Die approbierte Originalversion dieser Diplom-Masterarbeit ist in der Hauptbibliothek der Tech nischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at

TU UB

The approved original version of this diploma or master thesis is available at the main library of the Vienna University of Technology. http://www.ub.tuwien.ac.at/eng

Diploma Thesis

Compaction control in non-cohesive soils by measuring the compression wave velocity

submitted in satisfaction of the requirements for the degree of Diplom-Ingenieur of the TU Wien, Faculty of Civil Engineering

Diplomarbeit

Verdichtungskontrolle in nicht bindigen Böden durch Messung der Kompressionswellengeschwindigkeit

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Diplom-Ingenieurs

eingereicht an der Technischen Universität Wien, Fakultät für Bauingenieurwesen

von

Nino Petuelli, BSc

Matr.Nr.: 01025027

unter der Anleitung von

Univ.Prof. Dipl.-Ing. Dr.techn. Dietmar Adam

Univ.Ass. Dipl.-Ing. Dr.techn. Johannes Pistrol, BSc

Priv.Doz. Dipl.-Ing. Dr.techn. Fritz Kopf

Institut für Geotechnik Forschungsbereich Grundbau, Boden- und Felsmechanik Technische Universität Wien Karlsplatz 13/220-2, 1040 Wien, Österreich

Wien, im März 2019

Kurzfassung

Die vorliegende Arbeit befasst sich mit der Verdichtungskontrolle in nicht bindigen Böden durch Messung der Kompressionswellengeschwindigkeit. Dazu wurde ein Versuchsaufbau entwickelt, mit dem die Kompressionswellengeschwindigkeit im Boden gemessen werden kann. Dieser besteht aus einem eigens konzipierten Testsignal, zwei Körperschallmikrophonen und einem Körperschalllautsprecher. Die Körperschallmikrophone und der Körperschalllautsprecher wurden für die Messungen in einem definierten Abstand zueinander im Boden vergraben. Das Testsignal wurde mit dem Körperschalllautsprecher ausgesendet und traf bei den zwei Körperschallmikrophonen jeweils zeitversetzt ein. Aus der zeitlichen Differenz des Eintreffens und dem geometrischen Abstand der Mikrophone kann die Kompressionswellengeschwindigkeit berechnet werden. Durch die durchgeführten Überfahrten mit einer Walze kommt es zu einer Verdichtung des Bodens im Bereich der Messtechnik und damit zu einer Veränderung der Kompressionswellengeschwindigkeit.

Das langfristige Ziel ist es, ein Messverfahren zu entwickeln, bei dem die Messtechnik im zu untersuchenden Medium verbleiben kann. Es wurden deshalb kostengünstige und einfach verfügbare Geräte eingesetzt, wobei diese naturgemäß nicht die maximale Qualität der am Markt verfügbaren Messtechnik erreichen.

Am Beginn der Arbeit werden in Kapitel 2 die bodenmechanischen und mathematischen Grundlagen erläutert. Es wird ein Überblick über konventionelle Methoden der Verdichtungskontrolle gegeben, die Wellenausbreitung im Boden erläutert und die Zusammenhänge zwischen Wellengeschwindigkeiten und anderen Kenngrößen des Bodens werden dargelegt. Häufig eingesetzte Untersuchungsmethoden, die die Wellenausbreitung nutzen, werden erläutert.

In Kapitel 3 wird die eingesetzte Messtechnik beschrieben und der Versuchsaufbau der im Labor durchgeführten Vorversuche und der im Zuge des Forschungsprojektes *Flächendeckende Dynamische Verdichtungskontrolle für Vibrationswalzen* durchgeführten Hauptversuche dargelegt. Die mit den Vorversuchen gewonnenen Ergebnisse und die daraus gezogenen Schlussfolgerungen für die Hauptversuche werden erläutert.

Die durchgeführte Auswertung der aufgenommenen Audio-Dateien wird in Kapitel 4 vorgestellt und anhand einer Aufnahme exemplarisch dargelegt.

Die so ermittelten Ergebnisse werden in Kapitel 5 angeführt und in Kapitel 6 analysiert. Die Ergebnisse aus der Auswertung des verwendeten Testsignals zeigen, dass die Messmethode grundsätzlich für eine Verdichtungskontrolle eingesetzt werden kann. Jedoch wurden starke Abweichungen der Absolutwerte zwischen den aus der Kompressionswellengeschwindigkeit berechneten und den mit konventionellen Methoden bestimmten Bodenparametern festgestellt. Bekannte und mögliche Fehlerquellen sind in Kapitel 6 genauer erläutert. In Kapitel 7 werden Empfehlungen zur Weiterentwicklung dieser Messmethode gegeben.

Den Abschluss der Arbeit bilden in Kapitel 8 die Zusammenfassung der Ergebnisse und der Ausblick für zukünftige Versuchsdurchführungen.

Abstract

This master's thesis explores compaction control in non-cohesive soils by measuring the compression wave velocity. For this purpose, experiments were carried out that consisted of a specific test signal, two contact microphones and one structure-borne sound speaker. The microphones and the sound speaker were buried at a predefined distance from each other, to obtain the measurement. The test signal was broadcast using the speaker and was recorded by the two microphones. The test signal reached them at different times, since the two microphones were at different locations. The difference in the travel time was measured and, using the known distance between the microphones, the wave velocity was calculated. During the experiment a roller performed passes over the buried measuring equipment, thereby compacting the ground and changing the wave velocity.

The long-term goal of this experiment is to develop a measurement method where the measuring equipment can remain permanently in the analysed medium. Therefore, inexpensive and readily available equipment was selected. However, the equipment did not achieve the highest quality currently available on the market.

In chapter 2 the basics of soil mechanics and the underlying mathematics are discussed and an overview of conventional methods of compaction control is provided. It then explains the types of wave propagation in soil and the connection between wave velocities and other characteristics of soil parameters. Existing research and measurement methods that use wave velocity are summarized in this chapter.

In chapter 3 the measuring equipment and the experimental setup is described that was used in preliminary tests in the lab as well as in the main experiment. The main experiment was conducted as part of the research project titled: *Continuous Compaction Control with vibratory rollers*. The results of the preliminary experiment are also presented in this chapter.

In chapter 4 the analysis of the recorded audio-files is discussed and an example using one audio file is given.

In chapter 5 the results of the analysis are presented and chapter 6 contains the interpretation of these results. Some of the results show fairly proper correlation between the values of the calculated compression wave velocity and those obtained using conventional methods. The majority of the values calculated using the compression wave velocity are consistently higher than those using conventional methods. In chapter 6 known and suspected sources of error are also discussed and in chapter 7 recommendations for further development of this measurement method are given.

Finally, chapter 8 gives a summery of the results and an outlook for future research.

Danksagung

Diese Arbeit ist das Produkt vieler Faktoren, die sich hier nicht zur Gänze auflisten lassen.

Sie stellt den Abschluss meines Bauingenieurwesenstudiums dar. Während dieses Studiums haben mich zahlreiche Personen begleitet. Ihnen will ich auf diesen Seiten meinen Dank aussprechen. Die Zeit des Studiums bestand für mich aus drei wesentlichen Bereichen, dem akademischen, dem studentischen und dem privaten.

Im akademischen Bereich waren meine Wegbegleiterinnen und Wegbegleiter die Mitarbeiterinnen und Mitarbeiter der Fakultät Bauingenieurwesen der TU Wien. Es ist mir nicht möglich, alle hier aufzuzählen, die mich über die Jahre Neues und Interessantes gelehrt haben und mich dazu inspiriert haben mein Wissen zu vertiefen.

Ich bedanke mich beim Institut für Geotechnik (Forschungsbereich Grundbau, Boden- und Felsmechanik), denn ohne dessen Unterstützung wäre diese Arbeit nicht zustande gekommen.

Stellvertretend für das Institut danke ich Univ.Prof. Dipl.-Ing. Dr.techn. Dietmar Adam für die Möglichkeit, meine ersten Erfahrungen in der Forschung in sehr professioneller Umgebung sammeln zu dürfen.

Die Idee für diese Arbeit stammt von Privatdoz. Dipl.-Ing. Dr.techn. Fritz Kopf. Ihm sei mein Dank dafür und für die Vorbereitung, die intensive Betreuung, die entspannte Atmosphäre unserer Besprechungen und für sein großes Wissen im Bereich des Grundbaus und der Bodenmechanik ausgesprochen.

Univ.Ass. Dipl.-Ing. Dr.techn. Johannes Pistrol, BSc danke ich für die durchgehende Betreuung, die Unterstützung, die schnellen Rückmeldungen, die konstruktive Kritik und die kollegiale Zusammenarbeit.

Univ.Ass. Dipl.-Ing. Mario Hager, BSc danke ich dafür, dass ich meine Versuche im Rahmen seines Forschungsprojektes durchführen durfte.

Dipl.-Ing. Martin Fritz von VCE Vienna Consulting Engineers ZT GmbH sei mein Dank für Entwicklung, Installation und Betreuung der Messtechnik ausgesprochen.

Bei Dipl.-Ing. (FH) Werner Völkel und Tobias Fehr von HAMM AG bedanke ich mich für die zur Verfügung gestellte Walze.

Abseits dieser Arbeit danke ich allen Vortragenden, die mich über die Jahre zu neuem Wissen geleitet und mich dazu motiviert haben, mein Studium zu intensivieren.

Als Bindeglied zwischen dem akademischen und dem studentischen Bereich steht für mich das Dekanat der Fakultät Bauingenieurwesen. Den Mitarbeiterinnen gilt mein Dank und meine Anerkennung. Zum Einen für die immer professionelle Arbeitsweise im Zuge der vielen Gremiensitzungen, denen ich im Rahmen meiner Vertretungsarbeit beigewohnt habe und zum Anderen für das schier unerschöpfliche Wissen im Bezug auf das Studium, die Fakultät und die Universität. Im Besonderen gilt mein Dank Christine Mascha. Dafür, dass sie immer eine Antwort auf meine Fragen hatte und für die zahlreichen, teilweise intensiven, aber immer witzigen Unterhaltungen.

Mein Studentenleben ist stark von meiner Tätigkeit in der Fachschaft Bauingenieurwesen **.biz** geprägt. Ihren Mitgliedern will ich für ihr ehrenamtliches Engagement und die Unterstützung in allen Aspekten des studentischen Lebens danken.

Abschließend will ich meinen Freundinnen und Freunden und meiner Familie für die schöne Zeit und die Unterstützung danken.

Inhaltsverzeichnis

1	Einleitung und Zielsetzung								
	1.1	1.1 Ziel der durchgeführten Untersuchungen							
	1.2	Langfr	istiges Ziel	13					
r	Pad	onmoch	vanische Grundlagen	16					
2	DOU 0.1	Vonue	anische Grundlagen ntionalle Mathaden den Vendichtungsbenthalle	15					
	2.1	Konventionelle Methoden der Verdichtungskontrolle							
		2.1.1	Dichtebestimmung und Bestimmung des Verdichtungsgrädes	10					
		2.1.2	Bestimmung des Verformungsmoduls mit dem statischen Lastplattenversuch	19					
		2.1.3	Lest platten verformungsmoduls mit dem dynamischen	20					
		914	Eläghendegkende Dymamigehe Verdichtungskentrelle (EDVK)	20					
	<u></u>	Z.1.4 Wellers	Flachendeckende Dynamische verdichtungskontrolle $(FDVK)$	21 92					
	2.2	wellen		20 02					
		2.2.1	Deflection and Defectation and Wellow in Deflect	23					
	0.0	2.2.2	Renexion und Reiraktion von Weiten im Boden	20					
	2.3	Zusam	Imennang weilengeschwindigkeiten und Bodenkenngroben	25					
		2.3.1	Zusammennange elasto-dynamischer Parameter	20					
	0.4	2.3.2 V 1	wellenausbreitung in gesattigten verhaltnissen	27					
	2.4	vergie	Ichbare Forschungsarbeiten	27					
	2.5	Wellen	ausbreitung im Boden als Untersuchungsmethode	28					
		2.5.1		28					
		2.5.2		29					
		2.5.3		29					
	0.0	2.5.4	Bohrloch-Seismik	30					
	2.6	Gewich	hteter Mittelwert	31					
3	Exp	eriment	elle Untersuchungen	33					
	3.1	.1 Allgemeine Beschreibung							
		3.1.1	Messtechnische Instrumentierung	33					
		3.1.2	Beschreibung und Aufbau des Testsignals	34					
	3.2	Vorver	suche im Labor	38					
		3.2.1	Ergebnisse der Vorversuche im Labor	38					
	3.3	3.3 Experimentelle Hauptversuche							
		3.3.1	Forschungsprojekt FDVK für Vibrationswalzen	39					
		3.3.2	Allgemeine Beschreibung der Hauptversuche	40					
		3.3.3	Testgelände	40					
		3.3.4	Untergrundverhältnisse	40					
		3.3.5	Eingesetzte Walze	40					
		3.3.6	Testfelder	40					
		3.3.7	Allgemeine Beschreibung der Messung der Wellenlaufgeschwindigkeit	42					
		3.3.8	Einbau der Messtechnik	42					
		3.3.9	Messung der Wellenlaufzeit	42					
		3.3.10	Zusätzliche Messungen	44					

		3.3.11 Bezeicht	nung der aufgenommenen Audio-Dateien	44					
4	Aus	wertung der Au	dio-Dateien	45					
	4.1	Ziel der Auswei	rtung	45					
	4.2	Durchführung o	der Auswertung	45					
		4.2.1 Verwend	dete Software	45					
		4.2.2 Auswert	tung des aufgenommenen Testsignals	45					
		4.2.3 Wertung	g der Signalqualität	48					
		424 Auswert	ung des aufgenommenen Signals aus dem Impuls der dynamischen						
		Lastnlat	tte	49					
		425 Exemple	arische Auswertung einer Aufnahme	10					
	4.3	Annahmen für	die weiterführenden Berechnungen	4 <i>3</i> 53					
-	F								
5	Erge		vertung	55					
	5.1	Allgemeines .		55					
	5.2	Ergebnisse der	Audio-Dateien aus dem Testsignal	55					
		5.2.1 Berechn	ete Kompressionswellengeschwindigkeit	55					
		5.2.2 Gegenül	berstellung der dynamischen Verformungsmoduln	59					
		5.2.3 Korrelat	tion der dynamischen Verformungsmoduln	63					
		5.2.4 Gegenül	berstellung von $v_{p,TS}^2$ und E_{vd}	67					
	5.3	Ergebnisse Imp	oulsanregung	71					
6	Inte	rpretation der w	vesentlichen Ergebnisse	75					
	6.1	6.1 Ergebnisse der Audio-Dateien aus dem Testsignal							
		6.1.1 Schubm	odulberechnug und Vergleich mit der Literatur	76					
	6.2	6.2 Ergebnisse Impulsanregung							
	6.3	Frequenzabhängigkeit der Kompressionswellengeschwindigkeiten							
	6.4	Messungenauig	keiten Störungen und Fehlerguellen	80					
	0.1	6.4.1 Mossung	gonguigkoiton	80					
		6.4.2 Stämper	zen in den Aufnahmen des Testsismals	00					
		6.4.2 Storung	en in den Aumannen des resisignals	00					
		0.4.3 Signalqu	lantat des Signales der dynamischen Lastplatte	84					
		6.4.4 Der dyn	amische Lastplattenversuch als Vergleichsgroße	85					
		6.4.5 Uberblie	ck uber bekannte und mogliche Storquellen	86					
7	Emp	ofehlungen für w	veitere Untersuchungen	89					
	7.1	Testsignal		89					
		7.1.1 Wiederg	gabepausen zwischen verschiedenen Frequenzpaketen	89					
		7.1.2 Frequen	zbereich für das ausgesendete Testsignal	89					
		7.1.3 Frequen	zpaket am Testsignalbeginn zur Signalbeginnerkennung	90					
	7.2	Versuchsdurchf	ührung	91					
		7.2.1 Bodenm	nechanische Untersuchungen im Testfeld	91					
		722 Einbau	der Messgeräte	91					
		723 Abstand	lsbestimmung in der Messtechnik	92					
		724 Gesant	aufnahme inklusive ausgesendetem und aufgenommenem Testgignal	02					
		7.2.4 Gesainte	de zwischen den Mikrophenen	92 09					
		7.2.0 ADStalle	nkt des dynamischen Lastnattenversuchs	92 00					
	79	Augmenter	nkt des dynamischen Lastplattenversuchs	92					
	1.3	Auswertung		93					
		7.3.1 Wertung	g der Signalqualitat nach definierten Qualitätskriterien	93					
		7.3.2 Automa	tisierungspotential	93					

8	Zusammenfassung und Ausblick			
	8.1	Ergebnisse der ausgewerteten Kompressionswellengeschwindigkeiten	95	
	8.2	Weitere Untersuchungsgebiete	95	
	8.3	Ausblick	95	
Α			105	
	A.1	Protokolle Hauptversuche	105	
	A.2	Ergebnisse der Auswertung des Testsignals	109	
	12		109	

Kapitel 1 Einleitung und Zielsetzung

Bodenverbesserungen in Form von Verdichtungsmaßnahmen stellen einen wichtigen Bestandteil des Erd- und Grundbaus dar. Im Zuge dieser Verdichtungsmaßnahmen ist es unerlässlich, eine entsprechende Kontrolle des Verdichtungserfolges vorzunehmen.

1.1 Ziel der durchgeführten Untersuchungen

Ziel dieser Arbeit war die Messung der Kompressionswellengeschwindigkeit im Boden zur Verdichtungskontrolle des Bodens. Der Versuchsaufbau bestand aus einem Körperschalllautsprecher und zwei Körperschallmikrophonen, die im Boden mit einem definierten Abstand vergraben wurden. Ein Testsignal wurde gesendet und, aufgrund des unterschiedlichen Abstandes vom Lautsprecher, zeitversetzt von den Mikrophonen registriert. Daraus konnte die Wellenlaufzeit und in Verbindung mit dem Abstand der beiden Mikrophone die Wellenlaufgeschwindigkeit der Kompressionswelle bestimmt werden. Aus dieser wurde der dynamische Verformungsmodul berechnet und dem, mit der dynamischen Lastplatte gemessenen, dynamischen Verformungsmodul gegenübergestellt. Der genaue Versuchsaufbau und die Messtechnik werden in Kapitel 3 erläutert.

Neben der Untersuchung, ob sich der konzipierte Versuchsaufbau und die gewählte Messtechnik für eine verlässliche Steifigkeitsbestimmung des Bodens eignen, wurde zusätzlich untersucht, ob die Untersuchungsmethode zur Kontrolle des Verdichtungserfolges genutzt werden kann.

Die Hauptversuche wurden im Rahmen des Forschungsprojektes *Flächendeckende Dynamische Verdichtungskontrolle mit Vibrationswalzen* (siehe Kapitel 3) durchgeführt. Das Forschungsprojekt hat das Ziel, einen neuen Wert für die Flächendeckende Dynamische Verdichtungskontrolle (FDVK) mit Vibrationswalzen zu entwickeln.

1.2 Langfristiges Ziel

Das langfristige Ziel ist, diese Methode der Steifigkeitsbestimmung von Böden zu verwenden, um länger andauernde Prozesse zu messen, bei denen die Mikrophone und der Lautsprecher permanent im zu untersuchenden Medium verbleiben. Deshalb wurden kostengünstige und einfach verfügbare Geräte eingesetzt, wobei diese zurzeit nicht die maximale Qualität der am Markt verfügbaren Messtechnik erreichen.

Bei langfristigen Prozessen sollen die Messungen in größeren Zeitabständen durchgeführt werden. Unter langfristigen Prozessen werden hier Vorgänge verstanden, die über mehrere Tage oder Wochen ablaufen. Für derartige Messungen wird an die Mikrophone und den Lautsprecher die zusätzliche Messtechnik (Verstärker, Aufnahmegerät, Batterie) angeschlossen und nach durchgeführter Messung wieder entfernt. Beispiele für solche zu untersuchende Prozesse sind Bodenverbesserungen, Bodenstabilisierungen und der Abbindeprozess von Beton.

Kapitel 2

Bodenmechanische Grundlagen der Verdichtung

2.1 Konventionelle Methoden der Verdichtungskontrolle

Für Verdichtungsarbeiten ist eine Qualitätskontrolle notwendig, um zu überprüfen, ob der geforderte Verdichtungserfolg erreicht wurde. Im Folgenden werden die gängigsten Methoden überblicksmäßig dargestellt. Es kann grundsätzlich zwischen punktuellen und flächenhaften sowie direkten und indirekten Methoden unterschieden werden.

2.1.1 Dichtebestimmung und Bestimmung des Verdichtungsgrades

Es handelt sich bei der Dichteprüfung um eine direkte, punktuelle Methode, bei der die Trockendichte ρ_d des verdichteten Bodens im Feld bestimmt und mit der im Labor ermittelten Proctordichte ρ_{Pr} verglichen wird. Der Quotient aus Trockendichte ρ_d und Proctordichte ρ_{Pr} wird als Verdichtungsgrad D_{pr} bezeichnet:

$$D_{pr} = \frac{\varrho_d}{\varrho_{Pr}} \cdot 100 \tag{2.1}$$

Die Mindestwerte des zu erreichenden Verdichtungsgrades D_{pr} werden in Österreich für Erdbauwerke im Bereich des Straßen- und Schienenverkehrs in Abhängigkeit von der Art der eingebauten Schicht in der RVS 08.03.01:2010 [20] geregelt.

Proctorversuch

Der Proctorversuch ist ein in der ÖNORM B 4418:2007 [18] genormter Versuch und dient zur Bestimmung der Verdichtbarkeit einer Bodenprobe. Es wird eine Versuchsreihe mit mehreren, bis auf den Wassergehalt w, identen Probekörpern durchgeführt. Für die Herstellung der Probekörper wird die Bodenprobe lagenweise in den Proctortopf eingebracht (siehe Abb. 2.1) und mit definierter Energie verdichtet. Anschließend wird die Trockendichte ϱ_d des verdichteten Probekörpers bestimmt.

Es wird zwischen dem Standard-Proctorveruch und dem modifizierten Proctorversuch unterschieden. Die Unterschiede der beiden Versuchsdurchführungen beziehen sich auf Anzahl und Mächtigkeit der eingebrachten Schichten, die eingesetzte volumensbezogene Verdichtungsenergie und die Anzahl der Verdichtungsschläge pro Schicht.

Das Ergebnis der Versuchsreihe ist eine Kurve, die den Zusammenhang zwischen Wassergehalt wund Trockendichte ρ_d beschreibt. Das Maximum dieser Kurve stellt die maximal erreichbare Trockendichte ρ_d bei zugehörigem optimalem Wassergehalt w_{opt} dar. In Abbildung 2.2 sind die für den Proctorversuch typischen Kurven dargestellt.

Dichtebestimmung in situ

Für die Bestimmung der Dichte einer entnommenen Bodenprobe ist es notwendig, die Masse und das Volumen der Bodenprobe zu bestimmen. Die Masse der feuchten Probe kann durch

Abb. 2.1: Versuchsdurchführung des Proctorversuchs [1]

Abb. 2.2: Versuchsauswertung des Proctorversuchs [1]

Wiegen bestimmt werden, durch Trocknung der Probe bei 105°C kann die Trockenmasse ermittelt werden. Die Herausforderung besteht in der Bestimmung des Volumens der Bodenprobe. Bei bindigen Böden wird eine Bodenprobe in Formen mit bekanntem Volumen eingepasst (z.B. in einen Ausstechzylinder, siehe Abb. 2.3). Bei nicht bindigen Böden kommen sogenannte Ersatz-Verfahren zum Einsatz, bei denen der durch die Entnahme der Bodenprobe entstandene Hohlraum aufgefüllt wird und die Masse (und in weiterer Folge das Volumen) des benötigten Ersatzstoffes (mit konstanter Dichte) bestimmt wird. In Abbildung 2.4a und 2.4b sind zwei dieser Verfahren schematisch dargestellt. Abgestimmt auf die jeweilige Bodenart werden verschiedene Verfahren angewendet. In Abbildung 2.5 sind den Bodenarten die Prüfverfahren gegenübergestellt.

Abb. 2.3: Ausstechzylinder gemäß ÖNORM B 4414-2:1979 [16]

(a) Sandersatzverfahren

(b) Flüssigkeitsersatzverfahren

Abb. 2.4: Schematischer Versuchsaufbau von zwei verschiedenen Ersatzverfahren ÖNORM B 4414-2:1979 [16]

Bodenart 1)	Gebräuchliche Prüfverfahren ²)		
Tone, Schluffe weich	Zylinderentnahme, Isotopeneinstichsonde		
Tone, Schluffe steif bis halbfest	Zylinderentnahme , alle Volumenersatzver- fahren, Isotopeneinstichsonde, Plattendruck- versuch, Benkelman-Balken, Rammsondie- rung		
Tone, Schluffe fest	alle Volumenersatzverfahren, Plattendruck- versuch, Benkelman-Balken		
Sande	Zylinderentnahme, Ballongerät, Isotopenein- stichsonde, Sand-Ersatzverfahren, Platten- druckversuch, Rammsondierung		
Sand-Kies-Gemische 3)	Sand-, Kleister-, und Bentonit-Ersatzverfahren, Ballongerät, Isotopeneinstichsonde, Platten- druckversuch, Rammsondierung		
Kiese, Kies-Sand-Gemische ³)	Kleister-, Bentonit-, Gips-Ersatzverfahren, Ballongerät, Plattendruckversuch, Rammsondierung		
Sand-Schluff-Gemische Sand-Ton-Gemische	Zylinderentnahme, Sand-, Kleister-, Bentonit- Ersatzverfahren Ballongerät, Isotopeneinstichsonde, Platten- druckversuch, Benkelman-Balken, Rammsondierung		
Kies-Schluff-Gemische Kies-Ton-Gemische	Kleister-, Bentonit-, Gips-Ersatzverfahren, Ballongerät, Plattendruckversuch, Benkel- man-Balken, Rammsondierung		
Bodenarten wie oben, jedoch mit geringen Anteilen an Steinen, Blöcken	Kleister-, Bentonit-, Gips-, Wasser-Ersatzver- fahren, Aushub einer profilgerechten Schürf- grube, Plattendruckversuch, Benkelman- Balken, Arbeitsvorschrift		
Steine, Blöcke, auch mit Beimengungen der vorge- nannten Bodenarten	Wasser-Ersatzverfahren, Plattendruckversuch, Nivellement, Arbeitsvorschrift		

Bezeichnung der Bodenarten in Anlehnung an DIN 18196
 Empfohlene Prüfverfahren in Fettdruck
 Gebrochenes Gestein: Kleister-, Bentonit-, Gips-Ersatzverfahren, Ballongerät, Plattendruck-versuch, Benkelman-Balken

Abb. 2.5: Gebräuchliche Prüfverfahren nach Bodenart [6]

2.1.2 Bestimmung des Verformungsmoduls mit dem statischen Lastplattenversuch

Beim statischen Lastplattenversuch handelt es sich um eine punktuelle, indirekte Messmethode. Dabei wird, wie in Abbildung 2.6a ersichtlich, der Boden mit einer kreisrunden Stahlplatte (\emptyset 30 cm) mit einer hydraulischen Presse in mehreren Laststufen belastet und im Anschluss in mehreren Laststufen entlastet und die Setzung mit drei Messuhren aufgezeichnet. Die Anzahl und Größe der Laststufen wird in Abhängigkeit des Anwendungsbereichs, der zu erwartenden Last und den Bodeneigenschaften festgelegt. Der Be- und Entlastungsvorgang einer Laststufe wird mit konstantem Druck durchgeführt bis die Setzungs- bzw. Hebungsänderung 0,02 mm/min unterschreitet. Danach wird mit der nächsten Laststufe fortgefahren. Als Gegengewicht für die hydraulische Presse wird ein schweres Baugerät, oft eine Walze, eingesetzt. Der Boden wird in der Regel zweimal belastet und dazwischen entlastet.

Es kann so aus der ermittelten Setzung der Erst- und Zweitbelastungsmodul E_{v1} bzw. E_{v2} (Abb. 2.6b und Gleichung (2.2) [17]) berechnet werden. Die detaillierte Versuchsdurchführung ist in ÖNORM B 4417:2018 [17] geregelt. Die zu erreichenden Anforderungen an E_{v1} werden in der RVS 08.03.01:2010 [20] geregelt.

(a) Versuchsaufbau des statischen Lastplattenversuchs [1]

$$E_v = \frac{0,75 \cdot d \cdot \Delta\sigma}{\Delta s} \tag{2.2}$$

 mit

 E_{v1}, E_{v2} ... Erst- bzw. Zweitbelastungsmodul

d ... Durchmesser der Lastplatte (30 cm)

 $\Delta \sigma$... Spannungsdifferenz

 Δs ... Setzungsdifferenz

Untersuchungen von Kopf et al. [13] zeigten, dass diverse Faktoren (Einsatz von entweder Einuhren- oder Dreiuhrenmessgerät, Schichtaufbau, Kurzschlusseffekt) einen nicht zu vernachlässigenden, aber kaum verhinderbaren Einfluss auf die Messergebnisse darstellen.

2.1.3 Bestimmung des dynamischen Verformungsmoduls mit dem dynamischen Lastplattenversuch

Der dynamische Lastplattenversuch mit dem Leichten Fallgewichtsgerät ist ein indirektes, punktuelles Messverfahren zur Bestimmung des dynamischen Verformungsmoduls E_{vd} . Das Leichte Fallgewichtsgerät (Abb. 2.7) besteht aus einer kreisrunden Lastplatte (\emptyset 30 cm) mit Zentrierkugel und Sensor, der Belastungsvorrichtung (Feder-Dämpfer-Element, Stange mit Fallgewicht und Griff mit Ausklinkvorrichtung) und dem mit der Lastplatte verbundenen elektronischem Messgerät.

Abb. 2.7: Komponenten des Leichten Fallgewichtsgerätes [4]

Die Lastplatte wird auf den Boden aufgelegt und die Belastungseinrichtung wird aufgesetzt. Durch das Ausklinken des Fallgewichts (10 kg) und das Auftreffen auf dem Feder-Dämpfer-Element entsteht ein definierter Stoß auf die Platte und den Boden. Es wird durch die zweifache Integration der gemessenen Beschleunigung die Setzung bestimmt. Daraus wird der dynamische Verformungsmodul E_{vd} berechnet und am Gerät angezeigt. Die detaillierte Durchführung ist in der RVS 08.03.04:2008 [22] geregelt.

Besonders aufgrund der einfachen Handhabung und schnellen Auswertung wurden für die Hauptversuche (siehe Kapitel 3) Leichte Fallgewichtsgeräte zur Bestimmung des dynamischen Verformungsmoduls E_{vd} verwendet.

Zusammenhang zwischen dem Erstbelastungsmodul und dem dynamischen Verformungsmodul

Der Erstbelastungsmodul E_{v1} wird in Österreich als der zu erreichende Grenzwert für die indirekte Überprüfung der Verdichtung gefordert. Die Ermittlung der geforderten Grenzwerte (es dürfen keine Einzelwerte umgerechnet werden) des dynamischen Verformungsmoduls E_{vd} aus dem Erstbelastungsmodul E_{v1} für nicht bindige Böden ist in den Gleichungen (2.3) und (2.4) (RVS 08.03.04:2008 [22]) ersichtlich. Diese Gleichungen wurden durch theoretische Überlegungen und experimentelle Versuche [4] hergeleitet. Diese sind jedoch nicht allgemein gültig, sondern an die Anwendungsgrenzen [22] gebunden. In dieser Arbeit werden die gemessenen dynamischen Verformungsmoduln nicht in den Erstbelastungmodul umgerechnet. Die Gleichungen dienen lediglich der Vollständigkeit.

$$E_{vd} = \frac{6}{5} \cdot E_{v1}, \qquad \text{für } E_{v1} < 25 \text{ MN/m}^2$$
 (2.3)

$$E_{vd} = 10 + \frac{4}{5} \cdot E_{v1}, \qquad \text{für } E_{v1} \ge 25 \text{ MN/m}^2$$
 (2.4)

2.1.4 Flächendeckende Dynamische Verdichtungskontrolle (FDVK)

Die Flächendeckende Dynamische Verdichtungskontrolle (in weiterer Folge: FDVK) ist eine flächenhafte, indirekte und walzenintegrierte Methode zur Verdichtungskontrolle. Die wesentlichen Komponenten der FDVK sind in Abbildung 2.8 ersichtlich.

Abb. 2.8: Komponenten der FDVK [12]

Die Methode basiert auf der Messung der Bandagenschwingung der Walze. Die Bandage wird durch die Unwucht mit einer Sinunsschwingung angeregt. Die Bandagenschwingung wird durch mehrere Parameter (Walzenmodell, Fahrgeschwindigkeit, gewählte Amplitude und Frequenz, Fahrtrichtung, Bodensteifigkeit) beeinflusst. Wenn bei mehreren Überfahrten die Parameter, bis auf die Bodensteifigkeit, konstant bleiben, kann aus der geänderten Bandagenschwingung ein Rückschluss auf die Bodensteifigkeit getroffen werden.

Die gemessene Bandagenbeschleunigug wird in der Walze elektronisch und kontinuierlich in einen FDVK-Wert umgerechnet und in der Walze angezeigt bzw. gespeichert. In Kombination mit GPS-Daten kann so ein flächiges Verdichtungsbild erstellt werden. Es ist somit möglich, Schwachstellen zu erkennen und einen gleichmäßigen Verdichtungserfolg zu gewährleisten.

Bei den gemessenen Werten handelt es sich um relative Messwerte, die von den oben beschriebenen Parametern abhängen. Die gemessenen FDVK-Werte sind somit nicht direkt den konventionellen Bodenkennwerten zuordenbar. Es ist eine entsprechende Kalibrierung mit den in Abschnitt 2.1.1-2.1.3 beschrieben Messverfahren erforderlich.

Für die FDVK stehen mehrere Messsysteme und FDVK-Werte zur Verfügung. Diese unterscheiden sich nach den ausgewerteten Messwerten (Bodenkontaktkraft und Schwingweg oder Beschleunigung und Frequenz). Die FDVK-Werte, bei denen Bodenkontaktkraft und Schwingweg herangezogen werden, unterscheiden sind in der Weise wie der Wert berechnet wird. In Abbildung 2.9 sind die gängisten FDVK-Werte dargestellt.

Im Zuge eines Forschungsprojektes des Institutes für Geotechnik der TU Wien konnte für Oszillationswalzen ein neuer Wert entwickelt und ein Patent (Pistrol et al. [19]) angemeldet werden.

Abb. 2.9: Prinzipdarstellung der gängisten FDVK-Werte [1]

Die in Kapitel 3 beschriebenen Hauptversuche fanden im Rahmen eines Forschungsprojektes zur Entwicklung eines neuen FDVK-Wertes für Vibrationswalzen statt.

2.2 Wellenausbreitung im Boden

Im Boden können durch verschiedene Quellen seismische Wellen entstehen. Häufige Auslöser sind Erdbeben, Maschinenfundamente, Explosionen, Fahrzeuge und Baugeräte. Es ist dabei zu unterscheiden, ob es durch die Störungen zu kleinen oder großen Dehnungen im Boden kommt. Große Dehnungen entstehen z.B. bei Erdbeben oder Explosionen und lassen sich nur mit nicht linearem Materialverhalten beschreiben. Die im Rahmen dieser Arbeit durchgeführten Versuche beschäftigen sich mit rein akustischen Wellen und dementsprechend sehr kleinen Dehnungen. Das Materialverhalten des Bodens kann dabei mit einem elastischen Modell sehr gut beschrieben werden [23].

2.2.1 Wellenarten

Wellen lassen sich nach der Ausbreitung im Boden in vier grundsätzliche Arten einteilen. Diese sind in Abb. 2.10 dargestellt. Die Wellenarten werden unterschieden in Oberflächenwellen und Raumwellen. Oberflächenwellen breiten sich fast ausschließlich an der Oberfläche aus, Raumwellen im gesamten Boden. Die Wellenarten werden weiters bezüglich der Ausbreitungsgeschwindigkeit und der Partikelbewegung der Welle unterschieden.

Abb. 2.10: Verschiedene Wellenarten im Boden [23]

Kompressionswelle

Die Kompressionswelle (kurz: P-Welle), auch Primärwelle genannt, ist eine Raumwelle und durch eine longitudinale Schwingungsrichtung charakterisiert. Die Kompressionswelle hat die größte Ausbreitungsgeschwindigkeit und wird deshalb immer als Erstes registriert.

Scherwelle

Die Scherwelle (kurz: S-Welle), auch Sekundär- oder Transversalwelle genannt, ist wie die P-Welle eine Raumwelle und zeichnet sich durch eine Schwingungsrichtung orthogonal zur Wellenausbreitungsrichtung aus. Es kann zwischen horizontal und vertikal polarisierten Schwerwellen unterschieden werden. Die S-Welle kann sich in Feststoffen fortpflanzen, jedoch nicht, wie die P-Welle, in Flüssigkeiten oder Gasen. Die Ausbreitungsgeschwindigkeit ist kleiner als die der P-Welle.

Oberflächenwellen

Die Rayleigh-Welle und die Love-Welle sind Oberflächenwellen, deren Wirkung mit der Tiefe stark abnimmt. Rayleigh-Wellen sind grundsätzlich mit normalen Wasserwellen vergleichbar, jedoch findet die Partikelbewegung in Oberflächennähe entgegen der Ausbreitungsrichtung statt, die Partikelbewegung ist nicht kreisförmig, sondern elliptisch. Love-Wellen sind Scherwellen an Schichtgrenzen, die durch mehrfache Reflexion entstehen. Oberflächenwellen besitzen eine geringere Ausbreitungsgeschwindigkeit als S-Wellen.

Ausbeitungsgeschwindigkeiten der Wellenarten

In Abhängigkeit von der Querdehnzahl ν ergibt sich der in Abbildung 2.11 dargestellte Zusammenhang zwischen der Querdehnzahl ν und dem Verhältnis der Ausbreitungsgeschwindigkeit der Welle v zur Ausbreitungsgeschwindigkeit der Scherwelle v_s .

Das Ansteigen der Kompressionswellengeschwindigkeit v_p bei $\nu \to 0,5$ erklärt sich aus dem Übergang zu einem ideal inkompressiblen Medium. Eine Querdehnzahl $\nu \to 0,5$ tritt auch bei idealen Flüssigkeiten auf, jedoch sinkt hier die Scherwellengeschwidigkeit auf $v_s = 0$ und v_p ist immer noch im endlichen Bereich. In Tabelle 2.1 sind Richtwerte für v_p und v_s für diverse Lockergesteine ersichtlich.

Abb. 2.11: Zusammenhang zwischen Querdehnzahl ν und dem Verhältnis der Ausbreitungsgeschwindigkeit der Welle v zur Ausbreitungsgeschwindigkeit der Scherwelle v_s [23]

Bodenart	v _p (m/s)	v _s (m/s)			
Lockergesteine					
Deckschichten, locker gelagert, verwittert					
nicht gesättigt (Tiefe 3 bis 6 m)	200 800	110 480			
Schotter (Kiessand), nicht gesättigt	$400 \dots 800$	220 450			
Schotter, grundwassergesättigt	1300 2000	400 600			
verkitteter Schotter	1800 2500	1000 1500			
Seebodenlehm, nicht vollständig gesättigt	700 1300	290 540			
Seebodenlehm, gesättigt	1300 1800	390 530			
Gehängelehm, nicht gesättigt	300 1000	120 400			
Moränen	1200 2400	500 1150			
Löss	300 600	150 300			

Tab. 2.1: Richtwerte für v_p und v_s für Lockergesteine [23]

2.2.2 Reflexion und Refraktion von Wellen im Boden

An Schichtgrenzen mit wechselnden Bodenverhältnissen kann es zu einer Reflexion oder Refraktion (Brechung) von Wellen kommen. Untersuchungsmethoden, die diesen Umstand nutzen, werden im Abschnitt 2.5 erläutert.

Diese Abweichungen von einer direkten Wellenausbreitung sind für die Auswertung der Messungen mit dem Testsignal nicht relevant, da aufgrund des geringen Abstandes zwischen dem Lautsprecher und den Mikrophonen keine reflektierten bzw. refraktierten Wellen aufgenommen werden. Auf die bei der Auswertung des Signals aus dem Impuls der dynamischen Lastplatte eventuell durch Reflexion oder Refraktion hervorgerufenen Probleme wird in Kapitel 5 näher eingegangen.

2.3 Zusammenhang zwischen Wellengeschwindigkeiten und anderen Kenngrößen von Böden

Die theoretischen Zusammenhänge zwischen der Wellenausbreitungsgeschwindigkeit und anderen elastischen Parametern sind bereits wissenschaftlich erforscht und detailliert beschrieben (z.B.: Studer et al. [23]). Die für diese Arbeit relevanten Zusammenhänge werden hier angeführt.

Im Zuge der Auswertung der Versuche wird die Kompressionswellengeschwindigkeit v_p (P-Welle) bestimmt. Aus dieser lässt sich in Kombination mit der Dichte des Bodens ρ der Kompressionsmodul E_{sd} ableiten (siehe Gleichung (2.5)). Der Kompressionsmodul ist vergleichbar mit dem bei statischer Belastung berechneten Steifemodul (verhinderte Seitendehnung). Es gilt der Zusammenhang [23]:

$$v_p = \sqrt{\frac{E_{sd}}{\varrho}} \tag{2.5}$$

Für die Berechnung des Kompressionsmoduls E_{sd} die Gleichung (2.5) umgeformt zu

$$E_{sd} = v_p^2 \cdot \varrho \tag{2.6}$$

2.3.1 Zusammenhänge elasto-dynamischer Parameter

Mit dem Leichten Fallgewichtsgerät wird der dynamische Verfomungsmodul E_{vd} bestimmt. In Tabelle 2.2 sind Zusammenhänge elasto-dynamischer Bodenkennwerte angeführt. Die Wellengeschwindigkeiten sind in dieser Tabelle abweichend mit c_s und c_p angegeben.

Die aus der Kompressionswellengeschwindigkeit v_p ermittelten Kompressionsmoduln E_{sd} können in die mit der dynamischen Lastplatte bestimmten dynamischen Verformungsmoduln E_{vd} umgerechnet werden. Der Zusammenhang ist in Gleichung (2.7) angegeben [4]:

$$E_{vd} = \frac{3 \cdot (1 - 2\nu)}{\pi \cdot (1 - \nu)^2} \cdot E_{sd}$$
(2.7)

Es gilt für die Berechnung des dynamischen Verformungsmoduls E_{vd,v_p} aus der Kompressionswellengeschwindigkeit v_p somit folgender Zusammenhang:

$$E_{vd,v_p} = \frac{3 \cdot (1-2\nu)}{\pi \cdot (1-\nu)^2} \cdot v_p^2 \cdot \varrho \tag{2.8}$$

Für die Auswertung wird zwischen dem mit der dynamischen Lastplatte gemessenen dynamischen Verformungsmodul E_{vd} und dem aus der Kompressionswellengeschwindigkeit v_p berechneten dynamischen Verformungsmodul E_{vd,v_p} unterschieden. In weiterer Folge werden die hier eingeführten Bezeichnungen verwendet.

	E_{sd}	ν	G _d	ν	c _s	c _p
ν=		ν		ν	$\frac{c_p^2}{2(c}$	$\frac{-2c_{s}^{2}}{(2p_{p}^{2}-c_{s}^{2})}$
E _d =	$E_{sd}\left(1-\frac{2}{1}\right)$	$\left(\frac{v^2}{-v}\right)$	2G _d (1	$+\nu)$	$2\rho c_s^2(l+\nu)$	$\rho c_{p}^{2} \left(1 - \frac{2\nu^{2}}{1 - \nu}\right)$
E _{sd} =	E_{sd}		$2G_{d}\frac{1}{1}$	$\frac{1-v}{-2v}$		$\rho \cdot c_p^2$
E _{vd} =	$E_{sd} \cdot \frac{3(1-\pi)}{\pi(1-\pi)}$	(-2ν) $(-\nu)^2$	$G_{d} \cdot \frac{1}{\pi}$	$\frac{6}{(1-\nu)}$	$\rho c_s^2 \cdot \frac{6}{\pi(1-\nu)}$	$\rho c_p^2 \cdot \frac{3(1-2\nu)}{\pi(1-\nu)^2}$
$G_d =$	$\frac{\mathrm{E}_{\mathrm{sd}}}{2} \cdot \frac{1-1}{1-1}$	$\frac{2v}{v}$	G _d		$\rho.c_s^2$	
c _s =	$\sqrt{\frac{E_s}{2\rho}} \cdot \frac{1-1}{1-1}$	$\frac{2v}{-v}$	$\sqrt{\frac{G_d}{\rho}}$		C _s	
c _p =	$\sqrt{\frac{E_{sd}}{\rho}}$		$\sqrt{\frac{2G_d}{\rho}}$.	$\frac{1-\nu}{1-2\nu}$		c _p

Tab. 2.2: Zusammenhänge elasto-dynamischer Bodenkennwerte [1]

2.3.2 Wellenausbreitung in gesättigten Verhältnissen

Bei der Wellenausbreitung in gesättigten Verhältnissen ist zu beachten, dass oft die Wellenausbreitung rein im Wasser gemessen wird, da die Wellenausbreitungsgeschwindigkeit (1450 m/s bei 10°C [23]) im Wasser wesentlich höher ist als in ungesättigten Lockergesteinen (Tab. 2.1).

