
DIPLOMARBEIT

OpenTravelMap

zur Erlangung des akademischen Grades

Diplom-Ingenieur/in

im Rahmen des Studiums

Geodäsie und Geoinformation

eingereicht von

Andreea Plocon
Matrikelnummer 01127962

ausgeführt am Department für Geodäsie und Geoinformation
der Fakultät für Mathematik und Geoinformation der Technischen Universität Wien

Betreuung
Betreuer: Univ.Prof. Mag.rer.nat. Dr.rer.nat. Georg Gartner

Wien,
Andreea Plocon Georg Gartner

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

ii

Abstract

The overwhelming touristic data collections currently available to any user is a problem of
great concern nowadays. Due to the large amounts of information the user has to assess,
the process of decision making became more and more time consuming and difficult to
complete [20]. In an attempt to overcome this issue, systems that effectively assist users by
providing access to relevant information should be developed. With this purpose, there are
several applications in the field of tourism that offer detailed travel guides, descriptions of
points of interest and even allow users to create their own travel routes. The present thesis
focuses on the development of a mobile location based service that assists users in creating
and searching for travel routes, the OpenTravelMap platform. In contrast to other existing
platforms, the OpenTravelMap platform not only provides tools that facilitate the process
of route creation and route search, but also integrates features that aim to enhance these
functionalities. These features refer to the connection with other platforms in order to access
external resources and a context aware recommender system. The outcome of this thesis,
the OpenTravelMap platform, aims to be a worthwhile contribution to the field of tourism in
view of the benefits supplied to its users.

iii

iv

Contents

1 Introduction 1

2 Related work 5

3 Theoretical background 11
3.1 Mobile location based services . 11

3.1.1 UI design . 12
3.2 Point data generalization . 13
3.3 Recommender systems . 14

3.3.1 Context information . 16

4 Development methods 19
4.1 Architecture . 19

4.1.1 Client . 20
4.1.2 Server . 22
4.1.3 External APIs . 23

4.2 OpenTravelMap setup . 26
4.2.1 Create component . 26
4.2.2 Search component . 31

5 OpenTravelMap specification 37
5.1 Create component . 38
5.2 Search component . 44

6 Results and interpretation 55

7 Improvements and future work 57

8 Summary and conclusion 59

Bibliography 61

v

vi

List of Figures

2.1 Travel Map Maker [16] . 6
2.2 Map Maker [9] . 7
2.3 Sygic Travel Maps Offline & Trip Planner [15] 8
2.4 bergfex Tours & GPS Tracking Running Hiking Bike [2] 9

4.1 Architecture overview . 19
4.2 Detailed architecture . 20
4.3 Weather icons provided by OpenWeatherMap [13] 25
4.4 Permission to access device’s location . 27
4.5 GPS not enabled warning . 28
4.6 Add existing location warning . 29
4.7 Save route messages . 30
4.8 Unsaved route message . 31
4.9 Mandatory filter search . 32
4.10 Filter search warnings . 33
4.11 Recommender configurations . 34
4.12 Recommender warning . 35

5.1 Home screen . 37
5.2 Create screen . 38
5.3 Add location view (left), Location added (right) 39
5.4 Edit location view (left), Edit location constraints (right) 40
5.5 Flickr images view (left), Edit location filled (right) 42
5.6 Save route . 43
5.7 Filter search . 45
5.8 Result of filter search . 46
5.9 View location (left), View routes passing by location (right) 48
5.10 View directions . 49
5.11 Recommendations for: full-day with no weather (left), half-day with weather

(right) . 50
5.12 Chosen recommendations for: full-day with no weather (left), half-day with

weather (right) . 51

vii

List of Figures

5.13 View recommended location (left), Eat nearby view (right) 52

viii

List of Tables

4.1 Recommender system reasoning . 35

ix

x

List of Acronyms

LBS Location Based Service

POI Point Of Interest

REST Representational State Transfer

SDK Software Development Kit

UI User Interface

xi

xii

Chapter 1

Introduction

Nowadays almost everyone has access to large amounts of information which supports the
process of decision making. More and more platforms tend to filter the provided content,
in order to offer only relevant information for certain kind of situations. Therefore, there
is no such platform that addresses all the problems in the world but there are several ones
developed to offer support for each kind of problem in particular.

In the field of tourism there are many platforms which provide detailed travel guides, de-
scriptions of points of interest and even allow users to create their own travel routes. The
purpose of this thesis is to develop the OpenTravelMap platform, a platform that enables and
promotes the involvement in volunteered geographic information while overcoming the gaps
existing in similar platforms. The OpenTravelMap platform offers assistance in the process of
creating and searching for travel routes, while providing the following features:

• components for route creation and search in one platform

• context aware recommendations

• integration with other platforms in order to access existing resources

The assimilation of all these features aims to overcome the constrains existing in similar
platforms. Furthermore, the support provided by the platform in creating in sharing content
among users encourages the involvement in volunteered geographic information. In con-
trast to other existing platforms, the OpenTravelMap not only supports both the possibility
to create and search for routes, but also aims to enhance both functionalities. The Create
component provides a way to create routes and to describe the added content. Furthermore,
the Search component of the OpenTravelMap platform allows sharing information between
users and also adapts the retrieved content through context awareness.

The target audience consists of tourists which can benefit from the functionalities provided
by the platform. The entire content is built by users in the Create component and shared
between users through the Search component.

1

Chapter 1. Introduction

Various platforms targeting tourists are continuously being developed. The list below de-
scribes similar work that was released on Google Play [8]. A detailed comparison between
these platforms and the OpenTravelMap is depicted in Chapter 2.
Platforms sharing the concept of own map creation:

• Travel Map Maker: create personal travel map and share it via email.

• Map Maker: create personal map by adding markers on a base map. Several sharing
methods available.

Platforms sharing the concept of location/route search:

• Sygic Travel Maps Offline & Trip Planner: explore numerous popular places and plan
detailed trips.

• bergfex Tours & GPS Tracking Running Hiking Bike: search for tours and track sport
activities.

As mentioned before, the outcome of this thesis is the OpenTravelMap platform which con-
sists of two components. The main purpose of the Create component is to provide methods
which not only allow users to generate content, but also support them in describing it, by
offering the possibility to integrate related information from other sources. The goal of the
Search component is on the one hand to enable content sharing between users and on the
other hand to enhance the search, if requested, by adjusting the retrieved content through
context awareness.

The Create component of the OpenTravelMap platform aims to provide support for gener-
ating travel routes. To do so, the following definitions are used:

• A location represents a point collected from GPS data

• A direction represents the way traveled between two locations

• A route consists of locations connected by directions

These definitions describe the general terms: location, direction and route that are used to
model the real world. For example, a location can represent a touristic attraction, a restau-
rant, a hotel, an outstanding position along a hiking route or a spectacular beach. A direction
is always the connection between two locations such as streets, paths along parks or in the
mountains. Finally, a route is a collection of locations and can therefore combine all sorts of
activities.

2

Since each location is collected from GPS data, there could be several points referring to
the same location. Therefore, the first research question addresses the point generalization
issue [24]: "Which methods can be applied to perform the point generalization?". For the
purpose of this thesis, names will be used to handle this issue. A location characterized by
a name will then represent the collection of all points having the same name.

The second research question refers to: "Which methods and techniques can enhance the
results of recommender systems?". As pointed out in [28] and [18], the context information
is a valuable parameter that considerably improves the outcome of the search process. There-
fore, the purpose of the Search component is not only to retrieve routes, but also to consider
context information in the recommendation process. The user’s search input together with
the relevant context information will be handled inside a recommender system.

The last research question explores the scope of the OpenTravelMap platform: "How to
develop a platform that integrates functionalities for route creation, route search and also
delivers context aware recommendations?". By combining all these features and also provid-
ing access to external resources, offering information such as photos, weather forecasts or
nearby places, the developed OpenTravelMap platform aims to overcome the gaps existing in
the above mentioned similar platforms.

The present thesis is structured as follows: first, similar platforms that were already re-
leased on Google Play will be described in Chapter 2. Directly after, theoretical aspects
related to the mentioned research questions will be presented in Chapter 3. Chapter 4 of-
fers an overview of the architecture of the OpenTravelMap platform, followed by a detailed
description of the methods used during the development. The entire specification of the
OpenTravelMap platform is outlined in Chapter 5, where the Create and the Search compo-
nent are presented based on a step by step scenario. Next, the achievements of this thesis
are underlined in Chapter 6. Afterwards, improvements and future work are addressed in
Chapter 7. Finally, a brief summary followed by a conclusion are depicted in Chapter 8.

3

4

Chapter 2

Related work

The aim of this section is to provide a brief description of some platforms developed for the
field of tourism and released on Google Play [8] by highlighting the similarities and differ-
ences to the OpenTravelMap platform. While some of the platforms focus on providing travel
guides for specific countries, regions or cities, others support the user in the navigation pro-
cess and only a couple of them offer assistance for both. Moreover, there are only a few
platforms that have a worldwide coverage and share the concepts of map creation and route
search.

The concept of own map creation is the core feature of the Travel Map Maker platform
[16]. Within this platform, the user is encouraged to add markers at desired locations. These
markers are assigned to a map and the user has the possibility to create several such maps.
As illustrated in Figure 2.1, the user can personalize the map by adding different markers.
Furthermore, the created map can be managed by the user and sharing existing maps with
friends can be done via email. According to the platform’s documentation, it is also possible
to add titles and descriptions to the markers. On the other hand, it is not permitted to assign
pictures to existing markers. Another feature allows the user to measure distances on the
map.

The major similarities between Travel Map Maker and OpenTravelMap are the ideas of cre-
ating and sharing location based content. The essential differences between the platforms
are represented by the search functionality and the recommender system provided by the
OpenTravelMap platform. Nonetheless, also the common ideas are implemented slightly dif-
ferent. More precisely, the concept of content sharing is supported within the OpenTravelMap
platform through the Search component, whereas the Travel Map Maker platform allows map
sharing via email. Apart from that, the OpenTravelMap platform provides enhanced location
editing tools that allow the user to categorize the location and add a picture to it. An-
other fundamental difference between the platforms is the capacity of the Travel Map Maker
platform to handle multiple maps, a feature that is not present within the OpenTravelMap
platform where the user has the possibility to create only one map/route at a time. At first,

5

Chapter 2. Related work

the creation of one map/route at a time might be seen as a disadvantage, since the user has
to share or delete the created map in order to be able to start a new one. On the other hand,
this prevents the existence of incomplete maps that a user might create and forget about.

