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Abstract

Current blast furnace technology exists since the nineteenth century and has always
been one of the biggest emitters of carbon dioxide. A blast furnace is used for
smelting iron ore to produce pig iron. A hot air blast is injected at the lower part of
the blast furnace. The raceway is a turbulent zone, that occurs when hot air is blown
into the coke filling and is a significant part of the blast furnace. Although it has
been widely studied, not all processes happening inside the raceway are known yet.
CFD simulation can be a useful tool for improving the efficiency of blast furnaces
for a more climate-friendly steel production.
The blast furnace process is kind of a multiphase flow, with particles dispersed in
fluid phases. There are two major modeling concepts for handling fluid-particle
flows: Eulerian-Eulerian (EE) and the coupled CFD - discrete elements method
(CFD-DEM). As a hybrid method, Multiphase Particle-In-Cell (MP-PIC) shall com-
bine the advantages of both. Single particles are combined to so-called parcels.
These parcels are supposed to behave like the equivalent number of real particles.
Therefore, the particle number inside the system and the computational effort are
reduced, while the accuracy stays acceptable.
An important part of any gas-particle flow is the drag model. It describes the mo-
mentum exchange between particles and the surrounding fluid. Different approaches
describe the exchange of forces and moments.
In this work, a comparison of drag models from literature was conducted using
typical raceway conditions. Additionally, the drag model performance was evaluated
by comparing the predicted pressure drop to experimental values. In the next step,
Eulerian-Lagrangian (EL) hybrid models in combination with chosen drag models
were evaluated for a fixed bed and a fluidized bed. Finally, the capabilities to predict
raceway formation were investigated using experimental literature.
The simulations showed, that the Richardson-Zaki model failed to predict reasonable
results for the first test case and was excluded from the subsequent evaluations. The
remaining models predict reasonable pressure drops. EL hybrid models showed good
agreement for the fixed bed test case, while the results depend on the drag models
for the fluidized bed case. The EL models failed to predict the raceway formation
for one of the two investigated cases. In the second simplified case, the EL models
gave acceptable results.
Findings of these simulations can be used for developing EL hybrid models for the
raceway zone.
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Kurzfassung

Hochöfen bestehen in ähnlicher Form wie heute seit dem 19. Jahrhundert und
gehören seit jeher zu den größten Emittenten von Kohlendioxid. In einem Hochofen
wird aus Eisenerz in einem kontinuierlichen Reduktionsprozess Roheisen erzeugt.
Die Raceway ist die Wirbelzone, die beim Einblasen von Heißluft in die Kohleschüt-
tung entsteht und ist ein integraler Bestandteil des Hochofenvorgangs. Trotz inten-
siver Forschung sind noch immer nicht alle Vorgänge darin verstanden. CFD Simu-
lation kann ein nützliches Hilfsmittel zur Verbesserung der Effizienz von Hochöfen
auf dem Weg zu einer klimafreundlicheren Stahlproduktion sein.
Der Hochofenprozess lässt sich als Mehrphasenströmung beschreiben, da Partikel in
Fluidphasen feinverteilt sind. Zur Simulation von Partikelströmungen gibt es zwei
grundlegende Ansätze, die Euler-Euler Modelle(EE) und die CFD-Diskrete Elemente
Methode (CFD-DEM). Multiphase Particle-In-Cell (MP-PIC) soll als Hybridmodell
die Vorzüge von beiden verbinden. Dabei werden Partikel in sogenannte Pakete
zusammengefasst. Diese Pakete sollen sich wie die äquivalente Anzahl von realen
Partikeln verhalten. Dadurch wird die Anzahl der Partikel im System reduziert und
der Rechenaufwand bei gleichbleibend akzeptabler Genauigkeit verringert.
Ein wichtiger Bestandteil von Partikelströmungssimulationen ist das Widerstandsmod-
ell, welches den Strömungswiderstand eines Partikels in einer Fluidströmung beschreibt.
Verschiedene Ansätze beschreiben den Impulsaustausch.
In dieser Arbeit wurde zuerst ein Vergleich von in der Literatur bereits existierenden
Widerstandsmodellen anhand für eine Raceway typischen Bedingungen durchge-
führt. Zusätzlich wurden die Widerstandsmodelle durch einen Vergleich des berech-
neten Druckverlusts mit experimentiellen Daten getestet. Im nächsten Schritt wur-
den die Euler-Lagrange (EL) Hybridmodelle in Kombination mit den gewählten
Widerstandsmodellen für die Verwendung in einem Festbett und einer Wirbelschicht
evaluiert. Als Letztes wurde die Fähigkeit der Modelle eine Racewaybildung vo-
rauszuberechnen untersucht.
Die Berechnungen zeigten, dass das Richardson-Zaki Modell keine vernünftigen
Ergebnisse für den ersten Testfall geliefert hat. Deshalb wurde es nicht in den weit-
eren Tests berücksichtigt. Die restlichen Modelle zeigten vernünftige Druckverluste.
Die EL Hybridmodelle zeigten eine gute Übereinstimmung für den Festbett Testfall.
Die Ergebnisse des Wirbelschicht Testfalls hängen jedoch vom Widerstandsmod-
ell ab. Die EL Modelle haben beim Berechnen der Racewaybildung im ersten der
beiden Testfälle versagt. Im zweiten Fall lieferten sie akzeptable Ergebnisse.
Die Ergebnisse dieser arbeit können für die Entwicklung von EL Hybridmodellen
für die Raceway Zone verwendet werden.
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1 Introduction

1.1 Motivation and Problem Statement
The blast furnace technology was developed in a span of more than 2000 years [Go-
las, 1999]. Since the nineteenth century, blast furnaces are operated with coke and
air as hot blast. Since the early days, the iron industry has been one of the major
emitters of carbon dioxide. A better understanding of the many processes happen-
ing inside a blast furnace is helpful for building more efficient and environmental
friendly plants. Simulations can help there. They can be an effective and relatively
cheap tool for understanding the different involved processes in more detail and re-
veal non-observable processes.

In a blast furnace, iron ore, coke and flux are inserted through the top of the furnace,
while hot blast (oxygen enriched air) is blown into the bottom of the blast furnace
through so-called tuyeres. A raceway is formed in the vicinity of the tuyeres, where
extreme conditions prevail: high velocities, high temperatures, elevated pressure,
featuring chemical reactions including fluid phases and particles.

There are different ways for the simulation of particle flows in the blast furnace
[Jakobsen, 2008]. One way is the Eulerian-Eulerian (EE) approach, were particulate
phases are approximated as continuous phase using the kinetic theory of granular
flows (KTGF) [Gidaspow, 1994]. The EE framework is less computationally ex-
pensive, but shows a lack of accuracy [Adamczyk et al., 2014]. Another approach is
the computational fluid dynamics-discrete elements method (CFD-DEM), where the
motion of distinct particles is tracked in time and space using the Lagrangian ap-
proach. [Norouzi et al., 2016]. An advantage of these models is their ability to display
particle-particle interactions in detail. The major disadvantage is the significantly
increased computational effort compared to the EE framework. DEM is a power-
ful and exact simulation technique, but the explicit integration of its equations for
large numbers of interacting particles demands a huge computational effort [Norouzi
et al., 2016].
Hybrid models combine the advantages of both methods. They use the Eulerian-
Lagrangian (EL) approach, where the Eulerian approach is used for the continuous
phase and the Lagrangian approach is used for the solid/discrete phase. These
models shall combine the benefits of EE and DEM. Two existing hybrid models

1
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to simulate particle flows are the discrete phase method (DPM) [Adamczyk et al.,
2014] and the multiphase particle-in-cell method (MP-PIC) [Andrews and O’Rourke,
1996], further developed by [Snider, 2001], [O’Rourke and Snider, 2010], [O’Rourke
and Snider, 2012]. The computational effort is reduced in these models through com-
bining particles to so-called parcels. These parcels should behave like the equivalent
number of real particles. DPMFoam and MPPICFoam are the solvers implemented
in the open-source CFD code OpenFOAM [Weller et al., 1998] representing the par-
ticular concepts.

A drag model is an important part of multiphase simulations. It describes the
momentum exchange between particles and the surrounding fluid. Different drag
models have been developed. Some are derived especially for certain conditions, but
the presented models claim to be valid for a wide range of Reynolds numbers and
solid volume fractions. They are compared to each other and used in the solver
evaluations.

1.2 Objectives of this Work
The objective of this work is the evaluation of the ability of the DPM and MPPIC
approach to predict blast furnace-like gas-solid flows. Both approaches should reduce
the numerical effort compared to CFD-DEM. The DPM approach is used when cell
sizes are at the same scale as the particle sizes, since particle-particle interactions
are resolved. The work of [Haddadi et al., 2017] provides such a test case for the
DPM approach.
In contrast, the MP-PIC method solves the particle interactions on the Eulerian
grid. This approach reduces the numerical effort, but requires significantly larger
cells than particles. The work of [Jayarathna et al., 2017] provides a suitable test
case for the MP-PIC evaluations in slowly moving beds. MP-PICFoam’s actual
capabilities to predict the raceway formation are given by [Mojamdar et al., 2018].
Additional literature for a second raceway validation is given by [Feng et al., 2003].

2



2 Theory

2.1 Multiphase Flow
The term multiphase flow is used for any fluid flow that consists of more than one
phase or component [Brennen, 2005]. This can either be a simultaneous flow of

• materials with different states or phases (i.e. gas, liquid or solid), or

• materials with different chemical properties but in the same state or phase
(i.e. liquid-liquid systems such as oil droplets in water)

Examples for multiphase flow in nature are rain, snow, fog, avalanches, mud slides,
etc. [Brennen, 2005].
Every phase has separately defined volume fraction and velocity fields. Figure 2.1
shows typical multiphase flow regimes identified in general gas-liquid and gas-solid
flows in vertical and horizontal tubes. They can vary from simple slug and bubbly
flows (A, B) to dispersed systems like particulate flow (F).