Die in Abschnitt 2.3 angeführten Gleichungen für die Berechnungen der Bodenkennwerte dürfen deshalb in gesättigten Verhältnissen nicht angewendet werden. Bei gesättigten Verhältnissen sind entsprechend modifizierte Gleichungen für die Berechnung der Bodenkennwerte zu verwenden. Bei diesen wird zusätzlich zur Dichte des Feststoffes ρ , die Dichte des Wassers ρ_w und die Porenzahl e in die Berechnung einbezogen.

Bei gesättigten Verhältnissen sollten Messmethoden eingesetzt werden, die auf der Messung der Scherwellengeschwindigkeit basieren, da sich Scherwellen in Flüssigkeiten nicht ausbreiten können. Aufgrund der im Zuge der Hauptversuche angetroffenen Bodenverhältnisse ist die Wellenausbreitung in gesättigten Böden für die vorliegende Arbeit jedoch nicht von Bedeutung.

2.4 Vergleichbare Forschungsarbeiten

Zum Thema Wellenausbreitung im Boden wurden bereits zahlreiche Forschungsarbeiten verfasst. Diese beschäftigen sich meist mit der Ausbreitung der Schallwelle, der Übertragung auf Bauwerke, wie Wohn-, Bürogebäude oder Infrastrukturanlagen und Möglichkeiten die Auswirkungen zu reduzieren. Ein weiterer Forschungsschwerpunkt sind die von Zügen ausgelösten Schwingungen, deren Ausbreitung und Vermeidung bzw. Verhinderung. Da diese schon aufgrund der komplexen Weiterleitung (Schiene, Schwelle, Lager usw.) nicht mit der durchgeführten Arbeit vergleichbar sind, wird hier nicht detaillierter auf diese eingegangen.

Vier Forschungsarbeiten, die aus gemessenen Geschwindigkeiten im Boden Rückschlüsse auf Bodenkennwerte ziehen, werden im Folgenden genauer betrachtet.

Kirsch und Klingmüller [10] beschäftigten sich mit der Pfahlprüfmethode "Hammerschlagmethode", auch Low-Strain Verfahren genannt, und fassten die Erfahrungen der letzten 25 Jahre zusammen. Mit dieser Prüfmethode können durch Auswertung der am Bohrpfahlfuß reflektierten Welle Rückschlüsse auf Fehlstellen im Pfahl getroffen werden. Es wurde gezeigt, dass die Wahl der Parameter mit denen das Signal bearbeitet wird, erheblichen Einfluss auf die Ergebnisse hat. Weiters wurde gezeigt, dass das Prüfverfahren zwar richtige Ergebnisse liefert, jedoch Detailpunkte nicht immer erkannt werden können. Solche Detailpunkte können z.B. Querschnittsabweichungen, die sich in einem Bereich kleiner als 1 m befinden, sein.

Massarsch und Wersäll [15] führten Feldversuche durch, bei denen während einer hydraulischen Schlagbohrung in den Untergrund mit einem Geophon an der Oberfläche die eintreffenden Vibrationen gemessen wurden. Die Vibrationsgeschwindigkeiten wurden in drei Richtungen gemessen und mit der Bohrtiefe und der Umdrehungszahl des Bohrgerätes kombiniert, um ein möglichst vollständiges Aufnahmespektrum zu erhalten. Es konnte gezeigt werden, dass die Vibrationsgeschwindikeit im Zusammenhang mit der Steifigkeit der angetroffenen Bodenschichten steht und dass aus dem Frequenzspektrum eine Aussage über die Art und Beschaffenheit des Bodens getroffen werden kann.

Carizzoni [5] beschäftigte sich in seiner Dissertation mit der Ausbreitung von Schallwellen in lockeren Ackerböden. In definierten Abständen wurden Lautsprecher und Mikrophone im Boden eingebaut. Mit einem entsprechend entwickelten Signal wurde die Wellenlaufzeit und daraus die Wellenlaufgeschwindigkeit bestimmt. Es wurden zahlreiche Versuche an mehreren Standorten und mit verschiedenen Spannungszuständen und Wassergehalten durchgeführt. Die eingesetzte Messtechnik bestand aus sehr hochwertigen Geräten. Es konnte ein Zusammenhang zwischen den aus den gemessenen Geschwindigkeiten berechneten Elastizitätsmoduln und den Anfangssteigungen der Drucksetzungkurve gezeigt werden. Die Laufzeitbestimmung wurde sowohl automatisiert, als auch manuell durchgeführt. Dabei wurde festgestellt, dass die automatisierte Bestimmung zu einer Überschätzung der Laufzeit führt. Aus der Auswertung konnte gezeigt werden, dass die Laufzeit im Vergleich zu den Amplituden die verlässlichere Messgröße darstellt.

Yu et al. [24] führten Labor- und Feldversuche zur Ausbreitung von elektromagnetischen Wellen und Scherwellen durch. Der Versuchsaufbau bestand aus vier in den Boden eingeschlagenen Dornen, die zum Senden und Empfangen der Wellen eingesetzt wurden. Es wurden die Wellenlaufzeiten von elektromagnetischen Wellen und Scherwellen zwischen den Dornen gemessen. Basierend auf den Geschwindigkeiten der elektromatnetischen Wellen wurde der Wassergehalt (laut ASTM D6780/D6780M [3]) und mit den Geschwindigkeiten der Scherwellen der Schubmodul bestimmt. Es erfolgten mit entnommenen Bodenproben Laborversuche zur Verifizierung der berechneten Bodenparameter. Es konnte eine gute Übereinstimmung zwischen den in situ und den im Labor bestimmten Bodenparametern gezeigt werden. Es wurde ebenfalls untersucht, ob durch das Einschlagen der Dorne eine signifikate Störung (Auflockerung oder Verdichtung) des Bodens entsteht und festgestellt, dass die Beeinflussung vernachlässigbar ist.

2.5 Wellenausbreitung im Boden als Untersuchungsmethode

Die in Abschnitt 2.2 beschrieben Wellenarten und in Abschnitt 2.3 erläuterten Zusammenhänge können eingesetzt werden, um Rückschlüsse auf die vorhandenen Bodenparameter zu ziehen. Im Folgenden werden einige ausgewählte Messmethoden erläutert. Das den Messmethoden zugrunde liegende Prinzip ist bei diesen Messmethoden ähnlich. Mit einer Quelle wird eine Welle im Boden erzeugt und an einem Empfänger (Geophon) gemessen. Die Methoden unterscheiden sich vor allem durch die Position der Lautsprecher und der Empfänger und der Art der erzeugten bzw. gemessenen Welle.

2.5.1 Reflexionsseismik

Abb. 2.12: Reflexionsseismik: Schematischer Versuchsaufbau [1]

Trifft eine elastische Welle auf eine Schichtgrenze im Boden, wird die Welle teilweise reflektiert und teilweise gebrochen und breitet sich in tiefer liegende Schichten aus. Der reflektierte Teil der Welle kann an der Oberfläche mit mehreren Geophonen gemessen werden. Bei den gemessenen Wellen handelt es sich meist um P-Wellen. Durch die Messung der an den Reflexionshorizonten reflektierten Wellen kann mit der Betrachtung der Laufzeiten ein Schichtenprofil des Bodens erstellt werden. Das Verfahren besitzt eine gute Auflösung und ist für tiefer liegende Schichten gut geeignet. In der Nähe der Oberfläche ist es aufgrund der geringen Laufzeit der P-Wellen schwer möglich, eine Aussage zu treffen. Der schematische Versuchsaufbau ist in Abbildung 2.12 dargestellt.

2.5.2 Refraktionsseismik

Refraktionsseismische Methoden messen die sich in den Grenzflächen zwischen den Bodenschichten ausbreitenden, refraktierten (gebrochenen) Wellen. Die refraktierte Welle läuft entlang der Grenzfläche und gibt kontinuierlich einen Teil ihrer Energie in Form einer Welle wieder an die Oberfläche ab, siehe Abbildung 2.13.

Abb. 2.13: Refraktionsseismik: Schematischer Versuchsaufbau [1]

Diese wird mit entsprechend positionierten Geophonen aufgezeichnet. Basierend auf dem Abstand der Geophone von der Quelle und der gemessenen Laufzeit werden sogenannte Laufzeitdiagramme erstellt. In dieser graphischen Auswertung wird der Laufweg in Verbindung mit der Zeit dargestellt. Theoretisch ist es so möglich, unendlich viele Schichten zu erkunden und deren Mächtigkeit zu bestimmen. Aufgrund des hohen Auswertungsaufwandes beschränkt sich die Auswertung meist auf vier bis fünf Schichten.

Refraktierte Wellen entstehen nur, wenn die Geschwindigkeit im Boden an einer Schichtgrenze zunimmt. Bei einer Abnahme der Geschwindigkeit an einer Schichtgrenze kann es sein, dass die Schichtgrenze nicht erkannt wird oder es zu Fehlern in der Auswertung kommt.

2.5.3 Oberflächenwellenseismik

Bei der Oberflächenwellenseismik werden die in Abschnitt 2.2.1 beschriebenen Oberflächenwellen (Love- und Rayleighwellen) zur Bestimmung von Bodenparametern verwendet. Diese Wellentypen bewegen sich direkt an der Oberfläche fort und nehmen mit zunehmender Tiefe stark an Amplitude ab. Die Methoden eignen sich gut, um oberflächennahe Strukturen aufzunehmen.

Schwinger auf der Bodenoberfläche

Bei dieser nur noch selten eingesetzten Messmethode [23] wird mit einem Schwinger ein stationäres Wellenfeld erzeugt. Mit den entsprechend angeordneten Geophonen (siehe Abbildung 2.14) können die Positionen, an denen die maximalen Amplituden auftreten, bestimmt werden.

Die so bestimmten Abstände entsprechen der Wellenlänge der Rayleighwelle L_R . Mit Gleichung (2.9) [23] kann so aus der Dichte ρ , der Oszillatorfrequenz f und der Wellenlänge der Rayleighwelle L_R der Schubmodul G näherungsweise bestimmt werden.

$$G = \varrho \cdot v_s^2 \approx \varrho \cdot f^2 \cdot L_R^2 \tag{2.9}$$

Abb. 2.14: Schwinger auf Bodenoberfläche: Schematischer Versuchsaufbau [23]

Spectral Analysis of Surface Waves

Rayleighwellen breiten sich vor allem an der Oberfläche aus. Bereits in der Tiefe, die der einfachen Wellenlänge entspricht, ist nur mehr eine Amplitude von 30% vorhanden [23]. Je größer die Wellenlänge bzw. je tiefer die Frequenz der Rayleighwelle ist, desto weiter können diese in den Untergrund eindringen. Dies führt dazu, dass Rayleighwellen sich in einem Oberflächenbereich ausbreiten, der von der Wellenlänge bzw. der Frequenz abhängig ist.

Bei unterschiedlichen Steifigkeiten des Untergrunds breiten sich damit verschiedene Wellenlängen bzw. Frequenzen mit unterschiedlicher Geschwindigkeit aus. Dieser Effekt wird als *Dispersion* bezeichnet. Bei der sogenannten *Spectral Analysis of Surface Waves* (kurz: SASW) wird dieser Effekt für die Bestimmung von Bodenparametern herangezogen. Dabei wird die Wellenlänge in Kombination mit der Ausbreitungsgeschwindigkeit gemessen und daraus ein tiefenabhängiges Scherwellengeschwindigkeitsprofil erstellt. Diese Methode eignet sich für überwiegend ebenes Gelände und ebene Schichtung.

2.5.4 Bohrloch-Seismik

Cross-Hole-Seismik

Bei der Cross-Hole-Seismik wird die Scherwellengeschwindigkeit zwischen zwei Bohrlöchern bestimmt. Das Erregersignal ist dabei meist eine stoß- oder schlagartige Erschütterung im Ausgangsbohrloch. Im zweiten Bohrloch wird das zur Aufnahme verwendete Geophon direkt an der Bohrlochwand angebracht. Durch das Versetzen über die gesamte Bohrlochtiefe und mehrmaliges Messen kann der Bereich zwischen den Bohrlöchern erfasst werden.

Down-Hole-Seismik

Bei der Down-Hole-Seismik befindet sich der Erreger (für P- oder S-Wellen) an der Oberfläche in der Nähe des Bohrlochs. Es werden mehrere Messungen durchgeführt, das Geophon für die Aufnahme wird dabei im Bohrloch in verschiedenen Tiefen angebracht. In Kombination mit Bohrkernen oder Korrelationsmodellen kann eine bodenmechanische Aussage über den Boden getroffen werden.

In Abbildung 2.15 sind beide Verfahren der Bohrloch-Seismik dargestellt.

Abb. 2.15: Bohrlochseismik: Schematischer Versuchsaufbau [11]

2.6 Gewichteter Mittelwert

Im Zuge der Auswertung (Kapitel 4) wird der gewichtete Mittelwert \overline{x} berechnet.

$$\overline{x} = \frac{1}{\sum_{i=1}^{n} w_i} \sum_{i=1}^{n} w_i x_i, \qquad i = 1, 2, 3, ..., n$$
(2.10)

 mit

- x_i ... Messwert
- w_i ... Wertung der Messwertes
- n ... Anzahl der Messwerte
- i ... Laufvariable

Kapitel 3

Experimentelle Untersuchungen zur Bestimmung der Kompressionswellengeschwindigkeit

3.1 Allgemeine Beschreibung

Das Ziel der durchgeführten Messungen war die Bestimmung der Kompressionswellengeschwindigkeit v_p im Boden im Zuge von Verdichtungsvorgängen. Dazu wurden im Boden ein Körperschallautsprecher und zwei Körperschallmikrophone eingebaut. Der schematische Versuchsaufbau ist in Abbildung 3.1 dargestellt. Über den Körperschalllautsprecher wurde ein für die Versuche entwickeltes Testsignal (siehe Abschnitt 3.1.2) wiedergegeben und von den zwei Körperschallmikrophonen in Verbindung mit einem Aufnahmegerät registriert. Die zwei Körperschallmikrophone wurden in definierten Abständen zum Körperschalllautsprecher angeordnet. Aus dem zeitversetzten Eintreffen des Testsignals an den beiden Körperschallmikrophonen konnte die Wellenlaufzeit gemessen und unter Berücksichtigung des Abstandes die Geschwindigkeit der Kompressionswelle v_p berechnet werden.

Für die experimentellen Untersuchungen wurde die in Abschnitt 3.1.1 beschriebene Messtechnik verwendet. Ein Ziel der durchgeführten Versuche war es, ein Messverfahren zu entwickeln, bei dem die Mikrophone und der Lautsprecher im Boden verbleiben können. Deshalb wurde preisgünstige Messtechnik eingesetzt, die nicht die maximale Qualität der am Markt verfügbaren Messtechnik erreichte.

In weiterer Folge wurden aus der Kompressionswellengeschwindigkeit v_p dynamische Bodenkennwerte berechnet und den Ergebnissen konventioneller Versuche gegenübergestellt (siehe Kapitel 4 und 5).

Im Zuge der Hauptversuche (siehe Abschnitt 3.3) wurden Messungen im Rahmen von Verdichtungsarbeiten durchgeführt, um zu überprüfen, ob der Versuchsaufbau als Verdichtungskontrolle geeignet ist.

Der Versuchsaufbau setzte sich grundsätzlich aus zwei Teilen zusammen, den für das Senden und Empfangen des Testsignals benötigten Geräten (Abschnitt 3.1.1) und dem ausgesendeten Testsignal selbst (Abschnitt 3.1.2).

3.1.1 Messtechnische Instrumentierung

Das Testsignal wurde auf ein Mobiltelephon geladen und mittels Bluetooth an den Verstärker gesendet. An den Verstärker wurde der Körperschalllautsprecher angeschlossen. Die zwei Körperschallmikrophone wurden mit dem Aufnahmegerät verbunden. Sowohl die Mikrophone als auch der Lautsprecher wurden in eine Schutzhülle eingebaut, die mit einem Stahlseil verbunden wurde. Dies diente zum Schutz der Messtechnik und zur späteren Bergung der Geräte. Die Energieversorgung der Messtechnik erfolgte mit einer 12 V Batterie. Das Aufnahmegerät war auch

Abb. 3.1: Schema des Versuchsaufbaus

für akkubetriebenen Einsatz ausgelegt. Um eine unterbrechungsfreie Aufnahme zu gewährleisten, wurde diese Funktion jedoch nie eingesetzt.

Die folgenden Geräte wurden eingesetzt:

- Mobiltelephon
- Verstärker Smallwonder Amp 2x60 [7]
- 2 Körperschallautsprecher, Rücken an Rücken montiert heddier Exciter LS-KS20 [8]
- Aufnahmegerät Zoom H4n Handy Recorder [25]
- zwei Körperschallmikrophone AKG C411 PP [2]
- 12 V Batterie

In Abbildung 3.2 ist der Aufbau der Messgeräte im Labor photographisch ersichtlich. Der Aufbau im Feld ist gleich und wird in Verbindung mit den Testfeldern im Kapitel 3.3 erläutert.

3.1.2 Beschreibung und Aufbau des Testsignals

Das ausgesendete Testsignal besteht aus 28 nacheinander abgespielten Frequenzen, einem gleitenden Frequenzsignal und einem weißem Rauschen.

Das Signal wurde mit dem Programm imcFamos Enterprise (Version 7.3 Rev.1) erzeugt und als wav-Datei gespeichert. Die wav-Datei wurde im Zuge der Vor- und Hauptversuche verwendet.

Die Frequenzen im Testsignal starten mit 20 Hz und enden mit 10.240 Hz, dazwischen erfolgt eine Steigerung in Terzen. Alle so generierten Frequenzen sind in Tabelle 3.1 ersichtlich. Jede Frequenz wird jeweils dreimal für 0,20 s wiedergegeben, zwischen den einzelnen Frequenzen wird für 0,05 s pausiert. Zwischen den einzelnen Frequenzpaketen wird die Wiedergabe ebenfalls für 0,05 s pausiert. In Abbildung 3.3 ist der erste Frequenzbereich des Testsignals mit der Frequenz 20 Hz dargestellt.

Abb. 3.2: Aufbau der Messtechnik im Labor

Abb. 3.3: Erstes Frequenzpaket (20 Hz) des Testsignals

Anschließend an die 28 Frequenzpakete folgt eine Pause von 0, 1 s vor dem gleitenden Frequenzsignal. Dieses beginnt mit einer Frequenz von 10.000 Hz und flacht über eine Dauer von 4 s mit einer quadratischen Abnahme zu 0 Hz ab.

Das weiße Rauschen ist ähnlich den Frequenzpaketen aufgebaut. Unterschiedlich ist, dass die Sendedauer des Rauschens 0,40 s beträgt. Das Signal des weißen Rauschens wird erzeugt, indem ein konstanter Ton mit 1.250 Hz mittels Fouriertransformation in den Frequenzbereich transformiert wird. Die Amplituden des transformierten Signals werden anschließend normiert und die Phasen mit einer Zufallsfunktion generiert. Abschließend wird das Signal wieder in den Zeitbereich rücktransformiert und normiert. Es entsteht dadurch das in Abbildung 3.4 ausschnittsweise dargestellte Signal.

Amplitude des ausgesendeten Testsignals

Die Amplitude des ausgesendeten Testsignals befindet sich zwischen den dimensionslosen Werten -1 und +1. Das bedeutet, dass der Lautsprecher das Testsignal an den Zeitpunkten mit der maximalen Amplitude, mit der maximalen Leistung wiedergibt, ohne dass es zu einer Übersteuerung kommt.

Position im Testsignal	Frequenz [Hz]
1	20,0
2	$25,\!2$
3	31,7
4	40,0
5	50,4
6	63,5
7	80,0
8	100,8
9	127,0
10	160,0
11	$201,\!6$
12	254,0
13	320,0
14	403,2
15	508,0
16	640,0
17	806,3
18	1.015,9
19	1.280,0
20	1.612,7
21	2.031,9
22	2.560,0
23	$3.225,\!4$
24	4.063,7
25	5.120,0
26	6.450, 8
27	$8.127,\!5$
28	10.240,0

 Tab. 3.1:
 Frequenzpakete des Testsignals

Abb. 3.4: Ausschnitt des Testsignals (weißes Rauschen)

3.2 Vorversuche im Labor

Um den Versuchsaufbau und die Geräte zu überprüfen, wurden am 22. Februar 2018 Vorversuche im Labor des Forschungsbereichs für Grundbau, Boden- und Felsmechanik der TU Wien durchgeführt. Der Aufbau der Messgeräte wurde wie in Abschnitt 3.1.1 beschrieben durchgeführt. Die Mikrophone und der Lautsprecher wurden in einer mit sandigem Kies gefüllten Wanne vergraben (siehe Abbildung 3.5).

Es wurden mehrere Messungen in verschiedenen Verdichtungszuständen (siehe Tabelle 3.2), und eine Messung mit wassergesättigtem Boden durchgeführt, um zu überprüfen, ob die Sättigung des Bodens einen messbaren Einfluss auf die Kompressionswellengeschwindigkeit v_p hat.

Die statische Verdichtung erfolgte durch Stampfen mit den Füßen in der Wanne und die dynamische Verdichtung durch schnelles wiederholtes Aufspringen einer Person.

Messung	Verdichtungszustand
1, 2	unverdichtet
3, 4	nach einmaliger statischer Verdichtung
5, 6	nach einmaliger dynamischer Verdichtung
7	wassergesättigt
8	wassergesättigt, nach erneuter statischer Verdichtung

Tab. 3.2: Verdichtungszustände der Vorversuche

Abb. 3.5: Vergrabener Lautsprecher und Mikrophone im Labor

3.2.1 Ergebnisse der Vorversuche im Labor

Die Vorgehensweise zur Auswertung der aufgenommenen Audio-Dateien wird in Kapitel 4 detailliert erläutert. In diesem Abschnitt wird nur auf die Ergebnisse der Vorversuche eingegangen. Die ermittelten Kompressionswellengeschwindigkeiten sind in Abbildung 3.6 dargestellt. Die aus dem aufgenommenen Testsignal bestimmte Wellenlaufgeschwindigkeit wird in weiterer Folge als $v_{p,TS}$ bezeichnet.

Kompressionswellengeschwindigkeit

Es ist zu erkennen, dass die zwei Messungen im unverdichteten Zustand die geringsten Kompressionswellengeschwindigkeiten aufweisen. Mit zunehmender Verdichtung steigen die gemessenen Kompressionswellengeschwindigkeiten. Die zwei Messungen im wassergesättigten Zustand zeigen keine stark abweichenden Ergebnisse. Die ermittelten Kompressionswellengeschwindigkeiten sind mit der durchgeführten Verdichtung erklärbar.

Abb. 3.6: Ergebnisse der Vorversuche am 22.02.2018

Erkennbare Frequenzen

Bei der Auswertung wurde festgestellt, dass nicht jede Frequenz des Testsignales gleich gut erkennbar ist. Jeweils ca. fünf bis sechs Frequenzen am Beginn und am Ende des Testsignales wurden von keinem oder nur einem Mikrophon messbar aufgezeichnet und konnten deshalb nicht für die Auswertung herangezogen werden. Genauere Untersuchungen zu den Frequenzen im Testsignal sind im Kapitel 7 ausgeführt.

Bei der Auswertung der Messung 7 wurde festgestellt, dass die Anzahl der nicht erkennbaren Frequenzen deutlich höher war. Für die Audio-Aufnahme der Messung 7 wurde das Testsignal viermal gesendet. Von den in Summe 112 Frequenzpaketen konnten nur 22 für eine Auswertung herangezogen werden. Bei den restlichen Frequenzpaketen wurde das Testsignal entweder in einer oder in beiden Tonspuren nicht messbar aufgezeichnet. Da für die Hauptversuche keine Wassersättigung des Bodens erwartet wurde, ist dieses Ergebnis nicht näher untersucht worden.

Schlussfolgerung

Die Schlussfolgerung der Vorversuche war, dass mit der gewählten Messtechnik die zu untersuchenden Effekte messbar waren. Das Testsignal wurde für die Hauptversuche nicht verändert. Die nicht erkennbaren Frequenzpakete wurden ebenfalls im Testsignal belassen. Es konnte nicht ausgeschlossen werden, dass diese bei dem im Rahmen der Hauptversuche angetroffenen Boden trotzdem zur Auswertung herangezogen werden können.

3.3 Experimentelle Hauptversuche

3.3.1 Forschungsprojekt FDVK für Vibrationswalzen

Im Rahmen des Forschungsprojekts *FDVK für Vibrationswalzen* soll ein neuer FDVK-Wert für Vibrationswalzen entwickelt werden. Neben zahlreichen theoretischen Überlegungen und Vorversuchen fanden am 19., 23. und 24. April 2018 die experimentellen Untersuchen am Testgelände (Abschnitt 3.3.3) statt. Das Ziel der Hauptversuche war, die Vorgänge, die bei der Verdichtung mit Vibrationswalzen auftreten, genau zu untersuchen und diese messtechnisch zu erfassen. Dazu wurde die eingesetzte Walze mit zahlreichen Messgeräten ausgestattet, die

unter anderem die Beschleunigung des Rahmens und der Bandage an mehreren Positionen und in mehreren Richtungen, die Position der Unwucht und die GPS-Position erfassten. In Kombination mit weiteren Messwerten (Geschwindigkeit der Walze, Frequenz der Unwucht, Vibrationsamplitude der Bandage), die standardmäßig von der Walze aufgezeichnet werden und den Ergebnissen der dynamischen Lastplattenversuche, sollen die Zusammenhänge zwischen den Parametern der Walze und des Bodens und in weiterer Folge ein neuer Kennwert für die FDVK mit Vibrationswalzen abgeleitet werden.

3.3.2 Allgemeine Beschreibung der Hauptversuche

Das Versuchsprogramm der Hauptversuche sah Überfahrten mit verschiedenen Frequenzen der Vibrationseinheit und verschiedenen Fahrgeschwindigkeiten der Walze vor. Für die Verdichtung des Bodens wurde eine Vibrationswalze der Firma HAMM AG [9] eingesetzt (siehe Abschnitt 3.3.5).

3.3.3 Testgelände

Die Hauptversuche wurden in einer Kiesgrube der Firma HABAU Hoch- und Tiefbaugesellschaft m.b.H. in Fischamend in Niederösterreich (siehe Abbildungen 3.7a und 3.7b) auf zwei Testfeldern durchgeführt.

3.3.4 Untergrundverhältnisse

Das Testfeld 1 bestand aus lockerem, sandigem Kies (sogenanntem *Wandschotter*). Das Testfeld 2 bestand aus einem nicht bindigen Boden aus gleichförmigen Sanden (*Lössboden*). Beide Testfelder wurden für die Versuche mit einem Pflug bis zu einer Tiefe von ca. 40 cm aufgelockert. Die Wetterverhältnisse über den Messzeitraum waren trocken und vorwiegend sonnig.

3.3.5 Eingesetzte Walze

Die für die Verdichtung des Bodens eingesetzte Walze war eine Vibrationswalze des Typs H13i mit Vibrationsglattmantelbandage (Vorderachse). Die Hinterachse bestand aus einer Gummibereifung. Die Walze hatte ein Betriebsgewicht von ca. 13 to. Die Vibrationsbandage konnte mit einer Amplitude von 0,89 mm oder 1,93 mm betrieben werden. Die maximale Fahrtgeschwindigkeit betrug 12 km/h.

3.3.6 Testfelder

Die beiden Testfelder wurden in je zwei parallele Testfahrbahnen mit einer Breite von ca. 2,5 m geteilt. Die in Fahrtrichtung linke Fahrbahn wurde für Überfahrten kleiner Vibrationsamplitude (0,89 mm) der Walzenbandage verwendet, die rechte Fahrbahn für Überfahrten mit großer Vibrationsamplitude (1,93 mm) der Walzenbandage. Abbildung 3.8 zeigt die Abmessungen der Testfahrbahnen und die Positionen an denen die Messungen mit dem *Leichten Fallgewichtsgerät*, sowie die Aufzeichnung des Testsignals durchgeführt wurden. An jeweils zwei Stellen wurden Messungen mit der dynamischen Lastplatte durchgeführt. Es wurde ein *Leichtes Fallgewichtsgerät* des Forschungsbereichs Grundbau, Boden- und Felsmechanik und eines der Firma HAMM AG verwendet.

Versuchsprogramm

Für die Überfahrten mit der Walze wurden die Testfahrbahnen bewässert. Das diente dazu, einen Wassergehalt des Bodens zu erreichen, bei dem eine gute Verdichtung möglich war (siehe dazu auch die in Kapitel 2 erläuterte Proctordichte) und um die Staubentwicklung zu reduzieren.

Danach wurden die Testfahrbahnen mit einem Pflug bis in eine Tiefe von ca. 40 cm aufgerissen und aufgelockert.

(a) Kiesgrube der Firma HABAU (Quelle: Google Maps)

(b) Position der Testfelder innerhalb der Kiesgrube (Quelle: Google Maps)

Abb. 3.7: Testgelände der Hauptversuche

Abb. 3.8: Lageplan der Testfelder

Die Reihenfolge der geplanten Überfahrten des Versuchsprogramms ist in Tabelle 3.3 angeführt. Für jede dieser in Summe 18 Versuchsdurchgänge wurden die Testfahrbahnen in mehreren Überfahrten mit der Vibrationswalze verdichtet. Nach jeder Überfahrt wurden Messungen mit der dynamischen Lastplatte durchgeführt und eine Aufnahme des Testsignals (Abschnitt 3.3.9) aufgezeichnet. Nach Erreichen einer maximalen Verdichtung wurde das Versuchsprogramm auf der anderen Testfahrbahn fortgesetzt. Nach Verdichtung beider Fahrbahnen wurden die Testfahrbahnen bewässert, wieder aufgerissen und die nächsten Messungen gestartet.

Amplitude	Geschwindigkeit der Walze			Amplitude	Geschwindigkeit der Walze		
$0,89 \mathrm{~mm}$	2,5 km/h	4,0 km/h	5,5km/h	$1,93 \mathrm{~mm}$	2,5 km/h	4,0 km/h	5,5 km/h
30 Hz	6	4	7	$25~\mathrm{Hz}$	6	4	7
36 Hz	2	1	3	30 Hz	2	1	3
42 Hz	8	5	9	$35~\mathrm{Hz}$	8	5	9

Tab. 3.3: Versuchsprogramm der experimentellen Hauptversuche

3.3.7 Allgemeine Beschreibung der Messung der Wellenlaufgeschwindigkeit

Für die Hauptversuche am Testgelände wurde die Messtechnik in den Testfahrbahnen vergraben (siehe Abschnitt 3.3.8) und eine Initialmessung durchgeführt. Im Anschluss erfolgte eine Überfahrt mit der Vibrationswalze (Vorwärts- und Rückwärtsfahrt) und eine weitere Messung mit dem Testsignal (siehe Abschnitt 3.3.9) und Messungen mit den dynamischen Lastplatten. Dieser Ablauf wurde solange wiederholt bis mit den dynamischen Lastplatten keine weitere signifikante Zunahme der gemessenen Werte E_{vd} festgestellt werden konnte. Nach der letzten Rückwärtsfahrt der Vibrationswalze und der abschließenden Messung mit dem Testsignal wurde die Messtechnik vorsichtig geborgen.

In weiterer Folge wird eine Walzenüberfahrt (Vorwärts- und Rückwärtsfahrt) und die anschließende Messung mit dem Testsignal als Messfahrt bezeichnet. Die Gesamtheit der Messfahrten auf einer Testspur (Initialmessung und Messungen bis zum Erreichen der maximalen Verdichtung) werden in weiterer Folge als Messung bezeichnet.

3.3.8 Einbau der Messtechnik

Für den Einbau der Messtechnik (Lautsprecher und Mikrophone) wurde händisch eine Vertiefung mit einer Tiefe von ca. 20 - 30 cm, einer Breite von ca. 20 cm und einer Länge von ca. 60 cm in der Testbahn gegraben und die Mikrophone und der Lautsprecher eingelegt. Der Abstand im Einbauzustand zwischen Lautsprecher und Mikrophon 1 betrug 30 cm, zwischen Mikrophon 1 und Mikrophon 2 20 cm. In der Spur 1 und 3 wurden, in Richtung der Vorwärtsfahrt gesehen, zuerst der Lautsprecher und danach die Mikrophone auf einer Parallelen zur Mittelachse der Testspur eingebaut. Bei Spur 2 wurden zuerst die Mikrophone und im Anschluss die Lautsprecher eingebaut. Diese Unterschiede im Einbau waren durch die Kabelführung vom Lautsprecher bedingt. Es wurde versucht eine Kabelführung ohne Knicke zu erreichen. In der Spur 4 wurden aufgrund der beengten Platzverhältnisse keine Messungen der Kompressionswellengeschwindigkeit durchgeführt.

Es wurde von der Vertiefung zum Rand der Testfahrbahn ein ca. 15 cm tiefer und ca. 10 cm breiter Graben ausgehoben, um die Kabel geschützt unterhalb der Geländeoberfläche zur Aufnahmeund Sendeeinrichtung (Verstärker, Aufnahmegerät, Batterie) zu führen. Dieser Einbauzustand ist in den Abbildungen 3.9a und 3.9b ersichtlich. Nach dem Einbau wurde die Vertiefung wieder mit dem Aushubmaterial verfüllt. Es wurde keine aktive Verdichtung durchgeführt. Die mit dieser Methode des Einbaus einhergehenden Probleme werden in Kapitel 6 diskutiert.

3.3.9 Messung der Wellenlaufzeit

Nach Einbau der Körperschallmikrophone und des -lautsprechers wurde eine Aufnahme in unverdichtetem Boden und an den in Abbildung 3.8 beschriebenen Punkten die Initialmessungen mit der dynamischen Lastplatte durchgeführt. Diese werden in weiterer Folge als Nullmessung bezeichnet. Danach erfolgte eine Überfahrt mit der Vibrationswalze. Die Vorwärtsfahrt wurde

(a) Gesamtaufbau im Feld

(b) Mikrophone und Lautsprecher im Feld

Abb. 3.9: Einbau der Messtechnik

mit aktivierter Vibrationseinheit, die Rückwärtsfahrt nur statisch durchgeführt. Nach jeder Überfahrt (inkl. Rückwärtsfahrt) wurden Messungen mit dem Testsignal und Messungen mit den dynamischen Lastplatten durchgeführt. Nach der letzten Überfahrt und einer abschließenden Aufnahme des Testsignals wurden die Mikrophone und der Lautsprecher vorsichtig ausgegraben.

Durch den lockeren Einbauzustand und die nachfolgende Verdichtung des Boden durch die Walzenüberfahrten kam es zu einer Verschiebung der Mikrophone und des Lautsprechers. Der so entstandene, vom Einbauzustand abweichende Abstand wurde gemessen und photographisch dokumentiert. Die Messungenauigkeiten, die mit der so durchgeführten Bestimmung des Abstandes einhergehen, werden in Kapitel 6 genauer ausgeführt. Exemplarisch ist der Ausbauzustand nach der Messfahrt 155 mit den gemessenen Abständen in Abbildung 3.10 abgebildet.

Contraction of the second				the second	
Körperschalllautsprecher	Körperschallm	ikrophon 1	Körperscha	allmikropho	n 2
a start and a start and a start and a start a s	Sec. 1	A CARL	4	S. C.	
			CON-	Cash	A CONTRACTOR
		Contraction of the second	- Pr	RECH	Cirester.
and the second		Maria	YSS	and the second	Mr
V 2	4 cm	22 cm	V		and a
1-3-3	A NE	ENTEN			
	Televis	The	7		15/

Abb. 3.10: Ausbau der Messtechnik nach Messfahrt 155

Nach Abschluss der Messungen auf einer Testfahrbahn wurde die Messtechnik auf der benachbarten Testfahrbahn eingebaut und die Messungen wurden fortgesetzt. Nach abgeschlossener Verdichtung beider Testfahrbahnen wurden diese, in Vorbereitung für die nächsten Überfahrten, bewässert und die Testfahrbahnen wieder mit dem Pflug aufgerissen.

3.3.10 Zusätzliche Messungen

Ursprünglich war im Versuchsprogramm lediglich die Aufzeichnung des Testsignals geplant. Im Zuge der Versuche vor Ort wurden an den in Abbildung 3.8 dargestellten Punkten Messungen mit der dynamischen Lastplatte durchgeführt. Der Impuls aus dem Auftreffen des Fallgewichts auf den Stahltellerfedern war in den Audio-Dateien ausgeprägt erkennbar. Deshalb wurden diese Impulse auch in die Aufnahmen inkludiert.

Zusätzlich zu den Messungen nach den Überfahrten wurden teilweise während der Walzenüberfahrt Aufnahmen gemacht. Für die Laufzeitauswertung ist es wichtig, dass in den Audiodateien Sendepausen vorhanden sind, um das Eintreffen der Signale bei den beiden Mikrophonen eindeutig markieren zu können. Bei den Aufnahmen der Walzenüberfahrten sind diese Sendepausen nicht vorhanden, deshalb werden die Aufnahmen der Walzenüberfahrten im Rahmen der vorliegenden Arbeit nicht detaillierter betrachtet.

3.3.11 Bezeichnung der aufgenommenen Audio-Dateien

Die Bezeichnung der Walzenüberfahrten wurde mit laufenden Nummern vorgenommen, die Bezeichnung der Laufzeitmessungen erfolgte durch das Aufnahmegerät mit einer Datumsbezeichnung und einer fortlaufenden Nummer. Eine Messfahrt umfasst eine Vorwärts- und Rückwärtfahrt mit der Vibrationswalze und eine darauffolgende Messung der Kompressionswellengeschwindigkeit. Für die Zusammenführung der Messdaten wurde die Bezeichnung der Laufzeitmessung in die Protokolle der Versuche des Forschungsprojektes *FDVK für Vibrationswalzen* aufgenommen. Im Anhang A sind die Protokolle aller Messtage zu finden. In dieser Arbeit werden nur die Bezeichnungen der Walzenüberfahrten verwendet.

Kapitel 4

Auswertung der Audio-Dateien zur Bestimmung der Kompressionswellengeschwindigkeit

4.1 Ziel der Auswertung

Das Ziel der Auswertung der aufgenommenen Signale war, die Wellenlaufgeschwindigkeit der Kompressionswelle v_p zu ermitteln. Die Auswertung erfolgte mit jenem Teil des Testsignales, der aus den 28 definierten Frequenzenpaketen bestand, die Teile des gleitenden Frequenzsignals und des weißen Rauschens wurden für die Auswertung nicht herangezogen.

Es wurde das Eintreffen des Testsignals bei beiden Mikrophonen händisch markiert. Daraus ergaben sich zwei Zeitpunkte, an denen das Testsignal bei dem jeweiligen Mikrophon eintrifft. Aus dem zeitlichen Abstand dieser Zeitpunkte wurde die Wellenlaufzeit gemessen. Mit dem bekannten Abstand zwischen den Mikrophonen wurde die Wellenlaufgeschwindigkeit v_p berechnet.

In den Audio-Dateien wurde auch der Impuls, der durch das Auftreffen des Fallgewichtes auf den Stahltellerfedern der dynamischen Lastplatte entsteht, aufgezeichnet. Dieser Impuls wird in weiterer Folge auch als Impulsanregung bezeichnet. Der primäre Fokus lag auf der Auswertung des aufgenommenen Testsignals, zusätzlich wurde auch die Impulsanregung ausgewertet.

4.2 Durchführung der Auswertung

4.2.1 Verwendete Software

Die Auswertung der Signale erfolgte mit dem Programm imcFAMOS Enterprise (Version 7.3 Rev.1). Die aus dem Testsignal entstandenen Signale und die Impulsanregung wurden mit zwei separaten imcFAMOS-Codes ausgewertet und die Ergebnisse als csv-Dateien exportiert. Aus diesen wurden mit dem Programm MATLAB (Version R2016b) der Firma MathWorks, Inc. die Abbildungen erstellt, die in dieser Arbeit zu finden sind. Im Folgenden werden zuerst die zwei imcFAMOS-Codes erläutert und anschließend wird anhand eines Testsignals die Auswertung exemplarisch gezeigt.

4.2.2 Auswertung des aufgenommenen Testsignals

Amplitude des aufgenommenen Testsignals

Das Aufnahmegerät gibt an die Körperschallmikrophone eine sogenannte Phantomspannung (Fernspeisung der Mikrophone) ab. Die Mikrophone senden eine beschleunigungsproportionale Spannung $[1 \text{ mV}/(\text{m/s}^2)]$ als analoges Signal an das Aufnahmegerät zurück. Wird durch eine am Mikrophon eintreffende Schallwelle und dem damit verbundenen Schalldruck eine Beschleunigung in der Membran des Mikrophons verursacht, wird ein entsprechendes Signal [V] an das Aufnahmegerät gesendet.

Die Software des Aufnahmegeräts digitalisiert dieses Signal und wandelt es bei einer Abtastrate von 96 kHz in eine wav-Datei um. Die Amplitude der wav-Datei entsteht durch die Multipli-

kation des Spannungssignals [V] mit einem konstanten Faktor [1/V] und ist dementsprechend dimensionslos.

Für die Auswertung war der zeitliche Abstand der Eintreffzeitpunkte relevant, jedoch nicht die absolute Größe der aufgenommenen Beschleunigung, deshalb wurde der Umrechnungsfaktor nicht detaillierter betrachtet.

Eingangsparameter und Glättung des Signals

Die Eingangsparameter für die Auswertung waren der Dateiname (inkl. Verzeichnis) und der nach dem Ausbau gemessene Abstand zwischen den zwei Mikrophonen. Die aufgenommene wav-Datei beinhaltete zwei Tonspuren, die den zwei eingesetzten Mikrophonen entsprachen. Die beiden Tonspuren wurden in imcFAMOS importiert und mit L und R bezeichnet. L stand dabei für das Mikrophon, welches näher zum Lautsprecher eingebaut wurde, R für das weiter entfernte Mikrophon.

Danach erfolgte eine Glättung mittels Mittelwertbildung der Signale. Das bedeutete, dass eine Intervallbreite für die Mittelung gewählt und in diesem Intervall der Mittelwert des Signals gebildet wurde. Als Intervallbreite wurden 0,0002 s gewählt. Das entspricht einer Frequenz von 5.000 Hz. Diese Art der Glättung führt dazu, dass Frequenzen im Bereich der *Glättungsfrequenz*, und einem Vielfachen davon, durch die Glättung auf die Amplitude Null geglättet werden. Dies betrifft vier Frequenzen im ausgesendeten Testsignal. Diese Frequenzen werden jedoch auch im ungeglätteten Signal nicht von den Mikrophonen in ausreichender Qualität erfasst. In Abschnitt 7.1.2 (S.89) wird der Frequenzbereich des ausgesendeten Testsignal genauer betrachtet.

Erkennbare Frequenzpakete

Es zeigte sich in der Betrachtung der aufgenommen Signale, dass nicht jede Frequenz von den Mikrophonen in einem erkennbaren Maß aufgenommen wurde. Beispielhaft dafür ist in Abbildung 4.1 die Aufnahme nach Messfahrt 120 des weiter entfernten Mikrophons (Tonspur R) dargestellt. Am Beginn ist ein Frequenzpaket erkennbar, danach folgt ein Bereich ohne erkennbare Frequenzpakete. Abschließend sind fünf Frequenzpakete gut erkennbar. Am Ende des Ausschnittes ist ein Teil des gleitenden Frequenzganges ersichtlich.

Da die weitere Auswertung händisch erfolgte, sollten nur die erkennbaren Frequenzpakete in die Auswertung einbezogen werden. Deshalb wurden manuell, in einem Plot beider Tonspuren, zwei Zeitpunkte markiert. Diese wurden jeweils vor Beginn von gut erkennbaren Frequenzpaketen gesetzt. Danach wurde die Anzahl der darauf folgenden gut erkennbaren Frequenzpakete eingegeben. Nur die so markierten Frequenzpakete werden in die Auswertung miteinbezogen. Für den in Abbildung 4.1 dargestellten Ausschnitt wurde vor Beginn des ersten Frequenzpakets ein Zeitpunkt markiert und ein Frequenzpaket als gut erkennbar eingegeben. Der zweite Zeitpunkt wurde vor den fünf erkennbaren Frequenzpaketen markiert und fünf Frequenzpakete als gut erkennbar eingegeben.

Bei diesem Markierungsvorgang waren beide Tonspuren eingeblendet, deshalb wurden auch Frequenzen, bei denen das Signal nur in einer Tonspur gut erkennbar ist, in die Auswertung einbezogen. Es wurden deshalb in der Wertung der Signalqualität (Erläuterung zur Wertung der Signalqualität siehe Abschnitt 4.2.3) auch Nullwerte vergeben.

Überlagerung innerhalb der Frequenzpakete

Jede Frequenz wurde im Testsignal dreimal gesendet. Da Störungen in der Audio-Datei nicht ausgeschlossen werden konnten, wurde für die Auswertung eine Überlagerung der drei einzeln gesendeten Frequenzen eines Frequenzpaketes durchgeführt. Basierend auf den in Kapitel 3 beschriebenen Sende- und Pausenzeiten des Signals und den, wie oben beschriebenen, gesetzten Zeitpunkten, erfolgte die Überlagerung innerhalb des Frequenzpaketes. In Abbildung 4.2 und 4.3 ist ein Frequenzpaket (nur linke Tonspur) beispielhaft vor und nach der Überlagerung dargestellt.

