
Acta Mech 230, 4049–4060 (2019)
https://doi.org/10.1007/s00707-019-02536-2

ORIGINAL PAPER

A. S. Kuleshov · E. S. Shalimova · A. Steindl

On Hopf bifurcation in the problem of motion of a heavy
particle on a rotating sphere: the viscous friction case

Received: 2 April 2019 / Revised: 18 September 2019 / Published online: 22 October 2019
© The Author(s) 2019

Abstract We investigate the Hopf bifurcation of a mass on a rotating sphere under the influence of gravity
and viscous friction. After determining the equilibria, we study their stability and calculate the first Lyapunov
coefficient to determine the post-critical behavior. It is found that the bifurcating periodic branches are ini-
tially stable. For several inclination angles of the sphere’s rotation axis, the periodic solutions are calculated
numerically, which shows that for large inclination angles turning points occur, at which the periodic solutions
become unstable. We also investigate the limiting case of small friction coefficients, when the mass moves
close to the equator of the rotating sphere.

1 Introduction

The motion of bodies on surfaces is a classical problem of mechanics [1,2] and was investigated in various
statements (see, for example, [3–6]). In the most simple case, a point particle instead of a rigid body could be
considered. That kind of problems appears when we study the dynamics of mechanical systems with rotating
parts performing different operations such as the mixing, grinding, and drying, of diverse substances. Based on
results of computer simulations [7,8], it is possible to investigate the dynamics of systems with a large number
of particles. However, the output of such a simulation usually does not represent any analytical results. That
is why it is reasonable to consider simple systems, such as a particle moving on a surface under the action
of a friction force. Even in these simple cases, some complex dynamic effects can be discovered. If there is
a friction force and the surface doesn’t move, the system will come to rest. However, if we assume that the
surface rotates with a constant angular velocity, steady and periodic motions can appear in the system. This
fact also makes it possible to use such problems to identify the friction coefficient. The problem of the motion
of a point particle on a rotating surface was studied in [9]. The motion of a particle on a rotating table was
investigated analytically and numerically in [10].

The problem of motion of a heavy bead on a circular hoop rotating about its vertical diameter has been
studied in [11]. The similar problem for a circular hoop rotating about some other vertical axis has also been
investigated [12]. In the present paper, a three-dimensional analogue of this problem is studied under the
assumption that there is viscous friction between the point and the sphere.
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Fig. 1 A particle on a rotating sphere

2 Definition of the problem and equations of motion

Let P be a heavy particle of mass m which moves on a two-dimensional sphere of radius � under the action
of a viscous friction force, with the coefficient of friction being c. The sphere rotates with a constant angular
velocity ω about a fixed axis. It is assumed that the axis passes through the center of the sphere O .

Let Ox1x2x3 be an absolute coordinate system such that the plane Ox1x2 is horizontal and the axis
e3 = Ox3 is directed along the upward vertical, so the gravity force acting on the particle is −mge3. Assume
that the rotation axis belongs to the plane Ox1x3 and its angle of inclination is α, 0 ≤ α ≤ π/2. Denote the
spherical angles, which specify the position of the moving particle on the sphere, by θ and ϕ, 0 ≤ θ ≤ π ,
0 ≤ ϕ < 2π (Fig. 1).

In this case, the motion of the particle P can be described by the following system [15]:

θ̇ = γ, (1a)

ϕ̇ = �, (1b)

γ̇ = sin θ cos θ�2 + pχ sin θ − χγ − χ sin α sin ϕ, (1c)

�̇ = 1

sin θ
( χ sin θ cosα − χ� sin θ − χ sin α cos θ cosϕ − 2γ � cos θ) , (1d)

where

p = mg

c�ω
, χ = c

mω
.

System (1) possesses a symmetry w.r.t. mirror reflection about the (x1, x3)-plane: Inserting

θ̃ = −θ, γ̃ = −γ,

ϕ̃ = π − ϕ, �̃ = −�

into (1), we obtain the same system of differential equations in the new variables.