Figure 2.1: Multiphase flow regimes. A: Slug flow. B: Bubbly flow. C: Droplet flow.
D: Annular flow. E: Packed and porous fixed bed. F: Particulate flow.
G: Stratified-free surface flow. [Jakobsen, 2008]

3
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The following list shows typical occurrences of the different flow regimes in a chemical
reactor [Jakobsen, 2008]:

• Single phase fluid flows (single phase reactors, i.e., laminar and turbulent flows)

• Flow through porous beds of solids (fixed bed reactors)

• Granular flows (fluidized bed reactors)

• Bubbly flows (fluidized bed reactors)

• Slurries (mixture of a pulverized solid with a liquid)

• Complex multiphase flows, where many phases interact simultaneously.

2.2 Modeling Concepts for Multiphase Flow
When dealing with simulations for multiphase systems, one has to differ between
systems with separated flows (regime G in Figure 2.1) and systems with dispersed
flows (regimes B, C and F in Figure 2.1). Different computational strategies for
multiphase flows are available. They are described in detail in the following sections.

2.2.1 The Eulerian-Eulerian Multifluid Models

In the EE framework, particulate phases are approximated as continuous phase by
the KTGF [Jakobsen, 2008].
These models use a set of transport equations including the conservation equation
of mass and momentum.
The governing equations are expressed as [Adamczyk et al., 2014]:

∂

∂t
(αiρi) +5 · (αiρi #»u i) = 0 (2.1)

∂

∂t
(αfρf #»u f )+5·(αfρf #»u f

#»u f ) = −αf5p+5·τf +αfρf
#»g +F +

N∑
q=1

[Kif ( #»u f − #»u i)]

(2.2)

∂

∂s
(αsρs #»u s) +5· (αsρs #»u s

#»u s) = −αs5 p+5·σs +αsρs
#»g +F +

N∑
q=1

[Kis( #»u i − #»u s)]

(2.3)
The derivation of the governing equations can be found in [Gidaspow, 1994].
Equation 2.1 describes the continuity equation for a phase i, whereas Equation 2.2
and Equation 2.3 define the momentum conservation for fluid (f) and solid (s) phases.

4
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According to [Jakobsen, 2008], the multi-fluid model can be used to describe any
multiphase flow regime, when the closure relation for the interfacial coupling terms
are provided. Additionally, the EE approach is less computationally expensive than
the Eulerian-Langrangian (EL) approach (see subsection 2.2.3). However, there is
no general agreement on the correct mathematical form of the net interfacial forces
acting on the dispersed phase particles, nor on the net hydrodynamic and fluid-
particle turbulence interactions. However, in recent years promising progress has
been made though [Jakobsen, 2008].

2.2.2 CFD-DEM

The Computational Fluid Dynamics - Discrete Element Method (CFD-DEM) is used
to describe and compute systems of fluids and large numbers of particles. In the mul-
tiphase flow procedure, fluid and solid phases can be modeled by the EE approach,
and in computaional fluid dynamics - discrete elements method (CFD-DEM), the
motion of distinct particles is tracked in time and space using the Lagrangian ap-
proach [Norouzi et al., 2016].
The basic principle of a DEM simulation is that matter consists of individual, sep-
arate (discrete) elements. In granular flow, these elements are particles. An initial
velocity is given to the particles at the beginning of a DEM simulation. Particles
can interact with each other and their contact lasts for a certain period. This al-
lows particles to interact with more than one other particle at once. All motion
force equations in DEM are solved explicitly, which increases the flexibility of DEM
simulations, but requires a small time step for integration. This small time step in
combination with a large number of involved particles demands huge computational
effort. [Norouzi et al., 2016]
CFD-DEM is settled between the meso-scale of the continuum and the micro-scale
of the particles, visible in Figure 2.2. In this theory, the flow field is separated
into cells which are larger than the particles but smaller than the flow field. The
volume fraction of each phase and the momentum exchange through the drag force
are the main influences on the motion of the particles. The fluid phase in meso-
scale is described by the local averaged Navier-Stokes equations via the traditional
computational fluid dynamics (CFD) approach, while the motion of solid particles
in micro-scale is obtained by the DEM, which applies Newton’s and Euler’s second
laws to every particle. A CFD-DEM simulation is still computationally expensive
and has therefore limitations to the total cell and particle number and the time step
of integration [Norouzi et al., 2016].

5
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Figure 2.2: Modeling scales in fluid-particulate systems according to [Norouzi et al.,
2016]. TFM: two-fluid model, TPM: two-phase model

2.2.3 The Eulerian-Lagrangian Models

Eulerian-Lagrangian (EL) models use the Eulerian approach for the fluid phase
and the Lagrangian approach for the solid/discrete phase. They are based on Lan-
grangian mechanics, which are a reformulation of classical mechanics. Langrangian
mechanics is also true in a non-inertial reference frame and invariant for coordinate
transformation [Honerkamp et al., 2012].
In the Lagrangian framework, particles are treated as rigid, infinitesimal small
spheres, similar to point centers of mass in space. [Jakobsen, 2008]. Equation 2.4
describes the Langrangian form of Newton’s second law, which is used to describe
the translational motion of the particle:

d

dt
(mp

#»v p) = #»

f hp + #»

f ext + #»

f E + #»g + #»

f D + #»

f virt + #»

f translift + #»

f B (2.4)

With:
#»

f hp . . . force due to hydrostatic pressure
#»

f ext . . . force due to any external pressure gradients
#»

f E . . . body force created by external fields apart from gravity
#»

f D . . . steady drag force
#»

f virt . . . virtual mass force
#»

f translift . . . transversal lift force
#»

f B . . . Basset history force

and mp = ρpVp describing the particle mass. Particle trajectories are calculated

6
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from the definition of the translational velocity rp(t) of the particle mass center:

d #»r p(t)
dt

= #»v p(t, #»r p(t)) (2.5)

EL concepts are classified according to the employed phase coupling [Jakobsen,
2008]:

• In a one-way coupled system, the particle volume fraction is in a range where
the effects of the particulate phase on the continuous phase are negligible.
However, the local velocity of the continuos phase has a direct impact on the
particle movement. For these systems, the Eulerian velocity field is computed
independently of the particle tracking with a standard single-phase simulation.
Thus, the trajectories of the single particles are also computed independently
from each other.

• Two-way coupled systems, in contrast, consider the phase coupling for fluid
and particulate phases. Two way coupling is required for low to moderate
particle phase fractions.

• For dense systems, four-way coupling has to be used, because additional to
inter-phase momentum exchange, particle-particle interactions are important.
Four-way coupling is required for high solid phase fractions.

Obviously, the number of particles and the volume fraction dictate the system of
choice. In practice, for dilute systems (αp < 10-6) one way coupling is sufficient. Two
way coupling is required for αp < 10-3 and for denser systems, four way coupling is
necessary [Jakobsen, 2008].
Figure 2.3 shows the classification of phase-coupling mechanisms and Figure 2.4
gives a visual representation of the interactions.

Figure 2.3: Classification of phase-coupling mechanisms according to [Elghobashi,
1994]

7
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Fluid

Particle

Fluid

Particle

Fluid

Particle

Particle

Figure 2.4: Visual representation of possible phase interactions. left: one way cou-
pling, center: two way coupling, right: four way coupling

The main advantage of the EL framework is its ability to describe the particle-
particle interactions in detail. While the major disadvantage is the increased com-
putational effort compared to the EE framework. Simple EL cases can be solved
with a powerful personal computer within minutes, whereas complex 3D-cases have
to be solved on supercomputers [Jakobsen, 2008].

2.2.3.1 Discrete Phase Method

The DPM is an Eulerian-Lagrange approach using a four-way coupling for describing
particle flow, as described in the previous sections. The numerical solution of the
particle phase is obtained by concentrating a large number of particles to a so called
parcel. This parcel is supposed to behave like the equivalent number of real particles
with the same density, volume, velocity and position. The number of single particles
in a computational parcel can be determined by following expression [Adamczyk
et al., 2014]:

nP = ṁparcel∆t
mP

, (2.6)

where:
∆t . . . time step in a transient calculation
ṁparcel . . . mass flow rate of a single parcel
mP . . . mass of an individual particle.

Following expressions describe the equations for mass and momentum solved in the
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DPM approach:

∂

∂t
(αfρf ) +∇ · (αfρf #»u f ) = Smass (2.7)

∂

∂t
(αfρf #»u f ) +∇· (αfρf #»u f

#»u f ) = −αf∇p+∇· τf +αfρf
#»g +Ksf ( #»u s− #»u f ) +Smom,

(2.8)
where Smass and Smom are terms for the exchange of mass and momentum between
the particle and the fluid phase.
The particle equation of motion is defined as

d #»u p
dt

= FD( #»u f − #»u p) +
#»g (ρp − ρf )

ρp
− ∇p

ρp
− ∇ · σs

ρp
. (2.9)

In this equation, the granular stress tensor σs portrays the interactions calculated
based on the KTGF [Gidaspow, 1994] on the Eulerian grid, and the term FD( #»u f −
#»u p) represents the particle acceleration due to drag. ∇p/ρp describes the particle
acceleration due to pressure difference. A new position of a particle is calculated as

d #»x p
dt

= #»u p. (2.10)

After the calculation of the particle position, the solid volume fraction in a compu-
tational cell is calculated as follows:

αs = npnparcelVp
Vcell

, (2.11)

where Vcell is the volume of a computational cell. The obtained solid volume fraction
is transferred to the Eulerian grid where the fluid volume fraction is calculated using
the correlation αf = 1 − αs [Adamczyk et al., 2014]. Section 2.2.3.2 gives detailed
information about the solid stress tensor σs. More information about the derivation
of these governing equations can be found in literature [Gidaspow, 1994].