Figure 2.1: Travel Map Maker [16]

Another platform that shares the concept of map creation is Map Maker [9]. The platform
allows the user to create a map by adding markers on a base map. A marker is characterized
by several attributes, such as: title, description, color, date, an icon and pictures. Further-
more, the user has the possibility to change the position of the marker by moving it on the
map. Displayed on the left side of Figure 2.2 is a map created within the Map Maker plat-
form, which contains various markers. As illustrated on the right side of Figure 2.2, the user
can organize the markers in folders. An extra chargeable feature allows saving the markers
in the cloud and sharing them with other users. On the other hand, the import/export of
markers from/to files is offered free of charge.

The idea of adding markers on desired places on the map and providing additional in-
formation to them is both part of the OpenTravelMap as well as of the Map Maker platform.
However, the significant difference between the platforms is the purpose of the map creation
process. While the OpenTravelMap platform supports the creation of travel routes that will be

6

further shared among users, the Map Maker platform focuses on the single user experience
and provides multiple tools that assist the user in personalizing a base map. Apart from that,
the Map Maker platform allows the user to have multiple folders, each of which containing
different markers. By contrast, within the OpenTravelMap the created markers are grouped
into routes and the user is allowed to create only one route at a time. Another remarkable
difference between the platforms is the fact that the OpenTravelMap platform provides tools
to create, search and recommend locations, whereas the Map Maker platform focuses only on
the creation process.

Figure 2.2: Map Maker [9]

Searching for places, receiving context-related information and offering navigation support
are subjects of crucial importance in the field of tourism. A powerful platform that assists
travelers along their journeys is Sygic Travel Maps Offline & Trip Planner [15]. According to
its documentation, this platform is the ultimate travel guide. As indicated on the left side of
Figure 2.3, the platform hosts information such as pictures, descriptions and even videos for
a large number of points of interest. Furthermore, the platform also comprises a trip planer,
illustrated on the right side of Figure 2.3, which assists the user in planing detailed journeys.
Apart from that, the Sygic Travel Maps Offline & Trip Planner platform offers tools that allow

7

Chapter 2. Related work

the user to search for places, tours and activities.

The main aspect that relates the OpenTravelMap platform with the Sygic Travel Maps Offline
& Trip Planner platform is the concept of searching for touristic information. Both platforms
aim to assist the user in the process of searching for the desired trip. The OpenTravelMap
platform relies on the data created by users and therefore offers travel information at dif-
ferent spatial coverages around the world. By contrast, the Sygic Travel Maps Offline & Trip
Planner platform possesses a database full of touristic information and is capable of offering
many more details about a certain place than the OpenTravelMap platform. Nonetheless, the
places shown within the OpenTravelMap platform contain user reviews which powerfully in-
fluence the user’s decisions in the process of trip planing. A significant difference between
the platforms is the fact that within the OpenTravelMap platform the user can choose one
of the given travel routes, while the Sygic Travel Maps Offline & Trip Planner platform gives
the user the possibility to plan a personal route. Even so, the OpenTravelMap also offers con-
text related recommendations in order to help the user to choose the most appropriate route.

Figure 2.3: Sygic Travel Maps Offline & Trip Planner [15]

The concept of searching for routes is also grasped within the bergfex Tours & GPS Tracking

8

Running Hiking Bike platform [2]. The platform focuses on outdoor activities and offers
numerous tours for hiking, skiing, cycling and further sports. Each tour is characterized by
its length, height, duration and several other useful information. Shown on the left side of
Figure 2.4 are different tours from which the user can choose from, whereas the right side of
the figure illustrates a detailed view of a particular tour. Furthermore, the user can decide to
use the platform as an activity tracker, in which case the platform will offer statistical data
related to the tracked activity.

Figure 2.4: bergfex Tours & GPS Tracking Running Hiking Bike [2]

Both the OpenTravelMap platform and the bergfex Tours & GPS Tracking Running Hiking Bike
platform aim to support the user in the process of searching for routes/tours. While the
OpenTravelMap platform covers any kind of locations and routes, the bergfex Tours & GPS
Tracking Running Hiking Bike focuses specifically on tours related to outdoor activities. Con-
sequently, the platform provides detailed information for the tour itself. By contrast, the
OpenTravelMap platform treats a route as a collection of locations and offers detailed infor-
mation only for the individual locations. Beside the basic search tools, powerful features
such as the recommender and the tracking systems are included, which significantly extend
the functionality of both platforms.

9

10

Chapter 3

Theoretical background

The aim of this thesis is to develop the OpenTravelMap platform, a mobile location based
service that will support users in the process of creating and searching for travel routes. In
order to achieve this purpose, several theoretical aspects must be considered. This chapter
focuses on the main research questions that influenced the development of the platform.
In the beginning, a general description of mobile location based services and their design
will be made. Afterwards, the problem of point data generalization will be addressed, by
highlighting techniques that can be applied to handle overlapping locations created within
the OpenTravelMap platform. Last but not least, insights on recommender systems and the
importance of context aware recommendations will frame the theoretical concepts of the
recommender system integrated in the OpenTravelMap platform.

3.1 Mobile location based services

A location based service (LBS) is a system that makes use of the geographical position of
the user and provides services based on that given position. The fundamental difference
between a service and a LBS is the fact that the LBS is a location dependent service. In other
words, the geographic location is the key parameter in a location based service and it is
always mandatory. Even though location based services are developed for a variety of do-
mains, such as public safety, health, entertainment, tourism and many more, the main goal
of all these services is to support users by exploiting the information about their position,
in order to deliver a context related outcome that will help users in the process of decision
making.

Since time is a crucial element in the process of decision making, the overall efficiency of
a location based service is highly determined by its capability to rapidly deliver correct re-
sults and by its accessibility. For the purpose of providing fast access to information, mobile
location based services were developed. These services are specially designed to run on mo-
bile devices and facilitate the access to location related information anytime and anywhere.

11

Chapter 3. Theoretical background

The purpose of a location based service is to obtain the geographic location of the device
it is running on and to provide information related to this location. As highlighted in [26],
there are two major categories of LBS:

• triggered location based services (push services)

• user-requested location based services (pull services)

The first LBS category comprises services that are triggered automatically by an event. Usu-
ally, this kind of location based services are used when time has an extremely high impor-
tance. For example, in the field of emergency services the location of the user could be
requested automatically at the arrival of an emergency call. The second category of LBS
includes services that are requested by the user. For instance, a location based service in
the field of tourism could provide the information about the nearest restaurant that serves a
specific food when the user requests it.

As already mentioned, a location based service makes use of the geographic location of
the user. In case of a mobile LBS, the service needs obtain the position of the user’s mobile
device, which is usually requested from the device’s location provider. In order to protect
the user’s privacy, the device’s location provider first asks for the user’s permission and only
then when the user agrees, the device’s location is retrieved.

A challenging problem for mobile location based services is the way in which the user
interface is designed. Due to the fact that mobile devices have small screens, the content
shown to the user must be adapted, such that it not only fits the available space but it does
not overload the view, while still providing the key information that the user requires in the
process of decision making. This usability issue is also discussed in [31], in the context of
the CRUMPET project, whose purpose is to create user-friendly mobile services personal-
ized for tourism. The proposed solution, that aims to improve the user’s experience, is the
integration of context awareness into mobile location based services. Furthermore, the most
important context parameter is considered to be the user’s location.

3.1.1 UI design

Designing effective and user-friendly mobile location based services is a demanding task.
The small screen and the limited interaction capabilities between the user and the mobile
device significantly increase the complexity of the process of designing such user interfaces.
The goal is to create a user interface that efficiently fills the screen of the mobile device,
is intuitive and easy to use, shows relevant data but does not overload the view and most
important, it supports the user in obtaining the wanted information.

12

3.2 Point data generalization

Most of the mobile location based services tend to use a map-based user interface, which
allows the visualization of context related information on top of a map. Even though a map
helps the users to visualize their spatial environment, studies such as [23] focus on assessing
the efficiency of the map-based approach by comparing it with a text-based design among
various applications. The study reports that the choice of a user interface is highly depen-
dent on the following aspects: the context in which the location based service is used and
the type of information it is requested to deliver, as well as the personal preferences and
experiences of the targeted user. As advised in [23], most probably a hybrid version combin-
ing the map-based approach with the text-based user interface would be the most suitable
design for mobile location based services.

Several studies, such as [32] and [27] focus on the challenge of designing good map-based
user interfaces for mobile location based services. The effective visualization of information
and the intuitive and helpful interactions between the user and the mobile device are the
key elements that lead to an efficient and user-friendly design. According to these studies,
the density of information displayed on the screen must be adapted to meet the required
level of detail. Therefore, different visualization techniques such as exaggeration, elimina-
tion, typification or outline simplification must be applied. Furthermore, the usability of a
map-based design is also influenced by the variety of interactions between the user and the
map. An intuitive interface should follow the guidelines describing the map interactions
such as zooming, panning and item selection in order to ease the user’s experience.

A comprehensive overview of the design principles that should be considered within map-
based services is given in [29]. This book provides a detailed description of the main build-
ing parts of the map design. These include the user-map interactions, the map elements, the
choice of colors and text components, the different types of symbols and thematic represen-
tations, as well as animation and sound concepts.

3.2 Point data generalization

A fundamental requirement of map-based applications is to provide readable maps that are
easy to use and understand, while they contain all the relevant information that the user
needs. This, however, is a challenging demand, especially for map-based mobile services
which have to display their map on small screens. In order to improve the map’s readability,
the principle of map generalization should be applied. As mentioned in [24], the aim of
this principle is to simplify the map’s content while maintaining the information that the
user requires. The process of simplifying the map’s content consists on performing a series
of graphic generalization operations that will adjust the content and at the same time will

13

Chapter 3. Theoretical background

emphasize the important information. A couple of such graphic generalization operations
are displacements, deformations, simplifications, aggregations and deletions. Besides the
graphic or geometric generalization, also the semantic generalization is part of the map gen-
eralization [22]. Assuming that the information is categorized, the semantic generalization
determines which categories of information are relevant and should be displayed at certain
levels of details.

In the field of tourism all mobile location based services deal with point data that orig-
inates from different sources. The user’s location is usually requested from the device’s
location provider, while for example points of interest are fetched from other sources. Nev-
ertheless, all these data will be displayed at some point in time on the map. Due to the
limited space that the mobile devices possess and with the aim of ensuring the readability
of the map, point data generalization techniques must be applied. A detailed description
and analysis of state of the art algorithms used for point data generalization are given in [33].