3 Equilibria positions and their stability

Assuming θ̇ = 0, ϕ̇ = 0, γ̇ = 0, �̇ = 0 we obtain the equations that determine the equilibria of the system:

0 = p sin θ0 − sin α sin ϕ0, (2a)

0 = sin θ0 cosα − sin α cos θ0 cosϕ0. (2b)
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The system (2) can be solved for (θ0, ϕ0) by introducing the quantities

u = tan θ0, v = tan ϕ0, with sin θ0 = u√
1 + u2

and cos θ0 = 1√
1 + u2

.

Then (2b) gives

u = 1√
1 + v2

tan α,

which can be inserted in (2a):

p = sin α
v√

1 + v2

√
1 + u2

u
= cosα v

√
1 + tan2 α

1 + v2
. (3)

By squaring both sides in (3) and rearranging, we obtain the quadratic equation for v2

p2

cos2 α
(1 + v2) = v2(1 + v2 + tan2 α). (4)

Since

v2

1 + v2
(1 + v2 + tan2 α) = v2 + tan2 α

v2

1 + v2
= tan2 ϕ0 + tan2 α sin2 ϕ0

increases monotonically for v > 0, Eq. (4) has one positive solution for v2, the second solution of the quadratic
equation leads to complex-valued solutions of ϕ0 and θ0.

Every positive solution of the quadratic equation (4) corresponds to 4 real-valued solutions for ϕ0:

ϕ0,12 = ± arctan v and ϕ0,34 = ϕ0,12 + π. (5)

The corresponding stationary value of θ0 can then be calculated by rewriting (2) as follows:

sin θ0 = sin α sin ϕ0/p, tan θ0 = tan α cosϕ0, cos θ0 = cosα tan ϕ0/p. (6)

Due to the mirror reflection symmetry mentioned above, only two of these four solution pairs need to be
investigated further, the stability and bifurcation behavior of the other two steady states follows by applying
the mirror reflection.

The parameterχ is a bifurcation parameter for system (1).However, it is convenient to introduce a parameter
λ = 1

χ
instead of χ . Let us assume now that

θ = θ0 + θ̂ , ϕ = ϕ0 + ϕ̂, γ = γ̂ , � = �̂,

where θ̂ , ϕ̂, γ̂ , and �̂ are small perturbations of the equilibria. Using (6) to eliminate ϕ0, we can write the series
expansion of the perturbed system up to the cubic terms as follows:

˙̂
θ =γ̂ , (7a)
˙̂ϕ =�̂, (7b)

˙̂γ = p

λ
cos θ0 θ̂ − sin θ0 cosα

λ cos θ0
ϕ̂ − 1

λ
γ̂ − p sin θ0

2λ
θ̂2 + p sin θ0

2λ
ϕ̂2

+ sin θ0 cos θ0 �̂2 − p cos θ0

6λ
θ̂3 + sin θ0 cosα

6λ cos θ0
ϕ̂3 + (

cos2 θ0 − sin2 θ0
)

θ̂ �̂2, (7c)

˙̂� = cosα

λ sin θ0 cos θ0
θ̂ + p cos θ0

λ
ϕ̂ − 1

λ
�̂ − cosα

λ sin2 θ0
θ̂2 − p

λ sin θ0
θ̂ ϕ̂

+ cosα

2λ
ϕ̂2 − 2 cos θ0

sin θ0
γ̂ �̂ +

(
cosα

3λ sin θ0 cos θ0
+ cosα cos θ0

λ sin3 θ0

)
θ̂3
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+ p cos θ0

λ sin2 θ0
θ̂2ϕ̂ − cosα

2λ sin θ0 cos θ0
θ̂ ϕ̂2 + 2

sin2 θ0
θ̂ γ̂ �̂ − p cos θ0

6λ
ϕ̂3. (7d)

The linear part of the system (7) is

ẋ = F(λ)x, (8)

where

x = (θ̂ , ϕ̂, γ̂ , �̂)

and

F(λ) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0
0 0 0 1

p

λ
cos θ0 − sin θ0 cosα

λ cos θ0
−1

λ
0

cosα

λ sin θ0 cos θ0

p

λ
cos θ0 0 −1

λ

⎞
⎟⎟⎟⎟⎟⎠ .

