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Kurzfassung

Wir finden Randbedingungen am Ereignishorizont von dreidimensionalen Schrödinger
schwarzen Löchern in topologisch massiver Gravitation. Wir formulieren diese
als Felder erster Ordnung einer Chern-Simons-ähnlichen Formulierung. Weiters
berechnen wir die zugehörigen Ladungen, finden deren Symmetriealgebra und
drücken die Entropie mittels dieser Ladungen aus. Schlussendlich versuchen wir
die Symmetriealgebra am Ereignishorizont mit der Algebra im asymptotisch Un-
endlichen zu verknüpfen - der Virasoroalgebra.
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Abstract

We find near horizon boundary conditions for three dimensional Schrödinger black
holes in topologically massive gravity. These are expressed in terms of first order
fields of a Chern-Simons-like formalism. Then we calculate the associated charges,
find their symmetry algebra and express the entropy in terms of these charges.
Finally, we attempt to link the near horizon symmetry algebra to the algebra at
asymptotic infinity - the Virasoro algebra.
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Chapter 1

Introduction

Since Albert Einstein published his general theory of relativity in 1915, it remains
the best experimentally verified theory of gravity to this day. The essence of the
purely geometric theory has been famously captured in a quote of John Archibald
Wheeler: “Spacetime tells matter how to move; matter tells spacetime how to
curve.” [1]
However, the existence of singularities and inconsistencies with quantum theory
suggest that a full theory of quantum gravity is needed. A very fertile playing
ground for testing toy models of quantum gravity has been three dimensional
spacetime. It is not only simpler due to the reduction of dimensions, but it actu-
ally has some unexpected advantages over theories in four dimensions. In 1986,
Achucarro and Townsend discovered that general relativity in three dimensions
with negative cosmological constant Λ < 0 can be reformulated as a so-called
Chern-Simons theory [2]. In this formulation, one can apply techniques familiar
from other gauge theories. In the same year, Brown and Henneaux constructed
boundary conditions for three dimensional anti-de Sitter space that led to two
towers of canonical boundary charges generating two copies of the Virasoro al-
gebra, the symmetry algebra of two dimensional conformal field theory [3]. This
result was a precursor of the famous AdS/CFT correspondence, which states that
a theory of gravity in anti-de Sitter space can be equivalently described by a con-
formal field theory living on its boundary [4–6].
It was not always clear however, that three dimensional gravity would be interest-
ing to study. In fact, one could be tempted to discard it as trivial since there are
no propagating degrees of freedom in three dimensional Einstein gravity. How-
ever, in 1992 Bañados, Teitelboim and Zanelli found a black hole solution [7] with
very similar properties as its four dimensional analogue, the Kerr black hole.
Very recently, it has been shown [8] that one can impose boundary conditions for
BTZ black holes at the horizon which lead to a near horizon symmetry algebra
of two u(1) current algebras, which is equivalent to infinitely many copies of the
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Heisenberg algebra. The entropy was then shown to be only given in terms of
the zero mode charges of the u(1) current algebra:

S = 2π(J+
0 + J−0 ) . (1.1)

This formula has been shown to hold for flat space, anti-de Sitter space, for
Einstein gravity, theories with higher derivatives [9], for theories with higher
spin [10,11] and more recently for the first non-maximally symmetric case, warped
black holes in topologically massive gravity [12,13]. Topologically massive gravity
is an extension of three dimensional Einstein gravity with one propagating degree
of freedom. It is constructed by adding the so-called gravitational Chern-Simons
term to the Einstein-Hilbert action. In [14], all stationary axi-symmetric of TMG
have been classified in four categories:

• Einstein - This class of solutions solves the three dimensional Einstein
equations of motion. All of them are locally AdS3 and they obey Brown-
Henneaux boundary conditions.

• Warped - This class of solutions is asymptotically or locally warped AdS3.

• Schrödinger - This class of solutions is either asymptotically AdS3 or asymp-
totically Schrödinger.

• Generic - All solutions that are neither of the above.

While, as already mentioned, for the first two sectors, near horizon boundary
conditions that lead to a near horizon symmetry algebra of two u(1) currents and
the entropy formula (1.1) have been found, it is the goal of this thesis to provide
an example that lives in the Schrödinger sector.
This thesis is structured as follows: in chapter 2, the basic concepts underlying
the calculations of this thesis are reviewed. These include a review of three
dimensional gravity, the Chern-Simons formulation of Einstein gravity, the global
AdS3 solution and BTZ black holes, a near horizon analysis of BTZ black holes,
the introduction of Chern-Simons-like theories of gravity, topologically massive
gravity and a review of the Schrödinger spacetime. In chapter 3, the near horizon
behaviour of three dimensional Schrödinger black holes is studied. We present
a first order form of the black hole solution, present boundary conditions and
calculate the associated charges as well as their symmetry algebra and the entropy.
Finally we study how the near horizon charges and algebra are related to the
asymptotic ones. In chapter 4, we briefly summarize the results of this thesis and
give a short outlook on possible future research directions. In appendix A, the
conventions used in this thesis are stated.
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Chapter 2

Basic concepts

The purpose of this chapter is to give an overview of the topics needed for the
calculations in chapter 3. We start in section 2.1 by discussing the advantages of
working in three dimensions while in 2.2 the Chern-Simons formulation of three
dimensional Einstein gravity is discussed. In section 2.3, we discuss Global AdS3

and BTZ black holes as solutions to three dimensional gravity. In section 2.4, near
horizon boundary conditions that lead to u(1) current algebras, or, equivalently,
infinitely many Heisenberg algebras as near horizon symmetry algebras of BTZ
black holes are presented. Then, in section 2.5, we discuss Chern-Simons-like
theories, a generalization of Chern-Simons theory to a whole family of gravity
theories. In section 2.6 we discuss topologically massive gravity and its solution
space. Finally, in section 2.7, Schrödinger spacetime, a solution to topologically
massive gravity, is presented.

2.1 Why gravity in 3 dimensions?

Three dimensional gravity is interesting to study for a variety of reasons. First
of all, it is useful for studying models of quantum theory simply because it is less
involved from a technical point of view. More importantly however, it has some
very interesting features unique to three spacetime dimensions.
At first sight one may fear that three dimensional general relativity might be
trivial. The Riemann curvature tensor Rρσµν in three dimensions can be expressed
in terms of the Ricci tensor Rµν as

Rρσµν = gρµRσν + gσνRρµ − gρνRσν − gσµRρν −
1

2
R(gρµgσν − gρνgσν) . (2.1)
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Einstein’s field equations are given by

Rµν +

(
Λ− R

2

)
gµν = 8πGTµν , (2.2)

where Λ is the cosmological constant and G is Newton’s constant, allowing to
express the Ricci tensor in terms of a constant times the metric and the stress-
energy tensor Tµν . Therefore, in the absence of matter Tµν , the curvature of three
dimensional spacetime in Einstein gravity is determined only by the value of the
cosmological constant. Either spacetime is locally flat when Λ = 0 or of constant
curvature when Λ 6= 0.
We could have arrived at the same conclusion by counting independent compo-
nents of the aforementioned tensors. The Riemann tensor in d dimensions, tak-
ing into account all its symmetries under index permutation as well as the first
Bianchi identity, has d2(d2−1)/12 independent components, while the symmetric
Einstein tensor

Gµν = Rµν −
1

2
Rgµν (2.3)

has d(d + 1)/2 independent components. It is only for d = 3, that both of them
have the same number of independent components, namely 6.
The above results imply that there are no local propagating degrees of freedom,
i.e. no gravitons in three dimensional Einstein gravity. Even though it might
therefore be tempting to dismiss Einstein gravity in three dimensions, the theory
turns out to have non-trivial solutions thanks to global effects. This was most
famously realized in a black hole solution found by Bañados, Teitelboim and
Zanelli in 1992 [7, 15]. The BTZ solution has very similar properties as the four
dimensional Kerr solution as it possesses a singularity, inner and outer horizon
and it admits a no-hair theorem.
Furthermore, in 1986 Brown and Henneaux found consistent boundary conditions
for AdS3 and showed that their canonical charges are the generators of two copies
of the Virasoro algebra with central charge c = 3`/2G where ` is called AdS
radius [3]. This led to the conclusion that AdS3 can equivalently be described by
a two-dimensional conformal field theory at the boundary.

