. German Umlauts ENCOAING ISSUEccvuviiiiieiiiieeiiee e 39
Figure 5-2. Map Labelling and Source Data ISSUEcc.evieiiiiiiieiiiiiiic e 40

viii

List of Tables

Table 1. Software and Programming Language ReqUIrementccoccvevvveiienieenneeniesieeninnn
Table 2. Built-in Modules used in PYthon SCIPLcocviiiiiiiiiiieiee e
Table 3. External Modules and Dependencies required by Python scriptccccooeviiiiiiinnn,

Abbreviations

API
BEV
CSS
Y,
DEM
ESRI
FGDC
FTP
GIS
GML
GUI
INSPIRE
MSDIS
NDIPPP
NSDI
NGDA
0GC
PDF
PNG
SDI
SHP
SLD
SOA
SQL
SVG
TIFF
TXT
UTF
VML
WFS
WMS
XML
ZIP

Application programming interface
National Mapping Agency of Austria
Cascading Style Sheets

Comma-separated Values File

Digital Elevation Model

Environmental Systems Research Institute
Federal Geographic Data Committee (USA)
File Transfer Protocol

Geographic Information System
Geography Markup Language

Graphical User Interface

Infrastructure for Spatial Information in Europe
Missouri Spatial Data Information Service
National Digital Information Infrastructure and Preservation Program
National Spatial Data Infrastructure
National Geospatial Digital Archives (USA)
Open Geospatial Consortium

Portable Document Format

Portable Network Graphics

Spatial Data Infrastructure

ESRI Shapefile Format

Styled Layer Descriptor

Service-Oriented Architecture

Structured Query Language

Scalable Vector Language

Tagged Image File Format

Standard Text Document

Unicode Transformation Format

Vector Markup Language

Web Feature Service

Web Map Service

Extensible Markup Language

Archive File Format

https://en.wikipedia.org/wiki/Bundesamt_f%C3%BCr_Eich-_und_Vermessungswesen

1. Introduction
1.1 Background

“The long-term preservation of digital records has been the topic of study by librarians
and archivists for the last twenty years or so (Brand, 2000; The Commission, 1996). ”

“One special subset of digital data of particular concern is digital geospatial data. ”

“Geospatial data are unique in the digital world because real-world phenomena are stored
as points, lines and polygons; and relationships between these entities are stored as part of the
electronic data structure. ”

“Currently, there are no easy answers as how best to guarantee that digital data will last
into the future without active management to preserve the data. ” (Bleakly, D. R., 2002)

Denise R. Bleakly wrote the sentences above in her report back in 2002, which illustrated
the issues of the long-term preservation of digital maps at that time. As time passes by and
technology advances, cartographers are facing new challenges for the same topic. This dissertation
studies the principle and status quo of archiving digital map nowadays, discusses the current main
geospatial data formats, and illustrates a more promising data format for archiving and sharing
digital maps in the future.

1.2 Motivation and Problem Statement

The preservation of digital maps has been a long-term challenge for the cartographic
community, GIS industry, and relating mapping agency ever since the invention of personal
computers in the 1970s. The following years, until the 21th century, has been referred as the dark
ages of archiving digital cartographic heritage by Lauriault et al., (2011). In that time period, there
was a major shift from paper maps to digital maps, which had a strong influence on information
management. The issues for digital preservation involve media, technological obsolescence, data
refreshing, data migration, emulation, data storage versus data access, and long-term costs (Bleakly,
2002). Due to the technical limitations such as the availability of personal computer and internet,
the digital maps and geospatial data were limited to professionals at that time. Meanwhile, the
public was mainly using the paper map provided by mapping agencies. As time passes by, the
situation and challenges of archiving digital maps have changed as well.

Currently, as a result of the development of the Internet and the increasing use of computers
and mobile devices, there is a major transition, and the use of GIS services are shifting from a
desktop environment to the web service side, which allows more public users to engage in the
mapping activities. In addition, as the size of spatial data increases, the data management becomes

more complicated and has changed from local database management to distributed data
management (Ruzicka, 2016). Thus, data format, as the fundamental part of mapping service, has
inevitable influences on the future digital mapping and distributed GIS. It is essential to study the
geospatial data formats that have been widely used in digital map preservation nowadays.

Based on multiple reports, digital map archive projects are usually carried out by
government agencies and most of the archive projects use shapefile format (SHP) and GeoTIFF to
store digital data. In the last decade, there has been an increasing number of governments joining
open government partnership and legislating Sunshine Acts for geographic data. According to
Bernard (2013), the City of Vienna became the first government agency among all German
speaking countries to start an open government initiative and to accept the concepts of open
government data, which allowed public to access the government data for personal use. Later, the
Austrian National Mapping Agency (BEV) also joined the act by sharing its geodata in shapefile
format and GeoTIFF format and hosting the web service of the Austrian Cartographic Model with
national map styling. However, apart from viewing the map at different scales and offering a
general measurement tool, the BEV web map service does not allow too much user interaction
such as viewing the feature attributes. Also, although the spatial data provided by BEV does
include the metadata as PDF in the folder, it lacks style information and certain layers.

BEV - Bundesamt fir Eich- und Vermessungswesen i-.)

Unersichtskare 1:2 Miionen [+ 0 il @ 3 &l 517) =
4]

5

e

H B E E B B § B

[N

Srammeinsleioge [rer—— Eessioash [Ea— Landhacten Produbte Bustcian Mae £x Ausiian Maa mobile

.....

Figure 1-1 Austria Map Online (AMap Online) — A Web Map Viewer hosted by BEV
http://www.austrianmap.at/amap/index.php

However, ever since ESRI introduced the SHP in the beginning of 1990s, shapefile has
gradually become the most popular file format for storing geographic vector data. According to
ARC Advisory Group, ESRI is, without doubt, the largest GIS Company in the industry by taking
43 percent of the market share, while the second-largest supplier counts only an 11 percent share
(Alban, 2015). As the data format invented by ESRI, shapefile has primary advantages, which are

http://www.austrianmap.at/amap/index.php

fast drawing capability and readily available supportability (Theobald, 2001). Despite the
advantages, the SHP does have many drawbacks that make it unsuitable for the future digital map
archiving and distribution. Cepicky et al.,(2017) listed several fatal disadvantages of the shapefile
format such as no coordinate reference system by default, multifile format, 4GB size limit, non-
topological format, and poor support for attribute data types. Thus, it is necessary to find an
alternative data format to replace the role of SHP in archiving digital maps.

In addition to vector data, the raster data format is equally important in digital map
preservation and dissemination. Many progressive transmission techniques for raster data have
been introduced. The efficiency of those techniques has made it possible to build the most of web
map services using raster data, which allows user to access spatial information freely (Antoniou et
al., 2009). With all the advantages that raster data had, it seemed that raster tiles held the future for
web mapping. However, the traditional raster maps, whether it is driven from vector images or
cache tiles for aerial images, lack the ability and function to interact with users through web
application. For example, users could not retrieve information from map object. Besides, it was
also impossible for uses to style the map in their own way. Therefore, the current raster data format
has also posed potential threats to future digital map preservation and dissemination.

In sum, as Veenendaal et al.,(2017) stated in their research, the challenge for future
geospatial data archiving and distribution is to create an integrated, interactive, and automated
environment that makes it easier for user to access information and knowledge. Thus, the main
challenge for this master thesis is to find a suitable data format, platform, and method, which would
be able to archive, publish, and distribute digital maps without the needs to put huge effort to
embedding relevant information or to reestablish styling like is needed with original shapefile
format.

1.3 Research Questions and Objective

Based on the motivation and problem statement above, the ultimate goal of this thesis is to
explore an improved method for long-term archiving and distribution of digital maps. The thesis
will use the cartographic model and national map style from BEV as a case study. Therefore, the
current archiving format used by BEV will be examined and a suitable spatial data format for
future archiving will be determined that can integrate original spatial data in SHP provided by
BEV with relevant information such as metadata and style. Programming scripts will be created to
minimize the human effort during the procedure.

To be more specific, the research objectives will be divided into three parts below.

1. To determine and analyze a suitable data format that has the ability to store geospatial
data and its relevant information such as metadata and style.
According to Rashidun (2015), GeoPackage(*.gpkg), a new GIS data format, was
designed to provide widespread support and the use of a single spatial data file format

by both commercial and non-commercial platforms. Unlike other current formats, this
data format is non-platforms-specific, thus increasing the interoperability and options
for geospatial sharing.

2. To establish a suitable method for archiving, publishing, and distributing digital maps
with customized styling.

3. Todetermine a suitable programming and to develop a script that minimizes the human
effort during the procedure.
Python is an interpreted, cross-platform, and open-source programming language,
which is also known as the glue language to integrate and develop extension
components for other programming languages (Sanner, 1998)

In order to achieve the objectives, the following research questions will be answered:

» Isit possible to embed relevant metadata for future usage in digital maps using GeoPackage?

» s it possible to embed styling from GeoPackage when distributing digital maps that use
vector-tile format?

» Isit possible to create a Python script that partially automate the procedures of embedding
relevant information into GeoPackage?

1.4 Overview of Contents

This thesis contains six chapters. The following chapter explores the principles and
challenges of archiving digital maps by examining former studies. In addition, it evaluates the most
common data format for archiving digital maps and proposes an alternative data format for future
digital map preservation. The third chapter explains the adopted methodology through a case study.
Chapter four presents the result of the case study and experiment. The fifth chapter states the
problems that happened during the experiment and discusses the potential work for the future. The
last chapter summarizes the main points of evidences.

2. Literature Review and Theoretical Background
2.1 Principle of Digital Maps Preservation and Archiving

Digital map archiving or preservation is the act of storing and maintaining the integrity of
geospatial datasets, its metadata, and styling for future use. Preservation activity usually involves
government policies or regulations, which helps to set up archiving standard to ensure the integrity
and long-term accessibility of digital maps.

Even though digital maps are indeed a type of digital data, geospatial data has special
characteristics, so a different approach is required to preserve them, compared to regular data
preservation methods. Janée(2009) stated that geospatial data has several characteristics relating
to its preservation: 1. There is no uniform data model that geospatial data could be vector and
raster, discrete and continuous, topological and non-topological; 2. Geospatial data have
proprietary formats which means they are strongly associated with the applications; 3. Geospatial
data have multiple granule sizes that ranges from individual features to thematic layers of features;
4. Geospatial data are usually stored in databases which are relational system with geographic
extensions; 5. The size of geospatial datasets are growing along with technological development;
6. Geospatial datasets may last for a long time period, especially for long-term programs such as
Landsat Program; 7. Geospatial data requires extensive context for it to be interpreted in the future;
8. Geospatial data may contain implicit context; 9. Geospatial data can be dynamic, which may
periodically require reprocessing.

Bleakly also explained the uniqueness of geospatial data. In his research, Bleakly (2002)
wrote, “geospatial data store in a GIS usually have relationships between objects stored as part
of the data structure”, “Geospatial data are multi-scaled and have multi-resolutions”,
“Geospatial data can be both current and historical, and the large amounts of geospatial data
that could be preserved and archived could prove to be very valuable to future researchers looking
for long-term changes in the environment or ecosystems”, “geospatial data can be in multiple
formats”.

Considering the special characteristics of geospatial data discussed above, Clark (2016)
listed five principles for the preservation of geospatial data from an information producer’s point
of view (See Figure 2-1). First, because many information producers archive data retroactively, it
is necessary to create metadata while the data is being created. Second, a comprehensive geospatial
metadata scheme is required so that future users can fully understand the context of the geospatial
data. Third, completeness and simplicity need to be considered for data management planning.
Fourth, archiving a cartographic representation of geospatial data not only provides context for
future users but it also helps the future producer to understand which parts need to be archived

from a large information package. Fifth, it is important to preserve the geospatial dataset in its
current data format but also allow it to be reproduced in diverse data structures in the future.

/Principles for the Preservation of Geospatial Data \

1.

. Data should be preserved in a way that non-
. Information objects should be independently

. A graphical representation of the data should be

_

Archiving begins at the point of data creation.
specialists can understand.
understandable.

preserved with the data itself.

Avoid restrictive assumptions about future use of
the data. /

Figure 2-1. Five principles for the preservation of geospatial data (Clark, 2016)

In addition to Clark’s study, Shaon et al.,(2011) also outlines eight principles which were
approved by European national mapping agencies who present their geospatial data through
INSPIRE. Their principles of archiving digital maps were from the view of the lifecycle of data
which are “creation to maintenance, archival, preservation to accessing archived data”. The eight
principles set by Shaon et al., are listed below:

1. “Archiving of digital geographic information
begins at the point of data creation, rather
than at the point of withdrawal from active

systems.”’

2. “Establishment and agreement of a common
preservation planning process and s set of
common preservation objectives between
data producers and archives is the backbone
for any archiving business case. ”

3. “Be selective and decide what to archive and

what to lose.”

1000 years.”

1 Year NMA
Corporate
Archive

Archive

Preservation
Planning

. .. . 100 Year
4. “Consider archiving timeframes of 1, 10, Long-term

Open Archive

Figure 2-2. Geo-archiving Lifecyle(Shaon,2011)

5. “The output of the planning process should also be preserved over the long-term to

accommodate future preservation requirements.”

6. “Archiving is not backup.”

7. “Geographical data should be preserved in a way that non geo-specialists can handle
it.”

8. “Ensure effective management and quality assurance of the metadata associated with
your data.”

Sander (2011) also pointed out that it is more difficult to archive digital geographic
information than regular digital documents. He listed five essential aims:
1. “Digital contents of the geographical information system should be delivered completely
(thematic data, geographical position) in order to insure that no information is lost.”
2. “Digital data should be saved in simply-structured formats in order to minimize the
number of future data migrations.”

3. “Digital geographical information should be saved in common data formats that can be
used without proprietary software in order to ensure access independently of the life-span
of a particular company or product.”

4. “The functionalities and features of the geographical information system should be
retained in order to allow for diverse queries and retrievals.”

5. “Historical geo data should be stored in a way that will be easily accessible by future

users.”

Based on the studies above, it is apparent that the integrity of original data, metadata and
cartographic representation plays a significant role in the process of archiving digital maps. The
principles of archiving digital maps mentioned above shall be used as a guideline when conducting
the research experiment later. The next subchapter reviews the situation and challenge of archiving
digital maps.

2.2 Status Quo and Challenge of Archiving Digital Maps
2.2.1 Historical Situation and Challenge of Archiving Digital Maps

Learning from the past is always essential so that people can avoid the same mistakes. Thus,
this subchapter will first examine the historical situation and challenge of archiving digital maps.

According to Cartwright (2011), before the digital age, archiving cartographic artifacts
heavily involved storing paper maps. Accessing paper maps and records was similar to other
library management methods. In the last quarter of the 20" century, the dark ages of archiving
cartographic heritage, there was a major shift from paper maps to digital maps, which had a strong
influence on information management (Bleakly, 2002 & Lauriault et al., 2011). During that period,
only partial descriptions of the digital maps existed in some cases, while the original data might
have vanished already in other cases. In a few cases, the original data was not lost completely, but

7

the cost to recover it was extremely high or inestimable. In Bleakly’s study (2002), he discussed
the challenges of archiving digital data from the “dark ages” from seven points of views. The first
challenge was to decide which media source should be used to store digital information. Compared
to paper media that can last for more than a half century, digital media back then had a shorter
expected life. Meanwhile, the three basic types of digital media, which were computer hard disk,
CD/DVD-ROM, and tape, had relatively small storage and cost much more than today’s digital
media. Second, the speed of technological advancement threatened to digital spatial data because
the storage media or format might not last long enough before they were replaced by new
technology. In addition, the software evolved quickly, so the compatibility of data formats and
software versions became an issue, meaning earlier tools and scripts might be useless in short time.
Third, there was always a risk of losing data during the data refreshing process, while transferring
the data from an older version to a newer one. Fourth, data migration, the tasks of transferring
digital data from one system setting to another, could also cause problems in displaying, retrieving,
and reusing the data. Fifth, data archiving rather than data preservation may cause a digital dataset
to lose its integrity. Sixth, true digital archives should be stored and accessed for the long term.
Seventh, the cost of archiving digital maps was hard to determine as it was expected to last for a
long time and the cost of labor, software, and hardware would change as the time goes by. Besides
all the challenges described above, Bleakly also addressed the significance of geospatial metadata
for the long-term preservation of digital maps, based on the NSDI fact sheet and FGDC metadata
standards.

Bleakly described the situation and challenge of archiving digital information at that time
from a macro perspective. Zaslavsky studied the subject at the same time period from a detailed
technical view. Zaslavsky (2001) focused on the research issues of spatial metadata and encoding
standards. For the challenge of spatial metadata, Zaslavsky illustrated the importance of retaining
the data quality of metadata as possible to reduce uncertainty. In addition, when dealing with multi-
scale and multi-resolution datasets, a standard specification was required for dataset management.
Moreover, for multi-hierarchical collections, Zaslavsky created a dataset structure in XML format
(See Figure 2-3). The structure should allow spatial querying across the whole dataset through
metadata. For the challenge of encoding spatial digital data standards, despite of the lack of such
encoding standards at that time, Zaslavsky stated that “standards are needed for converting spatial
data preservation formats into open-format Web presentations.” He addressed the interest in
developing “a standard XML-based protocol for spatial data encoding”. An example would be
the GML 2.0, which “makes use of the XML Schema definition language to express schema
constraints, and of XLink attributes to denote relationships between spatial features.” In addition,
geospatial data were usually stored in registered system-specific formats and visualized in
dependent GIS software, which means the style information of digital maps relied on the GIS
software. To solve such an issue, Zaslavsky explored two XML-based languages, VML and SVG,
which can encode and present vector graphics. He concluded that the SVG format was more
suitable for visualizing XML-encoded geospatial data, which was also platform-independent.

<meta_catalog>
<hierarchy>
<hierarchy_type>grid</hierarchy_type>
<dataset>
<name>DOQ</name>
<hierarchy_level>1-degree cell</hierarchy_level>
<id></id>
<coordinates>
<SEcorner></SEcorner>
<SWcorner></SWcorner>
<NEcorner></NEcorner>
<NWcorner></NWcorner>
</coordinates>
<reference_to_file_location/>
<reference_to_file_metadata/>
<parent>id_of_grid_parent</parent>
<otherparent>
<hierarchy_type>administrative</hierarchy_type>
<id>id of parent from another hierarchy</id>
</otherparent>
</dataset>
</hierarchy>
</meta_catalog>

Figure 2-3. Example of Spatial Index (Zaslavsky, 2001)

The project of recovering Canada Land Inventory (CLI) was brought up as example by
several researchers above to illustrate the issues and importance of archiving digital maps in the
early times. The Canada Geographic Information System (CGIS), the first GIS system in the world,
was designed to map and store the geospatial data for CLI by Dr. Roger Thomlinson, the “father
of GIS”. According to Bleakly (2002), CGIS had stored around 3500 maps by the mid-1970s. The
map collections was archived in 2965 nine-track tapes. Later in 1990s, the decision was made to
extract the data from the nine-track tapes and convert to the latest GIS software platform at that
moment while many tapes were falling apart after long-time preservation. Although the project of
recovering CLI was considered a success, “it was very costly, very time consuming, and very
technically challenging, and there was indeed some loss of data.”

2.2.2 Modern Situation and Challenge of Archiving Digital Maps

If the first major shift of archiving digital maps was from paper map to digital map, then
the second main trend, which is still in process, is shifting from a local desktop environment to
web mapping services. The rapid development of Internet, computer, and mobile technologies has
allowed the public to access, edit, and publish maps on the Internet by simply using their computer
or mobile device. In today’s world, geospatial data and digital maps are no longer the propriety
products of government agencies or GIS professionals but are available to the regular citizen.

Unlike the dark ages of archiving digital maps, many long-term digital maps preservation
projects have been carried out worldwide by government agencies or universities through SDI.
According to Jobst and Gartner (2011), technological development has shaped modern
cartography through digital approaches, which improves the traditional approach while requiring
a more complicated framework to ensure the processes of reproduction, sharing, and publishing.