Abb. 4.1: Ausschnitt aus der rechten Tonspur (Messfahrt 120)

Überlagerung bezeichnet hier einen Plot der drei Frequenzsignale für beide Tonspuren mit der gleichen Beginnzeit. Es wurde keine weitere Mittelung oder Vergleichbares durchgeführt. Bei der Auswertung wurde eine Diskrepanz zwischen dem ausgesendeten Testsignal und dem aufgenommenem Signal festgestellt. Auf diese wird in Kapitel 6 näher eingegangen.

Abb. 4.2: Ausschnitt der Aufnahme vor der Überlagerung

Markierung der Eintreffzeitpunkte

Nach der Überlagerung wurden die zu untersuchenden Frequenzpakete aufgerufen und nacheinander manuell das Eintreffen des Signals beim ersten und zweiten Mikrophon markiert. In Abbildung 4.6 ist eine alternative Bestimmung des zeitlichen Abstandes abgebildet. Es wurde dabei der Abstand der parallelen Anfangssteigungen markiert.

Abb. 4.3: Ausschnitt der Aufnahme nach der Überlagerung

Der zeitliche Abstand wurde ausgelesen und aus diesem wurde die Wellenlaufgeschwindigkeit berechnet (siehe dazu Gleichung (4.1)). Die so bestimmte Wellenlaufgeschwindigkeit wird in weiterer Folge als $v_{p,TS}$ bezeichnet. Danach wurde die Signalqualität des eben ausgewerteten Frequenzpaketes gewertet:

$$v_p = \frac{\Delta l}{t_R - t_L} \tag{4.1}$$

 mit

 v_p ... Wellenlaufgeschwindigkeit [m/s]

 Δl ... gemessener Abstand der Mikrophone [m]

 t_R, t_L ... markierte Eintreffzeitpunkte [s]

Nachlaufrechnug

Nach der Auswertung der Frequenzpakete wurde unter Einbeziehung der Wertungen der gewichtete Mittelwert der Kompressionswellengeschwindigkeit berechnet. Alle gemessenen und errechneten Werte wurden für weitere Auswertungsschritte in eine csv-Datei exportiert. Weiters wurde für das Signal eine graphische Auswertung erstellt, bei der die berechneten Geschwindigkeiten der einzelnen Frequenzpakete erkennbar waren.

4.2.3 Wertung der Signalqualität

Die Wertung erfolgte in einer Skala von 0 bis 9. 0 entspricht einem nicht erkennbaren Signal und 9 einer perfekten Qualität. Es wurden im Rahmen dieser Arbeit keine Kriterienkatalog für die Wertungen festgelegt; die Wertung erfolgte aufgrund der subjektiven Einschätzung des Bearbeiters. Im Zuge der Auswertungen stellte sich heraus, dass ein Spektrum für die Bewertung von 0-9 eine Genauigkeit vortäuscht, die nicht vorhanden ist. Die Auswertung aller Signale der Impulsanregung wurden mit dem vollen Bewertungsbereich durchgeführt. Für die Auswertung der Aufnahmen des Testsignale beginnend mit Walzenüberfahrt 152 wurde ein reduzierter Bewertungsbereich von 0-5 verwendet.

4.2.4 Auswertung des aufgenommenen Signals aus dem Impuls der dynamischen Lastplatte

Bei der Auswertung des Signals aus dem Impuls der dynamischen Lastplatte (Impulsanregung) wurde, wie oben beschrieben, die wav-Datei in imcFamos importiert. Die Signale aus dem Impuls der dynamischen Lastplatte zeigten sich als sehr kurze und fast sprunghafte Ausschläge in der Messung. Für die automatische Erfassung dieser Ausschläge wurde, wie in Abbildung 4.4 grün dargestellt, ein horizontales Triggerlevel eingeführt. Die Höhe dieses Triggerlevels wurde je nach Aufnahme manuell angepasst. Zeitpunkte in der Aufnahme, die dieses Triggerlevel überschreiten, wurden registriert und für die weitere Auswertung gespeichert. In manchen Fällen überschritt auch das eigentliche Testsignal das Triggerlevel, deshalb war es möglich, die Anzahl der automatisch erkannten Zeitpunkte manuell zu korrigieren.

Abb. 4.4: Impulsancegung (3 Mal) und Triggerlevel

Die mit dem Triggerlevel registrierten Zeitpunkte in der Aufnahme wurden nacheinander aufgerufen und das Eintreffen des Impulses wurde in den beiden Kanälen manuell markiert. Die Nachlaufrechnung (Berechnung und Export) erfolgte analog zur Auswertung des Testsignals. Die aus der Impulsanregung bestimmte Wellenlaufgeschwindigkeit wird in weiterer Folge als $v_{p,LP}$ bezeichnet.

4.2.5 Exemplarische Auswertung einer Aufnahme

Für die exemplarische Auswertung wird die Datei 180424-005, die nach der Messfahrt 204 aufgenommen wurde, verwendet. Die hier besprochene Auswertung erfolgt im Zeitbereich der Aufnahme. In Abbildung 4.5 ist das gesamte Signal [original (L, R) und geglättet (L_glatt, R_glatt)] inklusive des Triggerlevels abgebildet.

Auswertung der Impulsanregung

Am Beginn der Aufnahme (Abb. 4.5) sind die 12 Impulse aus zwei dynamischen Lastplattenversuchen (je drei Vorbelastungsstöße und drei Messstöße) gut zu erkennen, danach folgt das eigentliche Testsignal. Die Ausschläge zwischen den beiden Lastplattenversuchen und der siebente Ausschlag im Zuge des zweiten Lastplattenversuchs sind nicht direkt nachvollziehbar. Mögliche

Erklärungen sind das Auflegen der Lastplatte, Schritte von Personen oder das Starten bzw. Versetzen der Walze.

Abb. 4.5: Gesamtaufnahme (Messfahrt 204)

Es wurden durch das Triggerlevel zu viele Zeitpunkte erkannt, da auch das Testsignal das Triggerlevel erreicht hat. Deshalb wurde manuell der Wert 14 für die auszuwertenden Signale festgelegt.

Es wurden die Zeitpunkte der Impulsanregung nacheinander aufgerufen und die Eintreffzeitpunkte der Signale markiert. In Abbildung 4.6 ist das die achte der vierzehn Impulsanregungen dargestellt. Die Eintreffzeitpunkte sind nicht eindeutig zu erkennen, deshalb wurde der Abstand der parallelen Anfangssteigungen markiert. Aus diesem Grund wurde als Wertung fünf von neun vergeben. Die ermittelten Zeitpunkte, die Laufzeit, der gemessene Abstand, die Wertung und die errechnete Geschwindigkeit sind in Tabelle 4.1 zusammengefasst.

Tab. 4.1: Ergebnisse der achten Impulsanregung (Messfahrt 204)

Tonspur	Eintreffzeitpunkt	Wellenlaufzeit	gemessener Abstand	$v_{p,LP}$	Wertung
L	46,483858 s	0,000466 s	$0{,}17~\mathrm{m}$	$365 \mathrm{~m/s}$	5/0
R	46,484324 s				5/9

Abb. 4.6: achte Impulsanregung (Messfahrt 204)

Auswertung des Testsignals

Bei der Auswertung des Testsignales werden zuerst zwei Beginnzeitpunkte gut erkennbarer Bereiche markiert. Diese sind in Abbildung 4.7 durch blaue vertikale Linien dargestellt. Auf den ersten Beginnzeitpunkt folgen zwölf gut erkennbare Frequenzpakete, auf den zweiten folgen sieben.

Abb. 4.7: Beginnzeiten für die Auswertung des Testsignals (Messfahrt 204)

In Abbildung 4.8 ist das dritte Frequenzpaket nach dem gewählten ersten Beginnzeitpunkt (in Abbildung 4.7 grün umrandet), mit den überlagerten Signalen beider Tonspuren dargestellt. Die

ermittelten Zeitpunkte, die Laufzeit, der gemessene Abstand, die Wertung und die errechnete Geschwindigkeit sind in Tabelle 4.2 zusammengefasst.

Abb. 4.8: Drittes ausgewertetes Frequenzpaket des Testsignals (Messfahrt 204)

Tab. 4.2: Ergebnisse des dritten ausgewerteten Frequenzpakets des Testsignals (Messfahrt 204)

Tonspur	Eintreffzeitpunkt	Wellenlaufzeit	gemessener Abstand	$v_{p,LP}$	Wertung
L	$78,200398 { m \ s}$	0,000526 s	$0,17 \mathrm{~m}$	323 m/s	5/5
R	78,200924 s				

Die Auswertung wird für die anderen Frequenzpakete wie oben gezeigt durchgeführt. Die Ergebnisse für die Messfahrten 201-205 sind in den Abbildungen 4.9a und 4.9b abgebildet. Die Graphiken sind hier zur Vollständigkeit dargestellt. Die Analyse und Schlussfolgerungen aus den Ergebnissen erfolgen in den Kapiteln 5 und 6.

Abb. 4.9: Auswertung der Messfahrten 201-205

4.3 Annahmen für die weiterführenden Berechnungen

Im Zuge der Hauptversuche wurden keine detaillierteren Untersuchungen der angetroffenen Böden durchgeführt. Deshalb wurden für die weiterführenden Berechnungen folgende Annahmen getroffen:

- Querdehnzahl $\nu = 0.3$
- Dichte $\rho = 1800 \text{ kg/m}^3$
- Es wurde angenommen, dass die Veränderung der Dichte während der Verdichtung vernachlässigbar gering ist, weshalb für alle Auswertungen die oben angeführte Dichte angesetzt wurde.

Der in Kapitel 2 in Gleichung (2.8) beschriebene Zusammenhang zwischen der Kompressionswellengeschwindigkeit v_p und dem dynamischen Verformungsmodul E_{vd,v_p} ergibt unter den oben getroffenen Annahmen folgende Gleichung:

$$E_{vd,v_p} = \frac{3 \cdot (1 - 2 \cdot 0, 3)}{\pi \cdot (1 - 0, 3)^2} \cdot \varrho \cdot v_p^2 = 0,779534 \cdot 1800 \cdot \frac{1}{1000^2} \cdot v_p^2 = 0,001403 \cdot v_p^2 \quad [MN/m^2]$$
(4.2)

Kapitel 5 Ergebnisse der Auswertung

5.1 Allgemeines

Für die Hauptversuche am Testgelände wurde die Messtechnik in den Testfahrbahnen vergraben (siehe Abschnitt 3.3.8) und eine Initialmessung durchgeführt. Im Anschluss erfolgte eine Überfahrt mit der Vibrationswalze (Vorwärts- und Rückwärtsfahrt) und eine weitere Messung mit dem Testsignal (siehe Abschnitt 3.3.9) und Messungen mit den dynamischen Lastplatten. Dieser Ablauf wurde solange wiederholt bis mit den dynamischen Lastplatten keine weitere signifikante Zunahme der gemessenen Werte E_{vd} festgestellt werden konnte. Nach der letzten Rückwärtsfahrt der Vibrationswalze und der abschließenden Messung mit dem Testsignal wurde die Messtechnik vorsichtig geborgen.

Eine Walzenüberfahrt (Vorwärts- und Rückwärtsfahrt) und die anschließende Messung mit dem Testsignal wird als Messfahrt bezeichnet. Die Gesamtheit der Messfahrten auf einer Testspur (Initialmessung und Messungen bis zum Erreichen der maximalen Verdichtung) werden als Messung bezeichnet.

Insgesamt wurden im Zuge von 13 Messungen Audio-Aufzeichnungen mit dem Testsignal und der Impulsanregung erstellt und ausgewertet.

Die ausgewerteten Messfahrten 109-128 fanden am 19. April 2018, die ausgewerteten Messfahrten 147-193 am 23. April 2018 und die ausgewerteten Messfahrten 201-219 am 24. April 2018 statt.

Am 19. und 23. April 2018 wurden die Messungen am Testfeld 1, am 24. April 2018 am Testfeld 2 (siehe Abb. 3.8) durchgeführt. In diesem Kapitel werden die Ergebnisse abgebildet und beschrieben. Die Analyse und Schlussfolgerungen folgen in Kapitel 6 und 8.

5.2 Ergebnisse der Audio-Dateien aus dem Testsignal

5.2.1 Berechnete Kompressionswellengeschwindigkeit

In einem ersten Schritt wurde mit dem in Kapitel 4 beschriebenen imcFamos-Code aus der Aufnahme des Testsignals die Kompressionswellengeschwindigkeit $v_{p,TS}$ bestimmt. Die berechneten Werte wurden mit dem Programm MATLAB graphisch aufbereitet.

Für jedes ausgewertete Frequenzpaket ergibt sich eine berechnete Wellenlaufgeschwindigkeit $v_{p,TS}$. Jede dieser einzelnen Geschwindigkeiten wird mit einem blauen Kreis in den Abbildungen dargestellt. Messwerte, die im Zuge der Auswertung bei der Wertung der Signalqualität mit 0 gewertet wurden, werden in den Ergebnisgraphiken nicht dargestellt. In den Graphiken sind nur die gewichteten Mittelwerte (rote Kreise in den Abbildungen) jeder Messfahrt mit Werten beschriftet. Die Ergebnisse der einzelnen Messfahrten inklusive deren Wertungen sind in Anhang A in Tab. A.5 - A.17 dargestellt.

Für jede Messung wurden in der Anmerkung der Abbildung die Testspur und die Walzenparameter der Messungen angeführt.

Abb. 5.1: $v_{p,TS}$ für Messfahrten 109-112

Abb. 5.3: $v_{p,TS}$ für Messfahrten 123-127

Abb. 5.2: $v_{p,TS}$ für Messfahrten 118-122

Abb. 5.4: $v_{p,TS}$ für Messfahrten 147-151

Ergebnisse der Nullmessung

Die Mittelwerte der Kompressionswellengeschwindigkeiten der Nullmessungen stellen bei jeder Messung den niedrigsten Wert dar. Die berechneten Werte befinden sich in einem Bereich von $v_{p,TS} = 40, 2 - 127, 6 \text{ m/s}.$

Ergebnisse der Verdichtungsfahrten mit der Vibrationswalze

Die Ergebnisse aller Messungen zeigen über den Verlauf der Messfahrten einen abflachenden Anstieg der berechneten Geschwindigkeiten. Nach der ersten Verdichtungsfahrt ist bei allen Messfahrten die stärkste relative Zunahme der berechneten Kompressionswellengeschwindigkeit festzustellen.

Bei drei Messungen sind die Messwerte nicht monoton steigend. Einzelne Messfahrten führen zu einer Abweichung dieser monotonen Steigung [Messfahrt 124 (Abb. 5.3), Messfahrt 183 (Abb. 5.10) und Messfahrt 187 (Abb. 5.11)].

Abweichend von der monotonen Steigung ist bei fünf Messungen [Messfahrten 156-161 (Abb. 5.6), Messfahrten 163-166 (Abb. 5.7), Messfahrten 174-179 (Abb. 5.9), Messfahrten 181-185 (Abb. 5.10) und Messfahrten 201-205 (Abb. 5.12)] beim letzten Messwert keine weitere Steigung vorhanden, sondern der letzte berechnete Wert ist niedriger als der vorletzte.

Abb. 5.5: $v_{p,TS}$ für Messfahrten 152-155

Abb. 5.7: $v_{p,TS}$ für Messfahrten 163-166

Abb. 5.6: $v_{p,TS}$ für Messfahrten 156-161

Abb. 5.8: $v_{p,TS}$ für Messfahrten 169-173

Streuung der Ergebnisse

Im Zuge der Auswertung wurde aus den einzelnen berechneten Wellenlaufgeschwindigkeiten $v_{p,TS}$ ein gewichteter Mittelwert berechnet. Je nach Messfahrten befinden sich die Messwerte in einem geringeren oder größeren Bereich um den gewichteten Mittelwert. Dieser Effekt wird in weiterer Folge als Streuung bezeichnet. Für die weitere Betrachtung der Ergebnisse werden drei Kategorien der Streuung festgelegt:

Messfahrten, bei den die maximalen und minimalen berechneten Geschwindigkeiten im Bezug auf den gewichteten Mittelwert um maximal 60% abweichen, werden als Messfahrten mit geringer Streuung bezeichnet. Bei Messfahrten mit einer Abweichung von 60 - 100% der Messwerte wird die Messung mit einer mäßigen Streuung beschrieben. Sind Abweichungen über 100% vorhanden, erfolgt die Bezeichnung einer starken Streuung.

Es sind bei sechs Messungen [Messfahrten 109-112 (Abb. 5.1), Messfahrten 147-151 (Abb. 5.4), Messfahrten 163-166 (Abb. 5.7), Messfahrten 169-173 (Abb. 5.8), Messfahrten 174-179 (Abb. 5.9) und Messfahrten 201-205 (Abb. 5.12)] Ergebnisse mit geringer Streuung ersichtlich.

Bei weiteren fünf Messungen [Messfahrten 118-122 (Abb. 5.2), Messfahrten 123-127 (Abb. 5.3), Messfahrten 152-155 (Abb. 5.5), Messfahrten 186-193 (Abb. 5.11) und Messfahrten 214-219 (Abb. 5.13)] sind mäßige Streuungen vorhanden.

335

32 183 Messfahrt [-] Messwerte

Mittelwerte

9315.2

184

8309.3

185

Abb. 5.9: $v_{n,TS}$ für Messfahrten 174-179

Abb. 5.11: $v_{p,TS}$ für Messfahrten 186-193

Abb. 5.10: $v_{p,TS}$ für Messfahrten 181-185

230.8

182

Abb. 5.12: $v_{p,TS}$ für Messfahrten 201-205

Die übrigen beiden Messungen [Messfahrten 156-161 (Abb. 5.6) und Messfahrten 181-185 (Abb. 5.10)] weisen Ergebnisse mit starker Streuung auf.

700

600

500

400

300

200

100

0

Nullmessung

[m/s]

V p, TS

Testspur der Messung: "

kleine Vibrationsamplitude

Geschwindigkeit = 5.5 km/h

Walzenparameter:

Frequenz = 42 Hz

200.3

181

Berechnete Geschwindigkeiten

Die mittleren berechneten Geschwindigkeiten (exklusive Nullmessung) befinden sich in einem Bereich von $v_{p,TS} = 156, 8-472, 1 \text{ m/s}$. Es sind jedoch Unterschiede zwischen den verschiedenen Messungen vorhanden.

Exemplarisch dafür werden die Messfahrten 147-151 (Abb. 5.4) und die Messfahrten 152-155 (Abb. 5.5) verglichen. Bei den Messfahrten 147-151 befinden sich die berechneten Geschwindigkeiten im Bereich von $v_{p,TS} = 171, 1 - 235, 4$ m/s. Bei den Messfahrten 152-155 befinden sich die berechneten Geschwindigkeiten im Bereich von $v_{p,TS} = 346, 3 - 450, 9$ m/s. Das bedeutet, dass die größte gemessene Geschwindigkeit der ersten Messung kleiner ist, als die kleinste gemessene Geschwindigkeit der zweiten Messung.

Die Messungen können nicht direkt in verschiedene Geschwindigkeitsbereiche eingeteilt werden. Bei drei Messungen [Messfahrten 152-155 (Abb. 5.5), Messfahrten 156-161 (Abb. 5.6) und Messfahrten 186-193 (Abb. 5.11)] sind jedoch höhere Geschwindigkeiten als bei den restlichen Messungen vorhanden. Bei diesen Messungen überschreitet mindestens die Hälfte der berechneten

Abb. 5.13: $v_{p,TS}$ für Messfahrten 214-219

Geschwindigkeiten den Wert von $v_{p,TS} = 350$ m/s. Bei den restlichen Messungen stellt die Geschwindigkeit von $v_{p,TS} = 350$ m/s eine Obergrenze dar.

Vergleich der Testfelder

Die Ergebnisse der im Testfeld 2 durchgeführten Messfahrten unterscheiden sich von den berechneten Geschwindigkeiten oder der Qualität der Messergebnisse nicht signifikant von den Ergebnissen der Messungen im Testfeld 1.

5.2.2 Gegenüberstellung der dynamischen Verformungsmoduln

Aus den gewichteten Mittelwerten der berechneten Kompressionswellengeschwindigkeit $v_{p,TS}$ wurde der dynamische Verformungsmodul E_{vd,v_p} berechnet und mit dem direkt mit der dynamischen Lastplatte gemessenen Verformungsmoduls E_{vd} verglichen. Die Berechnung von E_{vd,v_p} erfolgte nach Gleichung (2.8) auf Seite 53. Für die Hauptversuche wurden an zwei Positionen Messungen mit der dynamischen Lastplatte durchgeführt (siehe Abb. 3.8). Dementsprechend sind zwei Werte für E_{vd} in der Auswertung vorhanden.

Ergebnisse der Nullmessung

Beim Vergleich der Nullmessungen zeigt sich, dass die berechneten Werte E_{vd,v_p} bei allen Messungen, bis auf die Messfahrten 152-155 (Abb. 5.18), unter den gemessenen Werten der dynamischen Lastplattenversuche E_{vd} liegen.

Ergebnisse der Verdichtungsfahrten mit der Vibrationswalze

Nach der ersten Verdichtungsfahrt ändert sich das Verhältnis zwischen E_{vd,v_p} und E_{vd} . Alle Werte von E_{vd,v_p} sind größer, als jene von E_{vd} . Die einzige Ausnahme ist der Wert von E_{vd,v_p} in Messfahrt 201 (Abb. 5.25).

Abweichungen der Absolutwerte der dynamischen Verformungsmoduln

 E_{vd,v_p} wird durch die Berechnung aus $v_{p,TS}$ im Vergleich zu E_{vd} fast immer überschätzt. Bei zwei Messungen [Messfahrten 109-112 (Abb. 5.14) und Messfahrten 147-151 (Abb. 5.17)] sind in Anbetracht der eingesetzten Messtechnik nur geringe Abweichungen zwischen E_{vd,v_p} und E_{vd} vorhanden. Die Abweichung zwischen E_{vd,v_p} und E_{vd} betragen bei diesen Messfahrten maximal 100%. Ohne Betrachtung der Messfahrt 112 sinkt die maximale Abweichung auf 70%.

Bei sieben Messungen [Messfahrten 118-122 (Abb. 5.15), Messfahrten 123-127 (Abb. 5.16), Messfahrten 163-166 (Abb. 5.20), Messfahrten 169-173 (Abb. 5.21), Messfahrten 174-179 (Abb. 5.22), Messfahrten 181-185 (Abb. 5.23) und Messfahrten 201-205 (Abb. 5.25)] sind mäßige bis starke Abweichungen (bis zu 350%) zwischen E_{vd,v_p} und E_{vd} vorhanden. Bei den restlichen vier Messfahrten kommt es zu sehr starken Abweichungen in Form einer Überschätzung von E_{vd,v_p} von bis zu 600%.

Abb. 5.14: E_{vd} für Messfahrten 109-112

Abb. 5.15: E_{vd} für Messfahrten 118-122

Abb. 5.16: E_{vd} für Messfahrten 123-127

Abb. 5.17: E_{vd} für Messfahrten 147-151

Abb. 5.18: E_{vd} für Messfahrten 152-155

Abb. 5.20: E_{vd} für Messfahrten 163-166

Abb. 5.22: E_{vd} für Messfahrten 174-179

Abb. 5.19: E_{vd} für Messfahrten 156-161

Abb. 5.21: E_{vd} für Messfahrten 169-173

Abb. 5.23: E_{vd} für Messfahrten 181-185

Abb. 5.24: E_{vd} für Messfahrten 186-193

Abb. 5.25: E_{vd} für Messfahrten 201-205

Abb. 5.26: E_{vd} für Messfahrten 214-219

5.2.3 Korrelation der dynamischen Verformungsmoduln

In diesem Abschnitt wird die Korrelation zwischen E_{vd} und $E_{vd,vp}$ dargestellt. Dazu werden die Abszisse und die Ordinate gleich skaliert und für jede Messfahrt in Kombination von den mittels dynamischer Lastplattenversuch ermittelten Werten für E_{vd} (Abszisse) und den mittels Kompressionswellengeschwindigkeitsbestimmung ermittelten Werten für $E_{vd,vp}$ (Ordinate) dargestellt.

Pro Messfahrt wurden zwei dynamische Verformungsmoduln E_{vd} ermittelt und für die Darstellung der Mittelwert der beiden Verformungsmoduln gebildet. Die Bezeichnung der Messpunkte entspricht den Messfahrten. Die Bezeichnung NM bezeichnet die Nullmessung.

Die hellblauen Geraden in den Abbildungen stellen die zwei Regressionsgeraden (gestrichelte Geraden) und die Mittelgerade (durchgezogene Gerade) der Messfahrten (exklusive der Nullmessungen) dar, der Korrelationskoeffizient r ist ebenfalls in den Abbildungen dargestellt. Die Regressionsgeraden wurden basierend auf der RVS 08.03.02:1999 [21] berechnet. Für die Regressionsgeraden wurde einmal E_{vd} in Abhängigkeit von $E_{vd,vp}$ angenommen und einmal wurde $E_{vd,vp}$ in Abhängigkeit von E_{vd} angenommen. Für die Mittelgerade (Winkelhalbierende der Regressionsgeraden) ist auch die Geradengleichung in der Form $y = k \cdot x + d$ angeführt. Der Schnittpunkt der drei hellblauen Gerade entspricht dem Schwerpunkt der Punktwolke der Messwerte. Die genauen mathematischen Grundlagen sind in der RVS 08.03.02:1999 [21] angeführt.

Die orange Gerade in den Abbildungen hat eine Steigung 1 und stellt die zu erwartende Steigung der Messwerte bei perfekter Übereinstimmung dar. Bei einer perfekten Übereinstimmung der gemessen und berechneten Werte würden die hellblauen Geraden mit der orangen zusammenfallen.

Bei einer perfekten Übereinstimmung der gemessen und berechneten Werte würden die hellblauen Geraden mit der orangen übereinstimmen.

Abb. 5.27: Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 109-112

Abb. 5.28: Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 118-122

Messungen mit einem Korrelationskoeffizienten größer 0,7 werden für die gegenständlichen Untersuchungen als Messungen mit guter Korrelation bezeichnet. Bei einem Korrelationskoeffizienten von r = 1 ist ein linearer Zusammenhang zwischen E_{vd} und $E_{vd,vp}$ vorhanden. In der Berechnung des Korrelationskoeffizienten wurden zum Beispiel die Wertebereiche von E_{vd} und $E_{vd,vp}$ nicht berücksichtigt. Die Abweichungen zwischen den Absolutwerten von E_{vd} und $E_{vd,vp}$ wurden bereits in Abschnitt 5.2.2 dargestellt.

Bei zehn Messungen [Messfahrten 109-112 (Abb. 5.27), Messfahrten 118-122 (Abb. 5.28), Messfahrten 147-151 (Abb. 5.30), Messfahrten 156-161 (Abb. 5.32), Messfahrten 163-166 (Abb. 5.33),

Abb. 5.29: Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 123-127

Abb. 5.31: Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 152-155

Abb. 5.30: Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 147-151

Abb. 5.32: Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 156-161

Messfahrten 169-173 (Abb. 5.34), Messfahrten 174-179 (Abb. 5.35), Messfahrten 181-185 (Abb. 5.36), Messfahrten 186-193 (Abb. 5.37) und Messfahrten 214-219 (Abb. 5.39)] ist eine gute Korrelation vorhanden.

Bei den restlichen drei Messungen [Messfahrten 123-127 (Abb. 5.29), Messfahrten 152-155 (Abb. 5.31) und Messfahrten 201-205 (Abb. 5.38)] ist keine Korrelation zwischen E_{vd} und $E_{vd,vp}$ vorhanden.

Abb. 5.33: Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-166

Abb. 5.35: Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 174-179

Abb. 5.37: Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 186-193

Abb. 5.34: Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 169-173

Abb. 5.36: Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 181-185

Abb. 5.38: Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 201-205

Abb. 5.39: Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 214-219

5.2.4 Gegenüberstellung von $v_{p,TS}^2$ und E_{vd}

In den Graphiken in diesem Abschnitt sind die aus den dynamischen Lastplattenversuchen mit dem Leichten Fallgewichtsgerät ermittelten Verformungsmoduln E_{vd} (Abszisse) in Verbindung mit den mittels Kompressionswellengeschwindigkeitsmessung bestimmten quadrierten Kompressionswellengeschwindigkeiten $v_{p,TS}^2$ (Ordinate) dargestellt. Pro Messfahrt wurden zwei dynamische Verformungsmoduln E_{vd} ermittelt und für die Darstellung der Mittelwert der beiden Verformungsmoduln gebildet. Die Bezeichnung der Messpunkte entspricht den Messfahrten. Die Bezeichnung NM bezeichnet die Nullmessung.

Der Zusammenhang zwischen der Kompressionswellengeschwindigkeit $v_{p,TS}$ und dem dynamischen Verformungsmodul E_{vd} [Gleichung (2.8)] beinhaltet die Dichte des Bodens ρ und die Querdehnzahl ν . Da beide im Rahmen dieser Arbeit als konstant angenommen wurden, ergibt sich zwischen der quadrierten Kompressionswellengeschwindigkeit $v_{p,TS}^2$ und dem dynamischen Verformungsmodul E_{vd} ein linearer Zusammenhang.

Die orange Gerade in den Abbildungen stellt den theoretischen Zusammenhang zwischen E_{vd} und $v_{p,TS}$ dar [Gleichung (4.2)]. Die hellblauen Geraden in den Abbildungen stellen die zwei Regressionsgeraden (gestrichelte Geraden) und die Mittelgerade (durchgezogene Gerade) der Messfahrten (exklusive der Nullmessungen) dar, der Korrelationskoeffizient r ist ebenfalls in den Abbildungen dargestellt (siehe Abschnitt 5.2.3). Die Geradengleichungen des theoretischen Zusammenhangs und der Mittelgerade werden in der Form $y = k \cdot x + d$ in den Abbildungen angeführt. Bei einer perfekten Übereinstimmung der gemessen und berechneten Werte würde die hellblauen Geraden mit der orangen zusammenfallen.

Die in diesem Abschnitt abgebildeten Ergebnisse sind eine alternative Darstellung der Ergebnisse des Abschnitts 5.2.3. Es ist dementsprechend aus dem mathematischen Zusammenhang klar zu erklären, dass die Korrelationskoeffizienten der jeweiligen Messungen gleich sind. Für die Abbildungen aus Abschnitt 5.2.3 wurde die gemessene Kompressionswellengeschwindigkeit $v_{p,TS}$ quadriert und mit dem Skalar aus Gleichung (4.2) multipliziert. Dieser Skalar beinhaltet unter anderem die Annahmen der Dichte und der Querdehnungszahl. Die Darstellungen in diesem Abschnitt wurden zusätzlich eingefügt um den alleinigen Zusammenhang zwischen $v_{p,TS}^2$ und dem gemessenen E_{vd} ohne den Einfluss der getroffenen Annahmen abzubilden. Die in Abschnitt 5.2.2 beschriebene Abweichung zwischen E_{vd} und $E_{vd,vp}$ wird hier durch die abweichenden Steigungen

der Korrelationsgeraden (hellblaue Gerade) und des theoretischen Zusammenhangs (orange Gerade) abgebildet.

5.3 Ergebnisse der Audio-Dateien aus dem Impuls der dynamischen Lastplatte

In diesem Abschnitt werden die aus der Impulsanregung berechneten Kompressionswellengeschwindigkeiten $v_{p,LP}$ dargestellt. Bei den Auswertungen des Impulses der dynamischen Lastplatte fehlt die Nullmessung, da die initiale Messung mit der dynamischen Lastplatte nicht aufgenommen wurde. Das erste Messergebnis jeder Messung ist dementsprechend die Messung nach der ersten Überfahrt der Vibrationswalze (Vorwärtsfahrt und Rückwärtsfahrt). Für jedes ausgewertete Frequenzpaket ergibt sich eine berechnete Wellenlaufgeschwindigkeit $v_{p,TS}$. Jede dieser einzelnen Geschwindigkeiten wird mit einem blauen Kreis in den Abbildungen dargestellt. Messwerte, die im Zuge der Auswertung bei der Wertung der Signalqualität mit 0 gewertet wurden, werden in den Ergebnisgraphiken nicht dargestellt. In den Graphiken sind nur die gewichteten Mittelwerte (rote Kreise in den Abbildungen) jeder Messfahrt mit Werten beschriftet. Die Ergebnisse der einzelnen Messfahrten inklusive deren Wertungen sind in Anhang A in Tab. A.19 - A.31 dargestellt.

Für jede Messung wurden in der Anmerkung der Abbildung die Parameter, mit denen die Messfahrten durchgeführt wurden, zusammengefasst.

700

600

500

400

300

200 4101

100

v_{p,LP} [m/s]

Messwerte

Mittelwerte

289.5

Messfahrt [-]

221.5

Testspur der Messung: 1

kleine Vibrationsamplitude

Geschwindigkeit = 4,0 km/h

•209.2

Walzenparameter

Frequenz = 42 Hz

•173.7

Abb. 5.53: $v_{p,LP}$ für Messfahrten 109-112 Abb. 5.54: $v_{p,LP}$ für Messfahrten 118-122

Abb. 5.55: $v_{p,LP}$ für Messfahrten 123-127

Abb. 5.56: $v_{p,LP}$ für Messfahrten 147-151

Abb. 5.57: $v_{p,LP}$ für Messfahrten 152-155

Abb. 5.58: $v_{p,LP}$ für Messfahrten 156-162

Abb. 5.59: $v_{p,LP}$ für Messfahrten 163-166

Abb. 5.60: $v_{p,LP}$ für Messfahrten 169-173

Ergebnisse der Verdichtungsfahrten mit der Vibrationswalze

Die Ergebnisse der Auswertung des Testsignales zeigten über den Verlauf der Messfahrten einen abflachenden Anstieg der berechneten Geschwindigkeiten. Dieser Verlauf ist bei der Auswertung der Impulsanregung nur bei drei Messfahrten [Messfahrten 163-166 (Abb. 5.59), Messfahrten 201-205 (Abb. 5.64) und Messfahrten 214-218 (Abb. 5.65)] vorhanden.

Bei den anderen Messungen ist über den Verlauf der Messfahrten weder ein monoton steigender, noch ein monoton fallender Verlauf der gemessenen Geschwindigkeiten vorhanden.

Streuung der Ergebnisse

Die Messfahrten 152-155 (Abb. 5.57), 156-162 (Abb. 5.58), 163-166 (Abb. 5.59) und 214-218 (Abb. 5.65) weisen gering streuende Ergebnisse auf.

Bei den Messfahrten 109-112 (Abb. 5.53), 123-127 (Abb. 5.55), 147-151 (Abb. 5.56), 169-173 (Abb. 5.60) und 181-185 (Abb. 5.62) sind bei einer oder mehreren Messfahrten mäßige bis stark streuende Ergebnisse vorhanden.

Bei den Messfahrten 118-122 (Abb. 5.54), 174-180 (Abb. 5.61), 186-193 (Abb. 5.63) und 201-205 (Abb. 5.64) sind bei fast allen Messfahrten starke Streuungen vorhanden.

Abb. 5.61: $v_{p,LP}$ für Messfahrten 174-180

Abb. 5.63: $v_{p,LP}$ für Messfahrten 186-193

Messfahrt [-] **Abb. 5.64:** $v_{p,LP}$ für Messfahrten 201-205

203

235

Schlussfolgerung

Die Auswertung der Impulsanregung erfolgte zusätzlich zu der Aufnahme des Testsignals. Aufgrund der Streuungen und, da der Großteil der Ergebnisse keinen Zusammenhang mit den Verdichtungsvorgängen aufweist, werden diese Messergebnisse nicht detaillierter analysiert. Es wird nicht als sinnvoll erachtet, die gewichteten Mittelwerte oder die Einzelwerte für weitere Auswertungsschritte heranzuziehen, da es sich um nicht vertrauenswürdige Ergebnisse handelt. Die möglichen Ursachen dieser starken Streuung werden in Kapitel 6 näher ausgeführt.

700

600

500

400

300

100

200 201.7

0 – 201

v_{p,LP} [m/s]

Abb. 5.62: $v_{p,LP}$ für Messfahrten 181-185

Messwerte

Mittelwerte

*****372.1

204

387.4

205

Testspur der Messung: 3

Geschwindigkeit = 4,0 km/h

215.1

202

Walzenparameter:

Frequenz = 36 Hz

kleine Vibrationsamp

Abb. 5.65: $v_{p,LP}$ für Messfahrten 214-218

Kapitel 6

Interpretation der wesentlichen Ergebnisse

Die in Kapitel 5 dargestellten Ergebnisse bieten eine gute Datengrundlage für die Analyse der eingesetzten Messtechnik und -methode. In diesem Abschnitt werden die Erkenntnisse, die aus den Ergebnissen gewonnen werden konnten, zusammengefasst und interpretiert.

6.1 Ergebnisse der Audio-Dateien aus dem Testsignal

Vergleich der Absolutwerte der dynamischen Verformungsmoduln

Die Ergebnisse des ausgewerteten Testsignales in Form des dynamischen Verformungsmoduls E_{vd,v_p} zeigen in Anbetracht der eingesetzten Messtechnik bei zwei Messungen [Messfahrten 109-112 (Abb. 5.14) und Messfahrten 147-151 (Abb. 5.17)] gute Übereinstimmungen mit den mit der dynamischen Lastplatte gemessenen Werten E_{vd} .

Abgeschen von diesen zwei Messungen kommt es durch die Berechnung aus der Kompressionswellengeschwindigkeit $v_{p,TS}$ zur einer starken Überschätzung des dynamische Verformungsmodul E_{vd,v_n} im Vergleich zu E_{vd} .

Korrelation der dynamischen Verformungsmoduln

Bei zehn der dreizehn Messungen [Messfahrten 109-112 (Abb. 5.27), Messfahrten 118-122 (Abb. 5.28), Messfahrten 147-151 (Abb. 5.30), Messfahrten 156-161 (Abb. 5.32), Messfahrten 163-166 (Abb. 5.33), Messfahrten 169-173 (Abb. 5.34), Messfahrten 174-179 (Abb. 5.35), Messfahrten 181-185 (Abb. 5.36), Messfahrten 186-193 (Abb. 5.37) und Messfahrten 214-219 (Abb. 5.35)] ist eine gute Korrelation (Korrelationskoeffizient r>0,7) zwischen E_{vd} und $v_{p,TS}$ bzw. E_{vd,v_p} vorhanden.

Verlauf der gemessenen Geschwindigkeiten

Bis auf einzelne Ausnahmen [Messfahrt 124 (Abb. 5.3), Messfahrt 183 (Abb. 5.10) und Messfahrt 187 (Abb. 5.11)] nehmen die gemessenen Geschwindigkeiten über den Verlauf der Verdichtungsfahrten mit einer abflachenden Steigung zu. Diese Steigung der gemessenen Geschwindigkeiten bei einem Abflachen der Steigung wird als Zunahme der Verdichtung und Steifigkeit interpretiert und ist konsistent mit der durchgeführten Verdichtung. Das Abflachen der Zunahme wird als Erreichen einer maximal möglichen Verdichtung interpretiert (sogenannte *Endverdichtung*).

Bei der letzten Messfahrt von fünf Messungen [Messfahrten 156-161 (Abb. 5.6), Messfahrten 163-166 (Abb. 5.7), Messfahrten 174-179 (Abb. 5.9), Messfahrten 181-185 (Abb. 5.10) und Messfahrten 201-205 (Abb. 5.12)] sinkt die letzte gemessene Kompressionswellengeschwindigkeit wieder ab. Dies kann mit einer Auflockerung der Bodens oder einer Kornzertrümmerung erklärt werden. In Abbildung 6.1 sind die Messfahrten 174-179 abgebildet. Bei dieser Messung ist das Abflachen der Steigung und die eventuelle Auflockerung bzw. Kornzertrümmerung gut erkennbar. Es ist anzumerken, dass bei der Durchführung der Hauptversuche keine augenscheinliche Kornzertrümmerung beobachtet wurde, jedoch auch keine explizite Untersuchung des Bodens nach abgeschlossenen Verdichtungsmaßnahmen durchgeführt wurde.

Abb. 6.1: E_{vd} für Messfahrten 174-179

6.1.1 Schubmodulberechnug und Vergleich mit der Literatur

Um zu überprüfen, ob sich die gemessenen Wellenlaufgeschwindigkeiten $v_{p,TS}$ in einem für den angetroffenen Boden realistischen Bereich befinden, werden diese mit Werten aus der Literatur verglichen.

Studer et al. [23] fassen zahlreiche Untersuchungen zusammen und führen Berechnungsgleichungen für diverse Bodenarten an. Bei den im Rahmen der Hauptversuche angetroffenen Böden handelt es sich um sandige Kiese bzw. Sande. Es wird deshalb der Zusammenhang zwischen der Bodenart, der Überlagerungsspannung σ_m und dem Schubmodul *G* (Abb. 6.2) für Kiese und Sande herangezogen. Die Berechnungsgleichung für den Schubmodul ist von dem aus der Abbildung 6.2 abzulesenden Kennwert K_2 (Proportionalitätsfaktor für den Schubmodul von Böden) abhängig. K_2 ist für praktische Anwendungen nur von der Porenziffer *e* und der Schubdehnung γ abhängig [23].

Im Zuge der durchgeführten Aufnahmen der Wellenlaufgeschwindigkeit $v_{p,TS}$ treten nur vernachlässigbar kleine Schubdehnungen γ auf. Es wird deshalb der geringste Wert aus Abbildung 6.2 für die Schubdehnung $\gamma = 10^{-4}\%$ angenommen.

Berechnung der Vergleichswerte

Die Messtechnik war für die Versuche in einer Tiefe von ca. $h_{\ddot{u}} = 20$ cm vergraben. Basierend auf der in Kapitel 4 getroffenen Annahme für die Dichte des Bodens ($\rho = 1800 \text{ kg/m}^3$) ergibt sich für die Überlagerungsspannung σ_m :

$$\sigma_m = \rho \cdot h_{\ddot{u}} = 18 \cdot 0, 2 = 3, 6 \text{kN/m}^2.$$
(6.1)

Studer et al. [23, S. 67] zufolge befinden

"sich die K_2 -Werte im Bereich von 100 bis 140; bei ausgesprochen dichten, gut abgestuften Kies-Sanden sind aber auch Werte bis etwa 200 möglich."

Abb. 6.2: Typische Schubmoduln für Kies-Sande [23]

Basierend auf dieser Annahme werden drei Werte für die Schubmoduln berechnet. Es ergeben sich damit die folgenden Schubmoduln:

$$G_{K_2 \approx 100} = 220 \cdot K_2 \cdot \sigma_m^{1/2} = 220 \cdot 100 \cdot (3,6)^{1/2} = 41.742 \text{ kN/m}^2 \approx 40 \text{ MN/m}^2$$
(6.2)

$$G_{K_2 \approx 140} = 220 \cdot K_2 \cdot \sigma_m^{1/2} = 220 \cdot 140 \cdot (3,6)^{1/2} = 58.438 \text{ kN/m}^2 \approx 60 \text{ MN/m}^2$$
(6.3)

$$G_{K_2 \approx 200} = 220 \cdot K_2 \cdot \sigma_m^{1/2} = 220 \cdot 200 \cdot (3,6)^{1/2} = 83.484 \text{kN/m}^2 \approx 85 \text{ MN/m}^2$$
(6.4)

Berechnung des Schubmoduls aus dem dynamischen Verformungsmodul

Die in Tabelle 2.2 (S.26) angegebenen Zusammenhänge werden herangezogen um aus E_{vd,v_p} den Schubmodul G_d zu berechnen. Es gilt der Zusammenhang:

$$E_{vd} = G_d \cdot \frac{6}{\pi \cdot (1-\nu)} \tag{6.5}$$

Die Gleichung wird für die Berechnung von G_d umgeformt:

$$G_d = E_{vd} \cdot \frac{\pi \cdot (1-\nu)}{6} \tag{6.6}$$

Die aus der Kompressionswellengeschwindigkeit $v_{p,TS}$ berechneten dynamischen Verformungsmoduln E_{vd,v_p} befinden sich für die Verdichtungsfahrten (exklusive Nullmessung) in einem Bereich von 34,5 MN/m² - 312,7 MN/m² (Messfahrt 201 und 193). Es ergeben sich dementsprechend folgende Grenzen für den Schubmodul G_d :

$$G_d = 34, 5 \cdot \frac{\pi \cdot (1-\nu)}{6} = 12, 6 \text{ MN/m}^2$$
 (6.7)

$$G_d = 312, 7 \cdot \frac{\pi \cdot (1 - \nu)}{6} = 114, 6 \text{ MN/m}^2$$
 (6.8)

Vergleich der Literaturwerte und der Ergebnisse des Testsignals

Aus dem Vergleich der beiden Wertebereiche zeigt sich, dass die Ergebnisse der berechneten Schubmoduln sich in einem für diesen Boden zu erwartenden Bereich befinden. Die im Zuge der Versuche ermittelten Schubmoduln decken aber auch einen größeren Bereich, als durch die Literaturwerte anzunehmen wäre, ab. Dies ist damit zu erklären, dass der oben angegebene Bereich für E_{vd,v_p} alle Messungen der Hauptversuche enthält, inklusive der Messungen im sehr lockeren, aber auch im hochverdichteten Boden.