2.2 The Chern-Simons formulation of gravity

A particularly nice feature of three dimensional Einstein gravity with Λ < 0 is
that it admits a reformulation as Chern-Simons theory. This was first discovered
by Achúcarro and Townsend in 1986 [16] and Witten attempted a quantization
in 1988 [17].
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In the metric formulation of gravity, the symmetric tensor gµν is the fundamental
field of a given theory and usually the directional derivatives ∂µ and the differen-
tials dxµ with respect to some coordinates xµ are chosen as the basis vectors of
the tangent space or its dual respectively. Due to the equivalence principle how-
ever, we can also find local frames at each point of a manifold in which the metric
is locally flat. Then, as a natural basis we can use the orthonormal vector-valued
1-forms ea called the dreibein (or vielbein in arbitrary dimensions). They obey

gµνdx
µdxν = eaebηab , (2.4)

with the Minkowski metric ηab = diag(−1,+1,+1). Here, latin indices represent
local Lorentz indices that are raised and lowered with the Minkowski metric, while
greek spacetime indices are raised or lowered with the metric gµν . The relationship
(2.4) is preserved under local Lorentz transformations Λa

a′ , which means that as
long as eq. (2.4) is satisfied, the choice of the dreibein is independent of chosen
coordinates.
As a next step we can define a covariant derivative on tensors with Lorentz indices.
Consider some arbitrary tensor T aµ. We can then write the covariant derivative
as

∇µT
a
ν = ∂µT

a
ν + ωabµT

b
ν − ΓσνµT

a
σ , (2.5)

with the Christoffel connection Γσνµ and we introduced the spin-connection ωab,
that can be thought of as a tensor-valued 1-form. Metric compatibility of the
connection implies ωab = −ωba. Now, what is special about three dimensions is
the fact that antisymmetric matrices are dual to vectors. Hence, we can define
the dualised spin connection

ωa =
1

2
εabcωbc. (2.6)

This is important because now the dualised spin connection and the dreibein are
both vector-valued 1-forms and we can construct linear combinations of them:

A = ωaJa + eaPa (2.7)

Ja and Pa generate the Lie algebra

[Ja, Jb] = ηcdεabcJd, [Ja, Pb] = ηcdεabcPd, [Pa, Pb] = −ΛηcdεabcJd. (2.8)

For Λ > 0, this is so(3, 1), the symmetry algebra of de Sitter spacetime in three
dimensions. For Λ = 0, it is isl(2,R), the Poincaré algebra in three dimensions.
For the case Λ < 0, it is so(2, 2), the symmetry algebra of three dimensional
Anti-de Sitter spacetime.
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We are now going to focus on the last case, Λ < 0.
With the connection A, the Chern-Simons action can be written down:

ICS[A] =
k

4π

ˆ
tr

[
A ∧ dA+

2

3
A ∧ A ∧ A

]
(2.9)

Here, k is the Chern-Simons level and the trace is taken on the space of the so(2, 2)
matrices. This action, up to boundary terms, is equivalent to the Einstein-Hilbert
action

IEH =
1

16πG

ˆ
d3x
√
−g(R− 2Λ) , (2.10)

which yields Einstein’s field equations (2.3) upon variation with regard to the
metric tensor gµν . In order to see this, one can write the Einstein-Hilbert action
in terms of our two new first-order fields

IEH =
1

8πG

ˆ [
ea ∧Ra − Λ

6
εabce

a ∧ eb ∧ ec
]
, (2.11)

where Ra is the curvature two-form

Ra = dωa +
1

2
εabc ω

b ∧ ωc . (2.12)

With Λ < 0, the underlying gauge symmetry can be written as the direct sum
so(2, 2) ∼ sl(2,R)⊕sl(2,R). This convenient feature of AdS3 allows to introduce
new generators

Y ±a =
1

2
(Ja ± Pa). (2.13)

An explicit realization of these 4× 4 matrices is given by

Y +
a =

(
X+
a 0

0 0

)
, Y −a =

(
0 0
0 X−a

)
, (2.14)

where X±a are sl(2,R) matrices. Therefore, we can decompose the connection A
as the direct sum of two sl(2,R) valued connections

A = A+ ⊕ A−, (2.15)

with

A± =

(
ωa ± ea

`

)
X±a . (2.16)
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It follows that we can now write the Chern-Simons action (2.9) as the difference of
two copies of the Chern-Simons action constructed from each copy of the sl(2,R)
valued connections:

I = ICS[A+]− ICS[A−]. (2.17)

A common choice for the matricial basis {X±a } makes use of the Pauli matrices:

T0 =
i

2
σ2 =

(
0 1

2

−1
2

0

)
, T1 = −1

2
σ1 =

(
0 −1

2

−1
2

0

)
, T2 =

1

2
σ3 =

(
1
2

0
0 −1

2

)
.

(2.18)

Their commutator reads

[Ta, Tb] = ηcdεabcTd . (2.19)

Another choice for a basis of sl(2,R) is given by

L−1− =

(
0 1
0 0

)
, L0 =

(
1
2

0
0 −1

2

)
, L+1 =

(
0 0
−1 0

)
, (2.20)

where the generators satisfy

[Li, Lj] = (i− j)Li+j , (2.21)

with i, j = −1, 0, 1.
These two bases can be conveniently transformed into one another as

Li = TaΣ
a
i, (2.22)

using the transformation matrix

(Σa
i) =

1 −1 0
0 0 1
1 1 0

 . (2.23)

The only bilinear or quadratic combinations that do not vanish under the trace
are

tr (L+L−) = −1 , (2.24)

tr (L0L0) =
1

2
. (2.25)
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The Chern-Simons formulation is advantageous in many aspects, one of them be-
ing that we can apply ordinary techniques commonly used in other gauge theories.
A finite gauge transformation can be written as

A′ = g−1(A+ d)g , (2.26)

where g is a group element of the gauge group. Its infinitesimal version g = 1l + ξ
is given by

δξA = dξ + [A, ξ] . (2.27)

If we take the special choice ξ = ζνAν as our gauge parameter, we obtain

δ(ζνAν)Aµ = LζAµ + ζνFµν , (2.28)

where the Lie derivative LζAµ of the gauge field Aµ is given by

LζAµ = ζν∂νAµ + Aν∂µζ
ν (2.29)

and

F = dA+ A ∧ A = 0 (2.30)

are the equations of motion of Chern-Simons theory. Thus we see that on-shell,
i.e. for F = 0, gauge transformations with this gauge parameter are equivalent
to diffeomorphisms.