Another behavior related to the map generalization process is caused by a user-map in-
teraction, namely zooming. [19] and [21] present different generalization techniques that
can be applied during zooming. While the user is zooming in or out, the level of detail of
the map’s content changes. Through this behavior the readability of the map is preserved
at each zoom level. Consequently, the content displayed on top of the map (for example
markers created by the user) must be adapted in a similar way.

As highlighted in [25], general knowledge is enough to handle the basic data generalization.
On the other hand, customized restrictions and specifications related to the generalization of
particular data are covered by thematic knowledge. The mentioned study introduces a gen-
eralization method based on thematic knowledge which follows the rule: IF condition THEN
operation. Such a generalization method would be very well suited for services developed
within the field of tourism, since these exploit large amounts of thematic data.

3.3 Recommender systems

In view of the fact that the amount of information available to any user has increased tremen-
dously over the past decades, the process of decision making became more and more time
consuming and difficult to complete. The large amounts of information, the overwhelming
possibilities and the time spent to evaluate them are the major issues that the user faces
when trying to make a decision [20]. Fortunately, recommender systems were introduced
to overcome these problems. A recommender systems aims to ease the process of decision
making by providing relevant recommendations that incorporate precisely the information

14

3.3 Recommender systems

needed.

Depending on the techniques used to build the recommendations, recommender systems
are categorized as follows [17]:

• Content based recommender systems
Recommendations are based on previous user’s preferences.

• Collaborative recommender systems
Recommendations are based on choices made by other similar users.

• Hybrid recommender systems
A combination of content based and collaborative techniques.

Among others, indicated in [17] are the limitations of these recommender systems together
with potential improvements. Concerning the content based recommender systems, a com-
mon issue is the fact that recommendations are based on the user’s profile and therefore
quite similar over time. Furthermore, the items are characterized by features that are investi-
gated during the recommendation process, but different items having the same features are
considered identical. Another problem is that the system relies heavily on the user’s profile,
which is why it will take some time till new users will get proper recommendations. Exactly
the same issue also affects the collaborative recommender systems. In addition, collaborative
methods present limitations in recommending new added items, since these must first be
rated by a significant number of users. Evidently, the number of users is a crucial factor that
influences the operating of a collaborative recommender system.

In order to overcome the limitations of the content based and collaborative recommender
systems, hybrid recommender systems were developed. Such a recommender system com-
bines the content based and collaborative techniques with the aim of exploiting their benefits
while reducing their constraints. Further improvements in the field of recommender systems
are related to advanced user profiles and items representation, more complex recommenda-
tion techniques, integration of contextual information and flexible recommendations mod-
eled through a SQL-like language [17].

The crucial role of the user’s profile within recommender systems is emphasized also in
[20]. Through profile analysis the system evaluates the user’s preferences and is able to rec-
ommend relevant content. There are a variety of ways to build a user profile, starting with
simple approaches, such as a collection of preferred features, to more complex models, such
as a vector that stores for each feature its corresponding rating given by the user. Another
important aspect highlighted in [20] is the fact that the user profile needs to be continuously
updated in order to provide accurate recommendations. As soon as the user’s preferences

15

Chapter 3. Theoretical background

change, a revision of the user’s profile is required. According to the mentioned study, the
user’s profile should be updated based on feedback information, which is gained explicitly
and/or implicitly. The explicit approach directly requests the user’s feedback, whereas the
implicit feedback is obtained by inspecting the user’s behavior while the system is used.

In contrast to other domains, recommender systems developed in the field of tourism are
normally exploited by users that are continuously moving. Therefore, supplying the same
recommendations under different circumstances might not meet the user’s needs [20]. For
the purpose of providing more accurate recommendations, it is suggested that recommender
systems should also take context information into account. This way, the recommendations
could be adapted according to the user’s context.

3.3.1 Context information

The term context, as defined in [28], represents any information that is used to describe the
state of an entity. Systems that make use of context information to provide services to users
are known to be context aware. The main objective of recommender systems is to help users
in the process of decision making by offering relevant recommendations. In view of the fact
that the process of decision making is significantly influenced by context information [28],
this powerful parameter became part of the recommender systems and that is how context
aware recommender systems appeared.

The development of context aware recommender systems is a challenging task, since most
of the time the proper type of context information to be considered is unknown. Several
contextual factors such as: location, weather, time of day, season, budget, companion, mood
and many more are potential candidates that could improve the functionality of a recom-
mender system. While integrating just a few contextual parameters might not be enough,
taking too many parameters into account can easily increase the complexity of the system
and might not be necessary. As highlighted in [18], part of the development of context aware
recommender systems is the evaluation of the relationship between user’s preferences and
contextual parameters. This way, only essential context information will be integrated into
recommender systems.

In order to deliver personalized recommendations, a context aware recommender system
should be able to assess relevant user information such as likes/dislikes, interests/disinterest,
wishes and fears. Such information is used to define a user and to build the user’s profile.
Ideally, the recommender system is able to create the user profile based on the monitored
user activity. In this way likes and often pursued choices are interpreted as preferences and
will be further recommended, while dislikes will be discarded from future recommenda-

16

3.3 Recommender systems

tions. Furthermore, the personalized future recommendations offered to an user might also
be influenced by the choices of other similar users, or other users that made similar choices.

A key feature of a context aware recommender system is represented by its ability to update
the recommendations as soon as the context changes [18]. While there are some contextual
parameters, such as weather or time of day, that can be monitored to rapidly detect modifi-
cations, there are lots of other parameters, such as the user’s companion for example, whose
changes can not be identified automatically. Therefore, in order to continuously provide
accurate recommendations, the system will request the user’s contribution to establish the
current context information.

As expected, recommendations provided by a context aware recommender system incorpo-
rate both the user’s preferences as well as context information. However, the user’s accep-
tance of such recommendations is not completely granted. Suggested in [18] is the retrieval
of explained recommendations. According to the mentioned study, the explanations are a
powerful element that increase the user’s confidence in the system and positively influence
the user’s acceptance of the provided recommendations.

Appropriate context information enhances the outcome of systems exploiting it. As re-
ported in [28], the field of tourism strongly benefits from the introduction of context aware
recommender systems, which considerably improve the user’s experience. Apart from that,
[30] emphasizes the usability improvements of mobile map applications that make use of
context information.

17

18

Chapter 4

Development methods

The present chapter consists of two sections that depict the methods used during the de-
velopment of the OpenTravelMap platform. The first section aims to provide an overview
of the platform’s architecture by briefly describing its main components: the client and the
server side, respectively. Furthermore, the external apis used to access information from
other sources will be discussed. The second section of the current chapter focuses on the
setup of the OpenTravelMap platform, mainly on the development insights of the Create and
Search component, respectively.

4.1 Architecture

The architecture overview of the OpenTravelMap platform is illustrated in Figure 4.1. As

Figure 4.1: Architecture overview

can be seen in the figure, the main components are the server and the client side of the

19

Chapter 4. Development methods

platform. Moreover, the server-client platform is extended by the usage of external apis,
which facilitate the access to further information sources. A more detailed representation of
the platform’s architecture is given in Figure 4.2. As shown in the figure, both the server
and the client side of the platform have a similar structure which consists of two major
components and a database. The Create component is responsible with the creation of travel
routes and their storage on the databases. By querying the stored data, the Search component
aims to present the results to all interested users. The external apis are used only by the client
side of the platform. Depending on the information provided, either the Create or the Search
component will request it from the external api.

Figure 4.2: Detailed architecture

4.1.1 Client

The client side of the OpenTravelMap platform was designed to run on Android mobile de-
vices, as indicated in Figure 4.1. The goal of the OpenTravelMap platform is to assist users
in creating and searching for travel routes. Therefore, it is an essential requirement that
the platform runs on mobile devices, in order to provide the users immediate access to the
features of the platform. The Android application was implemented in Kotlin by following
the guidelines described in [1]. As shown in Figure 4.2, the client side of the platform is
comprised of a database, the Create component and the Search component.

The Create component as well as the Search component use the Maps SDK for Android
provided by Mapbox [10] for displaying the map and the locations. In addition, the Search
component also uses direction and geocoding services from Mapbox in order to draw direc-
tions between locations on the map and to geocode custom locations entered by users when
searching for routes. For the purpose of this thesis, the support from Mapbox was gained via

20

4.1 Architecture

a free account which offers a limited number of users and requests per month.

In the context of the OpenTravelMap platform, data is created inside the Create component.
The process of creation stores the data on the client side of the platform. The user controls
the trigger of the save process which will send the data to the server, store it there and fi-
nally clear the client storage. In this use case, the client database is a crucial element, since
it enables access to the created data until this data is send to and successfully stored on
the server. In other words, the user has the opportunity to create the data, view and/or
edit it anytime in the future and save it exactly when desired. The client’s database is also
used by the Search component to store weather forecasts requested from the OpenWeatherMap
platform. This weather forecasts are stored in order to significantly reduce the number of
requests send to the external api. Technically, for the client database a SQLite database is
used, as suggested by the Android Developers community.

As illustrated in Figure 4.2, the Create and Search components are two separate parts of the
OpenTravelMap platform. The Create component handles the route creation, while the Search
component manages the search and recommend processes. The components do not commu-
nicate with each other directly, but through the server side of the platform. Even though the
components are completely independent of each other, the Search component still relies on
the fact that there are enough routes stored on the server, routes which originate from the
create process that takes place inside the Create component.

As mentioned before, the Create component offers support in creating routes. In an attempt
to assist the user at the creation process, the Create component has to establish a connection
with the client’s database to store and check for a created route. The user has the possibility
to create one route at once and each route consists of at least one location. Further user
support is provided within the Create component through its communication with the server
side of the platform to: provide name suggestions when adding a new location and save the
current route with its corresponding locations. Apart from that, the user can also benefit
from the connection between the Create component and the Flickr platform, in order to add
publicly available pictures to the created locations.