Die Gesamtheit aller aus den dynamischen Verformungsmoduln E_{vd,v_p} berechneten Schubmoduln ist in Abbildung 6.3 in Form eines Histogramms dargestellt. Als Histogrammintervallbreite wurde 5 gewählt. In der Abbildung 6.4 werden nur die letzten zwei Messungen jedes Messdurchganges herangezogen. Bei diesen Verdichtungsfahrten ist zu erwarten, dass bereits eine hohe Verdichtung erreicht worden ist.

Abb. 6.3: Schubmoduln G_d berechnet aus E_{vd,v_p} für alle Messfahrten, exklusive Nullmessungen

Die aus der Literatur berechneten Werte für den Schubmodul G_d können nur als grobe Annäherung gesehen werden. Es ist dennoch zu erkennen, dass die gemessenen Geschwindigkeiten sich zumindest in einem realistischen Bereich befinden.

6.2 Ergebnisse der Audio-Dateien aus dem Impuls der dynamischen Lastplatte

Bei den Ergebnissen aus dem Impuls der dynamischen Lastplatte (Impulsanregung) ist, aller Wahrscheinlichkeit nach aufgrund der komplexen Wellenausbreitung und der damit verbundenen starken Streuung der Ergebnisse, kein eindeutiger Zusammenhang zwischen den berechneten und gemessenen Werten zu erkennen. In Abschnitt 6.4.3 wird genauer auf diese Problematik eingegangen. Die Aussagekraft der gemessenen Werte ist daher als gering einzuschätzen.

Ergebnisse der jeweils letzten zwei Messfahrten eines Messdurchganges

Abb. 6.4: Schubmoduln G_d berechnet aus E_{vd,v_p} für die jeweils letzten zwei Verdichtungsfahrten

6.3 Frequenzabhängigkeit der Kompressionswellengeschwindigkeiten

Die aus den der Kompressionswellengeschwindigkeit $v_{p,TS}$ berechneten Verformungsmoduln E_{vd,v_p} waren bei allen Messungen signifikant höher, als die mit der dynamischen Lastplatte ermittelten. Deshalb wurde untersucht, ob Frequenzen vorhanden sind, die Ergebnisse liefern, die näher an den mit konventionellen Methoden gemessenen Bodenkennwerten liegen. Für die Messfahrten 152-155 wurde eine detaillierte Untersuchung des Zusammenhangs der gemessenen Kompressionswellengeschwindigkeiten und den Frequenzen, die bei den Messwerten auftreten, durchgeführt.

In Abbildung 6.5 sind die gemessenen Kompressionswellengeschwindigkeiten für die Messfahrten 152-155 erneut dargestellt. Zusätzlich zu den gewichteten Mittelwerten wurden bei dieser Abbildung die gemessenen Kompressionswellengeschwindigkeiten, inklusive der Frequenzen für alle Messwerte ergänzt.

Anhand eines Messwertes wird die Abbildung näher erläutert. In Messfahrt 154 wurde mit der Frequenz 1015,9 Hz im Testsignal in der Auswertung die Kompressionswellengeschwindigkeit 556,9 m/s berechnet. Der Messwert ist in der Abbildung und in der Auflistung der Ergebnisse blau umrahmt. Die gemessen Kompressionswellengeschwindigkeiten sind der Größe nach absteigend geordnet.

Es zeigt sich, dass sich kein Zusammenhang zwischen der Frequenz und der Kompressionswellengeschwindigkeit ableiten lässt. Höhere Frequenzen bedingen nicht höhere Kompressionswellengeschwindigkeiten oder umgekehrt. Es ist kein Frequenzbereich vorhanden, der Ergebnisse liefert, die weniger von den mit konventionellen Methoden gemessenen Bodenkennwerten abweichen. Dementsprechend kann kein signifikanter Zusammenhang zwischen der Frequenz und der Wellenausbreitungsgeschwindigkeit abgeleitet werden.

Welche Frequenzen für den Einsatz im Testsignal basierend auf der Erkennbarkeit geeignet sind, wird in Kapitel 7 genauer untersucht.

Abb. 6.5: Messwerte für $v_{p,TS}$, inklusive der jeweiligen Frequenz (Messfahrten 152-155)

6.4 Messungenauigkeiten, Störungen und Fehlerquellen

Die durchgeführten Versuche bieten eine gute Grundlage, um die Messmethode zu evaluieren und bekannte und vermutete Fehlerquellen zu analysieren.

6.4.1 Messungenauigkeiten

Die eingesetzten Körperschalllautsprecher und -mikrophone sind kostengünstige Geräte und besitzen dementsprechend nicht die maximal erreichbare Qualität, wie sie mit spezialisierten Geräten möglich wäre. Diese Ungenauigkeit wurde jedoch explizit in Kauf genommen, da diese Arbeit untersucht, ob auch bei wirtschaftlich vertretbarem Mitteleinsatz signifikante Ergebnisse gewonnen werden können. Im übrigen Versuchsaufbau sind weitere Messungenauigkeiten vorhanden, auf die im Folgenden näher eingegangen wird. Empfehlungen zu deren Minimierung werden in Kapitel 7 erläutert.

Bestimmung des Abstandes

Die Köperschallmikrophone und -lautsprecher wurden vor allen Versuchsdurchgängen im gleichen Abstand eingebaut. Durch den Einbau in sehr lockerem Boden, die Überfahrten mit der Walze und die damit verbundene Zusammendrückung des Bodens und die Verschiebung des Bodens durch die Bugwelle der Walze veränderten sich die Abstände zwischen den Mikrophonen und dem Lautsprecher. Es wird angenommen, dass die größte Veränderung nach der ersten Überfahrt stattfindet. Die mit dem Leichten Fallgewichtsgerät gemessenen Werte des dynamischen Verformungsmoduls E_{vd} steigen nach der ersten Überfahrt am stärksten an. Diese Ergebnisse unterstützen die vorher angeführte These. Die Abstandsbestimmung wurde nur einmalig nach Abschluss der Überfahrten durchgeführt. Es ist jedoch anzunehmen, dass auch zwischen den Messfahrten eine Verschiebung stattfand.

Die Bestimmung des Abstandes wurde durch das vorsichtige Ausgraben von Lautsprecher und Mikrophonen und anschließendem Messen mit einem Zollstock durchgeführt. Die gemessenen Abstände wurden auf ganze Zentimeter gerundet. Durch den linearen Zusammenhang zwischen Geschwindigkeit und Abstand bedeutet jede Abweichung in der Messung des Abstandes, eine proportionale Abweichung in der Kompressionswellengeschwindigkeit. Durch den quadratischen Zusammenhang zwischen dem dynamischen Verformungsmodul E_{vd,v_p} und der Kompressionswellengeschwindigkeit v_p vergrößert sich ein Fehler in der weiteren Berechnung. In den Gleichungen (6.9) - (6.14) wird anhand eines Beispiels (19 cm statt 18 cm) die Abweichung von v_p und E_{vd,v_p} berechnet. Es werden dafür die Gleichungen (4.1) und (4.2) herangezogen.

$$v_{p,19cm} = \frac{19}{t_R - t_L} \tag{6.9}$$

$$v_{p,18cm} = \frac{18}{t_R - t_L} \tag{6.10}$$

$$\frac{v_{p,19cm}}{v_{p,18cm}} = \frac{\frac{19}{t_R - t_L}}{\frac{18}{t_R - t_L}} = \frac{19}{18} = 1,056$$
(6.11)

$$E_{vd,v_{p,19cm}} = \frac{3 \cdot (1 - 2 \cdot 0, 3)}{\pi \cdot (1 - 0, 3)^2} \cdot \varrho \cdot \frac{19^2}{t_R - t_L} = \frac{3 \cdot (1 - 2 \cdot 0, 3)}{\pi \cdot (1 - 0, 3)^2} \cdot \varrho \cdot \frac{361}{t_R - t_L}$$
(6.12)

$$E_{vd,v_{p,18cm}} = \frac{3 \cdot (1 - 2 \cdot 0, 3)}{\pi \cdot (1 - 0, 3)^2} \cdot \varrho \cdot \frac{18^2}{t_R - t_L} = \frac{3 \cdot (1 - 2 \cdot 0, 3)}{\pi \cdot (1 - 0, 3)^2} \cdot \varrho \cdot \frac{324}{t_R - t_L}$$
(6.13)

$$\frac{E_{vd,v_{p,19cm}}}{E_{vd,v_{p,18cm}}} = \frac{\frac{3 \cdot (1-2 \cdot 0,3)}{\pi \cdot (1-0,3)^2} \cdot \varrho}{\frac{3 \cdot (1-2 \cdot 0,3)}{\pi \cdot (1-0,3)^2} \cdot \varrho} \cdot \frac{\frac{361}{t_R - t_L}}{\frac{324}{t_R - t_L}} = \frac{361}{324} = 1,114$$
(6.14)

Eine Abweichung in der Bestimmung des Abstandes von einem Zentimeter (19 cm statt 18 cm), bedeutet in der Berechnung der Kompressionswellengeschwindigkeit v_p eine Abweichung von 5,6% (6.11), bei der Berechnung des dynamischen Verformungsmoduls E_{vd,v_p} eine Abweichung von 11,4% (6.14).

Der Ausbau der Messtechnik wurde mit aller gebotenen Vorsicht durchgeführt, um beim Ausbau keine Verschiebung herbeizuführen. Es kann jedoch nicht ausgeschlossen werden, dass es auch durch den Ausbau zu einer geringfügigen Verfälschung des Abstandes kam.

Bestimmung des Eintreffens des Testsignals und Wertung der Signalqualität

Die Bestimmung der Zeitpunkte des Eintreffens des Testsignals wurde, wie in Kapitel 4 beschrieben, händisch durchgeführt. Bei diesem Arbeitsschritt sind zwei Ungenauigkeiten vorhanden: erstens die Festlegung des Punktes an dem das Signal eintrifft und zweitens die Wertung der Signalqualität.

Bestimmung des Eintreffzeitpunktes

In Abbildung 6.6 ist das siebte ausgewertete Frequenzpaket der Messfahrt 158 dargestellt. Die im Zuge der Auswertung bestimmten Eintreffzeitpunkte des Testsignales sind mit schwarzen Kreisen markiert.

In der linken Tonspur (rot) wurde der Zeitpunkt gewählt, bei dem in allen drei Teilstücken eine eindeutige Steigung erkennbar ist. In der rechten Tonspur (blau) wurde der Eintreffzeitpunkt ebenfalls so gewählt, dass in allen drei Teilstücken ein Anstieg vorhanden ist.

Eine andere legitime Möglichkeit wäre gewesen, den frühesten Zeitpunkt zu wählen, bei dem in einem der drei Teilstücke eine signifikante Steigung vorhanden ist. Dieser Zeitpunkt (blauer Kreis) und der für die Auswertung gewählte Eintreffzeitpunkt (blaue Linie) sind zum Vergleich in der rechten Tonspur gewählt.

Nach den markierten Eintreffzeitpunkten ist in beiden Tonspuren eine Steigung vorhanden. Für die Auswertung wurde angenommen, dass diese Teil des eintreffenden Testsignals ist. Betrachtet man im Vergleich die Hintergrundschwingung vor den Eintreffzeitpunkten, besteht auch die Möglichkeit, dass die erste Steigung nach den markierten Eintreffzeitpunkten noch Teil der Hintergrundschwingung ist und der Eintreffzeitpunkt des Testsignals beim Hochpunkt danach liegt. Dieser Zeitpunkt wurde für die rechte Tonspur mit der grünen Linie markiert.

Je nachdem wie die Eintreffzeitpunkte markiert werden, ergeben sich, wenn auch nur gering, abweichende Wellenlaufzeiten und in weiterer Folge Wellenlaufgeschwindigkeiten. Dieses Beispiel soll zeigen, dass nicht immer eindeutig bestimmt werden kann, wann das Testsignal an den Mikrophonen eintrifft und damit eine Messungenauigkeit einhergeht.

Abb. 6.6: Siebtes ausgewertetes Frequenzpaket (806,3 Hz Messfahrt 158)

Wertung der Signalqualität

Die Wertung der Signalqualität wurde nicht nach definierten Kriterien durchgeführt. Die Wertung ist dementsprechend subjektiv. Nach jeder Überfahrt wurden mehrere Frequenzen ausgewertet. Nach Auswertung der einzelnen Frequenzen wurde mit der Wertung der gewichtete Mittelwert \overline{x} berechnet. Es ist möglich, dass bei ähnlicher Erkennbarkeit von zwei verschiedenen Zeitpunkten, nicht immer die gleiche Wertung der Signalqualität vergeben wurde. Die so entstandenen Messungenauigkeit ist nicht in Absolutwerten quantifiziertbar, jedoch wird sie aufgrund der Anzahl der Messwerte als nicht relevant betrachtet.

6.4.2 Störungen in den Aufnahmen des Testsignals

Das Testsignal ist, wie in Kapitel 3 beschrieben, in regelmäßigen Abschnitten mit definierter Wiedergabe- und Pausendauer aufgebaut. Im Zuge der Auswertung wurde, wie in Kapitel 4 Abb. 4.2 und 4.3 beschrieben, die dreimal gesendete Frequenz basierend auf der Wiedergabedauer des Testsignales überlagert.

Im Zuge der Auswertung wurde jedoch festgestellt, dass zwischen ausgesendetem und aufgenommenem Testsignal im Bezug auf die Sende- und Pausenzeiten eine Diskrepanz vorhanden ist. Anhand der Aufnahme der Messfahrt 165 wird diese Diskrepanz erläutert.

In Abb. 3.3 ist das erste Frequenzpaket des ausgesendeten Testsignales abgebildet. Jede Frequenz wird jeweils dreimal für 0, 20 s wiedergegeben, zwischen den einzelnen Frequenzen wird für 0, 05 s pausiert. Der Zeitraum zwischen dem Beginn des ersten und zweiten Sendens einer Frequenz beträgt dementsprechend 0, 25 s.

Überlagerung basierend auf den Sende- und Pausenzeiten des ausgesendeten Testsignals

In Abbildung 6.7 ist die Überlagerung der linken Tonspur für die Frequenz 1.280 Hz der Aufnahme der Messfahrt 165 dargestellt. Überlagerung bezeichnet hier einen Plot der drei Frequenzsignale eines Frequenzpaketes mit der gleichen Beginnzeit. Diese Überlagerung wurde basierend auf den vorher beschriebenen Sende- und Pausenzeiten durchgeführt. Bei einem störungsfreien Senden und einer fehlerfreien Aufnahme des Testsignales sollten die Eintreffzeitpunkte der drei einzelnen Frequenzen übereinstimmen. Es ist ersichtlich, dass dies nicht der Fall ist. Dieser Versatz wurde bei allen Aufzeichnungen und in beiden Tonspuren beobachtet und beträgt 0,0027 s.

Abb. 6.7: Überlagerung der linken Tonspur, Frequenz 1.280 Hz (Messfahrt 165)

Überarbeitete Überlagerung basierend auf den Sende- und Pausenzeiten des ausgesendeten Testsignales und dem bestimmten Versatz

Dieser Versatz wurde für die Auswertung in den FAMOS-Code integriert. Für die Überlagerung der einzelnen Frequenzen wurde zusätzlich zu der Dauer von 0, 25 s aus dem ausgesendeten Testsignal, der gemessene Versatz von 0,0027 s berücksichtigt. Die für die Auswertung herangezogene Dauer zwischen dem ersten und und zweiten Senden einer Frequenz beträgt dementsprechend 0,2527 s. In Abbildung 6.7 ist die in Abbildung 6.8 dargestellte Stelle des aufgenommenen Testsignales mit dem angepassten FAMOS-Code dargestellt. Die Eintreffzeitpunkte der drei Frequenzen des Frequenzpaketes stimmen nun überein.

Abb. 6.8: Überlagerung der linken Tonspur, Frequenz 1.280 Hz angepasster FAMOS-Code (Messfahrt 165)

Ursache des festgestellten Versatzes

Die genaue Quelle der Abweichung konnte nicht geklärt werden, jedoch liegt die Vermutung nahe, dass sie durch die vielen verschiedenen Übertragungsarten entstand. Für die in Kapitel 5 dargestellten Ergebnisse wurde der Versatz berücksichtigt und die Auswertung erfolgt mit dem angepassten FAMOS-Code.

Da die Quelle der Abweichung nicht geklärt ist, kann auch nicht ausgeschlossen werden, dass diese im Zuge der Aufnahme (Mikrophon, Kabel, Aufnahmegerät) entstanden ist. Da bei der Aufnahme des Impulses der dynamischen Lastplatte kein Testsignal zum Vergleich vorhanden ist und die Abstände zwischen den einzelnen Impulsen nicht dokumentiert wurden, kann nicht ausgeschlossen werden, dass auch hier diese Abweichung vorhanden ist.

6.4.3 Signalqualität des Signales der dynamischen Lastplatte

Wie in Abschnitt 5.3 beschrieben, weisen die Ergebnisse aus dem Signal der dynamischen Lastplatte eine starke Streuung auf. In diesem Abschnitt werden Möglichkeiten für die mangelnde Qualität der Ergebnisse beschrieben.

Abstände im Versuchsaufbau und Wellenreflexion- bzw. refraktion

Der Abstand der beiden Mikrophone betrug im Einbauzustand 20 cm, zwischen dem Lautsprecher und dem näheren Mikrophon 30 cm (Abb. 3.1). In beiden Testfeldern (Abb. 3.8) betrug der Abstand zwischen dem Messpunkt der Wellenlaufgeschwindigkeit und der dynamischen Lastplatte ca. 5 m. Die Mächtigkeit des aufgelockerten Bodens beträgt etwa 40 cm. Durch den vergleichsweise großen Abstand zwischen dem Messpunkt der dynamischen Lastplatte und dem Messpunkt der Wellenlaufgeschwindigkeit besteht eine große Wahrscheinlichkeit, dass es zu Reflexionen und Refraktionen an der Schichtgrenze unterhalb des aufgelockerten Bodens oder an Objekten im Boden gekommen ist. Dadurch kann nicht mehr sichergestellt werden, dass durch die Mikrophone eine reine Kompressionswelle aufgenommen wurde.

Vereinfachung der geometrischen Randbedingungen

Die Messungen mit der dynamischen Lastplatte wurden mit geringen Abweichungen in der Mitte der Testfahrbahn durchgeführt. Die Messung der Wellenlaufgeschwindigkeit wurde aufgrund der vorhandenen Kabellänge näher zum Rand (ca. 50 - 70 cm) der Fahrbahn durchgeführt. Dadurch verringert sich der für die Berechnung relevante Abstand, wie in Abbildung 6.9 dargestellt. Da diese Abweichungen sehr gering sind, wurden sie für die Auswertung des Impulses der dynamischen Lastplatte vernachlässigt.

Abb. 6.9: Abweichung des Abstandes zwischen den Mikrophonen

6.4.4 Der dynamische Lastplattenversuch als Vergleichsgröße

Die aus der Kompressionswellengeschwindigkeit bestimmten Werte wurden im Rahmen dieser Arbeit mit den Ergebnissen der dynamischen Lastplattenversuche verglichen. Der mit den dynamischen Lastplattenversuchen bestimmte Messwert ist jedoch auch gewissen Messungenauigkeiten unterworfen. Die Messung mit der dynamischen Lastplatte ist, wie auch die Messung der Kompressionswellengeschwindigkeit, eine punktuelle Messung. Die jeweiligen Messpunkte waren bei den durchgeführten Hauptversuchen in einem Abstand von 5 m zueinander. Durch diesen Abstand kann es zu Unterschieden zwischen den gemessenen bzw. berechneten Werten für E_{vd} bzw. $E_{vd,TS}$ kommen. Wie aus Abbildung 6.2 ersichtlich und in Studer et al. [23] erläutert, nimmt die Steifigkeit von Böden mit zunehmender Schubdehnung ab. Bei der Messung mit dem Testsignal kommt es, da nur akustische Wellen ausgesendet werden, zu vernachlässigbar geringen Schubdehnungen. Bei der Messung mit der dynamischen Lastplatte kommt es unterhalb der Lastplatte zu Verformungen des Bodens im Millimeterbereich. Die damit verbundenen Schubdehnungen sind also nicht vernachlässigbar klein. Es wurden also im Zuge dieser Arbeit Messwerte verglichen, in deren Ermittelung unterschiedliche Schubdehnungen vorhanden sind. Der mit den dynamischen Lastplatten bestimmte Wert für E_{vd} stellt damit einen Basis- bzw. Vergleichswert dar, ist jedoch nicht als Absolutwert, der mit dem entwickelten Testverfahren zu erreichen ist, anzusehen.

6.4.5 Überblick über bekannte und mögliche Störquellen

Schall- und Vibrationsquellen im Testfeld

Im Testfeld sind neben den dynamischen Lastplatten und den Messeinrichtungen für die Kompressionswellengeschwindigkeit noch weitere Schall- und Vibrationsquellen vorhanden. Die stärkste Quelle ist die eingesetzte Vibrationswalze selbst. Die in der Kiesgrube fahrenden Baufahrzeuge und PKWs sind weitere. Es wurde bei der Messung darauf geachtet, dass das Senden des Testsignales erst bei Stillstand der Walze begonnen wurde, jedoch ist nicht auszuschließen, dass es zu Verfälschungen durch Starten, Stoppen oder Versetzen der Walze gekommen ist.

Durch den örtlichen Abstand zwischen den zwei Messpunkten der dynamischen Lastplatten bedingt, bewegten sich zwischen den Messungen Personen auf der Testfahrbahn und dementsprechend auch in der Nähe der eingebauten Messtechnik. Auch hier wurde darauf geachtet, dass die Messtechnik nicht gestört wird, jedoch ist auch hier nicht auszuschließen, dass es durch Personen zu Verfälschungen gekommen ist.

Einbau der Messtechnik in den Boden

Durch das Ausheben der Grube, in die die Messtechnik eingebaut wird (Abb. 3.9a), und die anschließende Wiederverfüllung mit lockerem Boden können drei verschiedene Einbauzustände entstehen. Im Idealfall wird die Grube mit der gleichen Menge an Material wiederverfüllt und die Bodenverhältnisse um die Messtechnik sind nahezu ident mit dem umgebenden Boden. Wird entweder zu wenig oder zu viel Material in die Grube gefüllt, entsteht entweder eine Senke oder eine Erhöhung. Die drei verschiedenen Einbauzustände sind in Abbildung 6.10 schematisch dargestellt.

Abb. 6.10: Mögliche Einbauzustände, modifiziert nach Kopf et al. [14]

Im Falle des ebenen Einbaus spiegeln die gemessenen Werte die Bodenkennwerte gut wider. Beim Einbau von zu viel Material (Abb. 6.10 *Erhöhung*) entsteht durch die Walzenüberfahrten in der Grube eine stärkere Verdichtung, als im umliegenden Boden. Diese stärkere Verdichtung führt zu einer höheren Steifigkeit und einer damit verbundenen höheren gemessenen Geschwindigkeit. Es wird vermutet, dass im Zuge der durchgeführten Versuche oft ein Einbau mit einer Erhöhung zustande gekommen ist.

Bei einem Einbau von zu wenig Material (Abb. 6.10 *Senke*) wird der Boden im Bereich der Messtechnik geringer verdichtet als der umliegende und die gemessenen Werte unterschreiten die Verdichtung im restlichen Testfeld. Diese Überlegungen sind auch in Abbildung 6.11 schematisch dargestellt.

In den Abbildungen in Kapitel 5, Abschnitt 5.2.2, sind diese divergierenden Verläufe der berechneten dynamischen Verformungsmoduln E_{vd,v_p} und der gemessenen dynamischen Verformungsmoduln E_{vd} ersichtlich. Exemplarisch für diese Abbildungen ist die Abbildung 6.12 um die Verläufe der Verformungsmoduln erweitert. Der grüne Verlauf beschreibt die Entwicklung des dynamischen Verformungsmoduls im Bereich des Messpunktes der dynamischen Lastplattenversuche. Dieser Bereich ist als ungestört anzusehen. Der blaue Verlauf beschreibt die Entwicklung des dynamischen Verformungsmoduls im Bereich der Messtechnik. In diesem Bereich wurde der Einbau mit großer Wahrscheinlichkeit mit Erhöhung durchgeführt.

Die Vermutung, dass es im Bereich der Messtechnik zu einer höherer Verdichtung kommt wird durch die Verläufe der Verfomungsmoduln unterstützt. Der Verlauf des gemessenen Verformungsmodul E_{vd} flacht bereits nach der Nullmessung ab, es kommt bei den weiteren Verdichtungsfahrten nur zu geringen Steigerungen des Verformungsmoduls. Der berechnete Verformungsmoduls E_{vd,v_p} steigt über alle Verdichtungsfahrten an. Es kommt also auch nach mehreren Verdichtungsfahrten immer noch zu einer weiteren Verdichtung.

In Kapitel 7 werden Empfehlungen ausgeführt, wie der Fehler im Zuge des Einbaus der Messtechnik minimiert werden kann.

Abb. 6.11: Prinzipabbildung der Auswirkung des Einbauzustandes auf die Wellenlaufgeschwindigkeit, modifiziert nach Kopf et al. [14]

Abb. 6.12: E_{vd} (Messfahrten 152-155)

Kapitel 7

Empfehlungen für weitere Untersuchungen

Basierend auf den gewonnenen Erkenntnissen aus den durchgeführten Messungen werden in diesem Kapitel Empfehlungen für zukünftige Untersuchungen zur Weiterentwicklung des Versuchsaufbaus gegeben.

7.1 Testsignal

7.1.1 Wiedergabepausen zwischen verschiedenen Frequenzpaketen

Für das im Zuge dieser Versuche verwendete Testsignal wurden für die Sendepausen innerhalb einer Frequenz und zwischen verschiedenen Frequenzpaketen die gleiche Dauer gewählt. Für zukünftige Testsignale wird empfohlen, zwischen den verschiedenen Frequenzpaketen eine andere (größere) Sendepause zu wählen. Dadurch können die einzelnen Frequenzpakete leichter unterschieden werden.

7.1.2 Frequenzbereich für das ausgesendete Testsignal

Das Testsignal besteht aus den in Tab. 3.1 angegebenen Frequenzpaketen. Diese befinden sich in einem Bereich von 20 Hz bis 10.240 Hz. Im Zuge der Auswertung und der Wertung der Signalqualität wurde festgestellt, dass nicht alle Frequenzen in den Aufnahmen erkennbar sind.

Anhand von vier aufgenommenen Testsignalen wurde eine rein auf die Signalqualität bezogene Auswertung ohne Glättung durchgeführt. Es wurde darauf geachtet, dass bei den vier Testsignalen Aufnahmen aller Messtage und beider Testfelder vorhanden waren.

Die Auswertung erfolgte folgendermaßen: Die Beginnzeiten der auszuwertenden Frequenzpakete wurden einmal vor der ersten Frequenz (20 Hz) gesetzt und einmal nach 14 gesendeten Frequenzpaketen (508 Hz). Die Bewertung der Signalqualität erfolgte nur im Bereich von 0-2 und es wurde kein besonderes Augenmerk auf die genaue Bestimmung des Eintreffzeitpunkts gelegt. Die Wertung 0 bezeichnet, dass in keiner Tonspur ein Signal erkennbar ist, bei Wertung 1 ist bei einer der beiden Tonspuren ein Signal zu erkennen. War bei beiden Tonspuren ein Signal zu erkennen, wurde die Wertung 2 vergeben. In Tabelle 7.1 sind die Ergebnisse dieser Auswertung dargestellt.

Es zeigt sich, dass die Frequenzpakete 1-5 (20 - 50, 4 Hz) und 24-28 (4.063, 7 - 10.240 Hz)bei keinem der Testsignale für eine Auswertung herangezogen werden können. Im Bereich von 403, 2 - 640, 0 Hz ist in allen Signalen eine Auswertung möglich, da beide Signale erkennbar sind. Diese Ergebnisse decken sich mit den bereits im Zuge der Vorversuche ermittelten Ergebnissen.

Es ist möglich, für zukünftige Versuche ein reduziertes Testsignal zu verwenden, bei dem die nicht erkennbaren Frequenzen nicht verwendet werden. Jedoch kann nicht ausgeschlossen werden, dass bei anderen Böden dieser reduzierte Frequenzbereich ausreicht. Die durch den Einsatz eines reduzierten Testsignales verkürzte Messzeit einer Messung ist gering bis nicht vorhanden. Deshalb wird empfohlen, weiterhin den gewählten Frequenzbereich zu verwenden. Es sollte für zukünftige

		Mess	fahrt		Minimum	Maximum
Frequenz [Hz]	121	165	172	218		
20,0	0	0	0	0	0	0
25,2	0	0	0	0	0	0
31,7	0	0	0	0	0	0
40,0	0	0	0	0	0	0
50,4	0	1	1	0	0	1
63,5	0	2	1	2	0	2
80,0	1	2	2	2	1	2
100,8	1	2	2	2	1	2
127,0	1	2	2	2	1	2
160,0	1	2	2	2	1	2
201,6	0	2	2	2	0	2
254,0	2	2	2	2	2	2
320,0	1	2	2	2	1	2
403,2	2	2	2	2	2	2
508,0	2	2	2	2	2	2
640,0	2	2	2	2	2	2
806,3	2	2	2	1	1	2
1.015,9	2	2	2	1	1	2
1.280,0	2	2	2	1	1	2
1.612,7	2	2	2	2	2	2
2.031,9	2	2	2	1	1	2
2.560,0	2	1	2	2	1	2
3.225,4	2	1	2	2	1	2
4.063,7	1	1	1	1	1	1
5.120,0	0	0	1	1	0	1
6.450,8	0	0	1	1	0	1
8.127,5	0	0	1	1	0	1
10.240,0	0	0	1	1	0	1

Tab. 7.1: Wertung der Signalqualität, nach Frequenzen

Versuche wieder im Zuge von Vorversuchen überprüft werden, ob der eingesetzte Frequenzbereich ausreicht oder ob eventuell auch eine Erweiterung sinnvoll ist.

7.1.3 Frequenzpaket am Testsignalbeginn zur Signalbeginnerkennung

Wie oben erläutert, wurden verschiedene Frequenzen unterschiedlich gut in der Aufnahme erkannt. Vor allem die niedrigen Frequenzen, die am Beginn des Testsignales stehen, waren nicht zu erkennen. Um den Beginn des Testsignales kenntlich zu machen, wird vorgeschlagen, am Beginn des Testsignales ein Frequenzpaket in einem gut erkennbaren Bereich zu senden. Wie in Tab. 7.1 gezeigt, eignet sich dafür der Frequenzbereich von 403, 2 - 640, 0 Hz gut. Diese Frequenzen wurden bei den im Abschnitt 7.1.2 untersuchten Testsignalen immer in beiden Tonspuren erkannt. Durch dieses Frequenzpaket lässt sich der Beginn gut erkennen und kann eventuell auch automatisch bestimmt werden.

7.2 Versuchsdurchführung

7.2.1 Bodenmechanische Untersuchungen im Testfeld

Die Messung der Kompressionswellengeschwindigkeit wurde im Rahmen des Forschungsprojektes *Flächendeckende Dynamische Verdichtungskontrolle für Vibrationswalzen* durchgeführt. Das Ziel der durchgeführten Hauptversuche war die Vorgänge, die bei der Verdichtung mit Vibrationswalzen auftreten, genau zu untersuchen und diese messtechnisch zu erfassen und nicht die Untersuchung des angetroffenen Bodens. Deshalb wurden vor Ort keine detaillierten bodenmechanischen Untersuchungen zur Bestimmung der Bodenkennwerte durchgeführt. Für die Auswertung wurden deshalb die in Abschnitt 4.3 beschriebenen Annahmen getroffenen. Für zukünftige Versuche, besonders im Bereich von Bodenstabilisierungsmaßnahmen oder Bodenverbesserungsmaßnahmen und bei Bodenarten bei denen keine Literaturwerte vorhanden sind, sollten in situ oder im Labor Bodenkennwerte ermittelt werden.

7.2.2 Einbau der Messgeräte

Die mit dem Einbau der Messtechnik einhergehenden Probleme wurden bereits in Abschnitt 6.4 erläutert. Diese werden als eine maßgebliche Ursache für die Abweichungen zwischen den aus der Kompressionswellengeschwindigkeit v_p bestimmten dynamischen Verformungsmoduln E_{vd,v_p} und den mit der dynamischen Lastplatte gemessenen dynamischen Verformungsmoduln E_{vd} vermutet. Der Einbau sollte für zukünftige Versuche geändert werden, um diesen Fehler zu vermeiden.

Es wird für zukünftige Versuche vorgeschlagen, die Messtechnik in den Boden einzurammen bzw. einzudrücken. Diese Art des Einbaus sollte im aufgelockerten Boden ohne Probleme möglich sein und könnte in dieser Weise vor sich gehen:

Der im Rahmen dieser Arbeit eingesetzte Versuchsaufbau wird um eine Schablone (Abb. 7.1) mit Führungsrohren für die Positionierung der Messtechnik und Metallrohre für das Einrammen der Mikrophone und des Lautsprechers erweitert. Die Durchmesser der Führungsrohre sind größer als die der Metallrohre für den Einbau. Der Durchmesser der Metallrohre ist geringer als der der Schutzhüllen. Die Metallrohre für den Einbau werden in der Versuchsvorbereitung über die Kabel der Mikrophone und des Lautsprechers gestülpt. Die Führungsrohre dienen dazu, dass der Einbau im rechten Winkel zur Oberfläche erfolgt.

Abb. 7.1: Einbauschablone mit Führungsrohren

Diese Schablone wird über der Messstelle auf den Boden aufgelegt. Die Metallrohre werden für den Einrammvorgang verwendet. Die Mikrophone und der Lautsprecher werden mit den Metallrohren in die Führungsrohre gesetzt und in den Boden in die gewünschte Tiefe eingerammt. Die Kontrolle der Tiefe kann über Markierungen an den Metallrohren und den Kabeln erfolgen. Danach werden die Metallrohre wieder gezogen und die Messtechnik verbleibt im Boden. Die Schablone wird wieder entfernt und für die geschützte Führung der Kabel zum Rand der Testfahrbahn wird, wie schon für die im Rahmen dieser Arbeit durchgeführten Versuche, ein Graben ausgehoben.

Durch diese Art des Einbaus wird Boden im Bereich der Messtechnik verdrängt bzw. verdichtet. Yu et al. [24] konnten aber zeigen, dass der Einfluss daraus vernachlässigbar ist.

Die Metallrohre und Schutzhüllen sind so herzustellen, dass es durch den Einbau nicht zu einer Verdrehung der Mikrophone kommt. Das bedeutet, dass das in der Schutzhülle eingebaute Mikrophon in Richtung des Lautsprechers zeigen muss.

7.2.3 Abstandsbestimmung in der Messtechnik

Die Abstandsbestimmung erfolgte in dieser Versuchsreihe durch den vorsichtigen Ausbau der Messtechnik und anschließendes Messen der Abstände. Die durch die Messung mittels Zollstock gegebene Ungenauigkeit wurde in Abschnitt 6.4 beschrieben. Es konnte noch keine Alternative entwickelt werden.

7.2.4 Gesamtaufnahme inklusive ausgesendetem und aufgenommenem Testsignal

Als weitere Auswertungsquelle kann eine Gesamtaufnahme erstellt werden. Bei dieser Aufnahme wird wie im Rahmen dieser Arbeit eine Audiodatei mit zwei Tonspuren, die den Mikrophonen entsprechen, aufgenommen. Weiters wird durch eine zusätzliche Verbindung des Verstärkers mit dem Aufnahmegerät auch das ausgesendete Testsignal aufgenommen. Es entsteht so eine Audiodatei mit drei Tonspuren (ausgesendetes Testsignal und Aufnahme beider Mikrophone). Zum einen kann so die Geschwindigkeitsbestimmung zusätzlich auch zwischen dem Lautsprecher und dem ersten Mikrophon durchgeführt werden, zum anderen kann so überprüft werden, ob das Signal vollständig oder mit Störungen gesendet wurde.

7.2.5 Abstände zwischen den Mikrophonen

Es wird für zukünftige Versuche empfohlen, die Abstände zwischen Lautsprecher und Mikrophonen zu vergrößern. Dadurch beeinflusst die Veränderung der Abstände, die während der Überfahrten passiert, die Ergebnisse relativ gesehen weniger. Es sollte im Zuge von Vorversuchen überprüft werden, ob durch die vergrößerten Abstände das ausgesendete Testsignal bei beiden Mikrophonen in auswertbarer Qualität ankommt und ob es zu keiner Reflexion und Refraktion kommt.

7.2.6 Messpunkt des dynamischen Lastplattenversuchs

Die Messungen mit dem *Leichten Fallgewichtsgerät* wurden in einem Abstand von 5 m vom Messpunkt der Kompressionswellengeschwindigkeit durchgeführt (Abb. 3.8). Wie in Abschnitt 6.4 beschrieben, wird vermutet, dass der Boden im Bereich der Messtechnik durch den Einbau nicht mehr repräsentativ für das Testfeld war.

Es wird deshalb empfohlen, eine weitere Messung mit dem Leichten Fallgewichtsgerät direkt über der eingebauten Messtechnik durchzuführen. Dadurch kann der gemessene dynamische Verformungsmodul E_{vd} und der berechnete Verformungsmodul $E_{vd,vp}$ direkt verglichen und überprüft werden, ob die Abweichung durch den Einbau der Messtechnik oder durch einen anderen Faktor zustande kommt.

7.3 Auswertung

7.3.1 Wertung der Signalqualität nach definierten Qualitätskriterien

Die Wertung der Signalqualität wurde im Zuge der Versuche nicht nach bestimmten Qualitätskriterien durchgeführt und war dementsprechend subjektiv. Für zukünftige Versuchsreihen sollte ein Kriterienkatalog festgelegt werden, anhand dessen die Wertung vergeben wird. In Tabelle 7.2 ist ein Vorschlag für einen Kriterienkatalog angeführt. Weiters wird empfohlen den Umfang der Wertung zu reduzieren, da bereits ein Bereich von 0-5 eine sinnvolle Wertung mit ausreichender Differenzierung möglich macht.

Wertung	linke Tonspur	rechte Tonspur	Schwingung vor dem ET
0	kein Signal erkennbar	kein Signal erkennbar	stark vorhanden
1	ET mäßig erkennbar	Bereich des ET ist erkennbar	stark vorhanden
2	ET mäßig erkennbar	ET mäßig erkennbar	stark vorhanden
3	ET gut erkennbar	ET mäßig erkennbar	stark bis mäßig vorhanden
4	ET gut erkennbar	ET gut erkennbar	mäßig vorhanden
5	ET sehr gut erkennbar	ET sehr gut erkennbar	nicht vorhanden

Tab. 7.2: Vorschlag für den Kriterienkatalog zur Wertung der SignalqualitätET, kurz für Eintreffzeitpunkt

7.3.2 Automatisierungspotential

Einige Auswertungsschritte (Überlagerung, Aufrufen der auszuwertenden Frequenzpakete, Nachlaufrechnung) wurden bereits automatisch durchgeführt. Es besteht in der Auswertung weiteres Automatisierungspotential.

Testsignalbeginnerkennung

Wenn das in Abschnitt 7.1.3 beschriebene Testsignal mit einem deutlich erkennbaren Frequenzpaket am Beginn des Testsignals eingesetzt wird, kann mit einem entsprechenden FAMOS-Code in der Aufnahme der Beginn des aufgenommenen Testsignals automatisiert bestimmt werden. In weiterer Folge werden die auszuwertenden Frequenzpakete, basierend auf den Sende- und Pausenzeiten des Testsignals, aufgerufen und wie im Rahmen dieser Arbeit ausgewertet.

Bestimmung der Eintreffzeitpunkte des Testsignals

Die Bestimmung der Eintreffzeitpunkte des Testsignals kann mit einem entsprechenden FAMOS-Code auch automatisiert durchgeführt werden. Carizzoni [5] zeigte jedoch, dass eine automatisierte Bestimmung zu einer Überschätzung der Laufzeit führt. Es wurde für die Bestimmung der Eintreffzeitpunkte der Welle eine Tangente mit einer bestimmten Steigung an das Signal gelegt und der Schnittpunkt mit der Abszisse (Zeitachse) bestimmt. Da das Eintreffen der Welle oft nicht abrupt, sondern flach begann, registrierte das Programm den Eintreffzeitpunkt zu einem zu späten Zeitpunkt.

Im Zuge der Auswertung der Messungen dieser Arbeit wurde ebenfalls festgestellt, dass in den Pausenzeiten des Signals eine Hintergrundschwingung in der Aufnahme vorhanden ist. Diese ist messtechnisch und umgebungsbedingt. Diese beiden Gründe erschweren eine allgemeingültige Definition des Eintreffzeitpunktes, die softwaremäßig umgesetzt werden kann. Hierbei ist der Mensch eine weitaus verlässlichere Quelle.

In Abbildung 7.2 ist die Frequenz 403, 2 Hz der Aufnahme der Messfahrt 163 dargestellt. Die im Zuge der Auswertung vom Bearbeiter markierten Eintreffzeitpunkte sind mit schwarzen Kreisen markiert. Vor dem eigentlichen Eintreffen des Testsignals ist die Hintergrundschwingung erkennbar. In der rechten Tonspur (blau) ist der Eintreffzeitpunkt aufgrund der Hintergrundschwingung nicht eindeutig festlegbar. In der linken Tonspur (rot) ist keine abrupte Änderung der Steigung vorhanden, die von einer Software definitiv erkannt werden könnte.

Abb. 7.2: sechstes ausgewertetes Frequenzpaket (403,2 Hz Messfahrt 163)

Wenn für die Auswertung die Bestimmung der Laufzeiten automatisiert durchgeführt wird, sollten diese mit einer manuellen Laufzeitbestimmung überprüft werden.

Kapitel 8

Zusammenfassung und Ausblick

In diesem Kapitel werden die Ergebnisse zusammengefasst und ein Ausblick für zukünftige Versuchsdurchführungen gegeben.

8.1 Ergebnisse der ausgewerteten Kompressionswellengeschwindigkeiten

Die Verläufe der gemessenen Kompressionswellengeschwindigkeiten sind konsistent mit den durchgeführten Verdichtungvorgängen (siehe Abschnitt 6.1). Die aus dem Testsignal bestimmten Absolutwerte in Form des dynamischen Verformungsmoduls E_{vd,v_p} befinden sich zwar in einem realistischen Bereich, spiegeln jedoch nicht die, mit den dynamischen Lastplatten bestimmte, Steifigkeit der Testfahrbahn wieder. Diese Abweichung entsteht zum Teil durch die Art des Einbaus der Messgeräte (siehe Abschnitt 6.4.5) und zum Teil durch den Einsatz der dynamischen Lastplatten (siehe Abschnitt 6.4.4).

Die hier eingesetzte Methode soll für die Überwachung von langfristigen Vorgängen eingesetzt werden, bei denen neben den Absolutwerten auch von Interesse ist, ob es zu einer Veränderung der gemessenen Wellenlaufgeschwindigkeit zwischen zwei Messungen kommt. Eine Aussage zu dieser Fragestellung kann mit dem gewählten Versuchsaufbau und der eingesetzten Messtechnik mit guter Annäherung getroffen werden.

8.2 Weitere Untersuchungsgebiete

Die Versuche, die im Rahmen dieser Arbeit durchgeführt wurden, untersuchten vor allem die Steifigkeitsentwicklung des Bodens. Die Messtechnik wurde in den feuchten, aufgelockerten Boden eingebaut und nach der letzten Messüberfahrt wieder ausgebaut. Da dieses Verfahren aber auch für langfristige Messungen verwendet werden soll, werden dementsprechende Untersuchungen empfohlen.

Es wird vorgeschlagen, die Messgeräte am Ende eines Messtages nicht sofort auszubauen, sondern über mehrere Tage im Boden zu belassen. Durch Messungen am Ende des Messtages und am Beginn des nächsten Messtages kann untersucht werden, welchen Einfluss die Liegezeit auf die Kompressionswellengeschwindigkeit hat.

Die hier durchgeführten Versuche wurden ausschließlich in nicht wassergesättigten Böden durchgeführt. Es wird empfohlen, auch Versuche in wassergesättigten Böden durchzuführen, um zu überprüfen wie sich die Wassersättigung auf die gemessenen Geschwindigkeiten auswirkt.

8.3 Ausblick

Das Messverfahren ist noch in der Entwicklungsphase und es werden noch weitere Verbesserungen notwendig sein, um eine verlässlich einsetzbare Methode zu entwickeln. Die Weiterentwicklung des Messverfahrens für die baupraktische Anwendung sollte fortgesetzt werden, um ein wirtschaftliches und gut einsetzbares Messverfahren zu entwickeln.