2.3 Global AdS3 and BTZ black holes

Under Brown-Henneaux boundary conditions any asymptotically AdS3 metric
can be written in a form with two arbitrary functions L+(x+) and L−(x−) [18]:

ds2 = `2
[
dρ2 + (L+(dx+)2 + L−(dx+)2)−

(
e2ρ + L+L−e−2ρ

)
dx+dx−

]
(2.31)

One choice for the corresponding connections is given by

A+ = +

(
1

2
eρL+1 −

2

k
L+(x+)e−ρL−1

)
dx+ + L0dρ (2.32a)

A− = −
(

1

2
eρL−1 −

2

k
L−(x−)e−ρL+1

)
dx− − L0dρ . (2.32b)

The metric (2.31) and the connections (2.32) both are exact solutions of three
dimensional Einstein gravity, i.e. of Einstein’s field equations or of the Chern-
Simons field equations (2.30) respectively.
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Special cases of the above spacetime include global AdS3 and BTZ black holes.
The first case corresponds to the constant values L+ = L− = 1/4 whereas the
latter is given by

L+ =
2G

`
(J − `M) , L− = −2G

`
(J + `M) , (2.33)

where M and J are the mass and the angular momentum of the black hole
respectively. Under the coordinate transformations

x± =
1

`
t± φ , (2.34a)

r2 = r2+ cosh2(ρ− ρ0)− r2− sinh2(ρ− ρ0) , (2.34b)

the line element of BTZ black holes can then be brought into ADM form

ds2 = −N(r)2dt2 +N(r)−2dr2 + r2(Nφ(r)dt+ dφ)2, (2.35)

where

N(r)2 = −M +
r2

`2
+
J2

4r2
(2.36a)

Nφ(r) = − J

2r2
. (2.36b)

These black holes have very similar properties to their four dimensional counter-
part, namely Kerr black holes. In particular, they possess an inner and an outer
horizon r = r− and r = r+, in terms of which the black hole’s mass and angular
momentum can be expressed as

M =
r2+ + r2−
`2

, J =
2r+r−
`

. (2.37)

The question if the BTZ black hole possesses an ergosphere is a somewhat subtle
question and depends on the definition of an ergoregion. If one defines the ergo-
sphere by a sign change of the asymptotically timelike Killing vector ∂t, then the
answer is yes, there exists an ergoregion inside [19]

rerg =
√
r2+ + r2− . (2.38)

This argument holds for BTZ and also for Kerr black holes. However, for BTZ
(and not so for Kerr black holes), there exists a Killing vector, given by ∂t +
(r−/r+)∂ϕ, that stays timelike everywhere between asymptotic infinity and the
event horizon r+. Thus, the observer moving along this Killing vector would not
be able to see any of the effects normally associated with an ergosphere, i.e. en-
ergy extraction or frame dragging.
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2.4 Soft hair on BTZ black holes

The line element (2.35) has been shown to approach Rindler spacetime at the
horizon [8, 20]

ds2 = −a2r2dt2 + dr2 + γ2dϕ2 + . . . (2.39)

in coordinates where r = 0 corresponds to the horizon. The constant a is the
Rindler acceleration and the horizon area is given by A =

¸
dϕγ. For the BTZ

solution, these constants are given by γ = r+ and |ω| = r−/`.
More generally, a whole family of spacetimes given by

ds2 = dr2 −
(
(a2 − Ω2) cosh2(r)− a2

)
dt2

+ 2(γΩ cosh2(r) + aω sinh2(r)) dt dφ

+ (γ2 cosh2(r)− ω2 sinh2(r)) dφ2 , (2.40)

approaches (2.39) near the horizon. This line element solves the equations of
motion of Einstein gravity provided the conditions

γ̇ = Ω′ , ω̇ = −a′ , (2.41)

are met. Then, in [8], boundary conditions are proposed. There, the gauge fields
that are compatible with these proposed boundary conditions are written in the
form

A± = b−1± (d + a±)b± , (2.42)

with gauge group elements b± that depend only on the radial coordinate. The
choice

b± = exp
(
± r

2`
(L1 − L−1)

)
, (2.43)

allows to express the auxiliary connections a± in the following way:

a± = L0

(
±J ±dϕ+ ζ±dt

)
(2.44)

The two novel functions are given by

J ± = γ`−1 ± ω , ζ± = −a± Ω`−1 . (2.45)

From the proposed boundary conditions one can calculate the associated canon-
ical charges. They are given by

Q±[η±] = ∓ k

4π

˛
dϕη±J ± , (2.46)
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and are therefore finite and conserved in time. When the charges are expanded
in terms of Fourier modes

J±n =
k

4π

ˆ
dϕe+inϕJ ± , (2.47)

it can be checked that these satisfy the algebra

[J±n , J
±
m] = 1

2
k nδn+m,0 (2.48a)

[J+
n , J

−
m] = 0 . (2.48b)

These are two u(1) current algebras. Equivalently, this can be rewritten as in-
finitely many copies of the Heisenberg algebra with two Casimir operators X0

and P0:

[Xn, Xm] = [Pn, Pm] = [X0, Pn] = [P0, Xn] = 0

[Xn, Pm] = i δn,m for n 6= 0 (2.49)

where

P0 = J+
0 + J−0

Pn = i
kn

(J+
−n + J−n ) for n 6= 0 (2.50)

Xn = J+
n − J−−n .

The Hamiltonian of the system is defined as the charge associated with unit time
translations

H = Q[η±|∂t ] ≡ Q+[η+|∂t ]−Q−[η−|∂t ] , (2.51)

where η±|∂t = a±t = L0ζ
± according to eq. (2.44). For the choice ζ± = −a, or

equivalently Ω = 0, this yields

H = aP0 = a(J+
0 + J−0 ) , (2.52)

which, according to eqs. (2.48) or (2.49), is a Casimir operator. A remarkable
consequence of this fact is that there exist “soft hair” excitations

|ψ〉 ∼
∏
i,j

(J+

n+
i

)m
+
i (J−

n−j
)m
−
j |0〉 (2.53)

of the vacuum state |0〉. All states (2.53) have the same energy as the vacuum.
The name “soft hair” was introduced in 2016 by Hawking, Perry and Strominger
[21], while the zero energy “soft hair” excitations of horizons were first introduced
in [8]. Furthermore, the entropy is then found to be

S = 2π(J+
0 + J−0 ) , (2.54)

i.e. it is only given in terms of the zero mode charges.
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2.5 Chern-Simons-like theories of gravity

In [22,23], the Chern-Simons action (2.17) is generalized to include a whole family
of gravity theories, including Einstein gravity. This is done by attaching an
additional field space index to the sl(2,R) valued one-form fields. Then, the
action of a CS-like theory is given by

I =
k

2π

ˆ
tr

(
gpqa

p ∧ daq +
1

3
fpqra

p ∧ aq ∧ ar
)
, (2.55)

where gpq and fpqr are a completely symmetric metric on the field space and
structure constants respectively. The theory one is interested in can then be
specified with the choice of the components of the field space metric and the
structure constants. For example, the choice

geω = −1 , feωω = −1 , feee = −1 , (2.56)

yields the first-order action of Einstein gravity. Under the assumption that gpq is
invertible, its inverse can be used to raise indices on the field space. Gauge-like
transformations of the fields ap → ap + δξa

p can be written in a form similar to
the case of pure Chern-Simons theory:

δξa
p = dξp + f pqr[a

q, ξr]. (2.57)

Furthermore, diffeomorphisms are generated by the above formula when the spe-
cific choice

ξp = a p
ν ζ

ν (2.58)

for the gauge parameters is employed:

δζa
p
µ = ζν∂µa

p
ν + a p

ν ∂µζ
ν + · · · on−shell= Lζa p

µ . (2.59)

For this thesis, it will be useful to establish a Hamiltonian formulation of CS-like
theories. This can be done starting with a split of time and space components of
the fields

ap = at
pdt+ ai

pdxi , (2.60)

with spatial indices i, j, ... . This leads to a Lagrangian density of the form

L = tr(−εijgpqaip∂tajq + 2at
pφp) . (2.61)
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The time components thus serve as Lagrange multipliers for the primary con-
straints φp, given explicitly by

φp = εij(gpq∂iaj
q + 1

2
fpqr[ai

q, arj ]) . (2.62)

Here, the definition εij ≡ εtij was used.
The Hamiltonian density is given by the sum of the primary constraints and
Lagrange multipliers

H = −
ˆ

d2x tr(at
pφp) . (2.63)

The Poisson brackets of the canonical fields are given by

{anpi (x), amq
j (y)} =

π

k
εij g

pqγnmδ(2)(x− y) (2.64)

where γnm denotes the inverse of γnm = antidiag(−1, 1
2
,−1)nm. It is useful to

associate “smeared” functions φ[ξp] with the constraints by integrating them with
a test function ξp as

φ[ξp] =
k

π

ˆ
d2x tr(ξp(x)φp(x)) . (2.65)

Now, it turns out that the Poisson brackets of this newly defined function with
the spatial components of the fields are given by

{φ[ξq], ai
p(y)} = δξai

p(y) (2.66)

and thus generate the spatial part of the gauge-like transformations (2.57).
Choosing the specific form of the gauge fields (2.58) yields that the Poisson brack-
ets of the smeared constraint function and the spatial fields generate diffeomor-
phisms:

{φ[aµ
qζµ], ai

p(y)} = Lζaip(y) (2.67)

It is noteworthy that this equation does not rely on the equations of motions to
hold, i.e. it is also true off-shell.