2.2.3.2 Multiphase-Particle In Cell

The MP-PIC method is a numerical method for calculating particle-particle and
particle-fluid interaction in CFD [Andrews and O’Rourke, 1996]. Its predecessor
was the particle-in-cell (PIC) method. The numerical solution of the particle phase
is obtained by concentrating a large number of particles to so-called parcels. These
parcels are supposed to behave like the equivalent number of real particles with the
same density, volume, velocity and position. In the MP-PIC, the particles are treated
as computational particles and as continuum at the same time. The MP-PIC core
method is the mapping of particle properties between the Lagrangian and Eulerian
phase via interpolation functions. In the solution algorithm, particle properties are

9
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first solved on the Eulerian grid and then mapped back to the particle parcels prior
to solving the Lagrangian phase. [Andrews and O’Rourke, 1996]
For the MP-PIC and an incompressible gas phase, following continuity equation
emerges:

∂αf
∂t

+∇ · (αf # »uf ) = 0 (2.12)

A variation of the Navier-Stokes equations describes the momentum transport:

∂αf
# »uf

∂t
+∇ · (αf # »uf

# »uf ) = −∇p
ρf
−

#»

F

ρf
+ αf

#»g (2.13)

The particle phase is described by a so called probability distribution function (ξ),
which indicates the likelihood of finding a particle with a velocity # »uf , density ρp,
volume Vp at location x and time t. Following equation describes its changes in
time:

∂ξ

∂t
+∇ · (αg #»up) +∇ #»up · (αg

#»

A) = 0 (2.14)

where #»

A = d #»u
dt

is the particle acceleration and is given by

#»

A = D( # »uf − #»up)−
1
ρp
∇xp+ #»g − 1

αsρs
∇xτ (2.15)

where D is a drag coefficient (see section 2.3) and τ is an isotropic solid stress term
that will be discussed later. The particle volume fraction is described by following
equation, which includes the distribution function (fdis):

αs =
∫∫

fdis
mp

ρs
dmp d

#»v . (2.16)

The interface momentum transfer function is provided by following expression:

#»

F transfer =
∫∫

fdismp

[
D( # »uf − #»up)−

1
ρs
∇ #»p

]
dmp d

#»v . (2.17)

The computational parcels follow characteristic paths representing the positions,
velocities and sizes of physical particles. Particle equations are not directly solved,
but as mentioned before, are interpolated to the Eulerian grid. The solved equations
are of the following form [Travis and Harlow, 1976]:

∂(αsρs)
∂t

+∇x · (αsρs #»u s) = 0 (2.18)

10
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∂(αsρs #»u s)
∂t

+∇x · (αsρs #»u s
#»u s) +∇xτ + αs∇xp =

αsρs
#»g +

∫∫
fdismpD( #»u g − #»u s)dmp d

#»v−

∇x

[∫∫
fdismp( #»u s

#»u p,mean)( #»u s
#»u p,mean)dmp d

#»v
]

(2.19)

where #»u p,mean describes the mean particle velocity:

#»u p,mean = 1
αsρs

∫∫
fdismp

#»v dmp d
#»v . (2.20)

After the Eulerian particle phase equations are solved, the gradients of velocities,
gas pressure and solid stress are interpolated back to the parcel positions. This and
the fact that there are typically less grid points than Lagrangian parcels save a lot
of computational cost. [Andrews and O’Rourke, 1996]
The interpolation of the particle properties is done with interpolation operators. A
rectilinear grid is assumed and the particle properties are mapped to the cell centers,
while the vector properties are mapped to the cell faces. [Snider, 2001]
The effect of particle packing is modeled through particle stress models. This pro-
vides a pressure type force and prevents packing of particles beyond the close pack
limit. [Snider, 2001] has suggested calculating the particle stress τ , as

τ =
Psτ

β
p

max [αcp − αs, ε(1− αs)]
, (2.21)

where:
αcp . . . close pack porosity
β . . . constant, 2 ≤ β ≤ 5
Ps . . . solid phase stress
ε . . . very small number used to avoid singularity, typically 10−7.

The MP-PIC method was adapted by a model for the numerical calculation of
collisional transfer of mass, momentum, and energy among particles in fluidized beds
[O’Rourke et al., 2009]. Additional improvements regarding the particle-collision-
behavior have been done by introducing the so-called damping time τD [O’Rourke
and Snider, 2010]:

τD =
√

3π
32

d

αsσ

1
g′oη (1− η) , (2.22)

where

g′o(αs) = 1

1−
(
αs
αcp

) 1
3

(2.23)

11
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describes the radial distribution function [Lun et al., 1984], and

η = 1 + e

2 (2.24)

is the dependence on the restitution coefficient (e).
Equation 2.22 is obtained from a correlation for the damping term by [Igci et al.,
2008].

[O’Rourke and Snider, 2012] improved this formula by including collisional return-
to-isotropy:

1
τg

= 8
√

2
5π

s

r3
32

∫∫
f(r + r32)4(ui − ūi)2dmp dvi∫∫
f(r + r32)2(ui − ūi)dmp dvi

g0(αs)η(2− η) (2.25)

Where ūi describes the mass-averaged particle velocity. r and r32 describe the par-
ticle radius and the particle Sauter mean radius:

r =
(
mp

4
3πρp

) 1
3

(2.26)

r32 =
∫
fr3 dmp dvi∫
fr2 dmp dvi

= 6 Vp
Ap
. (2.27)

These improvements are already implemented in the OpenFOAM code in version 6.
The Usage of these models is described in subsection 3.1.2.
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2.3 Multi-Phase Momentum Exchange
The drag coefficient is a dimensionless quantity that quantifies the intensity of the
momentum exchange between an object in a fluid environment. It is used in the mo-
mentum equation in which a lower drag coefficient indicates that the object will have
less aerodynamic or hydrodynamic drag. The drag coefficient is always associated
with a particular surface area [McCormick, 1979].
The drag coefficient is commonly denoted as CD and is defined as:

CD = 2 · FD
ρf · | #»u s − #»u f |2 · A

, (2.28)

where:
FD . . . drag force
ρf . . . fluid density
| #»u s − #»u f | . . . relative velocity magnitude
A . . . surface area.

CD is a function of the Reynolds number Re for incompressible fluids:

CD = f(Re), (2.29)

with

Re = u · ρ · L
µ

, (2.30)

where:
L . . . characteristic length scale of the object
µ . . . dynamic viscosity.

The drag force on any object is a function of density, flow speed, fluid viscosity, and
characteristic length scale of the object:

FD = f(ρ, u, µ, L). (2.31)

In compressible flows, the speed of sound is relevant and CD is also a function of
the Mach number (Ma):

CD = f(Re,Ma). (2.32)
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2.4 Drag Model Correlations
The following section gives an overview of selected drag models. For comparison,
the so called momentum transfer coefficient Ksf is introduced. Its definition varies
for the different drag models in the following sections. The unit of the momentum
transfer coefficient is:

[Ksf ] = kg

m3 · s
. (2.33)

2.4.1 Syamlal O’Brien

The Syamlal O’Brien drag model [Syamlal and O’Brien, 1987] was derived for a single
spherical particle in a fluid and is modified with the relative velocity correlation vrel,
which describes the settling velocity of a particle divided by the settling velocity of
a perfect sphere with identical mass [Lundberg J., 2008].
The main idea in this model is that the Archimedes numbers of a single particle and
a multi-particle system are the same. The Archimedes number is a dimensionless
number which describes the ratio of buoyancy forces and frictional forces [Dittmann,
1995]. The Archimedes number is defined by:

Ar = gL3ρf (ρs − ρf )
µ2 , (2.34)

where:
g . . . gravitational acceleration
µ . . . dynamic viscosity
L . . . characteristic length scale of the object
ρs . . . density of the solid phase.

Following correlation shows the overall momentum exchange rate:

Ksf = 3αfαsρf
4dpv2

rel

· CD| #»u s − #»u f |, (2.35)

where:
αf . . . volume fraction of the fluid phase
αs . . . volume fraction of the solid phase
vrel . . . relative velocity correlation
dp . . . particle diameter.

Equation 2.36 shows the employed correlation for CD, which was first proposed
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by [Dalla Valle, 1943]:

CD =
0.63 + 4.8√

Rep
vrel

2

. (2.36)

vrel was first described by [Garside and Al-Dibouni, 1977]. [Richardson and Zaki,
1997] adapted the concept to yield the following expression:

vrel = 1
2 [A− 0.06Rep] + 1

2

[√
(0.06Rep)2 + 0.12Rep(2B − A) + A2

]
, (2.37)

with the coefficients A and B being:

A = α4.14
f (2.38)

B =
 0.8αf 1.28 αf ≤ 0.85

αf
2.65 αf > 0.85,

(2.39)

and Rep describing the particle Reynolds number:

Rep = ρfdp| #»u s − #»u f |
µf

. (2.40)

2.4.2 Richardson Zaki

The Richardson and Zaki model [Richardson and Zaki, 1997] is identical to the
model proposed by Syamlal O’Brien, except for the definition of vrel. An iterative
algorithm defines vrel in case of the Richardson and Zaki model [Lundberg J., 2008]:

vrel = αn−1
f (2.41)

With n being the so called Richardson Zaki parameter:

n =


4.65 ReRZ < 0.2

4.4Re−0.03
RZ 0.2 > ReRZ < 1

4.4Re−0.1
RZ 1 > ReRZ < 500

2.4 ReRZ > 500,

(2.42)

where ReRZ is a modified Reynolds number:

ReRZ = Rep
vrel

. (2.43)

Figure 2.5 shows the iterative algorithm for the calculation of n.
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Start

Calculate Rep

Guess an initial value for vrel, e.g. 1

Calculate ReRZ with Equation 2.43

Use calculated ReRZ to get the parameter n in Equation 2.42

Calculate right hand side of Equation 2.41

Do guessed and calculated vrel match? (Accepted error 10 -5.)

no

End

yes

Figure 2.5: Flow chart of the algorithm used to determine vrel in the Richardson
and Zaki drag model

2.4.3 Gidaspow

The Gidaspow drag model is a combination of the Wen and Yu drag model, which
uses a correlation from the experimental data of Richardson and Zaki, and the Ergun
equation [Gidaspow, 1994]. The correlation by Gidaspow is valid if viscous forces
are dominating the flow [Lundberg J., 2008].
Equation 2.44 shows the Wen and Yu momentum transfer rate:

Ksf = 3
4CDspher

αfαs| #»u s − #»u f |ρf
dp

α−2.65
f . (2.44)

CDspher is the drag factor of a spherical particle and related to the Reynolds number
by [Rowe et al., 1960]:
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CDspher =


24
Remean

[1 + 0.15Re0.687
mean] Remean < 1000

0.44 Remean ≥ 1000.
(2.45)

With Remean being the so called mean flow Reynolds number:

Remean = αf | #»u f − #»u s|dp
ν

= Rep · αf (2.46)

The Ergun equation [Ergun, 1952] was primary derived for packed beds and was
later adapted by [Akgiray and Saatci, 1998] for fluidized beds:

Ksf = A
µf (1− αf )2

αf (dpφ)2 +B
ρf (| #»u f − #»u s|)(1− αf )

dpφ
, (2.47)

with:
φ . . . shape factor (1 corresponds to perfect sphere)
A,B . . . constants, default: A = 150, B = 1.75.