Literaturverzeichnis

- [1] D. Adam. *Grundbau und Bodenmechanik, Studienunterlagen zur Vorlesung*. Institut für Geotechnik, Forschungsbereich Grundbau, Boden- und Felsmechanik, TU Wien, 2016.
- [2] AKG Acoustics GmbH. Datenblatt AKG C411 PP. Wien, Österreich, 2018.
- [3] ASTM D6780 / D6780M 12 Standard Test Method for Water Content and Density of Soil In situ by Time Domain Reflectometry (TDR). West Conshohocken, Pennsylvania, USA: ASTM International, 2012.
- [4] H. Brandl, D. Adam, F. Kopf und R. Niederbrucker. Der dynamische Lastplattenversuch mit dem Leichten Fallgewichtsgerät Grundlagenforschung und praktische Anwendung. Straßenforschungsheft Nr. 533, Bundesministerium für Verkehr, Innovation und Technologie, Wien, 2003.
- [5] M. Carizzoni. Die Ausbreitung von akustischen Wellen zur Untersuchung struktureller Eigenschaften von Landwirtschaftsböden. Dissertation. Universität Bern, 2007.
- [6] R. Floss. Handbuch ZTVE, Kommentar mit Kompendium Erd- und Felsbau. 3. Aufl. Bonn: Kirschbaum Verlag, 2006.
- [7] heddier electronic GmbH. Datenblatt Smallwonder Amp 2x60. Coesfeld, Deutschland, 2018.
- [8] heddier electronic GmbH. heddier Exciter LS-KS20. Coesfeld, Deutschland, 2018.
- [9] HAMM AG. Datenblatt H13i. Tirschenreuth, Deutschland, 2018.
- [10] F. Kirsch und O. Klingmüller. Erfahrungen aus 25 Jahren Pfahl-Integritätsprüfung in Deutschland. Forschungsber. Deutsche Gesellschaft für Geotechnik e.V., 2003. 26 S.
- [11] K. Knödl, H. Krummel und G. Lange. Geophysik, Handb. zur Erkundung des Untergrundes von Deponien und Altlasten, Band 3. 1. Aufl. Berlin Heiderlberg: Springer-Verlag, 1997. ISBN: 978-3-540-26606-8.
- [12] F. Kopf und D. Adam. Flächendeckende Dynamische Verdichtungskontrolle (FDVK) Kalibrierung und Anwendung gemäß RVS 8S.02.6. Österreichische Ingenieur- und Architekten-Zeitschrift, 2005, S. 162–173.
- [13] F. Kopf, D. Adam und I. Paulmichl. Untersuchungen des statischen Lastplattendruckversuchs mit der Randelementemethode. Österreichische Ingenieur- und Architekten-Zeitschrift (150), Heft 4-5, 2005, S. 144–161.
- [14] F. Kopf, M. Fritz, J. Pistrol und D. Adam. Innovative Measurements of the Roller-Soil-Interaction System during Dynamic Compaction. Wien: 40 Years of Roller Integrated Continuous Compaction Control (CCC) (2018-11-29), 2018.
- [15] K. R. Massarsch und C. Wersäll. Acoustic soil and rock sounding. Poznan, Poland: 6th International Workshop: In situ und laboratory characterization of OC subsoil (26.06.2017-27.06.2017), 2018, S. 193–203.
- [16] ÖNORM B 4414-2:1979 10 01: Erd- und Grundbau; Untersuchung von Bodenproben; Bestimmung der Dichte des Bodens; Feldverfahren. Wien: Austrian Standards, Okt. 1979.

- [17] ÖNORM B 4417:2018 05 01: Geotechnik Untersuchung von Böden Statischer Lastplattenversuch. Wien: Austrian Standards, Mai 2018.
- [18] ÖNORM B 4418:2012 12 01: Geotechnik Durchführung von Proctorversuchen im Erdbau unter Einbeziehung der ÖNORM EN 13286-2. Wien: Austrian Standards, Dez. 2012.
- [19] J. Pistrol, F. Kopf, S. Villwock und W. Völkl. Algorithmus und Methodik zur Auswertung von Beschleunigungssignalen zur Bestimmung eines Kennwertes für die Flächendeckende Dynamische Verdichtungskontrolle (FDVK) mit Oszillationswalzen. Patent: Deutschland, Nr. DE102015120874.1, 2015.
- [20] RVS 08.03.01:2010 10: Erdarbeiten. Wien: Forschungsgesellschaft Straße Schiene Verkehr (FSV), Okt. 2010.
- [21] RVS 08.03.02:1999 08: Kontinuierlicher walzenintegrierter Verdichtungsnachweis. Wien: Forschungsgesellschaft Straße - Schiene - Verkehr (FSV), Aug. 1999.
- [22] RVS 08.03.04:2008 10: Verdichtungsnachweis mittels dynamischen Lastplattenversuches.
 Wien: Forschungsgesellschaft Straße Schiene Verkehr (FSV), März 2008.
- [23] J. A. Studer, J. Laue und M. G. Koller. Bodendynamik Grundlagen, Kennziffern, Probleme und Lösungsansätze. 3. Aufl. Berlin Heidelberg: Springer, 2007. ISBN: 978-3-540-29624-9.
- [24] X. Yu, V. Drnevich und R. Nowack. Near surface soil properties using electromagnetic and seismic waves. Osaka, Japan: 16th International Conference on Soil Mechanics und Geotechnical Engineering (12.09.2005-16.09.2005), 2005, S. 769–772.
- [25] ZOOM Corporation. Datenblatt H4n Handy Recorder. Tokyo, Japan, 2018.

Abbildungsverzeichnis

2.1	Versuchsdurchführung des Proctorversuchs [1]	16
2.2	Versuchsauswertung des Proctorversuchs [1]	16
2.3	Ausstechzylinder gemäß ÖNORM B 4414-2:1979 [16]	17
2.4	Schematischer Versuchsaufbau von zwei verschiedenen Ersatzverfahren ÖNORM B 441	14-
	2:1979 [16]	17
	a Sandersatzverfahren	17
	b Flüssigkeitsersatzverfahren	17
2.5	Gebräuchliche Prüfverfahren nach Bodenart [6]	18
2.6	Statischer Lastplattenversuch nach ÖNORM B 4417:2018 [17]	19
	a Versuchsaufbau des statischen Lastplattenversuchs [1]	19
	b Bestimmung von E_{v1} und E_{v2} [1] \ldots	19
2.7	Komponenten des Leichten Fallgewichtsgerätes [4]	20
2.8	Komponenten der FDVK [12]	21
2.9	Prinzipdarstellung der gängisten FDVK-Werte [1]	22
2.10	Verschiedene Wellenarten im Boden [23]	23
2.11	Zusammenhang zwischen Querdehnzahl ν und dem Verhältnis der Ausbreitungs-	
	geschwindigkeit der Welle v zur Ausbreitungsgeschwindigkeit der Scherwelle v_s	
	$[23] \qquad \dots \qquad $	24
2.12	Reflexionsseismik: Schematischer Versuchsaufbau [1]	28
2.13	Refraktionsseismik: Schematischer Versuchsaufbau [1]	29
2.14	Schwinger auf Bodenoberfläche: Schematischer Versuchsaufbau [23]	30
2.15	Bohrlochseismik: Schematischer Versuchsaufbau [11]	31
0.1		9.4
3.1	Schema des Versuchsaufbaus	34
3.2	Aufbau der Messtechnik im Labor	35
პ.პ ე_₄	Erstes Frequenzpaket (20 Hz) des Testsignals	35
3.4	Ausschnitt des Testsignals (weibes Rauschen)	31
3.5 9.6	Vergrabener Lautsprecher und Mikrophone im Labor	38
3.0	Ergeonisse der Vorversuche am 22.02.2018	39
3.7	Viermuch a der Finne UADAU (Quelle, Geerle Mare)	41
	a Kiesgrube der Firma HABAU (Quelle: Google Maps)	41
१ 0	D Position der Testfelder innernalb der Klesgrube (Quelle: Google Maps).	41
3.8 2.0	Eageptan der Testielder	41
5.9	Construction from imp Fold	40
	a Gesamaubau III Feid	40
9 10	b Mikrophone und Lautsprecher im Feld	43
3.10	Ausbau der Messtechnik nach Messfahrt 155	43
4.1	Ausschnitt aus der rechten Tonspur (Messfahrt 120)	47
4.2	Ausschnitt der Aufnahme vor der Überlagerung	47
		-
4.3	Ausschnitt der Aufnahme nach der Überlagerung	48

4.7 Beginnzeiten für die Auswertung des Testsignals (Messfahrt 204) 51 4.8 Drittes ausgewertetes Frequenzpaket des Testsignals (Messfahrt 204) 52 4.9 Auswertung der Messfahrten 201-205 53 a $v_{p,LP}$ für Messfahrten 201-205 53 b $v_{p,TS}$ für Messfahrten 109-112 56 5.1 $v_{p,TS}$ für Messfahrten 118-122 56 5.2 $v_{p,TS}$ für Messfahrten 123-127 56 5.4 $v_{p,TS}$ für Messfahrten 152-155 57 5.6 $v_{p,TS}$ für Messfahrten 166-161 57 5.7 $v_{p,TS}$ für Messfahrten 163-166 57 5.8 $v_{p,TS}$ für Messfahrten 164-163 57 5.10 $v_{p,TS}$ für Messfahrten 181-185 58 5.10 $v_{p,TS}$ für Messfahrten 181-185 58 5.10 $v_{p,TS}$ für Messfahrten 181-185 58 5.11 $v_{p,TS}$ für Messfahrten 201-205 58 5.13 $v_{p,TS}$ für Messfahrten 118-122 60 5.14 $v_{p,TS}$ für Messfahrten 123-127 60 5.15 $v_{p,TS}$ für Messfahrten 214-219 59 5.14 $v_{p,TS}$ für Messfa
4.8 Drittes ausgewertetes Frequenzpaket des Testsignals (Messfahrt 204) 52 4.9 Auswertung der Messfahrten 201-205 53 a $v_{p,LP}$ für Messfahrten 201-205 53 5.1 $v_{p,TS}$ für Messfahrten 109-112 56 5.2 $v_{p,TS}$ für Messfahrten 118-122 56 5.3 $v_{p,TS}$ für Messfahrten 123-127 56 5.4 $v_{p,TS}$ für Messfahrten 152-155 57 5.6 $v_{p,TS}$ für Messfahrten 152-155 57 5.7 $v_{p,TS}$ für Messfahrten 163-166 57 5.8 $v_{p,TS}$ für Messfahrten 169-173 57 5.0 $v_{p,TS}$ für Messfahrten 174-179 58 5.10 $v_{p,TS}$ für Messfahrten 181-185 58 5.11 $v_{p,TS}$ für Messfahrten 181-185 58 5.12 $v_{p,TS}$ für Messfahrten 109-112 60 5.13 $v_{p,TS}$ für Messfahrten 118-122 60 5.14 E_{vd} für Messfahrten 124-219 59 5.13 $v_{p,TS}$ für Messfahrten 123-127 60 5.14 E_{vd} für Messfahrten 124-219 59 5.15 E_{vd} für Messfahrten 147-151 60 </td
4.9 Auswertung der Messfahrten 201-205 53 a $v_{p,LT}$ für Messfahrten 201-205 53 b $v_{p,TS}$ für Messfahrten 201-205 53 5.1 $v_{p,TS}$ für Messfahrten 109-112 56 5.2 $v_{p,TS}$ für Messfahrten 118-122 56 5.1 $v_{p,TS}$ für Messfahrten 123-127 56 5.4 $v_{p,TS}$ für Messfahrten 152-155 56 5.7 $v_{p,TS}$ für Messfahrten 152-155 57 5.8 $v_{p,TS}$ für Messfahrten 152-155 57 7.8 $v_{p,TS}$ für Messfahrten 166-161 57 7.8 $v_{p,TS}$ für Messfahrten 164-173 57 5.9 $v_{p,TS}$ für Messfahrten 181-185 58 5.10 $v_{p,TS}$ für Messfahrten 181-185 58 5.12 $v_{p,TS}$ für Messfahrten 181-185 58 5.12 $v_{p,TS}$ für Messfahrten 109-112 60 5.14 $v_{p,TS}$ für Messfahrten 123-127 60 5.14 $v_{p,TS}$ für Messfahrten 124-219 59 5.14 $v_{p,TS}$ für Messfahrten 123-127 60 5.14 $v_{p,TS}$ für Messfahrten 124-219 59 <
a $v_{p,LP}$ für Messfahrten 201-205 53 b $v_{p,TS}$ für Messfahrten 109-112 56 5.1 $v_{p,TS}$ für Messfahrten 118-122 56 5.2 $v_{p,TS}$ für Messfahrten 118-127 56 5.4 $v_{p,TS}$ für Messfahrten 123-127 56 5.4 $v_{p,TS}$ für Messfahrten 147-151 56 5 $v_{p,TS}$ für Messfahrten 152-155 57 5.6 $v_{p,TS}$ für Messfahrten 163-166 57 5.7 $v_{p,TS}$ für Messfahrten 169-173 57 5.8 $v_{p,TS}$ für Messfahrten 181-185 58 5.10 $v_{p,TS}$ für Messfahrten 201-205 58 5.11 $v_{p,TS}$ für Messfahrten 109-112 58 5.12 $v_{p,TS}$ für Messfahrten 181-185 58 5.13 $v_{p,TS}$ für Messfahrten 181-185 58 5.12 $v_{p,TS}$ für Messfahrten 181-122 60 5.13 $v_{p,TS}$ für Messfahrten 109-112 59 5.14 E_{vd} für Messfahrten 118-122 60 5.15 $v_{p,TS}$ für Messfahrten 118-122 60 5.16 E_{vd} für Messfahrten 118-122 60 5
b $v_{p,TS}$ für Messfahrten 201-205 53 5.1 $v_{p,TS}$ für Messfahrten 109-112 56 5.2 $v_{p,TS}$ für Messfahrten 118-122 56 5.3 $v_{p,TS}$ für Messfahrten 123-127 56 5.4 $v_{p,TS}$ für Messfahrten 152-155 57 5.5 $v_{p,TS}$ für Messfahrten 152-155 57 5.6 $v_{p,TS}$ für Messfahrten 166-161 57 5.7 $v_{p,TS}$ für Messfahrten 163-166 57 5.8 $v_{p,TS}$ für Messfahrten 164-173 57 5.9 $v_{p,TS}$ für Messfahrten 174-179 58 5.10 $v_{p,TS}$ für Messfahrten 186-193 58 5.11 $v_{p,TS}$ für Messfahrten 181-185 58 5.12 $v_{p,TS}$ für Messfahrten 109-112 59 5.14 $v_{p,TS}$ für Messfahrten 124-219 59 5.14 $v_{p,TS}$ für Messfahrten 124-219 59 5.15 $v_{p,TS}$ für Messfahrten 123-127 60 5.16 e_{d} für Messfahrten 123-127 60 5.17 $v_{p,TS}$ für Messfahrten 123-127 60 5.20 e_{d} für Messfahrten 163-166 61 <td< td=""></td<>
5.1 $v_{p,TS}$ für Messfahrten 109-112 56 5.2 $v_{p,TS}$ für Messfahrten 123-127 56 5.4 $v_{p,TS}$ für Messfahrten 147-151 56 5.5 $v_{p,TS}$ für Messfahrten 152-155 57 5.6 $v_{p,TS}$ für Messfahrten 166-161 57 7 $v_{p,TS}$ für Messfahrten 163-166 57 7.8 $v_{p,TS}$ für Messfahrten 169-173 57 5.9 $v_{p,TS}$ für Messfahrten 181-185 58 5.10 $v_{p,TS}$ für Messfahrten 186-193 58 5.11 $v_{p,TS}$ für Messfahrten 181-185 58 5.12 $v_{p,TS}$ für Messfahrten 101-12 58 5.13 $v_{p,TS}$ für Messfahrten 101-205 58 5.13 $v_{p,TS}$ für Messfahrten 101-212 60 5.14 $v_{p,TS}$ für Messfahrten 112-12 60 5.15 v_{ed} für Messfahrten 112-12 60 5.16 v_{ed} für Messfahrten 123-127 60 5.16 v_{ed} für Messfahrten 152-155 61 5.20 v_{ed} für Messfahrten 163-166 61 5.21 v_{ed} für Messfahrten 163-166 61 5.22
5.1 $v_{p,TS}$ für Messfahrten 109-112 56 5.2 $v_{p,TS}$ für Messfahrten 118-122 56 5.3 $v_{p,TS}$ für Messfahrten 147-151 56 5.4 $v_{p,TS}$ für Messfahrten 152-155 57 5.6 $v_{p,TS}$ für Messfahrten 163-166 57 5.7 $v_{p,TS}$ für Messfahrten 169-173 57 5.8 $v_{p,TS}$ für Messfahrten 181-185 58 5.10 $v_{p,TS}$ für Messfahrten 181-185 58 5.10 $v_{p,TS}$ für Messfahrten 181-185 58 5.11 $v_{p,TS}$ für Messfahrten 181-185 58 5.12 $v_{p,TS}$ für Messfahrten 201-205 58 5.13 $v_{p,TS}$ für Messfahrten 109-112 60 5.14 E_{vd} für Messfahrten 124-219 59 5.14 E_{vd} für Messfahrten 123-127 60 5.16 E_{vd} für Messfahrten 123-127 60 5.19 E_{vd} für Messfahrten 163-166 61 5.19 E_{vd} für Messfahrten 163-166 61 5.20 E_{vd} für Messfahrten 163-166 61 5.21 E_{vd} für Messfahrten 169-173 61 5.
5.2 $v_{p,TS}$ für Messfahrten 118-122 56 5.3 $v_{p,TS}$ für Messfahrten 123-127 56 5.4 $v_{p,TS}$ für Messfahrten 152-155 56 5.7 $v_{p,TS}$ für Messfahrten 156-161 57 5.8 $v_{p,TS}$ für Messfahrten 163-166 57 5.9 $v_{p,TS}$ für Messfahrten 169-173 57 5.9 $v_{p,TS}$ für Messfahrten 174-179 58 5.10 $v_{p,TS}$ für Messfahrten 181-185 58 5.11 $v_{p,TS}$ für Messfahrten 181-185 58 5.11 $v_{p,TS}$ für Messfahrten 181-185 58 5.12 $v_{p,TS}$ für Messfahrten 201-205 58 5.13 $v_{p,TS}$ für Messfahrten 118-122 60 5.14 E_{vd} für Messfahrten 123-127 60 5.15 E_{vd} für Messfahrten 123-127 60 5.16 E_{vd} für Messfahrten 123-127 60 5.19 E_{vd} für Messfahrten 163-166 61 5.19 E_{vd} für Messfahrten 163-166 61 5.19 E_{vd} für Messfahrten 174-179 61 5.20 E_{vd} für Messfahrten 181-185 61 5.
5.3 $v_{p,TS}$ für Messfahrten 123-127 56 5.4 $v_{p,TS}$ für Messfahrten 152-155 56 5.5 $v_{p,TS}$ für Messfahrten 152-155 57 5.6 $v_{p,TS}$ für Messfahrten 163-166 57 5.7 $v_{p,TS}$ für Messfahrten 163-166 57 5.8 $v_{p,TS}$ für Messfahrten 169-173 57 5.9 $v_{p,TS}$ für Messfahrten 174-179 58 5.10 $v_{p,TS}$ für Messfahrten 186-193 58 5.11 $v_{p,TS}$ für Messfahrten 201-205 58 5.13 $v_{p,TS}$ für Messfahrten 109-112 60 5.14 E_{vd} für Messfahrten 109-112 60 5.17 E_{vd} für Messfahrten 123-127 60 5.16 E_{vd} für Messfahrten 123-127 60 5.17 E_{vd} für Messfahrten 123-127 60 5.18 E_{vd} für Messfahrten 152-155 61 5.19 E_{vd} für Messfahrten 163-166 61 5.21 E_{vd} für Messfahrten 163-166 61 5.22 E_{vd} für Messfahrten 174-179 61 5.23 E_{vd} für Messfahrten 181-185 61 5.24 </td
5.4 $v_{p,TS}$ für Messfahrten 147-151 56 5.5 $v_{p,TS}$ für Messfahrten 152-155 57 5.6 $v_{p,TS}$ für Messfahrten 163-166 57 5.7 $v_{p,TS}$ für Messfahrten 169-173 57 5.8 $v_{p,TS}$ für Messfahrten 169-173 57 5.9 $v_{p,TS}$ für Messfahrten 174-179 58 5.10 $v_{p,TS}$ für Messfahrten 181-185 58 5.11 $v_{p,TS}$ für Messfahrten 181-185 58 5.12 $v_{p,TS}$ für Messfahrten 201-205 58 5.13 $v_{p,TS}$ für Messfahrten 214-219 59 5.14 E_{vd} für Messfahrten 118-122 60 5.15 E_{vd} für Messfahrten 123-127 60 5.16 E_{vd} für Messfahrten 123-127 60 5.17 E_{vd} für Messfahrten 123-127 60 5.18 E_{vd} für Messfahrten 163-166 61 5.20 E_{vd} für Messfahrten 163-166 61 5.21 E_{vd} für Messfahrten 163-166 61 5.22 E_{vd} für Messfahrten 181-185 61 5.23 E_{vd} für Messfahrten 181-193 62 5.24<
$ \begin{array}{llllllllllllllllllllllllllllllllllll$
5.6 $v_{p,TS}$ für Messfahrten 156-161 57 5.7 $v_{p,TS}$ für Messfahrten 169-173 57 5.8 $v_{p,TS}$ für Messfahrten 169-173 57 5.9 $v_{p,TS}$ für Messfahrten 174-179 58 5.10 $v_{p,TS}$ für Messfahrten 181-185 58 5.11 $v_{p,TS}$ für Messfahrten 181-185 58 5.12 $v_{p,TS}$ für Messfahrten 181-125 58 5.13 $v_{p,TS}$ für Messfahrten 100-112 59 5.14 E_{vd} für Messfahrten 100-112 60 5.15 E_{vd} für Messfahrten 123-127 60 5.16 E_{vd} für Messfahrten 123-127 60 5.17 E_{vd} für Messfahrten 123-127 60 5.18 E_{vd} für Messfahrten 123-127 60 5.18 E_{vd} für Messfahrten 152-155 61 5.19 E_{vd} für Messfahrten 163-166 61 5.20 E_{vd} für Messfahrten 163-166 61 5.21 E_{vd} für Messfahrten 164-193 62 5.22 E_{vd} für Messfahrten 181-185 61 5.24 E_{vd} für Messfahrten 181-193 62 5.25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
5.8 $v_{p,TS}$ für Messfahrten 169-173 57 5.9 $v_{p,TS}$ für Messfahrten 174-179 58 5.10 $v_{p,TS}$ für Messfahrten 181-185 58 5.11 $v_{p,TS}$ für Messfahrten 186-193 58 5.12 $v_{p,TS}$ für Messfahrten 201-205 58 5.13 $v_{p,TS}$ für Messfahrten 214-219 59 5.14 E_{vd} für Messfahrten 109-112 60 5.15 E_{vd} für Messfahrten 109-112 60 5.16 E_{vd} für Messfahrten 123-127 60 5.17 E_{vd} für Messfahrten 147-151 60 5.18 E_{vd} für Messfahrten 152-155 61 5.19 E_{vd} für Messfahrten 166-161 61 5.20 E_{vd} für Messfahrten 163-166 61 5.21 E_{vd} für Messfahrten 174-179 61 5.22 E_{vd} für Messfahrten 181-185 61 5.23 E_{vd} für Messfahrten 201-205 62 5.24 E_{vd} für Messfahrten 214-219 62 5.25 E_{vd} für Messfahrten 214-219 62 5.26 E_{vd} für Messfahrten 214-219 62 5.27
5.9 $v_{p,TS}$ für Messfahrten 174-179 58 5.10 $v_{p,TS}$ für Messfahrten 181-185 58 5.11 $v_{p,TS}$ für Messfahrten 201-205 58 5.12 $v_{p,TS}$ für Messfahrten 201-205 58 5.13 $v_{p,TS}$ für Messfahrten 214-219 59 5.14 $v_{p,TS}$ für Messfahrten 109-112 60 5.15 v_{d} für Messfahrten 118-122 60 5.16 v_{d} für Messfahrten 123-127 60 5.17 E_{vd} für Messfahrten 123-127 60 5.18 E_{vd} für Messfahrten 152-155 61 5.19 E_{vd} für Messfahrten 152-155 61 5.18 E_{vd} für Messfahrten 163-166 61 5.20 E_{vd} für Messfahrten 163-166 61 5.21 E_{vd} für Messfahrten 163-166 61 5.22 E_{vd} für Messfahrten 174-179 61 5.23 E_{vd} für Messfahrten 181-185 61 5.24 E_{vd} für Messfahrten 201-205 62 5.25 E_{vd} für Messfahrten 214-219 62 5.26 E_{vd} für Messfahrten 214-219 62 5.27
$ 5.10 \ v_{p,TS} \ für \ Messfahrten 181-185 \ $
5.11 $v_{p,TS}$ für Messfahrten 186-193 58 5.12 $v_{p,TS}$ für Messfahrten 201-205 58 5.13 $v_{p,TS}$ für Messfahrten 214-219 59 5.14 E_{vd} für Messfahrten 109-112 60 5.15 E_{vd} für Messfahrten 118-122 60 5.16 E_{vd} für Messfahrten 123-127 60 5.17 E_{vd} für Messfahrten 147-151 60 5.18 E_{vd} für Messfahrten 152-155 61 5.19 E_{vd} für Messfahrten 163-166 61 5.20 E_{vd} für Messfahrten 163-166 61 5.21 E_{vd} für Messfahrten 169-173 61 5.22 E_{vd} für Messfahrten 181-185 61 5.23 E_{vd} für Messfahrten 181-185 61 5.24 E_{vd} für Messfahrten 201-205 62 5.25 E_{vd} für Messfahrten 214-219 62 5.26 E_{vd} für Messfahrten 214-219 63 5.27 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 109-112 63 5.28 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 123-127 64 5.30 Korrelation von E_{vd} und E_{v
5.12 $v_{p,TS}$ für Messfahrten 201-205 58 5.13 $v_{p,TS}$ für Messfahrten 214-219 59 5.14 E_{vd} für Messfahrten 109-112 60 5.15 E_{vd} für Messfahrten 118-122 60 5.16 E_{vd} für Messfahrten 123-127 60 5.17 E_{vd} für Messfahrten 123-127 60 5.18 E_{vd} für Messfahrten 147-151 60 5.19 E_{vd} für Messfahrten 152-155 61 5.19 E_{vd} für Messfahrten 163-166 61 5.20 E_{vd} für Messfahrten 163-166 61 5.21 E_{vd} für Messfahrten 169-173 61 5.22 E_{vd} für Messfahrten 181-185 61 5.23 E_{vd} für Messfahrten 181-185 61 5.24 E_{vd} für Messfahrten 201-205 62 5.25 E_{vd} für Messfahrten 214-219 62 5.26 E_{vd} für Messfahrten 214-219 63 5.27 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 109-112 63 5.28 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 123-127 64 5.30 Korrelation von E_{vd} und $E_{vd,$
5.13 $v_{p,TS}$ für Messfahrten 214-219 59 5.14 E_{vd} für Messfahrten 109-112 60 5.15 E_{vd} für Messfahrten 118-122 60 5.16 E_{vd} für Messfahrten 123-127 60 5.17 E_{vd} für Messfahrten 147-151 60 5.18 E_{vd} für Messfahrten 152-155 61 5.19 E_{vd} für Messfahrten 163-166 61 5.20 E_{vd} für Messfahrten 163-166 61 5.21 E_{vd} für Messfahrten 169-173 61 5.22 E_{vd} für Messfahrten 181-185 61 5.23 E_{vd} für Messfahrten 181-185 61 5.24 E_{vd} für Messfahrten 201-205 62 5.25 E_{vd} für Messfahrten 214-219 62 5.26 E_{vd} für Messfahrten 214-219 62 5.27 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 18-122 63 5.29 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 123-127 64 5.30 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 147-151 64 5.31 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 152-155 64
5.14 E_{vd} für Messfahrten 109-112 60 5.15 E_{vd} für Messfahrten 118-122 60 5.16 E_{vd} für Messfahrten 123-127 60 5.17 E_{vd} für Messfahrten 147-151 60 5.18 E_{vd} für Messfahrten 152-155 61 5.19 E_{vd} für Messfahrten 156-161 61 5.20 E_{vd} für Messfahrten 163-166 61 5.21 E_{vd} für Messfahrten 169-173 61 5.22 E_{vd} für Messfahrten 174-179 61 5.23 E_{vd} für Messfahrten 181-185 61 5.24 E_{vd} für Messfahrten 201-205 62 5.25 E_{vd} für Messfahrten 214-219 62 5.26 E_{vd} für Messfahrten 214-219 63 5.27 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 118-122 63 5.28 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 123-127 64 5.30 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 152-155 64 5.31 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 152-155 64 5.33 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 152-155 6
5.15 E_{vd} für Messfahrten 118-122 60 5.16 E_{vd} für Messfahrten 123-127 60 5.17 E_{vd} für Messfahrten 147-151 60 5.18 E_{vd} für Messfahrten 152-155 61 5.19 E_{vd} für Messfahrten 166-161 61 5.20 E_{vd} für Messfahrten 163-166 61 5.21 E_{vd} für Messfahrten 169-173 61 5.22 E_{vd} für Messfahrten 174-179 61 5.23 E_{vd} für Messfahrten 181-185 61 5.24 E_{vd} für Messfahrten 201-205 62 5.25 E_{vd} für Messfahrten 214-219 62 5.26 E_{vd} für Messfahrten 214-219 62 5.27 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 18-122 63 5.28 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 118-122 63 5.29 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 123-127 64 5.30 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 152-155 64 5.31 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 152-155 64 5.33 Korrelation von E_{vd} und $E_{vd,vp}$ für Messf
5.16 E_{vd} für Messfahrten 123-127 60 5.17 E_{vd} für Messfahrten 147-151 60 5.18 E_{vd} für Messfahrten 152-155 61 5.19 E_{vd} für Messfahrten 163-166 61 5.20 E_{vd} für Messfahrten 163-166 61 5.21 E_{vd} für Messfahrten 169-173 61 5.22 E_{vd} für Messfahrten 169-173 61 5.23 E_{vd} für Messfahrten 174-179 61 5.24 E_{vd} für Messfahrten 181-185 61 5.24 E_{vd} für Messfahrten 186-193 62 5.25 E_{vd} für Messfahrten 201-205 62 5.26 E_{vd} für Messfahrten 214-219 62 5.27 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 109-112 63 5.28 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 118-122 63 5.29 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 123-127 64 5.30 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 152-155 64 5.32 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 152-155 64 5.33 Korrelation von E_{vd} und $E_{vd,vp}$ für Mess
5.17 E_{vd} für Messfahrten 147-151 60 5.18 E_{vd} für Messfahrten 152-155 61 5.19 E_{vd} für Messfahrten 166-161 61 5.20 E_{vd} für Messfahrten 163-166 61 5.21 E_{vd} für Messfahrten 169-173 61 5.22 E_{vd} für Messfahrten 169-173 61 5.23 E_{vd} für Messfahrten 174-179 61 5.24 E_{vd} für Messfahrten 181-185 61 5.25 E_{vd} für Messfahrten 201-205 62 5.26 E_{vd} für Messfahrten 214-219 62 5.27 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 109-112 63 5.28 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 123-127 64 5.30 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 152-155 64 5.31 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 152-155 64 5.32 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-166 64 5.33 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-166 65 5.34 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-166 65
5.18 E_{vd} für Messfahrten 152-155 61 5.19 E_{vd} für Messfahrten 163-166 61 5.20 E_{vd} für Messfahrten 163-166 61 5.21 E_{vd} für Messfahrten 169-173 61 5.22 E_{vd} für Messfahrten 174-179 61 5.23 E_{vd} für Messfahrten 181-185 61 5.24 E_{vd} für Messfahrten 186-193 62 5.25 E_{vd} für Messfahrten 201-205 62 5.26 E_{vd} für Messfahrten 214-219 62 5.27 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 109-112 63 5.28 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 123-127 64 5.30 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 147-151 64 5.31 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 152-155 64 5.32 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 156-161 64 5.33 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 156-161 64 5.34 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-166 65
5.19 E_{vd} für Messfahrten 156-161 61 5.20 E_{vd} für Messfahrten 163-166 61 5.21 E_{vd} für Messfahrten 169-173 61 5.22 E_{vd} für Messfahrten 174-179 61 5.23 E_{vd} für Messfahrten 181-185 61 5.24 E_{vd} für Messfahrten 186-193 61 5.24 E_{vd} für Messfahrten 201-205 62 5.25 E_{vd} für Messfahrten 214-219 62 5.26 E_{vd} für Messfahrten 214-219 63 5.27 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 118-122 63 5.28 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 123-127 64 5.30 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 147-151 64 5.31 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 152-155 64 5.33 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-166 64 5.34 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-166 65 5.34 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-166 65
5.20 E_{vd} für Messfahrten 163-166 61 5.21 E_{vd} für Messfahrten 169-173 61 5.22 E_{vd} für Messfahrten 174-179 61 5.23 E_{vd} für Messfahrten 181-185 61 5.24 E_{vd} für Messfahrten 181-185 61 5.24 E_{vd} für Messfahrten 186-193 62 5.25 E_{vd} für Messfahrten 201-205 62 5.26 E_{vd} für Messfahrten 214-219 62 5.27 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 109-112 63 5.28 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 118-122 63 5.29 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 123-127 64 5.30 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 147-151 64 5.31 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 152-155 64 5.32 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 156-161 64 5.33 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-166 65 5.34 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-166 65
5.21 E_{vd} für Messfahrten 169-173 61 5.22 E_{vd} für Messfahrten 174-179 61 5.23 E_{vd} für Messfahrten 181-185 61 5.24 E_{vd} für Messfahrten 186-193 61 5.25 E_{vd} für Messfahrten 201-205 62 5.26 E_{vd} für Messfahrten 214-219 62 5.27 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 109-112 63 5.28 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 118-122 63 5.29 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 123-127 64 5.30 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 147-151 64 5.31 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 152-155 64 5.32 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 152-155 64 5.33 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 156-161 64 5.34 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-166 65 5.34 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-166 65
5.22 E_{vd} für Messfahrten 174-179615.23 E_{vd} für Messfahrten 181-185615.24 E_{vd} für Messfahrten 186-193625.25 E_{vd} für Messfahrten 201-205625.26 E_{vd} für Messfahrten 214-219625.27Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 109-112635.28Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 118-122635.29Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 123-127645.30Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 147-151645.31Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 152-155645.32Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-166645.33Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-166655.34Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-16665
5.23 E_{vd} für Messfahrten 181-185615.24 E_{vd} für Messfahrten 186-193625.25 E_{vd} für Messfahrten 201-205625.26 E_{vd} für Messfahrten 214-219625.27Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 109-112635.28Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 118-122635.29Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 123-127645.30Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 147-151645.31Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 152-155645.32Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-166645.33Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-166645.34Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-16665
5.24 E_{vd} für Messfahrten 186-193625.25 E_{vd} für Messfahrten 201-205625.26 E_{vd} für Messfahrten 214-219625.27Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 109-112635.28Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 118-122635.29Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 123-127645.30Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 147-151645.31Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 152-155645.32Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 156-161645.33Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-166645.34Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-16665
5.25 E_{vd} für Messfahrten 201-205625.26 E_{vd} für Messfahrten 214-219625.27Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 109-112635.28Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 118-122635.29Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 123-127645.30Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 147-151645.31Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 152-155645.32Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 156-161645.33Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-166645.34Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-16665
5.26 E_{vd} für Messfahrten 214-219625.27Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 109-112635.28Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 118-122635.29Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 123-127645.30Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 147-151645.31Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 152-155645.32Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 156-161645.33Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-166645.34Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-16665
5.27Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 109-112635.28Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 118-122635.29Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 123-127645.30Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 147-151645.31Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 152-155645.32Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 156-161645.33Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-166655.34Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 169-17365
5.28Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 118-122635.29Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 123-127645.30Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 147-151645.31Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 152-155645.32Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 156-161645.33Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-166655.34Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 169-17365
5.29Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 123-127645.30Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 147-151645.31Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 152-155645.32Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 156-161645.33Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-166655.34Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 169-17365
5.30Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 147-151645.31Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 152-155645.32Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 156-161645.33Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-166655.34Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 169-17365
5.31Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 152-155645.32Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 156-161645.33Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-166655.34Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 169-17365
5.32 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 156-161
5.33 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 163-166
5.34 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 169-173
5.35 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 174-179
5.36 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 181-185
5.37 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 186-193
5.38 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 201-205
5.39 Korrelation von E_{vd} und $E_{vd,vp}$ für Messfahrten 214-219
5.40 E_{vd} und $v_{p,TS}^2$ für Messfahrten 109-112
5.41 E_{vd} und $v_{p,TS}^{2}$ für Messfahrten 118-122

5.42	E_{vd} und $v_{p,TS}^2$ für Messfahrten 123-127
5.43	E_{vd} und $v_{p,TS}^2$ für Messfahrten 147-151
5.44	E_{vd} und $v_{p,TS}^2$ für Messfahrten 152-155
5.45	E_{vd} und $v_{p,TS}^2$ für Messfahrten 156-161
5.46	E_{vd} und $v_{p,TS}^2$ für Messfahrten 163-166
5.47	E_{vd} und $v_{p,TS}^2$ für Messfahrten 169-173 69
5.48	E_{vd} und $v_{p,TS}^2$ für Messfahrten 174-179
5.49	E_{vd} und $v_{p,TS}^2$ für Messfahrten 181-185
5.50	E_{vd} und $v_{p,TS}^2$ für Messfahrten 186-193
5.51	E_{vd} und $v_{p,TS}^2$ für Messfahrten 201-205
5.52	E_{vd} und $v_{p,TS}^2$ für Messfahrten 214-219
5.53	$v_{p,LP}$ für Messfahrten 109-112
5.54	$v_{p,LP}$ für Messfahrten 118-122
5.55	$v_{p,LP}$ für Messfahrten 123-127
5.56	$v_{p,LP}$ für Messfahrten 147-151
5.57	$v_{p,LP}$ fur Messfahrten 152-155
5.58 5.50	$v_{p,LP}$ für Messfahrten 150-102
5.60	$v_{p,LP}$ für Messfahrten 160-173
5.00	$v_{p,LP}$ für Messfahrten 174-180 73
5.62	$v_{p,LP}$ für Messfahrten 181-185 73
5.63	$v_{p,LP}$ für Messfahrten 186-193
5.64	$v_{n LP}$ für Messfahrten 201-205
5.65	$v_{p,LP}$ für Messfahrten 214-218
6.1	E_{vd} für Messfahrten 174-179
6.2	Typische Schubmoduln für Kies-Sande [23] $\ldots \ldots \ldots$
0.3	Schubmoduln G_d berechnet aus E_{vd,v_p} für alle Messfahrten, exklusive Nullmes-
6.4	Sungen \ldots
0.4	fahrten G_d berechnet aus E_{vd,v_p} für die jewens letzten zwei verdichtungs-
6.5	Messwerte für $v_{\pi,TS}$ inklusive der jeweiligen Frequenz (Messfahrten 152-155) 80
6.6	Siebtes ausgewertetes Frequenzpaket (806.3 Hz Messfahrt 158)
6.7	Überlagerung der linken Tonspur, Frequenz 1.280 Hz (Messfahrt 165) 83
6.8	Überlagerung der linken Tonspur, Frequenz 1.280 Hz angepasster FAMOS-Code
	$(Messfahrt 165) \dots \dots$
6.9	Abweichung des Abstandes zwischen den Mikrophonen 85
6.10	Mögliche Einbauzustände, modifiziert nach Kopf et al. [14] 86
6.11	Prinzipskizze der Auswirkung des Einbauzustandes auf die Wellenlaufgeschwin-
o	digkeit, modifiziert nach Kopf et al. $[14]$
6.12	E_{vd} (Messfahrten 152-155)
7.1	Einbauschablone mit Führungsrohren
7.2	sechstes ausgewertetes Frequenzpaket (403,2 Hz Messfahrt 163) 94

Tabellenverzeichnis

$2.1 \\ 2.2$	Richtwerte für v_p und v_s für Lockergesteine [23]	$\frac{25}{26}$
3.1	Frequenzpakete des Testsignals	36
3.2	Verdichtungszustände der Vorversuche	38
3.3	Versuchsprogramm der experimentellen Hauptversuche	42
$4.1 \\ 4.2$	Ergebnisse der achten Impulsanregung (Messfahrt 204)	50 52
	$\operatorname{Iall(204)}$	02
$7.1 \\ 7.2$	Wertung der Signalqualität, nach Frequenzen	90
	Eintreffzeitpunkt	93
A.1	Protokoll 19. April 2018	106
A.2	Protokoll 23. April 2018	107
A.3	Protokoll 24. April 2018	108
A.4	Legende zu den verwendeten Abkürzungen in den Ergebnissen der Auswertung	
	des Testsignals	109
A.5	Ergebnisse der Auswertung des Testsignals (Messfahrt 109-112)	110
A.6	Ergebnisse der Auswertung des Testsignals (Messfahrt 118-122)	111
A.7	Ergebnisse der Auswertung des Testsignals (Messfahrt 123-127)	112
A.8	Ergebnisse der Auswertung des Testsignals (Messfahrt 147-151)	113
A.9	Ergebnisse der Auswertung des Testsignals (Messfahrt 152-155)	114
A.10	Ergebnisse der Auswertung des Testsignals (Messfahrt 156-161)	115
A.11	Ergebnisse der Auswertung des Testsignals (Messfahrt 163-166)	116
A.12	Ergebnisse der Auswertung des Testsignals (Messfahrt 169-173)	117
A.13	Ergebnisse der Auswertung des Testsignals (Messfahrt 174-179)	118
A.14	Ergebnisse der Auswertung des Testsignals (Messfahrt 181-185)	119
A.15	Ergebnisse der Auswertung des Testsignals (Messfahrt 186-193)	120
A.16	Ergebnisse der Auswertung des Testsignals (Messfahrt 201-205)	121
A.17	Ergebnisse der Auswertung des Testsignals (Messfahrt 214-219)	122
A.18	Legende zu den verwendeten Abkürzungen in den Ergebnissen der Auswertung	
	der Impulsanregung	123
A.19	Ergebnisse der Auswertung der Impulsanregung (Messfahrt 109-112)	123
A.20	Ergebnisse der Auswertung der Impulsanregung (Messfahrt 118-122)	124
A.21	Ergebnisse der Auswertung der Impulsanregung (Messfahrt 123-127)	124
A.22	Ergebnisse der Auswertung der Impulsanregung (Messfahrt 147-151)	125
A.23	Ergebnisse der Auswertung der Impulsanregung (Messfahrt 152-155)	125
A.24	Ergebnisse der Auswertung der Impulsanregung (Messfahrt 156-161)	125
A.25	Ergebnisse der Auswertung der Impulsanregung (Messfahrt 163-166)	126
A.26	Ergebnisse der Auswertung der Impulsanregung (Messfahrt 169-173)	126

A.27	${\rm Ergebnisse} \ {\rm der}$	Auswertung de	\mathbf{er}	Impulsanregung	(Messfahrt	174-179)				127
A.28	Ergebnisse der	Auswertung de	\mathbf{er}	Impulsanregung	(Messfahrt	181-185)				127
A.29	Ergebnisse der	Auswertung de	\mathbf{er}	Impulsanregung	(Messfahrt	186-193)				127
A.30	Ergebnisse der	Auswertung de	\mathbf{er}	Impulsanregung	(Messfahrt	201-205)				128
A.31	Ergebnisse der	Auswertung de	\mathbf{er}	Impulsanregung	(Messfahrt	214-219)				128