2.5.1 Boundary charges

On manifolds with a boundary there might appear boundary terms that would
lead to ill-defined constraint functions. We therefore need to add a boundary
term to them

Φ[ξp] =
k

π

ˆ
d2x tr (ξp(x)φp(x)) +Q[ξp] . (2.68)
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The boundary term Q[ξp] should be of a form such that it cancels all boundary
terms that appear under variation of the constraints with respect to the fields.
This requirement is fulfilled by

δQ[ξp] = −k
π

˛
dϕ tr(gpqξ

pδaqϕ) . (2.69)

These functions are the boundary charges of a theory. With a suitable choice as
boundary conditions they should be finite, integrable and conserved.

2.6 Topologically massive gravity

The specific theory of interest for this thesis is topologically massive gravity [24,
25]. As discussed, three dimensional Einstein gravity does not have propagating
degrees of freedom. TMG, however, extends general relativity so it propagates
a single degree of freedom. It does so by adding an extra term, the so-called
gravitational Chern-Simons term, to the Einstein Hilbert action:

ITMG = IEH +
1

16πG
IgCS (2.70)

The Einstein-Hilbert action is given by

IEH =
1

16πG

ˆ
d3x
√
−g(R− 2Λ) (2.71)

and the gravitational Chern-Simons term reads

IgCS =
1

2µ

ˆ
d3x εµνρ

(
Γαµβ∂νΓ

β
ρα +

2

3
ΓαµγΓ

γ
νβΓβρα

)
, (2.72)

with the Christoffel connection Γ and the mass parameter µ as coupling constant.
The equations of motion of TMG can then be obtained by varying the action
(2.70) with respect to the metric gµν :

Gµν + Λgµν +
1

µ
Cµν = 0 , (2.73)

where the Cotton tensor Cµν is given by

Cµν = ε αβµ ∇α

(
Rβν −

1

4
Rgβν

)
= ε αβµ ∇αSβν , (2.74)
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with the Schouten tensor Sβν . The Cotton tensor can be used to write the Bianchi
identity in the elegant form

C[µν] = 0 . (2.75)

Therefore, we are left with only its symmetric part

Cµν =
1

2

(
ε ρσµ ∇ρRσν + ε ρσν ∇ρRσµ

)
(2.76)

and see that its trace vanishes, Cµ
µ = 0. Now, taking the trace of (2.73) yields

the coordinate invariant quantity R = −6/`2. Here, ` is called AdS length and is
related to the cosmological constant as Λ = −1/`2.
One can formulate this theory in a first order form using as basic variables the
triad e, dualized spin-connection ω and auxiliary field f by using (2.55) with field
space metric and structure constants

geω = −1 gωω =
1

µ
gef =

1

µ
(2.77a)

feωω = −1 feee = −1 feωf =
1

µ
fωωω =

1

µ
(2.77b)

leading to the first order action

I = − 1

4πG

ˆ
tr
[
e ∧
(

dω +
1

2
[ω ∧, ω] +

1

6
[e ∧, e]

)
− 1

µ

(
f ∧ (de+ [ω ∧, e]) +

1

2
ω ∧ (dω +

1

3
[ω ∧, ω])

)]
. (2.78)

The auxiliary field f serves as a Lagrange multiplier for the torsion constraint.
Varying this action with respect to the fields yields the equations of motion

de+ [ω ∧, e] = 0 (2.79a)

dω + 1
2

[ω ∧, ω] + [e ∧, f ] = 0 (2.79b)

df + [ω ∧, f ] + µ [e ∧, f ]− µ
2

[e ∧, e] = 0 . (2.79c)

The first equation is nothing but the torsion constraint and can be solved for the
spin connection. The second equation of motion can then be solved for f and
shows that f is on-shell essentially the Schouten tensor. The third equation is
then the first order version of eq. (2.73).
A classification of solutions of TMG is given in e.g. [26]. In [14], a classification of
all stationary axi-symmetric solutions to TMG is given. There are no non-trivial
static solutions, and all solutions with timelike hypersurface-orthogonal Killing
vector are Einstein, i.e. also solve pure Einstein gravity. The authors distinguish
between four sectors:
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• Einstein - This class of solutions solves the three dimensional Einstein
equations of motion. All of them are locally AdS3 and they obey Brown-
Henneaux boundary conditions.

• Warped - This class of solutions is asymptotically or locally warped AdS3.

• Schrödinger - This class of solutions is either asymptotically AdS3 or asymp-
totically Schrödinger.

• Generic - All solutions that are neither of the above.

The entropy formula (2.54) has been shown to hold for solutions of the Einstein
sector, namely BTZ black holes, and more recently also for warped black holes
[12].

2.7 Schrödinger spacetime

Spacetimes with the Schrödinger group as their symmetry group are studied
in the context of holography with non-relativistic field theories. For instance,
Schrödinger spacetime has been proposed as holographic duals to non-relativistic
conformal field theories describing cold atoms at unitarity [27]. In [28], a bulk
dual of non-relativistic CFTs is found. This is done by considering the alge-
bra of generators of the non-relativistic conformal group and invariance under
non-relativistic scaling

t→ λzt (2.80)

xi → λxi (2.81)

is demanded. Here, xi are the spatial coordinates and z is called the dynamical
critical exponent. Note that for z = 2, this is the symmetry of the free particle
Schrödinger equation.
The symmetry algebra that is used by the authors of [28] is given by

[M ij, Mkl] = i(δikM jl + δjlM ik − δilM jk − δjkM il) ,

[M ij, N ] = [M ij, D] = 0 , [M ij, P k] = i(δikP j − δjkP i) ,

[M ij, Kk] = i(δikKj − δjkKi) ,

[P i, P j] = [Ki, Kj] = 0 , [D, P i] = +i P i ,

[D, Ki] = (1− z)iKi , [P i, Kj] = −i δijM ,

[H,N ] = [H,P i] = [H,M ij] = 0 , [H,Ki] = iP i ,

[D, H] = izH , [D, N ] = i(2− z)N . (2.82)

The generators of this group consist of
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• temporal translations H

• spatial translations P i

• rotations M ij

• Galilean boosts Ki

• dilatations D

• conserved rest mass or particle number N

• a mass operator M .