The first term on the right hand side (RHS) describes the viscous flow at a low
Reynolds number, while the second term describes the kinetic flow at high Reynolds
numbers.
The combination of the Wen and Yu drag model from Equation 2.44 and the Ergun
equation from Equation 2.47 is considered as the Gidaspow drag model [Gidaspow,
1994]:

Ksf =
 Ksf (Ergun) αf ≤ 0.8
Ksf (WenY u) αf > 0.8.

(2.48)

2.4.4 RUC

The Representative Unit Cell (RUC) drag model was first published by [Du Plessis
and Masliyah, 1988]. Since then, several modifications have been proposed in liter-
ature (see [Lundberg J., 2008]). The underlying principle is geometrical averaging
of porous media. This approach ensures the validity for the whole possible range
of particle volume fractions. The RUC is of similar form as the Ergun equation
(Equation 2.47), with functional expressions for A and B substituting the Ergun
model constants (150 and 1.75) [Lundberg J., 2008]:

A =
26.8α3

f

α
2
3
s

(
1− α

1
2
s

)(
1− α

2
3
s

)2 (2.49)

B =
α2
f(

1− α
2
3
f

)2 . (2.50)
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2.4.5 Hill Koch Ladd

The Hill-Koch-Ladd (HKL) drag model was first published by [Hill et al., 2001]
and modified by [Benyahia et al., 2006] to the version used in this work. The
modification extended the validity to a wider range of Reynolds numbers and solid
volume fractions. It differs to the previous models, because it is entirely based on
computer simulations. The modified HKL model is shown in Equation 2.51:

Ksf = 3
4
CD,HKLαsαfρf | #»u f − #»u s|

dp
. (2.51)

The drag coefficient CD,HKL is expressed as:

CD,HKL = 12
α2
f

ReHKL
FHKL, (2.52)

with FHKL being a dimensionless drag factor which correlates the drag to the particle
concentration and the particle radius based Reynolds number:

ReHKL = ρfαfdp| #»u f − #»u s|
2µf

. (2.53)

The formulation for ReHKL also explains the coefficient 12 in Equation 2.52 rather
than the typical 24, which is related to the particle diameter [Benyahia et al., 2006].
The dimensionless drag factor FHKL is calculated depending on the Reynolds number
and the particle volume fraction. The piecewise function for FHKL can be seen in
Equation 2.54:

FHKL =


1 + 3

8ReHKL for αs ≤ 0.01 ∧ReHKL ≤ F2−1
3
8−F3

F0 + F1Re
2
HKL for ReHKL ≤

F3+
√
F 2

3−4F1(F0−F2)
2F1

F2 + F3ReHKL Otherwise,

(2.54)

with following coefficients:

F0 =
 (1− ω) ψ1 + 10ω αs

(1−αs)3 0.01 < αs < 0.4
10 αs

(1−αs)3 αs ≥ 0.4
(2.55)

F1 =


√

2
αs

40 0.01 < αs ≤ 0.1
0.11 + 0.00051 e11.6αs αs > 0.1

(2.56)

F2 =
 (1− ω) ψ2 + 10ω αs

(1−αs)3 0.01 < αs < 0.4
10 αs

(1−αs)3 αs ≥ 0.4
(2.57)
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F3 =
 0.9351αs + 0.03667 αs < 0.0953

0.0673 + 0.212αs + 0.0232
(1−αs)5 αs ≥ 0.0953.

(2.58)

With:

ψ1 =
1 + 3

√
αs
2 + (135/64)αsln(αs) + 17.14αs

1 + 0.681αs − 8.48α2
s + 8.16α3

s

(2.59)

ψ2 =
1 + 3

√
αs
2 + (135/64)αsln(αs) + 17.89αs

1 + 0.681αs − 11.03α2
s + 15.41α3

s

(2.60)

ω = e−
10(0.4−αs)

αs . (2.61)

2.4.6 Tenneti

The drag model developed by [Tenneti et al., 2011] is based on particle resolved
direct numerical simulation (DNS) through a method called Particle-resolved Un-
contaminated - fluid Reconcilable Immersed Boundary Method (PUReIBM). That
means, that the Navier-Stokes equations are solved with no-slip and no-penetration
boundary conditions using an immersed boundary forcing term at the particle sur-
faces. Further information on the PUReIBM can be found elsewhere [Tenneti et al.,
2011].
The derived expression for the dimensionless drag is:

FTen = Fisol(Remean)
(1− αs)3 + F4 + F5. (2.62)

With Fisol being the drag force acting on an isolated sphere moving in an unbounded
medium. Fisol is obtained from the correlation by [Shiller and Naumann, 1935]:

Fisol =
 1 + 0, 15 Re0.687

p Rep < 1000
0.44 Rep

24 Rep > 1000
(2.63)

F4 = 5.81 αs
(1− αs)3 + 0.48 α

1
3
s

(1− αs)4 (2.64)

F5 = α3
s Remean

(
0.95 + 0.61 α3

s

(1− αs)2

)
(2.65)

and Remean being the so called mean flow Reynolds number defined in Equation 2.46.
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The momentum exchange rate Ksf is calculated by the expression of Levenspiel:

Ksf = 0.75 · ρ αs αf |
#»u f − #»u s|
dp

· CD,Ten, (2.66)

where:

CD,Ten = Fisol · αf +
24 · α2

f

Remean
· (F4 + F5). (2.67)

2.4.7 Beetstra

[Beetstra et al., 2007] developed a drag model for fluid flow past monodisperse arrays
of spheres with simulations based on the Lattice Boltzmann method (LBM). The
LBM is a class of CFD methods solving non-equilibrium thermodynamical systems
using the Boltzmann equation1 on a discretized phase space [Lerner and Trigg, 1991].
[Beetstra et al., 2007] derived following correlation for the dimensionless drag force
for monodisperse systems as a function of Remean and αs from the simulations:

FBeet = 10αs
(1− αs)2 + (1− αs)2 (1 + 1.5α

1
2
s ) + 0.413Remean

24(1− αs)2 ·

(1− αs)−1 + 3αs(1− αs) + 8.4Re−0.343
mean

1 + 103αsRe
−(1+4αs)

2
mean

(2.68)

The calculation of Ksf is similar to the one in subsection 2.4.6:

Ksf = 0.75ρ αs αf |
#»u f − #»u s|
dp

CD,Beet, (2.69)

where:
CD,Beet = 24 αf

Remean
FBeet. (2.70)

1general form: df
dt =

(
∂f
∂t

)
force

+
(

∂f
∂t

)
diff

+
(

∂f
∂t

)
coll

where the force term corresponds to the
forces exerted on the particles by an external influence, the diff term represents the diffusion
of particles, and coll is the collision term accounting for the forces acting between particles in
collisions [McGraw-Hill, 1994].
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2.5 Other Effects in Multiphase Flows

2.5.1 Added Mass Force

Added mass or virtual mass is the mass added to a system because an accelerating
or decelerating body must move some volume of the surrounding fluid as it moves
through it. This is a common issue because the object and the surrounding fluid
cannot occupy the same space at the same time. As a result, moving particles seem
to have a larger mass than their actual mass [Jakobsen, 2008].

For a spherical particle submerged in an inviscid, incompressible fluid, the virtual
mass force is:

#»

F virt = ρf · Vp
2 ·

(
D #»u f
Dt
− d #»u s

dt

)
, (2.71)

with:
Vp . . . volume of the particle
D
Dt

. . . material derivative.

While taking a look at the momentum equation for the particle, the origin of the
notion "virtual mass" becomes clear:

mp ·
d #»u s
dt

=
∑ #»

F + ρf · Vp
2

(
D #»u f
Dt
− d #»u s

dt

)
, (2.72)

where ∑ #»

F is the sum of all other force terms on the particle, such as gravity,
pressure gradient, drag, lift, Basset force, etc.
Moving the derivative of the particle velocity from the RHS of the equation to the
left hand side (LHS) we get:

(
mp + ρf · Vp

2

)
d #»u s
dt

=
∑ #»

F + ρf · Vp
2

D #»u f
Dt

, (2.73)

so the particle is accelerated as if it had an added mass of half the fluid it displaces,
and there is also an additional force contribution on the RHS due to acceleration of
the fluid [Crowe et al., 1998].

2.5.2 Mass Inertia

The particle response time describes the time it takes for a particle to respond to a
change of the velocity of the fluid phase and can be defined as [Brennen, 2005]:

τres =
ρsd

2
p

18µf
. (2.74)
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It is used in the Stokes number (St), which is a dimensionless number that describes
the behavior of a particle suspended in fluid flow. It is defined as the ratio between
the particle response time and the characteristic time of the fluid:

St = τres
τchar

, (2.75)

with:

τchar = L

uf
, (2.76)

where L is the characteristic length.
At small Stokes numbers, particles follow changes in the fluid flow closely, whereas
at high Stokes numbers the particles will detach from flow according to mass inertia.