The Search component of the client side of the OpenTravelMap platform is responsible with
assisting the user to search for routes. Furthermore, it also contains a recommender system
that enhances the search results by considering both the user’s desires as well as relevant con-
text information. The Search component only accesses routes stored into the server database.
Within the search process, the Search component requests routes from the server which are
located around a certain location entered by the user. In addition, the component also com-

21

Chapter 4. Development methods

municates with the OpenWeatherMap platform to provide weather information, which is used
within the recommend process. In order to avoid sending a large number of requests to the
OpenWeatherMap api, the Search component stores the received weather forecasts into the
client database. Therefore, there is also a connection established between the client database
and the Search component, as evident from Figure 4.2. Another remarkable feature of the
component is represented by the links to the Foursquare platform, each of which redirecting
the user to a collection of places to eat/drink around a given location.

4.1.2 Server

The main purpose of the server side of the OpenTravelMap platform is to store and query
routes. The routes are created on the client side of the platform within the client’s Cre-
ate component, send to the server’s Create component and further stored into the server
database. In addition, the client’s Search component can make requests to the server’s Search
component to query and retrieve routes from the server database. Due to the fact that the
information stored on the server database contains point data, which is characterized by
longitude and latitude coordinates, and also accounting on the fact that the server needs to
be able to perform spatial queries, such as retrieving all data located within a given distance
to certain coordinates, the database used on the server side is PostgreSQL with the PostGIS
extension. For the purpose of this thesis the server database was set up using the Docker
container provided by [3].

The server side of the OpenTravelMap platform was implemented in Java as a Spring Boot
Application, by following the guidelines presented in [14]. The client and the server side of
the platform communicate with each other via a REST api, whereby the client components
send requests to their related server components. The server’s Create component accepts the
following requests on the mentioned endpoints:

• POST requests on "/saveRoute"
Through such requests, routes created on the client side of the platform are sent to the
server and stored into the server’s database.

• POST requests on "/savePoi"
A POI is characterized by its name, latitude and longitude coordinates. This kind
of requests are automatically triggered by the client side of the platform each time a
location is added that does not exist in the server’s database. After performing this
request, the location is saved as a POI into the server’s database.

• GET requests on "/getNearbyPoiNames"
This provides access to the POIs stored into the server’s database. Such requests are

22

4.1 Architecture

made by the client in order to obtain name suggestions for a new added location. If
the response of this request is empty then the location is considered new and will be
sent and saved on the server through a POST request on "/savePoi".

By contrast, the server’s Search component only accepts GET requests on the endpoint
"/getRoutes". This request takes as parameters the latitude and longitude coordinates of
a location and a radius in meters. With these parameters the server performs a spatial query
and returns all routes found within the given radius around the given coordinates.

4.1.3 External APIs

As evident from Figure 4.1, the OpenTravelMap also uses information provided from external
sources. The user triggers the information request, which is sent from the client side of the
platform to different external APIs. The aim of this section is to briefly describe the external
APIs used by the OpenTravelMap platform.

The major components of the client side of the OpenTravelMap platform request informa-
tion from the following external sources: Flickr, OpenWeatherMap and Foursquare. As
illustrated in Figure 4.2, the client’s Create component only uses the Flickr API, while the
Search component makes use of two external information providers: the OpenWeatherMap
and the Foursquare platform, respectively.

In order to fetch pictures located around an edited location, the Create component uses
the Flickr API. These pictures are first shown to the user, then the user decides if one of
those pictures gets assigned to the location being edited. Since the usage of the Flickr API is
allowed only with an API key, a non-commercial key was generated for the purpose of this
thesis.

The documentation of the Flickr API provides a detailed description of its available methods.
For the purpose of getting pictures around a given location, the flickr.photos.search method is
used. The request parameters as well as the return values of this method are described in
[6]. A request sent by the Create component of the OpenTravelMap platform to the Flickr API
looks as follows:

https://api.flickr.com/services/rest/?method=flickr.photos.search

&api_key=API_KEY&text=LOCATION_NAME

&lat=LOCATION_LATITUDE&lon=LOCATION_LONGITUDE

&radius=DIST_TO_NEARBY_LOCATIONS_IN_KM&per_page=NUMBER_OF_IMAGES

&sort=date-posted-desc&privacy_filter=1&content_type=1

&format=json&nojsoncallback=1

23

Chapter 4. Development methods

The placeholders LOCATION_NAME, LOCATION_LATITUDE and LOCATION_LONGITUDE represent
the name and coordinates of the location for which pictures are requested. The placehold-
ers DIST_TO_NEARBY_LOCATIONS_IN_KM and NUMBER_OF_IMAGES are configuration parame-
ters that can set within the OpenTravelMap platform. Within this thesis the value of the
DIST_TO_NEARBY_LOCATIONS is set to 0.25 km while the NUMBER_OF_IMAGES is 5. Therefore,
the request listed above will retrieve a maximum of 5 pictures related to the given location
and taken within a radius of 0.25 km around the location’s coordinates. The pictures will
be sorted in descending order by the posted date such that the user always sees the newest
ones. Furthermore, the parameter privacy_filter is set to ensure that only public pictures
are retrieved.

The response of the request sent to the flickr.photos.search method contains information de-
scribing the pictures. According to the documentation of the Flickr API [5], the pictures can
be accessed through a further request having the following format:

https://farmFARM.staticflickr.com/SERVER/ID_SECRET.jpg

The placeholders inside this request: FARM, SERVER, ID and SECRET are set with values taken
from the response of the first request send to the Flickr API.

Another external API used to improve the functionality of the OpenTravelMap platform is
the OpenWeatherMap. The OpenWeatherMap API is called within the Search component, in
order to provide weather forecasts that will be used as context information inside the rec-
ommender system of the platform. As usual, the API can be accessed through a key, which
was obtained after creating a free account on the OpenWeatherMap platform.

For the purpose of obtaining weather information for the recommender system, the 5 day /
3 hour forecast endpoint of the OpenWeatherMap API is used [12]. The request sent from the
client’s Search component to the OpenWeatherMap API is:

http://api.openweathermap.org/data/2.5/forecast

?lat=LATITUDE&lon=LONGITUDE&units=metric&appid=API_KEY

The placeholders LATITUDE and LONGITUDE are replaced with the coordinates of the centroid
point of all the locations displayed within the Search component. The coordinates of the
centroid point are the average latitude and longitude values of these locations. The response
of the request is parsed and only the 3 hour forecast of the current day is further processed.
Within the current day forecast rain events are searched. The information passed to the rec-
ommender system is whether or not it will rain during the current day. Furthermore, also a
weather icon is retrieved for visualization purposes. The list of weather icons provided by
the OpenWeatherMap API is shown in Figure 4.3.
The weather icon is chosen as follows: if there is at least one rain event during the current

24

4.1 Architecture

Figure 4.3: Weather icons provided by OpenWeatherMap [13]

day, then the icon of the first rain event entry from the weather forecast is retrieved. If there
is no rain event during the current day, then the weather icon is either the icon correspon-
dent to the weather forecast from 12:00 o’clock (if the request was made before this time of
the day) or the icon correspondent to the closest weather forecast of the current day. For
example: considering that the current day is sunny and the request to the OpenWeatherMap
API was sent at 10:00 o’clock, then the chosen weather icon will be the one of the forecast
from 12:00 o’clock. However, if the request was sent at 16:00 o’clock, then the icon corre-
spondent to the forecast from 18:00 o’clock will be chosen. This approach was implemented
due to the fact that the OpenWeatherMap API provides 5 day / 3 hour forecasts starting from
the current day at the time when the request is made. In the context of the OpenTravelMap
platform these limitations of the OpenWeatherMap API are not a problem, since it makes no
sense to check past weather in order to recommend future travel routes.

As mentioned before, the weather information passed to the recommender system is re-
lated to the centroid of all locations displayed within the Search component and relevant

25

Chapter 4. Development methods

for the current day. The weather request is triggered by the user, but there is no need to
make more than one request per day for a certain centroid. Therefore, the first valid weather
response together with the corresponding centroid and date will be stored into the client’s
database and retrieved at each further trigger. This way, a weather request will be sent to
the OpenWeatherMap API only then when there is no entry into the client’s database for the
given centroid and date. Before the request is sent to the OpenWeatherMap API, the weather
information stored in the client’s database is deleted, since now it is considered to be out of
date. All this explains the existing connection between the client’s database and the Search
component which is illustrated in Figure 4.2.

Shown in Figure 4.2 is also a connection between the Search component and the Foursquare
platform. This connection aims to provide direct access to context filtered information re-
garding places to eat and drink. In the field of tourism providing context related informa-
tion is a powerful feature. Therefore, the direct access to relevant information hosted by the
Foursquare platform improves considerably the functionality of the Search component. The
link to the Foursquare platform can be accessed within any location displayed in the Search
component and it looks like follows:

https://foursquare.com/explore?mode=url

&q=Food&ll=LOCATION_LATITUDE,LOCATION_LONGITUDE

The LOCATION_LATITUDE and LOCATION_LONGITUDE represent the coordinates of the location
currently viewed by the user. Through this link, the user is redirected to the Foursquare
platform, directly to a list of places to eat and drink, all located around the location viewed
within the OpenTravelMap platform.

4.2 OpenTravelMap setup

The aim of this section is to provide a detailed description of the setup of the OpenTravelMap
platform. This comprises insights on the management of critical scenarios, the depiction of
the integrated features and last but not least, the configuration used to support the user. In
the beginning, the setup of the Create component will be presented, followed by a description
of the Search component’s configuration.

4.2.1 Create component

On account of the fact that the purpose of the Create component is to assist users in creating
and saving travel routes, which are formed from a collection of locations, the position of
the current user is an essential element for the well functioning of the location based service
provided by the platform. However, directly accessing the position of the user’s device is not
allowed, since it violates the user’s privacy. In order to overcome this issue, the OpenTrav-

26

4.2 OpenTravelMap setup

elMap platform asks for permission to access the device’s location, as illustrated in Figure
4.4.

Figure 4.4: Permission to access device’s location

The user will be requested to grant access on the device’s location only once, during the
first usage of the OpenTravelMap platform. As soon as the user accepted, the device’s loca-
tion is visible both to the Create and the Search component, respectively. While the access to
the user’s current position is of crucial importance within the Create component, the func-
tionality of the Search component does not rely on this information.

Within the Create component, the user’s position is used when the user adds a new loca-
tion. This new added location will have the latitude and longitude coordinates of the user’s
device. By assuming that the device’s location provider is disabled, it is clear that the current
user’s position is unknown to the Create component and therefore, the user will not be able to
add any new location. In order to support the user, the Create component checks whether or
not the device’s location provider is enabled. As indicated in Figure 4.5, the user will be no-
tified as soon as the Create component detects that the device’s location provider is disabled.