In the special case z = 2, an additional conformal generator C with commutators

[M ij, C] = 0 , [Ki, C] = 0 , [D,C] = −2iC , [H,C] = −iD , (2.83)

appears. The spacetime that is invariant under the isometries generated by the
above algebra is given by

ds2 = −dt2

r2z
+

1

r2

(
− 2dtdξ + dr2 + (dx1)2 + · · ·+ (dxd)2

)
. (2.84)

It is invariant under scale transformations

xi → λxi , t→ λzt , r → λr , ξ → λ2−zξ . (2.85)

It should also be noted that the metric (2.84) is not supported by vacuum Ein-
stein gravity by itself, one has to consider a theory with a non-zero stress tensor
describing dust.
Gravity duals of non-relativistic field theories have been studied extensively in
the literature, see e.g. [28–33].
In this thesis, we are interested in three dimensional gravity and the metric of
our interest is given by [34–37]

ds2 =
dr2

4r2
+ 2r dtdϕ+

1

2

(
b2 + ar + srz

)
dϕ2 . (2.86)

These black holes have been extensively studied in [34] where they are called
z-warped black holes by the authors. Their line element asymptotes to null z-
warped AdS3, the three dimensional analogue of Schrödinger spacetime. One can
think of these black holes as the double analytical continuation, i.e. exchang-
ing time with a space direction, of the Schrödinger geometry truncated to three
dimensions.
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Schrödinger spacetime is invariant under an anisotropic scaling (t, xi)→ (λzt, λxi),
which is not the case for these black holes, even asymptotically. The parameter
z is therefore not to be thought of as a critical exponent here.
When the parameters a and b are zero and ϕ is non-compact, the line element
(2.86) is invariant under dilatations

D ≡ −2

z
r
∂

∂r
+ ϕ

∂

∂ϕ
+

2− z
z

t
∂

∂t
. (2.87)

Thus, it is more sensible to interpret the scaling of (null) time with respect to
the spacial coordinate ϕ as critical exponent:

Z =
2− z
z

(2.88)
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Chapter 3

Soft hairy Schrödinger black
holes

In this chapter, our objective is to study the near horizon behaviour of null
warped black holes. In section 3.2, we present the metric that will be subject
to the calculations that follow. In section 3.3, we find a set of first order fields
corresponding to the metric introduced in the first section. In section 3.4, we
focus on the case µ` = 1 while we find near horizon boundary conditions and
gauge transformations that preserve these boundary conditions. In section 3.5,
we discuss how the results for µ` > 1 relate to the previous ones. Finally, in
section 3.6, we calculate the charges, the symmetry algebra and the entropy and
then relate the charges to the symmetry algebra at asymptotic infinity.

3.1 General procedure

In this chapter, we will follow a rather straightforward procedure of finding the
charges and their algebra near the horizon of the considered black holes. A flow
chart depicting the process is given in fig. 3.1 . The first step is to find a
set of boundary conditions. These should also include information about which
functions are allowed to vary and which are kept fixed under variation. These
boundary conditions can be formulated in a first order form, using the triad eµ,
or expressed in terms of the metric gµν . Then, one has to find the transformations
that preserve the specified boundary conditions. Once these transformations are
found, it is straightforward to calculated the charges associated to the boundary
conditions. Now, if the charges turn out to be non-trivial, it has to be checked
whether they are integrable, finite and if they are conserved. Should this not be
the case, the boundary conditions have to be altered. They could be either too
weak or too strong. Once suitable boundary conditions and their charges have

23



been found, one can then expand the charges in Fourier modes and then find the
algebra generated by those modes, the near horizon symmetry algebra.

define

boundary

conditions

find bound-

ary condition

preserving

transfor-

mations

calculate

associated

charges

weaken/

strengthen

boundary

conditions

charges

non-trivial,

integrable,

finite and

conserved?

find

symmetry

algebra

no

yes

Figure 3.1: Flow chart of the procedure of finding the near horizon symmetry
algebra
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3.2 Metric

The black holes subject to this thesis can be described by the line element [34–37]

ds2 =
dr2

4r2
+ 2r dtdϕ+

1

2
f(r)dϕ2 , (3.1)

with

f(r) = b2 + ar + srz (3.2)

where b and a are constants, s is a sign and z can be given in terms of the coupling
constant of TMG:

z =
µ`+ 1

2
. (3.3)

The angular coordinate is periodic ϕ ∼ ϕ + 2π and the time coordinate is unre-
stricted. From now on, we will choose s = +1. Furthermore, we require a ≥ 0,
which ensures that there are no positive roots of f(r). Then, the range of the
radial coordinate is rs < r <∞ with rs < 0 being the largest real root of f(r).
This line element solves the equations of motion of TMG (2.73) for every z. The
black holes described by (3.1) possess two isometries, generated by either a null
Killing vector ∂t or a spacelike compact U(1) Killing vector ∂ϕ. They are called
null warped black holes for z = 2 and null z-warped black holes for z > 2. When
f(r) is negative, the black holes have closed timelike curves, but they are then
hidden inside the horizon r < 0. The existence of these causal singularities is
what justifies the name black hole for these spacetimes. Depending on the value
of z, the solution has different asymptotic behaviour, as discussed in e.g. [34]. It
can be characterized as

• asymptotically null warped AdS3 for z = 2 (µ` = 3)

• asymptotically null z-warped AdS3 for z > 2

• asymptotically AdS3 under Brown-Henneaux boundary conditions or anti-
de Sitter boundary conditions in TMG for z ≤ 1 (µ` ≤ 1) .

In the limit r → 0, the situation is different. The term of order O(rz) gains
more weight the lower z. For the near horizon considerations in the following
calculations I am going to distinguish between two cases: z = 1 and z > 1
Furthermore, for all the following calculations I set ` = 1.
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3.2.1 ADM form and extremality

Before we go on to find a first order description of the metric (3.1) we are first
going to find where the horizons are located by putting the metric into ADM
form. This can be done by introducing the new coordinates

τ =
1√
2

(
ϕ− 1

2
t

)
φ = − 1√

2

(
ϕ+

1

2
t

)
(3.4)

which makes it possible to write (3.1) in ADM form

ds2 = −N2(r)dτ 2 +
dr2

N2(r)R2(r)
+R2(r)(dφ−Nφ(r)dτ)2 (3.5)

where

N2(r) =
16r2

b2 + 8r + ar + rz
(3.6a)

R2(r) = 1
4
(b2 + 8r + ar + rz) (3.6b)

Nφ(r) =
b2 + ar + rz

b2 + 8r + ar + rz
. (3.6c)

The horizons are given by the zeros of N2(r), hence, they are both located at
r = 0.
Killing vectors for the metric (3.5) are given by ∂τ and ∂φ. The event horizon
r = 0 is a Killing horizon for the Killing vector

K = ∂τ + Ω ∂φ (3.7)

when Ω = 1.
Using the definition of surface gravity [38]

κ2 = −1

2
(∇µKν)(∇µKν)

∣∣∣
Horizon

(3.8)

it turns out that the surface gravity vanishes, κ = 0, and therefore the black holes
described by (3.1) describe an extremal black hole.

3.3 Chern-Simons like formulation

In section 2.6, we discussed how TMG, using the metric (2.77a) and structure
constants (2.77b), can be reformulated as a CS-like theory which yields the first
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order action

I = − 1

4πG

ˆ
tr
[
e ∧
(

dω +
1

2
[ω ∧, ω] +

1

6
[e ∧, e]

)
− 1

µ

(
f ∧ (de+ [ω ∧, e]) +

1

2
ω ∧ (dω +

1

3
[ω ∧, ω])

)]
. (3.9)

We now express the spacetime described by the metric (3.1) in terms of first order
variables, i.e. dreibein e, spin-connection ω and auxiliary field f .
A possible dreibein is given by

et = −
√

2 r√
b2 + a r + rz

(T 0 + T 2) (3.10a)

er =
1

2r
T 1 (3.10b)

eϕ = −
√

1
2
(b2 + a r + rz)T2 , (3.10c)

where the sl(2,R) generators (2.18) have been used. Of course, any dreibein
related to eqs. (3.10) by a local Lorentz transformation is allowed as long as

gµν = 2 tr(eµeν) (3.11)

is satisfied. The choice (3.10) happens to be a nice choice when we want to find
boundary conditions later on. The only combinations of the matrices (2.18) that
survive under the trace are

tr(T 2
0 ) = −1

2
, tr(T 2

1 ) =
1

2
, tr(T 2

2 ) =
1

2
. (3.12)

Thus, it is not hard to see that the triad (3.10) reproduces the metric (3.1). The
combination of generators in the et component may seem odd at first sight, it is
necessary to ensure that the gtt component of the metric vanishes however. Using
the equations of motion of TMG (2.79) yields spin connection