Anhang A

A.1 Protokolle Hauptversuche

	Ve	ersuchsv	valze: H 13i - W	alzenzug n	nit Glattman	telbandage					
Datum der Me	ssung:	- Such S	19.04.2018	uizenzug i	Guttinu	ice is a monore in the second s		dyn. LP M 15m HA	MP 1 MM	dyn. LP M 25m T	VIP 2 TU
			Amplitude	Frequ.	Geschw.	Laufzeit- messung bei		mittlere		mittlere	
Messfahrt Nr.	Zeit	Spur	groß/klein	[Hz]	[km/h]	10 m Dateiname	Anmerkungen	Setzung	E _{vd}	Setzung	E _{vd}
76	00:02:21	1	kloin	26	4	000	Versuche am aufgerissenen Feld 08:45 Uhr	0,99	22,8	1,21	18,6
70	09.08.51	1	klein	36	4	001		0,03	36,02	0,0	40.2
78	09:16:06	1	klein	36	4	002		0,02	44.29	0,50	40,2
79	09:24:04	1	klein	36	4	004		0.54	41.59	0,48	46.7
80	09:27:45	1	klein	36	4	005		0,55	41,06	0,46	49
		2				006	Versuche am aufgerissenen Feld 08:45 Uhr	1,01	22,3	1,2	18,8
81	09:39:56	2	gross	30	4,0	007		0,55	40,98	0,53	42,5
82	09:43:37	2	gross	30	4,0	008		0,57	39,68	0,49	45,9
83	09:47:00	2	gross	30	4	009		0,51	44,38	0,5	44,6
84	09:50:43	2	gross	30	4	010/011		0,53	42,86	0,5	44,7
		1				012/013	Versuche am aufgerissenen Feld 10:53 Uhr	1,63	16,51	1,29	17,4
85	11:08:51	1	klein	36	2,5	015	Während Walzenüberfahrt Laufzeitmessung 14	0,597	37,69	0,54	42,1
86	11:14:43	1	klein	36	2,5	016	1479 have a 1447 have 20 have 2 have 1 and 2 have 2	0,64	35,16	0,55	41,3
87	11:20:14	1	klein	30	2,5	018	wanrend walzenüberfahrt Laufzeitmessung 17	0,571	39,4	0,51	43,9
00	11:24:52	1	klein	30	2,3	013		0,504	42.61	0,45	40,2
90	11:25:13	1	klein	36	2,5	020		0,520	39.82	0,45	45,3
50	1100102	-			2/5	/		0,000	05/02	0,0	10/1
		2				021	Versuche am aufgerissenen Feld 10:53 Uhr	1,307	17,21	1,44	15,7
91	11:44:31	2	gross	30	2,5	023	Während Walzenüberfahrt Laufzeitmessung 022	0,56	40,39	0,61	36,7
92	11:50:49	2	gross	30	2,5	024		0,566	39,75	0,588	38,27
93	11:55:25	2	gross	30	2,5	026	Teilweise Sprungbetrieb, Während Walzenüberfahrt Laufzeitmessung 25	0,546	41,21	0,55	40,91
94	11:59:47	2	gross	30	2,5	027	Am Ende der Spur starker Sprungbetrieb	0,499	45,09	0,53	42,45
95	12:05:03	2	gross	30	2,5	028		0,552	40,76	0,539	41,74
	12:11:30	1					LP Versuche nach Testfahrten Spur 2 gross,30Hz,2,5km/h	0,564	39,89	0,539	41,74
			-				Versiehe erste fersteren er Feldenboruhe	4 000	47.07	4 000	40.04
00	10,00,00	1	lula in	26		029	Versuche am aufgerissenen Feld 13:22 Uhr	1,303	17,27	1,299	18,31
96	13:33:22	1	klein	30	5,5	030	Hinfanrt mit 6km/n	0,723	31,12	0,61	37,0
97	13:30:39	1	klein	30	5,5	032	wantend waizenüberlahrt Lauizeitmessung 031	0,571	39,4	0,53	42,4
99	13:44:07	1	klein	36	5,5	034		0,524	44.03	0,52	43,0
100	13:47:48	1	klein	36	5,5	036	Während Walzenüberfahrt Laufzeitmessung 035	0,569	39.54	0,32	46.1
101	13:52:16	- 1	klein	36	5.5	038	Während Walzenüberfahrt Laufzeitmessung 037	0.533	42.21	0.48	46.7
					-,-						
		2				039	Versuche am aufgerissenen Feld 13:22 Uhr	1,422	15,82	1,476	15,24
102	14:04:51	2	gross	30	5,5	040		0,608	37,01	0,56	40,1
103	14:08:23	2	gross	30	5,5	042	Während Walzenüberfahrt Laufzeitmessung 041	0,543	41,44	0,52	43,2
104	14:11:41	2	gross	30	5,5	043		0,519	43,35	0,55	41,1
105	14:15:39	2	gross	30	5,5	045	Während Walzenüberfahrt Laufzeitmessung 044	0,502	44,82	0,55	41,2
106	14:19:57	2	gross	30	5,5	046		0,486	46,3	0,54	42,1
107	14:24:40	1	klein	30	5,5	047		0,498	45,18	0,49	46,4
108	14.20.23	1	KIEIII	50	3,3	046/045		0,472	47,07	0,49	43,8
		1				050	Versuche am aufgerissenen Feld 14:53 Uhr	1.58	14.28	1.54	14.6
109	14:59:23	1	klein	30	4	052	Während Walzenüberfahrt Laufzeitmessung 051	0,609	36,95	0,57	39.7
110	15:04:33	1	klein	30	4	053	Ŭ	0,573	39,27	0,52	43,3
111	15:09:02	1	klein	30	4	055	Während Walzenüberfahrt Laufzeitmessung 054	0,489	46,01	0,52	43,6
112	15:13:26	1	klein	30	4	056		0,523	43,02	0,51	44,0
		2				057	Versuche am aufgerissenen Feld 14:53 Uhr	1,34	16,83	1,64	13,7
113	15:22:50	2	gross	25	4	059	Während Walzenüberfahrt Laufzeitmessung 058	0,497	45,27	0,56	40,0
114	15:27:41	2	gross	25	4	060		0,505	44,55	0,53	42,4
115	15:32:26	2	gross	25	4	062	wanrend walzenübertahrt Lautzeitmessung 061	0,533	42,21	0,52	43,0
110	15:42:56	1	klein	30	4	063	Während Walzenüberfahrt Laufzeitmessung 064	0,43	JZ,33 //6 0	0,49	40
11/	10.42.30		ADCI11	30	4	005	maniena marzenaberranie zaurzentnessung 004	0,407	40,2	0,47	40,1
		1				066	Versuche am aufgerissenen Feld 16:06 Uhr	0.819	27.47	0.9	25.0
118	16:13:06	1	klein	42	4	067		0,59	37,94	0,55	40,8
119	16:18:08	1	klein	42	4	069	Während Walzenüberfahrt Laufzeitmessung 068	0,6	37,63	0,57	39,3
120	16:22:38	1	klein	42	4	070		0,55	41,28	0,54	41,7
121	16:27:12	1	klein	42	4	072	Während Walzenüberfahrt Laufzeitmessung 071	0,55	41,21	0,52	43,0
122	16:31:37	1	klein	42	4	073		0,54	41,74	0,49	45,7
								 			L
		2				074	Versuche am aufgerissenen Feld 16:06 Uhr	1,082	20,79	1,01	22,3
123	16:41:51	2	gross	35	4	075	M/Shannad M/shann Ob antishat Laufan Barran 2000	0,52	43,19	0,56	40,1
124	16:50:20	2	gross	35	4	077	vvanrenu vvalzenubertanrt Lautzeitmessung 0/6	0,58	39,06	0,56	39,9
125	16:50:20	2	gross	35	4	0/8	Während Walzenüberfahrt Laufzeitmessung 079	0,53	42,21	0,54	41,8
120	17:02:02	2	klein	30	4	080	wantena watzenaberraint zautzeitinessung 075	0,54	44 02	0,35	41,2
127	17:07:14	2	klein	42	4	081	Während Walzenüberfahrt Laufzeitmessung 082	0,51	39.89	0.54	41.7
						505		2,50	,	-,	
129	17:17:06		klein	20			Vibrieren am Stand				
130	17:17:47		klein	25							
131	17:18:25		klein	30							
132	17:19:15		klein	35							
133	17:20:04		klein	40							
134	17:20:50		klein	45				↓			L
135	17:21:49		klein	46				<u> </u>			L
136	17:23:32		gross	20				+			I
137	17:24:26		gross	25			Pandaganaufstandsbraita 50cm	+			<u> </u>
138	17:25:10		gross	30			panuagenaulstatiuspreite journ	+			<u> </u>
139	17-20-10		gross	30			Bandagenaufstandsbreite 80cm				<u> </u>
140	17.25.00		8,035	40	I	1	an and a reaction of the order	1			ı

Tab. A.1: Protokoll 19. April 2018

/ersuchswa	lze: H 13	i - Wa	lzenzug mit	Glattman	telbandag							
								dyn. Li	P MP 1	dyn. Li	P MP 2	
Datum der	Messung	3:	23.04.2018			Laufzeitmessung		15m H	AMM	25m	TU	
Morefahrt			Amplitudo	Fromu	Gorchur	boi 10 m		mittlere		mittloro		
Nr	Zoit	Sour	groß/klein	fHz1	fkm/hl	Dateiname	Anmerkungen	Setzung		Setzung	-	
- NI.	Zen	spui	grob/ kieli	[nz]	[Kill/lij	Datemaine	Annerkungen	secong	Evd	secong	Evd	
		1						0,43	52,2	0,39	57,1	20./21./22.04.2018 sonnig, keine Niederschläge
141	09:54:57	1	klein	42	4		Liegezeiteffekt Vergleich mit MF 121/122 (Spur 1)	0,46	48,6	0,43	52,6	23.4.2018 - Niederschläge von 7:00-9:00
142	10:05:07	1	klein	42	4		Liegezeiteffekt Vergleich mit MF 121/122 (Spur 1)	0,44	51,14	0,39	57,1	
143	10:09:46	5 1	klein	42	4		Liegezeiteffekt Vergleich mit MF 121/122 (Spur 1)	0,44	51,72	0,41	55,3	
		2						0,47	47,7	0,38	58,9	
144	10:14:26	5 2	klein	42	4		Liegezeiteffekt Vergleich mit MF 127/128 (Spur 2)	0.43	52.08	0.4	56.8	
145	10:18:56	5 2	klein	42	4		Liegezeiteffekt Vergleich mit ME 127/128 (Spur 2)	0.43	52.45	0.42	53.6	
146	10:22:34	2	klein	42	4		Liegezeiteffekt Vergleich mit MF 127/128 (Spur 2)	0.43	52.33	0.41	55.3	
		-					angerennen regener in en / en (oper e/	6,15	02/00	.,	00/0	
							Lastplatte nach 40m Testfeld, Spur 1 , 53.60m.					
							Der Walzenfahrer hat Sprungbetrieb ausserhalb des Testfeldendes bemerkt			0.408	55.15	
							Sour 1. 55 5m			0.335	67.16	
							Cours 2 55 5m			0.49	A6 00	
							Spui 2, 53,511			0,40	40,00	
							spur 2, 55,00m			0,500	01,40	
		-										
		<u> </u>										-
		-										
		1		I		000	Versuche am aufgerissenen Feld 10:40Uhr	1,27	17,74	1,82	12,4	
147	11:02:40	1	klein	30	2,5	001		0,64	35,32	0,62	36,4	
148	11:08:02		klein	30	2,5	003	warrieriu warzenübertanrt Lautzeitmessung 002	0,55	40,91	0,55	40,6	
149	11:13:17		klein	30	2,5	004	Während Weinenüberfahrt Laufreitmessung 005	0,48	47,07	0,51	44	
150	11:18:38		kloin	30	2,5	006	wanienu warzenubenantt Läufzeitmessung uub	0,524	42,94	0,49	40	
151	11:23:10	1	Nem	30	2,5	007		0,543	41,44	0,47	47,7	
		-	-	1		000	Versuche am aufgerissenen Feld 10:40 Libr	1.14	10.00	1.60	12 7	
150	11:32:09		gross	25	25	008	i contra nu aniferitatement en Totan Aui	1,14	13,62	1,08	38.1	
152	11:37:03		gross	25	2,5	011	Während Walzenüberfahrt Laufzeitmessung 010	0.547	41.13	0,55	42.9	
154	11:42:23		gross	25	2,5	012		0,551	40,83	0,55	41	
155	11:47:17	2	eross	25	2.5	014	Während Walzenüberfahrt Laufzeitmessung 013	0.516	43.6	0.62	36,4	
			<u> </u>									
							Beide Spuren zuerst 1x aufgerissen, danach bewässert und nochmals aufgerissen					
		1				015	Versuche am aufgerissenen Feld 12:50 Uhr	1,255	17,93	1,57	14,4	
156	13:07:03	1	klein	30	5,5	016	bei 7-9m kleine Schwachstelle durch Aufriss	0,61	37,07	0,6	37,6	
157	13:11:19	1	klein	30	5,5	018	Während Walzenüberfahrt Laufzeitmessung 017	0,515	43,69	0,55	40,6	
158	13:15:22		klein	30	5,5	019	and a state of the	0,51	43,95	0,5	45,1	
100	12:22:00		kloin	30	5,5	021	Warrierd Watzendoer and Ladizeitinessung 020	0,34	41,50	0,47	40,4	
161	13:27:00		Nem	statisch	5,5	022	Während Walzenüberfahrt Laufzeitmessung 023	0,004	44,04	0,40	40,3	
162	13:29:05	1	klein	30	5.5	025	Während Walzenüberfahrt Laufzeitmessung 024	0.506	44.47	0.45	49.6	
					-/-			.,		.,		
		2				026	Versuche am aufgerissenen Feld 12:50 Uhr	1,26	17,88	1,7	13,3	
163	13:37:49	2	gross	25	5,5	027	zwischen 5,5 und 6km/h	0,58	38,53	0,52	43,5	
164	13:41:34	2	gross	25	5,5	029	Während Walzenüberfahrt Laufzeitmessung 028	0,5	47	0,48	46,9	
165	13:45:46	5 2	gross	25	5,5	030		0,48	46,58	0,45	49,6	
166	13:49:32	2 2	gross	25	5,5	032	Während Walzenüberfahrt Laufzeitmessung 031	0,49	45,73	0,49	45,8	
		_										
167	14:02:32	-					GOPTO VIDEO 1	Start	CB nicht eir	ngeschalten		
168	14:03:10						GoPro Video 2	Start				
100	14:04:55						00010 10002	Stopp				
							Spur 1 zuerst 1x aufgerissen, danach bewässert: Spur 2 zuerst bewässert, danach aufgerissen					
		1				033	Versuche am aufgerissenen Feld 14:35 Uhr	1,214	18,53	1,46	15,4	
169	14:42:31	1	klein	42	2,5	034		0,56	39,54	0,54	41,5	
170	14:46:58	1	klein	42	2,5	036	Während Walzenüberfahrt Laufzeitmessung 035	0,5	45,09	0,54	42	
171	14:51:50	1	klein	42	2,5	037		0,46	48,91	0,51	43,9	
172	14:56:12	1	klein	42	2,5	039	Während Walzenüberfahrt Laufzeitmessung 038	0,45	50,11	0,46	49,2	
173	15:01:04	1	klein	42	2,5	040		0,52	43,69	0,5	45,3	
		1	L	L								
		+	I	I								
		-		<u> </u>			Versuche am aufrenissenen Feld 14:35 Libr	1.022	21.0	1.12	20.2	
174	15-11-49		aross	25	25	041	An anna an an Relipsellell Lein 14133 All	1,032	21,8 48 91	1,11	20,2 46 A	
174	15:16:26		gross	35	2,5	042	Während Walzenüberfahrt Laufzeitmessung 043	0,40	46.49	0,45	44.2	
176	15:20:47	2	gross	35	2.5	045	,	0,47	47,47	0,47	47.6	
177	15:25:26	2	gross	35	2,5	047	Während Walzenüberfahrt Laufzeitmessung 046	0,48	46,58	0,5	44.7	
178	15:30:44	2	klein	42	2,5	049	Während Walzenüberfahrt Laufzeitmessung 048	0,43	52,08	0,43	52,8	
179	15:34:57	2	klein	42	2,5	050	CB zu spät ausgeschalten	0,4	56,68	0,42	54,2	
180	15:39:57	2	klein	42	2,5	051		0,44	52,94	0,4	56,3	
		-	L	L								
		I		I								
	16.01.07	1	himte:			052	versuche am aufgerissenen Feld 15:53 Uhr	1,2	18,69	1,3	17,3	
181	16:07:41		klein	42	5,5	053	Währand Walzenüberfahrt Laufzeitmessung 054	0,59	37,84	0,54	41,7	
162	16:11:22		klein	42	5,5	055	maniferia marciliane radizeri lessarik 024	0,5	45,27	0.5	45,0	
184	16:15:11		klein	42	5,5	058	Während Walzenüberfahrt Laufzeitmessung 057	0.44	50.68	0.44	51 7	
185	16:18:55		klein	42	5.5	059	e	0,47	48,28	0,43	52.7	
		L										
		2				060	Versuche am aufgerissenen Feld 15:53 Uhr	1,09	20,57	1,09	20,6	
186	16:26:14	2	gross	35	5,5	061		0,5	44,82	0,5	44,7	
187	16:30:17	2	gross	35	5,5	063	Während Walzenüberfahrt Laufzeitmessung 062	0,49	46,11	0,48	47,4	
188	16:34:15	2	gross	35	5,5	064		0,42	53,57	0,45	49,8	
189	16:37:59	2	gross	35	5,5	066	Wanrend Walzenübertahrt Laufzeitmessung 065	0,43	52,33	0,41	54,5	
190	10:41:38		gross	35	5,5	068	warnenu warzenubertahrt Laufzeitmessung 067 (bei Statischer Retourfahrt)	0,46	49,23	0,44	51,1	
191	16:50:12		klein	42	5,5	070	Während Walzenüberfahrt Laufzeitmessung 007	0,41	57 69	0,41	54,3	
192	16:54:18		klein	42	5,5	072	Während Walzenüberfahrt Laufzeitmessung 073	0.4	56,96	0,35	55.3	

Tab. A.2: Protokoll 23. April 2018

	Versuchsv	walze:	lze: H 13i - Walzenzug mit Glattmantelbandage		bandage							
								dyn. LP MP 1		dyn. LP MP 2	2	
Datum der	Messung:		24.04.2018					15m HAMM		25m TU		
					. ·	Laufzeit-						
Messfahrt			Amplitude	Frequ.	Geschw.	messung bei 10 m						
Nr.	Zeit	Spur	groß/klein	[Hz]	[km/h]	Dateiname	Anmerkungen	mittlere Setzung	Evd	mittlere Setzung	Evd	
		1						0,47	47,7	0,48	46,5	von 23.04 auf 24.04 Niederschläge
		2						0,442	50,9	0,41	54,9	
194	08:41:51	1	klein	42	5,5		Überfahrten auf dem Hauptversuchsfeld	0,421	53,44	0,39	57,1	
195	08:45:13	1	klein	42	5,5		·	0,417	53,96	0,42	54	
196	08:49:40	2	klein	42	5.5			0.37	60.81	0.4	56.3	
197	00.45.40	2	klein	42	5,5			0.265	61.49	0.29	57.2	
100	00.55.00	2	klein	42	5,5		CD ++	0,300	63.67	0,35	67.3	
100	08:55:25	2	klein	42	5,5		CB etwas zu spat ausgeschaltet	0,555	62,67	0,39	57,5	
199	08:58:22	2	klein	42	5,5			0,346	65,03	0,39	57,8	
200	09:01:37	2	klein	42	5,5			0,346	65,03	0,36	63,2	
							Vorbereitung des Lössfeldes ab 09:30					
							Bindiges Versuchsfeld - Bearbeitung Lössfeld	dyn. LP MP1		dyn. LP MP2	2	
								5m HAMM		15m TU		
		3				000		0,552	40,76	0,54	42,1	
201	11:28:33		klein	36	4	002	Während der Walzenüberfahrt Laufzeitmessung 001: Zeit im Protokoll ist Schaltzeit CB (nicht Startlinie)	0,527	52,7	0,71	31,8	
202	11:35:02		klein	36	4	004	Während der Walzenüberfahrt Laufzeitmessung 003	0.655	34.35	0.52	43	
203	11:39:20		klein	36	4	005		0.597	37.69	0.5	45.4	
204	11:42:11		kloin	26		007	Während der Walzenüberfahrt Laufzeitmerzung 006	0,620	41 74	0.49	47.2	
204	11.45.11	-	kiem blata	30		007	Wantend der Watzendbertamit zudizertmessung 000	0,535	41,74	0,40	47,2	
205	11:50:56		klein	30	4	008	vibration zu spat eingeschaltet	0,402	48,7	0,48	40,9	
206	11:55:23		klein	36	4	009		0,534	42,1	0,51	43,8	
		-									-	
		-									-	
<u> </u>		-										
		4						0,497	45,27	0,51	43,9	
207	11:59:56	L	gross	30	4		VSz: sehr eigenartiges Signal bei gr. Amplitude	0,626	35,94	0,58	38,6	
208	12:04:43		gross	30	4			0,598	37,63	0,51	44,2	
209	12:07:42		gross	30	4			0,616	36,53	0,56	40	
210	12:10:44		gross	30	4		Sprungbetrieb	0,57	39,47	0,55	40,7	
211	12:13:50		klein	36	4			0,597	37,69	0,48	47,4	
212	12:16:38		klein	36	4			0,475	47,37	0,45	49,8	
213	12:19:47		klein	36	4			0,571	39,4	0,44	50,7	
										dyn. LP MP ex	tra	
										25m TU		
	12:23:01	4								0,88	25,7	
								dyn. LP MP1		dyn. LP MP2	2	
								5m HAMM		15m TU		
	13:25:11	3				010		1.617	13,91	1,66	13,5	
214	13:29:25	3	klein	36	4	012	Während der Walzenüberfahrt Laufzeitmessung 011	0.541	41.59	0,74	30,2	
215	13:33:32	3	klein	36	4	014	Während der Walzenüberfahrt Laufzeitmessung 013	0,496	45,36	0,7	32.1	
216	13:37:21	3	klein	36	4	015	, and the second s	0,465	48,39	0,77	29,1	
217	13:41:30	3	klein	36	4	016		0,486	46.3	0,52	43.7	
218	13:45:38	3	klein	36	4	018	Während der Walzenüberfahrt Laufzeitmessung 017	0.514	43.77	0.5	45.1	
219	13:49:59	3	klein	36	4	019		0.461	48.81	0.53	42.4	
		4						1,892	11.89	1.86	12.1	
220	13:55:48	4	gross	30	4		VSz: sehr eigenartiges Signal bei gr. Amplitude: teilweise auch VSx	0.672	33.48	0.54	41.4	
221	13:59:34	4	gross	30	4			0.637	35.32	0.5	44.9	
222	14:02:58	4	gross	30	4			0.67	33.4	0.51	44,6	
223	14:05:52	4	gross	30	4			0.63	35,9	0.46	48,5	
224	14:08:53	4	gross	30	4			0.64	35,3	0.49	45,6	
225	14:12:19	4	klein	36	4			0.6	37,4	0.46	48,6	
226	14:15:11	4	klein	36	4			0.54	41,7	0,43	51,8	
227	14:18:06	4	klein	36	4			0.57	39,5	0,44	50,8	
228	14:21:05	4	klein	36	4			0,54	41,7	0,44	51,7	
										dyn. LP MPextra 2	5m TU	
	14:24:45	4								1,1	20,5	
									_	dyn. LP MPextra 2	4m TU	
	14:27:50	4								0,76	29,8	
										dyn. LP MPextra 2	6m TU	
	14:28:55	4								0,71	31,8	
229	14:29:25	4	klein	20-50	4		gleitender Frequenzgang					
230	14:32:45	4	klein	20-50	4		zuerst waren 50Hz eingestellt, aber zu Beginn des Messfelds waren wieder 20Hz eingestellt.					
231	14:35:58	4	groß	20-45	4		VSx und VSz über Messbereich					
232	14:38:58	4	groß	20-45	4		VSx und VSz über Messbereich					
							Nullversuche in der Halle					
233	16:07:49						Walze aufgebockt - Autoreifen Bungee vom Dach auf Bandagenmitte	paar mal aufgehünft				
234	16:08:35						Walze aufgebockt - Autoreifen Bungee vom Dach auf Bandagenmitte	1 schlag				
235	16:09:17						Walze aufgebockt - Autoreifen Bungee vom Dach auf Bandagenmitte	paar mal aufgehünft				
726	16:10:02						Walze aufgebockt - Autoreifen Bungee vom Dach auf Randagenmitte	1 schlag				
230	16:10:42						Walze aufgebockt - Autoreifen Bungee vom Dach auf Randagenmitte	1 schlag				
237	20.20.45	-					nare angessen namenen bunges vom ban an banageminne	* 500.10g				
		-			-							
220	16-12-40	-	klein	20,50.20			aleitende Frequenzaänge					
200	16-16-57		aross	20-45 20	-		elaitande Frequenzeine					
239	10.10:37	-	8.033	20140-20			Province colocitzaniac					
240	16:20:22	-					Walzo am Rodon - Autorolfon auf Bahmonmitto				-	
240	16:20:52	-			l		Walza am Boden - Autoreifan auf Pahmenmitte				-	
241	16:20:27	-					Walso am Boden - Autoroifen auf Bahmonmitte				-	
242	10:30:27				1		waize am bouen - Autorenen auf kanmenmitte					

Tab. A.3: Protokoll 24. April 2018
A.2 Ergebnisse der Auswertung des Testsignals

Tab. A.4: Legende zu den verwendeten Abkürzungenin den Ergebnissen der Auswertung des Testsignals

Abkürzung	Langbezeichnung
D,t	Wellenlaufzeit [s]
v_p	Wellenlaufgeschwindigkeit [m/s]
Wtg.	Wertung der Signalqualität [-]
MW D,t	gewichteter Mittelwert der Wellenlaufzeit [s]
MW v_p	gewichteter Mittelwert der Wellenlaufgeschwindigkeit [m/s]

Me	ssfahrten TS 1	09-112															
	D,t	v_p	\A/ \	MW D,t	MW v_p		D,t	v_p	WH a	MW D,t	MW v_p		D,t	v_p	\A/+ ~	MW D,t	MW v_p
	[s]	[m/s]	wig.	[s]	[m/s]		[s]	[m/s]	wig.	[s]	[m/s]		[s]	[m/s]	wig.	[s]	[m/s]
0	0,00141775	98,7481	5	0,00207608	76,2991	0	0,000716612	195,364	8	0,000748492	190,647	0	0,000544063	257,323	5	0,00067985	212,239
1	0,00262879	53,2564	2			1	0,000658704	212,538	4			1	0,000630416	222,076	5		
2	0,000445628	314,163	0			2	0,000678811	206,243	5			2	0,000586319	238,778	5		
3	0,00543097	25,7781	2			3	0,000698969	200,295	5			3	0,00061832	226,42	5		
4	0,00171484	81,6401	5			4	0,000613764	228,101	5			4	0,000632163	221,462	3		
5	0,00117839	118,806	5			5	0,000624359	224,23	4			5	0,000578428	242,035	4		
6	0,00151078	92,6676	5			6	0,000833857	167,894	5			6	0,000745566	187,777	5		
7	0,00169106	82,7885	5			7	0,000640198	218,682	4			7	0,000636989	219,784	3		
8	0,00254722	54,9618	7			8	0,000869802	160,956	4			8	0,000589716	237,402	4		
9	0,00146218	95,7475	7			9	0,000708571	197,581	5			9	0,000675594	207,225	5		
10	0,00153055	91,4702	4			10	0,000740438	189,077	5			10	0,000670793	208,708	5		
11	0,002733	51,2257	5			11	0,00116005	120,685	4			11	0,000657257	213,007	2		
12	0,00286259	48,9068	5			12	0,000854144	163,907	5			12	0,000603209	232,092	3		
13	0,00194888	71,8363	3			13	0,000757631	184,787	5			13	0,00101017	138,59	3		
14	0,00303239	46,1682	3			14	0,000704548	198,709	5			14	0,000994089	140,833	3		
0	0	0	0	0	0	15	0,000743154	188,386	5			15	0,000632163	221,462	5		
0	0	0	0	0	0	16	0,000768997	182,055	5			16	0,00068042	205,755	5		
0	0	0	0	0	0	17	0,000781015	179,254	2			17	0,000728677	192,129	2		
0	0	0	0	0	0	0	0	0	0	0	0	18	0,00115816	120,881	2		

Tab. A.5: Ergebnisse der Auswertung des Testsignals (Messfahrt 109-112)

	D,t	v_p	Wtg.	MW D,t	MW v_p		D,t	v_p	Wtg.	MW D,t	MW v_p
	[s]	[m/s]	°.	[s]	[m/s]		[s]	[m/s]	°	[s]	[m/s]
0	0,000545301	256,739	5	0,000604519	235,836	0	0,000651466	214,9	5	0,000568928	250,04
1	0,000550127	254,487	3			1	0,000526352	265,982	7		
2	0,000667058	209,877	2			2	0,000415008	337,343	2		
3	0,000614339	227,887	3			3	0,000618848	226,227	5		
4	0,000517712	270,421	3			4	0,000528443	264,929	5		
5	0,00058547	239,124	5			5	0,000516347	271,136	4		
6	0,000509976	274,523	3			6	0,000471715	296,789	5		
7	0,000571149	245,12	5			7	0,000682028	205,27	5		
8	0,000626073	223,616	5			8	0,000561433	249,362	5		
9	0,000631293	221,767	6			9	0,000487107	287,411	5		
10	0,000407177	343,831	3			10	0,000604637	231,544	5		
11	0,000633567	220,971	5			11	0,000500861	279,519	5		
12	0,000685246	204,306	3			12	0,000627337	223,165	3		
13	0,000553344	253,007	3			13	0,000574255	243,794	3		
14	0,000781759	179,083	5			14	0,000670768	208,716	4		
15	0,000579081	241,763	3			15	0,000482567	290,115	2		
16	0,00069168	202,406	5			16	0,000559778	250,099	3		
17	0,000632163	221,462	2			17	0,00064937	215,593	5		
18	0.000554328	252,558	2			18	0,000611252	229,038	2		

	essfahrten TS	118-122																
	D,t	v_p	14/4-	MW D,t	MW v_p		D,t	v_p	14/4-	MW D,t	MW v_p		D,t	v_p	14/4-	MW D,t	MW v_p	
	[s]	[m/s]	wig.	[s]	[m/s]		[s]	[m/s]	wig.	[s]	[m/s]		[s]	[m/s]	wig.	[s]	[m/s]	
0	0,00681818	27,8667	0	0,00361791	54,7727	0	0,00388488	48,9076	0	0,00101912	208,135	0	0,00246773	76,9938	2	0,0010062	220,904]
1	0,00259022	73,3529	0			1	0,00413027	46,0018	0			1	0,00225108	84,4039	2			1
2	0,00609146	31,1912	0			2	0,00393251	48,3152	1			2	0,00301706	62,9752	3			1
3	0,00447154	42,4909	0			3	0,00295935	64,2033	1			3	0,000994101	191,128	5			1
4	0,00413008	46,0039	1			4	0,000781759	243,042	4			4	0,000791668	240	7			1
5	0,00386992	49,0966	3			5	0,000984024	193,085	5			5	0,000712034	266,841	5			1
6	0,00386992	49,0966	3			6	0,000760621	249,796	5			6	0,000712585	266,635	7			1
7	0,00314576	60,3988	1			7	0,000697117	272,551	5			7	0,000694897	273,422	7			1
8	0,00255775	74,284	0			8	0,00108102	175,76	8			8	0,000830016	228,911	7			1
9	0,00170732	111,286	0			9	0,000884707	214,76	7			9	0,000931355	204,004	7			1
10	0,00206585	91,9718	1			10	0,00096477	196,938	7			10	0,000761002	249,671	7			1
11	0,002733	51,2257	5			11	0,00116005	120,685	4			11	0,000865349	219,565	5			1
12	0,00286259	48,9068	5			12	0,000854144	163,907	5			12	0,000603209	232,092	3			1
13	0,00194888	71,8363	3			13	0,000757631	184,787	5			13	0,00101017	138,59	3			1
14	0,00303239	46,1682	3			14	0,000704548	198,709	5			14	0,000994089	140,833	3			1
0	0	. 0	0	0	0	15	0,000743154	188,386	5			15	0,000632163	221,462	5			1
0	0	0	0	0	0	16	0.000768997	182.055	5			16	0.00068042	205.755	5			1
	0	0	0	0	0	17	0.000781015	179,254	2			17	0.000728677	, 192,129	2			1
	0	0	0	0	0	0	, 0	, 0	0	0	0	18	0.00115816	120.881	2			1
		_	-		-		_		_	_	-		-,		_			1
	D,t	v_p		MW D,t	MWv	р	D,t	v_p		MW D,t	MW	/ p	D,t	v_p		MW D	,t MW	v_p
	D,t [s]	v_p [m/s]	Wtg.	MW D,t [s]	MW v_ [m/s]	p	D,t [s]	v_p [m/s	Wt	g. MW D,t	: MW ([m/	/_p s]	D,t [s]	v_p [m/s]	Wt	g. [s]	,t MW [m,	/ v_p /s]
0	D,t [s] 0,0018276	v_p [m/s]	Wtg.	MW D,t [s]	MW v_ [m/s] 57 246,23	_p 38	D,t [s] 0 0,0038569	v_p [m/s 93 49,26) Wt	g. MW D,t [s] 0 0,0008079	: MW v [m/ 943 243,:	/_p s] 125	D,t [s] 0 0,0018823	v_p [m/s]	Wtį	g. MW D [s] 1 0,000673	,t MW [m, 3755 299	/ v_p //s] 9,074
0	D,t [s] 0,0018276 0,00270649	v_p [m/s] 103,962	Wtg. 2 2 5 0	MW D,t [s] 0,00080965	MW v_ [m/s] 57 246,23	_p 38	D,t [s] 0 0,0038565 1 0,0065365	v_p [m/s 93 49,26 59 29,06	Wt 19 72	g. MW D,t [s] 0 0,0008079	: MW ([m/ 943 243,:	/_p s] 125	D,t [s] 0 0,0018823 1 0,00076004	v_p [m/s] 1 100,9 3 249,98	Wt ₁ 94	g. MW D [s] 1 0,000673 5	,t MW [m, 3755 299	/ v_p /s] 9,074
0	D,t [s] 0,0018276 0,00270649 0,000846487	v_p [m/s] 103,962 70,2016	Wtg. 2 2 3 0 7 3	MW D,t [s] 0,00080965	MW v_ [m/s] 57 246,23	_p 38	D,t [s] 0 0,0038569 1 0,0065369 2 0,0012833	v_p [m/s 93 49,26 59 29,06 17 148,	Wt 19 72 07	g. MW D,t [s] 0 0,0008079 0 2	: MW ([m/: 943 243,:	/_p s] 125	D,t [s] 0 0,0018823 1 0,00076004 2 0,00069007	v_p [m/s] 1 100,9 249,98 1 275,33	Wtj 94 36 34	MW D [s] 1 0,000673 5 5	,t MW [m, 3755 299	/ v_p i/s] 9,074
0 1 2 3	D,t [s] 0,0018276 0,00270649 0,000846487 0,000781464	v_p [m/s] i 103,962 70,2016 224,457 243,133	Wtg. 2 2 5 0 7 3 8 3	MW D,t [s] 0,0008096	MW v [m/s] 57 246,23	_p 38	D,t [s] 0 0,0038565 1 0,0065365 2 0,0012833 3 0,00090480	V_p [m/s 33 49,26 59 29,06 17 148, 08 209,9	Wt 19 72 07 89	g. MW D,t [s] 0 0,0008079 0 2 5	: MW v [m/: 943 243,:	/_p s] 125	D,t [s] 0 0,0018823 1 0,00076004 2 0,00069007 3 0,00048256	v_p [m/s] 1 100,9 3 249,98 1 275,33 7 393,72	Wt 94 36 34	MW D [s] 1 0,000673 5 5 3	,t MW [m, 3755 299	/ v_p /s] 9,074
0 1 2 3 4	D,t [s] 0,0018276 0,00270649 0,000846487 0,000781464 0,000675594	v_p [m/s] 5 103,962 6 70,2016 7 224,457 243,133 281,234	Wtg. 2 2 2 5 C 7 3 8 3 5 5	MW D,t [s] 0,00080965	MW v_ [m/s] 57 246,23	_p 38	D,t [s] 0 0,0038565 1 0,0065365 2 0,001283 3 0,00090480 4 0,00090722	v_p [m/s 33 49,26 59 29,06 17 148, 08 209,9 26 209,	Wt 19 72 07 89 43	g. MW D,t [s] 0 0,0008079 0 2 5 5 5	: MW v [m/: 943 243,:	/_p s] 125	D,t [s] 0 0,0018823 1 0,00076004 2 0,00069007 3 0,00048256 4 0,00058440	v_p [m/s] 1 100,9 3 249,98 71 275,33 37 393,77 16 325,11	Wt 36 34 28	MW D [s] 1 0,000675 5 5 3 5 5	,t MW [m, 3755 299	/v_p /s] 9,074
0 1 2 3 4 5	D,t [s] 0,0018276 0,00270649 0,000846487 0,000781464 0,000675594 0,000737655	V_p [m/s] 5 103,962 70,2016 7 224,457 243,133 281,234 5 257,573	Wtg. 2 2 2 5 CC 7 3 8 3 8 5 4 5 5 5 5 5	MW D,t [s] 0,00080960	MW v_ [m/s] 57 246,23	_p] 38	D,t [s] 0 0,0038563 1 0,0065363 2 0,001283 3 0,00090480 4 0,00090722 5 0,00062889	V_p [m/s 33 49,26 59 29,06 17 148, 08 209,9 26 209, 31 302,1	Wt; 19 72 07 89 43	g. MW D,t [s] 0 0,0008079 0 2 5 5 5 5	: MW v [m/: 943 243,:	/_p s] 125	D,t [s] 0 0,0018823 1 0,00076004 2 0,00069007 3 0,00048256 4 0,00058440 5 0,00054507	V_p [m/s] 1 100,9 3 249,98 71 275,33 77 393,72 96 325,11 75 348,55	Wt 94 36 34 28 16 76	MW D [s] 1 0,000673 5 5 3 5 8	,t MW [m, 3755 299	/ v_p /s] 9,074
0 1 2 3 4 5 6	D,t [s] 0,0018276 0,00270649 0,000846487 0,000781464 0,000675594 0,000737655 0,000747979	V_p [m/s] 0 103,962 0 70,2016 7 224,457 243,133 281,234 281,234 257,573 0 254,018	Wtg. 2 2 2 5 C 7 3 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	MW D,t [s] 0,00080960	MW v_ [m/s] 57 246,23	_p 38	D,t [s] 0 0,0038565 1 0,0065365 2 0,0012833 3 0,00090480 4 0,00090722 5 0,00062885 6 0,0006594	V_p [m/s 3 49,26 59 29,06 17 148, 08 209,9 26 209,9 31 302,1 43 285,	Wt 19 72 07 89 43 19 31	g. MW D,t [s] 0 0,0008079 0 2 5 5 5 5 5 5	: MW v [m/: 943 243,: 	/_p s] 125	D,t [s] 0 0,0018823 1 0,00076004 2 0,00069007 3 0,00048256 4 0,00058440 5 0,00054507 6 0,00072063	v_p [m/s] 1 100,9 3 249,98 71 275,33 77 393,77 96 325,11 75 348,57 44 263,65	Wt 94 36 34 28 16 76 57	MW D. [s] 1 0,000673 5 5 3 3 5 8 7	,t MW [m, 3755 299	/ v_p)/s]),074
0 1 2 3 4 5 6 7	D,t [s] 0,0018276 0,00270645 0,000781464 0,000675594 0,000737655 0,000747975 0,000753986	V_p [m/s] 103,962 70,2016 224,457 224,133 243,133 281,234 257,573 254,018 251,994	Wtg. 2 2 2 5 CC 7 3 8 3 8 3 5 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5	MW D,t [5] 0,00080960	MW v_ [m/s] 57 246,23	_p 38	D,t [5] 0 0,0038569 1 0,0065366 2 0,0001283 3 0,0000408 4 0,00009722 5 0,0006559 7 0,00071907	V_p [m/s 33 49,26 59 29,06 17 148, 08 209,9 26 209,9 21 302,1 43 285, 25 264,2	Wt; 19 72 07 89 43 19 31 47	g. MW D,t [s] 0 0,0008079 0 2 5 5 5 5 5 5 5 5 5	: MW \ [m/ 943 243, 	/_p s] 125	D,t [5] 0 0,0018823 1 0,00076004 2 0,00069007 3 0,00048256 4 0,00058400 5 0,00054507 6 0,00072063 0	v_p [m/s] 1 100,9 3 249,98 1 275,33 7 393,72 16 325,11 75 348,55 4 263,65 0	Wt 34 34 34 357 0	MW D. [s] 1 0,000673 5 5 3 3 5 8 7 0	,t MW [m, 3755 299	(v_p)/s] 9,074
0 1 2 3 4 5 6 7 7 8	D,t [s] 0,0018276 0,00270645 0,000846487 0,000781464 0,000675594 0,000737655 0,000747975 0,000753986 0,000651466	v_p [m/s] 103,962 70,2016 224,457 243,133 281,234 257,575 254,018 251,994 291,65	Wtg. 2 2 2 5 C 7 3 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	MW D,t [s] 0,00080963	MW v_ [m/s] 246,23		D,t [s] 0 0,0038569 1 0,0065365 2 0,001283 3 0,00090480 4 0,00090722 5 0,00062584 6 0,00065540 7 0,00071902 8 0,00065140	V_p [m/s 33 49,26 59 29,06 17 148, 28 209,9 26 209,9 26 209,9 302,1 43 285, 25 264,2 56 291,	Wt 19 72 07 89 43 19 31 47 65	MW D,1 [5] 0 0,0008079 0 2 5 5 5 5 5 5 5 5 3	: MW ([m/: 943 243,-	/_p s] 125	D,t [5] 0 0,0018825 1 0,00069007 3 0,00048256 4 0,00058440 5 0,00054507 6 0,00072063 0 0 0	V_p [m/s] 1 100,9 3 249,98 1 275,32 7 393,72 6 325,11 5 348,55 4 263,65 0 0	Wt 24 36 34 28 16 76 57 0 0 0	MW D. [s] 1 0,000675 5 5 3 3 5 5 8 7 7 0 0	,t MW [m, 3755 299 	(v_p)/s]),074 0 0
0 1 2 3 4 5 6 7 7 8 9	D,t [5] 0,0018276 0,00270645 0,000846487 0,000781464 0,000675594 0,000737655 0,000747975 0,000753986 0,000651466 0,000921703	v_p [m/s] i 103,962 i 103,962 i 224,457 2243,133 i 281,234 i 257,575 i 254,018 i 251,994 i 291,65 i 206,14	Wtg. 2 2 2 5 CC 7 3 3 3 3 3 5 5 5 5 4 5 5 5 4 5 5 5 5 5 5 5	MW D,t [s] 0,00080963	MW v_ [m/s] 57 246,2: 	_p 38	D,t [5] 0 0,0038569 1 0,0065369 2 0,001283 3 0,00090480 4 0,00090722 5 0,0006589 6 0,00065140 9 0,0009140 9 0,00092843	V_p [m/s 33 49,26 59 29,06 17 148, 28 209,9 26 209,9 26 209,9 3 302,1 43 285, 25 264,2 56 291, 31 204,6	Wt 19 72 07 89 43 19 31 47 65 46	MW D,1 [s] 0 0,0008079 0 2 5 5 5 5 5 5 5 3 3 3	: MW v [m/: 943 243; 	/_p s] 125	D,t [5] 0 0,001882: 1 0,00076004 2 0,00069007 3 0,00048256 4 0,00054407 5 0,00054507 6 0,00072063 0 0 0 0	V_p [m/s] 1 100,9 3 249,99 1 275,32 7 393,72 6 325,11 5 348,55 4 263,65 0 0 0 0	Wt 24 36 34 28 16 57 0 0 0 0 0	<pre>3. MW D. [5] 1 0,000673 5 5 5 5 3 3 5 5 8 8 7 0 0 0 0 0</pre>	,t MW [m, 8755 299 	(v_p)/s] 0,074 0 0 0 0
0 1 2 3 4 5 6 7 7 8 9 10	D,t [5] 0,0018276 0,00270645 0,000846487 0,000781464 0,000737655 0,000737655 0,000747975 0,000753986 0,000753986 0,000753986	v_p [m/s] 103,962 70,2016 224,457 243,133 281,234 257,573 254,018 251,994 291,65 206,14 205,338	Wtg. 2 2 2 5 C 7 3 8 3 8 5 8 5 8 5 5 5 5 5 4 5 8 3 8 3 8 3 8 3 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5	MW D,t [s] 0,00080963	MW v_ [m/s] 57 246,2: 	_p] 38 	D,t [5] 0 0,0038569 1 0,0065369 2 0,001283 3 0,0009048(4 0,00090722 5 0,00065940 7 0,00061940 7 0,00061940 9 0,00092843 0 0,00091922	V_p [m/s 33 49,26 59 29,06 17 148, 38 209,9 26 209,9 31 302,1 33 285, 25 264,2 56 291, 31 204,6 31 206,6	Wt 19 72 07 89 43 19 31 47 65 46 81	MW D,1 [s] 0 0,0008079 0 2 5 5 5 5 5 5 5 5 5 3 3 3 5 5 5 5 5 5 5	: MW v [m/: 943 243; 	/_p s] 125	D,t [5] 0 0,0018825 1 0,00076004 2 0,00069007 3 0,00048256 4 0,00058440 5 0,00054507 6 0,00072063 0 0 0 0 0 0	V_p [m/s] 1 100,9 3 249,98 1 275,33 7 393,72 6 325,11 5 348,57 4 263,65 0 0 0 0 0 0 0 0	Wt 94 36 34 28 16 76 57 0 0 0 0 0	MW D [5] 1 0,000673 5 5 5 3 3 5 5 7 7 0 0 0 0 0 0 0	,t MW [m, 3755 299 	(v_p)/s]),074 0 0 0 0 0 0
0 1 2 3 4 5 6 7 7 8 9 10 11	D,t [5] 0,0018276 0,00270645 0,000846487 0,000781464 0,00075594 0,000737655 0,000747975 0,000753986 0,000753986 0,000651466 0,000921703 0,000738328	v_p [m/s] 103,962 224,457 224,457 243,133 281,234 257,573 254,018 251,994 291,65 206,14 257,338 220,971	Wtg. 2 2 2 5 CC 7 3 8 3 8 3 8 5 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	MW D,t [s] 0,00080963	MW v_ [m/s] 246,23	_p 388 	D,t [s] 0 0,0053565 1 0,0005365 2 0,0005385 3 0,0009048 4 0,0009048 5 0,0006559 7 0,0007190 8 0,00065140 9 0,0009284 9 0,0009284 1 0,0009125 1 0,0009125	V_p [m/s 33 49,26 59 29,06 17 148, 38 209,9 26 209,9 30 302,1 33 285, 25 264,2 56 291, 31 204,6 51 206,6 14 256,0	Wt; 19 72 07 89 43 19 31 47 65 46 81 94	MW D,t [s] 0 0,0008079 0 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	: MW v [m/. 943 243,7	/_p s] 125	D,t [5] 0 0,0018825 1 0,00060007 3 0,00048256 4 0,00058440 5 0,00058440 5 0,00054507 6 0,00072063 0 0 0 0 0 0 0 0 0 0	V_p [m/s] 1 100,9 3 249,98 1 275,33 7 393,72 6 325,11 5 348,52 4 263,65 0 0 0 0 0 0 0 0 0 0	Wt 4 36 34 28 16 76 57 0 0 0 0 0 0 0 0 0 0 0 0	MW D [s] 1 0,000673 5 5 5 5 7 7 0 0 0 0 0 0 0 0 0 0 0	,t MW [m, 3755 299 	(v_p //s]),074 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 7 8 9 10 11 12	D,t [s] 0,0018276 0,00270649 0,000781464 0,000781464 0,000737655 0,000747975 0,000733986 0,000651466 0,000651466 0,00063567 0,00063557	V_p [m/s] 103,962 224,457 224,457 243,133 281,234 257,573 254,018 251,994 205,145 205,145 205,145 205,145 200,147 200,300	Wtg. 2 2 2 5 00 7 3 8 3 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5	MW D,t [s] 0,00080969	MW v_ [m/s] 57 246,2: 		D,t [s] 0 0,0038565 1 0,0012837 2 0,0002948 3 0,0009048 4 0,0009072 5 0,0006594 7 0,00071907 8 0,0006594 7 0,00071907 8 0,0006594 9 0,00005144 9 0,00091925 10 0,00091925 11 0,00074197 12 0,0006273	V_p [m/s 33 49,26 59 29,06 59 29,06 17 148, 38 209,9 26 209,9 1302,1 43 285, 25 264,2 56 291, 31 204,6 31 204,6 31 205,6 31 205,6 37 223,1	Wt 19 72 07 89 43 19 31 47 65 46 81 94 65	<pre>B. MW D,1 [s] 0 0,0008079 0 2 5 5 5 5 5 5 5 5 5 5 5 3 3 3 3 3 5 5 5 5</pre>	: MW \ [m/. 943 243, 	/_p s] 125	D,t [5] 0 0,001822 1 0,00076004 2 0,00069007 3 0,00048205 3 0,0005840 5 0,0005840 6 0,00072063 0 0 0 0 0 0 0 0 0 0 0 0	v_p [m/s] 1 100,9 249,98 71 275,33 77 393,77 6 325,11 75 348,55 74 263,65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Wt 4 36 34 28 16 76 0 0 0 0 0 0 0 0 0 0 0 0 0	MW D [5] 0,000673 5 5 5 5 8 8 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	,t MW [m, 3755 299 	(v_p /s] 0,074 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13	D,t [s] 0,0018276 0,00270649 0,000846487 0,000737655 0,000737655 0,000747975 0,000753986 0,000651466 0,000921703 0,000633667 0,000633567 0,000635246	V_p [m/s] 103,962 70,2016 224,457 243,133 281,234 257,573 254,018 251,994 291,65 201,65 201,6	Wtg. 2 2 2 5 C 7 3 8 3 8 5 5 5 5 5 5 5 8 3 8 3 8 5 5 5 8 3 8 3 9 5 5 5 5 5 5 5 8 3 8 3 9 5 5 5 8 4 5 5 8 3 9 5 5 5 8 3 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	MW D,t [s] 0,00080963	MW v_ [m/s] 246,2: 		D,t [s] 0 0,0038565 1 0,0065365 2 0,0002835 3 0,00090480 4 0,00090480 4 0,0009022 5 0,00062885 6 0,0006594 7 0,0001902 8 0,00065140 9 0,00091925 10 0,00091925 11 0,00074125 12 0,00062733 13 0,00057425	V_p [m/s 33 49,26 59 29,06 59 29,06 17 148, 28 209,9 26 209,9 26 209,9 302,1 43 285, 25 264,2 56 291, 31 204,6 31 204,6 31 204,6 31 202,6 4 255,0 37 223,1 55 243,7	Wt, 19 72 77 77 77 77 77 77 77 77 77	g. MW D,1 [s] 0 0,0008079 0 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	: MW v [m/ 943 243, 	/_p s] 125	D,t [5] 0 0,0018823 1 0,00076004 2 0,00069007 3 0,00048205 4 0,00058440 5 0,00058440 5 0,0005840 6 0,00072063 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	v_p [m/s] 1 100,9 3 249,98 71 275,33 77 393,77 6 325,11 75 348,57 4 263,65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Wti 44 36 38 428 46 76 77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MW D [s] 0,000673 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	,t MW [m, 3755 299 	(v_p /s]),074),074 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	D,t [s] 0,0018276 0,00270645 0,000846487 0,000781464 0,000675594 0,000737655 0,000747979 0,000753986 0,000651466 0,000921703 0,00063366 0,00063366 0,000635344 0,00053344	V_p [m/s] 103,962 202,457 244,57 244,57 244,13 281,232 281,232 257,577 254,018 251,994 291,65 206,14 251,994 291,65 206,14 253,000 253,000 253,000 179,083	Wtg. 2 2 2 5 C C 7 3 8 3 8 5 5 5 5 5 8 3 1 5 5 3 8 3 1 5 5 3 8 3 7 3 8 3 8 5 5 5 5 5 5 5 6 5 7 3 8 3 8 5 7 3 8 3 8 5 7 3 8 3 8 5 7 3 8 3 8 5 7 5 8 3 8 3 8 5 7 5 8 3 8 3 8 3 8 3 8 5 7 5 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3	MW D,t [s] 0,00080963	MW v_ [m/s] 246,23		D,t [5] 0 0,0038569 1 0,0063365 2 0,001283 3 0,00090420 5 0,0006288 6 0,0006594 7 0,00071902 8 0,0006594 9 0,00091925 10 0,0007192 10 0,0007425 11 0,0007425 12 0,00067742 14 0,0006707	V_p [m/s 33 49,26 59 29,06 17 148, 08 209,9 26 209,9 1 302,1 31 302,5 25 264,2 56 291, 31 204,6 11 206,6 14 206,0 37 223,1 55 243,7 55 243,7	Wt 19 72 77 77 89 19 31 31 47 65 65 81 94 65 94	MW D,1 [5] 0 0,0008079 0 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	: MW v [m/: 943 243, 	/_p s] 125	D,t [5] 0 0,0018823 1 0,00076004 2 0,00058007 3 0,00048256 4 0,00058400 5 0,00054507 6 0,00054507 6 0,00054507 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V_p [m/s] 1 100,9 3 249,98 1 275,33 7 393,77 6 325,11 5 348,57 4 263,65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Wtt 46 44 48 44 48 46 67 6 77 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>MW D [5] 0,00067: 5 5 5 5 5 5 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	,t MW [m, 3755 299 	/ v_p /s] 0,074 0,074 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	D,t [s] 0,0018276 0,00270645 0,000846487 0,000781464 0,000675594 0,000737655 0,000747975 0,000753986 0,000651466 0,000921703 0,0006513466 0,00063567 0,00063567 0,0006553444 0,000781755 0,000579081	V_p [m/s] 103,962 70,2016 224,457 243,133 243,133 281,232 257,577 254,018 251,994 291,65 206,14 257,338 206,14 257,338 200,16 257,338 200,17 200,107 201,07	Wtg. 2 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 3 1 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5	MW D,t [s] 0,00080963	MW v_ [m/s] 57 246,23		D,t [5] 0 0,0038569 1 0,0065365 2 0,001283 3 0,00090482 5 0,0006594 7 0,00071907 8 0,0006594 9 0,00091929 10 0,00091929 11 0,00071499 10 0,0002743 13 0,00057429 14 0,0006707 15 0,00048256	V_p [m/s 33 49,26 59 29,06 59 29,06 59 29,06 59 29,06 17 148, 59 209,9 26 209,9 31 302,1 33 285,2 25 264,2 56 291, 31 204,6 31 206,6 41 206,6 55 243,7 55 243,7 55 249,1 57 290,1	Wt 19 72 77 89 43 19 31 47 65 65 65 94 94 16 15	g, MW D,1 [5] 0 0,0008079 0 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	: MW v [m/: 943 243, 	/_p s] 125	D,t [5] 0 0,0018825 1 0,00069007 3 0,00048256 4 0,00058440 5 0,00054507 6 0,00054507 6 0,00054507 6 0,00054507 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	v_p [m/s] 11 100,9 32 249,98 11 275,33 77 393,77 46 3225,11 55 348,55 44 263,65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Wtt 004 036 034 034 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>MW D [5] 1 0,00067: 5 5 5 5 3 3 5 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	,t MW [m, 3755 299 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/ v_p /s] 0,074 0,074 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	D,t [5] 0,0018276 0,00270645 0,000846487 0,000781464 0,000675594 0,000737655 0,000737655 0,000737855 0,00073328 0,000651466 0,000951703 0,00063567 0,00063567 0,00063567 0,000635344 0,000579081 0,00069168	V_p [m/s] 103,962 70,2016 224,457 243,133 243,133 243,133 257,572 254,018 257,573 254,018 257,538 200,14 257,338 220,977 204,300 253,007 204,306 253,007 204,306 253,007 204,306 254,008 202,400 202,400	Wtg. 2 2 2 5 C	MW D,t [s] 0,00080963	MW v_ [m/s] 57 246,23		D,t [5] 0 0,0038569 1 0,0065365 2 0,001283 3 0,00090482 4 0,00090482 5 0,00065597 7 0,0007190 8 0,00065597 1 0,0007190 9 0,00091929 11 0,0007190 12 0,00074199 12 0,0006707 13 0,0005707 15 0,00048256 16 0,0005597	V_p [m/s 33 49,26 59 29,06 59 29,06 59 29,06 59 29,06 31 302,1 33 285, 26 209,9 31 302,1 33 285, 26 209,9 31 302,1 31 204,6 31 204,6 31 206,6 14 256,0 37 209,1 38 208,7 58 205,0 57 290,1 37 250,0	wti, 19 72 73 74 73 74 75 75 75 74 75 75 74 75 75 74 75 75 74 75 75 74 75 75 75 75 75 75 75 75 75 75	<pre>multiple states in the state in the sta</pre>	: MW v [m/: 943 243, 	/_p s] 125	D,t [5] 0 0,0018825 1 0,00069007 3 0,0004825 4 0,00058440 5 0,00058440 5 0,00054507 6 0,00072063 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	v_p [m/s] 1 100,9 3 249,98 1 275,33 7 393,77 6 325,11 5 348,57 4 263,65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Wtq 44 44 86 76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MW D [s] 1 0,000673 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	,t MW [m, 3755 299 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/ v_p /s] 0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17	D,t [5] 0,0018276 0,00270645 0,000846487 0,000781464 0,000737655 0,000737655 0,000737975 0,000753986 0,000753986 0,000753986 0,000651466 0,00063166 0,00063166 0,00069168 0,00069168	v_p [m/s] 103,962 70,2016 2244,53 243,133 257,575 254,018 251,992 254,018 251,992 204,306 206,12 204,306 206,12 204,306 204,306 204,306 204,306 241,763 240,221,465	Wtg. 2 2 2 5 C 2 7 C 3 8 C 5 5 C 5 5 C 3 8 C 5 5 C 3 7 C 3 8 C 5 5 C 2 7 C 3 8 C 5 5 C 2 7 C 3 8 C 5 5 C 2 6 C 2 7 C 3 8 C 5 5 C 5 6 C 7 7 C 3 8 C 5 5 C 7 7 C 3 8 C 5 7 C 3 8 C 5 5 C 7 7 C 3 8 C 5 5 C 7 7 C 3 8 C 5 5 C 7 7 C 3 8 C 5 7 C 5 7 C 3 8 C 5 7 C	MW D,t [s] 0,00080963	MW v_ [m/s] 57 246,2: 		D,t [5] 0 0,0038569 1 0,0065365 2 0,001283 3 0,0009048(4 0,0009072) 5 0,0006599 7 0,0007190 8 0,0006594 9 0,00091929 11 0,0007190 12 0,0006733 13 0,00057422 14 0,00067357 15 0,0004855 16 0,0005597 17 0,0006495	V_p [m/s 33 49,26 59 29,06 17 148, 209,9 26 209,9 21 302,1 43 285, 25 264,2 56 291, 31 204,6 91 206,6 14 256,0 37 223,1 55 243,7 56 243,7 57 290,1 75 250,0 7 250,0 70	Wt, 19 72 77 89 9 19 19 19 19 19 10 10 10 10 10 10 10 10 10 10	<pre>MWU D,1 [5] 0 0,0008079 0 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 3 3 3 3 3 4 4 2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</pre>	: MW v [m/: 943 243, 	/_p s] 125	D,t [5] 0 0,001882: 1 0,00076004 2 0,00069007 3 0,00048256 4 0,00058440 5 0,00058440 5 0,00054507 6 0,00072063 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	v_p [m/s] 1 100,9 3 249,98 1 275,33 7 393,77 6 325,11 5 348,57 4 263,69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Wtų 44 44 86 76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre></pre>	,t MW [m, 3755 299 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/ v_p //s]),074) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	D,t [5] 0,0018276 0,00270645 0,000781464 0,00075194 0,000737655 0,000747975 0,000753986 0,000651466 0,000921703 0,000753322 0,00065163 0,00065367 0,00063263 0,00063263 0,00063263 0,00063263	V_p [m/s] 103,962 70,2016 224,453 243,133 281,234 257,575 254,018 251,994 251,994 251,994 200,10 200,10 253,007 179,083 241,763 204,306 221,465	Wtg. 2 2 2 3 C 7 3 3 3 3 5 5 5 5 5 3 3 5 5 3 3 5 5 3 3 5 5 3 3 5 5 3 3 5 5 3 3 5 5 5 5	MW D,t [s] 0,00080960	MW v_ [m/s] 246,2: 		D,t [s] 0 0,003566 1 0,0005362 3 0,0005948 4 0,0009048 4 0,0009072 5 0,0006594 7 0,0007490 8 0,0006594 9 0,0006594 9 0,00005142 9 0,00005125 10 0,00007419 12 0,0006774 13 0,0005742 14 0,000577 15 0,00048256 16 0,0005897 17 0,0006492 18 0,00064125	V_p [m/s] 33 49,26 59 29,06 17 148, 08 209,9 20 209,9 31 302,1 43 285, 25 264,2 56 291, 31 204,6 31 206,6 31 206,6 31 206,6 37 223,1 55 243,7 58 208,7 57 290,1 78 200,0 37 215,5 2 229,0	Wti 19 72 07 89 43 19 31 47 55 54 65 65 65 94 65 94 94 93 38	MWU D, t [5] 0 0,0008079 0 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	: MW v [m/: 943 243,7 	/_p	D,t [5] 0 0,001882: 1 0,00076004 2 0,00069007 3 0,00048256 4 0,00058440 5 0,00058440 5 0,00054507 6 0,00072063 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	v_p [m/s] 1 100,9 3 249,98 7 393,77 6 325,11 7 393,77 6 325,11 7 393,77 6 325,11 7 393,77 6 325,11 7 393,77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Wtg 36 36 34 28 16 77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre></pre>	,t MW [m, 3755 299 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/ v_p //s]),074) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tab. A.6: Ergebnisse der Auswertung des Testsignals (Messfahrt 118-122)