The characteristic equation of the linearized system is

P(σ ) = det(F(λ) − σE) = σ 4 + b1σ
3 + b2σ

2 + b3σ + b4, (9)

where

b1 = 2

λ
, b2 = 1 − 2λp cos θ0

λ2
, b3 = −2p cos θ0

λ2
, b4 = p2 cos2 θ0

λ2
+ cos2 α

λ2 cos2 θ0
.

The Routh–Hurwitz criterion leads to the following stability conditions:

b1 > 0, b2 > 0, b3 > 0, b4 > 0, R ≡ b1b2b3 − b4b
2
1 − b23 > 0. (10)

Now we will consider the obtained conditions. Taking into account the form of the coefficient b1, the first
condition is equivalent to

λ > 0. (11)

The third condition b3 > 0 is equivalent to

p cos θ0 < 0. (12)

Taking into account (11) and (12), the second and the fourth conditions are also satisfied. The last condition
R > 0 can be rewritten as follows:

R = −4(p cos3 θ0 + λ cos2 α)

λ5 cos2 θ0
> 0.

This condition holds when

λ < λ0 = − p cos3 θ0

cos2 α
.

Since b4 = det(F(λ)) > 0 for p �= 0 and cosα �= 0, there cannot occur a steady-state bifurcation. The
boundary of a stability region is given by the condition R = 0. On this boundary the characteristic equation
has a pair of purely imaginary roots. The type of the second pair of roots on the boundary depends on the sign
of the expression

�∗
1 =

(
b1b4
b3

− b21
4

)
λ=λ0

= cos2 α

cos2 θ0
> 0.

Thus, on the boundary R = 0 the characteristic equation (9) has the roots

σ1 = bi, σ2 = −bi, σ3 = m + ni, σ4 = m − ni,
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where

b2 =
(
b3
b1

)
λ=λ0

, m = −
(
b1
2

)
λ=λ0

, n2 =
(
b1b4
b3

− b21
4

)
λ=λ0

, n > 0.

As shown in [15], in this case

p > 0, cos θ0 < 0,

so

n = − cosα

cos θ0
, b = n, m = cos2 α

p cos3 θ0
.

Thus, the system has two purely imaginary roots and two roots with a negative real part. This fact allows
us to suggest a branching of a limit cycle when λ = λ0. Such a bifurcation was found numerically, and so it is
also reasonable to study the bifurcation analytically.

The dependence of the system behavior near the stability boundary R = 0 on the parameter λ is determined
by theorems given below. Consider the variation of the parameter λ on a small interval λ0 − η ≤ λ ≤ λ0 + η,
where λ0 can be found from R(λ0) = 0. Let a = L1(λ0) be the first Lyapunov coefficient given below that
determines the stability for λ = λ0. Neglecting higher-order terms, the behavior of the system close to the
bifurcation point can be described by the one-dimensional differential equation for the radius of the bifurcating
periodic solution

ṙ = −d(λ − λ0)r + ar3, (13)

where d = − dσc/dλ ∝ dR/dλ, evaluated at the Hopf bifurcation point.

Theorem 1 (Supercritical Hopf bifurcation [17]) Let

a = L1(λ0) < 0, d = − dσc
dλ λ=λ0

< 0,

then (13) has a non-trivial asymptotically stable stationary solution r = (d(λ − λ0)/a)1/2 for λ > λ0.

Thus, with increasing λ, the stable equilibrium becomes unstable, but the image point stays in an ε-
neighborhood of the equilibrium. With decreasing λ, the equilibrium becomes stable again and the image
point returns to the equilibrium, as shown in Fig. 2. The behavior of the system is reversible with respect to λ.