9

Based on the statement above, a SOA-based SDI is crucial for archiving digital maps in
modern times. One example of archiving digital maps is the National Geospatial Digital Archive
(NGDA) Project in USA. The NGDA project was a collaborative project by University of
California Santa Barbara (UCSB) and Stanford University. Both universities had come up with
their own technical solutions (Figure 2-4 & 2-5) specifically focusing on the needs of preserving
geospatial datasets in the U.S. In general, the NGDA project was a successful and cutting edge
project that had many positive influences from technical and legal perspectives, which helped to
build the foundation of modern geospatial data preservation. (Erwin & Sweetkind-Singer, 2009)

NGDA federation architecture

registry wiki ingest crawler Sl webview ADL
supports collaborative crawls provider content; “single item crawlable, provides spatiotemporal,
management of maps content to ingest”; archive HTML view other types of search;
format registry archival objects; management of archive integrated OAI server

maintains identifier
3 iations

format registry ADL mapper

maintains directory of maps archival objects

formats; stores specification to ADL items
documents; models
inter-format relationships
archive server
builds and validates archival objects; associates objects with semantics

NGDA archive data model
defines uniform, self-contained representation of
archival objects, nlgeuwmnﬂes,w inter-object relationships

reliable storage subsystem
Archivas cluster

Figure 2-4. The NGDA architecture at the UCSB (Erwin & Sweetkind-Singer, 2009)

THE STANFORD DIGITAL REPOSITORY, PHASE Il

Creates the Transfer

Manifest and the submission
information package W
“Air Gap” - All access to the
This software determines repository is through the
what goes online and what "All metadata are stored here access layer, which is reac-
goes offline, according to the separately from content, as ol
Transfer Manifest well 38 with i
[N\
< o o~
Conversion Machine > ,’
/
N 7
-4
(37 /
Ingest validation >lorag
and virus scanning L
PreproCesain Content is stored, along with I
o diaitlied meiadata.in an archival -
information package
- o Accessh ayer
ngest Gatekeeper .
9 pe Online Storage
Ingest completes, and ADL
creates the archival " »
el kgt s Nearline and Offline oAl
Storage (Ta|
E:FI: ge (Tape) i
All metadata and data go on _—
tape, and are stored in
geographically distributed
secure locations, SR8
Campus Livermore Iron)
Ingest _ Mountain
g Federation

Figure 2-5. The NGDA archltecture at the Stanford University (Erwin & Sweetkind-Singer, 2009)
10

Another example of modern digital map preservation is the Project Ellipse by Swiss
Federal Archives (SFA) and the Federal Office of Topography(swisstopo). The Project Ellipse
aims to fulfill the requirements of archiving geodata for different levels of government agencies.
“The goals of the project were to develop an integrated solution for all official federal geodata, to
improve the long-term availability and archiving of deferral geodata, and to allow geoinformation
to be restored and interpreted from archived geodata at a later date.” The digital preservation
approach of the project was based on the Open Archival Information System (OAIS) model and
its geospatial metadata followed the Standard SN 612050, A Swiss Metadata Model (Federal
Office of Topography swisstopo, 2016).

According to Lauriault et al.,(2011), a map is one type of data representation thus the
original data used to render the map is essential for cartography. Archiving geospatial data is vital
for unforeseen uses in the future. Nevertheless, related technology advanced and the volume of
geospatial data grew so fast that simple backup and storage of digital spatial data is no longer
sufficient.

Clark (2016) stated one of the challenges of modern digital maps preservation is the
proprietary nature of geospatial data formats, which raises a technical risk for long-term archiving.
In addition, most geographic information relies on the context from associated datasets. The
context such as metadata and styling information are typically stored in other data formats or
systems. Thus, archiving individual data layer usually causes serious data loss.

In Shaon et al.,’s research, they illustrated the challenge of archiving digital maps from the
view of spatial data infrastructure. Shaon et al.,(2011) wrote, “In the context SDI, such as INSPIRE,
state-of-the art service-oriented infrastructures adopt exchange formats (i.e. application schemas)
that reflect domain specific conceptual data models (‘feature types’) rather than directly reflecting
underlying database storage schemas.” Thus, one of the challenge is to preserve the application
schemas and its relationships with the relating geospatial datasets, which ensures the future
accessibility of those datasets.

Locher and Termens (2012) explained three spatial data preservation challenges, which are
decentralized production, complexity of data, and managing versions of the same data. First,
archival projects usually involve several partners but each of them may have different interests
and approaches when handling geospatial datasets. Second, the complexity of data involves “the
difficulty for human understanding and technical challenges for computer processing”. Spatial
data would losses its value if humans cannot interpret it. Thus, archiving digital maps relies on
metadata to provide context for future use and to sustain machine interpretability. Nevertheless,
according to NGDA experience, creating metadata is usually the most time-consuming part of an
archiving project. Third, thematic maps reply on reference data or a reference map to express its
meaning. Otherwise, the user may interpret the map in the wrong way without the correct base
layer. Therefore, a digital map archive must be able to reproduce the original view of the dataset.

11

2.3 Evaluation of Geospatial Data Format for Archiving Purpose

This subchapter evaluates the most commonly used vector and raster formats by reviewing
their ability to support long-term digital map archiving. In addition, an alternative format will be
proposed and examined to determine whether it will have the potential ability to follow the
principle and achieve the goals of digital maps preservation.

2.3.1 Vector Data Format — Shapefile

According to Pons & MasGPau (2016), 34 of 334 formats listed in the U.S. Library of
Congress were categorized as geospatial-related formats. Among those data formats, shapefile is
no doubt the most common vector data format in the GIS industry as ESRI has taken almost half
of the world GIS market shares.

Released by ESRI in early 1990, the shapefile (SHP) format is a non-topographic
geospatial vector data format, which can separately store the three basic vector feature types
(points, polylines, and polygons) and can describe the feature information through an attribute
table. In addition, the shapefile consists three mandatory binary files: Main file(.shp), Index
file(.shx), and Dbase table(.dbf). A .shp file contains the geometric data of the shape feature; a .shx
file contains provides an index of the feature geometry; a .dbf file stores the attribute information
of the feature (ESRI, 1998). In addition to the three main files, it is common to see a .prj file in a
shapefile which is used to store the projection information of the geospatial dataset.

The shapefile format has been widely used as the primary data format to archive and
publish geospatial data in various archiving projects for different government agencies especially
in the USA such as National Digital Information Infrastructure and Preservation Program
(NDIPPP) by the Library of Congress. Under the NDIPPP, a Geospatial Multistate Archive and

Washington North Dakota

. . Maine
isconsin
Oregon Idaho South Dakota . Vgrmofit e
lyoming ; | JMichigan New YorkM': a ire
Nebraska - Pennsylvania
Winois |ind Ohio Y lersey
Nevada nois !
Colorado . ¥ t Vir
Kansas Missouri aryland
Virginia
California | ashington DC
Oklahoma Tennessee
3 . Arkansas
=n Arizona New Mexico th Carol
s sissipppAlabama Georgia

Texas
Louisiana

lorid:

] GeoMAPP Partner States
[l GeoMAPP Informational Partner States

Figure 2-6. GeoMAPP Partners (North Carolina Center for Geographic Information and Analysis &
North Carolina Department of Cultural Resources, 2011)

12

Preservation Partnership (GeoMAPP) had been formed by a variety of universities and state
agencies such as North Carolina Center for Geographic Information and Analysis.

Despite the advantages such as fast drawing capability, readily available supportability and
wide uses (Theobald, 2001), the SHP does have many drawbacks that make it unsuitable for future
digital map archiving and distribution. Cepicky et al.,(2017) listed several fatal disadvantages of
the shapefile format such as no coordinate reference system definition by default, multi-file format ,
4GB size limit, non-topological format, and poor support for attribute data types.

Since geospatial data must be able to be understood by users, metadata is equally important
as geospatial data. Guptill (1999) explained the importance and standardization of metadata in his
paper, “standardized metadata elements provide a means to document datasets within an
organization, to contribute to catalogues of data that helps individuals find and use existing data,
and to help users understand the contents of datasets that they receive from others”, “metadata
provides descriptive information about the producer, content, quality, condition, and other
characteristics of a given item.” According to FGDC (2011), geospatial metadata may contain the
following core components: metadata record information, identification information, constrain
information, data quality information, maintenance information, spatial representation, reference
system information, content information, symbology information, distribution information,
metadata extension information, and application schema information.

Regarding of the support of metadata information, the SHP, by default, does not have the
ability to store metadata. The metadata of the dataset is usually provided in a separate file such as
XML or PDF. For example, Missouri Spatial Data Information Service (MSDIS), a partner in
GeoMAPP, delivers the metadata information of a dataset in a XML link on the download page of
the dataset (Red Rectangle Mark in Figure 2-7).

S

MO 2018 December MoDOT Roads Routes shp

Attributes

Figure 2-7. Support of Metadata on Geoportal of MSDIS website

13

In addition, the SHP does not support storing styling information such as symbology and
feature labels within its file structure. For ArcGIS users, the style they create for a feature in
ArcGIS software can be stored in a layer file(.lyr), which provides a link to the actual SHP file.
Moreover, a .lyr file is a proprietary format that can only be read through ArcGIS software or
service (ESRI, 2019). Since the layer file only store the link to the actual SHP, it usually causes a
problem during data migration or sharing. Moreover, recreating map styling through original
shapefile datasets is a consuming process for a GIS specialist.

From the view of data dissemination, due the multi-file characteristic of the SHP, the
traditional approach is to include all relating data and information into one ZIP file and then share
the ZIP file through file transfer protocol (FTP) service, which is still widely used by government
agencies. Nowadays, the original data stored in shapefiles are common published or shared
through Web Feature Service (WFS) hosted by government agencies.

2.3.2 Raster Data Format — GeoTIFF

As the inventor of GeoTIFF format, Ritter(1995) stated in his work, “TIFF has emerged
as one of the world's most popular raster file formats. But TIFF remains limited in cartographic
applications, since no publicly available, stable structure for conveying geographic information
presently exists in the public domain”. “GeoTIFF format fully complies with the TIFF 6.0
specifications, and its extensions do not in any way go against the TIFF recommendation, nor do
they limit the scope of taster data supported by TIFF’(Mahammad & Ramakrishnan2003). In
addition to the characters of TIFF format, GeoTIFF associates the cartographic information such
as coordinate system and metadata to the original TIFF file in separated files.

From the view of archiving, GeoTIFF is similar to Shapefile in that they are both multi-file
formats. Based on the principle of archiving digital maps, multi-file format has the potential to
cause data loss during the data migration and dissemination process. In addition, since TIFF is a
32bit data format like SHP, the size limit of TIFF file is 4GB as well. However, as GeoTIFF is
widely accepted by the GIS world, a majority of government agencies are still using it for the
preservation of digital maps. For example, Swiss Federal Archives (SFA) and the Federal Office
of Topography (swisstopo) are currently using the format to archive their images in project ellipse.

In terms of metadata, GeoTIFF has the ability to store the metadata in a separated XML
file, which can be read by GIS application and users directly.

GeoTIFF, like SHP, is commonly disseminated in a compressed in ZIP file or shared
through a web map service (WMS) such as Google map or Bing map.

14

2.3.3 Alternative Data Format for Future Digital Maps Archiving and Dissemination

As described in the latest GeoPackage Encoding Standard (OGC, 2018), “GeoPackage is
an open, standards-based, platform-independent, portable, self-describing, compact format for
transferring geospatial information. It is a platform-independent SQL.ite database file that contain
the GeoPackage and metadata.”(See Figure 2-8)

The core capabilities of GeoPackage allow it to store all three types of vector features,
raster data at various scales, attributes, and extensions. The GeoPackage by default supports 12
different data types which are BOOLEAN, TINYINT, SMALLINT, MEDIUMINT, INTEGER,
FLOAT, DOUBLE, TEXT, BOLB, <geometry type name>, DATE, and DATETIME.
Additional data types can be added specifically through the GeoPackage Extension Mechanism.

“A GeoPackage MAY be "empty" (contain user data table(s) for vector features, non-
spatial attributes, and/or tile matrix pyramids with no row record content) or contain one or many
vector feature type records and /or one or many tile matrix pyramid tile images. GeoPackage
metadata CAN describe GeoPackage data contents and identify external data synchronization
sources and targets. A GeoPackage MAY contain spatial indexes on feature geometries and SQL
triggers to maintain indexes and enforce content constraints. ”(OGC, 2018)

class GeoPackage

:- GeoPadkage Tables 1|
| |
| |
. V .
: gpkg_spatial_ref_sys [gpkg_cortents [gpkg_extensions [:
| |
| |
I N I
| |
| : : |
| apkg_tile_matrix_set D |
| |
| |
| |
| D |
| |gpkg_geometry_columns gpkg_data_columns |
| G gpkg_tile_matrix [3 |
| |
| |
| |
| |
| |
| |
| |
| sample_feature_table D gpkg_data_column_constraints Q sample_tile_pyramid D |
| |
I | I
| |
| |
| |
: gpkg_metadata E gpkg_metadata_reference E] :
| |
| |
| |
ot vt e o g e e o e s e e e e 5 S e o -

: Table Color Key :

| |

|

| | Required Meiadatabl Optional Metadata ﬁ Optional Data [ﬁ :

| |

e e st S R e) |

Figure 2-8. GeoPackage Tables Overview (OGC, 2018)
15

Figure 2-8 shows the default tables for a standard GeoPackage. Two general tables are
gpkg_spaital _ref sys and gpkg_content. The table, gpkg_spaital ref sys, can stores multiple
coordinate systems that the vector and raster data uses. The gpkg_content table is used to list all
geospatial contents with their data type, description, last change time, bounding box values, and
spatial reference system ID. (OGC, 2018)

SHP and GeoTIFF were invented two decades ago, but GeoPackage (.gpkg) is a young
geospatial data format which was released in 2014. The statement above has already shown some
of the advantage of GeoPackage over the current most common vector and raster data formats.

Compared to SHP and GeoTIFF, which both are binary data formats, GeoPackage, in
nature, is an ASCII SQL.ite based database container. Jobst and Gartner (2012) stated, “While a
binary format is a direct machine code, which cannot be humanly read, the ascii format can be
directly read with any text editor. Thus the ascii format should be favored in terms of cartographic
heritage.” The nature of ASCII and SQLite format allows GeoPackage to be a self-contained
geospatial data format, which can be accessed with minimal effort from a GIS application and
operating system. In addition, it also makes GeoPackage a single file format that significantly
reduces the workload of data packaging and preparation and the risk of data loss during the data
migration and dissemination process.

Furthermore, both SHP and GeoTIFF were designed into the 32bit data format, which
supports storing maximum 4GB data. With the increasing data size in modern environment, 4GB
storage room seems insufficient. Meanwhile, GeoPackage, as a 64bit supported data format, allows
maximum 150 TB storage size, which is adequate not only for today’s usage but also for the future.

Since GeoPackage is new data format, there is not much research relating to using it for
archiving purpose and dissemination. However, there is some research relating the use of
GeoPackage on mobile applications. In a recent study by Rashinan et al.,(2016), they conducted
an outdoor utility mapping project by using GeoPackage data format to store and distribute the
data collected by a mobile GIS device. The results from their experiment revealed that the
GeoPackage format had allowed them to seamlessly read and write feature data on a mobile device
in an offline work environment. In terms of the raster data (MBT iles) they were using, GeoPackage
also showed the advantage of supporting multiple tiles in one single file, while MBTiles can only
have one tileset in a file within a specific projection. Another study by Bogossian et al.,(2014)
presented “a hybrid architecture for mobile geographic data acquisition and validation system
that can operate online as well as offline.” 1t proved that GeoPackage, while supporting both
vector data and tiled raster data, can be used as an “interoperable file between SDI and the mobile
systems.”

16

In term of metadata, the GeoPackage format, as a single file format and SQL container, has
a natural advantage over SHP and GeoTIFF, in that it can integrate metadata as a table without
saving the metadata as a separated XML file. Based on the OGC GeoPackage Encoding Standard
(2018), the GeoPackage contains two tables, gpkg_metadata and gpkg_metadata_reference, that
allows it to store metadata in MIME encoding. “These tables are intended to provide the support
necessary to implement the hierarchical metadata models as defined in 1ISO 19115 (OGC, 2018).
However, as the document stated, “There is no GeoPackage requirement that such metadata be
provided or that defined metadata be structured in a hierarchical fashion. This extension simply
provides a mechanism for storing this information.” Based on the argument above, the first
research question is raised, “Is it possible to embed relevant metadata for future usage in digital
maps using GeoPackage? «

One important factor of archiving digital maps is the ability to preserve the map style
information such as symbology and labeling within the data format. However, there is no
information provided in OGC Encoding Standard regarding storing the map style.

In addition, a proper method of distributing digital maps should be considered as equally
important as the archiving process. In Li et al.,’s research (2017), they illustrated the importance
of displaying maps with the interactivity to access geographical features. Different than the
traditional map service provided by Google Map or Bing Map, digital maps from mapping
agencies such as USGS and BEV usually involves both vector data and raster with certain styling.
Thus, the distribution of digital maps through a web service requires the functions of both WMS
and WFS. As an emerging technology, “vector tiles are packets of geographic data, packaged
into tiles for transfer over the web. They can be used for delivering styled web maps with vector
map data. Unlike raster tiled web maps, the server return vector map data, which has been clipped
to the boundaries of each tile, instead of a pre-rendered map image” Ordnance Survey (2018).

Thus, this brings the second research questions, “Is it possible to embed styling from
GeoPackage when distributing digital maps that use vector-tile format?”

Python, as an open source and cross-platform programming language, has gradually
became the most used programming language in the GIS community. Python is easy to learn and
to deploy on multiple operating systems without installing additional framework or extensions.
Moreover, Python has been widely supported by the majority of GIS applications on the market
such as ArcGIS, QGIS, and GRASS. Also, Python, as a glue language, has a strong ability to
integrate different programming languages and to access various APl and libraries. (Altaweel,
2017 & ESRI, 2018) Considering that archiving digital maps is a time-consuming process and
Python 3 has a module in its Standard library to manage SQLite database, the third research
question is being brought up, “Is it possible to create Python scripts that partially automate the
procedures of embedding relevant information into GeoPackage?”

17

3. Methodology and Case Study

3.1 Case Study Background and Scenario

The Austrian National Mapping Agency (BEV) shares its geodata mainly in shapefile
format and GeoTIFF format and hosts the web service of the Austrian Cartographic Model with
national map styling. However, apart from viewing the map in different scales and with a general
measurement tool, the BEV web map service does not allow too much user interaction such as
viewing feature attribute. Also, the spatial data provided by BEV does include the metadata as
PDF in the folder but lacks style information and certain layers needed to reproduce a similar
Austrian map with national map styling.

The current situation of the Austrian Cartographic Model with national map styling from
BEV brings up several problems concerning the preservation and dissemination of digital maps.
In one example, the scenario is that a GIS specialist intends to archive the national maps but he/she
can only obtain the shapefile and raster data from BEV. Should the GIS specialist create the map
from scratch? A second possible scenario may happen to a regular Austrian citizen who wants to
have a digital collections of the Austrian Cartographic Model with national map styling. Does the
citizen have to purchase the digital maps from BEV? A third possible scenario can happens when
there is an emergency event such as the recent Etna VVolcano eruption in Sicily, Italy. Is it possible
to make and share the maps in a short time period?

This thesis presents a method to solve the potential problems in these scenarios by
archiving the 1:1 Million Scale Maps from BEV with GeoPackage and distributing the digital maps
using GeoServer.

3.2 Research Design

Geospatial Data
Format Conversion
(SHP to GeoPackage)

Extracting Metadata
from PDF

Orginal Dataset
Review

Adding Style into

Inserting Metadata Editing Style in QGIS |

Geopacakge

Uploading Importing Style and

GeoPackage to Digital Maps
GeoServer Distribution

Figure 3-1. Workflow Overview

18

3.2.1 Overview of Approach

In order to solve the problems in the above scenarios and to answer the research questions,
the workflow (see Figure 3-1) is designed that follows the principles of the preservation and
dissemination of digital maps presented in the Chapter Two. The workflow includes eight stages
and each of them is explained in detail in the following subchapters.

3.2.2 Operating System and Software Environment

Considering the principle of archiving digital maps and the challenges, this thesis aims to
provide a simple and cross-platform solution. All the software and programming language
involved in this approach are listed in Table 1, which are supported in both main PC operating
systems, Windows and MacOS. In addition, all the software and programming language are free,
open-source and platform-independent.

WORKFLOW SOFTWARE/PROGRAMMING
LANGUAGE

Original Dataset Review PDF Reader

Geospatial Data Format Conversion QGIS 3.4.1

Extracting Metadata From PDF PDF Reader/Python 3 IDLE/SQL.te

Inserting Metadata Python 3 IDLE/SQL.ite

Editing Style in QGIS QGIS 3.4.1/Color Picker

Adding Style into GeoPackage QGIS 3.4.1

Uploading GeoPackage GeoServer 2.15

Importing Style and Digital Maps Distribution | GeoServer 2.15

Table 1. Software and Programming Language Requirement

3.2.2.1 Python Environment

In order to run the Python script created for automating part of these workflow procedures,
it is required to install specific modules and dependencies which are free to download and that
work in both Windows and MacOS operating system. The Table 2 displays all built-in libraries
and modules required to run the Python script while Table 3 shows all external modules and
dependencies required.