ωt = −
√

2 r√
ar + b2 + rz

(T 0 + T 2) (3.13a)

ωr =
b2 − (z − 1)rz

2r (ar + b2 + rz)
T 1 (3.13b)

ωϕ = − ar + zrz√
2
√
ar + b2 + rz

T 0 +
(z − 1)rz − b2√
2
√
ar + b2 + rz

T 2 (3.13c)
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and auxiliary field

ft = − r√
2
√
ar + b2 + rz

(T 0 + T 2) (3.14a)

fr =
1

4r
T 1 (3.14b)

fϕ = −
√

2 (z − 1)zrz√
ar + b2 + rz

T 0 − ar + b2 + (1− 2z)2rz

2
√

2
√
ar + b2 + rz

T 2 . (3.14c)

3.4 The case z = 1

We now focus on the case z = 1. We will see later on that most of the results that
follow generalize to the case z > 1. In order to find suitable boundary conditions,
the radial coordinate will be rescaled in the following way for the rest of this
section:

r → b2

a+ 1
r (3.15)

3.4.1 Boundary conditions

Based on the findings of the last section, we propose the following boundary
conditions:

et = −
√

2 C(t, ϕ) r (T 0 + T 2) +O(r2) (3.16a)

er =
1

2r
T 1 +O(1) (3.16b)

eϕ = − 1√
2
B(t, ϕ)

(
1 +

1

2
r

)
T 2 +O(r2), (3.16c)

As part of the boundary conditions, the restriction δC(t, ϕ) = 0 is imposed while
the variation of B(t, ϕ) is unrestricted.
In order for a spacetime described by (3.16) at the boundary to fulfill the equa-
tions of motion of TMG (2.79) however, the following on-shell restrictions also
have to hold:

∂t B(t, ϕ) = 0 , ∂ϕ C(t, ϕ) = 0 , (3.17)

or stated differently

B(t, ϕ) ≡ B(ϕ) , C(t, ϕ) ≡ C(t) . (3.18)
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An exact solution that satisfies the above boundary conditions is given by

et = −
√

2 C(t, ϕ)
r√

1 + r
(T 0 + T 2) (3.19a)

er =
1

2r
T 1 (3.19b)

eϕ = − 1√
2

√
1 + rB(t, ϕ)T 2, (3.19c)

which corresponds to the metric

ds2 =
dr2

4r2
+ 2rB(t, ϕ) C(t, ϕ)dtdϕ+

1

2
(1 + r)B(t, ϕ)2 dϕ2 . (3.20)

The solution (3.1) is clearly contained in the general metric (3.20) for z = 1 after
the coordinate rescaling (3.15). If the functions B and C take on the constant
values

B = b , C =
b

a+ 1
, (3.21)

we recover the black hole solution.

3.4.2 Boundary condition preserving transformations

Now, let’s find the gauge transformations ap → ap+δξa
p that preserve the bound-

ary conditions above. In section 2.5 it was stated that a gauge transformation in
a Chern-Simons-like theory is given by

δξa
p = dξp + f pqr[a

q, ξr]. (3.22)

For TMG specifically, plugging in the metric (2.77a) structure constants (2.77b)
yields

δξe = dξe + [ω, ξe] + [e, ξω] (3.23a)

δξω = dξω + [ω, ξω] + [e, ξf ] + [f, ξe] (3.23b)

δξf = dξf + [ω, ξf ] + [f, ξω] + µ([e, ξf ] + [f, ξe]− [e, ξe]) . (3.23c)

We are then searching for the parameters ξp that preserve the proposed near
horizon boundary conditions (3.16). Hence, they need to satisfy

δξeϕ = − 1√
2
δB(ϕ)

(
1 +

1

2
r

)
T 2 +O(r2) (3.24a)

δξωϕ = − 1√
2
δB(ϕ) r T 0 + 1√

2
δB(ϕ)

(
1− 1

2
r

)
T 2 +O(r2) (3.24b)

δξfϕ = − 1√
2
δB(ϕ)

(
1

2
+

1

4
r

)
T 2 +O(r2) . (3.24c)
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Variations on all other field components must vanish up to orders

δξa
p
t = O(r2) , δξa

p
r = O(1) , for all p . (3.25)

Solving for the components of ξp leads to a solution that can be written in terms
of two arbitrary functions η(ϕ) and ε(ϕ):

ξe =
1√
2

(
η(ϕ) +

1

2
ε(ϕ)r

)
T 2 − η(ϕ)− ε(ϕ)

2
√

2
r T 0 +O(r2) (3.26a)

ξω =
1√
2

(
−η(ϕ) +

1

2
ε(ϕ)r

)
T 2 +

η(ϕ) + ε(ϕ)

2
√

2
r T 0 +O(r2) (3.26b)

ξf =
1

2
ξe (3.26c)

However, the parameters above only preserve the first order fields under the
condition that the state dependent function B(ϕ) transforms as

δB(ϕ) = ∂ϕη(ϕ) = ∂ϕε(ϕ) . (3.27)

Thus, the two functions η and ε are not independent. They differ by a constant
λ:

ε(ϕ) = η(ϕ) + λ (3.28)

Hence, we can write

ξe =
1√
2

(
η(ϕ)

(
1 +

1

2
r

)
+

1

2
λ r

)
T 2 +

λ

2
√

2
r T 0 +O(r2) (3.29a)

ξω =
1√
2

(
−η(ϕ)

(
1− 1

2
r

)
+

1

2
λ r

)
T 2 +

2η(ϕ) + λ

2
√

2
r T 0 +O(r2) (3.29b)

ξf =
1

2
ξe (3.29c)

We can also search for parameters ξp that leave the full dreibein unaltered un-
der gauge transformations. The parameters that leave the exact dreibein (3.19)
unchanged are given by

ξe =
1

2
√

2

(
r√

1 + r
λ+ 2

√
1 + r η(ϕ)

)
T 2 +

1

2
√

2

r√
1 + r

λ T 0 , (3.30a)

ξω =
1

2
√

2

(
r√

1 + r
λ− 2√

1 + r
η(ϕ)

)
T 2 +

1

2
√

2

r√
1 + r

(2η(ϕ) + λ)T 0 ,

(3.30b)

ξf =
1

2
ξe . (3.30c)
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They include the near horizon parameters (3.29) in the limit r → 0.
We stated in section 2.5 that diffeomorphisms are generated by gauge parameters
of the form ξp = aν

pζν . Thus, we can find a corresponding near horizon Killing
vector to the above transformations. It is given by

ζ = ζµ∂µ =
λ

4 C
∂t −

η(ϕ)

B(ϕ)
∂ϕ . (3.31)

It should be noted that eqs. (3.29) include the time components of the fields apt
as the special case

λ = 4 C , η(ϕ) = 0 . (3.32)

Therefore, we see that we could add a second chemical potential to our time
fields. Replacing the time components of the fields with the gauge fields (3.29)
as

apt → ξp , (3.33)

yields as on-shell conditions the more familiar form of the Ward identities

∂tB = −∂ϕη . (3.34)

3.5 The case z > 1

For this case, instead of using (3.15), the radial coordinate now is rescaled as

r → b2

a
r . (3.35)

The boundary conditions take the form

et = −
√

2 C(t, ϕ) r (T 0 + T 2) +O(r2) (3.36a)

er =
1

2r
T 1 +O(1) (3.36b)

eϕ = − 1√
2
B(t, ϕ)

(
1 +

1

2
r

)
T 2 +

{
O(rz) for 1 < z < 2

O(r2) for z ≥ 2
(3.36c)

for this case. The black hole solution now corresponds to

B = b , C =
b

a
, (3.37)
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where again the restriction δC = 0 is imposed while the variation of B is unre-
stricted.
The rest of the results is completely analogous to the case z = 1. The boundary
condition preserving transformations are again given by

ap → ap + δξa
p (3.38)

with the gauge parameter (3.29) and a corresponding Killing vector is given by
(3.31).
However, a very significant difference to the case z = 1 is the fact that only the
perturbative results of the last section hold.