The proof of this theorem has been described in detail [13,14,16,17].

Theorem 2 (Subcritical Hopf bifurcation) If a = L1(λ0) > 0 and d = dR/dλλ=λ0 < 0, then (13) has a
non-trivial asymptotically unstable stationary solution r = (d(λ − λ0)/a)1/2 for λ < λ0. For λ > λ0 the
trivial solution is unstable and no nearby stable stationary solution exists.

Thus, with increasing λ the stable equilibrium becomes unstable, and the point leaves the neighborhood
of it. When λ is decreased again below λ0, the point will usually not return to the equilibrium. The behavior
of the system is therefore irreversible with respect to λ. A typical situation is shown in Fig. 3 for a locally
subcritical, but globally supercritical Hopf bifurcation: If λ increases beyond the critical value λc, the system
quickly moves to the stable large amplitude oscillation and remains there, even if λ decreases below λ0 again.
Only if it reaches the limit point cycle (“LP”), it jumps back to the stationary state, exhibiting a hysteretic
behavior.

This theorem has also been proved in [13].
In the case under consideration, we have(

dR

dλ

)
λ=λ0

= 4 cos12 α

p5 cos17 θ0
< 0.

In this case, the first Lyapunov coefficient has the form (see the Appendix)

L1(λ0) = − π cos7 α sin2 θ0

p cos6 θ0(4p2 cos4 θ0 + cos2 α)
. (14)

Since cosα > 0 and p > 0, this expression is negative. Therefore, the system satisfies the conditions of
Theorem 1, and the boundary R = 0 is safe. Periodic modes that appear when λ>λ0 are stable.
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Fig. 2 Bifurcation diagram for the supercritical Hopf bifurcation. When λ is increased beyond λ0, the periodic solutions remain
nearby the stationary state and return to the stationary solution, if λ is decreased below λ0
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Fig. 3 Bifurcation diagram for a globally supercritical, but locally subcritical Hopf bifurcation. If λ increases beyond λ0, the
system jumps up to the stable large periodic solution and remains there, even if λ becomes slightly smaller than λ0 again

4 Numerical investigation of the bifurcating solutions

Since by (14) the first Lyapunov equation L1(λ0) is negative for all parameter values, the bifurcating periodic
solutions exist locally for λ ≥ λ0, respectively, for friction coefficients χ ≤ χ0 = 1/λ0. In order to get the
global behavior, several branches of periodic solutions were computed by the BVP solver Boundsco [18] and
the continuation algorithm Hom [19] for fixed values of p = 3 and inclination angle α for varying values of
the distinguished parameter χ . As can be seen in Fig. 4, the periodic solutions are throughout stable for small
inclination angles α and extend down to χ = 0. For inclination angles α > αc ≈ 54.8◦, the branches display
turning points, where the stability of the periodic solutions changes. For values of χ between the turning
points, three different periodic solutions are found, two of these are stable and the medium one is unstable. For
α = 75◦ and χ = 0.02, the periodic solutions are displayed in Fig. 5. The largest orbit is almost aligned with
the equator of the rotating sphere, whereas the smallest solution oscillates close to the bottom of the sphere.

During the path-following along the periodic solutions, we encounter a singularity of the differential
equations due to the use of spherical coordinates: Close to the Hopf bifurcation point the solutions are periodic
in θ and ϕ; but after the trajectories pass through the south pole of the sphere, the azimuthal angle ϕ increases
by 2π during one period. In order to overcome this difficulty, a different coordinate system (Cartesian or
spherical coordinates along the rotation axis) has been used close to the crossing of the south pole, when the
equations become singular.
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Fig. 4 Bifurcation diagram for p = 3 and different inclination angles α in the (χ, θ)-plane. The periodic solutions bifurcate from
the Hopf bifurcation boundary (“Hopf”). Stable (unstable) solutions are displayed as solid (dashed) lines, respectively. The curve
“TP” shows the location of turning points for varying inclination angles α