2.5.3 Turbulent Dispersion

In fluid dynamics, turbulence or turbulent flow is any pattern of fluid motion char-
acterized by chaotic changes in pressure and flow velocity [Batchelor, 2000].
Turbulent flows depend in many ways on time and location. Typical characteristics
are high Reynolds numbers and a varying velocity field. To describe this type of
flow, statistical methods are used. An important class of these methods are so called
turbulence models, which approximate the mean flow [Kuhlmann, 2007].
In multiphase flows, turbulence in the continuous phase can have an effect on the
particles in the dispersed phase and cause them to be transported from regions of
high concentration to regions of low concentration. This affection of the migration
of the particles is referred to as turbulent dispersion [Burns et al., 2004].
A so called turbulent dispersion force is introduced, which describes the effects of
the interphase turbulent momentum transfer and acts like a turbulent diffusion in
dispersed flows. For a dispersed (solid) phase s and a continuous phase f , the
turbulent dispersion force can be modeled as [Bauer et al., 2016]:

Ksf

(
#̃»v s − #̃»v f

)
= Ksf ( #»v s − #»v f )−Ksf

#»v dr. (2.77)

With the term on the LHS representing the instantaneous drag, the first term on
the RHS Kpq ( #»v p − #»v q) describing the mean momentum exchange between the two
phases. The second term is Ksf

#»v dr describing the turbulent dispersion force:

#»

F td,f = − #»

F td,s = −ftd,limKsf
#»v dr, (2.78)

with #»v dr being the drift velocity. It is caused by particle transport due to turbulent
fluid motion. ftd,lim is a factor used to limit the turbulent dispersion force.
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3 Methods and Preliminary
Evaluations

3.1 OpenFOAM Implementation
All simulations were made with the open source CFD software Open source Field
Operation and Manipulation (OpenFOAM)1 [Weller et al., 1998]. OpenFOAM is a
C++ based toolbox for solving continuum mechanics problems. There is a variety
of already existing solvers for different problems including multiphase flow, electro-
magnetics, combustion, and heat transfer. Additional solvers can be added to the
toolbox by the user.

3.1.1 DPMFoam and MPPICFoam

DPMFoam and MPPICFoam are both Lagrangian solvers for particle-laden flow.
They were developed for the transient calculation of kinematic particle clouds in-
cluding the effect of the volume fraction of particles on the continuous phase. MP-
PICFoam uses the Multiphase Particle-In-Cell method (MP-PIC) described in sub-
subsection 2.2.3.2 to represent collisions without resolving particle-particle interac-
tions [Weller et al., 2018].

In DPMFoam, the PISO-SIMPLE (PIMPLE) algorithm is used to solve the Navier-
Stokes equations [Moukalled et al., 2015]. PIMPLE is a combination of Pressure
Implicit with Splitting of Operator (PISO) and Semi-Implicit Method for Pressure-
Linked Equations (SIMPLE). Both are iterative solvers with the difference, that
SIMPLE is a steady-state algorithm, while PIMPLE is a transient one. An easy
way to think about PIMPLE, is to imagine it as a SIMPLE algorithm done for
every time-step. (The SIMPLE workflow is shown in Figure 3.1). One time-step
is completed, when the criteria for time step convergence (default 10−5) is reached.
The solver will continue with the next time-step. When solving the Navier-Stokes
equations, the solver is taking a guessed value for pressure p∗ that fits the velocity

1OPENFOAM® is a registered trademark of OpenCFD Ltd licensed in perpetuity to the Open-
FOAM Foundation.
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term. When the pressure field is updated, this guessed value is used:

pk+1 = pk + p∗ (3.1)

The pressure term is always under-relaxated, otherwise the computed value for the
pressure correction would be too high [Bunge, 2003]. After the velocity field is
updated, the received pressure value is set as the new guessed pressure value p = p+

and the procedure repeats until convergence [Moukalled et al., 2015].
Figure 3.1 shows the iterative SIMPLE algorithm.

3.1.2 Submodels implemented in MPPICFoam

This section gives a short overview about the submodels implemented in MP-
PICFoam and how they work. The parameters for these models are set in the
kinematicCloudProperties file inside the constant directory of an OpenFOAM
case.
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Table 3.1: Explanation of the submodels implemented in the MPPICFoam solver.
Submodel Explanation
packingModel There are two options: implicit and explicit. For im-

plicit, the time evolution of the solid volume fraction is
solved implicitly on the Eulerian mesh. The computed
flux is then applied to the Lagrangian field. For explicit,
the inter-particle stress is calculated using the current
particle position. The stress force is then applied only to
particles that are moving towards regions of close pack.

dampingModel If the damping model relaxation is chosen, the cal-
culation for the damping time τD will be according to
[O’Rourke and Snider, 2010].

isotropyModel For this work, the isotropy model stochastic is chosen,
meaning that the return-to-isotropy model of [O’Rourke
and Snider, 2012] is employed. For that purpose, a
Gaussian-plus-delta distribution chooses some velocities
of certain particles to be modified. The modification
depends on a time-scale model, which randomizes the
velocities. The lower the value of the time-scale, the
greater the affection of the particle velocities.

injection model Handles the injection of the dispersed phase. A descrip-
tion can be found in section 3.4.

particleStressModel Describes the inter-particle stress. The mode chosen for
this work was the one by [Harris and Crighton, 1994].

patchInteractionModel Handles the interaction between a particle and a wall.
All patches defined in the geometry have to be set
separately. Possible settings are stick, rebound, and
escape, which are self-explanatory. In this work, the
option rebound is chosen. The rebound is set with the
so-called coefficient of restitution e.

Under-relaxation Under-relaxation can help to keep a simulation stable. It re-
duces solution oscillations. After each iteration, at each cell, a new value for a
variable X in cell i is updated using following equation [Versteeg and Malalasekera,
1995]:

Xnew,used
i = Xold

i + α(Xnew,predicted
i −Xold

i ), (3.2)
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where α is the under-relaxation factor. α = 1 meaning no under-relaxation. In
OpenFOAM, the option for underrelaxation is found in the fvSolution file inside
the system directory. An entry looks like this:

r e l a xa t i onFac t o r s
{

f i e l d s
{
}
equat ion
{

U. a i r 0 . 8 ;
p 0 . 8 ;
alpha . a i r 0 . 8 ;

}
}

Listing 3.1: Settings for the underrelaxation of the parameters air velocity, pressure,
and fluid volume fraction in OpenFOAM.

Coefficient of restitution The coefficient of restitution e was first described by
Isaac Newton [Weir and McGavin, 2008] and defines the ratio of the final to initial
relative velocity between two objects after they collide. In CFD simulations, it
defines the particle-particle and particle-wall interactions by following formula:

e = relative velocity after collision

relative velocity before collision
, (3.3)

with e = 1 meaning that the velocity magnitude of the particle after collision is the
same as before.
In the OpenFOAM implementation, the rebound is separated into normal and tan-
gential velocity and e describes the normal velocity and µ the tangential one. For
µ = 0: ut,new = ut,old

26



Master’s Thesis Alex Gludovacz 01025075

Start

Set boundary conditions

Compute gradients for velocity and pressure

Solve discretized momentum equa-
tion for intermediate velocity field

Compute uncorrected mass fluxes at faces

Solve pressure correction equation

Update pressure field and
boundary pressure corrections

Correct mass fluxes, cell velocities, and density

Convergence?

Stop

Update values

no

yes

Figure 3.1: Flow chart of the basic steps in the solution update of the SIMPLE
algorithm [Moukalled et al., 2015]
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3.2 Comparison of the Drag Models
For the comparison of the drag models presented in section 2.3, the drag force
Ksf is calculated for each model in a defined test case. The results are shown in
the following figures as a function of Reynolds number and various solid volume
fractions αs. The physical properties employed for the comparison are presented in
Table 3.2:

Table 3.2: Physical properties employed for the com-
parison of different drag models.

Property Unit Value
Temperature K 1200
Pressure Pa 105

Kinematic viscosity m2

s
16.68 · 10−5

Dynamic viscosity Pa · s 4.84357 · 10−5

Particle diameter m 0.02
Relative flow velocity m

s
0.0001− 200

Density kg
m3 0.29035

Shape factor - 1 (perfect sphere)
Solid volume fraction - 0.1− 0.72

The different drag models use varying definitions of the Reynolds number (compare
subsection 2.4.1 to 2.4.7). Table 3.3 summarizes the different definitions for the sake
of clarity:

Table 3.3: Comparison of Reynolds numbers used in
different drag models.

Drag Model Reynolds number
Syamlal O’Brien Rep = ρfdp| #»u s− #»u f |

µf

Richardson Zaki ReRZ = Rep
vrel

Gidaspow Remean = Rep · αf
Tenneti Remean

HKL ReHKL = ρfαfdp| #»u f− #»u s|
2µf

= Remean
2

Beetstra Remean

RUC Rep

Figure 3.2 shows the results for the calculation of Ksf for the defined test case.
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It can be noted, that for the most dilute system(αs = 0.1) (Figure 3.2a) the mod-
els agree best. HKL predicts the highest values for the drag force. The Syamlal
O’Brien and Beetstra model agree very well, which is worth mentioning, because
the calculation of the drag force is quite different for these two models. The RUC
and Tenneti model predict the lowest values.

For the slightly denser system in Figure 3.2b three groups of predictions can be seen:
Gidaspow and RUC predict the highest values for Ksf . At this solid volume fraction
(α = 0.25), the difference between these two models is only in the definitions of the
parameters A and B, since they both use the Ergun equation for the prediction of
the drag force. Syamlal O’Brien, HKL, and Beetstra model agree well, but predict
lower values than the two models mentioned before, and the Tenneti model again
predicts the lowest values.

The results for αs = 0.5 are very similar: Gidaspow, RUC, and Syamlal O’Brien
predict higher values for Ksf , HKL and Beetstra predict slightly lower values, and
Tenneti predicts significant lower values.