Built-in Libraries and Modules Functionality

Sys, 0s, i0 Access operating system functionality
shutil Support file copying and deleting in OS
sglite3 Access the database using SQL language
re Provide expression matching operations
csV Import and export CSV file

xml Process XML file

Table 2. Built-in Modules used in Python script
19

External Modules and Dependencies

Functionality

PySimpleGUI

DBManager
Pandas

PDFMiner
Tabula-py

datefinder
Datatime
urllib3
distro

Java SE Development Kit(Java JDK)

Create custom GUI Interface
Support connections to GeoPackage

Access and manage structured and time
series data.
Extract text from PDF document

Access tables in PDF document and
convert into DataFrame supported by
Pandas

Extract dates from text

Manipulate time data format
Dependency of Tabula-py

Dependency of Tabula-py

Support functions in Tabula-py module
Table 3. External Modules and Dependencies required by Python script

To make the approach more user-friendly and avoid the hassle of installing the external
modules for users, two separate command line scripts are created for: Windows system (.bat) and
MacOS system (.command), to automate installation of the external modules and dependencies for
users. Both scripts have been tested in each operating system and work properly. The code of each

command line scripts are provided in the appendix (see Annex 1 & Annex 2).

3.2.3 Original Dataset Review

As the first stage in the workflow, this stage aims to explore the structure of the original
dataset and identify the content that needs to be converted into GeoPackage format for archiving
purpose. The geospatial dataset (KM1000-V) used for the 1:1 Million Austrian Cartographic
Model is obtained from the BEV official website. However, this dataset contains only the vector

~ Adobe Acrobat Document (2)

[2) BEV_S_KMS50_KM250_KMS00_KM1000_V_V1.5.pdf

~ DBF File (21)
] ADMIN_ISN_07_2018.dbf
] KM1000_dam_line_07_2018.dbf
7] KM1000_ 7.2018.dbf
] KM1000_ 07_2018.dbf
] SHN_NAM_07_2018.dbf

~ PRJ File (18)

7 KM1000_airfld_point_07_2018.prj
| KM1000_glacier_area_07_2018.prj
J KM1000_polbnd_line_07_2018.prj
] KM1000_spring_node_07_2018.prj
v SHP File (18)
| KM1000_sirfld_point_07_2012.shp
ea_07_2018:shp
_line_07_2018.shp
] KM1000_spring_node_07_2018.shp
v SHX File (18)
1 KM1000_airfld_point_07_2018.shx

| KM1000_polbnd_line_07_2018.shx
| KIM1000_spring_node_07_2018.shx

v Text Document (1)
| Aktualitaetsstand bt

[%) KM1000V_EGMSPEC3-0SE.PDF

] EGM_CHR_07_2018.dbf
] KM1000_elev_point_07_2018.dbf
rea_07_2018.dbf
road_line_07_2018.dbf

] KM1000_buittup_area_07_2018.prj

] KM1000_island_area_07_2018.prj

| KM1000_railrd_line_07_2018.prj
KM1000_watrcrs_area_07_2018.prj

| KM1000_builtup_area_07_2018.shp
KM1000_island_area_07_2018.shp

] KM1000_railrd_line_07_2018.shp
KM1000_watrcrs_area_07_2018.shp

KM1000_builtup_area_07_2018.shx
KM1000_island_area_07_2018.shx
KM1000_railrd_line_07_2018.shx
KM1000_watrcrs_area_07_2018.shx

Figures 3-2

[KM1000_airfld_point_07_2018.dbf
] KM1000_glaci
] KM1000_polbnd_line_07_2018.dbf
] KM1000_spring_node_07_2018.dbf

rea_07_2018.dbf

] KM1000_builtup_point_07_2018.prj
7 KM1000,_lake_area_07_2018.p1j
] KM1000_railrd_node_07_2018.prj

KM1000_watrcrs_line_07_2018.prj

KM1000_builtup_point_07_2018.shp
KM1000_lake_area_07_2018.shp

KM1000_builtup_point_07_2018.shx
KM1000_lake_area_07_2018.shx

] KM1000_railrd_node_07_2018.shx

KM1000_watrcrs_line_07_2018.shx

] KM1000_builtup_area
[7] KM1000_island_a

07_2018.dbf
7.2018.dbf
.2018.dbf
 07_2018.dbf

| KM1000_dam _line_07_2018.prj
J KM1000_name_point_07_2018.prj

7] KM1000_reservoir_area_07_2018.prj

[7] KM1000_dam_ine_07_2018.shp

| KM1000_name_point_07_2018.shp
| KM1000_reservoir_area_07_2018.shp

] KM1000_dam_line_07_2018.shx
| KM1000_name_point_07_2018.shx
] KM1000_reservoir_area_07_2018.shx

. Original Dataset Overview

'] KM1000_elev_point_07_2018.prj
] KM1000_polbnd_area_07_2018.prj
KM1000_road_line_07_2018.prj

KM1000_elev_point_07_2018.shp
KM1000_polbnd_area_07_2018.shp
KM1000_road_line_07_2018.shp

] KM1000_elev_point_07_2018.shx

KM1000_polbnd_area_07_2018.shx
KM1000_road_line_07_2018.shx

20

data for the national map. The unzipped dataset folder includes 18 SHPs, 2 PDF files, 3 DBF files,
1 TXT file, 78 files in total (see Figure 3-2). The size of the unzipped folder is 6.51 MB.

Except for the SHP files, the majority of Metadata relating to the geospatial dataset is stored
between pages 22 to 33 of the PDF named BEV_S_KM50_KM250_KM500 KM1000 V_ V1.5
(see example in Figure 3-3). The TXT file contains the general information in the dataset and the
creation date of the datasets. All the metadata stated above is subjected to be extracted and
transferred into a GeoPackage later.

BEV[E

T T ———

BEV - Bundesamt fur Eich- und Vermessungswesen

2.4 Kartographisches Modell 1:1 Million — Vektor (KM1000-V)

2.4.1 General structure

2.41.1 About KM1000-V

Data of KM1000-V is the Austrian part of EuroGlobalMap (EGM) the pan-European vector dataset
at small scale. EGM Database is intended to be used in map scale 1:1 000 000.

Detailed specifications are described in EGMspec3-0se.pdf. This document is a summary of the
most relevant specifications.

2.4.1.2 Data format and file table
Data of KM1000-V is stored in these files:

Shape Files Description Type

KM1000_AIRFLD_POINT .shp Airport / Airfield Point

KM1000_DAM_LINE shp Dam/ Weir Line

KM1000 ELEV_POINT shp Height point Point

KM1000_ GLACIER_AREA shp Glacier Area

KM1000_ISLAND_AREA.shp Island Area

KM1000_LAKE_AREA.shp Lake Area

KM1000_NAME_POINT shp Named location Point

KM1000_POLBND_AREA.shp Administrative area Area

KM1000_POLBND_LINE.shp Administrative boundary Line

KM1000_RAILRD NODE . shp Railway station Point (Node)

KM1000_RAILRD_LINE.shp Railway Line

KM1000_RESERVOIR_AREA.shp Reservoir Area

KM1000_ROAD_LINE shp Road Line

KM1000_BUILTUP_AREA.shp Built-up area Area

KM1000_BUILTUP_POINT shp Built-up point Point

KM1000 SPRING_ NODE shp Spring/ Water hole (connected) | Point (Node)

KM1000_ WATRCRS_AREA .shp Watercourse Area

KM1000 WATRCRS_LINE shp Watercourse Line

Info Tables Description

ADMIN_ISN .dbf This table includes the names of the administrative
hierarchy levels

EGM_CHR.dbf This table describes the national character sets used for
each language.

SHN_NAM.dbf The table includes the names of the units of all
administrative levels.

Figure 3-3. Example of Metadata in BEV PDF Page 22

21

3.2.4 Geospatial Data Format Conversion

After reviewing the original dataset, the second stage is to pack all the SHP files into an
empty GeoPackage. This stage involves the use of one QGIS toolbox, Package Layer (see Figure
3-4). In this stage, all the SHP files were first imported into QGIS as feature layers, then the
toolbox was used to pack feature layers into one GeoPackage. When using the toolbox, it is
important to change the encoding method from ISO 8859-1 (Latin-1) to 1ISO 10646(UTF-8) to
avoid the issue of displaying German umlauts characters. This issue is explained later in detail in
Chapter 5.

Q

Parameters L $
o9 Package layers

Inputk

] Overwrite existing GeoPackage
Destination GeoPackage

) Multiple selection

[kM1000_airfld_point_07_2018 [USER:100000] Select Al
KM1000_damm _line_07_2018 [USER:100000]
‘ KM1000_elev_point_07_2018 [USER:100000] Clear Selection
KM1000_glacier_area_07_2018 [USER:100000] -
‘ KM1000_island_area_07_2018 [USER:100000] Toggle Selection
2 KM1000_lake_area_07_2018 [USER:100000] AddFie(s)..

|4 KM1000_name_point_07_2018 [USER:100000]
KM1000_polbnd_area_07.2018 [USER:100000] oK
|2 kM1000_polbnd_line 07_2018 [USER:100000]
KM1000_railrd_line_07_2018 [USER:100000] o
‘ KM1000_railrd_node_07_2018 [USER:100000]
KM1000_reservoir_area_07_2018 [USER:100000]
‘ KM1000_road._line_07_2018 [USER:100000]

| KM1000_builtup_area_07_2018 [USER:100000]
|4 KM1000_builtup._point_07_2018 [USER:100000]
KM1000_spring_node_07_2018 [USER:100000]
| KM1000_watrcrs_area_07_2018 [USER:100000]
1 KM1000_watrcrs_line_07_2018 [USER:100000]

Run as Batch Process.

Figure 3-4. Package Layer Tool Box in QIS
The output of this stage is a GeoPackage with all geospatial information from the original

datasets. Each layer is saved as four spatial index tables and one attribute table. The related spatial
information from each layer is added to gpkg_contents, gpkg_extensions,
gpkg_geometry columns, and gpkg_spatial_ref sys table. The output result can be checked in
either QGIS or any open-source SQL database application such as DB Brower for SQL.ite.

& X
DB Scherne) Database Structure BrowseData EditPragmas Execute SQL
A
Nare Type Table: ||| apkg_contents ~| & 53 NewRecord | |Delete Record
v || Tables (97)
‘ —| KM1000_airfld_point_07_2018 table_name data_type identifier description last_ch
) KM1000_builtup_area_07_2018 Filter Filter Filter |F\\1a Filter
[| KM1000_builtup_point_07_2018 1
~| KM1000_dam_line_07_2018 1 KM1000_airfld_point_07_2018 features KM1000_airfld_point_07_2018 2019-02-
‘ | KM1000_elev_point 07 2018 2 KM1000_dam_line_07_2018 features KM1000_dam_line_07_2018 2019-02-
| KM1000_glacier_area_07_2018 |
‘] KM1000_island_area_07_2018 3 KM1000_elev_point_07_2018 features KM1000_elev_point_07_2018 2019-02-
| KM1000_lake_area_07_2018 4 KM1000_glacier_area_07_2018 features KM1000_glacier_area_07_2018 2019-02-
[] KM1000_name_point_07_2018 = £ Jand 3
] KM1000_polbnd_area_07_2018 5 KM1000_island_area_07_2018 eatures KM1000_island_area_07_2018 2[)19—()2~i
‘ -] KM1000_polbnd_line_07_2018 6 KM1000_lake_area_07_2018 features KM1000_lake_area_07_2018 2019-02-|
=] KM1000_railrd_line_07_2018 A -02-
‘ ~| KM1000_railrd_node 072018 7 KM1000_name_point_07_2018 features KM1000_name_point_07_2018 2019-02-
~| KM1000_reservoir_area_07_2018 8 KM1000_polbnd_area_07_2018 features KM1000_polbnd_area_07_2018 2019-02-
‘ EJ KM1000_road line 07 2018 9 KM1000_polbnd_line_07_2018 features KM1000_polbnd_line_07_2018 2019-02-
=] KM1000_spring_node_07_2018
‘ | KM1000_watrcrs_area_07_2018 10 KM1000_railrd_line_07_2018 features KM1000_railrd_line_07_2018 2019-02-
— KM1000 watrers fine 07 2018 11 KM1000_railrd_node_07_2018 features KM1000_railrd_node_07_2018 2019-02-
‘ | gpkg_contents
] gpkg_extensions 12 KM1000_reservoir_area_07_2018 features KM1000_reservoir_area_07_... 2019-02-
‘ | gpkg_geometry_columns 13 KM1000_road_line_07_2018 features KM1000_road_line_07_2018 2019-02-
.| gpkg_spatial_ref_sys |
‘ i S 14 KM1000_builtup_area_07_2018 features KM1000_builtup_area_07_2018 2019-02-
~| gpkg_tile_matrix
‘ | gpkg_tile_matrix_set 15 KM1000_builtup_point_07_2018 features KM1000_builtup_point_07_20... 2019-02-
| rtree_KM1000_airfld_point_07_2018_geom > :
K KM1000, de_07_2018 feat KM1000 de_07_2018 2019-02-|
5] rtree_KM1000_airfld_point_07_2018_geom... 16 _spring_node_07_. eatures _spring_node_07_
‘ ~| rtree_KM1000_airfld_point_07_2018_geom... 17 KM1000_watrcrs_area_07_2018 features KM1000_watrcrs_area_07_2... 2019-02-

Figure 3-5. gpkg_contents table in output GeoPackage using DB Brower for SQL.ite

22

3.25

Extracting Metadata from PDF
This stage involves creating Python script to extract text and tables from the PDF file

mentioned in the first stage.

The first part of the source code below is used to extract the text information from PDF

and export into a temporary TXT file. The second part of the source code extracts tables from each
page in the PDF file, and exports to temporary CSV files. The reason why the temporary output
format is in CSV format is to keep the original table format so it can be inserted into SQL schema
later in the fourth stage.

##Convert PDF to Text
##Source Code: http://stanford.edu/~mgorkove/cgi-
bin/rpython_tutorials/Using%20Python%20to%20Convert%20PDFs%20to0%20Text%20Files.php
def convert(fname, pages=None):
if not pages:
pagenums = set()
else:
pagenums = set(pages)

codec = 'utf-8'

output = StringIO()

manager = PDFResourceManager()

converter = TextConverter(manager, output, laparams=LAParams())
interpreter = PDFPagelnterpreter(manager, converter)

infile = open(fname, 'rb')

for page in PDFPage.get_pages(infile, pagenums):
interpreter.process_page(page)

infile.close()

converter.close()

text = output.getvalue()

output.close

return text

. output = convert(BEVPDF, pages=[21])
. print (output)

. file = open("PDFPage22.txt", "w", encoding="utf-8')
. file.write(output)

. file.close()

. print ("FINISHED Converting pdf to txt")

##Convert tables in PDF to CSV

tabula.convert_into(BEVPDF, "DataFormatFileTable.csv",encoding="utf-

8',multiple_tables= True,output_format='data_format',pages="22")
tabula.convert_into(BEVPDF, "tablepage23.csv",encoding="utf-

8',guess = False, multiple_tables= True,output_format='data_format',pages="23")
tabula.convert_into(BEVPDF, "tablepage24.csv",encoding="utf-

8',guess = True, lattice = True, multiple_tables= True,output_format='data_format',page
s="24")

tabula.convert_into(BEVPDF, "tablepage25.csv",encoding="utf-

8',guess = True, lattice = True, multiple_tables= True,output_format='data_format',page
s="25")

23

1e.
11.

12.

3.2.6

1
2
3.
4.
5
6
7
8

9.
10.
11.

1
2
3
4.
5
6
7
8

tabula.convert_into(BEVPDF,

8',guess = True, lattice =
s="26,27")

tabula.convert_into(BEVPDF,

8',guess = True, lattice =
S=II28II)

tabula.convert_into(BEVPDF,

8',guess = True, lattice =
s="29,30")

tabula.convert_into(BEVPDF,

8',guess = True, lattice =
S="31")

tabula.convert_into(BEVPDF,

8',guess = True, lattice =
s=ll32ll)

tabula.convert_into(BEVPDF,

8',guess = True, lattice =
s=ll33ll)

"tablepage2627.csv",encoding="utf-
True, multiple_tables= True,output_format='data_format', page

"tablepage28.csv",encoding="utf-
True, multiple_tables= True,output_format='data_format', page

"tablepage2930.csv",encoding="utf-
True, multiple_tables= True,output_format='data_format', page

"tablepage31l.csv",encoding="utf-
True, multiple_tables= True,output_format='data_format', page

"tablepage32.csv",encoding="utf-
True, multiple_tables= True,output_format='data_format', page

"tablepage33.csv",encoding="utf-
True, multiple_tables= True,output_format='data_format', page

print ("FINISHED EXTRACT Table from PDF")

Inserting Metadata

With the related metadata extracted in the third stage, this stage involves inserting metadata
in text and table into the GeoPackage using Python and SQL code. In addition, this stage contains
multiple steps to insert different parts of the metadata into the GeoPackage. The temporary TXT
and CSV files created in the third stage will be deleted once the insertion process is complete.

First, a connection to the GeoPackage needs to be established in order to insert the metadata
later. The code below creates an interface which allows users to choose the GeoPackage they want
to connect and sets up a connection.

GeoPackage = sg.PopupGetFile('Please Select the GeoPackage:"')

if GeoPackage !=

conn = sqlite3.connect(GeoPackage)
sg.Popup(GeoPackage, 'Database Connection Successful')

else:

sg.Popup(GeoPackage, 'Database Connection Failed', 'Program Stopped')

sys.exit("Error")

print ("Database Connection Successful")

cursor = conn.cursor()

Second, to insert the general information from the whole KM1000-V dataset, two standard
metadata tables in MIME encoding structure, gpkg_metadata and gpkg_metadata_reference, are
created based on the OGC GeoPackage Encoding Standard (OGC, 2018).

##Create gpkg metadata table

cursor.execute('DROP TABLE
cursor.execute(''""’ CREATE

IF EXISTS gpkg metadata')
TABLE gpkg_metadata (

id INTEGER CONSTRAINT m_pk PRIMARY KEY ASC NOT NULL,
md_scope TEXT NOT NULL DEFAULT 'dataset',

md_standard_uri TEXT NOT

NULL,

mime_type TEXT NOT NULL DEFAULT 'text/xml',
metadata TEXT NOT NULL DEFAULT "'

24

9.)"

10. conn.commit()

11. ##Create gpkg _metadata_reference table

12. cursor.execute('DROP TABLE IF EXISTS gpkg metadata_reference')

13. cursor.execute('''''CREATE TABLE gpkg metadata_reference (

14. reference_scope TEXT NOT NULL,

15. table_name TEXT,

16. column_name TEXT,

17. row_id_value INTEGER,

18. timestamp DATETIME NOT NULL DEFAULT (strftime('%Y-%m-%dT%H:%M:%fZ"', "now")),
19. md_file_id INTEGER NOT NULL,

20. md_parent_id INTEGER,

21. CONSTRAINT crmr_mfi_fk FOREIGN KEY (md_file_id) REFERENCES gpkg metadata(id),
22. CONSTRAINT crmr_mpi_fk FOREIGN KEY (md_parent_id) REFERENCES gpkg metadata(id)
23.);""")

24. conn.commit()

The following third step is to insert the general information and structure metadata from
the KM1000-V dataset. The general structure from page 22 of the PDF file and the general
information in the TXT file named Aktualitaetsstand are extracted from the text file converted
earlier in the third stage, and then inserted into the gpkg_metadata table using the Python and SQL
code below.

1. ##Path Location of Aktualitaetsstand

2. LatestInfo = sg.PopupGetFile('Please Select Aktualitaetsstand.txt file in Unzipped KM-
1000V Folder:')

3. if LatestInfo !="":

4 sg.Popup(LatestInfo, 'Import Successful')

5. else:

6. sg.Popup(LatestInfo, 'Import Failed', 'Program Stopped')

7 sys.exit("Error")

8

9. lines = []
11. file = open(LatestInfo, 'rt',encoding="latin-1")

13. for line in file:
14. lines.append(line)

16. ReleaseDate = lines[3] + lines[5]
17. print (ReleaseDate)

20. #i#tExtract General Structure Information of KM-1000

21. ExtractGeneralStructure = "PDFPage22.txt"

22. file = open(ExtractGeneralStructure, 'r',encoding='utf-8")

23. content = file.read()

24. GeneralStructurePattern = r'2.4.1.1 About KM1000-V (.*\n.*\n.*\n.*\n.*) .*'
25. test = re.search(GeneralStructurePattern, content, re.MULTILINE)

26. GeneralStructure = str(test.group())

27. GeneralInformation = ReleaseDate + GeneralStructure

28. print (GeneralInformation)

30. ##tAppend general metadata infotmation to gpkg

31. metadata = [1, 'dataset','NA', 'text', GeneralInformation]

32. print (metadata)

33. cursor.execute('insert into gpkg metadata values (?,?,?,?,?)', metadata)
34. conn.commit()

35. print ('''''FINISHED Extracting Text from Aktualiaetsstand and PDF Page 22

25

36. FINISHED Adding general metadata infotmation to gpkg''")
37.

38. file.close()

39. if os.path.exists("PDFPage22.txt"):

40. os.remove("PDFPage22.txt")

41. else:

42. print("The file does not exist")

Next, the fourth step is to insert the layer description metadata and the description of layer
attribute metadata into the GeoPackage. While the standard metadata table provided by OCG
standard encoding is not sufficient to cover the layer description metadata and the description of
layer attribute metadata (see example in Figure 3-6), two metadata tables are created for each
vector layer in the GeoPackage. KM1000_polbnd_area layer is used as an example to explain the
process in the fourth step.