Fig. 5 Periodic solutions for α = 75◦ and χ = 0.02. The polar axis for the spherical coordinates is oriented along the rotation
axis of the sphere (color figure online)

4.1 Limiting behavior for small friction coefficients

When the parameter χ is set to zero, all gravitational and damping forces vanish and the mass can move freely
on the sphere, tracing out arbitrary great circles. For small values of χ , or equivalently, for large rotation speeds
ω, the numerical calculations indicate that the periodic solution approaches the equator of the rotating sphere
and rotates with the same speed as the sphere. That behavior is also expected by mechanical reasoning: If we
neglect the gravitational force, the friction and centrifugal force will cause the mass to move along the equator;
a small gravitational force causes a periodic excitation.

In order to study this motion, we use spherical angles aligned with the rotation axis of the sphere. In these
coordinates, the friction terms become simpler, by setting α = 0 in (1), because in the new coordinate system
the sphere rotates about the z-axis. Since now the gravity acts in the direction eg = (sin α, 0, − cosα)T, its
potential becomes

V = −χpeg · (sin θ cosϕ, sin θ sin ϕ, cos θ)T = χp(cos θ cosα − sin θ cosϕ sin α).

The equations of motion are therefore given by

θ̇ =γ, (15a)

ϕ̇ =�, (15b)

γ̇ = sin θ cos θ�2 + pχ(sin θ cosα + cos θ cosϕ sin α) − χγ, (15c)
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Fig. 6 Numerical “exact” solution and approximation ϑ = ϑ0 + ϑ1 of (15a)–(15d) for the parameter values p = 3, χ = 0.02,
α = 75◦ corresponding to the periodic solutions displayed in Fig. 5. The numerical solution corresponds to the solid, steep curve
in Fig. 5. The steady contribution ϑ0 is displayed by the dotted line

�̇ = 1

sin θ
( χ sin θ(1 − �) − pχ sin θ sin ϕ sin α − 2γ � cos θ) . (15d)

For p = 0 a solution of (15a)–(15d) is given by the steady rotation θ = π/2, ϕ = t along the equator. Since
Eq. (15d) for � is dominated by the term χ(1 − �), the azimuthal dynamics will change slightly under the
perturbation by p: At leading order, we obtain from (15d)

ϕ̇ = � = 1 −
∫ t

pχ sin τ sin αdτ = 1 + pχ cos t sin α, (16)

where the integration constant has been chosen such that the average perturbation of � vanishes. Setting
θ = π/2 + ϑ , �2 ≈ 1 + 2pχ cos t sin α and expanding Eq. (15c) up to first order in χ , we obtain the linear
equation with parametric excitation

ϑ̈ + χϑ̇ + (1 + 3pχ sin α cos t)ϑ = pχ cosα. (17)

One might think that the leading order expansion

ϑ0 = pχ cosα (18)

yields a good approximation for small χ , but the numerical solutions show a large periodic deviation from
this estimate, which occurs, because the parametric excitation frequency in (17) is in 1 : 1 resonance with the
eigenfrequency of the unperturbed equation. In order to find the periodic component of ϑ , we set ϑ = ϑ0 +ϑ1
and obtain the differential equation

ϑ̈1 + χϑ̇1 + (1 + 3pχ sin α cos t)ϑ1 = −3p2χ2 sin α cosα cos t. (19)

In order to find the influence of the parametric excitation term 3pχ sin α sin t ϑ1, we apply two steps of Normal
Form reduction to the equation to find the periodic solution

ϑ1 = 3p2χ sin α cosα sin t, (20)

which satisfies (19) up to terms of order O(χ2).
As demonstrated in Fig. 6, this approximation agrees well with the numerically obtained periodic solution

of the nonlinear equation, while the steady approximation is very poor.
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5 Conclusions