Mes	sfahrten TS 123-1	127															
	D,t	v_p		MW D,t	MW v_p		D,t	v_p		MW D,t	MW v_p		D,t	v_p		MW D,t	MW v_p
	[s]	[m/s]	wig.	[s]	[m/s]		[s]	[m/s]	wig.	[s]	[m/s]		[s]	[m/s]	wig.	[s]	[m/s]
0	0,00289431	62,191	0	0,00222979	82,7914	0	0,0044878	42,337	0	0,000808217	236,302	0	0,00668293	28,4307	0	0,000634198	313,275
1	0,00689694	26,0985	0			1	0,00486179	39,0803	0			1	0,00640959	29,6431	0		
2	0,00421951	42,659	0			2	0,000920913	206,317	0			2	0,00564411	33,6634	0		
3	0,0075	24	0			3	0,000825508	230,161	1			3	0,000836924	227,022	2		
4	0,00314634	57,2093	0			4	0,000902981	210,414	. 4			4	0,000659863	287,939	5		
5	0,00319783	56,2881	0			5	0,000786585	241,551	5			5	0,000395705	480,155	5		
6	0,00266667	67,5	1			6	0,00087996	215,919	5			6	0,000571898	332,227	5		
7	0,00217886	82,6119	1			7	0,000865508	219,524	5			7	0,000719337	264,132	5		
8	0,0024607	73,1498	3			8	0,00079141	240,078	5			8	0,000694209	273,693	5		
9	0,00169456	106,222	3			9	0,0007142	266,032	8			9	0,000656556	289,389	3		
10	0,00221982	81,0875	1			10	0,000799095	237,769	7			10	0,000757505	250,824	3		
11	0,00240877	74,727	3			11	0,000786585	241,551	7			11	0,000599896	316,722	5		
12	0,00232389	77,4563	0			12	0,000867275	219,077	2			12	0,000454957	417,622	2		
13	0,000878049	205	0			13	0,000956802	198,578	0			13	0,00080291	236,639	2		
14	0,00303239	46,1682	3			14	0,000704548	198,709	5			14	0,000994089	140,833	3		
0	0	0	0	0	0	15	0,000743154	188,386	5			15	0,000632163	221,462	5		
0	0	0	0	0	0	16	0,000768997	182,055	5			16	0,00068042	205,755	5		
0	0	0	0	0	0	17	0,000781015	179,254	2			17	0,000728677	192,129	2		
0	0	0	0	0	0	0	0	C	0	0	0	18	0,00115816	120,881	2		
	D,t	v_p	W/ta	MW D,t	MW v_p		D,t	v_p	Wta	MW D,t	MW v_p		D,t	v_p	W/ta	MW D,t	MW v_p
	[s]	[m/s]	wig.	[s]	[m/s]		[s]	[m/s]	wig.	[s]	[m/s]		[s]	[m/s]	wig.	[s]	[m/s]
0	0,0042439	44,7701	0	0,00070758	279,686	0	0,00374739	50,7019	0	0,000635119	305,679	0	0,00362195	52,4579	0	0,000600227	325,403
1	0,00402439	47,2121	0			1	0,0027561	68,9381	. 0			1	0,0041937	45,3061	0		
2	0,00407573	46,6174	0			2	0,00182114	104,33	0			2	0,00347561	54,6667	0		
3	0,00094506	201,045	2			3	0,00190244	99,8718	0			3	0,00212921	89,2351	0		
4	0,000398922	476,283	2			4	0,000760043	249,986	2			4	0,000573558	331,266	1		
5	0,000862584	220,268	5			5	0,000943178	201,447	2			5	0,00078175	243,045	1		
6	0,000644227	294,927	5			6	0,000562486	337,786	3			6	0,000602129	315,547	3		
7	0,00069506	273,358	5			7	0,000589043	322,557	5			7	0,000430678	441,164	3		
8	0,000725652	261,833	5			8	0,000591949	320,974	5			8	0,000802515	236,756	3		
9	0,00061795	307,468	5			9	0,000604818	314,144	5			9	0,000614469	309,21	5		
10	0,000869049	218,63	5			10	0,000812776	233,767	3			10	0,00058383	325,437	5		
11	0,000658804	288,402	5			11	0,000534041	355,778	5			11	0,000517625	367,061	5		
12	0,000725071	262,043	3			12	0,000614063	309,415	3			12	0,000710971	267,24	2		
13	0.000451056	420.488	2		1	13	0,000632173	300,551	. 5			13	0,00057199	332,174	2		
	0,000451850	120,100															
14	0,000431836	179,083	5			14	0,000632056	300,606	0			14	0,000837054	226,987	0		
14 15	0,000451856 0,000781759 0,000579081	179,083 241,763	5			14 15	0,000632056 0,000482567	300,606 290,115	0			14 0	0,000837054	226,987 0	0	0	(
14 15 16	0,000451856 0,000781759 0,000579081 0,00069168	179,083 241,763 202,406	5 3 5			14 15 16	0,000632056 0,000482567 0,000559778	300,606 290,115 250,099	0 2 3			14 0 0	0,000837054	226,987 0 0	0	0	С С
14 15 16 17	0,000451850 0,000781759 0,000579081 0,00069168 0,000632163	179,083 241,763 202,406 221,462	5 3 5 2			14 15 16 17	0,000632056 0,000482567 0,000559778 0,00064937	300,606 290,115 250,099 215,593	0 2 3 5			14 0 0	0,000837054 0 0 0	226,987 0 0 0	0 0 0 0	0 0 0	с с с

Tab. A.7: Ergebnisse der Auswertung des Testsignals (Messfahrt 123-127)

Me	ssfahrten TS 1	147-151															
	D,t	v_p	14/4-	MW D,t	MW v_p		D,t	v_p	14/6-	MW D,t	MW v_p		D,t	v_p	14/6-	MW D,t	MW v_p
	[s]	[m/s]	vvtg.	[s]	[m/s]		[s]	[m/s]	wtg.	[s]	[m/s]		[s]	[m/s]	wtg.	[s]	[m/s]
0	0,00387987	43,8159	0	0,00206549	106,529	0	0,00641463	26,5019	0	0,000998465	171,059	0	0,005	34	0	0,000857983	198,99
1	0,0038961	43,6333	0			1	0,00717073	23,7075	0			1	0,00294971	57,6327	0		
2	0,0015393	110,44	2			2	0,00104235	163,094	5			2	0,000809412	210,029	2		
3	0,00168022	101,177	2			3	0,00114368	148,642	5			3	0,000752805	225,822	2		
4	0,00115092	147,708	5			4	0,000948245	179,279	5			4	0,00085897	197,912	5		
5	0,00112197	151,519	2			5	0,0010564	160,924	5			5	0,000983179	172,908	5		
6	0,00475576	35,7461	. 2			6	0,000986895	172,257	5			6	0,000823581	206,416	4		
7	0,00303294	56,0513	3			7	0,000920095	184,764	7			7	0,000868621	195,713	5		
8	0,00228645	74,351	. 0			8	0,000953601	178,272	5			8	0,00088149	192,855	5		
9	0,00169456	106,222	3			9	0,00101936	166,771	5			9	0,000786585	216,124	5		
10	0,00221982	81,0875	1			10	0,00103743	163,867	5			10	0,00086976	195,456	5		
11	0,00240877	74,727	3			11	0,000907952	187,235	5			11	0,0008463	200,874	5		
12	0,00232389	77,4563	0			12	0,000867275	219,077	2			12	0,000454957	417,622	2		
13	0,000878049	205	0			13	0,000956802	198,578	0			13	0,00080291	236,639	2		
14	0,00303239	46,1682	3			14	0,000704548	198,709	5			14	0,000994089	140,833	3		
0	0	0	0	0	0	15	0,000743154	188,386	5			15	0,000632163	221,462	5		
0	0	0	0	0	0	16	0,000768997	182,055	5			16	0,00068042	205,755	5		
0	0	0	0	0	0	17	0,000781015	179,254	2			17	0,000728677	192,129	2		
0	0	0	0	0	0	0	0	0	0	0	0	18	0,00115816	120,881	2		
	D,t	v_p		MW D,t	MW v_p		D,t	v_p		MW D,t	MW v_p		D,t	v_p		MW D,t	MW v_p
	D,t [s]	v_p [m/s]	Wtg.	MW D,t [s]	MW v_p [m/s]		D,t [s]	v_p [m/s]	Wtg.	MW D,t [s]	MW v_p [m/s]		D,t [s]	v_p [m/s]	Wtg.	MW D,t [s]	MW v_p [m/s]
0	D,t [s] 0,00308943	v_p [m/s] 55,0263	Wtg. 0	MW D,t [s] 0,000822738	MW v_p [m/s] 206,943	0	D,t [s] 0,0015122	v_p [m/s] 112,419	Wtg. 0	MW D,t [s] 0,000775466	MW v_p [m/s] 220,393	0	D,t [s] 0,00161024	v_p [m/s] 105,574	Wtg. 0	MW D,t [s] 0,000725112	MW v_p [m/s] 235,434
0	D,t [s] 0,00308943 0,00603512	v_p [m/s] 55,0263 28,1684	Wtg. 0 0	MW D,t [s] 0,000822738	MW v_p [m/s] 206,943	0	D,t [s] 0,0015122 0,000655769	v_p [m/s] 112,419 259,238	Wtg. 0 0	MW D,t [s] 0,000775466	MW v_p [m/s] 220,393	0	D,t [s] 0,00161024 0,00283492	v_p [m/s] 105,574 59,9663	Wtg. 0 0	MW D,t [s] 0,000725112	MW v_p [m/s] 235,434
0 1 2	D,t [s] 0,00308943 0,00603512 0,000803474	v_p [m/s] 55,0263 28,1684 211,581	Wtg. 0 0 2	MW D,t [s] 0,000822738	MW v_p [m/s] 206,943	0 1 2	D,t [s] 0,0015122 0,000655769 0,00085086	v_p [m/s] 112,419 259,238 199,798	Wtg. 0 0 3	MW D,t [s] 0,000775466	MW v_p [m/s] 220,393	0 1 2	D,t [s] 0,00161024 0,00283492 0,00182843	v_p [m/s] 105,574 59,9663 92,9759	Wtg. 0 0	MW D,t [s] 0,000725112	MW v_p [m/s] 235,434
0 1 2 3	D,t [s] 0,00308943 0,00603512 0,000803474 0,000718845	v_p [m/s] 55,0263 28,1684 211,581 236,49	Wtg. 0 0 2 0	MW D,t [s] 0,000822738	MW v_p [m/s] 206,943	0 1 2 3	D,t [s] 0,0015122 0,000655769 0,00085086 0,000823933	v_p [m/s] 112,419 259,238 199,798 206,327	Wtg. 0 0 3 3	MW D,t [s] 0,000775466	MW v_p [m/s] 220,393	0 1 2 3	D,t [s] 0,00161024 0,00283492 0,00182843 0,000810713	v_p [m/s] 105,574 59,9663 92,9759 209,692	Wtg. 0 0 3	MW D,t [s] 0,000725112	MW v_p [m/s] 235,434
0 1 2 3 4	D,t [s] 0,00308943 0,00603512 0,000803474 0,000718845 0,000860331	v_p [m/s] 55,0263 28,1684 211,581 236,49 197,598	Wtg. 0 0 2 0 2	MW D,t [s] 0,000822738	MW v_p [m/s] 206,943	0 1 2 3 4	D,t [s] 0,0015122 0,000655769 0,00085086 0,000823933 0,000822643	v_p [m/s] 112,419 259,238 199,798 206,327 206,651	Wtg. 0 3 3 5	MW D,t [s] 0,000775466	MW v_p [m/s] 220,393	0 1 2 3 4	D,t [s] 0,00161024 0,00283492 0,00182843 0,000810713 0,000720634	v_p [m/s] 105,574 59,9663 92,9759 209,692 235,903	Wtg. 0 0 3 3	MW D,t [s] 0,000725112	MW v_p [m/s] 235,434
0 1 2 3 4 5	D,t [s] 0,00308943 0,00603512 0,000803474 0,000718845 0,000860331 0,000814743	v_p [m/s] 55,0263 28,1684 211,581 236,49 197,598 208,655	Wtg. 0 2 0 2 5	MW D,t [s] 0,000822738	MW v_p [m/s] 206,943	0 1 2 3 4 5	D,t [s] 0,0015122 0,000855769 0,00082086 0,000823933 0,000822643 0,000834841	v_p [m/s] 112,419 259,238 199,798 206,327 206,651 203,632	Wtg. 0 0 3 3 3 5 5	MW D,t [s] 0,000775466	MW v_p [m/s] 220,393	0 1 2 3 4 5	D,t [s] 0,00161024 0,00283492 0,00182843 0,000810713 0,000720634 0,000752805	v_p [m/s] 105,574 59,9663 92,9759 209,692 235,903 225,822	Wtg. 0 0 3 3 3 3	MW D,t [s] 0,000725112	MW v_p [m/s] 235,434
0 1 2 3 4 5 6	D,t [s] 0,00308943 0,00603512 0,000803474 0,00078845 0,000860331 0,000814743 0,000752496	v_p [m/s] 55,0263 28,1684 211,581 236,49 197,598 208,655 225,915	Wtg. 0 2 0 2 5 5	MW D,t [s] 0,000822738	MW v_p [m/s] 206,943	0 1 2 3 4 5 6	D,t [s] 0,0015122 0,000853769 0,000823933 0,000822643 0,000834841 0,000754877	v_p [m/s] 112,419 259,238 199,798 206,327 206,651 203,632 225,202	Wtg. 0 3 3 5 5 5 5	MW D,t [s] 0,000775466	MW v_p [m/s] 220,393	0 1 2 3 4 5 6	D,t [s] 0,00161024 0,00283492 0,00182843 0,000810713 0,000720634 0,000752805 0,000694073	v_p [m/s] 105,574 59,9663 92,9759 209,692 235,903 225,822 244,931	Wtg. 0 0 3 3 3 3 3	MW D,t [s] 0,000725112	MW v_p [m/s] 235,434
0 1 2 3 4 5 6 7	D,t [s] 0,00308943 0,00603512 0,000803474 0,000860331 0,000860331 0,000814743 0,000752496 0,000839192	v_p [m/s] 55,0263 28,1684 211,581 236,49 197,598 208,655 225,915 202,576	Wtg. 0 2 0 2 5 5 5 5	MW D,t [s] 0,000822738	MW v_p [m/s] 206,943	0 1 2 3 4 5 6 7	D,t [s] 0,0015122 0,000655769 0,00085086 0,000822843 0,000822643 0,000834841 0,000754877 0,000763114	v_p [m/s] 112,419 259,238 199,798 206,327 206,651 203,632 225,202 222,771	Wtg. 0 3 3 5 5 5 5 3	MW D,t [s] 0,000775466	MW v_p [m/s] 220,393	0 1 2 3 4 5 6 7	D,t [5] 0,00161024 0,00283492 0,00182843 0,000810713 0,000752805 0,000752805 0,000694073 0,000658436	v_p [m/s] 105,574 59,9663 92,9759 209,692 235,903 225,822 244,931 258,188	Wtg. 0 0 3 3 3 3 3 3 3 3 3	MW D,t [s] 0,000725112	MW v_p [m/s] 235,434
0 1 2 3 4 5 6 7 8	D,t [s] 0,00308943 0,00603512 0,000803474 0,000860331 0,000814743 0,000814743 0,000814743 0,000834749 0,000831922	v_p [m/s] 55,0263 28,1684 211,581 236,49 197,598 208,655 225,915 202,576 202,776	Wtg. 0 2 0 2 5 5 5 3	MW D,t [5] 0,000822738	MW v_p [m/s] 206,943	0 1 2 3 4 5 6 7 8	D,t [s] 0,0015122 0,000855769 0,000823933 0,000822643 0,000834841 0,000754877 0,000753114	v_p [m/s] 112,419 259,238 199,798 206,327 206,651 203,632 225,202 222,771 246,927	Wtg. 0 3 3 5 5 5 5 3 3 5	MW D,t [s] 0,000775466	MW v_p [m/s] 220,393	0 1 2 3 4 5 6 7 8	D,t [s] 0,00161024 0,00283492 0,00182843 0,000810713 0,000720634 0,000752805 0,000658436 0,000716344	v_p [m/s] 105,574 59,9663 92,9759 209,692 235,903 225,822 244,931 258,188 237,316	Wtg. 0 0 3 3 3 3 3 3 3 5	MW D,t [s] 0,000725112	MW v_p [m/s] 235,434
0 1 2 3 4 5 6 7 8 9	D,t [s] 0,00308943 0,00603512 0,000803474 0,000860331 0,000814743 0,000814743 0,000839192 0,00083364 0,000813688	v_p [m/s] 55,0263 28,1684 211,581 236,49 197,598 208,655 225,915 202,576 202,776 202,776	Wtg. 0 2 0 2 5 5 5 5 3 3 3	MW D,t [5] 0,000822738	MW v_p [m/s] 206,943	0 1 2 3 4 5 6 7 8 9	D,t [s] 0,0015122 0,000855769 0,00082086 0,000822643 0,000834841 0,000834841 0,000754877 0,000763114 0,000688463 0,00079141	v_p [m/s] 112,419 259,238 199,798 206,327 206,651 203,632 225,202 222,771 246,927 214,806	Wtg. 0 3 3 5 5 5 5 3 3 5 5 5 5 5	MW D,t [s] 0,000775466	MW v_p [m/s] 220,393	0 1 2 3 4 5 6 7 8 9	D,t [s] 0,00161024 0,00283492 0,00182843 0,000810713 0,000720834 0,000752805 0,000694073 0,000658436 0,000716344 0,000755407	v_p [m/s] 105,574 59,9663 92,9759 209,692 235,903 225,822 244,931 258,188 237,316 225,044	Wtg. 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	MW D,t [s] 0,000725112	MW v_p [m/s] 235,434
0 1 2 3 4 5 6 7 7 8 9 9	D,t [s] 0,00308943 0,00603512 0,000803474 0,000860331 0,000814743 0,000814743 0,000839192 0,000838364 0,000813688 0,000835244	v_p [m/s] 55,0263 28,1684 211,581 236,49 197,598 208,655 225,915 202,576 202,776 202,776 208,925 203,533	Wtg. 0 2 5 5 5 5 3 3 3 3 3	MW D,t [s] 0,000822738	MW v_p [m/s] 206,943	0 1 2 3 4 5 6 7 8 9 10	D,t [s] 0,0015122 0,000855769 0,00082086 0,000822643 0,000834841 0,000754877 0,000754877 0,000763114 0,000688463 0,000779141	v_p [m/s] 112,419 259,238 199,798 206,327 206,651 203,632 225,202 222,771 246,927 214,806 218,897	Wtg. 0 3 3 5 5 5 3 3 5 5 3 3	MW D,t [s] 0,000775466	MW v_p [m/s] 220,393	0 1 2 3 4 5 6 7 8 9 9	D,t [s] 0,00161024 0,00283492 0,00182843 0,000810713 0,000720634 0,000752805 0,000658436 0,000716344 0,000755407 0,00074041	 V_p [m/s] 105,574 59,9663 92,9759 209,692 235,903 225,822 244,931 258,188 237,316 225,044 229,603 	Wtg. 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3	MW D,t [s] 0,000725112	MW v_p [m/s] 235,434
0 1 2 3 4 5 6 7 8 9 10 11	D,t [s] 0,00308943 0,00603512 0,000803474 0,000860331 0,000814743 0,000814743 0,000839192 0,000839142 0,000838364 0,000835244 0,000835244	v_p [m/s] 55,0263 28,1684 211,581 236,49 197,598 208,655 225,915 202,576 202,776 202,776 208,925 203,533 197,912	Wtg. 0 2 0 2 5 5 5 3 3 3 3 3 5	MW D,t [s] 0,000822738	MW v_p [m/s] 206,943	0 1 2 3 4 5 6 7 8 9 10 11	D,t [s] 0,0015122 0,000855769 0,00082083 0,000822643 0,000834841 0,000754877 0,000754877 0,000763114 0,0007688463 0,00077662 0,00077662	V_p [m/s] 112,419 259,238 199,798 206,327 206,651 203,632 225,202 222,771 246,927 214,806 218,897 222,806	Wtg. 0 3 3 5 5 5 5 3 3 5 5 3 3 5 5 5 5 5 5 5	MW D,t [s] 0,000775466	MW v_p [m/s] 220,393	0 1 2 3 4 5 6 7 8 9 10 11	D,t [s] 0,00161024 0,00283492 0,00182843 0,000810713 0,000720634 0,000752805 0,000658436 0,000716344 0,000755407 0,00074041	 V_p [m/s] 105,574 59,9663 92,9759 209,692 235,903 225,822 244,931 228,188 237,316 225,044 229,603 261,596 	Wtg. 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5	MW D,t [5] 0,000725112	MW v_p [m/s] 235,434
0 1 2 3 4 5 6 7 8 9 10 11 12	D,t [s] 0,00308943 0,00603512 0,000803474 0,000860331 0,000814743 0,0008314743 0,000839192 0,0008313688 0,000835244 0,00085897 0,000850602	v_p [m/s] 55,0263 28,1684 211,581 236,49 197,598 208,655 202,576 202,776 208,925 203,533 197,912 207,165	Wtg. 0 2 0 2 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3	MW D,t [s] 0,000822738	MW v_p [m/s] 206,943	0 1 2 3 4 5 6 7 8 9 10 11 12	D,t [s] 0,0015122 0,000855769 0,00082083 0,000822643 0,000834841 0,000754877 0,000763114 0,000763114 0,0007611 0,00077662 0,000762997 0,000658745	v_p [m/s] 112,419 259,238 199,798 206,327 206,651 203,632 225,202 222,771 246,927 214,806 214,806 214,806 214,806 214,806	Wtg. 0 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	MW D,t [s] 0,000775466	MW v_p [m/s] 220,393	0 1 2 3 4 5 6 7 7 8 9 10 11 11	D,t [5] 0,00161024 0,00283492 0,00182843 0,000810713 0,000720634 0,000752805 0,000694073 0,000658436 0,000716344 0,000755407 0,00074041 0,000649857 0,000774402	v_p [m/s] 105,574 59,9663 92,9759 209,692 235,903 225,822 244,931 258,188 237,316 225,044 229,603 261,596 219,524	Wtg. 0 0 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5	MW D,t [s] 0,000725112	MW v_p [m/s] 235,434
0 1 2 3 4 5 6 7 8 9 10 11 12 13	D,t [s] 0,00308943 0,00603512 0,00803474 0,000718845 0,000803311 0,000814743 0,000752496 0,000839192 0,000838544 0,000835244 0,00083597 0,000820602 0,000836162	v_p [m/s] 55,0263 28,1684 211,581 236,49 197,598 208,655 202,576 202,576 208,925 203,533 203,533 197,912 207,165 203,31	Wtg. 0 0 2 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	MW D,t [5] 0,000822738	MW v_p [m/s] 206,943	0 1 2 3 4 5 6 7 8 9 10 11 12 13	D,t [s] 0,0015122 0,000655769 0,00082083 0,000822643 0,000834841 0,000754877 0,000763114 0,000763114 0,0007611 0,000762997 0,000658745 0,000632173	v_p [m/s] 112,419 259,238 199,798 206,327 206,651 203,632 225,202 222,771 246,927 214,806 218,897 2128,8067 300,551	Wtg. 0 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	MW D,t [s] 0,000775466	MW v_p [m/s] 220,393	0 1 2 3 4 5 6 7 7 8 9 9 10 11 12 13	D,t [s] 0,00161024 0,00283492 0,00182843 0,000810713 0,000720634 0,000752805 0,000658436 0,000755407 0,00074041 0,00074041 0,000726301	v_p [m/s] 105,574 59,9663 92,9759 209,692 235,903 225,822 244,931 258,188 237,316 225,044 229,603 221,596 219,524 234,063	Wtg. 0 0 3 3 3 3 3 3 3 3 3 3 5 5 5 5 3	MW D,t [s] 0,000725112	MW v_p [m/s] 235,434
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	D,t [s] 0,000308943 0,00603512 0,000803474 0,000718845 0,000803311 0,000814743 0,000839192 0,0008335244 0,000835244 0,000835244 0,000835244 0,000835244 0,000835244 0,000835244	v_p [m/s] 55,0263 28,1684 211,581 236,49 197,598 208,655 202,576 202,576 202,576 203,533 197,912 207,165 203,31 179,083	Wtg. 0 0 2 0 0 2 5 5 5 5 3 3 3 3 3 3 3 3 5 5 5	MW D,t [5] 0,000822738	MW v_p [m/s] 206,943	0 1 2 3 4 5 6 7 8 9 10 11 11 12 13 14	D,t [s] 0,0015122 0,000655769 0,00082083 0,000822643 0,000834841 0,000754877 0,000754877 0,00075114 0,00075411 0,000762997 0,000688745 0,000632173 0,000632056	v_p [m/s] 112,419 259,238 199,798 206,327 203,632 225,202 222,771 246,927 214,806 218,897 222,806 258,067 300,551 300,606	Wtg. 0 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	MW D,t [s] 0,000775466	MW v_p [m/s] 220,393	0 1 2 3 4 5 6 7 8 9 10 11 11 12 13 14	D,t [s] 0,00161024 0,00283492 0,00182843 0,000810713 0,000720634 0,000752805 0,000694073 0,00058436 0,000716344 0,00074041 0,00074041 0,000726301 0,000726301 0,000726301	v_p [m/s] 105,574 59,9663 22,9759 209,692 235,903 225,822 244,931 258,188 237,316 225,044 229,603 261,596 219,524 234,063 226,987	Wtg. 0 0 3 3 3 3 3 3 3 3 3 3 3 5 5 5 3 3 0	MW D,t [s] 0,000725112	MW v_p [m/s] 235,434
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	D,t [s] 0,00308943 0,00603512 0,000803474 0,000718845 0,000860331 0,000814743 0,00083192 0,000838192 0,000838364 0,000838244 0,000838244 0,00085897 0,00085897 0,00085612 0,000781759 0,00079081	v_p [m/s] 55,0263 28,1684 211,581 236,49 197,598 208,655 225,915 202,576 202,776 203,533 197,912 207,165 203,313 179,083 241,763	Wtg. 0 0 2 0 2 5 5 5 5 5 3 3 3 3 3 3 3 3 3 5 5 3	MW D,t [s] 0,000822738	MW v_p [m/s] 206,943	0 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15	D,t [s] 0,0015122 0,000855769 0,000823933 0,000822643 0,000824841 0,000754877 0,000763114 0,000754877 0,00076297 0,000688463 0,000762997 0,000658745 0,000628745 0,000628745 0,000632173	v_p [m/s] 112,419 259,238 199,798 206,327 203,632 225,202 222,771 246,927 214,806 218,897 222,806 218,897 222,806 258,067 300,551 300,556	Wtg. 0 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	MW D,t [s] 0,000775466	MW v_p [m/s] 220,393	0 1 2 3 4 5 6 7 7 8 8 9 10 11 11 12 13 14 0	D,t [s] 0,00161024 0,00283492 0,00182843 0,000720634 0,000720634 0,000752805 0,000694073 0,000758436 0,000716344 0,000755407 0,00074041 0,00074402 0,000726301 0,000726301 0,00037054 0,000726301 0,00037054	v_p [m/s] 105,574 59,9663 92,9759 209,692 235,903 225,822 244,931 244,931 244,931 244,931 244,931 225,044 229,603 261,596 219,524 234,063 226,987 0	Wtg. 0 0 3 3 3 3 3 3 3 3 3 5 5 5 3 3 0 0 0	MW D,t [s] 0,000725112	MW v_p [m/s] 235,434
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	D,t [s] 0,00308943 0,00603512 0,000803474 0,000718845 0,0008407331 0,000814743 0,000814743 0,000831922 0,000839192 0,000833644 0,000835244 0,00083597 0,000820602 0,000836162 0,000781759 0,00059168	v_p [m/s] 55,0263 28,1684 211,581 236,49 197,598 202,576 202,576 202,576 202,576 202,776 203,533 197,912 207,165 203,31 179,083 207,165 203,41 202,406	Wtg. 0 0 2 0 2 5 5 5 5 5 3 3 3 3 3 3 3 3 5 5 3 3 3 5	MW D,t [5] 0,000822738	MW v_p [m/s] 206,943	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	D,t [s] 0,0015122 0,000855769 0,00082086 0,000822843 0,000824841 0,000754877 0,000754877 0,000754114 0,000754873 0,000754114 0,00076297 0,000688745 0,00068273 0,00068273 0,000632173 0,000632056 0,000482567	v_p [m/s] 112,419 259,238 199,798 206,327 203,632 225,202 222,771 246,927 214,806 218,897 222,806 218,897 222,806 258,067 300,551 300,551 300,606 290,115	Wtg. 0 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	MW D,t [s] 0,000775466	MW v_p [m/s] 220,393	0 1 2 3 4 5 6 7 8 9 9 10 11 11 12 13 14 0 0	D,t [s] 0,00161024 0,00283492 0,00182843 0,000810713 0,000720634 0,000752805 0,000658436 0,000716344 0,000755407 0,00074041 0,00074041 0,00074041 0,000726301 0,000726301 0,000726301 0,000726301 0,000726301	v_p [m/s] 105,574 59,9663 92,9759 209,692 235,903 225,822 244,931 258,188 237,316 225,044 229,603 261,596 219,524 234,063 226,987 0 0	Wtg. 0 0 3 3 3 3 3 3 3 3 3 5 5 5 3 3 0 0 0 0	MW D,t [s] 0,000725112	MW v_p [m/s] 235,434
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	D,t [s] 0,00308943 0,00603512 0,000803474 0,000860331 0,000814743 0,000814743 0,000814743 0,0008339192 0,000833644 0,000836162 0,000826602 0,000781759 0,00059168 0,00069168 0,000632163	v_p [m/s] 55,0263 28,1684 211,581 236,49 197,598 202,576 202,576 202,576 202,576 202,576 202,576 203,533 197,912 207,165 203,31 179,083 241,763 202,406 221,462	Wtg. 0 0 2 5 5 5 5 3 3 3 3 3 3 3 3 3 3 5 5 3 3 3 5 5 2 2	MW D,t [5] 0,000822738	MW v_p [m/s] 206,943	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	D,t [s] 0,0015122 0,000855769 0,000822833 0,000822843 0,000834841 0,000754877 0,000754877 0,000754877 0,000763114 0,000763114 0,000762997 0,000658745 0,000658745 0,000632173 0,000632156 0,000632157 0,000632567 0,00064937	v_p [m/s] 112,419 259,238 199,798 206,327 203,632 225,202 225,202 2225,202 222,5702 214,806 218,897 222,806 218,897 222,806 258,067 300,551 300,666 290,115 250,099 215,593	Wtg. 0 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	MW D,t [s] 0,000775466	MW v_p [m/s] 220,393	0 1 2 3 4 5 6 7 7 8 9 10 11 11 12 13 14 0 0 0	D,t [s] 0,00161024 0,00283492 0,00182843 0,000810713 0,000720634 0,000752805 0,000694073 0,000758407 0,00075407 0,00074041 0,00074041 0,000726301 0,000726301 0,000726301 0,000837054 0,000726301 0,000837054 0,000726301 0,000837054 0,000726301 0,000837054 0,000726301 0,000837054 0,000726301 0,000837054 0,000726301 0,000837054 0,000726301 0,000837054 0,000726301 0,000837054 0,000726301 0,000837054 0,000726301 0,000837054 0,000726301 0,000726301 0,000726301 0,000726301 0,000726301 0,000726301 0,000726301 0,000726301 0,000726301 0,000726301 0,000726301 0,000752805 0,00075805 0,00075805 0,00075805 0,00075805 0,00075805 0,00075805 0,00072805 0,00072805 0,00072805 0,00075805 0,00075805 0,00072805 0,0007405 0,000705 0,000705 0,000705 0,000705 0,000705 0,000705 0,000705 0,000705 0,000705 0,000705 0,000705 0,000705 0,000705 0,000705 0,00070000000000	v_p [m/s] 105,574 59,9663 92,9759 209,692 235,903 225,822 244,931 258,188 237,316 225,044 229,603 261,596 219,524 234,063 226,987 00 0	Wtg. 0 0 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5	MW D,t [s] 0,000725112	MW v_p [m/s] 235,434