KM1000_ polbnd area

Administrative area

Definition: An area controlled by administrative authority. o 8
EGM - Feature class: PolbndA Layer Descri ption
Feature type: Area

Primitive type: Face
Portrayal criteria: Each administrative unit consists of one main area and occasionally of one main

area with exclave(s). Exclaves bigger than 3 km? included. If a country has national administrative
levels below a country level, then the lowest level in EU-countries is a level equivalent to NUTS3
level and in other countries the lowest level is comparable to this level.

Attribute Definition Value/Code or Example Value description
FCODE FACC feature code FA001 Administrative area
TAA Type of the administrative area 0 Unknown

1 Mainland

3 Exclave or island
4 Condominium
7 Water only

SHNO Id-code of country-level (ISO 3166 Nation F1000000 (Example)
Code + number of XXYYO000 (Example) For in dispute areas between countries
zeros, so that fields SHNO — SHN4 have equal | XX and YY
width).
SHN1 ID Code of 1st order administrative unit. FI600000 (Example)
N_A Not applicable (if country has no more than
the country level in EGM)
KM50, KM250, KM500, KM1000 - Vektor Version 1.5 Seite 26 von 3

Description of
Attribute Table
BEV - Bundesamt fir Eich- und Vermessungswesen BEV

ey

SHN2 ID Code of 2nd order administrative unit. F1108000 (Example)

N_A Not applicable (if country has no more than the 1st order
national level in EGM)

SHN3 Id-code of the 3rd order administrative unit. DE01005300000 (Example)

N_A Not applicable (if country has no more than the 2nd
order

national level in EGM)

SHN4 Id-code of the 4th order administrative unit. GB11QL0000 (Example)

N_A Not applicable (if country has no more than the 3rd order
national level in EGM)

Figure 3-6. Metadata Overview of KM1000 polbnd_area Layer in BEV PDF

The python code below shows how to insert the layer description and the description of
attribute table of KM1000 polbnd_area layer. The layer description is stored as a table named
KM1000_polbnd_area 07_2018 description_of attributes in the GeoPackage, while the
description of attribute table is stored in KMZ1000 polbnd_area 07 2018 description. The

26

information was extracted from the temporary TEXT file and CSV file created in the third stage.
All the temporary CSV and TXT files are removed when the insertion process is finished.

1. ##add description of layer to gpkg for KM1000_polbnd_area

2. FeatureClassName = "KM1000_polbnd_area"

3. Definition = "An area controlled by administrative authority."

4. EGM_Feature_Class = "PolbndA"

5. FeatureType = "Area"

6. PrimitiveType = "Face"

7. PortrayalCriteria = "Each administrative unit consists of one main area and occasionall

y of one main area with exclave(s). Exclaves bigger than 3 km2 included. If a country h
as national administrative levels below a country level, then the lowest level in EU-
countries is a level equivalent to NUTS3 level and in other countries the lowest level
is comparable to this level."

8. attributeTable = "KM1000 _polbnd_area_07_2018 description_of_attributes"

9. table = [1,FeatureClassName, Definition, EGM_Feature_Class, FeatureType, PrimitiveType,

PortrayalCriteria]

10. cursor.execute('DROP TABLE IF EXISTS KM1000_polbnd_area_07_2018 description')

11. cursor.execute(''"''"'CREATE TABLE KM1000 polbnd_area_07_ 2018 description (

L2 id INTEGER CONSTRAINT m_pk PRIMARY KEY ASC NOT NULL,

13. featureClassName TEXT NOT NULL,

14. definition TEXT NOT NULL,

15. EGMFeatureClass TEXT NOT NULL,

16. featureType TEXT NOT NULL,

17. primitiveType TEXT NOT NULL,

18. portrayalCriteria TEXT NOT NULL

19.)t

20. cursor.execute('INSERT INTO KM1000 polbnd_area_07_2018 description VALUES (?,?,?,?,?,?,
?)', table)

21. conn.commit()

22. print ("FINISHED Inserting description for KM1000_polbnd_area")

28 c

24. ##add description of attribute table to gpkg for KM1000 polbnd_area

25. skiprows = list(range(9)) + list(range(17,26))

26. DescriptionOfAttributes = pd.read_csv("tablepage2627.csv",skiprows = skiprows, usecols
= [0,2,3],encoding="1atinl")

27. cursor.execute('DROP TABLE IF EXISTS KM1000_polbnd_area_07_2018 description_of_attribut
es')

28. DescriptionOfAttributes.to_sql("KM1000@_ polbnd_area_07_2018 description_of_attributes",c
onn, if_exists='append',index=False)

29. conn.commit()

30. print ("FINISHED Inserting description of attributes for KM1000© polbnd_area")

In addition to the metadata provided in the PDF file and TXT file by BEV, it is necessary
to consider the compatibility of GeoPackage with INSPIRE metadata. According to INSPIRE
policy (2007), Austria, as a member state in European Commission, is obligated to guarantee the
creation and updating of metadata for the geospatial dataset and service. In the latest INSPIRE
technical guidelines (2017), the discoverability of datasets and the Spatial Data Services is based
on “the data and service providers describing their resources using the metadata elements
according to rules mandated by the INSPIRE regulations, and on the other hand, the Discovery
Services providing online access to query the provided metadata.” INSPIRE metadata is encoded
in XML schema following ISO standards 19115/19119/19139. “The abstract standards [ISO
19115] and [ISO 19119] provide a structural model and specify the content of the set of metadata
elements used in this specification, but they do not specify the encodings of those elements. The
[1SO 19139] specifies an XML encoding of [ISO 19115] elements, but not for the service-specific
metadata elements contained in [ISO 19119]” (INSPIRE MIG, 2017). Normally, an INSPIRE

27

metadata XML file includes three sections: general requirements (file identifier, metadata
language, metadata point of contact, and metadata date), identification info section (resource title,
resource abstract, the responsible organization and point of contact for the described resource,
temporal reference, using keywords, limitations on public access, conditions applying to the access
and use, and geographic bounding box), and data quality info section (conformity). The EU
member states are obligated to adapt INSPIRE metadata standard to ensure compatibility and
usability of their SDI.

Thus, this addition step aims to insert INSPIRE XML metadata to the GeoPackage. The
INSPIRE metadata of KM1000_polbnd_line layer in XML format was provided by Dr. Markus
Jobst at BEV. The following Python code was created to insert the metadata in XML format to the
gpkg_metadata and gpkg_metadata_reference tables in GeoPackage. Two XML records are made
by the Python code. One of them keeps the original format of the XML file (see Figure 3-7). The
other one removes the elements in XML and keeps only the child tag and element so that the XML
file is more readable to non-technical personnel.

##insert KM1000_polbnd_line XML to gpkg
##polbnd_line_xml = "KM100OAU__d2b8d67f-737c-4d49-b220-ca®ef422197d.xm1"
polbnd_line_xml = sg.PopupGetFile('Please Select Downloaded XML File:")
if LatestInfo !="":
sg.Popup(polbnd_line_xml, 'Import Successful')
else:
sg.Popup(polbnd_line_xml, 'Import Failed', 'Program Stopped')
sys.exit("Error")

VWoONOUVTSA WN R

10. polbnd_line_xml_copy = "polbnd_line_xml_copy.xml"
11. copyfile(polbnd_line_xml, polbnd_line_xml_copy)

13. xmlformatpreserved
14. xmlformatpreserved
15. xmlformatpreserved

xml.dom.minidom.parse(polbnd_line_xml_copy)
xmlformatpreserved.toprettyxml()
str(xmlformatpreserved)

18. metadata = [2, 'feature', "http://www.isotc211l.0rg/2005/gmd"', 'xml', xmlformatpreserved]

19. cursor.execute('insert into gpkg metadata values (?,?,?,?,?)', metadata)
20. conn.commit()
21. print ("Finishing inserting xml to GeoPackage")

23. timestamp = datetime.datetime.now()
24. metadata_reference = ['table', 'KM1000 POLBND LINE ©7_2018', "', '',

25. timestamp, 2, 1]

26. cursor.execute('insert into gpkg metadata_reference values (?,?,?,?,?,?,?)', metadata_r
eference)

27. conn.commit()

28.

29. def replace_in_config(old, new):

30. with open(polbnd_line_xml_copy, 'r') as f:

31. text = f.read()

32.

33. with open(polbnd_line_xml_copy, 'w') as f:

34, f.write(text.replace(old, new))

BoM

36. replace_in_config('gco:"', '")
37. replace_in_config('gmd:", '")

28

38.

39.
40. tree = ElementTree.parse(polbnd_line_xml_copy)
41. root = tree.getroot()
42.
43. extractxml = ""
44,
45. for child in root.iter():
46. tagstring = str(child.tag)
47. textstring = str(child.text)
48. extractxml += tagstring + textstring
49,
50. extractxml = str(extractxml)
51.
52. metadata = [3,'feature’, 'http://www.isotc211.0rg/2005/gmd"', 'text', extractxml]
53. cursor.execute('insert into gpkg_metadata values (?,?,?,?,?)', metadata)
54. conn.commit()
55.
56. timestamp = datetime.datetime.now()
57. metadata_reference = ['table','KM1000 POLBND_LINE_©7_2018', '', "',
58. timestamp, 3, 1]
59. cursor.execute('insert into gpkg_metadata_reference values (?,?,?,?,?,?,?)"', metadata_r
eference)
60. conn.commit()
61.
62. print ("Finishing inserting xml to GeoPackage")
63. if os.path.exists("polbnd_line_xml_copy.xml"):
64. os.remove("polbnd_line_xml_copy.xml")
65. else:
66. print("The file does not exist")
: e orarS0mafeme hpel ot epngis e oY /o000 Somgam g TP g e kg org A5 SShene L s

<gmd:fileldentifier>

<gco:CharacterString>d2b8d67f-737¢c-4d49-b220-ca0ef422197d</gco: CharacterString>

</gmd:fileldentifier>

<gmd:language>

<gmd:LanguageCode codeList="http://www.loc.gov/standards/iso639-2/" codeListValue="ger"/>

</gmd:language>

Type of data curren

Hly in cel: Text / Numeric

21261 char(s)
chema 8 x
s Database Structre BrowseData EditPragmas Execute SQL
- " R Table: ||| gokg_metadata - B & NewRecord | [Delete R
| HiliShade50m
] KM1000_sirfld_poi id md_scope nd_standard_ur __ mime_type metadata
[Filter [Filter Filter Filter [Filter]
] KM100.buitup 11 dataset NA text Produkt: Kartographisches Modell - Vektor 1:1 000 000 (KM1000-V) (stichtag) der Daten: 07.2018
| KM1000_builtup._ 22 feature hitp://wwew.is... xml <2xml version="1.0" ?><gmd:MD_Metadata "http:/ /v isotc211.0rg/2005/gco” p te2
B KEAIO00 busitup 33 feature http://veww.is... text MD_Metadata fileIdentifier

(-] KM1000_builtup |
| KM1000_builtup_j t
] KM1000_builtup_point_07_2018_des

3.2.7

Figure 3-7. INSPIRE XML with Original Format in GeoPackage

Editing Style in QGIS
This stage aims to use QGIS software to create the style for the GeoPackage to the match

the national map style of the Austria Cartographic Model at 1:1 million scale (see Figure 1-1).

29

The first step is to edit the symbology of vector layers displayed in the Austria Cartographic
Model. A free color-picker tool is used to detect the color code of the vector feature in the national
map. The symbology of each feature layer in the GeoPackage is edited or created to match the
shape and color of features in the national map (see Flgure 3-8).

-
I 2L PP A

I Color Panel ~ Color Range

“-I

RGIA HSV/HSB HSL CMYK CIELAB

[& KM1000_builtup_point_07_2018
2] | KM1000_toke area 072018
v KM1000 road line 07 2018
%] National Route
€2 = Tunnel
B—
1] KM1000_watrcrs.area 07 2018
¥ [KM1000_polbnd line 072018
&~ Co
== States Boundery
v [/ KM1000_watrcrs fine 072018

Hex code for Delphi (VL)X Hex code for VB:
$00000000 Copy &HO000000

Hex code for Delphi...

$SFF000000 Copy

Hex code for HTML: X Code for Photoshop:

#000000 copy | (000000 Copy

« seled Hex code for C#: X Hex code for Unity:
tayer R X Asceblue A |#FF000000 Copy #000000FF Copy

517 e v M Hex code for C++: X Hex code for Clardon: X

[-
KM1000_builtup._area 072018 == ? Aquamarine (0X00000000 1| | 10000000H Copy
71| KM1000_reservoir_area 07 2018 Amn Hex code for Java: X

er_area, Beige
1 KM1000,gacier area.07.2018 % b 4 e 03000000, =

X RGB long for VB /...
0

oGOt S S0 T SCSeTIINOC0 | G Magnfer[100% 3] Rotaten 0

Figure 3-8. Style Editing Process in QGIS

Since the KM1000 folder does not provide data to make certain cartographic
representations and the base map, additional data and processes are required to create the base map
and a new layer is generated to display as cartographic representation (see Figure 3-9). To be more
specific, the buffer layer, Austria_Boundary Buffer Effect, was created using the political

Figure 3-9. Additional Cartographic Representations created to match the National Map Style

30

boundary layer stored in GeoPackage and the symbology of the buffer layer was changed to the
national map style. Moreover, the Austrian DEM dataset from BEV was used to generate the
hillshade layer. The forest coverage layer from BEV was clipped by the buffer layer and its
symbology has been changed to match the national map style. Furthermore, some features that
were not displayed in the 1:1 million national map were removed from the attribute table. Finally,
the features were labeled in accordance with the national map.

3.2.8 Adding Style into GeoPackage

The sixth stage is to insert the styles created in the fifth stage to the GeoPackage through
QGIS. QGIS provides the function in layer property to save the vector layer style in GeoPackage
(see Figure 3-10). This function generates a new table named layer_styles in QGIS and add the
style of each vector layer in QML and SLD format to the layer_styles table.

0 Save default style to:

Datasource database| |Local database Cancel

Classify B | | = Delete Al

P Layer Rendering

,

-~ = -—— St mrimnIRTIw T ARA AT T T

Figure 3-10. Add Layer Style to GeoPackage in QGIS

As described in Styled Layer Descriptor profile of the Web Map Service Implementation
Specification (OGC, 2007), the SLD format is an non-proprietary XML schema for storing the
style information of either vector or raster map layers and is widely used by WMS to style specific
layers. Nonetheless, QGIS does not have a built-in function to either insert the SLD file of raster
layer to GeoPackage or to export the SLD file separately. To solve this issue, the SLDA4raster is
needed from QGIS Python plugins repository and the SLD file of raster is manually inserted into
the layer_styles table in GeoPackage.

This stage also marks the end of archiving process with GeoPackage.

3.2.9 Uploading GeoPackage to Geoserver

In this stage, all the map layers in GeoPackage are uploaded to GeoServer. The uploading
process followed the standard operating procedure in GeoServer. First, a workspace was created
and WMTS, WFS, WMS services were enabled in the settings. Next, the completed GeoPackage
was added in Stores and each layer in Stores was published individually. During the publishing
procedure, the Coordinate Reference System of each layer was changed from GeoServer default
setting to EPSG: 3416, which is the Austria Lambert Project and European Terrestrial Reference
System 1989, used by the original BEV dataset. Then, the parameter of Bounding Boxes of each
layer was calculated from the Coordinate Reference Systems. Once all the layers in Stores were
published, a Layer Groups was created to include all 12 layers used to display in the 1:1 million
Austrian National Map. The 12 layers should follow the drawing order below so the final maps

31

can match the national map. When overlaying the layers in QGIS to match the national map, the
order below needs to be reversed.

Austria_Boundary_Buffer_Effect
HillShade50m

KM500 R_WALD 07 2018
KM1000_glacier_area_07_2018
KM1000 reservoir_area 07 2018
KM1000_builtup_area_07_2018
KM1000 watrcrs_line_07_2018
KM1000_polbnd_line_07_2018
KM21000 watrcrs_area 07 2018
10. KM1000 road_line_07_2018

11. KM1000 lake area 07 2018

12. KM1000_builtup_point_07_2018

©CoN~ LN E

3.2.10 Importing Style and Digital Maps Distribution

The final stage is about the dissemination of the digital maps. Instead of simply sharing the
original geospatial data like BEV does, it is important to embed the style with the datasets so the
digital map can be distributed properly. In this stage, the symbology of each layer stored in
GeoPackage is uploaded to the Geoserver in SLD format and set as the default style for the
corresponding layer (see Figure 3-11).

focamost

Style Editor - KM1000:KM500_R_WALD_07_2018]
€t the currant styl. Tho editor can provid syntax highighting and automab formating. Cick on the “Valdats” button ta Vo
Data Publishing LayerPreview Layer Attributes

Preview as styte group:

KMS00_R_WALD_07_20181

uuuuuu

Valdate Apply Submit Canced

Figure 3-11. Uploaded style in SLD format in Geoserver Style Editor

Finally, in order to share the digital maps as vector tiles, the Vector Tiles Extension must
be added to the GerServer directory. For now, the GeoServer supports sharing the digital maps in
three vector tiles formats, which are GeoJSON vector tiles, MapBox vector tiles, and TopoJson
Vector Tiles (See red marks in Figure 3-12). Sharing vector tiles is a new function supported only

32

& » O @ D localhost e w k kma M. 24
% GeoServer T
Layer Preview
sl List of o and provides.
Sorve Stk
R <<l <1 > >> Resus1to22 (ot of 22 Rems) \ Search
B o e Type Title. Mame. ‘Common Formats. Al Formats
o
Austia_Boundary_Buffr_Effct KOU1000:Astria_Bouedry_Bulfe_Efact Opentayers 4. GHL Sclectone <
® L s HitShadeSom KM1000:iShadeSOm Opentayers kL Seloctone.]
Stores
KM1000_sirfid_pomt_07_2018 KM1000:KM1000_arfid_pownt_07_2018 ‘OpenLayers KML GML Select one hd
x K041000_usk,_area_07_2018 KH1000K1000_busup_ares_07_2018 [rR——— Select cne S
Services KM1000_buikup_point_07_2018 KM1000:KM1000_buiitup_point_07_2018 Opentayers KML GML Select one. v
s wrrs
7 W X1000_darm_line_07_2018 KM1000:KM1000_dam_ine_07_2018 Opaniayers K04 GML Select one. v
) s
& s
B ¥041000_dev_point 07,2018 KOHI000:4041000_sev_point 072018 Opantayers KL GHL Seloctone v
Sottinge
& Global u KM1000_glacier_area_07_2018 KM1000:KM1000_glacier_area_07_2018 Opantayers KML GML Select one. v
S tmage processng
BT Raster Access. | KM1000_istand_area_07_2018 KM1000:KM1000_isiand_area_07_2018 Opantayers KML GML Select one v
Tie Caching e
= o KM1000_lake_sces_07_2018 KM1000:KM1000_lske_sres_07_2018 Openiayers KML GML Select one. v
Thatayees
*‘; m“‘f‘: Kanad X041000_name_point_07_2018 KM1000:KM1000_namme_poirk_07_2018 OpenLayers KML GML Select one. v
5 Dk Quota z
ey o XM1000_polbnd ares 072018 KM1000:KM1000_poibnd_ares_07_2018 Opantayers KML GML [tz
IWMS
Security 1041000_pbed 07 2018 KOHI000:1041000_polbnd e 072018 PR ——— AromPub
Setings GF
Authenteaton XM1000_radid_bne_07_2018 KMI000:KM1000_radvd_ine_07_2015 Opentayers KML GML [GeolSON Vector Ties |
) Passwords Geﬂ'
* Users, Groups, Roles .
& i 041000, e e 7. 2018 H1000X011000_ e ode07.2018 PRS- S-S
< G
st o KO1000_oservor_area_07_2018 K000 KI1000_recerviare_07_2018 PR——— PEGPNG
TR JPEG-PNGS
KML (compressed)
1041000, road i 07_2018 KI000:4041000 o2 _07_2018 ey
=) road e 07,) raad_na_07. Opartayers 1 (comvnentd
1011000_sing_node_07_2018 KOH1000:1011000_sping_node_07_2018 Pe——— [MapBan Vecior Ties
OpenLayers
| KM1000_watrcrs_sres_07_2018 KM1000:KM1000_watrcrs_srea_07_2018 Openlayers KML GML. OpenLayers 2
OpenLayers 3
104000_wtrcrs i 072018 KM1000X0H000_watrrsis_07_2018 Opsntayers 4L GHL o
PNG 8bit
- KMS00_R_WALD_07_20181 'KM1000:KMS00_R_WALD_07_20181 Opantayers KML VG
it
T 8
- 11 Millon Austian Cartographic Model prrp— Opantayers A i
[TopoJSON Vector Tdes|
<</ < (1 > >» Resuks1to22 (outof 22 items) U "

hitpy/localhostA080/geoserver/web/
—_—

Figure 3-12. Sharing Digital Maps in Vector Tiles Format in GeoServer 2.15

by the latest version of GeoServer, released on February 18, 2019. Therefore, it has some bugs
when using the style editor. The issue is discussed later in Chapter 5.