The Hopf bifurcation of a moving mass on a rotating sphere has been investigated. By transforming the system
to Jordan Normal Form, calculating the Center Manifold and simplifying the system using Normal Form
theory we obtained a simple expression for the first Lyapunov coefficient. Since this coefficient is negative, the
periodic solutions bifurcate supercritically from the steady state. These bifurcating solutions are also computed
numerically, and their limiting behavior for vanishing friction force is studied.
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A Calculation of the Lyapunov coefficient

For the case under consideration, a pair of eigenvalues ±iω on the imaginary axis and a second complex
conjugate pair m ± in with m < 0, the Lyapunov coefficient was already derived in [13]. Since this formula
looks extremely complicated, the contributions from the cubic terms in (24) from Normal Form calculations
and from Center Manifold Reduction are stated separately.

A.1 Transformation to Jordan Normal Form

The first step to calculate the bifurcating solutions is to introduce a linear change of coordinates, which
transforms the linearized equations (8) at the steady state to real Jordan Normal Form: Let vc and vs be the
complex valued eigenvectors of the Jacobian F corresponding to the eigenvalues iω and m + in, respectively,
then the matrix

V = [�(vc), (vc), �(vs), (vs)] (21)

satisfies

FV = VJ with J =
⎛
⎜⎝
0 −ω 0 0
ω 0 0 0
0 0 m −n
0 0 n m

⎞
⎟⎠ .

Setting

x = Jξ (22)

transforms system (7) to the new nonlinear system

ξ̇ = Jξ + f (ξ) with f (ξ) = V−1FNL(Vξ), (23)

where FNL(x) contains the nonlinearities of (7). The explicit formulas for the entries of V and f (ξ) are given
below.
In the transformed coordinates, the system takes the following form:

ξ̇1 = −bξ2 + Q1(ξ1, ξ2, ξ3, ξ4), (24a)

ξ̇2 = bξ1 + Q2(ξ1, ξ2, ξ3, ξ4), (24b)

ξ̇3 = mξ3 − nξ4 + Q3(ξ1, ξ2, ξ3, ξ4), (24c)

ξ̇4 = nξ3 + mξ4 + Q4(ξ1, ξ2, ξ3, ξ4), (24d)

where b, n, m are defined by the solutions of the characteristic equation (9).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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The nonlinear part of Eq. (7) can be rewritten as:

Pν(x1, x2, x3, x4) = a(ν)
11 x

2
1 + a(ν)

22 x
2
2 + a(ν)

33 x
2
3 + a(ν)

44 x
2
4

+ 2a(ν)
12 x1x2 + 2a(ν)

13 x1x3 + 2a(ν)
14 x1x4 + 2a(ν)

23 x2x3 + 2a(ν)
24 x2x4 + 2a(ν)

34 x3x4

+ a(ν)
111x

3
1 + a(ν)

222x
3
2 + a(ν)

333x
3
3 + a(ν)

444x
3
4

+ 3a(ν)
112x

2
1 x2 + 3a(ν)

113x
2
1 x3 + 3a(ν)

114x
2
1 x4 + 3a(ν)

221x
2
2 x1 + 3a(ν)

223x
2
2 x3 + 3a(ν)

224x
2
2 x4

+ 3a(ν)
331x

2
3 x1 + 3a(ν)

332x
2
3 x2 + 3a(ν)

334x
2
3 x4 + 3a(ν)

441x
2
4 x1 + 3a(ν)

442x
2
4 x2 + 3a(ν)

443x
2
4 x3

+ 6a(ν)
123x1x2x3 + 6a(ν)

124x1x2x4 + 6a(ν)
134x1x3x4 + 6a(ν)

234x2x3x4 + · · · ,

where

a(3)
11 = − p sin θ0

2λ
, a(3)

22 = p sin θ0

2λ
, a(3)

44 = sin θ0 cos θ0,

a(3)
111 = − p cos θ0

6λ
, a(3)

222 = sin θ0 cosα

6λ cos θ0
, a(3)

441 = (cos2 θ0 − sin2 θ0)

3
,

a(4)
11 = − cosα

λ sin2 θ0
, a(4)

22 = cosα

2λ
, a(4)