27

Chapter 4. Development methods

Figure 4.5: GPS not enabled warning

Even though adding a new location might seem to be an straight forward action, during
this action there is a major issue worth to be mentioned. The user triggers the creation of
a new location and the Create component performs this action as soon as the user’s current
position is known. As explained before, the coordinates of the user’s position will assigned
to the new added location. At this point, the user is able to add multiple locations having the
same or slightly different latitude and longitude coordinates. By doing so, the user might in-
tentionally or unintentionally harm the data generated within the OpenTravelMap platform.
Therefore, a method to overcome this crucial issue has to be implemented.

In order to avoid the above mentioned issue, a strict rule has been defined within the Create
component. This rule decides whether or not a location is new or it exists already. For
this purpose, the potentially new location is checked against all already added locations.
If there is at least one added location located within a LOCATION_BUFFER from the location
under check, then the rule decides that the location already exists. Consequently, the Create
component aborts the action of adding a new location and shows a warning to the user, as
displayed in Figure 4.6. On the other hand, if the rule states that the location is indeed a
new one, then it will be created. The LOCATION_BUFFER is a configurable parameter within

28

4.2 OpenTravelMap setup

the Create component and was set to 10 meters for the purpose of this thesis.

Figure 4.6: Add existing location warning

During the process of adding a location, the user is requested to provide a location name.
In an attempt to assist the user in finding the most appropriate name, the Create compo-
nent provides name suggestions as illustrated in Figure 5.3 left. This suggestions represent
names of nearby locations which were already added, either by the current user during the
creation of another route or by other users. The client’s Create component asks the server for
name suggestions by sending a request on the already mentioned "/getNearbyPoiNames"
endpoint. The parameters of this request are the latitude and longitude coordinates of the
location to add, together with a distance. The distance is used to perform a spatial query
that will retrieve all names of locations located within this distance from the new location.
Technically, the distance is defined as a configurable parameter within the Create component,
the DIST_TO_NEARBY_LOCATIONS parameter with the value set to 250 meters.

Once the user added at least one location, the Create component automatically creates a
route and enables the possibility to save the created elements. Within the saving process the
route together with the created locations are sent to the server through a POST request on

29

Chapter 4. Development methods

the endpoint "/saveRoute". The client side of the platform waits for a response from the
server and notifies the user of the success or failure of the save process, as shown in Figure
4.7. The save process might fail either due to problems occurring on the server side of the
platform or because of an inexistent or interrupted client-server connection.

Figure 4.7: Save route messages

As already explained, the Create component gives the user the opportunity to create lo-
cations and once they were created, these locations can be edited and saved at any time in
the future. After creating a location, the location will be automatically stored into the client’s
database and will remain there until the user decides to trigger the save process. On suc-
cess of the save process the route and locations created within the Create component will be
stored on the server’s database and removed from the client’s database. Each time the user
accesses the Create component, the data from the client’s database will be fetched. Until the
save process is triggered and successfully finished, this data is not empty and the user will
be notified with a proper message, as displayed in Figure 4.8. The user is informed that an
unsaved route was found and is requested to decide whether or not the route will be kept
or deleted. Keeping the route will provide further access to the created locations, enabling
the edit and save functionalities. By contrast, if the user decides to delete the route then the

30

4.2 OpenTravelMap setup

client’s database will be cleared and the created data will be lost.

Figure 4.8: Unsaved route message

4.2.2 Search component

The setup of the Search component comprises mainly the behavior of the filter search func-
tionality and the configuration of the recommender system. The basic functionality of the
Search component assist the user in searching for travel routes, whereas the recommender
system enhances the search result by considering the user’s desires together with context
related weather information.

During the search process, the Search component gains access to the routes created and
saved within the Create component. All these routes, together with their corresponding lo-
cations, are stored on the server’s database and will be sent to the client’s Search component
as response to the GET request sent on the endpoint "/getRoutes". As already explained,
the server’s database stores all routes created around the world from the beginning of the
OpenTravelMap platform. At first, retrieving all routes from the database will not be a prob-
lem, but as the platform’s popularity grows and the users start creating and saving more

31

Chapter 4. Development methods

and more routes, the size of the response to the "/getRoutes" request will rapidly increase.
Moreover, it is clear from the first place that each user is interested in a particular location
when the search process is performed. This location might be a country, region or city and
the user will certainly focus on the search result located around this particular location. Con-
sequently, a more efficient approach would be to filter the search result such that only routes
located around the user’s location of interest are retrieved. This approach is implemented
within the Search component and illustrated in Figure 4.9.

Figure 4.9: Mandatory filter search

As evident from the figure, filtering the search is a mandatory step, since the button with
the "Filter" label is disabled as long as no user input is present. The user is required to enter
a location around which the search process will be performed. This can be either the current
location, which will be automatically requested from the device’s location provider, or a cus-
tom location entered by the user. In both cases, the latitude and longitude coordinates of the
entered location, together with a radius will be sent as parameters of the GET request on the
"/getRoutes" endpoint. The server will perform a spatial query and retrieve only routes that
contain locations located within the given radius from the entered location. The mentioned
radius is stored on the client side of the OpenTravelMap platform, within the configurable
parameter named SEARCH_RADIUS, whose value is set to 20 km for the purpose of this thesis.

32

4.2 OpenTravelMap setup

Usually, after the filter is applied, the search process is performed and the search result
is displayed to the user as shown in Figure 5.8. In order to avoid an unnecessary overload
of the map, locations having the same name will be aggregated to their centroid and drawn
only once on the map at the coordinates of this centroid. The coordinates of the centroid are
calculated by averaging the latitudes and longitudes, respectively.

Nevertheless, it might happen that there is no search result to be shown. In such a case
the user is notified accordingly, as indicated in Figure 4.10. The failure of the filter search
process is illustrated on the left side of the figure. This can be caused by problems on the
server side of the platform or an inexistent or interrupted server-client connection. On the
other hand, in case of an empty search result, the user is warned with the message displayed
on the right side of the figure. The cause of an empty search result is simply that there are
no routes in the server’s database located around the entered location.

Figure 4.10: Filter search warnings

Beside the basic search functionality, the Search component also provides a feature that en-
hances the search result. This feature is a recommender system that was designed to take

33

Chapter 4. Development methods

the user’s desires and the correspondent weather forecast into account, in order to retrieve
recommended routes, built from locations that were part of the basic search result.

Illustrated in Figure 4.11 are the possible configurations of the recommender system. The
user has the opportunity to set the type of the recommended routes by choosing from the
options full-day or half-day, respectively. As expected, the chosen type will determine the
total length of each recommended route, whereby the length represents the estimated time
spent along the route. Moreover, the recommender system can also consider context related
information if the user decides so. This information is represented by a weather forecast for
the current day and location of interest. As indicated in Figure 4.11, the chosen parameters
of each configuration are highlighted or written in blue. In addition, a proper weather icon
is displayed when the weather option is enabled.

Figure 4.11: Recommender configurations

Depending on the chosen configuration, the recommender system creates new routes based
on the locations retrieved within the basic search result. Each location is characterized,
among others, by a location type which can be indoor, outdoor or both. In order to estimate
the time spent along a route, the route was divided into its fundamental parts: locations and
directions, whereby a direction is the distance between two locations. It has been assumed
that per direction around 0.5 hours will be spent. Furthermore, for each location type the
following time estimates were considered: indoor ∼ 2 hours, outdoor ∼ 0.5 hours, both
∼ 1.25 hours. It has also been planed that the user will take a break for about 1.5 hours
to eat/drink. If the weather forecast has to be considered, then the recommender system
receives the information whether or not rain is expected and filters the available locations
such that in case of rain only locations of type indoor and both are used. For the purpose of
varying the results, the recommender system first randomly shuffles the available locations
and afterwards groups combinations of location types into new routes. A full-day route is
designed as: Location A + Location B + Break + Location C + Location D and should not last
longer than 8 hours, whereas a half-day route as: Location A + Location B + Break with a max-
imum of 5 hours time length. Depending on the chosen route type and the given weather
information, the combinations of location types listed in Table 4.1 will be recommended. As
explained earlier, the recommender system makes use of the searched locations and creates
new routes. Normally, the user will be able to see the recommended routes in the view illus-
trated in Figure 5.11. However, if there are not enough locations such that at least one route
can be created inside the recommender system, then the user will be notified immediately.

34

4.2 OpenTravelMap setup

no rain rain
full-day 1. indoor + both + 2 x outdoor

2. indoor + 3 x outdoor
3. both + 3 x outdoor
Fallback: 4 x outdoor

1. 2 x indoor
2. indoor + both
3. 3 x both

half-day 1. indoor + outdoor
2. both + outdoor
3. 2 x outdoor

1. indoor
2. 2 x both

Table 4.1: Recommender system reasoning

The corresponding warning message is displayed in Figure 4.12.

Figure 4.12: Recommender warning

35

36

Chapter 5

OpenTravelMap specification

The purpose of the OpenTravelMap platform is to provide user support in creating and search-
ing for travel routes. In order to meet this purpose, the platform consists of two major
components: the Create and the Search component, respectively. As the components names
already suggest, the first component is responsible for creating travel routes, while the Search
component covers the searching support within the platform. The separation of the Create
and the Search component is done within the home screen of the platform as illustrated in
Figure 5.1. The following sections provide a detailed description of both components.

Figure 5.1: Home screen

37

Chapter 5. OpenTravelMap specification

5.1 Create component

The Create component represents the core functionality of the OpenTravelMap platform, since
here is the place where the data is created. The aim of this component is to provide tools
which assist users in the process of creating routes. A route consists of a sequence of loca-
tions and it is created when the first location is added.

The Create component allows the creation of one route at a time. Figure 5.2 shows the
screen of the Create component with and without the GPS position of the current user, which
is represented by a blue circle. As illustrated in the figure, there are only two actions that
the user can perform: either to add a location (symbolized by a red marker) or to save the
route. At this point no location was added, consequently there is no route, which is why the
save button is disabled.

Figure 5.2: Create screen

Within the Create component there is a significant difference between the following two
actions which can be applied to a route: create and save. The creation of a route takes place
on the client side of the platform and it is automatically triggered, as mentioned before,

38

5.1 Create component

when the first location is added. By contrast, the save route action is triggered by pressing
the save button which will request the server side of the platform to archive the route and
its corresponding locations.