The plot for the calculation with a solid volume fraction of 0.72 shows a bit of a
difference: The Syamlal O’Brien model predicts the highest Ksf values, followed by
the HKL model. The RUC, Gidaspow, and Beetstra model agree pretty well and
the Tenneti model predicts the lowest values once again.

Since the Tenneti model always predicts the lowest values for the drag force, it is
doubtful that this model is suitable for a calculation with the parameters used in
this case. The same assumption is made for the Richardson Zaki models, which does
not predict any reasonable values at all and is therefore not visible in Figure 3.2.
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3.3 Evaluation of the Drag Models
For a better and easier selection of a suitable drag model, an additional evaluation
was done. The aim of this task was to model an existing test case and thereby
evaluate the drag models through comparing to the experimental results.
The test case of choice is a random packed bed, described by [Beetstra et al., 2007].
The experimental pressure drop results of the monodisperse system were used for
the evaluation. The original test setup consisted of a cylindrical column with an
inner diameter D = 80 mm and length L = 300 mm placed in a jacket which was
used for temperature regulation. The column was filled with monodisperse random
fillings of glass spheres, at five different diameters: 1.0, 1.5, 2.0, 2.5 and 4.0 mm.
A gear pump was used to circulate liquid through the system with an adjustable
pump frequency. For the experiment with low Reynolds numbers, glycerol was used
and for the ones with higher Reynolds numbers water was used. The pressure drop
was measured with a pressure differential sensor that was connected to four tubes
in the wall. Figure 3.3 shows a schematic representation of the experimental setup
used by [Beetstra et al., 2007].

Figure 3.3: Schematic representation of the experimental setup performed by [Beet-
stra et al., 2007].

Figure 3.4 shows the experimental results obtained by [Beetstra et al., 2007].
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Figure 3.4: Measured pressure drops for glass spheres of five different diameters,
[Beetstra et al., 2007].

The validation was done with a python2 script. To get the pressure drop directly
from the Ksf calculation, following expression was used:

∆p = Ksf · U · L. (3.4)

The velocity of the liquid was determined via the experimental Reynolds number,
which was extracted from Figure 3.4 by following formula:

uf = Re ν

L
, (3.5)

where:
ν . . . kinematic viscosity
L . . . length of the column.

Figure 3.5 compares the experimental results of [Beetstra et al., 2007] and the cal-
culated pressure losses.
In general, all the drag models except the Richardson Zaki model predict reasonable
values for the pressure drop at all sphere sizes. Even though the implementation of
this model was checked several times, no promising results were made and, therefore,
this model was not considered in the subsequent work.

2Python is an interpreted high-level programming language for general-purpose programming,
that was created by Guido von Rossum. All Python releases are Open Source and are managed
by the non-profit Python Software Foundation.
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The Tenneti model agrees very well with the experimental data, being the model
which predicts the closest values for the test case with 1.0, 1.5, and 2.0 mm glass
spheres and the second closest for the 2.5 and 4.0 mm spheres.

The RUC and Gidaspow model also predict reasonable results for the cases with
1.0 to 2.5 mm glass spheres. Syamlal O’Brien’s model predicts higher values for 1.0
mm and lower values for the other cases than measured, while the Beetstra model
over-predicts the pressure drop for all cases except for the 4.0 mm spheres, where it
agrees best with the experimental results. Generally, calculated values deviate most
for the 4.0 mm sphere case.
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3.4 Evaluation of DPMFoam Simulations
The DPMFoam solver is evaluated employing the experimental data of [Haddadi
et al., 2017]. They investigated the influence of different particle types on the
packing characteristics. Therefore, they made experiments and simulations of the
filling process of random packed beds. This work reproduces the filling process
with the DPMFoam solver and compares the characteristics of the packings with
experimental and DEM simulation results.
[Haddadi et al., 2017] experimented with cylinders randomly filled with mono-
disperse spheres and simulated the same setup using discrete elements method
(DEM). This case is employed for the evaluation of the DPMFoam solver and
the results were compared to the experimental and simulation results of [Haddadi
et al., 2017].

The test case was a cylinder of 0.02 m diameter filled with 0.006 m spheres. The
packing has not been compacted.
The spheres were falling freely into the cylinder, which was standing in a fully up-
right position. Once the filling reached a height of 0.13 m, the simulation was
stopped and the filling height was corrected by keeping only those particles that
were completely underneath the height of 0.13 m.

A blockstructured cylindrical mesh was created in blockMesh (with support of a
python script) for the solver validation. The base can be seen in Figure 3.6. The
total domain height was 0.15 m.

Figure 3.6: Cylindrical base mesh of the fluidized bed domain.
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For the filling of the particles, an injection model with following settings was used
in DPMFoam. Table 3.4 explains the occuring keywords.

i n j e c t i onMode l s
{

model1
{

type pa t ch In j e c t i on ;
patchName i n l e t ;
durat ion 6 ;
parce l sPerSecond 100 ;
massTotal 0 ;
parce lBas i sType f i x ed ;
nPa r t i c l e 1 ;
SOI 0 ;
U0 (0 0 0 ) ;
f l owRat ePro f i l e constant 1 ;
s i z eD i s t r i b u t i o n
{

type f ixedValue ;
f i x edVa lu eD i s t r i bu t i on
{

value 0 . 0 0 6 ;
}

}
}

}

Listing 3.2: Settings for the injection model for the DPMFoam simulation of a ran-
dom packed bed of mono-disperse spheres
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Table 3.4: Explanation of the keywords used in the Lagrangian settings of the DPM-
Foam solver.

Parameter Explanation
patchName defines where the particles enter the geometry
duration defines how long the injection lasts
parcelsPerSecond injected parcels per second
massTotal total injected mass (not used when option "fixed" is selected

in the following)
parcelBasisType fixed, mass and number can be selected; fixed sets the number

of total particles by muliplying nParticle, parcelsPerSecond
and duration

nParticle particles per parcel
SOI start of injection
U0 start velocity of the parcles
flowRateProfile constant means a constant flow of parcels
sizeDistribution fixed value means no distribution, all particles have the same

diameter (0.006 m)

The total number of injected particles is calculated by:

1 particle

parcel
· 100 parcels

s
· 6.5 s = 650 particles (3.6)

In this simulation, the principle of summing up single particles to a parcel for low-
ering computational cost is not used, so every particle is used in the simulation.
Therefore the parameter nParticle is set to 1.
Figure 3.7 shows the packed bed before and after the height correction.

Table 3.5: Comparison between experimental mea-
surements, DEM simulations, and DPM-
Foam simulations.

Reality DEM DPMFoam
Number of Particles 525 533 516

Table 3.5 shows the results of the particle counting process. The deviation of the
DPMFoam results to the experiment is ∆ = 1.9% and ∆ = 3.2% to the DEM
simulation results. Figure 3.8 indicates, that particles follow a certain pattern in
the filling process by showing their centres of mass in the horizontal plane. Big
fluctuations of the porosity are visible: Lots of particles are located directly at the
wall, where the particles form a A-B-A style packing, whereas in the center part of
the filling two denser and two more dilute regions are formed. The DPMFoam and
DEM results of [Haddadi et al., 2017] show good agreement.
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Figure 3.7: Creation of a random packed bed with mono-dispersed spheres: a - filled
bed, b - corrected bed height 0.13 m.

Figure 3.8: Centres of mass of the particles mapped on top view in m. Left: DEM,
right: DPMFoam. DEM results from [Haddadi et al., 2017].
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3.5 Evaluation of MPPICFoam Simulations
The MPPICFoam solver is evaluated with three different test cases. The first in-
cludes the determination of the minimum fluidization velocity of a packed bed. The
second and third evaluation cases are cold flow models of blast furnaces.

3.5.1 Fluidized Bed Case

[Jayarathna et al., 2017] measured and determined the minimum fluidization ve-
locity and the pressure drop of Geldart type A particles [Geldart, 1973] using CFD.
Table 3.6 shows the properties of the employed particles. For the experiments and
simulations, they filled a 1.2 m high cylinder having a 0.084 m diameter up to a
height of 0.17 m. After the filling process, they transferred the particle positions to
a different case setup to perform the fluidization simulations. During the fluidiza-
tion experiments, they monitored the pressure 2.5 and 12.5 cm above the distributor
plate at the bottom of the cylinder and increased the flow rates sequentially after a
30 s qualifying period.

Table 3.6: Properties of the zirconia par-
ticles used in the experiments
of [Jayarathna et al., 2017]

Property Unit Value
Material - Zirconia
Skeletal density kg/m3 3830
Bulk density kg/m3 2270
Particle size range µm 45-100
D50 µm 70
Porosity - 0.6
Sphericity - 0.95

The simulation was run for 30 seconds for each flow rate and then increased to the
next value.
[Jayarathna et al., 2017] employed the CFD software Barracuda3 for their simula-
tions with a 25000 cell mesh. They performed all calculations using the Gidaspow
drag model, but they adjusted the A value to adapt their simulations to the exper-
imental data.

For the purpose of evaluating the MPPICFoam solver with this experiment, a cylin-
drical blockMesh was made with identical dimensions and filled in a similar way as
described in section 3.4. During the filling process, the option coupled was turned

3Barracuda® is a registered trademark of CPFD Software LLC.
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off, meaning that the solid phase is not affecting the fluid phase. This was done
to reduce the computational time. The number of parcels injected for reaching the
filling height of 17 cm was calculated with following formula:

nP = Vcyl
Vp

αs (3.7)

With Vcyl being the volume of the cylinder until the filling height:

Vcyl = π

6d
3
p (3.8)

Table 3.7 displays the used values for the filling process:

Table 3.7: Simulation settings for the fluidized
bed test case.