12 = − p

2λ sin θ0
,

a(4)
34 = −cos θ0

sin θ0
, a(4)

111 =
(

cosα

3λ sin θ0 cos θ0
+ cosα cos θ0

λ sin3 θ0

)
, a(4)

222 = − p cos θ0

6λ
,

a(4)
112 = p cos θ0

3λ sin2 θ0
, a(4)

221 = − cosα

6λ sin θ0 cos θ0
, a(4)

134 = 1

6 sin2 θ0
,

and the other coefficients are zero. Then the corresponding coefficients of the nonlinear part of the transformed
system are:

A(1)
11 = −1

2

β(2 cos θ0β
2λ + cos2 θ0 p − 4β cosαλ − p)

(4β2λ2 + 1)λ
,

A(1)
22 = −1

2

β(2β cosαλ + p)

(4β2λ2 + 1)λ
, A(1)

12 = β2(2 cos θ0β
2λ − p)

4β2λ2 + 1
,

A(1)
13 = 1

2

β2(−2 cos θ0β
2λ + cos2 θ0 p − p)

(4β2λ2 + 1)λ sin θ0
, A(1)

14 = −β3(2 cos θ0β
2λ2 + λp + cos θ0)

(4β2λ2 + 1)λ sin θ0
,

A(1)
23 = β3(2 cos θ0β

2λ + p)

(4β2λ2 + 1) sin θ0
, A(1)

24 = −1

2

β2(−4 cos θ0β
2λ + 2 cosαβλ + p)

(4β2λ2 + 1)λ sin θ0
,

A(2)
11 = −β(2 cos θ0β

3λ2 + cos2 θ0βλp + cosα − βλp)

(4β2λ2 + 1)λ
,

A(2)
22 = 1

2

β(−2βλp + cosα)

(4β2λ2 + 1)λ
, A(2)

12 = −1

2

β(2 cos θ0β
2λ − p)

(4β2λ2 + 1)λ
,

A(2)
13 = β3(−2 cos θ0β

2λ + cos2 θ0 p − p)

(4β2λ2 + 1) sin θ0
, A(2)

14 = −1

2

β2(2 cos θ0β
2λ − p)

(4β2λ2 + 1)λ sin θ0
,

A(2)
23 = −1

2

β2(2 cos θ0β
2λ + p)

(4β2λ2 + 1)λ sin θ0
, A(2)

24 = 1

2

β2(−2βλp − 2 cos θ0β + cosα)

(4β2λ2 + 1)λ sin θ0
,

A(3)
11 = 1

2

sin θ0(−2 cos θ0β
2λ − cos2 θ0 p + 4 cosαβλ + p)

(4β2λ2 + 1)λ
,

A(3)
22 = −1

2

sin θ0(2 cosαβλ + p)

(4β2λ2 + 1)λ
, A(3)

12 = β sin θ0(2 cos θ0β
2λ − p)

4β2λ2 + 1
,

A(4)
11 = sin θ0(2 cos θ0β

3λ2 + cos2 θ0βλp − βλp + cosα)

(4β2λ2 + 1)λ
,
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A(4)
22 = −1

2

sin θ0(−2βλp + cosα)

(4β2λ2 + 1)λ
, A(4)

12 = 1

2

sin θ0(2 cos θ0β
2λ − p)

(4β2λ2 + 1)λ
.

with β = cosα/cos θ0.
The first Lyapunov coefficient can be found as follows [13]:

L1(λ0) = π

4b2

(
L1,cub + L1,nf + 2b

�
L1,cm

)
(25)

with

L1,cub =3b(A(1)
111 + A(2)

222 + A(2)
112 + A(1)

122),

L1,nf =2(A(1)
22 A

(2)
22 − A(1)

11 A
(2)
11 ) − 2A(2)

12 (A(2)
11 + A(2)

22 ) + 2A(1)
12 (A(1)

11 + A(1)
22 ),

L1,cm =2(A(1)
23 + A(2)