In consequence, the first step that can be performed in the Create component is the creation
of at least one location. A location can be added/created by pressing the button located on
the left side of the screen illustrated in Figure 5.2. Each location will have coordinates as-
signed to it, which are the exact latitude and longitude GPS coordinates of the user’s device.
Therefore, a crucial requirement for adding a location is enabling the GPS of the user’s de-
vice. Once the current position of the user’s device is provided then a location can be added.

Figure 5.3: Add location view (left), Location added (right)

The process of adding a location is depicted in Figure 5.3. As shown on the left side of
the figure, the user is requested to provide a name for the future location. In order to assist
the user in choosing a suitable name several suggestions pop up. This suggestions represent
names of nearby locations which were already added, either by the current user during the
creation of another route or by other users. The location name is mandatory, therefore the
user has to choose one of the suggested names or provide a new one.

39

Chapter 5. OpenTravelMap specification

The location name is an essential element that is used not only across the OpenTravelMap
platform but also send as a request parameter to external apis, in order to obtain further
information which is relevant for the added location. Therefore, users are encouraged to
provide valid and meaningful location names in an attempt to take full advantage of the
functionalities covered by the platform.

Comparing the right sides of Figure 5.2 and Figure 5.3 shows that a location was added.
The added location is displayed on the map as a red marker pinned at the current position
of the user. Furthermore, the save button is now enabled, which confirms the fact that a
route was also created and from now on can be saved. Even though the save functionality
is already available, this does not mean that the user should use it and therefore end the
process of creation immediately.

Figure 5.4 illustrates another feature of the Create component, namely the user’s oppor-
tunity to edit an added location. The edit tool consists of a view which appears once the

Figure 5.4: Edit location view (left), Edit location constraints (right)

user pressed the marker of the added location. As displayed in the figure, the location name

40

5.1 Create component

is shown in the header of the edit tool. The body of this view comprises several attributes
that can or need to be assigned to the location. At the bottom of the view there are two
buttons which give the user the possibility to either cancel or save the changes. In contrast
to the location name view from Figure 5.3 left, the edit location view is cancelable, meaning
that the user is allowed to press anywhere outside the view and the view will disappear,
causing the loss of any changes made inside it. Hence, the only way to guarantee that the
changes will be preserved is to press the save button on completion. This will update the
saved instance of the location on the client side of the platform making it accessible also later
on, until the entire route is saved.

As already mentioned, beside the name, latitude and longitude, a location can also have
several attributes which are shown in Figure 5.4. The left side of the figure displays the ini-
tial edit view, whereas the right side shows the edit view after the save button was pressed.
Comparing the images shows that the location type (indoor and/or outdoor) is the only
mandatory attribute. Evidence for this is the red asterisk which appears on the left side
of the edit view, right beside the location type choices. Even though the location type is a
mandatory attribute, there are still cases in which a location will not have this attribute set.
This can happen when a route is saved an one or more of its locations were either not edited
at all or their corresponding edit view was canceled. The location type attribute plays a
major role within the Search component, hence, for all locations that do not have the location
type set, the outdoor location type will be further used.

Apart from that, the user can add a comment and/or a picture to each location. The com-
ment can be introduced in the input text field that holds the hint "Add comment", while the
picture can either be taken with the device’s camera or requested from Flickr. The provided
picture will be displayed above the image placeholder. The user is encouraged to contribute
as much as possible since the output of the Create component represents the input of the
Search component. Therefore, the more and detailed the created data is, the better and use-
ful the search tools will be.

As specified, the Create component offers two possibilities to add a picture to a location
within the edit view. The first option is to take a picture with the device’s camera. Pressing
the camera icon displayed on the right side of the edit view, above the image placeholder
will open the image capture view. As soon as the user accepts the captured picture, this will
be assigned to the location and replace the empty image placeholder. Another way to add a
picture to a location is to choose one from a provider. For the aim of this thesis a connection
with the Flickr platform was established. Pressing the "Flickr" button, located on the right
side of the camera icon will send a request to the Flickr platform. The platform is requested

41

Chapter 5. OpenTravelMap specification

to send back public images taken around the location and also related to the location, since
the name of the location is also send as a request parameter. In case of success, Flickr re-
sponds with a series of pictures.

The collection of Flickr images is further reduced to a limited number of choices which
are shown in a scroll view as illustrated in Figure 5.5 left. Now the user has the opportunity
to choose one of the images by simply selecting it. Essentially the same as in the case of
taking a picture with the device’s camera, the selected image will be attached to the location
and shown in the edit view. In an ideal case, the user has provided not only the mandatory

Figure 5.5: Flickr images view (left), Edit location filled (right)

location type but also all the other optional attributes. Thus a detailed description of the
location was created. Displayed on the right side of Figure 5.5 is such an ideal case. In addi-
tion to the outdoor type which is assigned to the added location, the location also includes
a comment and a picture. The final step that is required in order to preserve the created
content is to save the changes. This will save the data on the client side of the OpenTravelMap
platform making it available for further use.

As explained before, within the Create component the user can perform two main actions:

42

5.1 Create component

add a location and save the created route. A route consists of at least one location. By taking
this definition into account, it is obvious that as soon as one location was created the route
can be saved. However, this does not characterize a real scenario, since normally a route
would comprise more than one location. Such a real case scenario presenting a route with
three locations is illustrated on the left side of Figure 5.6. The added locations are shown on
the map as the three red markers, together with the position of the user which is displayed
as a blue circle. By pressing each of the red markers the edit view of the corresponding loca-
tion will appear giving the user the chance to add or change the location attributes described
above.

Figure 5.6: Save route

Due to the fact that the process of saving a route has irreversible effects on the current
state of the created content, it has been designed to be performed in two steps. First the
save button from the Create component view (see Figure 5.6 left) has to be pressed. After
pressing this save button a new view appears, see Figure 5.6 right. This new view repre-
sents the second and last step of the save route process. The view shows an explanation
of the save route process and requests the user’s decision to either continue or cancel the
save process. Within the save process the created route and its corresponding locations are

43

Chapter 5. OpenTravelMap specification

sent to the server side of the OpenTravelMap platform where they will be stored. On success,
the map will be cleared, causing all the red markers to be deleted. Furthermore, the route
and locations stored on the client side of the platform will also be deleted. Consequently,
the user will not be able to change the added locations anymore. By choosing to continue
the save process and if it will successfully complete, then the actions described above will
take place. However, if the user chooses to cancel the save process or if the process does not
complete successfully, then the map and the client side storage will preserve their current
states. The added locations will still be stored on the client side of the platform, displayed
as red markers on the map and open to changes. The user will then have the opportunity to
save the route each time in the future.

As described in the previous chapter, the user will be notified both on success and on fail-
ure of the save route process. The corresponding messages are shown in Figure 4.7. Beside
the mentioned actions that will take place in case the save process is performed, there is one
more effect that has to be clarified to the user. Once the route and its corresponding locations
are stored on the server side of the platform the user’s contribution is made public through
the Search component, which now has direct access to them. In other words, the output of
the Create component is used as input in the Search component.

5.2 Search component

The goals of the Search component are on the one hand to enable content sharing between
users and on the other hand to enhance the route search, if requested, by offering recommen-
dations that adjust the retrieved content through context awareness. The Search component
was designed to make use of the data gathered with the support of the Create component.
Therefore, it serves as a tool to publish content by making it available to any interested user.
The second feature of the component is its ability to provide relevant route recommenda-
tions to its users.

The basic functionality of the Search component is to provide support in searching for travel
routes. In order to achieve this, the component requests routes from the server side of the
platform. These routes were previously created and saved within the Create component.
Even though this basic functionality seems straight forward, there is an essential issue that
has to be addressed. By default, the request send to the server side of the platform will cause
a response containing all the stored routes. In a real case scenario the user is not interested
in all available routes but just in routes surrounding a certain location, for example a city.
One way to restrict the retrieved content is to apply a filter during the request. The Search
component uses this method which is illustrated in Figure 5.7.

44

5.2 Search component

As soon as the user pressed the search button from the home screen of the OpenTravelMap
(see Figure 5.1), the filter search dialog shown in Figure 5.7 appears. Within this step the
user is required to choose the way in which the search will be filtered. As indicated in the
figure, there are only two possibilities to choose from.

The first option is that the user enters a custom location. As evident from Figure 5.7 left,
the Search component assists the user by offering suggestions that match the entered value.
It is of great importance that the user provides a valid custom location, such as the ones
being suggested. The reason for that is that the entered location must be geocoded in order
to perform the search. During the geocoding process, the value entered is transformed into
latitude and longitude coordinates, describing the location provided. Therefore, wrong or
misspelled custom locations will cause a failure of the geocoding process. Consequently, the
search process will also fail.

Figure 5.7: Filter search

The second possibility is to use the current location of the user as shown in Figure 5.7 right.
This assumes that the device’s location provider is enabled and tries to access its current

45

Chapter 5. OpenTravelMap specification

position. It is recommended that the GPS is enabled during the usage of the Search compo-
nent, but it is not mandatory like for the Create component. In case the GPS is disabled or
when there was no valid position provided, then the search will fail. Another reason that
could cause the failure of the search process is the missing or interrupted connection with
the server side of the platform, since all the data is stored and queried there. If due to some
of the mentioned causes the search process fails, then the user will be informed as illustrated
in Figure 4.10 left. On the other hand, if the search completes successfully but there were no
routes found around the provided location, the user will get the message displayed on the
right side of Figure 4.10.

The result of a successful search is given in Figure 5.8. It consists of a collection of routes
that contain locations which are placed around the location entered in the filter search step.
In order to prevent an overload of the view, the directions between locations are not shown
on the map. The only elements that are shown are the locations, which are displayed exactly
the same as in the Create component, as red markers. As already mentioned, the blue circle
represents the current location of the user.

Figure 5.8: Result of filter search

46

5.2 Search component

Apart from the search result, two buttons can be observed at the bottom of Figure 5.8.
The button placed on the left side of the screen opens the known filter search view, which
is displayed in Figure 5.7. A feature of the Search component hides behind the recommend
button, which is located on the bottom right side of the screen. The capabilities of this fea-
ture will be discussed later on this chapter.

This filter search button offers the user the possibility to further filter the search even af-
ter accessing the Search component. The only difference between the filter search view that
appears when trying to access the Search component and the one that is displayed after
pressing the button inside the component is the fact that the second view is cancelable. In
other words, entering a location around which the search will be performed is mandatory
when accessing the Search component and optional afterwards.