Parameter Unit Value
dcyl m 0.084
hcyl m 0.17
Vcyl m3 9.42 · 10−4

dp m 7 · 10−5

Vp m3 1.79594 · 10−13

αp - 0.6
Number of Particles - 3 147 338 404
nParticle (pro Parcel) - 5000
Total Parcels - 629468
Duration s 20
parcelsPerSecond - 314734

After the filling process had been completed, the file kinematicCloudPositions,
which includes the positions of the particles as Cartesian coordinates, was copied
into the fluidization case setups to provide an already filled cylinder for the fluidized
bed simulations. For each one of the six working drag models and each superficial
air velocity (0.011, 0.013, 0.015, 0.016, 0.018, and 0.02 m/s) a simulation was set up,
making it a total of 36 simulations. Apart from the drag models and the superficial
air velocity, all settings were the same.
The steady air flow was feeded at the bottom patch for 30 seconds. After the sim-
ulation had been completed, the first 4 time-steps were moved into a sub-directory,
because a steady air flow was not guaranteed in this early phase of the simulation.
In paraview, an average value for p and αf was calculated for the remaining 26
time-steps and the pressure drop between 2.5 and 12.5 cm above the bottom wall
was calculated.
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3.5.2 Raceway Simulations

For the evaluation of the capability of the MPPICFoam solver to predict a raceway
formation, two simulations were made. At first, the work of [Mojamdar et al., 2018]
was investigated (subsubsection 3.5.2.1). Early attempts showed, that the solver had
problems with the fine mesh in the tuyere region. Therefore, a second evaluation
with a simpler mesh (subsubsection 3.5.2.2) was done.

3.5.2.1 Raceway Simulation 1

The first raceway evaluation was done by reproducing the experimental work of
[Mojamdar et al., 2018]. They investigated the raceway formation in a 2D moving
bed. In their work, an experimental setup was constructed to replicate a moving
bed, where the size of the developing raceway was investigated concerning different
parameters such as gas velocity, bed height, and particle flow rate. According to
[Burgess, 1985], a raceway is formed, when air is introduced horizontally into the
packed bed of particles.
[Mojamdar et al., 2018] assembled a two dimensional apparatus, made of acrylic
glass (poly-methyl methacrylate) and having the dimensions of 500 x 1000 x 60 mm.
It is shown in Figure 3.9.
They used polyethylene particles with following properties for the experiments:

Table 3.8: Properties of the polyethylene particles
used in the evaluation experiments of
[Mojamdar et al., 2018].

Property Unit Value
Material - polyethylene
Skeletal density kg/m3 940
Shape - cylindrical
Length to diameter ratio - 1.1
Equivalent diameter mm 4
Mean bed porosity - 0.398

The formation of the raceway was observed at four different filling heights above the
tuyere: 450, 550, 650 and 800 mm. For each experiment, they blew air through the
tuyere with various velocities up to 0.6 m/s.

For the validation of this experiment, a similar geometry was drawn in Gambit4.
Since OpenFOAM can only handle 3D simulations, the depth of the mesh was set
to one cell to simulate a 2D mesh. However, OpenFOAM does not solve for the

4Gambit® is a software package for building mesh models for CFD and developed by ANSYS,
Inc.
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Figure 3.9: Schematic diagram of the experimental setup of [Mojamdar et al., 2018]
for the raceway formation in a moving bed.

third dimension. The width and height were set like in the original experiment to
500 mm and 1000 mm, respectively.
Figure 3.11 shows the created mesh. The tuyere is located in the bottom right corner
and has a length of 50 mm. Figure 3.10 shows a close up of the tuyere region. In
the area around the tuyere, this part of the mesh has the finest structure. The cell
length increases from 1.2 mm to a maximum of 30 mm to reduce the cell number
in areas were higher resolution is not necessary. The total cell number is 2498.

In the first step of the simulation, the particles were filled into the geometry from
the top. For easier filling, the geometry was filled higher than the highest particle
level of 850 mm and the surplus particles were removed afterwards.
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After the filling process had been completed, the second step was the actual raceway
simulation. This was performed by blowing air through the tuyere at a superficial
velocity of 0.6 m/s. To find the best parameters for the simulation, eight test simula-
tions were set up according to an experimental matrix. All possible combinations of
the parameters packingmodel (implicit or explicit), the momentumPredictor turned
on or off, and whether or not under-relaxation of air velocity, pressure and fluid vol-
ume fraction is active, were tested. Table 3.9 displays the test matrix.
Experiment 4 showed the best performance according to stability and time and
therefore the settings packingmodel: explicit, momentumPredictor: on and
no underrelaxation were used for the actual simulations.

Table 3.9: Experimental matrix for the raceway simulations. X mean-
ing "activated", O meaning "not activated".

name implicit explicit momentum-
Predictor

under-
relaxation

Experiment 1 X O X X
Experiment 2 O X O X
Experiment 3 X O X O
Experiment 4 O X X O
Experiment 5 X O O X
Experiment 6 O X X X
Experiment 7 X O O O
Experiment 8 O X O O

Figure 3.10: Detailed image of the tuyere region of the mesh for the first raceway
validation case.
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3.5.2.2 Raceway Simulation 2

Because the first raceway simulation gave no satisfying results (see subsection 4.2.1),
a second evaluation was done by reproducing the work of [Feng et al., 2003].
They simulated gas-solid flow in a packed bed in a similar way as described in the
previous section, but with following major differences:

• The created rectangular mesh has no tuyere area

• All mesh cells are of the same size.

The purpose of this simulation is to produce a raceway formation with the MPPIC-
Foam solver for a simple geometry without testing different drag models. Table 3.10
displays the simulation parameters:

Table 3.10: Simulation parameters for the sec-
ond raceway evaluation.

Parameter Unit Value
Number of particles - 46000
Density kg/m3 2500
Diameter m 0.004
Bed height m 1
Bed width m 0.3
Bed thickness m 0.0162
Jet opening m 0.02
Jet center above bottom m 0.1
Cell width m 0.005
Cell height m 0.005
Cell volume m3 4.05 ·10−7

Early simulations showed, that the mesh cells are still too small for the MPPICFoam
solver to handle, since the particle diameter is only 1 mm smaller than the length
of a mesh cell. Therefore, the height and width of the cells were enlarged to 10 mm
each. Figure 3.12 shows the mesh.
Instead of using a tuyere, the air flow is provided at a patch in the side wall 0.01 m
above the bottom of the geometry. The air is injected with a velocity of 20 m/s for
a duration of 3.5 s. The packingmodel was set to explicit. No working setup for
the type implicit could be found. No dampingmodel was used and the simulation
was carried out with the Wen-Yu drag model. No equations were under-predicted.
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Figure 3.11: Mesh of the first raceway validation case with the tuyere in the lower
right corner.

Figure 3.12: Mesh of the second raceway validation case.
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4 Results and Discussion of
MPPICFoam Simulations

4.1 Fluidized Bed Case
Figure 4.1 compares the results of the OpenFOAM simulations to the experimental
data from [Chladek et al., 2017].

Figure 4.1: Change of the pressure drop in a fluidized bed with increasing superficial
air flow rate. Experimental data by [Chladek et al., 2017].

In general, no drag model fits the experimental results over the whole range of tested
superficial air velocities. Unfortunately, the Tenneti drag model does not predict
any pressure loss at all. It is possible that there is an error in the implementation.
Even after several checks of the simulation setup, the reason for this behavior was
not found.
For the first three simulations, with superficial air velocities below the minimum
fluidization velocity of 0.016 m/s, the fluidized bed is in the state of a fixed bed. In
this range, the RUC drag model shows the best agreement with the experiment. The
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Figure 4.2: Relative deviation of the fluidized bed simulation’s pressure drop
(Chladek = 0). Experimental data by [Chladek et al., 2017].

Beetstra and Gidaspow drag model underpredict the pressure drop in this section.
Considering the fact that the RUC drag model is basically the Ergun drag model
with different coefficients, and that the Gidaspow model uses the Ergun drag model
in this range of solid volume fractions, the results are reasonable. The HKL drag
model shows good agreement with the experimental data for the simulations with
0.013 m/s and 0.015 m/s, but overpredicts the pressure drop for 0.011 m/s. The
Syamlal O’Brien drag model predicts the lowest values. The reason for this behavior
could be that the Syamlal O’Brien drag model is derived for a single spherical particle
in a fluid and does not account for swarm effects.
When the velocity reaches 0.016 m/s the system changes from a fixed bed to a bub-
bling bed, which is the most difficult section to predict for drag models. Therefore,
the predictions of the drag model vary the most for the simulations with super-
ficial air velocities of 0.018 m/s and 0.02 m/s. The HKL and the RUC model
predict higher pressure losses than the experimental data. The simulations using
the drag models of Gidaspow and Beetstra show lower results. In general, these
two drag models calculate the most invariant pressure drop. The Syamlal O’Brien
drag model predicts values closer to the experimental data for this flow regime and
seems to approach the experimental data at increasing superficial air velocity. The
improvement of the Syamlal O’Brien model could be a result of the decrease in solid
volume fractions at higher velocities.

For better comparison, Figure 4.2 shows the simulation results as relative deviations
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from the experimental data. It shows deviations of up to 70% for the 0.013 m/s test
case, which increased up to 90% for a velocity of 0.018 m/s. For the 0.015 m/s test
case, the models agree best with a deviation of 30% except for the Syamlal O’Brien
drag model, which has not been derived for a fixed bed [Syamlal and O’Brien, 1987].

The results section of [Jayarathna et al., 2017] shows a comparison of the filling
heights of the fluidized beds at different superficial air velocities. That was also
planned for this evaluation, but no differences between the heights of the beds are
visible and therefore the figure is not displayed here.

48



Master’s Thesis Alex Gludovacz 01025075

4.2 Raceway Case

4.2.1 Raceway Simulation 1

The results of the first raceway test cases defined in subsection 3.5.2 are shown in
Figure 4.5 to Figure 4.6. All figures belong to the simulation with a particle fill-
ing height of 450 mm. Shortly after the start of the simulation a major problem
occurred. As seen in Figure 4.5, an unnatural cavity developed around the tuyere.
The reason for this behavior is the small cell volume in this area of about 6 ·10−9 m3,
whereas the volume of one parcel is about 2.7 · 10−7 m3. The small cell volume is
necessary to capture all fluid behavior reasonably in this area. As described in sub-
subsection 2.2.3.2, the cell volume has to be significantly larger than a computational
parcel for mapping the parcel to a point on the grid.
Even at the highest superficial velocity of 0.6 m/s, the particles are too far away for
the air blast to be affected. As a result, no proper raceway zone developed.
Figure 4.3 shows a detailed image of the tuyere area. It can clearly be seen, that
only a few particles enter the zone around the tuyere, where the raceway should be.