33

4. Results

In general, the results obtained through this research method were successful and all three
questions have been answered. This chapter presents the final results of the research in details.
The issues occurred in the workflow are discussed in later chapter.

4.1 Archiving Digital Maps with GeoPackage

One of the hidden requirement of archiving digital maps is the size of final dataset. Thus,
two GeoPackages, KM1000FullStyle.gpkg and KM1000FullStyleWithRaster.gpkg are generated
to fulfill the different needs.

The KM1000FullStyle GeoPackage contains all 18 feature layers from the original dataset,
all relating metadata information from the PDF and TXT file, INSPIRE XML metadata for the
KM1000_polbnd_line_07_2018 layer, and style information in QML and SLD format. No feature
has been removed from the original layer.

In addition to the content stored in KM1000FullStyle GeoPackage, the
KM1000FullStyleWithRaster GeoPackage includes two raster layers (Forest Coverage and
Hillshade) and one vector layer (Austria_Boundary Buffer_Effect). In order to match the national
map content, some features have been removed from the original layer.

Figure 4-1 indicates the size difference between of the datasets. While the original BEV
dataset in the ZIP file is about 4MB, the KM1000Fullstyle Geopacakge is around 15MB with style
and INSPIRE metadata XML embedded. The additional GeoTIFF files generated for the final map
are stored in KM1000-V Raster folder and are about 430MB. However, the GeoPackage format
significantly reduces the size of raster data as the KM1000FullStyleWithRaster.gpkg is only 36 MB
in total. Moreover, the traditional approach of sharing geospatial maps involves packing
everything in a ZIP file, which requires additional ZIP software in order to unzip the file and view
the content inside. The GeoPackage can be shared directly and viewed in a direct SQL interface
or a web application such as DB viewer for SQLite or the NGA’s application (OGC 2009).

Name Size Allocated Files Folders % of Parent (Allocated)

v 486.6MB F:\MasterThesis\FinalResult\Size\ 486.5 MB 486.6 MB 15 1 1000%
430.9MB KM1000-V Raster 430.9 MB 430.9 MB 12 0 88.6% a
v [] 556MB [3Files] 55.6 MB 55.6 MB 3 0 14%
] 364MB KM1000FullStyleWithRaster.gpkg 36.4 MB 36.4 MB 1 0 65.5%
| 152MB KM1000FuliStyle.gpkg 152 MB 152 MB 1 0 273%
B8 40MB KM1000-Vzip 40MB 40MB 1 0 72%

Figure 4-1. Data Size Comparison

The final map exported from QGIS is represented below (see details in Annex 3). Except
for the feature labels, the map generated through the research method has successfully matched
the 1:1 Million Austria Cartographic Model with national map to a large extent.

34

All the metadata from BEV PDF and TXT have been embedded in the GeoPackage
successfully. In addition, the GeoPackage also supports storage of the INSPIRE XML metadata.
Figure 4-2 presents an example of viewing the embedded metadata through DB Brower for SQL.te.

Annex 3 Final Result Map exported from QGIS

_§NewDatabase (g} Open Database jite Changes | Revert Changes

DB Schema 8 x Edit Database Cell 8 X
Database Structwe BrowseData EditPragmas Execute SQL

Hame, Tpe 2 Table: ||| KM1000_road_ine_07_2018_description_of_attributes - & NewRecord | |Delete Record Mode: EHES Tpeort) |t Setar AL
v] Tables (146)

> L] Austria_Boundary_Buffer Effect Attribute Definition alue/Code or Example Value descriptio 0 Unknown
(] Hillshades0m [Fiter [Fiter [Fiter | 8 0n ground surface
7] KM1000_sirfld_point 07.2018 25 Suspended or elevated above ground or water
| KM1000_airfld_point_07_2018_description FCODE FACC feature code AP030 Road hs‘:za;elg:gm o,
j m:xf:';:;:‘::‘;‘7;;2;’;?;“"“’"“"”' 40 Ugnderground (= tunnel length more than 2000 m.)
|] KM1000_builtup_area_07_2018_description
-] KM1000_builtup_area_07_2018_description...
(2] KM1000_builtup_point_07_2018
] KM1000_builtup_point_07_2018_description
] KM1000_builtup_point_07_2018_descriptio...
[Z] KM1000_dam_line_07_2018
] KM1000_dam_line_07_2018_description
=] KM1000_dam line_07_2018_description_of ..
] KM1000_elev_point_07_2018
=] KM1000_elev_point_07_2018_description
] KM1000_elev_point_07_2018_description....
] KM1000_glacier_area 072018
] KM1000_glacier_area_07_2018_description
] KM1000_glacier_area_07_2018_description...
2] KMH1000_island_area_07_2018
=] KM1000_island_area_07_2018_description
=] KMH1000_istand_area_07_2018_description_...
=] KM1000_lake area_07_2018
-] KNH1000_lake_area_07_2018_description
[Z] KM1000_lake_area_07_2018_description_of...
|] KM1000_name_point_07_2018
] KM1000_name_point_07_2018_description
-] KM1000_name_point_07_2013_description...
] KM1000_polbnd_area_07_2013
-] KM1000_polbnd_area_07_2018_description
] KM1000_polbnd_area_07_2018_description...
(2] KM1000_polbnd_line_07_2018
] KM1000_polbnd_line_07_2018_description
=] KM1000_polbnd_line_07_2018_description..

> (] KM1000_railrd_line_07_2018 v
= 2 W] [€] 1-90f9 [] [M Goto: |1 | Type of data currently n cel: Text / Numeric
SQllog = Plot Remote DBSchema 171 char(s)

Figure 4-2. Viewing Embedded Metadata through DB Brower SQlite

EXS Existence Category (the state or condition ofthe feature). 0 UnknownS Under construction Al

Loc Location category. Status of feature relative tosurrounding area or water. 0 Unknowns On ground surface25

>

RSU Seasonal availability. 0 Unknown1 All year2 Seasonal997 ...

RTT Intended use of the route. 0 Unknown14 Primary route (= maj...

MED Median category. 0 Unknown1 With median2 Without ...

RST Road surface type. 0 Unknown? Paved2 Unpaved

RTN Official national route number. UNK UnknownA1#A45 (Example) If ...

6 ® N o o h W N~

RTE Route number (national) UNK UnknownE18#E35 (Example) I ...

>

>

Aoy

35

4.2 VVector Tiles Dissemination

Regarding the dissemination of the GeoPackage, the result has demonstrated the possibility
of sharing the digital map in vector tiles format through the latest GeoServer version. In addition,
GeoServer also supports the distribution of the digital maps in various format such as JPEG, KML,
PDF, and GeoTIFF through WMS, WFS, WCS, and WMTS.

Figure 4-3 shows the preview of the published digital map in GeoServer. One drawback of
sharing the digital map through this web service is the limited support for feature label
representation and special symbology created in desktop GIS software.

KM1000_road_line_07_2018
5 F_CODE EXS LOC RSU RTT MED RST RIN RTE

KMI000_road fine 07 2018357AP030 28 8 1 16 1 1

KM1000_builtup_pol
d F_CODE PPL
KMI000_buittip_poiat_07_2018.597 ALO20 29997 10000 24999 St

Figure 4-3. Preview of the Published Digital Maps in GeoServer

4.3 Python Script for Automatically Embedding Metadata

As the highlight and innovative part of this research, the created Python script has
dramatically reduced the workload for the metadata embedding procedure. In order to offer a user-
friendly environment, the command line scripts are provided to ease the Python dependencies
installation process and a graphic user interface (GUI) is created so the user can choose the
metadata document they want to embed into the GeoPackage in an easier way without modifying
the source code (See Figure 4-4). The Python scripts and command line scripts have been tested
in both MacOS Mojave and Windows 10 64bit through virtual machine.

36

(It is recommended to put geopackage, unzipped KM1000V files, downloaded xml into one folder)
Please Select Workpace Folder

|

@® @) tk

(It Is recommended to put geopackage, unzipped KM1000V files, downloaded xmi Into one folder)
Please Select Workpace Folder

I I Browse

Ok Cancel
I— _ I_
_ l_

Figure 4-4. View of the GUI for the Python Scripts in MacOS and Windows 10

Although the Python script has been proved to be successful to embed metadata for
GeoPackage, this Python script is designed specifically for the KM1000-V dataset from BEV. If
there are certain changes of text structure or content in the BEV PDF, the Python script is subject
to modify in accordance with the change in metadata. The source code of the Python script is
provided in Annex 4.

5. Discussion and Future Work

This chapter discusses the issues that occurred during the research experiment and future
work that can improve the current research method. Some of the issues have been solved and are
explained in detail in the subchapters.

In order to reach the goal of this thesis and answer the research questions, a literature
review was carried out and a case study for the Austrian Cartographic Model with national style
from BEV was developed. In the case study, a research method was designed and a Python script
was created to provide a user-friendly interface and minimize the human effort in metadata
embedding procedure.

The literature review of this thesis focused on the principle, status quo, and challenge of
archiving digital maps at different times and the evaluations of existing and future geospatial data
formats for the preservation of digital maps. In the literature review, most of archive projects
hosted by government agencies are still using SHP and GeoTIFF to store geospatial data. However,
there were limited research concentrating on the disadvantage of existing geospatial data formats
or proposing an alternative format for archiving digital maps because ESRI still takes the largest
share in GIS industry. In addition, the research related to Geopackage format is also rare because
Geopackage is a newly invented geospatial data format and it is mainly promoted by non-profit
organization such as OGC. More detailed research is needed to study benefit and drawback of
different geospatial data formats used in archiving digital maps. Also, it has been found by this
thesis that the default metadata table provided in Geopackage Encoding Standard was not
sufficient to store attribute tables and additional metadata when archiving multiple feature layers.
Thus, further research is needed to study metadata extension and set new standard for metadata
tables in Geopackage.

From a technical perspective, the method designed for the case study provides a completely
free, open-source, and cross-platform solution for archiving and dissemination of digital maps.
However, this approach relies heavily on two pieces of GIS software, which are QGIS and
GeoServer. Therefore, further research is needed to examine how well proprietary GIS software
such as ArcGIS and Maplnfo and other open-source GIS software such as PostGIS and GRASS
GIS support a Geopackage that contains metadata and style information. Moreover, as described
in chapter 3, this approach uses SLD format to store style information of feature layers and
GeoServer to disseminate digital maps. It is important to study the compatibility of SLD format
with other web map platforms and the conversion capability between SLD format and other style
formats. Furthermore, the Python script developed for this approach is exclusively designed to
extract the metadata in the PDF file of BEV KM1000-V datasets. Due to the specific text structure
in the PDF file, it requires modification before applying the Python script to other datasets.
Additional research should look into the compatibility of using Python script to extract metadata
from other PDF or TXT file.

38

5.1 Character Encoding Issue

During the experiment, it was noticed that there was an error when displaying the German
umlauts characters (see Figure 5-1). This issue is relating to the character encoding type of the
operating system. Since the original KM1000-V datasets are encoded in 1SO 8859-1 (Latin -1),
this issue does not affect the users in German speaking counties as Latin-1 may be the default
character encoding for their operating system. However, if the default system encoding is UTF-8,
the issue below would occur. UTF-8(1SO 10646) has become the most popular encoding method
for the World Wide Web since 2009. Nowadays, over 90 percent of web pages are encoded in
UTF-8 as it supports all the national languages and many non-spoken languages in the world
(W3Techs, 2019 & Davis, 2012). The quick solution for this issue is to change the encoding
method of the original SHPs from Latin-1 to UTF-8 before importing the SHPs to a GeoPackage.
And the long-term solution should be advising the BEV to switch the encoding format from Latin-
1to UTF-8.

NAMN1 NAMN2 NAMA1 NAM
Krems an der Méhldorf N_A Muehldorf N_A
F)Donau Stockerau Roith N_A Roith N_A
- Q
Tulln an der |l_,lKOI’I'“IelJbUI'Q Oberweis N_A Oberweis N_A
Donau__ -

Q ® Schalchham N_A Schalchham N_A
Klosterneuburg Fuschl am See N_A Fuschl am See N_A
Vielk Glasenbach N_A Glasenbach N_A

L,,|Sankt Pikten = =
i Plainfeld N_A Plainfeld N_A
2 Vigaun N_A Vigaun N_A

MiEling
@ Oberndorf N_A Oberndorf NA
Baden Endach N_A Endach N_A
&)
Bad V!z"ilaur_\ B@hlerwerk N_A Boehlerwerk N_A
<

Ertl N_A Ertl N_A
Reichraming N_A Reichraming N_A

Figure 5-1. German Umlauts Encoding Issue

5.2 Map Labeling and Symbology Issue

As one of the most vital characters in cartographic representation, map labeling has
contunued to pose challenges in the GIS industry. There are two main labeling issues relating to
this research. The first one is the label abbreviation and case-sensitive issue (See Figure 5-2). For
some unknown reason, the person who created the BEV national map did not use the “NAME”
field in the atrribute table of KM1000 builtup_area 07 2018 to label the feature or the person
changed the label text manually. Unfortunately, there is no automatic solution for this issue except
for manually changing the label text to match the BEV national map.

The second labeling issue concerns the placement and dissemination of map labeling. In
this case study, only part of the label information can be embedded into the GeoPackage in the
SLD file such as font type and font size. In addition, there is no function in QGIS to store the label
placement and export the label in a proper format that can be accessed by other GIS software or
GIS web service like GeoServer. In fact, most map labeling functions nowadays are proprietary

39

and software-dependent. One solution for this issue can be achieved using ArcGIS desktop by
converting the labels to annotation and exporting the annotation as a raster format such as PNG
while the feature layer is turned off. Then, PNG can be imported in other GIS software and overlaid
on other layers in the dataset. However, this solution disobeys the purpose of this research which
promotes a free, cross-platform, and open-source environment for the preservation and
dissemination of digital maps. Thus, future work should focus on the proper method to export and
share the label placement in QGIS.

/)
%}
S el .

.
~>

e /’[I P <
Sankt Polten
~ I

BEV National Map Final Map of this research

Figure 5-2. Map Labelling and Source Data Issue

Although similar or equal symbols can be created in QGIS, a web map service like
GeoServer has its limitations to display the symbol in a complex structure. For example, two of
the road symbols do not display in the final map on GeoServer. Future work should look into the
performance and capability of SLD and alternative style formats like CSS. In addition, further
research can explore the style editor function from alternative web map services such as Mapbox
and Mapstore2.

Second, the latest GeoServer version has a case-sensitive issue to recognize the symbology
from the uploaded SLD file. This issue did not occur in earlier version such as GeoServer 2.14.1.
The solution for this issue is to check error code and change the corresponding lower case letters
in the field name of the attribute table to upper case.

5.3 Geodata Quality Issue

During the orginal dataset review stage and editing style stage, geodata quality issues in
the KM1000-V dataset have occurred. First, only 9 out 18 layer from the original dataset were
used to make the 1:1 million BEV nationl map. Second, features data are missing from certain
layer such as the KM1000 builtup_area 07_2018. Using Figure 5-2 as an example, the city
boundary of Sankt Pdten is missing from the original dataset. Moreover, features in some layers
such as the road line, watercourse line, and watercourse area are not displayed in the BEV national
map. The person creating the BEV national map had filtered out the features in those layers, which
was not based on any feature characteristics stored in the attribute table the layer. This issue is
solved in the KM1000FullStyleWithRaster.gpkg by manually removing the redundant features
from layers. Third, the topological issue of the KM1000 polbnd_line 07 2018 layer had
prevented the buffer process during the style editing stage. Thus, the cartographic representation

40

of the Austria border was generated by the free country boundaries data from the Databases of
Global Administrative Area (DADM), which results in a gap at certain edges of the border. For
the future, it is recommended that BEV personnel work to improve the source data quality.

41

6. Conclusion

Considering the limitations of current geospatial data formats to be suitable for long-term
digital data preservation, and in light of the scenario illustrated in the Chapter Four, in this thesis
we designed a case study approach to explore an alternative data format, GeoPackage, for the
preservation and dissemination of digital maps in the future.

The research questions addressed in the first chapter can now be answered with the
positive results attained through the research.

1. Isit possible to embed relevant metadata for future usage in digital maps using GeoPackage?

This case study, archiving the 1:1 million Austria Cartographic Model with national map
style, demonstrates the possibility of using GeoPackage to embed relevant metadata from different
data formats that the digital maps requires, such as general information for the whole dataset, layer
description, description of attribute table, symbology, and reference system information. In
addition, considering the widespread availability of data from BEV in the Europe Union, the
capability of embedding INSPIRE XML metadata in GeoPackage was tested as well. The results
have indicated several advantages of archiving digital maps with GeoPackage compared to the
most commonly used data format like ESRI shapefile and GeoTIFF. Unlike shapefile and
GeoTIFF format, GeoPackage has the ability to store all related data in one file. Moreover, it can
store both vector and raster data, and the size of raster data significantly decreased when it was
stored in GeoPackage.

2. s it possible to embed styling from GeoPackage when distributing digital maps that use
vector-tile format?

Through the last three stages in this research approach, the goal of distributing digital maps
through vector-tile format has been achieved by uploading the embedded SLD style from
GeoPackage to Geoserver. However, due to the technical limitations of the web map service, the
style from GeoPackage cannot be fully displayed through GeoServer. Future studies are needed to
explore an alternative approach to display style or improve the current functionally of this web
map service.

» Isit possible to create a Python script that partially automate the procedures of embedding
relevant information into GeoPackage?

In the case study, a Python scripts with GUI interface has been developed to automatically
embed the related information from the BEV PDF, BEV TXT file, and INSPISE XML metadata
file. The Python script has significantly reduced the workload of embedding metadata into a
GeoPackage. In addition, the script has been tested in both Windows 10 and MacOS. Nevertheless,

42

the script is designed exclusively for the case study. Thus, any structural change of in the PDF in
the future will require modification of the source code. Additional work is needed to improve the
ability to extract specific parts of text from a PDF and to generate tables for it. Besides, it is also
used to develop a script that can embed SLD files into a GeoPackage.

In sum, this thesis proposes an innovative approach to embed relevant metadata for future
usage in digital maps using GeoPackage and to embed styling from GeoPackage when distributing
digital maps that use vector-tile format. It also shows the possibility of using Python scripts to
automate the procedure of embedding relevant information into GeoPackage.

43

7. List of References

Bleakly, D. R. (2002). Long-Term Spatial Data Preservation and Archiving: What Are the
Issues? doi:10.2172/793225

Lauriault T.P., Pulsifer P.L., Taylor D.F. (2011). The Preservation and Archiving of
Geospatial Digital Data: Challenges and Opportunities for Cartographers. In: Jobst M.
(eds) Preservation in Digital Cartography. Springer, Berlin, Heidelberg

Ruzicka, J. (2016). Comparing speed of Web Map Service with GeoServer on ESRI Shapefile
and PostGIS. Geoinformatics FCE CTU,15(1), 3. doi:10.14311/gi.15.1.1

Bernhard, K. (2013, January 30). Austria: Leading the Open Government Implementation
Model. Retrieved from https://www.opengovpartnership.org/stories/austria-leading-open-
government-implementation-model

Alban, S. (2015, March 2). Independent Report Highlights ESRI as Leader in Global GIS
Market. Retrieved from https://www.ESRI.com/ESRI-news/releases/15-
1qgtr/independent-report-highlights-ESRI-as-leader-in-global-gis-market

Theobald, D. M. (2001). Understanding Topology and Shapefiles. Retrieved from
https://www.ESRI.com/news/arcuser/0401/topo.html

Cepicky, J., & OpenGeoLabs. (2017). Switch from Shapefile. Retrieved from
http://switchfromshapefile.org/

Antoniou, V., Morley, J., & Haklay, M. (2009). Tiled Vectors: A Method for Vector
Transmission over the Web. W2GIS.

Veenendaal, B., Brovelli, M. A., & Li, S. (2017). Review of Web Mapping: Eras, Trends and
Directions. ISPRS International Journal of Geo-Information, 6(10), 317. MDPI AG.
Retrieved from http://dx.doi.org/10.3390/ijgi6100317

H. Rashidan, M & Musliman, Ivin & A. Rahman, A. (2016). GEOPACKAGE DATA FORMAT
FOR COLLABORATIVEMAPPING OF GEOSPATIAL DATAIN LIMITED
NETWORKENVIRONMENTS. ISPRS - International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences. XLI1-4/W1. 15-21. 10.5194/isprs-
archives-XLI1-4-W1-15-2016.