Once the search was performed and the results were shown, the user has the chance to
explore the map, view detailed information about the displayed locations, the directions
connecting them and the routes they belong to. For the purpose of accessing more informa-
tion about a certain location, the user has to press the red marker symbolizing the location
in the map view. By pressing the location’s marker, the view illustrated in Figure 5.9 left will
pop up. This view looks similar to the edit location view displayed in Figure 5.5 right, but
none of the information displayed here is editable. As can be seen in the figure, the header
of the view contains the name of the location. Below the header, there are two scrollable ele-
ments, the first one showing the location’s pictures and the second one listing the comments
added to the present location. All this information originates from the Create component
where it was created and saved such that now it is publicly available within the Search com-
ponent. The two buttons at the bottom of the view give the user the possibility to perform
further actions such as to search for places to eat near the viewed location or to display all
the routes that contain the present location. For the moment only the second action will be
discussed.

As already mentioned, within the initial view of the search result shown in Figure 5.8 the
directions connecting the locations and therefore the routes to which they belong to are not
displayed in order to avoid an overload of the map view. The only way to show this infor-
mation on the map is to access it through a location. This is done by pressing the button
located on the bottom right side of the view displayed in Figure 5.9 left. After pressing this
button, the view containing detailed information about the selected location will disappear.
Furthermore, all routes containing the previous selected location will be shown on the map
as indicated in Figure 5.9 right.

47

Chapter 5. OpenTravelMap specification

Figure 5.9: View location (left), View routes passing by location (right)

The right side of Figure 5.9 illustrates the map view containing all the locations of the search
result and two routes. The routes are displayed on the map in different colors, making them
easily distinguishable. Each route consists of locations and directions which connect those
locations. Each direction has exactly two locations, a start and an end, and it is drawn on
the map in the same color as its corresponding route. In case two or more routes overlap in
certain regions, then these regions will be displayed in a mixed color formed from the colors
of the overlapping routes.

Similar to pressing one of the red markers on the map in order to obtain detailed infor-
mation about one of the displayed locations, also pressing one of the colored lines on the
map offers more information to the user about the selected direction. The view that appears
after the user selected a direction from the map is shown in Figure 5.10. The left side of the
figure shows a view containing information about a direction that belongs to a single route,
whereas the right side of the figure details a directions which is part of two different routes.

The header of the view shown in Figure 5.10 contains the names of the two locations cor-
responding to the selected direction. Below the header, there is a field that indicates the

48

5.2 Search component

distance in kilometers of the chosen direction. Under the "Overview" label there is a scrol-
lable element, inside which all the routes containing the present direction are listed. Each
route is listed as a sequence of locations having the exact same color as the one used to draw
the route on the map. Apart from that, also the total distance of the route is revealed.

Figure 5.10: View directions

Until now, only the basic functionality of the Search component was covered, but the com-
ponent also possesses a feature that enhances the basic search results. This feature is a
recommender system that also feeds with routes originating from the Create component, just
like the basic functionality. However, the recommender system adapts the search results by
applying different filters and combining the retrieved locations such that also context infor-
mation is taken into account. In order to access the recommender system, the user has to
press the button labeled with "Recommend", which is located on the right side of the screen
illustrated in Figure 5.8.

Once the user accessed the recommender system, a view similar to the one indicated in
Figure 5.11 appears. This view contains both the setup as well as the results of the recom-
mender. The setup is located inside an editable panel on the top of the view. As already

49

Chapter 5. OpenTravelMap specification

explained, there are four different setups that can be used to create recommendations. All
these setups are displayed in Figure 4.11.

The user can edit two fundamental parameters inside the recommender system: the type
of the resulted routes (categorized by length into: full-day or half-day) and the consideration
of the current weather conditions. Figure 5.11 shows two examples of recommendations
obtained under different setups. On the left side of the figure the recommender is set to full-
day routes and no weather check, whereas on the right side to half-day routes with weather
conditions taken into account.

Figure 5.11: Recommendations for: full-day with no weather (left), half-day with weather (right)

The recommender system retrieves routes containing locations which were created and saved
inside the Create component. The difference between the basic functionality of the Search
component and the recommender is that the latter one does not preserve the routes origi-
nating from the Create component but forms new routes by combining the existing locations
according to the setup provided by the user. These new formed routes represent the out-
come of the recommender system, the recommendations. As indicated in Figure 5.11, the
recommendations are listed below the setup as sequences of locations. As soon as the user

50

5.2 Search component

changes the setup, the recommendations view will be immediately updated.

Another significant difference between the recommender system and the basic functionality
of the Search component is the way in which routes are listed. As shown in Figure 5.10, the
basic functionality displays the routes in a variety of colors, each listed sequence of locations
having the color in which its corresponding route is drawn on the map. By contrast, inside
the recommender system all routes are listed in the same color, see Figure 5.11. The reason
for that is on the one hand that the routes will not be drawn on the map, on the other hand
because each sequence of locations is actually a button. Once the user pressed on one of the
recommended routes, the view illustrated in Figure 5.12 will be shown.

Figure 5.12: Chosen recommendations for: full-day with no weather (left), half-day with weather
(right)

Even though Figure 5.12 looks similar to Figure 5.8, there is a remarkable difference between
them. By comparing the mentioned figures one instantly notices that in Figure 5.12 there
are fewer locations displayed on the map. That is because this figure shows only one rec-
ommended route, whereas in Figure 5.8 all routes are illustrated. The shown recommended
route is exactly the one that was previously selected by the user inside the recommender

51

Chapter 5. OpenTravelMap specification

view. In addition, in Figure 5.12 there is also a refresh button displayed. This button is
located on the top left side of the screen and provides the user the possibility to refresh the
map view such that the view from Figure 5.8 is restored.

As already mentioned, a recommended route will not be fully displayed on the map. While
the locations corresponding to the route will appear as red markers on the map, the direc-
tions connecting them will not be drawn. Thus, the user has the choice to decide in which
order the locations will be visited and also which directions will be followed. In order to
assist the user during travel, the Search component also displays the current position of the
user as a blue circle on the map. However, this only happens when the device’s location
provider is enabled.

Now the user’s mission started and its objective is to visit all locations of the recommended
route. Further information about the recommended locations can be accessed by pressing
the red markers on the map. The view that appears after pressing one of the red markers is
displayed on the left side of Figure 5.13. As expected, the view is almost exactly the same

Figure 5.13: View recommended location (left), Eat nearby view (right)

as the one illustrated in Figure 5.9 left. The remarkable difference is the absence of the show

52

5.2 Search component

directions button on the bottom right side of the view. This button is not shown, since there
is no support for this feature in the context of a recommended route. However, of great im-
portance in this context is the button located on the bottom left side of the view. The button
labeled with "Eat nearby" hosts a link to the Foursquare platform. After pressing this button,
the user lands on the page displayed on the right side of Figure 5.13. This page contains a
collection of places to eat/drink, all located near the location viewed by the user. The user
can now browse through the collection of places and explore the features provided by the
Foursquare platform. By pressing the back button, the user returns to the OpenTravelMap
platform, more specifically to the view illustrated on the left side of Figure 5.13.

53

54

Chapter 6

Results and interpretation

The purpose of this thesis was to develop the OpenTravelMap platform, a platform that en-
ables and promotes the involvement in volunteered geographic information. The OpenTrav-
elMap platform offers assistance in the process of creating and searching for travel routes,
while providing the following features: components for route creation and search in one
platform, context aware recommendations and integration with other platforms in order to
access existing resources.

In contrast to other existing platforms, the OpenTravelMap not only supports both the pos-
sibility to create and search for routes, but also aims to enhance both functionalities. The
Create component provides a way to create routes and to describe the added content. Fur-
thermore, the Search component of the OpenTravelMap platform allows sharing information
between users and also adapts the retrieved content through context awareness.

The outcome of this thesis is a mobile location based service delivered through the Open-
TravelMap platform. The platform was developed as a client-server application running on
mobile Android devices. The main objective within the development of the platform was
to integrate tools to improve the basic functionality while keeping the design of the user
interface as simple as possible. The basic functionality of the OpenTravelMap platform offers
support for creating routes as collections of locations and enables the possibility to search
for travel routes. On top of this, there are features that enhance both the Create component
and the Search component, respectively. The enhanced Create component supports editable
locations and direct access to external resources, whereas the improved Search component
offers context aware recommendations that are based on the basic search results but adapted
to meet the user’s preferences and to consider relevant weather information.

The main target audience of the OpenTravelMap platform consists of tourists. Therefore,
an essential requirement within the development of the platform was the ability to run on
mobile devices. This way, the target users that are usually under continuous movement
gain immediate access to the features of the OpenTravelMap platform. A major constraint

55

Chapter 6. Results and interpretation

that spreads along the OpenTravelMap platform is the dependency on an established internet
connection. Even though having internet access on mobile devices should not be a problem
nowadays, its understandable that this could be a reason why some users will avoid using
the features of the OpenTravelMap platform.

A great improvement of the basic search functionality of the OpenTravelMap platform is
represented by the integration of the context aware recommender system within the Search
component. Due to the fact that the current capabilities of the recommender system are
slightly limited, the enhancement of the recommender system is one of the topics suggested
to be explored within the scope of future work.

All in all, the OpenTravelMap platform offers support both for route creation as well as for
route search, thus overcoming the gaps existing in similar platforms. Moreover, the platform
also incorporates a context aware recommender system which helps users in the process of
decision making.

56

Chapter 7

Improvements and future work

The current state of the OpenTravelMap platform reveals a functional mobile location based
service that assists users in creating and searching for travel routes. The main components of
the platform comprise both tools that support the primitive create and search functionalities
as well as advanced features that enhance the basic capabilities of the service. This chapter
aims to provide suggestions for potential improvements that may extend the present Create
and Search components of the OpenTravelMap platform.

In an attempt to enhance the Create component, future work could focus on handling the
directions between locations. For the moment, the locations play the major role within the
Create component, as the user is allowed to create and edit only those elements. Nevertheless,
a route is composed of locations and directions that connect these locations. Since the path
that a user follows from one location to another contains relevant information that might
be worth sharing, future enhancements could consider introducing directions as additional
elements within the Create component.

Another essential improvement relates to the process of adding a new location. Currently,
the entire OpenTravelMap platform relies on the fact that the user provides meaningful names
for the added locations. Even so, if the same location is added multiple times with the same
name translated in different languages, the platform will not be able to match the names
and unify the locations within the search process. Therefore, further work should investi-
gate proper methods that could be applied to solve this issue.