Figure 4.4 shows the air velocity, the pressure and the fluid volume fraction over a
horizontal line through the tuyere. The sampling line can be seen in Figure 4.5. The
velocity decreases and increases rapidly inside the tuyere and decreases again after it
passes the tip of the tuyere (at the first vertical line in Figure 4.4). Inside the cavity
around the tuyere, the velocity stays constant. When the air reaches the particles
(at the second vertical line in Figure 4.4), the velocity reduces and fluctuates until
the end of the geometry is reached. It can be seen, that the fluid volume fraction is
actually about 1 inside the cavity between the two black lines, meaning nearly all of
the volume is air and no particles are present. Inside the particle filling, the value
for αf is slightly above 0.4. The pressure stays pretty constant for the whole cross
section.

Figure 4.8 gives a visual representation of the air velocity in the tuyere region for six
subsequent time steps. The red stream in 4.8a displays the air reaching the cavity.
Figure 4.9 shows the pressure gradient for the same time steps in the simulation.
Both figures show odds for the corresponding values in these time steps. Especially
the visualization of the air flow shows quite unnatural behavior. The first picture
shows the steady air flow with a stream coming out of the tuyere like expected, but
in the next figure the velocity is much less and in the third, the air flow is nearly
gone. The fourth figure shows results similar to the first one, but with lower ve-
locity, while in the last two pictures, the air flow creates layers inside the tuyere.
The pressure for the same time steps fluctuates as well. The particle filling does not
seem to have any effect on the pressure at all. Once again, the small cells in the
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tuyere region seem to be the reason for this behavior.

In Figure 4.6, the fluid volume fraction for the whole geometry is shown. Once
again, the red zones around the tuyere in the bottom right corner indicate the lack
of particles in this area.
Figure 4.7 shows the trajectories of the particles for a time span of 2 s. It shows,
that the particles in the lower part of the filling (red and yellow pathlines) rise, while
the ones in the top layers (blue pathlines) move towards the tuyere. In the tuyere
region, some particles move wildly around and even seem to go through the tuyere,
which occurs because the trajectories are made only from the written time steps.

Overall no reasonable were obtained for this case. The MPPICFoam solver predicts
unnatural pressure and flow (see 4.8a and Figure 4.9).

4.2.2 Raceway Simulation 2

The results of the second raceway simulations are shown in Figure 4.10 as a time
series. In this case, the MPPICFoam solver managed to predict a raceway formation.
In 4.10a, one bubble of air is already rising, while another one is formed at the jet
entrance. The following figures (a-d) show how the air bubble rises and increases in
size. In 4.10d it reaches the surface, lifting the surface layer of particles. In 4.10f,
the surface is leveled again and the next air bubble is approaching the surface. The
blue color shows, that the fluid volume fraction in the particle filling is about 0.4,
which is a reasonable value.
Figure 4.11 displays the trajectories of the particles for the second raceway case.
It shows that in the area above the jet entrance the particles move a lot in both
upwards and downwards direction, while in the bottom and on the opposite side of
the entrance the particles hardly move at all. The particle movement above the jet
entrance occurs due to the wall effect, where the air bubbles rise next to the wall.
Figure 4.12 shows a comparison of the MPPICFoam results and the ones from [Feng
et al., 2003] for an air velocity of 20 m/s. Predicted and experimental results show
reasonable agreement.

Although this simulation gives quite satisfying results, still some issues occurred.
After the simulation start, the particle filling is very unstable with "explosions" at
the surface. "Explosions" are defined as unnatural sudden ejections of particles from
the bed surfaces. At t = 1.5 s, the particles calm down and the simulation runs
stable for 3.5 s. After that, the unstable behavior starts again until the end of the
calculation. In the first three snapshots of Figure 4.10, some particles coming back
down from such an "explosion" are visible right above the particle filling (slightly
yellow areas).
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Figure 4.3: Detailed image of the tuyere area of the raceway case domain.

Figure 4.4: αf , air velocity and pressure over a straight horizontal line trough the
geometry at the tuyere height (see Figure 4.5). First black line: tuyere
tip, second black line: particle bed. The origin is at the inlet.
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Figure 4.5: Visualization of the filled mesh for the raceway case. The plot over the
red line can be seen in Figure 4.4.
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Figure 4.6: Visualization of αf for the first raceway case.

Figure 4.7: Visualization of the trajectories of the particles for the first raceway case.
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(a) t = 0.1 s (b) t = 0.2 s

(c) t = 0.3 s (d) t = 0.4 s

(e) t = 0.5 s (f) t = 0.6 s

(g) legend

Figure 4.8: Snapshots of uf for six time steps of the first raceway simulation. Defi-
cient results due to errors in the MPPIC method caused by small mesh
cells.
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(a) t = 0.1 s (b) t = 0.2 s (c) t = 0.3 s

(d) t = 0.4 s (e) t = 0.5 s (f) t = 0.6 s

(g) legend

Figure 4.9: Snapshots of p for six subsequent time steps of the first raceway simu-
lation. Deficient results due to errors in the MPPIC method caused by
small mesh cells.
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(a) t = 1.5 s (b) t = 1.6 s (c) t = 1.7 s

(d) t = 1.8 s (e) t = 1.9 s (f) t = 2 s

(g) legend

Figure 4.10: Snapshots of αf for six subsequent time steps of the second raceway
simulation. 56
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Figure 4.11: Visualization of the trajectories of the particles for the second raceway
case.

Figure 4.12: Comparison of predicted and simulated αf . Left: MPPICFoam simu-
lation, right: Results from [Feng et al., 2003].
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5 Conclusion

A study on Euler-Lagrange (EL) hybrid models handling slowly moving and fixed
beds using different drag models has been carried out. There has been a comparison
and additional evaluation of different drag models. A filling of a randomly packed
bed with the DPM hybrid approach [Adamczyk et al., 2014] and a series of evalua-
tions of slowly moving beds and the creation of a raceway zone in a particle filling
with the hybrid MPPIC approach [Andrews and O’Rourke, 1996] were investigated.

Simple test cases show, that for raceway conditions, the RUC drag model [Du Plessis
and Masliyah, 1988], the drag models of Beetstra [Beetstra et al., 2007], HKL [Hill
et al., 2001] [Benyahia et al., 2006], and Gidaspow [Gidaspow, 1994] give realistic
predictions for the momentum exchange coefficient. The predictions according to
the Tenneti [Tenneti et al., 2011] and Richardson Zaki [Richardson and Zaki, 1997]
models deviate significantly from the others.

The drag models were additionally tested by comparing predicted pressure drops
with the experimental data from [Beetstra et al., 2007]. All used drag models pre-
dict reasonable pressure drops for varying sphere sizes. Since the Richardson Zaki
model failed in the first comparison, it was not used for this evaluation. The models
by Tenneti, Gidaspow, and the RUC model give the best results for the experiments
of [Beetstra et al., 2007]. Generally, the deviation of the calculated values increases
at larger particle diameters.

The ability of the DPMFoam solver of handling packed beds was tested by creating
a randomly packed bed and comparing the results with DEM simulations and ex-
perimental data by [Haddadi et al., 2017]. The evaluation showed, that DPMFoam
simulations agree well with the results of [Haddadi et al., 2017]. The simulated beds
are packed in a similar way and the difference of the particle number between the
experiment and the DPMFoam simulation is less than 2%. Reasons for the lower
value of the DPMFoam calculations may be the not perfectly circular cylinder, er-
rors in the particle-particle interactions (space between two particles is sometimes
too wide) and mistakes in the manual counting process.

EL hybrid models in combination with the chosen drag models were evaluated with
fluidized bed simulations by [Jayarathna et al., 2017]. For these calculations, less
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promising results were made. In general, no drag model used with MPPICFoam fits
the experimental results over the tested range of superficial air velocities. The RUC
model gives best results below the fluidization point, while the models by Gidaspow
and Beetstra agree best in the bubbling bed regime. Maybe due to an error in the
implementation, the Tenneti model predicts zero pressure loss. MPPICFoam seems
to have troubles for very dense gas-particle flows, because particle-particle interac-
tions become unstable and lead to unnatural bed explosion.

The last step was the evaluation of the capabilities to predict raceway formation
using experimental results from [Mojamdar et al., 2018] and [Feng et al., 2003].
A major problem concerning the computational mesh occurred with the raceway
simulations in the Mojamdar case. Due to the small cell size in the tuyere region,
hardly any particles enter this area. However, the small cell volume is required to
capture the fluid flow correctly in this area. Thus, no viable results were made for
these experiments. The cavity around the tuyere was significantly larger than in
the experiments. The mesh seems to influence the raceway formation. A second
evaluation with a simpler mesh and cells which are significantly larger than the par-
ticles was done using the work of [Feng et al., 2003]. For this case, the MPPICFoam
solver gave acceptable results. This shows that the MPPICFoam solver has issues
with small mesh cells.

There are limitations of the current OpenFOAM implementation of the MP-PIC
method. For instance, particles are assumed to be perfect spheres. Corrections for
non-spherical particles can only be made via the drag correlation. Furthermore,
the grid cell size has to be significant larger than the particle size for accurate
interpolation.
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6 Outlook

Given that the MPPICFoam simulations did not give satisfying results, future ex-
periments should be carried out with conditions that are more like blast furnaces.
For these simulations, cell volumes should be notably bigger than the particle vol-
umes. Alternatively, a different way to cope with parcels bigger than cells has to be
found.
The DPMFoam simulation showed, that the creation of a random packed bed could
be carried out in the future with this solver to save computational time.

Furthermore, the Euler-Lagrange hybrid models should be extended to handle re-
acting particles for realistic raceway zone simulations.
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