Sanner, Michel. (1998). Python: A Programming Language for Integration and Development.
10.1016/S1093-3263(99)99999-0.

Jané&, Greg. (2009). Preserving Geospatial Data: The National Geospatial Digital Archive's
Approach. 1509.

Jobst, Markus & Gartner, Georg (2011). Structural Aspect for the Digital Cartographic
Heritage. In: Jobst M. (eds) Preservation in Digital Cartography. Springer, Berlin,
Heidelberg

Federal Office of Topography swisstopo(2016). Handbook: Archiving of federal geodata.
https://www.swisstopo.admin.ch/en/knowledge-
facts/geoinformation/landschaftsgedaechtnis/langzeitaufbewahrung/archivierung-

geodaten.html

44

https://www.opengovpartnership.org/stories/austria-leading-open-government-implementation-model
https://www.opengovpartnership.org/stories/austria-leading-open-government-implementation-model
https://www.esri.com/esri-news/releases/15-1qtr/independent-report-highlights-esri-as-leader-in-global-gis-market
https://www.esri.com/esri-news/releases/15-1qtr/independent-report-highlights-esri-as-leader-in-global-gis-market
https://www.esri.com/news/arcuser/0401/topo.html
http://switchfromshapefile.org/
https://www.swisstopo.admin.ch/en/knowledge-facts/geoinformation/landschaftsgedaechtnis/langzeitaufbewahrung/archivierung-geodaten.html
https://www.swisstopo.admin.ch/en/knowledge-facts/geoinformation/landschaftsgedaechtnis/langzeitaufbewahrung/archivierung-geodaten.html
https://www.swisstopo.admin.ch/en/knowledge-facts/geoinformation/landschaftsgedaechtnis/langzeitaufbewahrung/archivierung-geodaten.html

Clark, John H (2016). The Long-Term Preservation of Digital Historical Geospatial Data: A
Review of Issues and Methods, Journal of Map & Geography Libraries, 12:2, 187-
201, DOI: 10.1080/15420353.2016.1185497

Shaon, Arif & Naumann, Kai & Kirstein, Michael & Roensdorf, Carsten & Mason, Paul & Bos,
Margué&ite & Gerber, Urs & Woolf, Andrew & Samuelsson, G&an. (2011). Long-term
sustainability of spatial data infrastructures: a metadata framework and principles of geo-
archiving.

Sandner, Peter (2011). The Archiving of Digital Geographical Information. In: Jobst M. (eds)
Preservation in Digital Cartography. Springer, Berlin, Heidelberg

Cartwright, William (2011) From Plan Press to Button Push: The Development of
Technology for Cartographic Archiving and Access. In: Jobst M. (eds) Preservation
in Digital Cartography. Springer, Berlin, Heidelberg

Zaslavsky, 1. (2001). Archiving spatial data: Research issues. La Jolla, CA: San Diego
Supercomputer Center.

Erwin, Tracey & Sweetkind-Singer, Julie (2009) The National Geospatial Digital Archive: A
Collaborative Project to Archive Geospatial Data, Journal of Map & Geography
Libraries, 6:1, 6-25, DOI: 10.1080/15420350903432440

Locher, Anita-E. & Termens, Miquel(2012). Exploring alternatives for geodata preservation, In
72Conferencia Ib&ica de Sistemas y Tecnolog &s de Informacicn. CISTI 2012, Madrid

Morris, Steven P., and James Tuttle (2007). Curation and Preservation of Complex Data: The
North Carolina Geospatial Data Archiving Project. North Carolina State University
Libraries.

Pons, X., & Mas&Pau, J. (2016). A comprehensive open package format for preservation and
distribution of geospatial data and metadata. Computers & Geosciences, 97, 89-97.

ESRI(1998). ESRI Shapefile Technical Description. An ESRI White Paper.
https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

North Carolina Center for Geographic Information and Analysis & North Carolina Department
of Cultural Resources (2011). Geospatial Multistate Archive and Preservation Partnership
Final Report

Guptill, Stephen (1999) Metadata and Data Catalogues. Geographical Information
Systems/Longley, PA et al. pp 677-692

FGDC (2011). Geospatial Metadata Fact Sheet. Retriever from
https://www.fgdc.gov/resources/factsheets/documents/GeospatialMetadata-July2011.pdf

ESRI (2019). FAQ: What is the difference between a shapefile and a layer file?. Retrieved from
https://support.esri.com/en/technical-article/000011516

Ritter, Niles (1995). GeoTIFF Fomat Specification, retriever from
http://mac.mf3x3.com/GIS/GEOTIFF/geotiff spec.pdf

Mahammad, Sazid & Ramakrishnan, R (2003). GeoTIFF — A Standard Image File Format for
GIS Application

45

https://doi.org/10.1080/15420353.2016.1185497
https://doi.org/10.1080/15420350903432440
https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
https://www.fgdc.gov/resources/factsheets/documents/GeospatialMetadata-July2011.pdf
https://support.esri.com/en/technical-article/000011516
http://mac.mf3x3.com/GIS/GEOTIFF/geotiff_spec.pdf

Bogossian, C.H., Ferreira, K.R., Monteiro, A.M., & Vinhas, L. (2014). A Hybrid Architecture
for Mobile Geographical Data Acquisition and Validation Systems. Geolnfo.

Open Geospatial Consortium (2018) OGC GeoPackage Encoding Standard — With Corrigendum.
Retrieved from https://www.opengeospatial.org/standards/GeoPackage

LiL, HuW, Zhu H, Li Y, Zhang H (2017) Tiled vector data model for the geographical features
of symbolized maps. PLoS ONE 12(5): e0176387.
https://doi.org/10.1371/journal.pone.0176387

Ordnance Survey (2018) OS Open Zoomstack Vector Tiles. Retriever from
https://www.ordnancesurvey.co.uk/business-and-government/help-and-
support/products/os-open-zoomstack.html

Ordnance Survey (2019) OS Open Zoomstack Technical Specification. Retriever from
https://www.ordnancesurvey.co.uk/business-and-government/help-and-
support/products/os-open-zoomstack.html

Altaweel, M. (2017). The Use of Python in GIS. Retrieved from https://www.gislounge.com/use-
python-gis/

ESRI (2018). What is Python? Retrieved from
http://desktop.arcgis.com/en/arcmap/latest/analyze/python/what-is-python-.htm

INSPIRE MIG (2007). Article 5(1) of INSPIRE Directive 2007/2/EC, Retrieved from https://eur-
lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32007L.0002&rid=1

INSPIRE MIG (2017). Technical Guidelines for implementing dataset and service metadata
based on ISO/TS 19139:2007

Open Geospatial Consortium (2007). Styled Layer Descriptor Profile of the Web Map Service
Implementation Specification. Retrieved from
http://www.opengeospatial.org/standards/sld#overview

Open Geospatial Consortium (2019) Getting Started with GeoPakcage. Retrieved from
http://www.GeoPackage.org/guidance/getting-started.html

Davis, Mark (2012). Unicode over 60 percent of the web. Retrieved from
https://googleblog.blogspot.com/2012/02/unicode-over-60-percent-of-web.html.

W3TECHs.com (2019). Usage Survey of Character Encodings broken down by Ranking. Retriev
ed from https://w3techs.com/technologies/cross/character encoding/ranking

46

https://www.opengeospatial.org/standards/geopackage
https://doi.org/10.1371/journal.pone.0176387
https://www.ordnancesurvey.co.uk/business-and-government/help-and-support/products/os-open-zoomstack.html
https://www.ordnancesurvey.co.uk/business-and-government/help-and-support/products/os-open-zoomstack.html
https://www.ordnancesurvey.co.uk/business-and-government/help-and-support/products/os-open-zoomstack.html
https://www.ordnancesurvey.co.uk/business-and-government/help-and-support/products/os-open-zoomstack.html
https://www.gislounge.com/use-python-gis/
https://www.gislounge.com/use-python-gis/
http://desktop.arcgis.com/en/arcmap/latest/analyze/python/what-is-python-.htm
http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32007L0002&rid=1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32007L0002&rid=1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32007L0002&rid=1
http://www.opengeospatial.org/standards/sld#overview
http://www.geopackage.org/guidance/getting-started.html
https://en.wikipedia.org/wiki/Mark_Davis_(Unicode)
https://googleblog.blogspot.com/2012/02/unicode-over-60-percent-of-web.html
https://w3techs.com/technologies/cross/character_encoding/ranking

Appendix

Annex 1 — Command Line Scripts for Windows OS

Batchinstall_ windows.bat

1

W o NN U bW N

O S = N o S T~ S = o S Sy s
= O W N s WNR=O

@echo off
rem this is a batch file to install all required python modules for the project.

echo Please drag your python folder here(example C:\python37)
set /p pypath="Python Folder Location:"

pushd %pypath%\Scripts

python.exe -m pip install --upgrade pip

pip install PySimpleGUI
pip install tabula

pip install distro

pip install urllib3

pip install pdfminer.six
pip install pandas

pip install DBManager

pip install datefinder

pausel

Annex 2 — Command Line Scripts for MacOS

Batchinstall_MacOS.command

W 00 NN O O W N =

[
N = O

-
w

#! /bin/bash
%echo This batch file will install required python modules for the project.

pip3 install —upgrade pip
Pip3 install tabula-py
Pip3 install urllib3

pip3 install distro

pip3 install pdfminer.six
pip3 install pandas

pip3 install DBManager
pip3 install datefinder
pip3 install tkinter

pip3 install PySimpleGUI

47

Annex 3 — Final Result Map exported from QGIS

48

Annex 3 — Source Code of the Python Script

oNOTUVTh WN R

27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43,
44,
45,
46.
47.
48.
49,
50.
51.
52.
53.
54.
55.

##Master Thesis:Archiving Digital Maps with GeoPackage and Vector-tile Dissemination
##Author: Yunnan Chen
##tabula-py requires java JDK, pandas, urllib3, distro

import PySimpleGUI as sg
import re, sys, os, datefinder
from shutil import copyfile
import sqlite3,DBManager
import pandas as pd

. from pandas.io.sql import to_sql, read_sql

. from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter
. from pdfminer.converter import TextConverter
. from pdfminer.layout import LAParams

. from pdfminer.pdfpage import PDFPage

. from io import StringIO

. import tabula

. from tabula import read_pdf

. import csv

. from xml.etree import ElementTree

. import xml.dom.minidom

. import datetime

. #0utput Text Location

. ##tcwd = os.getcwd()

. ##print ("Current Workspace",cwd)

. CurrentWorkspace = sg.PopupGetFolder('(It is recommended to put GeoPackage, unzipped KM

1000V files, downloaded xml into one folder)\n'+'Please Select Workpace Folder')
if CurrentWorkspace != "":
sg.Popup('The Current Workspace is
os.chdir(CurrentWorkspace)
cwd = os.getcwd()
print ("Current Workspace",cwd)
else:
sg.Popup('The Current Workspace is not defined!', 'Program Stopped')
sys.exit("Error")

, CurrentWorkspace)

##Path Location of GeoPackage
GeoPackage = sg.PopupGetFile('Please Select the GeoPackage:')
if GeoPackage != "":
conn = sqlite3.connect(GeoPackage)
sg.Popup(GeoPackage, 'Database Connection Successful')
else:
sg.Popup(GeoPackage, 'Database Connection Failed', 'Program Stopped')
sys.exit("Error")

print ("Database Connection Successful")
cursor = conn.cursor()

##Create gpkg metadata table
cursor.execute('DROP TABLE IF EXISTS gpkg metadata')
cursor.execute('"'"'"''CREATE TABLE gpkg metadata (
id INTEGER CONSTRAINT m_pk PRIMARY KEY ASC NOT NULL,
md_scope TEXT NOT NULL DEFAULT 'dataset',
md_standard_uri TEXT NOT NULL,
mime_type TEXT NOT NULL DEFAULT ‘'text/xml',

49

56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.

83.
84.
85.
86.
87.
88.
89.
90.

91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.

metadata TEXT NOT NULL DEFAULT "'
)3t

conn.commit()

##List all tables in the database
cursor.execute("SELECT name FROM sqlite_master WHERE type='table';")
tables = cursor.fetchall()
for table in tables:
print (table)

##Create gpkg metadata_reference table
cursor.execute('DROP TABLE IF EXISTS gpkg_metadata_reference')
cursor.execute('"''''CREATE TABLE gpkg metadata_reference (
reference_scope TEXT NOT NULL,
table_name TEXT,
column_name TEXT,
row_id_value INTEGER,
timestamp DATETIME NOT NULL DEFAULT (strftime('%Y-%m-%dT%H:%M:%fZ", 'now")),
md_file_id INTEGER NOT NULL,
md_parent_id INTEGER,
CONSTRAINT crmr_mfi_fk FOREIGN KEY (md_file id) REFERENCES gpkg metadata(id),
CONSTRAINT crmr_mpi_fk FOREIGN KEY (md_parent_id) REFERENCES gpkg metadata(id)
)

conn.commit()

##Export BEV PDF as Text

BEVPDF = sg.PopupGetFile('"''''Please Select the BEV_S_KM50_KM250_KM500 KM1000 V_V1.5.pd

f file in the Unzipped KM-1000V Folder:''")

if BEVPDF I= "":
sg.Popup(BEVPDF, 'Import Successful')

else:
sg.Popup(BEVPDF, 'Import Failed','Program Stopped')
sys.exit("Error")

##Convert PDF to Text
##Source Code: http://stanford.edu/~mgorkove/cgi-
bin/rpython_tutorials/Using%20Python%20to%20Convert%20PDFs%20t0%20Text%20Files. php
def convert(fname, pages=None):
if not pages:
pagenums
else:
pagenums = set(pages)

set()

codec = 'utf-8'

output = StringIO()

manager = PDFResourceManager()
converter = TextConverter(manager, output, laparams=LAParams())
interpreter = PDFPagelnterpreter(manager, converter)

102.

103.
104.
105.
106.
107.
108.
109.
110.

infile = open(fname, 'rb')

for page in PDFPage.get_pages(infile, pagenums):
interpreter.process_page(page)

infile.close()

converter.close()

text = output.getvalue()

output.close

return text

111.

112.
113.

output = convert(BEVPDF, pages=[21])
print (output)

114.

50

115.
116.
117.
118.
119.
120.
121.

122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.

file = open("PDFPage22.txt", "w", encoding='utf-8")
file.write(output)

file.close()

print ("FINISHED Converting pdf to txt")

##Path Location of Aktualitaetsstand
LatestInfo = sg.PopupGetFile('Please Select Aktualitaetsstand.txt file in Unzipp
ed KM-1000V Folder:"')
if LatestInfo !="":
sg.Popup(LatestInfo, 'Import Successful')
else:
sg.Popup(LatestInfo, 'Import Failed', 'Program Stopped')
sys.exit("Error")

lines = []
file = open(LatestInfo, 'rt',encoding="latin-1")

for line in file:
lines.append(line)

ReleaseDate = lines[3] + lines[5]
print (ReleaseDate)

##Extract General Structure Information of KM-1000

ExtractGeneralStructure = "PDFPage22.txt"

file = open(ExtractGeneralStructure, 'r',encoding="utf-8")

content = file.read()

GeneralStructurePattern = r'2.4.1.1 About KM1000-V (.*\n.*\n.*\n.*\n. *) *'
test = re.search(GeneralStructurePattern, content, re.MULTILINE)
GeneralStructure = str(test.group())

GeneralInformation = ReleaseDate + GeneralStructure

print (GeneralInformation)

##Append general metadata infotmation to gpkg

metadata = [1, 'dataset’','NA', 'text', GeneralInformation]

print (metadata)

cursor.execute('insert into gpkg metadata values (?,?,?,?,?)', metadata)
conn.commit()

print ('''''FINISHED Extracting Text from Aktualiaetsstand and PDF Page 22
FINISHED Adding general metadata infotmation to gpkg''')

file.close()

if os.path.exists("PDFPage22.txt"):
os.remove("PDFPage22.txt")

else:
print("The file does not exist")

##Path Location of the XML File
polbnd_line_xml = sg.PopupGetFile('Please Select Downloaded XML File:')
if LatestInfo !="":
sg.Popup(polbnd_line_xml, 'Import Successful')
else:
sg.Popup(polbnd_line_xml, 'Import Failed', 'Program Stopped')
sys.exit("Error")

##Append KM1000 polbnd_line XML to gpkg

polbnd_line_xml_copy = "polbnd_line_xml_copy.xml"
copyfile(polbnd_line_xml, polbnd_line_xml_copy)

51

175.
176.
177.
178.
179.

180@.
181.
182.
183.
184.
185.
186.
187.
188.

189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.

222.
223.
224.
225.
226.
227.
228.
229.
230.
231.

xmlformatpreserved = xml.dom.minidom.parse(polbnd_line_xml_copy)
xmlformatpreserved = xmlformatpreserved.toprettyxml()
xmlformatpreserved = str(xmlformatpreserved)

xmlLink = "http://geometadatensuche.inspire.gv.at/metadatensuche/srv/eng/catalog

.search#/metadata/d2b8d67f-737c-4d49-b220-cavef422197d"

metadata = [2, 'feature’,xmlLink, 'xml', xmlformatpreserved]
cursor.execute('insert into gpkg metadata values (?,?,?,?,?)', metadata)
conn.commit()

print ("Finishing inserting xml to GeoPackage")

timestamp = datetime.datetime.now()
metadata_reference = ['table', 'KM1000_POLBND_LINE_07_2018', '', "',
timestamp, 2, 1]

cursor.execute('insert into gpkg metadata_reference values (?,?,?,?,?,?,?)", met

adata_reference)

conn.commit()

def replace_in_config(old, new):
with open(polbnd_line_xml_copy, 'r') as f:
text = f.read()

with open(polbnd_line_xml_copy, 'w') as f:
f.write(text.replace(old, new))

replace_in_config('gco:"', '")
replace_in_config('gmd:"', '")

tree = ElementTree.parse(polbnd_line_xml_copy)
root = tree.getroot()
extractxml = ""

for child in root.iter():
tagstring = str(child.tag)
textstring = str(child.text)
extractxml += tagstring + textstring

extractxml = str(extractxml)

metadata = [3, 'feature',xmlLink, 'text', extractxml]
cursor.execute('insert into gpkg metadata values (?,?,?,?,?)', metadata)
conn.commit()

timestamp = datetime.datetime.now()
metadata_reference = ['table', 'KM1000 POLBND_ LINE_©7_2018', "', '',
timestamp, 3, 1]

cursor.execute('insert into gpkg metadata_reference values (?,?,?,?,?,?,?)",
adata_reference)

conn.commit()

print ("Finishing inserting xml to GeoPackage")
if os.path.exists("polbnd_line_xml_copy.xml"):
os.remove("polbnd_line_xml_copy.xml")
else:
print("The file does not exist")

##Convert tables in PDF to CSV
tabula.convert_into(BEVPDF, "DataFormatFileTable.csv",encoding="utf-

8',multiple_tables= True,output_format='data_format',pages="22")

met

52

232.

233.

234.

235.

236.

237.

238.

239.

240.

241.
242.
243.
244,

245,
246.
247.
248.
249.
250.
251.
252.

253.
254.
255.
256.
257.
258.
259.
260.
261.
262.

263.
264.
265.
266.
267.
268.