Concerning the Search component, candidates for improvement are the visualization of the
search results and the context aware recommender system. For the beginning the current
approach, which shows only the locations of the search result and on demand also the
routes passing by a certain location is enough to avoid the overload of the map. However,
with growing popularity, the number of retrieved locations will increase rapidly and the
visualization of all locations of the search result will deteriorate the usability of the Search
component. The same issue will occur also when displaying the details of a certain location,

57

Chapter 7. Improvements and future work

due to the high number of pictures and comments assigned to that location. Consequently,
future work should consider applying techniques that will either limit the number of loca-
tions, pictures and comments or find a way to adjust the visualization of these elements such
that the usability is not distorted. One approach to overcome this issues would be to connect
the OpenTravelMap platform with social media platforms. Within this approach the search
result would be filtered such that the retrieved locations would be the ones either created or
visited by the user’s friends from the social media platforms.

Further developments of the Search component could focus on the enhancement of the in-
corporated recommender system. Potential improvements may concern both the recommen-
dation process itself as well as the visualization of the recommended routes. Related to the
recommendation process, future work may implement methods that learn the user’s pref-
erences over time and adjust the recommendations accordingly. In order to achieve that,
the platform should integrate user profiles. Ideally these profiles would be generated au-
tomatically by monitoring the user’s activity within the major components of the platform.
Created routes comprised of liked and disliked locations as well as accepted and rejected
recommendations contain valuable information that should be stored within the user’s pro-
file. Concerning the visualization of the recommended routes, optimization techniques may
be used to connect the route’s locations, while considering further relevant aspects such as
the opening hours of points of interest.

In future, improvements related to the entire OpenTravelMap platform should consider de-
ploying the location based service on various mobile operating systems. Currently, the plat-
form runs only on Android devices, but within the scope of future work it could also be
developed for iPhone and Windows Mobile devices.

58

Chapter 8

Summary and conclusion

The structure of the present thesis was conceived to first perform a detailed analysis of re-
lated work released on the market. Afterwards, theoretical principles that influenced the
development of the OpenTravelMap platform were discussed. Comprised within the current
thesis were also technical insights related to the architecture and development methods of
the mentioned platform. Furthermore, a comprehensive specification of the features pro-
vided by the OpenTravelMap platform was outlined. The results and achievements of this
thesis are represented by the platform itself and the benefits it supplies to its users. Last but
not least, the thesis covered a broad list of improvements that could be addressed within the
scope of future work.

The core aspect of the present thesis is represented by the OpenTravelMap platform, a mobile
location based service developed to assist users in creating and searching for travel routes.
The developed platform also includes the connection with other platforms to offer direct
access to external resources and a context aware recommender system that facilitates the
process of decision making. The main target audience of the OpenTravelMap platform con-
sists of tourists, which can access the features of the platform through their mobile devices.

The OpenTravelMap platform was developed as a client-server application able to run on
Android mobile devices. The architecture of the platform comprises two major components:
the Create and the Search component. The main purpose of the Create component is to pro-
vide tools that assist the user in creating travel routes. Each route consists of one or more
locations created by the user. Moreover, the user has the possibility to edit the locations and
save the entire route when desired. Through the Search component of the OpenTravelMap
platform the sharing of information between users is enabled, since the data used by this
component originates from the Create component. Beside the basic search functionality, the
component also provides an advanced feature, a context aware recommender system. The
recommender system operates by taking the user’s preferences and relevant weather infor-
mation into account from which it creates route recommendations that are further delivered
to the user.

59

Chapter 8. Summary and conclusion

In conclusion, the current thesis submits a contribution to the field of tourism through the
mobile location based service running on the OpenTravelMap platform. The outcome ob-
tained within the present thesis encourages to further improvements that may be covered by
future work.

60

Bibliography

[1] Android developers. https://developer.android.com/, accessed on May 1, 2018.

[2] bergfex tours & gps tracking running hiking bike. https://play.google.com/store/

apps/details?id=com.bergfex.tour, accessed on December 23, 2018.

[3] Docker container running postgres with postgis. https://hub.docker.com/r/

mdillon/postgis/, accessed on August 1, 2018.

[4] Flickr. https://www.flickr.com/, accessed on November 1, 2018.

[5] Flickr access photos. https://www.flickr.com/services/api/misc.urls.html, ac-
cessed on November 1, 2018.

[6] Flickr search photos. https://www.flickr.com/services/api/flickr.photos.

search.html, accessed on November 1, 2018.

[7] Foursquare. https://foursquare.com/, accessed on November 1, 2018.

[8] Google play. https://play.google.com/store/apps, accessed on December 23, 2018.

[9] Map maker. https://play.google.com/store/apps/details?id=com.exlyo.

mapmarker, accessed on December 23, 2018.

[10] Mapbox. https://www.mapbox.com/, accessed on May 1, 2018.

[11] Openweathermap. https://openweathermap.org/, accessed on November 1, 2018.

[12] Openweathermap 5 day weather forecast. https://openweathermap.org/forecast5,
accessed on November 1, 2018.

[13] Openweathermap weather conditions. https://openweathermap.org/

weather-conditions, accessed on November 1, 2018.

[14] Spring boot. http://spring.io/projects/spring-boot, accessed on August 1, 2018.

[15] Sygic travel maps offline & trip planner. https://play.google.com/store/apps/

details?id=com.tripomatic, accessed on December 23, 2018.

61

https://developer.android.com/
https://play.google.com/store/apps/details?id=com.bergfex.tour
https://play.google.com/store/apps/details?id=com.bergfex.tour
https://hub.docker.com/r/mdillon/postgis/
https://hub.docker.com/r/mdillon/postgis/
https://www.flickr.com/
https://www.flickr.com/services/api/misc.urls.html
https://www.flickr.com/services/api/flickr.photos.search.html
https://www.flickr.com/services/api/flickr.photos.search.html
https://foursquare.com/
https://play.google.com/store/apps
https://play.google.com/store/apps/details?id=com.exlyo.mapmarker
https://play.google.com/store/apps/details?id=com.exlyo.mapmarker
https://www.mapbox.com/
https://openweathermap.org/
https://openweathermap.org/forecast5
https://openweathermap.org/weather-conditions
https://openweathermap.org/weather-conditions
http://spring.io/projects/spring-boot
https://play.google.com/store/apps/details?id=com.tripomatic
https://play.google.com/store/apps/details?id=com.tripomatic

Bibliography

[16] Travel map maker. https://play.google.com/store/apps/details?id=ch.robera.

android.travelmapmaker, accessed on December 23, 2018.

[17] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems:
A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge
& Data Engineering, (6):734–749, 2005.

[18] L. Baltrunas, B. Ludwig, S. Peer, and F. Ricci. Context relevance assessment and
exploitation in mobile recommender systems. Personal and Ubiquitous Computing,
16(5):507–526, 2012.

[19] P. Bereuter, R. Weibel, and D. Burghardt. Content zooming and exploration for mobile
maps. In Proceedings of the 15th AGILE international conference on geographic information
science, pages 74–80, 2012.

[20] J. Borràs, A. Moreno, and A. Valls. Intelligent tourism recommender systems: A survey.
Expert Systems with Applications, 41(16):7370–7389, 2014.

[21] D. Burghardt, R. Purves, and A. Edwardes. Techniques for on the-fly generalisation of
thematic point data using hierarchical data structures. In Proceedings of the GIS Research
UK 12th Annual Conference, pages 28–30. Citeseer, 2004.

[22] J. Christopher B. and W. J. Mark. Map generalization in the web age. International
Journal of Geographical Information Science, 19(8-9):859–870, 2005.

[23] K. Church, J. Neumann, M. Cherubini, and N. Oliver. The map trap?: an evaluation of
map versus text-based interfaces for location-based mobile search services. In Proceed-
ings of the 19th international conference on World wide web, pages 261–270. ACM, 2010.

[24] J. Gaffuri. Improving web mapping with generalization. Cartographica: The International
Journal for Geographic Information and Geovisualization, 46(2):83–91, 2011.

[25] W. Gao, J. Gong, and Z. Li. Thematic knowledge for the generalization of land use data.
The Cartographic Journal, 41(3):245–252, 2004.

[26] A. Kushwaha and V. Kushwaha. Location based services using android mobile operat-
ing system. International Journal of Advances in Engineering & Technology, 1(1):14, 2011.

[27] R. Looije, G. M. Te Brake, and M. A. Neerincx. Usability engineering for mobile maps. In
Proceedings of the 4th international conference on mobile technology, applications, and systems
and the 1st international symposium on Computer human interaction in mobile technology,
pages 532–539. ACM, 2007.

62

https://play.google.com/store/apps/details?id=ch.robera.android.travelmapmaker
https://play.google.com/store/apps/details?id=ch.robera.android.travelmapmaker

Bibliography

[28] K. Meehan, T. Lunney, K. Curran, and A. McCaughey. Context-aware intelligent recom-
mendation system for tourism. In Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2013 IEEE International Conference on, pages 328–331. IEEE, 2013.

[29] I. Muehlenhaus. Web cartography: map design for interactive and mobile devices. CRC Press,
2013.

[30] A.-M. Nivala and L. T. Sarjakoski. An approach to intelligent maps: Context awareness.
In The 2nd Workshop on’HCI in Mobile Guides, 2003.

[31] B. Schmidt-Belz, A. Nick, S. Poslad, and A. Zipf. Personalized and location-based
mobile tourism services. Workshop on Mobile Tourism Support Systems in conjunction
with Mobile HCI, 2002.

[32] V. Setlur, C. Kuo, and P. Mikelsons. Towards designing better map interfaces for the
mobile: experiences from example. In Proceedings of the 1st International Conference and
Exhibition on Computing for Geospatial Research & Application, page 31. ACM, 2010.

[33] H. Yan and R. Weibel. An algorithm for point cluster generalization based on the
voronoi diagram. Computers & Geosciences, 34(8):939–954, 2008.

63

	Introduction
	Related work
	Theoretical background
	Mobile location based services
	UI design

	Point data generalization
	Recommender systems
	Context information

	Development methods
	Architecture
	Client
	Server
	External APIs

	OpenTravelMap setup
	Create component
	Search component

	OpenTravelMap specification
	Create component
	Search component

	Results and interpretation
	Improvements and future work
	Summary and conclusion
	Bibliography