13 )(m2 + n2)[b(n2 − m2 − 4b2)A(3)
11 + m(n2 + 4b2 + m2)A(3)

12

+ b(m2 − n2 + 4b2)A(3)
22 − 2bmnA(4)

11 + n(m2 + n2 − 4b2)A(4)
12 + 2bmnA(4)

22 ]
+ 2(A(1)

24 + A(2)
14 )(m2 + n2)[n(4b2 − m2 − n2)A(3)

12 + m(m2 + n2 + 4b2)A(4)
12

− b(m2 − n2 + 4b2)A(4)
11 − 2bmnA(3)

22 + b(m2 − n2 + 4b2)A(4)
22 + 2bmnA(3)

11 ]
+ (3A(1)

13 + A(2)
23 )[m(m2 + n2)2A(3)

11 + 2b2m(4b2 + 3m2 − n2)A(3)
11

+ 2b(m2 + n2)(m2 − n2 + 4b2)A(3)
12 − 2b2m(3n2 − m2 − 4b2)A(3)

22 + n(m2 + n2)2A(4)
11

+ 2b2n(m2 − 3n2 + 4b2)A(4)
11 + 4mnb(m2 + n2)A(4)

12 + 2b2n(4b2 + 3m2 − n2)A(4)
22 ]

+ (3A(1)
14 + A(2)

24 )[2b2n(3n2 − m2 − 4b2)A(3)
11 − n(m2 + n2)2A(3)

11

− 4mnb(m2 + n2)A(3)
12 − 2b2n(3m2 + 4b2 − n2)A(3)

22 + m(m2 + n2)(m2 + n2 + 6b2)A(4)
11

+ 8mb2(b2 − n2)A(4)
11 − 2b(m2 + n2)(n2 − m2 − 4b2)A(4)

12 + 2b2m(m2 − 3n2 + 4b2)A(4)
22 ]

+ (3A(2)
23 + A(1)

13 )[2b2m(4b2 + m2 − 3n2)A(3)
11 − 2b(m2 + n2)(m2 − n2 + 4b2)A(3)

12

− 2b2m(n2 − 4b2 − 3m2)A(3)
22 + m(m2 + n2)2A(3)

22 + 2b2n(4b2 + 3m2 − n2)A(4)
11

− 4bmn(m2 + n2)A(4)
12 − 2nb2(3n2 − m2 − 4b2)A(4)

22 + n(m2 + n2)2A(4)
22 ]

+ (3A(2)
24 + A(1)

14 )[4bmn(m2 + n2)A(3)
12 − 2b2n(3m2 + 4b2 − n2)A(3)

11 − n(m2 + n2)2A(3)
22

− 2b2n(m2 − 3n2 + 4b2)A(3)
22 + 2b2m(4b2 + m2 − 3n2)A(4)

11

− 2b(m2 + n2)(4b2 + m2 − n2)A(4)
12 + m(m2 + n2)2A(4)

22 + 2b2m(3m2 + 4b2 − n2)A(4)
22 ].

Here

L1,cub = cos9(α)(1 − 19 cos(2θ0)

32p cos8(θ0)(cos2(α) + 4p2 cos4(θ0))
(26)

denotes the contributions by the cubic terms in (23), the entry

L1,nf = cos9(α)
(
cos2(α) sin2(θ0) − 3p2 cos6(θ0)

)
p cos8(θ0)

(
cos2(α) + 4p2 cos4(θ0)

)2 (27)

is obtained by eliminating the quadratic terms in (ξ1, ξ2) in Q1 and Q2 in (24) by Normal Form, and

2b

�
L1,cm = − cos9(α)

(
9 cos2(α) − 8p2 cos2(θ0) + 38p2 cos4(θ0)

)
2p cos6(θ0)

(
cos2(α) + 4p2 cos4(θ0)

)2 (28)

denotes the contributions by projecting the equations onto the center manifold.
Summing the three expressions (26), (27) and (28) yields the astonishingly simple result (14).
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