269.
270.
271.

tabula.convert_into(BEVPDF, "tablepage23.csv",encoding="utf-
8',guess = False, multiple_tables= True,output_format='data_format',6pages="23")

tabula.convert_into(BEVPDF, "tablepage24.csv",encoding="utf-
8',guess = True, lattice = True, multiple_tables= True,output_format='data_format',page
S="24")

tabula.convert_into(BEVPDF, "tablepage25.csv",encoding="utf-
8',guess = True, lattice = True, multiple_tables= True,output_format='data_format',page
s=II25II)

tabula.convert_into(BEVPDF, "tablepage2627.csv",encoding="utf-
8',guess = True, lattice = True, multiple_tables= True,output_format='data_format', page
$="26,27")

tabula.convert_into(BEVPDF, "tablepage28.csv",encoding="utf-
8',guess = True, lattice = True, multiple_tables= True,output_format='data_format',page
S="28")

tabula.convert_into(BEVPDF, "tablepage2930.csv",encoding="utf-
8',guess = True, lattice = True, multiple_tables= True,output_format='data_format', page
s="29,30")

tabula.convert_into(BEVPDF, "tablepage31l.csv",encoding="utf-
8',guess = True, lattice = True, multiple_tables= True,output_format='data_format',page
s=ll31ll)

tabula.convert_into(BEVPDF, "tablepage32.csv",encoding="utf-
8',guess = True, lattice = True, multiple_tables= True,output_format='data_format', page
s=ll32ll)

tabula.convert_into(BEVPDF, "tablepage33.csv",encoding="utf-
8',guess = True, lattice = True, multiple_tables= True,output_format='data_format', page
s=ll33ll)

print ("FINISHED EXTRACT Table from PDF")

##Insert Description for gpkg contents

LayerDescription = pd.read_csv("DataFormatFileTable.csv", usecols = ['Descriptio
n'],nrows = 18)

LayerDescription = pd.DataFrame(LayerDescription)

LayerDescription = LayerDescription['Description’].tolist()

print (LayerDescription)

cursor.execute('SELECT srs_id FROM gpkg_contents ORDER BY srs_id')
srs_id = [row[@] for row in cursor]
for a, b in zip(LayerDescription, srs_id):
cursor.execute('UPDATE gpkg _contents SET description = ? WHERE srs_id = ?',
[a, b])
conn.commit()
print ("FINISHED Inserting description for gpkg_contents")
if os.path.exists("DataFormatFileTable.csv"):
os.remove("DataFormatFileTable.csv")
else:
print("The file does not exist")

##Manually add description of layer to gpkg for KM1000 airfld point
FeatureClassName = "KM100©@ airfld point"
Definition = "A defined area used for landing, take-
off, and movement of aircraft including associated buildings and facilities"
EGM_Feature_Class = "AirfldP"
FeatureType = "Point"
PrimitiveType = "Isolated node"
PortrayalCriteria = "All airports having regular passenger traffic"
attributeTable = "KM1000 airfld point 07 2018 description_of attributes”
table = [1,FeatureClassName, Definition, EGM_Feature_Class, FeatureType, Primiti
veType, PortrayalCriteria]
cursor.execute('DROP TABLE IF EXISTS KM100@ airfld point 07 2018 description')
cursor.execute('''"'"CREATE TABLE KM100@ airfld point 07 2018 description (
id INTEGER CONSTRAINT m_pk PRIMARY KEY ASC NOT NULL,

53

272.
273.
274.
275.
276.
277.
278.
279.

280.
281.
282.
283.
284.
285.

286.
287.
288.
289.

290.
291.

292.
293.
294.
295.
296.
297.
298.
299.
300.
301.
302.

303.
304.
305.
306.
307.
308.

309.
310.
311.
312.

313.
314.

315.
316.
317.
318.
319.
320.
321.
322.
323.
324.

featureClassName TEXT NOT NULL,
definition TEXT NOT NULL,
EGMFeatureClass TEXT NOT NULL,
featureType TEXT NOT NULL,
primitiveType TEXT NOT NULL,
portrayalCriteria TEXT NOT NULL
)t
cursor.execute('INSERT INTO KM1000_ airfld_point_07_2018 description VALUES (?,?,
?,?,?,?,?)", table)
conn.commit()
print ("FINISHED Inserting description for KM1000_airfld_point")

##Manually add description of layer to gpkg for KM1000 dam_line

FeatureClassName = "KM100@_dam_line"

Definition = "A permanent barrier across a watercourse used to impound water or
to control its flow."

EGM_Feature_Class = "DamL"

FeatureType = "Line"

PrimitiveType = "Edge"

PortrayalCriteria = "Dams with remarkable national meaning or longer than 2000 m
eters.”

attributeTable = "KM1000_dam_line_07_2018 description_of_attributes"

table = [1,FeatureClassName, Definition, EGM_Feature_Class, FeatureType, Primiti

veType, PortrayalCriteria]
cursor.execute('DROP TABLE IF EXISTS KM100@_dam_line_©07_2018_description')
cursor.execute('"''"''CREATE TABLE KM1000_dam_line_07_2018_description (
id INTEGER CONSTRAINT m_pk PRIMARY KEY ASC NOT NULL,
featureClassName TEXT NOT NULL,
definition TEXT NOT NULL,
EGMFeatureClass TEXT NOT NULL,
featureType TEXT NOT NULL,
primitiveType TEXT NOT NULL,
portrayalCriteria TEXT NOT NULL
)
cursor.execute('INSERT INTO KM1000_dam_line_07_2018_description VALUES (?,?,?,?,
?,?,?)", table)
conn.commit()
print ("FINISHED Inserting description for KM1000_dam_line")

##Manually add description of layer to gpkg for KM1000 elev_point
FeatureClassName = "KM100@ elev_point"
Definition = "A designated location with an elevation value relative to a vertic
al datum.™
EGM_Feature_Class = "ElevP"
FeatureType = "Point"
PrimitiveType = "Isolated node"
PortrayalCriteria = "1 - 30 remarkable height points for each country. At least
the highest point of the country.”
attributeTable = "KM1000 elev_point_07 2018 description_of_attributes™
table = [1,FeatureClassName, Definition, EGM_Feature_Class, FeatureType, Primiti
veType, PortrayalCriteria]
cursor.execute('DROP TABLE IF EXISTS KM100@ elev_point 07 2018 description')
cursor.execute('''"''CREATE TABLE KM1000 elev_point 07 2018 description (
id INTEGER CONSTRAINT m_pk PRIMARY KEY ASC NOT NULL,
featureClassName TEXT NOT NULL,
definition TEXT NOT NULL,
EGMFeatureClass TEXT NOT NULL,
featureType TEXT NOT NULL,
primitiveType TEXT NOT NULL,
portrayalCriteria TEXT NOT NULL
VAR

54

325. cursor.execute('INSERT INTO KM1000 elev_point_07_2018 description VALUES (?,?,?,
?,?,?,?)", table)
PIRES] 3)

326. conn.commit()

327. print ("FINISHED Inserting description for KM1000_elev_point")

328.

329. ##Manually add description of layer to gpkg for KM1000 glacier_area

330. FeatureClassName = "KM100@ _glacier_area"

331. Definition = "A large mass of snow and ice moving slowly down a slope or valley
from above the snowline."

332. EGM_Feature_Class = "LandiceA"

333. FeatureType = "Area"

334. PrimitiveType = "Face"

335. PortrayalCriteria = "Glaciers larger than 3 km2."

336. attributeTable = "KM1000_glacier_area_07_2018 description_of_attributese”

337. table = [1,FeatureClassName, Definition, EGM_Feature_Class, FeatureType, Primiti
veType, PortrayalCriteria]

338. cursor.execute('DROP TABLE IF EXISTS KM1000_glacier_area_07_2018_description')

529, cursor.execute('"''"''CREATE TABLE KM1000_glacier_area_07_2018 description (

340. id INTEGER CONSTRAINT m_pk PRIMARY KEY ASC NOT NULL,

341. featureClassName TEXT NOT NULL,

342. definition TEXT NOT NULL,

343. EGMFeatureClass TEXT NOT NULL,

344. featureType TEXT NOT NULL,

345. primitiveType TEXT NOT NULL,

346. portrayalCriteria TEXT NOT NULL

347. 25°°%)

348. cursor.execute('INSERT INTO KM1000_glacier_area_07_2018 description VALUES (?,?,
?,?,?,?,?)", table)

349, conn.commit()

350. print ("FINISHED Inserting description for KM1000_glacier_area")

351.

352. ##Manually add description of layer to gpkg for KM1000_ island_area

353. FeatureClassName = "KM100©@_island_area"

354. Definition = "A land mass smaller than a continent and surrounded by water"

355. EGM_Feature_Class = "IslandA"

356. FeatureType = "Area"

357. PrimitiveType = "Face"

358. PortrayalCriteria = "Islands larger than 3 km2. Smaller islands in water area ca
n be portrayed if considered as landmark because containing an important settlement, et
c."

359. attributeTable = "KM1000_island_area_©07_2018 description_of_attributes”

360. table = [1,FeatureClassName, Definition, EGM_Feature_Class, FeatureType, Primiti
veType, PortrayalCriteria]

361. cursor.execute('DROP TABLE IF EXISTS KM1000_island_area_©07_2018 description')

362. cursor.execute(''"'"''CREATE TABLE KM1000 island area 07 2018 description (

B6BH id INTEGER CONSTRAINT m_pk PRIMARY KEY ASC NOT NULL,

364. featureClassName TEXT NOT NULL,

365. definition TEXT NOT NULL,

366. EGMFeatureClass TEXT NOT NULL,

367. featureType TEXT NOT NULL,

368. primitiveType TEXT NOT NULL,

369. portrayalCriteria TEXT NOT NULL

370.)FARED)

371. cursor.execute('INSERT INTO KM1000 island area 07 2018 description VALUES (?,?,?
»?,?2,2,?)", table)

372. conn.commit()

373. print ("FINISHED Inserting description for KM1000_island_area")

374.

375. ##Manually add description of layer to gpkg for KM1000_lake_area

376. FeatureClassName = "KM1000 lake area"

377. Definition = "A body of water surrounded by land."

55

378. EGM_Feature_Class = "LakeresA"

379. FeatureType = "Area"

380. PrimitiveType = "Face"

381. PortrayalCriteria = "Lakes larger than 0.5 km2. Lakes being part of the water ne
twork have to be topologically connected to watercourses."

382. attributeTable = "KM1000_lake_area_07_ 2018 description_of_attributes”

383. table = [1,FeatureClassName, Definition, EGM_Feature_Class, FeatureType, Primiti
veType, PortrayalCriteria]

384. cursor.execute('DROP TABLE IF EXISTS KM1000_lake_area_07_2018 description')

385. cursor.execute('''"''CREATE TABLE KM1000_lake_area_07_2018_description (

386. id INTEGER CONSTRAINT m_pk PRIMARY KEY ASC NOT NULL,

387. featureClassName TEXT NOT NULL,

388. definition TEXT NOT NULL,

389. EGMFeatureClass TEXT NOT NULL,

390. featureType TEXT NOT NULL,

391. primitiveType TEXT NOT NULL,

392. portrayalCriteria TEXT NOT NULL

393. 25°°%)

394. cursor.execute('INSERT INTO KM1000 lake_area_07_2018 description VALUES (?,?,?,?
,?,?,2)", table)

395. conn.commit()

396. print ("FINISHED Inserting description for KM1000_lake_area™)

397.

398. ##Manually add description of layer to gpkg for for KM1000_name_point

399. FeatureClassName = "KM10@@@_ name_point"

400. Definition = "A geographic place on the earth, not normally appearing as a featu
re on a map, but having a name that is required to be placed on a map."

401. EGM_Feature_Class = "NameP"

402. FeatureType = "Point"

403. PrimitiveType = "Isolated node"

404. PortrayalCriteria = "Cartographic text needed for named place at scale 1:1 000 ©
00 that cannot be put into attributes or features.”

405. attributeTable = "KM1000_name_point_07_ 2018 description_of_attributes™

406. table = [1,FeatureClassName, Definition, EGM_Feature_Class, FeatureType, Primiti
veType, PortrayalCriteria]

407. cursor.execute('DROP TABLE IF EXISTS KM100@_name_point_©7_2018_ description')

408. cursor.execute(''"'"''CREATE TABLE KM100@ name_point_ 07 2018 description (

409. id INTEGER CONSTRAINT m_pk PRIMARY KEY ASC NOT NULL,

410. featureClassName TEXT NOT NULL,

411. definition TEXT NOT NULL,

412. EGMFeatureClass TEXT NOT NULL,

413. featureType TEXT NOT NULL,

414. primitiveType TEXT NOT NULL,

415. portrayalCriteria TEXT NOT NULL

416.)Y

417. cursor.execute('INSERT INTO KM100@ name_point_ ©7 2018 description VALUES (?,?,?,
?,?,?,?)", table)

418. conn.commit()

419. print ("FINISHED Inserting description for KM100©_name_point")

420.

421. ##Manually add description of layer to gpkg for KM1000 polbnd area

422, FeatureClassName = "KM100@ polbnd_area"

423. Definition = "An area controlled by administrative authority."

424, EGM_Feature_Class = "PolbndA"

425. FeatureType = "Area"

426. PrimitiveType = "Face"

427. PortrayalCriteria = "Each administrative unit consists of one main area and occa

sionally of one main area with exclave(s). Exclaves bigger than 3 km? included. If a co
untry has national administrative levels below a country level, then the lowest level i
n EU-

56

428.
429.

430.
431.
432.
433,
434,
435,
436.
437.
438.
439,
440.

441.
442.
443,
444.

445,
446.
447.
448.
449.
450.

451.

452.
453.

454,
455,
456.
457.
458.
459.
460.
461.
462.
463.
464.
465.

466.
467.
468.
469.
470.
471.
472.

countries is a level equivalent to NUTS3 level and in other countries the lowest level
is comparable to this level."

attributeTable = "KM1000_polbnd_area_07_2018 description_of_attributes”
table = [1,FeatureClassName, Definition, EGM_Feature_Class, FeatureType, Primiti

veType, PortrayalCriteria]

cursor.execute('DROP TABLE IF EXISTS KM100©_polbnd_area_07_2018 description')
cursor.execute('"'"'''CREATE TABLE KM1000_polbnd_area_07_2018_description (

id INTEGER CONSTRAINT m_pk PRIMARY KEY ASC NOT NULL,

featureClassName TEXT NOT NULL,

definition TEXT NOT NULL,

EGMFeatureClass TEXT NOT NULL,

featureType TEXT NOT NULL,

primitiveType TEXT NOT NULL,

portrayalCriteria TEXT NOT NULL

)
cursor.execute('INSERT INTO KM1000 polbnd_area_07_2018_description VALUES (?,?,?

,2,2,2,?)", table)

added)

conn.commit()
print ("FINISHED Inserting description for KM1000_polbnd_area")

##Manually add description of layer to gpkg for KM1000_polbnd_line(extra column

FeatureClassName = "KM100@ polbnd_line"

Definition = "A line of demarcation between controlled areas."

EGM_Feature_Class = "POLBNDL"

FeatureType = "Line"

PrimitiveType = "Edge"

PortrayalCriteria = "Boundary of an entity controlled by an administrative autho

rity, this entity can be composed of several areas. All international boundaries. If a
country has national administrative levels below a country level, then in EU countries
all levels from country level to a level equivalent to NUTS3 are stored and in other co
untries all levels from country level to a comparable level (i.e. LEVEL4 for CEEC count
ries) are stored. This feature type is used also to close the administrative areas in t
hose cases, when the location of the real international boundary is not stored on sea a

rea.

qualityCriteria ="International boundaries have to be geometrically consistent w

ith topographical features (mainly the hydrographical ones). Geometrical consistency is
recommended at lower level."

attributeTable = "KM1000 polbnd_line_07_ 2018 description_of_attributes™
table = [1,FeatureClassName, Definition, EGM_Feature_Class, FeatureType, Primiti

veType, PortrayalCriteria, qualityCriteria]

cursor.execute('DROP TABLE IF EXISTS KM1000_polbnd_line ©07_2018 description')
cursor.execute(''"'"''CREATE TABLE KM1000 polbnd_line_07_ 2018 description (

id INTEGER CONSTRAINT m_pk PRIMARY KEY ASC NOT NULL,

featureClassName TEXT NOT NULL,

definition TEXT NOT NULL,

EGMFeatureClass TEXT NOT NULL,

featureType TEXT NOT NULL,

primitiveType TEXT NOT NULL,

portrayalCriteria TEXT NOT NULL,

qualityCriteria TEXT NOT NULL

)
cursor.execute('INSERT INTO KM1000 polbnd line 07 2018 description VALUES (?,?,?

,2,2,2,2,2)", table)

conn.commit()
print ("FINISHED Inserting description for KM1000 polbnd_line")

##Manually add description of layer to gpkg for KM1000_railrd_node
FeatureClassName = "KM100© railrd_node"

Definition = "A stopping place for the transfer of passengers and/or freight."
EGM_Feature_Class = "RailrdC"

57

473. FeatureType = "Point"

474. PrimitiveType = "Connected node"

475. PortrayalCriteria = "Important main railway stations used for regular passenger
traffic inside or near settlements."

476. attributeTable = "KM1000_railrd_node_07_2018 description_of_attributes™

477. table = [1,FeatureClassName, Definition, EGM_Feature_Class, FeatureType, Primiti
veType, PortrayalCriteria]

478. cursor.execute('DROP TABLE IF EXISTS KM1000_railrd_node_07_2018 description')

479. cursor.execute('"'"'''CREATE TABLE KM1000_railrd_node_07_2018_description (

480. id INTEGER CONSTRAINT m_pk PRIMARY KEY ASC NOT NULL,

481. featureClassName TEXT NOT NULL,

482. definition TEXT NOT NULL,

483. EGMFeatureClass TEXT NOT NULL,

484. featureType TEXT NOT NULL,

485. primitiveType TEXT NOT NULL,

486. portrayalCriteria TEXT NOT NULL

487. 25°°%)

488. cursor.execute('INSERT INTO KM1000 railrd_node_07_2018_description VALUES (?,?,?
»?,?,2,?)", table)

489. conn.commit()

490. print ("FINISHED Inserting description for KM1000_railrd_node")

491.

492. ##Manually add description of layer to gpkg for KM1000 railrd_line

493. FeatureClassName = "KM100©@ railrd_line"

494, Definition = "A rail or set of parallel rails on which a train or tram runs.”

495, EGM_Feature_Class = "RailrdL"

496. FeatureType = "Line"

497. PrimitiveType = "Edge"

498. PortrayalCriteria = "Railway routes used for regular transportation of goods and

passengers.Important industry railways can be included. Metro lines (= underground urb
an railways), tramlines or streetcar lines inside city areas are excluded.Railways are

represented by one line regardless of the number of tracks.Railway yards are excluded.

Railway lines shorter than 2 km are excluded."

499, attributeTable = "KM1000_railrd_line_07_2018 description_of_attributes™

500. table = [1,FeatureClassName, Definition, EGM_Feature_Class, FeatureType, Primiti
veType, PortrayalCriteria]

501. cursor.execute('DROP TABLE IF EXISTS KM1000 railrd_line ©07_2018 description')

502. cursor.execute(''"'"''CREATE TABLE KM1000 railrd line_07_ 2018 description (

503. id INTEGER CONSTRAINT m_pk PRIMARY KEY ASC NOT NULL,

504. featureClassName TEXT NOT NULL,

505. definition TEXT NOT NULL,

506. EGMFeatureClass TEXT NOT NULL,

507. featureType TEXT NOT NULL,

508. primitiveType TEXT NOT NULL,

509. portrayalCriteria TEXT NOT NULL

510.)FARED)

511. cursor.execute('INSERT INTO KM1000 railrd line 07 2018 description VALUES (?,?,?
»?,?7,2,?)", table)

512. conn.commit()

513. print ("FINISHED Inserting description for KM1000_railrd_line")

514.

515. ##Manually add description of layer to gpkg for KM1000 reservoir_area

516. FeatureClassName = "KM100@ reservoir_area"

517. Definition = "A man-made enclosure or area formed for the storage of water"

518. EGM_Feature_Class = "LakeresA"

519. FeatureType = "Area"

520. PrimitiveType = "Face"

521. PortrayalCriteria = "Reservoirs larger than 0.5 km2. Reservoirs being part of th
e water network have to be topologically connected to watercourses."

522. attributeTable = "KM1000 reservoir_area 07 2018 description_of attributes"

58

523. table = [1,FeatureClassName, Definition, EGM_Feature_Class, FeatureType, Primiti
veType, PortrayalCriteria]

524. cursor.execute('DROP TABLE IF EXISTS KM1000_reservoir_area_07_2018 description')

525. cursor.execute('''''CREATE TABLE KM1000_reservoir_area_07_2018_description (

526. id INTEGER CONSTRAINT m_pk PRIMARY KEY ASC NOT NULL,

527. featureClassName TEXT NOT NULL,

528. definition TEXT NOT NULL,

529. EGMFeatureClass TEXT NOT NULL,

530. featureType TEXT NOT NULL,

531. primitiveType TEXT NOT NULL,

532. portrayalCriteria TEXT NOT NULL

533. %8°°%Y

534. cursor.execute('INSERT INTO KM1000 reservoir_area_07_2018 description VALUES (?,
?,?,?,?,?,?2)", table)

535. conn.commit()

536. print ("FINISHED Inserting description for KM1000_reservoir_area")

537.

538. ##Manually add description of layer to gpkg for KM1000_road_line

536). FeatureClassName = "KM100@ road_line"

540. Definition = "An open way maintained for vehicular use"

541. EGM_Feature_Class = "RoadlL"

542. FeatureType = "Line"

543, PrimitiveType = "Edge"

544, PortrayalCriteria = "Roads that form up a logical transportation network at a ma

p scale 1:1 000000. Roads can be omitted for cartographic reasons in those areas where
the road network is very dense. Low-

class roads can be added if these roads are important routes in settlement structure. R
oads are represented by one line regardless of the number of lanes or carriageways. Roa
d lines shorter than 2 km are excluded. All European roads (E-roads) are included."