3.6 Charges, symmetry algebra and entropy

The variation of the charges of a general CS-like theory is given by

δQ[ξp] = −k
π

˛
tr(gpqξ

pδaqϕ) dφ . (3.39)

Evaluated for this case, i.e. Schrödinger black holes in TMG with the results
(3.26) and the fields in section 3.3, the above expression yields

δQ =
2z

2z − 1

k

2π

˛
δB(ϕ)η(ϕ) dϕ . (3.40)

Now, from eq. (3.31) we can see that ζ = ∂ϕ amounts to the condition η = −B.
The conserved charge associated to the asymptotic symmetry ∂ϕ is therefore given
by

Q∂ϕ = − 2z

2z − 1

k

4π

˛
B2(ϕ) dϕ . (3.41)

which means that the result (up to a sign and a factor of 1/2) agrees with [34].
Assuming δη = 0 instead, the expression (3.40) integrates to

Q =
2z

2z − 1

k

2π

˛
B(ϕ)η(ϕ) dϕ . (3.42)

If we expand this expression in Fourier modes

Jn = Q[η = einϕ] =
2z

2z − 1

k

2π

˛
B(ϕ)einϕ dϕ , (3.43)
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we find that they satisfy the u(1) current algebra

[Jn, Jm] =
2z

2z − 1
k n δn+m,0 . (3.44)

It should be noted here that this case is different to previous cases since it is
not possible to rewrite this algebra as infinitely many copies of the Heisenberg
algebra because such a change of basis would require two copies of u(1) current
algebras.
The entropy was found in [34] to be

S = 2π
2z

2z − 1
k B , (3.45)

which yields that once again the entropy can be given in terms of a zero mode of
a u(1) current:

S = 2π J0 (3.46)

The boundary Hamiltonian is defined as the charge associated with unit time-
translations. Hence, it is in this case trivially realized by

H = Q[η = 0, λ = 4C] = 0 , (3.47)

and it obviously commutes with all other charges. All excitations

|ψ〉 ∼
∏
i

(Jni)
mi |0〉 , (3.48)

therefore have the same energy as the original one, analogous to the previous
black holes studied, albeit realized in a rather trivial manner. These zero energy
excitations are again interpreted as “soft hair”.

3.6.1 Relationship to asymptotic symmetry algebra

As discovered in [34], the asymptotic symmetry algebra is given by the Virasoro
algebra

[Ln, Lm] = (n−m)Ln+m +
cL
12
n3 δm+n,0 (3.49)

with central extension

cL =
3`

2G

2z

2z − 1
. (3.50)
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It turns out that the Sugawara construction

L =
1

4

2z − 1

2z
J 2 +

√
cL

12k

2z − 1

2z
J ′ (3.51)

=
1

4

2z − 1

2z
J 2 +

1√
2
J ′ (3.52)

where

J ≡ 2
2z

2z − 1
B (3.53)

relates the near horizon algebra (3.44) to the asymptotic algebra (3.49) when
expanded in Fourier modes

kLn =
1

2

2z − 1

2z

∑
p∈Z

Jn−pJp + ikn
1√
2
Jn . (3.54)

Here,

J =
2

k

∑
n

einϕJn (3.55)

was used. Now, we know that, since we expect a Virasoro algebra at asymptotic
infinity, the function L transforms as

δL = 2Lγ′ + L′γ − 2z

2z − 1
γ′′′ (3.56)

with an arbitrary function γ and the transformation properties of B were found
in section 3.4.2 to be δB = −∂ϕη . The Ansatz

η = c0γ
′ + c1γB (3.57)

L = c2B2 + c3B′ (3.58)

then leads to

η =
1√
2
γ′ − γB (3.59)

L =
2z

2z − 1
B2 +

√
2

2z

2z − 1
B′ . (3.60)

In section 3.4.2 it was mentioned that we could introduce an additional chemical
potential by replacing the time components of the fields with the gauge parameter.
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For z = 1, this yields

(gµν) =

t r ϕ( )2r η C + 1
2
(1 + r)η2 0 1

2
rB C + 1

4
(1 + r)ηB t

0 1
4r2

0 r
1
2
rB C + 1

4
(1 + r)ηB 0 1

2
(1 + r)B2 ϕ

(3.61)

Since we know how the gauge parameter γ transforms, we know also how the
corresponding chemical potential µ needs to transform:

η =
1√
2
µ′ − µB (3.62)

For constant µ and B, it is easy to see that (3.61) expressed in terms of the
asymptotic functions L and µ can be written as

(gµν) =

t r ϕ −
√

2rµ
√
LC + 1

4
(1 + r)µ2L 0

√
2
4
r C
√
L − 1

8
(1 + r)µL t

0 1
4r2

0 r√
2
4
r C
√
L − 1

8
(1 + r)µL 0 1

2
(1 + r)L ϕ

(3.63)

In the more general case, i.e. when B′ 6= 0 and µ′ 6= 0, the situation becomes
much more complex and an expression of the metric in terms of the asymptotic
charges and chemical potentials is yet to be found. Things that can be tried are
gauge transformations

gµν = 2 tr ((eµ + δeµ)(eν + δeν)) (3.64)

with

δeµ = δξ=ζνaνeµ , (3.65)

as well as ordinary coordinate transformations.
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Chapter 4

Conclusion

In this thesis, we studied the near horizon symmetries of Schrödinger black holes
in three dimensional topologically massive gravity. We translated the black hole
metric into a first order formalism, namely that of Chern-Simons like theories. In
terms of the first order fields we were able to find boundary conditions that were
then used to calculate the associated boundary charges. It turns out that their
Fourier modes satisfy a u(1) current algebra

[Jn, Jm] =
2z

2z − 1
k n δn+m,0 . (4.1)

Furthermore, the entropy is given only in terms of the zero mode of the u(1)
charge:

S = 2π J0 . (4.2)

This is one of the main results of this thesis, as the main goal was to provide
further evidence for the universality of the above result. Finally, we tried to
connect the obtained u(1) current algebra to the asymptotic symmetry algebra
given by the Virasoro algebra. We find a map between the near horizon charges
and the asymptotic charges heuristically and then attempt a derivation from first
principles.
It would be very rewarding to completely understand the map of the near horizon
charges given in the last subsection from first principles.
Furthermore, it would be very interesting to study the near horizon behaviour
of higher dimensional black holes on backgrounds dual to non-relativistic field
theories, see e.g. [39–48]. Then, one could study the implications of these results
on the dual field theories and therefore on physical systems such as cold atoms
at unitarity [27].
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Appendix A

Conventions

Natural units ~ = c = 1 are used throughout this thesis.

For the metric, the mostly plus sign convention (−,+,+) is used.

The Levi-Civita-symbol, denoted by ε, is understood with the sign convention

εtrϕ = +1 . (A.1)

The sign convention for the Ricci-tensor

Rµν = +∂λΓ
λ
µν − . . . (A.2)

is employed.

The wedge product of some Lorentz vectors Xµ and Yµ is defined as

(X ∧ Y )µν = 1
2
(XµYν −XνYµ) . (A.3)

The wedged commutators can be written in index notation as

[B ∧, A] = [A ∧, B] ≡ Ta ε
abcAb ∧Bc (A.4)

and relate to the crossproduct notation of [23] as

[B ∧, A] = [A ∧, B] ≡ A×B = B × A . (A.5)

The following identity is useful for e.g. varying the action:

A ∧ [B ∧, C] = B ∧ [C ∧, A] = C ∧ [A ∧, B] . (A.6)
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[18] M. Bañados, “Three-dimensional quantum geometry and black holes,”
hep-th/9901148.