545, attributeTable = "KM1000_road_line_07_ 2018 description_of_attributes”

546. table = [1,FeatureClassName, Definition, EGM_Feature_Class, FeatureType, Primiti
veType, PortrayalCriteria]

547. cursor.execute('DROP TABLE IF EXISTS KM1000_road_line_©7_2018_ description')

548. cursor.execute('"'"'"''CREATE TABLE KM1000_road_line_07_ 2018 description (

549, id INTEGER CONSTRAINT m_pk PRIMARY KEY ASC NOT NULL,

550. featureClassName TEXT NOT NULL,

551. definition TEXT NOT NULL,

552. EGMFeatureClass TEXT NOT NULL,

558 featureType TEXT NOT NULL,

554. primitiveType TEXT NOT NULL,

555, portrayalCriteria TEXT NOT NULL

556.)ttt

557. cursor.execute('INSERT INTO KM1000 road_line_©07_2018 description VALUES (?,?,?,?
,?,?7,?)", table)

558. conn.commit()

559. print ("FINISHED Inserting description for KM1000_road_line")

560.

561. ##Manually add description of layer to gpkg for KM1000 builtup_area(typo in BEVP
DF)

562. FeatureClassName = "KM100@ builtup_area"

563. Definition = "An area containing a concentration of buildings and other structur
es."

564. EGM_Feature_Class = "BuiltupA"

565. FeatureType = "Area"

566. PrimitiveType = "Face"

567. PortrayalCriteria = '''''All built-

up areas with equal or more than 50 000 inhabitants AND total size minimum ©.3 km2. Min
imum size of a discrete area: 0.3 km2? (when the same built-

up area is splitted to parts). Area 0.3 km2? is used as only criteria when the number of
inhabitants is unknown. Certain seamless (= compound) built-

59

up areas can be split into separate parts with common borderlines if it is possible to

attach a respective number of inhabitants (expressed by actual or class values) to each
area separately. In that case all parts of this certain built-

up area are represented as closed areas even if the number of inhabitants of a single p

art is less than 50 000. Also actual names of each part can be stored. If it’s not poss

ible to separate the number of inhabitants, then this certain built-

up area is stored unsplit as one area and names of the sub-

areas can be stored separated with slash / like: Namex/Namey/Namez

568. When a certain city is represented as several separated parts, then all these ar

eas have the same name of this city and the same number of inhabitants is stored to eve
ry part of this certain city. An area which does not fulfil the conditions named in the
specs but is closed and surrounded by one or several other features of the coverage is
called background area (= “hole”). Background areas or sparsely populated areas surrou
nded by built-up areas smaller than 5 km? (inside built-

up areas) are merged to the surrounding built-up areas.'"'

569. attributeTable = "KM1000_ buildup_area_07_2018 description_of_attributes”

570. table = [1,FeatureClassName, Definition, EGM_Feature_Class, FeatureType, Primiti
veType, PortrayalCriteria]

571. cursor.execute('DROP TABLE IF EXISTS KM100©_builtup_area_07_2018_description')

572. cursor.execute('"''''CREATE TABLE KM1000_builtup_area_07_2018 description (

573. id INTEGER CONSTRAINT m_pk PRIMARY KEY ASC NOT NULL,

574. featureClassName TEXT NOT NULL,

575. definition TEXT NOT NULL,

576. EGMFeatureClass TEXT NOT NULL,

577. featureType TEXT NOT NULL,

578. primitiveType TEXT NOT NULL,

579. portrayalCriteria TEXT NOT NULL

580. ;')

581. cursor.execute('INSERT INTO KM1000 builtup_area_07_2018 description VALUES (?,?,
?,?,?2,?,?)", table)

582. conn.commit()

583. print ("FINISHED Inserting description for KM1000_builtup_area")

584.

585. ##Manually add description of layer to gpkg for KM1000 builtup_point

586. FeatureClassName = "KM100@ builtup_point"

587. Definition = "An area containing a concentration of buildings and other structur
es.”

588. EGM_Feature_Class = "BuiltupP"

589. FeatureType = "Point"

590. PrimitiveType = "Isolated node"

591. PortrayalCriteria = "All built-

up areas with 1 900 - 50 000 inhabitants OR total size less than ©.3 km2 (despite the n
umber of inhabitants) Built-

up areas which have less than 1000 inhabitants but are main villages or cities of the r
egional/local administrative units are included. In that case it should be taken care t
hat all regional/local administrative units have at least main village or city. If the
number of inhabitants is not known, then the selection criterion is size less than 0.3

km2."

592. attributeTable = "KM1000 builtup_point 07 2018 description_of_attributes”

593. table = [1,FeatureClassName, Definition, EGM_Feature_Class, FeatureType, Primiti
veType, PortrayalCriteria]

594. cursor.execute('DROP TABLE IF EXISTS KM100@ builtup_point_©7 2018 description')

595. cursor.execute(''''"'CREATE TABLE KM1000 builtup point ©7 2018 description (

596. id INTEGER CONSTRAINT m_pk PRIMARY KEY ASC NOT NULL,

597. featureClassName TEXT NOT NULL,

598. definition TEXT NOT NULL,

599. EGMFeatureClass TEXT NOT NULL,

600. featureType TEXT NOT NULL,

601. primitiveType TEXT NOT NULL,

602. portrayalCriteria TEXT NOT NULL

60

603.
604.

605.
606.
607.
608.
609.
610.
611.
612.
613.
614.

615.
616.

617.
618.
619.
620.
621.
622.
623.
624.
625.
626.
627.

628.
629.
630.
631.
632.
633.
634.
635.
636.
637.
638.
639.

640.
641.
642.
643.
644.
645.
646.
647.
648.
649.
650.

651.
652.
653.
654.
655.
656.
657.

222
PALES BLES IR |

r size,

veType,

veType,

;)
cursor.execute('INSERT INTO KM1000 builtup_point_©7_2018 description VALUES (?,?
?,?)", table)
conn.commit()
print ("FINISHED Inserting description for KM1000_builtup_point")

##Manually add description of layer to gpkg for KM1000_ spring_node
FeatureClassName = "KM1@@O@_spring_node"
Definition = "A natural outflow of water from below the ground surface."
EGM_Feature_Class = "SpringC"
FeatureType = "Point"
PrimitiveType = "Connected node"
PortrayalCriteria = "Springs that are considered as landmark by their location o
or have a tourist interest and that are not related to the water network."
attributeTable = "KM1000_spring ©7_2018 description_of_attributes"
table = [1,FeatureClassName, Definition, EGM_Feature_Class, FeatureType, Primiti
PortrayalCriteria]
cursor.execute('DROP TABLE IF EXISTS KM1000_spring_node_07_2018 description')
cursor.execute('"'"'''CREATE TABLE KM1000_spring_node_07_2018_description (

id INTEGER CONSTRAINT m_pk PRIMARY KEY ASC NOT NULL,

featureClassName TEXT NOT NULL,

definition TEXT NOT NULL,

EGMFeatureClass TEXT NOT NULL,

featureType TEXT NOT NULL,

primitiveType TEXT NOT NULL,

portrayalCriteria TEXT NOT NULL

)t
cursor.execute('INSERT INTO KM1000_spring node_07_2018_ description VALUES (?,?,?
?)', table)

conn.commit()
print ("FINISHED Inserting description for KM1000_spring_node")

##Manually add description of layer to gpkg for KM1000 watrcrs_area
FeatureClassName = "KM1@@©@_spring_node"

Definition = "A natural or man-made flowing watercourse or stream."
EGM_Feature_Class = "WatrcrsA"

FeatureType = "Area"

PrimitiveType = "Face"

PortrayalCriteria = "Watercourse with width >= 500 m."

attributeTable = "KM1000 watrcrs_area_07_2018 description_of_attributes”

table = [1,FeatureClassName, Definition, EGM_Feature_Class, FeatureType, Primiti

PortrayalCriteria]
cursor.execute('DROP TABLE IF EXISTS KM1000_ watrcrs_area_07_2018 description')
cursor.execute(''''"CREATE TABLE KM1000 watrcrs_area_07_2018 description (

id INTEGER CONSTRAINT m_pk PRIMARY KEY ASC NOT NULL,
featureClassName TEXT NOT NULL,
definition TEXT NOT NULL,
EGMFeatureClass TEXT NOT NULL,
featureType TEXT NOT NULL,
primitiveType TEXT NOT NULL,
portrayalCriteria TEXT NOT NULL
)
cursor.execute('INSERT INTO KM1000 watrcrs_area 07 2018 description VALUES (?,?,

2,2,2,2,2)", table)

conn.commit()
print ("FINISHED Inserting description for KM1000_watrcrs_area")

##Manually add description of layer to gpkg for KM1000_watrcrs_line
FeatureClassName = "KM100@ watrcrs_line"

Definition = "A natural or man-made flowing watercourse or stream."
EGM_Feature_Class = "WatrcrsL"

61

658. FeatureType = "Line"

659. PrimitiveType = "Edge"

660. PortrayalCriteria = "Watercourse with width >10-20 m and < 500 m."

661. attributeTable = "KM1000_watrcrs_area_07_2018 description_of_attributes”

662. table = [1,FeatureClassName, Definition, EGM_Feature_Class, FeatureType, Primiti
veType, PortrayalCriteria]

663. cursor.execute('DROP TABLE IF EXISTS KM100©_watrcrs_line_07_2018_description')

664. cursor.execute('"''''CREATE TABLE KM1000_watrcrs_line_07_2018 description (

665. id INTEGER CONSTRAINT m_pk PRIMARY KEY ASC NOT NULL,

666. featureClassName TEXT NOT NULL,

667. definition TEXT NOT NULL,

668. EGMFeatureClass TEXT NOT NULL,

669. featureType TEXT NOT NULL,

670. primitiveType TEXT NOT NULL,

671. portrayalCriteria TEXT NOT NULL

672.)ttt

673. cursor.execute('INSERT INTO KM1000 watrcrs_line_07_2018 description VALUES (?,?,
?,?,?,?,?)", table)

674. conn.commit()

675. print ("FINISHED Inserting description for KM1000_watrcrs_line")

676.

677. ##Insert description of attributes table of each layers to GeoPackage

678. DescriptionOfAttributes = pd.read_csv("tablepage23.csv",nrows = 11)

679. cursor.execute('DROP TABLE IF EXISTS KM100@_airfld_point_07_2018 description_of_
attributes"')

680. DescriptionOfAttributes.to_sql("KM1000_airfld_point_07_2018_ description_of_attri
butes",conn, if_exists="'append',index=False)

681. conn.commit()

682. print ("FINISHED Inserting description of attributes for KM1000_airfld_point")

683.

684. skiprows = list(range(12))

685. DescriptionOfAttributes = pd.read_csv("tablepage23.csv",skiprows = skiprows)

686. cursor.execute('DROP TABLE IF EXISTS KM10@0 dam line 07 2018 description_of attr
ibutes"')

687. DescriptionOfAttributes.to_sql("KM1000_dam_line_©7_ 2018 description_of_attribute
s",conn, if exists='append',index=False)

688. conn.commit()

689. print ("FINISHED Inserting description of attributes for KM1000_dam_line")

690. if os.path.exists("tablepage23.csv"):

691. os.remove("tablepage23.csv")

692. else:

693. print("The file does not exist")

694.

695. DescriptionOfAttributes = pd.read_csv("tablepage24.csv",nrows = 8)

696. cursor.execute('DROP TABLE IF EXISTS KM100@_elev_point_ 07 2018 description_of at
tributes')

697. DescriptionOfAttributes.to_sql("KM1000 elev_point 07 2018 description_of_attribu
tes",conn, if_exists='append',index=False)

698. conn.commit()

699. print ("FINISHED Inserting description of attributes for KM1000_elev_point")

700.

701. skiprows = list(range(9))

702. DescriptionOfAttributes = pd.read_csv("tablepage24.csv",skiprows = skiprows)

703. cursor.execute('DROP TABLE IF EXISTS KM1000 glacier_area_07_2018 description_of_
attributes"')

704. DescriptionOfAttributes.to_sql("KM1000 glacier_area_07_2018 description_of_ attri
butes",conn, if_exists='append',index=False)

705. conn.commit()

706. print ("FINISHED Inserting description of attributes for KM1000 glacier_area")

707. if os.path.exists("tablepage24.csv"):

708. os.remove("tablepage24.csv")

62

709. else:

710. print("The file does not exist")

711.

712. DescriptionOfAttributes = pd.read_csv("tablepage25.csv",nrows = 7)

713. cursor.execute('DROP TABLE IF EXISTS KM1000_island_area_07_2018 description_of_a
ttributes"')

714. DescriptionOfAttributes.to_sql("KM1000_island_area_07_2018 description_of_attrib
utes",conn, if_exists='append',index=False)

715. conn.commit()

716. print ("FINISHED Inserting description of attributes for KM1000_island_area™)

717.

718. skiprows = list(range(8))

719. DescriptionOfAttributes = pd.read_csv("tablepage25.csv",skiprows = skiprows)

720. cursor.execute('DROP TABLE IF EXISTS KM1000_lake_area_07_2018 description_of_att
ributes')

721. DescriptionOfAttributes.to_sql("KM1000_ lake_area_07_2018 description_of_attribut
es",conn, if_exists='append',index=False)

722. conn.commit()

723. print ("FINISHED Inserting description of attributes for KM1000_lake_area")

724. if os.path.exists("tablepage25.csv"):

725. os.remove("tablepage25.csv")

726. else:

727. print("The file does not exist")

728.

729. DescriptionOfAttributes = pd.read_csv("tablepage2627.csv",nrows = 8, usecols = [
0,2,3])

730. cursor.execute('DROP TABLE IF EXISTS KM1000_name_point_©7_2018_ description_of_at
tributes')

731. DescriptionOfAttributes.to_sql("KM1000_name_point_07_2018 description_of_attribu
tes",conn, if_exists='append',index=False)

732. conn.commit()

733. print ("FINISHED Inserting description of attributes for KM1000_ name_point")

734.

735. skiprows = list(range(9)) + list(range(17,26))

736. DescriptionOfAttributes = pd.read_csv("tablepage2627.csv",skiprows = skiprows, u
secols = [0,2,3],encoding="latinl")

737. cursor.execute('DROP TABLE IF EXISTS KM1000_ polbnd_area_07_2018 description_of_a
ttributes"')

738. DescriptionOfAttributes.to_sql("KM1000_polbnd_area_07_ 2018 description_of_attrib
utes",conn, if_exists='append',index=False)

739. conn.commit()

740. print ("FINISHED Inserting description of attributes for KM1000_ polbnd_area")

741.

742. skiprows = list(range(17)) + list(range(21,26))

743. DescriptionOfAttributes = pd.read_csv("tablepage2627.csv",skiprows = skiprows, u
secols = [0,2,3],encoding="1latinl")

744. cursor.execute('DROP TABLE IF EXISTS KM100@ polbnd line 07 2018 description_of_a
ttributes"')

745. DescriptionOfAttributes.to_sql("KM1000 polbnd_line ©7 2018 description_of_ attrib
utes",conn, if_exists='append',index=False)

746. conn.commit()

747. print ("FINISHED Inserting description of attributes for KM1000_polbnd_line")

748.

749. skiprows = list(range(21))

750. DescriptionOfAttributes = pd.read_csv("tablepage2627.csv",skiprows = skiprows, u
secols = [0,2,3],encoding="1latinl")

751. cursor.execute('DROP TABLE IF EXISTS KM100@ railrd node 07 2018 description_of_a
ttributes"')

752. DescriptionOfAttributes.to _sql("KM1000 railrd _node ©7 2018 description_of_attrib
utes",conn, if_exists='append',index=False)

753. conn.commit()

63

754. header = ["Attribute","Definition","Value/Code or Example Value description"]

/558 DescriptionOfAttributes = pd.read_csv("tablepage28.csv",nrows = 3,names = header
)

756. DescriptionOfAttributes.to_sql("KM1000_railrd_node_07_2018 description_of_attrib
utes",conn,if_exists="append',index=False)

757. conn.commit()

758. print ("FINISHED Inserting description of attributes for KM1000_railrd_node")

759. if os.path.exists("tablepage2627.csv"):

760. os.remove("tablepage2627.csv")

761. else:

762. print("The file does not exist")

763.

764. skiprows = list(range(3))

765. DescriptionOfAttributes = pd.read_csv("tablepage28.csv",skiprows = skiprows, enc
oding="latinl")

766. cursor.execute('DROP TABLE IF EXISTS KM1000_railrd_line_07_2018_ description_of_a
ttributes')

767. DescriptionOfAttributes.to_sql("KM1000_railrd_line_©7_ 2018 description_of_attrib
utes",conn, if_exists='append',index=False)

768. conn.commit()

769. print ("FINISHED Inserting description of attributes for KM1000_railrd_line")

770. if os.path.exists("tablepage28.csv"):

771. os.remove("tablepage28.csv")

772. else:

773. print("The file does not exist")

774.

VSE DescriptionOfAttributes = pd.read_csv("tablepage2930.csv",nrows = 10)

776. cursor.execute('DROP TABLE IF EXISTS KM1000_reservoir_area_07_2018_description_o
f_attributes')

777. DescriptionOfAttributes.to_sql("KM1000_reservoir_area_07_2018 description_of_att
ributes"”,conn, if_exists='append',index=False)

778. conn.commit()

779. print ("FINISHED Inserting description of attributes for KM1000_reservoir_area")

780.

781. skiprows = list(range(11)) + list(range(21,32))

782. DescriptionOfAttributes = pd.read_csv("tablepage2930.csv",skiprows = skiprows, e
ncoding="latinl")

783. cursor.execute('DROP TABLE IF EXISTS KM1000_ road_line_ ©7_ 2018 description_of_ att
ributes')

784. DescriptionOfAttributes.to_sql("KM1000_road_line_07_2018 description_of_attribut
es",conn, if_exists='append',index=False)

785. conn.commit()

786. print ("FINISHED Inserting description of attributes for KM1000 road_line")

787.

788. ##(typo in BEVPDF)

789. skiprows = list(range(21))

790. DescriptionOfAttributes = pd.read_csv("tablepage2930.csv",skiprows = skiprows, e
ncoding="'latinl")

791. cursor.execute('DROP TABLE IF EXISTS KM100@ builtup_area_07_2018 description_of_
attributes"')

792. DescriptionOfAttributes.to_sql("KM1000 builtup _area_07_ 2018 description_of_ attri
butes",conn, if_exists='append',index=False)

793. conn.commit()

794. print ("FINISHED Inserting description of attributes for KM1000 builtup_area"

795. if os.path.exists("tablepage2930.csv"):

796. os.remove("tablepage2930.csv")

797. else:

798. print("The file does not exist")

799.

800. DescriptionOfAttributes = pd.read_csv("tablepage3l.csv",nrows = 10)

64

801. cursor.execute('DROP TABLE IF EXISTS KM1000_ builtup_point_07 2018 description_of
_attributes')

802. DescriptionOfAttributes.to_sql("KM1000_ builtup_point_07_2018 description_of_attr
ibutes",conn, if _exists='append',index=False)

803. conn.commit()

804. print ("FINISHED Inserting description of attributes for KM1000 builtup_point")

805.

806. skiprows = list(range(11))

807. DescriptionOfAttributes = pd.read_csv("tablepage31l.csv",skiprows = skiprows, enc
oding="latinl")

808. cursor.execute('DROP TABLE IF EXISTS KM1000_spring node_07_2018 description_of_a
ttributes')

809. DescriptionOfAttributes.to_sql("KM1000_spring node_07_ 2018 description_of_attrib
utes",conn, if_exists='append',index=False)

810. conn.commit()

811. print ("FINISHED Inserting description of attributes for KM1000_spring node™)

812. if os.path.exists("tablepage31l.csv"):

813. os.remove("tablepage31l.csv")

814. else:

815. print("The file does not exist")

816.

817. DescriptionOfAttributes = pd.read_csv("tablepage32.csv")

818. cursor.execute('DROP TABLE IF EXISTS KM1000@_watrcrs_area_07_2018 description_of_
attributes"')

819. DescriptionOfAttributes.to_sql("KM1000_watrcrs_area_07_2018 description_of_attri
butes",conn, if_exists="'append',index=False)

820. conn.commit()

821. print ("FINISHED Inserting description of attributes for KM1000 watrcrs_area")

822. if os.path.exists("tablepage32.csv"):

823. os.remove("tablepage32.csv")

824. else:

825. print("The file does not exist")

826.

827. DescriptionOfAttributes = pd.read_csv("tablepage33.csv")

828. cursor.execute('DROP TABLE IF EXISTS KM100@_watrcrs_line_07_2018 description_of_
attributes"')

829. DescriptionOfAttributes.to_sql("KM1000 watrcrs_line 07 2018 description_of_attri
butes",conn, if_exists='append',index=False)

830. conn.commit()

831. print ("FINISHED Inserting description of attributes for KM1000 watrcrs_line")

832. if os.path.exists("tablepage33.csv"):

833. os.remove("tablepage33.csv")

834. else:

835. print("The file does not exist")

836.

837. ##List all tables in the database

838. cursor.execute("SELECT name FROM sqlite _master WHERE type='table';")

839. tables = cursor.fetchall()

840. for table in tables:

841. print (table)

842.

843. sg.Popup('Program Finished', 'Use DB Browser for SQLite to check the results.')

65