[19] S. Carlip, “The (2+1)-Dimensional black hole,” Class. Quant. Grav. 12
(1995) 2853–2880, gr-qc/9506079.

[20] H. Afshar, D. Grumiller, W. Merbis, A. Perez, D. Tempo, and R. Troncoso,
“Soft hairy horizons in three spacetime dimensions,” Phys. Rev. D95
(2017), no. 10, 106005, 1611.09783.

[21] S. W. Hawking, M. J. Perry, and A. Strominger, “Soft Hair on Black
Holes,” Phys. Rev. Lett. 116 (2016), no. 23, 231301, 1601.00921.

[22] E. A. Bergshoeff, O. Hohm, W. Merbis, A. J. Routh, and P. K. Townsend,
“Chern-Simons-like Gravity Theories,” Lect. Notes Phys. 892 (2015)
181–201, 1402.1688.

39

http://www.arXiv.org/abs/1607.05360
http://www.arXiv.org/abs/1703.02594
http://www.arXiv.org/abs/1711.07975
http://www.arXiv.org/abs/1711.08344
http://www.arXiv.org/abs/1006.3309
http://www.arXiv.org/abs/gr-qc/9302012
http://www.arXiv.org/abs/hep-th/9901148
http://www.arXiv.org/abs/gr-qc/9506079
http://www.arXiv.org/abs/1611.09783
http://www.arXiv.org/abs/1601.00921
http://www.arXiv.org/abs/1402.1688


[23] W. Merbis, Chern-Simons-like Theories of Gravity. PhD thesis, Groningen
U., 2014. 1411.6888.

[24] S. Deser, R. Jackiw, and S. Templeton, “Three-dimensional massive gauge
theories,” Phys. Rev. Lett. 48 (1982) 975–978.

[25] S. Deser, R. Jackiw, and S. Templeton, “Topologically massive gauge
theories,” Ann. Phys. 281 (2000) 409–449.

[26] D. D. K. Chow, C. N. Pope, and E. Sezgin, “Classification of solutions in
topologically massive gravity,” Class. Quant. Grav. 27 (2010) 105001,
0906.3559.

[27] D. T. Son, “Toward an AdS/cold atoms correspondence: a geometric
realization of the Schroedinger symmetry,” Phys. Rev. D78 (2008) 046003,
0804.3972.

[28] K. Balasubramanian and J. McGreevy, “Gravity duals for non-relativistic
CFTs,” Phys. Rev. Lett. 101 (2008) 061601, 0804.4053.

[29] S. Kachru, X. Liu, and M. Mulligan, “Gravity Duals of Lifshitz-like Fixed
Points,” Phys. Rev. D78 (2008) 106005, 0808.1725.

[30] A. Adams, K. Balasubramanian, and J. McGreevy, “Hot Spacetimes for
Cold Atoms,” JHEP 11 (2008) 059, 0807.1111.

[31] J. L. F. Barbon and C. A. Fuertes, “On the spectrum of nonrelativistic
AdS/CFT,” JHEP 09 (2008) 030, 0806.3244.

[32] M. Taylor, “Non-relativistic holography,” 0812.0530.

[33] W. D. Goldberger, “AdS/CFT duality for non-relativistic field theory,”
JHEP 03 (2009) 069, 0806.2867.

[34] D. Anninos, G. Compere, S. de Buyl, S. Detournay, and M. Guica, “The
Curious Case of Null Warped Space,” JHEP 1011 (2010) 119, 1005.4072.

[35] G. Clement, “Particle - like solutions to topologically massive gravity,”
Class. Quant. Grav. 11 (1994) L115–L120, gr-qc/9404004.

[36] S. Deser, R. Jackiw, and S. Y. Pi, “Cotton blend gravity pp waves,” Acta
Phys. Polon. B36 (2005) 27–34, gr-qc/0409011.

[37] G. W. Gibbons, C. N. Pope, and E. Sezgin, “The General Supersymmetric
Solution of Topologically Massive Supergravity,” Class. Quant. Grav. 25
(2008) 205005, 0807.2613.

40

http://www.arXiv.org/abs/1411.6888
http://www.arXiv.org/abs/0906.3559
http://www.arXiv.org/abs/0804.3972
http://www.arXiv.org/abs/0804.4053
http://www.arXiv.org/abs/0808.1725
http://www.arXiv.org/abs/0807.1111
http://www.arXiv.org/abs/0806.3244
http://www.arXiv.org/abs/0812.0530
http://www.arXiv.org/abs/0806.2867
http://www.arXiv.org/abs/1005.4072
http://www.arXiv.org/abs/gr-qc/9404004
http://www.arXiv.org/abs/gr-qc/0409011
http://www.arXiv.org/abs/0807.2613


[38] R. M. Wald, General Relativity. Chicago Univ. Pr., Chicago, USA, 1984.

[39] E. Ayon-Beato, A. Garbarz, G. Giribet, and M. Hassaine, “Lifshitz Black
Hole in Three Dimensions,” Phys.Rev. D80 (2009) 104029, 0909.1347.

[40] M. Gutperle, E. Hijano, and J. Samani, “Lifshitz black holes in higher spin
gravity,” JHEP 1404 (2014) 020, 1310.0837.

[41] K. Balasubramanian and J. McGreevy, “An Analytic Lifshitz black hole,”
Phys. Rev. D80 (2009) 104039, 0909.0263.

[42] R. B. Mann, “Lifshitz Topological Black Holes,” JHEP 06 (2009) 075,
0905.1136.

[43] R.-G. Cai, Y. Liu, and Y.-W. Sun, “A Lifshitz Black Hole in Four
Dimensional R**2 Gravity,” JHEP 10 (2009) 080, 0909.2807.

[44] U. H. Danielsson and L. Thorlacius, “Black holes in asymptotically Lifshitz
spacetime,” JHEP 03 (2009) 070, 0812.5088.

[45] G. Bertoldi, B. A. Burrington, and A. Peet, “Black Holes in asymptotically
Lifshitz spacetimes with arbitrary critical exponent,” Phys. Rev. D80
(2009) 126003, 0905.3183.

[46] A. Adams, C. M. Brown, O. DeWolfe, and C. Rosen, “Charged Schrodinger
Black Holes,” Phys. Rev. D80 (2009) 125018, 0907.1920.

[47] P. Kovtun and D. Nickel, “Black holes and non-relativistic quantum
systems,” Phys. Rev. Lett. 102 (2009) 011602, 0809.2020.

[48] G. Compere, S. de Buyl, S. Detournay, and K. Yoshida, “Asymptotic
symmetries of Schrodinger spacetimes,” JHEP 0910 (2009) 032,
0908.1402.

41

http://www.arXiv.org/abs/0909.1347
http://www.arXiv.org/abs/1310.0837
http://www.arXiv.org/abs/0909.0263
http://www.arXiv.org/abs/0905.1136
http://www.arXiv.org/abs/0909.2807
http://www.arXiv.org/abs/0812.5088
http://www.arXiv.org/abs/0905.3183
http://www.arXiv.org/abs/0907.1920
http://www.arXiv.org/abs/0809.2020
http://www.arXiv.org/abs/0908.1402

	Introduction
	Basic concepts
	Why gravity in 3 dimensions?
	The Chern-Simons formulation of gravity
	Global AdS3 and BTZ black holes
	Soft hair on BTZ black holes
	Chern-Simons-like theories of gravity
	Boundary charges

	Topologically massive gravity
	Schrödinger spacetime

	Soft hairy Schrödinger black holes
	General procedure
	Metric
	ADM form and extremality

	Chern-Simons like formulation
	The case z=1
	Boundary conditions
	Boundary condition preserving transformations

	The case z>1
	Charges, symmetry algebra and entropy
	Relationship to asymptotic symmetry algebra


	Conclusion
	Conventions