Tab. A.8: Ergebnisse der Auswertung des Testsignals (Messfahrt 147-151)

Me	ssfahrten TS	152-155															
	D.t	y p		MW D.t	MW v p		D.t	αv		MW D.t	MW v p		D.t	αv		MW D.t	a vWM
	[5]	[m/s]	Wtg.	[5]	[m/s]		[5]	[m/s]	Wtg.	[5]	[m/s]	L	[5]	[m/s]	Wtg.	[5]	[m/s]
0	0.00641031	34.3197	0	0.00182299	127.613	0	0.00590244	37.2727	0	0.000673528	346.275	0	0.00290244	75.7983	0	0.000604946	366.553
1	0.00596591	36.8762	0	-,		1	0.00303702	72,4394	0	,		1	0.00328477	66.9758	0	-,	
2	0.0017561	125.278	0			2	0.00289549	75.9802	0			2	0.00364745	60.3161	0		
3	0.00121951	180.4	0			3	0.00260668	84.3987	0			3	0.00353108	62.3039	0		
4	0.00236314	93.0963	0			4	0.00219512	100.222	1			4	0.00164304	133.898	0		
5	0.0010481	209.904	0			5	0.00115989	189.673	0			5	0.00145777	150.915	0		
6	0.00059205	371.59	0			6	0.00102185	215,296	2			6	0.00138211	159,176	0		
7	0.00225611	97.5128	0			7	0.000702135	313.33	2			7	0.00110569	198,971	0		
8	0.00149837	146.826	0			8	0.000550127	399,908	2			8	0.000543176	405.025	3		
9	0.00173	127,167	3			9	0.000652085	337.379	- 5			9	0.000697312	315,497	5		
10	0.0013536	162.529	3			10	0.000594511	370.052	5			10	0.000633458	347.3	3		
11	0.00119826	183.6	3			11	0.000685246	321.053	5			11	0.000633772	347.128	5		
12	0.00212699	103 432	3			12	0.000591223	372 11	5			12	0.000646023	340 545	4		
13	0,00212033	96 3994	5			12	0.000535274	411 004	5			12	0,000600528	366 344	4		
14	0,00228217	112 256	2			14	0,0005535274	224 002	5			14	0,000000028	270 929	- 4		
14	0,00134073	115,550	5	0	0	14	0,000501040	334,003	5			14	0,000555480	370,333	5		
H	0	0	0	0	0	15	0,000591949	371,054	2			15	0,000555489	390,048	2		
	0	0	0	0	0	10	0,000768997	182,055	5			10	0,000530953	414,349	5		
	0	0	0	0	0	1/	0,000781015	1/9,254	2			1/	0,000728677	192,129	2		
10	0	0	0	0	0	0	0	0	0	0	0	18	0.00115816	120.881	2		1
	D,t	v_p		MW D,t	MW v_	р	D,t	v_p		MW D,t	MW v	р	D,t	v_p		MW D,t	MW v_p
	[s]	[m/s]	wtg.	[s]	[m/s]		[s]	[m/s]	wtg	[s]	[m/s]		[s]	[m/s]	wtg	. [s]	[m/s]
0	0,000661247	332,705	0	0,00052291	2 427,82	4 (0,00010051	5 2188,7	3 (0,00049289	2 450,92	6	0 0,00161024	105,57	4 (0,00072511	2 235,434
1	0,000472596	465,514	2				1 0,00084959	5 258,94	7 ()			1 0,00283493	2 59,966	3 (0	
2	0,00226162	97,2752	0				2 0,00055334	1 397,58	3 3	3			2 0,0018284	92,975	9 (0	
3	0,00247154	89,0132	0				3 0,00044610	7 493,15	6 3	3			3 0,00081071	3 209,69	2 3	3	
4	0,00108401	202,95	0				4 0,00053045	2 414,74	1 5	5			4 0,000720634	1 235,90	3 3	3	
5	0.00292683	75.1667	0				5 0.00049201	3 447.14	3 5	5			5 0.00075280	5 225.82	2 3	3	
6	0,000932249	235,988	0				6 0.00045431	2 484,24	8 5	5			6 0.00069407	3 244,93	1 3	3	
7	0.000457516	480.857	2				7 0.00040535	5 542.73	2 5	5			7 0.00065843	5 258,18	8	3	
8	0.000454545	484	- 5				8 0.00057846	380.31	5 4	1			8 0.00071634	1 237.31	6	5	
9	0.000622512	353.407	5				9 0.00049865	3 441.18	9 5	5			9 0.00075540	7 225.04	4	3	
10	0.000574255	383 105	5			10	0 00049720	442.4	7 0	5		1	0 0007404	229 60	2	2	
11	0 000395047	556 895	5		1	1	1 0 00052988	415 18	1 0		1	1	1 0 00064985	7 261 59	5 1	5	1
12	0.000536514	410.055	5			1	2 0.00057264	5 384 19	1	1	+	1	2 0.00077440	201,55	1 1		+
12	0.000516247	426.07	5			1	2 0,00037204	1 515 /5			-	1	2 0,00077620	210,02	2 2	2	
14	0.000521172	420,07	2			1	4 0.00047612	462.05	6 6		+	1	4 0.00092705	1 226 00		-	+
15	0,000321173	422,123	4		-	14	+ 0,00047013	402,05			+	+	0,000857054	+ 220,38		<u> </u>	
10	0.000405467	377,984			-	1		400,39		, ,	+	╉		1			
10	0,000495467	444,025	5		-	10		250,09	2	-	+	+) (/ (
1/	0,000609173	361,145	5			1	/ 0,0006493	215,59	3 5	2		╉	0 (/ (u (/ (0 0
18	0,00405434	54,2629	0			1	8 0,00061125	2 229,03	8 2				0 (1 (u (1 (u (
19	0,0077378	28,4318	0			+	0 () (U ()	0	0	0 () (0 () (0 0
20	0,0111128	19,797	0		_	-	0 () (0 ()	0	0	0 () (0 () (0 0
21	0,0403799	5,44825	0		_	-	0 () (0 ()	0	0	0 () (0 () (0 0
22	0,0069463	31,6715	0			-	0 () (0 0)	0	0	0 () (0 () (0 0
23	0,01581	13,9152	0				0 (0 ()	0	0	0 () (0 () (0 0
24	0,00864329	25,4533	0				0 () (0 ()	0	0	0 () (0 () (0 0
25	0,00680488	32,3297	0			- (0 () (0 0)	0	0	0 () (0 () (0 0
20	0 00908442	24.2173	0		1		0 0		0 0		0	0	0 0		D (ol (ol o

Tab. A.9: Ergebnisse der Auswertung des Testsignals (Messfahrt 152-155)

Me	essfahrten TS	156-161																	
	D,t	v_p	14/6-	MW D,t	MW v_p		D,t	v_p	14/6-	MW D,t	M	Wv_p		D,t	v_ p		A /2 m	MW D,t	MW v_p
	[s]	[m/s]	wig.	[s]	[m/s]		[s]	[m/s]	wig.	[s]	[m/s]		[s]	[m/	1	wig.	[s]	[m/s]
0	0,00176518	84,9772	0	0,00176767	87,493	0	0,000743154	4 201,84	3 3	0,000883777	7 18	81,131	0	0,00184282	81,39	71	2	0,000633503	298,664
1	0,00192954	77,7388	0			1	0,000658704	4 227,7	2 (1	0,00162208	92,4	36	2		
	0.00179312	83,6532	2			2	0.00078658	5 190.69	8 5		+		2	0.00248864	60.2	39	0		
	0.00186559	80 4035	2			2	0.00078658	5 190 69	2 2		+		2	0.000897209	167	25	0		
H	0,00180555	65 0721				3	0,00071003	200 61			+		3	0,00085720	00.00	25	2		
4	0,0025051	05,0751	0			4	0,00071902	206,01			-		4	0,00132313	20,5	25	2		
15	0,001/6061	85,1977	2			5	0,0018101	82,864	6 (, 	-		5	0,000545484	2/4,	85	2		
6	0,00260733	57,53	2			6	0,00067076	3 223,62	4 2		-		6	0,000390879	383	75	5		
7	0,00237114	63,2608	3			7	0,0010337	3 145,10	5 2	2			7	0,000345304	43	1,4	5		
8	0,00166856	89,8981	2			8	0,00082036	4 182,84	6 3				8	0,000431093	347,9	52	5		
9	0,00145283	103,247	2			9	0,00052599	8 285,17	2 5				9	0,000476133	315,0	38	5		
10	0,00145253	103,268	5			10	0,0010857	3 138,1	5 5	i i			10	0,000469699	319,3	54	5		
11	0,00157076	95,4954	5			11	0,00075580	4 198,46	4 4	L.			11	0,000471557	318,0	95	5		
12	0,00158056	94,9032	3			12	0.00070454	3 212,90	2 5				12	0.000649252	231.0	35	5		
13	0.00184341	81.3711	3			13	0.0011581	5 129.51	6 5				13	0.000600528	366.3	44	4		
14	0.00194079	113 356	3			14	0.00074471	5 201 41	9 9		+		14	0.000593089	370 9	39	3		
	0,00154075	113,330	0	0	0	15	0.0012064	1201,41			+		15	0.00055548	206 (10	5		
H	0	0		0	0	10	0,0012004	2 124,55			+		10	0,000533485	330,0	40	5		
H	0	0	0	0	0	10	0,0013018	/ 115,21	9 3		+		10	0,000530953	414,:	49	5		
	0	0	0	0	0	1/	0,0011239	133,45	/ 5		-		1/	0,00072867	192,:	29	2		
0	0	0	0	0	0	0		D) (D	0	18	0,00115816	120,8	81	2		
	D.t	V P		MW D.t	MWV	p	D.t	V		MW D.t		MWv	p	D.t	V	p		MW D.t	MW v p
	[5]	[m/s]	Wtg	. [s]	[m/s	1	[s]	[m/	sl W	tg. [s]		[m/s]		[5]	ſn	_/	Wtg	· [s]	[m/s]
	0.0016910	5 88 701	<u>م</u>	2 0 0006008	84 353 2	23	0 0 000998	14 150	163	0 0 0003800	162	/18 16	52	0 0.001243	89 12	0 680	6 (0.00035010	12 //8 802
1	0,0010510	57.40	2 2	2 0,000000	04 333,2	23	1 0.000000	524 74 9	100	0 0,0003800	<i>J</i> 02	410,10	<u>,</u>	1 0,001242	00 70	110		0,0003301	72 440,002
	0,002013	7 47 004	5 4 C 4	2		-	2 0,00200	00 01 1	200	0	-		+	1 0,002150		4150			_
2	0,0031377	47,804			_	-	2 0,00164	508 91,1	809	0	-+		+	2 0,001853	00 80	921.		J	_
3	0,0014378	104,32	6 (D	_	-	3 0,000514	5/1 291,	449	0	-+		-	3 0,0004125	95 36	3,55	3 2	2	
4	0,00028782	521,15	1 2	2	_	_	4 0,000421	206 356,	121	5	_		_	4 0,0003040	17 49	3,39	3 5	j	_
5	0,00031767	3 472,18	4 2	2		_	5 0,000237	953 630,	376	5				5 0,0002943	66 5)9,5	7 :	5	
6	0,00029311	5 511,74	5 5	5			6 0,000313	133 479	,03	5				6 0,0003603	17	116,	3 5	5	
7	0,00041608	360,50	7 5	5			7 0,000434	311 345,	375	5				7 0,0002670	21 56	L,75	5 5	5	
8	0,00047291	5 317,18	1 5	5			8 0,000314	437 477,	044	5				8 0,0003603	17	116,3	3 5	5	
9	0,00037916	7 395,60	4 :	5			9 0,00045	583 328,	349	5				9 0,0005211	73 28	7,81	3 .	5	
10	0,00048995	5 306,15	4 3	5			10 0,000482	567 310,	838	5				10 0,0002711	21 55	3,259	9 3	2	
11	0.000477742	2 313,97	7 :	2			11 0.00073	97 202.	711	0	+		T	11 0.0003957	05 3	79.0	7 (0	
12	0.000536514	1 410.05	5 0	5			12 0.000382	256 392	407	0	+		T	12 0.000774/	.02 21	9.524	4	5	
12	0.00051624	7 426.0	7 0	5			13 0.000426	804 515	159	5	+		╡	13 0 0007263	01 22	1.06	2 2	2	+
14	0.00052117	420,0		1	-		14 0.000476	122 462	155	5	+		╡	14 0 0009270	54 22	.,00:		1	-
14	0,00052117	9 422,12		-		-	15 0.000470	135 402,	500	-	+		╉	0,0008370	04 22	,98 ,			0 0
15	0,00055002	2 399,98	4 3	-	_	-	15 0,000477	359 400,	222	5	+		┦	0	0	(,	0 0
16	0,00049546	444,02	5 3	>	_	_	16 0,000559	//8 250,	099	3	_		-	0	0	(0 (<u>,</u>	0 0
17	0,00060917	3 361,14	5 5	5	_	_	17 0,00064	937 215,	593	5			4	0	0	(0 (<u>ر</u>	0 0
18	0,00405434	1 54,262	9 (D			18 0,000611	252 229,	038	2				0	0	(0 (<u>ງ</u>	0 0
19	0,007737	3 28,431	8 (D			0	0	0	0	0		0	0	0	(0 (0	0 0
20	0,011112	3 19,79	7 (D			0	0	0	0	0		0	0	0	(0 (0	0 0
21	0,040379	5,4482	5 (D		_1	0	0	0	0	0		0	0	0	(0 (0	0 0
22	0,0069463	31,671	5 (D			0	0	0	0	0		0	0	0	(0 (0	0 0
23	0,0158	13,915	2 (D			0	0	0	0	0		0	0	0	(0 (0	0 0
24	0.0086432	25,453	3 (D		-	0	0	0	0	0		0	0	0	(0 0	0	0 0
25	0.0068048	3 32 329	7 0	0			0	0	0	0	0		0	0	0			0	0 0
25	0.0000040	2 24 217	2 0	- -		+	0	0	-	0	0		0	0	0				0 0
20	0,0090844	24,217	ا اد	1			V	0	U	v	U		U	v	0		v (1	v v

Tab. A.10: Ergebnisse der Auswertung des Testsignals (Messfahrt 156-161)

	D,t	v_p	W/ta	MW D,t	MW v_p
	[s]	[m/s]	wig.	[s]	[m/s]
0	0,000878049	170,833	0	0,000374788	421,736
1	0,00121409	123,549	0		
2	0,000521173	287,813	0		
3	0,000201001	746,264	0		
4	0,000485283	309,098	2		
5	0,000413865	362,437	5		
6	0,00033029	454,146	5		
7	0,000371041	404,268	5		
8	0,000341207	439,616	5		
9	0,000288926	519,164	5		
10	0,000266625	562,589	2		
11	0,000374495	400,539	0		
12	0,000693989	216,142	2		

Me	essfahrten TS	163-166															
	D,t	v_p	W/t-r	MW D,t	MW v_p		D,t	v_p	W/t-r	MW D,t	MW v_p		D,t	v_p	M/t-m	MW D,t	MW v_p
	[s]	[m/s]	wtg.	[s]	[m/s]		[s]	[m/s]	wtg.	[s]	[m/s]		[s]	[m/s]	wtg.	[s]	[m/s]
0	0,00175822	108,064	1	0,00253473	78,736	0	0,00284537	66,7751	0	0,00104574	183,56	0	0,000281385	675,231	0	0,00084367	239,515
1	0,00183317	103,645	1			1	0,00142802	133,052	0			1	0,0008618	220,469	3		
2	0,00267985	70,8995	0			2	0,00182312	104,217	0			2	0,000716534	265,166	3		
3	0,00414049	45,8882	0			3	0,00357628	53,1278	0			3	0,000705242	269,411	2		
4	0,00439623	43,2189	0			4	0,0037614	50,5132	0			4	0,000921703	206,14	2		
5	0,00309175	61,4539	3			5	0,00129069	147,208	2			5	0,000771518	246,268	3		
6	0,0034245	55,4826	5			6	0,00113403	167,544	5			6	0,00211196	89,964	2		
7	0,00303716	62,5585	5			7	0,00112438	168,982	5			7	0,000700918	271,073	3		
8	0,00214627	88,5258	5			8	0,000938969	202,349	5			8	0,000847244	224,257	3		
9	0,00218091	87,1194	3			9	0,00106458	178,475	5			9	0,000865774	219,457	3		
10	0,00211712	89,7444	3			10	0,000943181	201,446	5			10	0,000713382	266,337	3		
11	0,00223489	85,0152	3			11	0,000921703	206,14	3			11	0,000638338	297,648	3		
12	0,0018688	101,67	3			12	0,000704548	212,902	5			12	0,000816361	232,74	5		
13	0,00184341	81,3711	3			13	0,00115816	129,516	5			13	0,00074925	253,587	4		
14	0,00194079	113,356	3			14	0,000744716	201,419	5			14	0,000593089	370,939	3		
0	0 0	0	0	0	0	15	0,00120642	124,335	3			15	0,000555489	396,048	5		
0	0 0	0	0	0	0	16	0,00130187	115,219	3			16	0,000530953	414,349	5		
0	0 0	0	0	0	0	17	0,00112396	133,457	5			17	0,000728677	192,129	2		
0	0 0	0	0	0	0	0	0	0	0	0	0	18	0,00115816	120,881	2		
	Dt		1	MAN DA		-	D.4		-	ANA/DA			Dt			MAND	
	0,1	v_p	Wtg.			p	0,0	v_p	Wtg	3. [e]		-p	D,L	V_P	, w	tg.	
	[5]	204.42		[5]	200 200	11	0 0 00076450	249.40	7	2 0.000691	242 282	2]	[5]	120 120 4	200	0 0 000250	102 449 6
1	0,00062411	414 52		0,0000310.	29 308,4	11	1 0.000507	240,4	70	2 0,00081	243 283,	504	1 0.0021242	209 120,0	100	0 0,000350	102 446,6
-	0,000438548	414,052				+	2 0.0005761	22 220 79	/5)E	2		_	2 0.001853		111	0	-+-
-2	0,000509580	355,570		> >		+	2 0,00057613	55 529,78	50	3	_	_	2 0,001853	300 80,92	211	2	-+-
3	0,000537515	353,478	5 3	5		+	3 0,0006124	58 310,24	25	3	_	_	3 0,0004123	303,3	000	2	-
4	0,000548277	340,34	+ :	5	_	+	4 0,00067603	281,04	+1	3			4 0,0003040	J17 493,3	593	5	<u> </u>
	0,000621511	305,707				+	5 0,0007244	280,2	/4 20	3		_	5 0,0002943	000 509	,3/	5	+-
- 0	0,00053074	290,932				+	7 0.0005007	+3 258,65	75	3		_	7 0,0003603	31/ 41	0,3	5	+-
	0,000/12815	200,545		,		+	7 0,0005887	322,74	27	4	_	_	/ 0,0002670	121 501,	(35	5	+-
<u>ð</u>	0,000542002	3/5,0/		<u> </u>		+	0 0,0006176	/1 2/3,3:	04 C	3			0 0,0005011	41	0,3	5	+-
	U.UUU04/993	1 349.91						504 507	11	44				1/31 /8/2	1151	1	

Tab. A.11: Ergebnisse der Auswertung des Testsignals (Messfahrt 163-166)

																	1
	D,t	v_p	Wtg.	MW D,t	MW v_p		D,t	v_p	Wtg.	MW D,t	MW v_p		D,t	v_p	Wtg.	MW D,t	MW v_p
_	[s]	[m/s]	Ŭ	[s]	[m/s]		[S]	[m/s]	Ŭ	[s]	[m/s]		[s]	[m/s]	Ŭ	[s]	[m/s]
0	0,00062411	304,433	3	0,000631629	308,41	0	0,000764598	248,497	2	0,000681243	283,504	0	0,00124289	120,686	0	0,000350102	448,802
1	0,000458348	414,532	2			1	0,00059788	317,79	2			1	0,00213008	70,4198	0		
2	0,000569586	333,576	5			2	0,000576133	329,785	3			2	0,00185366	80,9211	0		
3	0,000537515	353,478	3			3	0,000612458	310,225	3			3	0,000412595	363,553	2		
4	0,000548277	346,54	3			4	0,000676059	281,041	3			4	0,000304017	493,393	5		
5	0,000621511	305,707	3			5	0,000677908	280,274	3			5	0,000294366	509,57	5		
6	0,000653074	290,932	4			6	0,000734443	258,699	3			6	0,000360317	416,3	5		
7	0,000712815	266,549	0			7	0,000588732	322,727	4			7	0,000267021	561,755	5		
8	0,000506573	375,07	1			8	0,000690071	275,334	3			8	0,000360317	416,3	5		
9	0,000542993	349,913	2			9	0,000617686	307,6	4			9	0,000521173	287,813	5		
10	0,000707166	268,678	2			10	0,00068042	279,239	4			10	0,000271121	553,259	2		
11	0,000785266	241,956	2			11	0,000564604	336,519	5			11	0,000395705	379,07	0		
12	0,000760098	249,968	3			12	0,00082907	229,173	5			12	0,000774402	219,524	5		
13	0,000638169	297,727	4			13	0,000702875	270,319	3			13	0,000726301	234,063	3		
14	0,000643423	295,296	1			14	0,000821354	231,325	4			14	0,000837054	226,987	0		
15	0,000920095	206,5	2			15	0,000784976	242,046	2			0	0	0	0	0	0
16	0,000495467	444,025	5			16	0,000559778	250,099	3			0	0	0	0	0	0
17	0,000609173	361,145	5			17	0,00064937	215,593	5			0	0	0	0	0	0
18	0,00405434	54,2629	0			18	0,000611252	229,038	2			0	0	0	0	0	0
19	0,0077378	28,4318	0			0	0	0	0	0	0	0	0	0	0	0	0
20	0,0111128	19,797	0			0	0	0	0	0	0	0	0	0	0	0	0
21	0,0403799	5,44825	0			0	0	0	0	0	0	0	0	0	0	0	0
22	0,0069463	31,6715	0			0	0	0	0	0	0	0	0	0	0	0	0
23	0,01581	13,9152	0			0	0	0	0	0	0	0	0	0	0	0	0
24	0,00864329	25,4533	0			0	0	0	0	0	0	0	0	0	0	0	0
25	0,00680488	32,3297	0			0	0	0	0	0	0	0	0	0	0	0	0
26	0,00908442	24,2173	0			0	0	0	0	0	0	0	0	0	0	0	0
						-			-								

	D,t	v_p	W/ta	MW D,t	MW v_p
	[s]	[m/s]	wig.	[s]	[m/s]
0	0,000878049	170,833	0	0,000374788	421,736
1	0,00121409	123,549	0		
2	0,000521173	287,813	0		
3	0,000201001	746,264	0		
4	0,000485283	309,098	2		
5	0,000413865	362,437	5		
6	0,00033029	454,146	5		
7	0,000371041	404,268	5		
8	0,000341207	439,616	5		
9	0,000288926	519,164	5		
10	0,000266625	562,589	2		
11	0,000374495	400,539	0		
12	0,000693989	216,142	2		

I	Me	ssfahrten TS	169-173															
		D,t	v_p		MW D,t	MW v_p		D,t	v_p		MW D,t	MW v_p		D,t	v_p		MW D,t	MW v_p
		[s]	[m/s]	wtg.	[s]	[m/s]		[s]	[m/s]	wtg.	[s]	[m/s]		[s]	[m/s]	wtg.	[s]	[m/s]
ľ	0	0.00193723	98,0782	0	0.00473747	40,1529	0	0,000868621	218,738	2	0,000961782	210,781	0	0,000608035	312,482	4	0,000698996	275,897
ľ	1	0.00223113	85.1588	0			1	0.000771472	246.282	3			1	0.000666061	285.259	3		
ŀ	2	0.00751221	25,2921	0			2	0.000808853	234,901	4			2	0.000631012	301,104	4		
ł	3	0.00361631	52,5397	0			3	0.000747979	254.018	4			3	0.000656291	289,506	4		
ł	4	0.00454097	41 8413	1			4	0.00082519	230.25	3			4	0.000720634	263 657	2		
ł	5	0.00/82/27	39 38/12				5	0.000830016	228 911	2			5	0.000880611	215 759	2		
ł	6	0,00402427	19 9/09	0			6	0,000894707	220,511	2			6	0.0007142	266 022	2		
ł	7	0,00388223	20 527	1			7	0,000884707	74 5705	2			7	0,0007142	200,032	2		
┟	-	0,00480084	35,327	1			-	0,00234762	104.040	2			-	0,000671383	202,915	2		
┢	8	0,00489651	38,8031	2			ŏ	0,00102787	184,849	3			ŏ	0,000656291	289,500	2		
┢	9	0,00454652	41,7902	1			9	0,000815539	232,975	2			9	0,000670768	283,257	3		
┟	10	0,00203426	93,4	0			10	0,00072884	260,688	3			10	0,000593558	320,104	1		
+	11	0,0053537	35,4895	0			11	0,000893199	212,718	3			11	0,000636989	298,278	2		
	12	0,0018688	101,67	3			12	0,00106165	178,967	2			12	0,000804551	236,157	2		
	13	0,00184341	81,3711	3			13	0,00122881	154,621	2			13	0,00097713	194,447	1		
	14	0,00194079	113,356	3			14	0,000861383	220,576	2			14	0,00107431	176,857	0		
L	0	0	0	0	0	0	15	0,0010906	174,216	2			15	0,000839501	226,325	1		
	0	0	0	0	0	0	16	0,00104446	181,913	2			16	0,000793746	239,371	0		
ſ	0	0	0	0	0	0	17	0,000994685	191,015	4			17	0,000795268	238,913	1		
ſ	0	0	0	0	0	0	18	0,00148148	128,25	0			18	0,00077332	245,694	0		
						_				_		_				_		_
		D,t	v_p	Wta	MW D,t	MW v_p	D	D,t	v_ p	Wta	MW D,t	MW v_	p	D,t	v_ p	W/tg	MW D,t	MW v_p
_		[s]	[m/s]	····6.	[s]	[m/s]		[s]	[m/s]		[s]	[m/s]		[s]	[m/s]		[s]	[m/s]
	0	0,000665741	285,396	5	0,00062878	8 303,22	2	0,000673936	5 281,92	6 4	4 0,00060502	3 319,62	5	0,000559778	339,4	2 4	0,00057142	7 336,14
	1	0,000636989	298,278	4				1 0,000559778	3 339,4	2 4	4			1 0,000564604	4 336,51	9 5	ذ	
	2	0,000591949	320,974	5				2 0,000569333	3 333,72	4 4	4			2 0,00053565	5 354,70	9 4	1	
	3 (0,000583906	325,395	5				3 0,00051152	1 371,44	1	3			3 0,000540475	5 351,54	2 4	ŧ	
1	4 (0,000719025	264,247	4				4 0,00065629;	1 289,50	6 4	4			4 0,000653074	1 290,93	2 3	3	
	5 (0,000617686	307,6	4				5 0,000588732	2 322,72	7	3			5 0,000622512	2 305,21	5 3	3	
	6	0.000644227	294,927	5				5 0.0005469	347.40	7 4	4			6 0.000564604	4 336.51	9 3	3	1
-	7 (0.000617886	307.5	0				7 0.00048818	7 389.19	5 4	4			7 0.00047423	3 400.64	7 4	1	-
-	2	0.000608035	312 /182	4				8 0.0006128	310.02	2 /	1			8 0.00061768	5 307	6 3	2	-
-	9	0.000644227	29/ 927					0.00067318	282.24	2	2			9 0 00079132	2/0 10	2 1	<u>.</u>	+
1		0,000596219	224,527			-	1	0,00050355	202,24	4 3	5 2		1	0,00073132	7 205 22	5 6	-	
÷.	1	0,000580319	214,000	2			1	0,00055533	320,10	4 . c /	5		1	1 0.0000513	100.74		/	-
-	2	0,000003203	202.967	2			1	0,00005029	107.05	2 .	1		1	0,0003312	2 135,74	4 (<u></u>	+
-	2	3,000627557	302,807	2			1	2 0,00090030	197,65	o .		-	1	2 0,00127390	3 149,13		<u></u>	
1	3	0,00082519	230,25	0		-	1	3 0,00081795	2 232,28	8	1		1	3 0,00092344	3 205,75	2 (<u></u>	
1	4	J,000752805	252,389	0			1	4 0,00105682	2 1/9,/8	4 (0	-	1	4 0,0012812	2 148,29	/ ()	
1	5	0,00133189	142,655	0		_	1	5 0,0010471	/ 181,44	1 (0		1	5 0,000989263	3 192,06	2 ()	
1	6	0,00139462	136,238	0		_	1	6 0,000991670	5 191,59	5 (0		1	6 0,00068043	2 279,23	9 ()	
1	7	0,00093558	203,083	0		_	1	7 0,000776933	3 244,55	1 (0		1	7 0,00058390	5 325,39	5 ()	
1	8	0,00113284	167,72	0			1	8 0,000685246	5 277,27	3 (D		1	8 0,00101112	2 187,9	1 ()	
1	9	0,0077378	28,4318	0		1	1	9 0,00089274	9 212,82	6 (0	1		0 (D	0 0) (<u>ງ</u> 0
2	0	0,0111128	19,797	0			-	0 ()	0 (0	0	0	0 (D	0 () (0 C
2	1	0,0403799	5,44825	0) ()	0 (0	0	0	0 (0	0 0) (0 0
2	2	0,0069463	31,6715	0				0 ()	0 (0	0	0	0 (D	0 0) (0 0
2	3	0,01581	13,9152	0			(0 (0	0 (0	0	0	0 (D	0 0) (0 0
2	4	0,00864329	25,4533	0				D ()	0 (D	0	0	0 (D	0 () (0 0
2	5	0,00680488	32,3297	0				D ()	0 (0	0	0	0 (D	0 () (0 0
2	6	0,00908442	24,2173	0				D (D	0 (0	0	0	0 (D	0 () (0 0
	_						_					_	_					

Tab. A.12: Ergebnisse der Auswertung des Testsignals (Messfahrt 169-173)

D,t	v_p	W/ta	MW D,t	MW v_p
[s]	[m/s]	wig.	[s]	[m/s]
0,000878049	170,833	0	0,000374788	421,736
0,00121409	123,549	0		
0,000521173	287,813	0		
0,000201001	746,264	0		
0,000485283	309,098	2		
0,000413865	362,437	5		
0,00033029	454,146	5		
0,000371041	404,268	5		
0,000341207	439,616	5		
0,000288926	519,164	5		
0,000266625	562,589	2		
0,000374495	400,539	0		
0,000693989	216,142	2		
	D,t [5] 0,000878049 0,00121409 0,000521173 0,00021010 0,000485283 0,000413865 0,00033029 0,000371041 0,000341207 0,000288926 0,000374495 0,000693989	D,t V_p [s] [m/s] 0,000878049 170,833 0,00121409 123,549 0,00021173 287,813 0,00021017 746,264 0,0003029 369,098 0,0003102 454,146 0,000371041 404,268 0,000371042 519,164 0,000341207 539,164 0,00024425 562,589 0,00037445 400,539 0,00037435 240,539 0,00037435 240,5439 0,000373435 240,5439 0,000373435 240,5439 0,000373435 240,5439 0,000373435 240,5439	D,t v_p wtg. [5] [70,833 0 0,000878049 170,833 0 0,00121409 123,549 0 0,00021173 287,813 0 0,00021173 287,813 0 0,000210101 746,264 0 0,00031029 454,146 5 0,000371041 404,268 5 0,000341207 439,616 5 0,000288926 519,164 5 0,000246625 562,858 2 0,000341207 430,613 5 0,000288926 519,164 5 0,000341205 562,858 2 0,000341205 562,858 2 0,000341205 562,858 2 0,000341205 562,858 2 0,000341205 562,858 2 0,000341205 562,858 2 0,000341205 562,858 2 0,000341205 562,858 2 0,0000639388	N N N D,t V_p MWD,t [s] 170,833 0 0,000374049 0,000878049 170,833 0 0,000374788 0,00121409 123,549 0 0 0,000521173 287,813 0 0 0,00021001 746,264 0 0 0,00031029 454,146 5 0 0,00031029 454,146 5 0 0,000371041 404,268 5 0 0,000341207 439,616 5 0 0,000288926 519,164 5 0 0,000288926 5589 2 0 0,000374495 400,539 0 0 0,000374495 400,539 0 0

Me	ssfahrten TS	174-179															
	D,t	v_p	W/t a	MW D,t	MW v_p		D,t	v_p	W/t a	MW D,t	MW v_p		D,t	v_p	W/t a	MW D,t	MW v_p
	[s]	[m/s]	wig.	[s]	[m/s]		[s]	[m/s]	wig.	[s]	[m/s]		[s]	[m/s]	wig.	[s]	[m/s]
0	0,00676948	26,5899	0	0,00495942	41,3526	0	0,000752805	239,106	3	0,000823674	222,102	0	0,000615273	292,553	4	0,000731647	253,547
1	0,00469156	38,3668	0			1	0,000854144	210,737	4			1	0,000781759	230,25	3		
2	0,00485795	37,0526	0			2	0,000723851	248,67	4			2	0,000687658	261,758	3		
3	0,00837662	21,4884	1			3	0,00068127	264,212	3			3	0,000700081	257,113	2		
4	0,00368409	48,8588	1			4	0,000705154	255,263	2			4	0,00077452	232,402	3		
5	0	0	0			5	0,000804164	223,835	3			5	0,000760043	236,829	2		
6	0,00230787	77,994	0			6	0,000757196	237,719	1			6	0,000742338	242,477	3		
7	0,00748219	24,0571	1			7	0,00130293	138,15	0			7	0,000579081	310,838	1		
8	0,00441578	40,7629	2			8	0,000849318	211,935	2			8	0,000691524	260,295	3		
9	0,00317073	56,7692	2			9	0,000849001	212,014	3			9	0,000694897	259,031	3		
10	0,00203426	93,4	0			10	0,00110015	163,614	2			10	0,000550994	326,683	2		
11	0,0053537	35,4895	0			11	0,000781759	230,25	2			11	0,000689906	260,905	2		
12	0,0018688	101,67	3			12	0,000998914	180,196	4			12	0,000709374	253,745	2		
13	0,00184341	81,3711	3			13	0,000738328	243,794	1			13	0,000762456	236,079	4		
14	0,00194079	113,356	3			14	0,000846101	212,74	3			14	0,00118712	151,628	3		
0	0	0	0	0	0	15	0,000591949	304,08	0			15	0,000508304	354,119	1		
0	0	0	0	0	0	16	0,00104446	181,913	2			16	0,000630637	285,426	1		
0	0	0	0	0	0	17	0,000994685	191,015	4			17	0,000795268	238,913	1		
0	0	0	0	0	0	18	0,00148148	128,25	0			18	0,00077332	245,694	0		

Tab. A.13: Ergebnisse der Auswertung des Testsignals (Messfahrt 174-179)

	D,t	v_p	14/4-	MW D,t	MW v_p		D,t	v_p	14/4-	MW D,t	MW v_p		D,t	v_p	14/4-	MW D,t	MW v_p
	[s]	[m/s]	wig.	[s]	[m/s]		[s]	[m/s]	wtg.	[s]	[m/s]		[s]	[m/s]	wtg.	[s]	[m/s]
0	0,000650629	276,655	2	0,000646655	282,131	0	0,00482927	37,2727	0	0,000617134	294,9	0	0,000281385	639,692	0	0,000600094	308,049
1	0,000704607	255,462	3			1	0,00504878	35,6522	0			1	0	0	0		
2	0,000731089	246,208	2			2	0,000895802	200,937	0			2	0,00219435	82,0287	0		
3	0,000553634	325,125	3			3	0,000761768	236,293	2			3	0,000412595	436,263	1		
4	0,000471982	381,37	2			4	0,000560508	321,137	2			4	0,000702592	256,194	3		
5	0,000618087	291,221	3			5	0,000586319	307	2			5	0,000651466	276,3	3		
6	0,00061502	292,673	0			6	0,000569429	316,106	5			6	0,0007142	252,03	3		
7	0,000675639	266,414	3			7	0,000676286	266,16	4			7	0,000665943	270,293	2		
8	0,000617686	291,41	3			8	0,000553781	325,038	3			8	0,000545056	330,242	4		
9	0,00065469	274,939	4			9	0,000687485	261,824	3			9	0,000648753	277,455	1		
10	0,000752805	239,106	2			10	0,000572646	314,33	3			10	0,000543692	331,07	3		
11	0,000733502	245,398	2			11	0	0	0			11	0,000464285	387,693	3		
12	0,000579081	310,838	1			12	0,000960309	197,853	1			12	0,00127398	149,139	0		
13	0,000653074	275,619	2			13	0,000817952	232,288	1			13	0,000923443	205,752	0		
14	0,000583906	308,269	0			14	0,00105682	179,784	0			14	0,00128122	148,297	0		
15	0,00133189	142,655	0			15	0,00104717	181,441	0			15	0,000989263	192,062	0		
16	0,00139462	136,238	0			16	0,000991676	191,595	0			16	0,00068042	279,239	0		
17	0,00093558	203,083	0			17	0,000776933	244,551	0			17	0,000583906	325,395	0		
18	0,00113284	167,72	0			18	0,000685246	277,273	0			18	0,00101112	187,91	0		
19	0,0077378	28,4318	0			19	0,000892749	212,826	0			0	0	0	0	0	0
20	0,0111128	19,797	0			0	0	0	0	0	0	0	0	0	0	0	0
21	0,0403799	5,44825	0			0	0	0	0	0	0	0	0	0	0	0	0
22	0,0069463	31,6715	0			0	0	0	0	0	0	0	0	0	0	0	0
23	0,01581	13,9152	0			0	0	0	0	0	0	0	0	0	0	0	0
24	0,00864329	25,4533	0			0	0	0	0	0	0	0	0	0	0	0	0
25	0,00680488	32,3297	0			0	0	0	0	0	0	0	0	0	0	0	0
26	0,00908442	24,2173	0			0	0	0	0	0	0	0	0	0	0	0	0

	D,t [s]	v_p [m/s]	Wtg.	MW D,t [s]	MW v_p [m/s]
0	0,00395122	45,5556	0	0,000619725	292,084
1	0,00199946	90,0241	0		
2	0,000569429	316,106	2		
3	0,000693767	259,453	3		
4	0,000617446	291,523	2		
5	0,000651466	276,3	4		
6	0,000622953	288,946	3		
7	0,000626686	287,225	2		
8	0,00054691	329,122	3		
9	0,000563318	319,535	3		
10	0,000649752	277,029	4		
11	0,000374495	400,539	0		
12	0,000693989	216,142	2		

М	essfahrten TS	181-185															
	D,t	vp	l	MW D,t	MWv p		D,t	vp		MW D,t	MWv p		D,t	vp		MW D,t	MWv p
	[5]	[m/s]	Wtg.	[s]	[m/s]		[s]	[m/s]	Wtg.	[s]	[m/s]		[s]	[m/s]	Wtg.	[s]	[m/s]
	0,00635179	26,7641	. 0	0,00302037	63,4502	0	0,00480693	35,3656	0	0,000932829	200,3	0	0,000281385	604,154	0	0,00077559	230,768
1	0,00586819	28,9697	0			1	0,00936585	18,151	0			1	0	0	0		
2	0,00463489	36,6783	3			2	0,00193496	87,8571	1			2	0,000747967	227,283	4		
1	0,00218685	77,7375	4			3	0,00192954	88,1039	1			3	0,000579081	293,569	3		
4	0,00226565	75,0335	2			4	0,00101339	167,754	1			4	0,000777858	218,549	3		
5	0,00203204	83,6596	0			5	0,000752805	225,822	3			5	0,000788997	215,463	2		
6	0,00378357	44,9311	. 0			6	0,00080112	212,203	1			6	0,00072837	233,398	1		
7	0,000780488	217,812	0			7	0,000583906	291,143	3			7	0,00106265	159,978	4		
8	0,00441578	40,7629	2			8	0,00073048	232,724	2			8	0,000738328	230,25	2		
9	0,00317073	56,7692	2			9	0,000903494	188,158	3			9	0,000377633	450,173	1		
10	0,00203426	93,4	0			10	0,00081815	207,786	3			10	0,000807011	210,654	1		
11	0,0053537	35,4895	0			11	0,0010518	161,628	4			11	0,00084708	200,689	2		
12	0,0018688	101,67	3			12	0,000998914	180,196	4			12	0,00063907	266,011	1		
13	0,00184341	81,3711	3			13	0,000738328	243,794	1			13	0,000762456	236,079	4		
14	0,00194079	113,356	3			14	0,000846101	212,74	3			14	0,00118712	151,628	3		
0) 0	0	0	0	0	15	0,000591949	304,08	0			15	0,000508304	354,119	1		
() 0	0	0	0	0	16	0,00104446	181,913	2			16	0,000630637	285,426	1		
0) 0	0	0	0	0	17	0,000994685	191,015	4			17	0,000795268	238,913	1		
0) 0	0	0	0	0	18	0,00148148	128,25	0			18	0,00077332	245,694	0		
_	•									-							
	D,t	v_p	W/t-r	MW D,t	MW v_p		D,t	v_p	14/1-07	MW D,t	MW v_p		D,t	v_p	W/t-m	MW D,t	MW v_p
	[s]	[m/s]	vvig.	[s]	[m/s]		[s]	[m/s]	vvig.	[s]	[m/s]		[s]	[m/s]	wig.	[s]	[m/s]
0	0,00221138	76,875	0	0,000583158	334,98	0	0,00205962	82,5395	0	0,000615446	315,185	0	0,00229268	74,1489	0	0,00060060	9 309,309
1	0	0	0			1	0,00395122	43,0247	0			1	0,00278049	61,1404	0		
2	0,000542005	313,65	1			2	0,000531165	320,051	. 1			2	0,00154472	110,053	0		
3	0,000867538	195,957	2			3	0,00082519	206,013	5			3	0,000941006	180,658	2		
4	0,000376659	451,336	4			4	0,000448788	378,798	2			4	0,000530824	320,257	2		
5	0,000398118	427,009	2			5	0,000671338	253,226	4			5	0,000467953	363,285	2		
6	0,000362793	468,586	1			6	0,000273677	621,171	. 3			6	0,000479303	354,682	3		
7	0,000405356	419,384	1			7	0,000588732	288,756	3			7	0,000489641	347,193	2		
8	0,000958514	177,358	2			8	0,000854144	199,03	3			8	0,000867685	195,924	2		
9	0,000598383	284,099	0			9	0,000384764	441,83	3			9	0,000513934	330,782	0		
10	0,000745566	228,015	2			10	0,000468147	363,134	1			10	0,000376402	451,644	1		
11	0,000574255	296,036	1			11	0,000448788	378,798	0			11	0,000541331	314,041	0		
12	0	0	0			12	0,000740113	229,695	3			12	0,000506696	335,507	0		
13	0,000653074	275,619	2			13	0,000817952	232,288	1			13	0,000923443	205,752	0		
14	0,000583906	308,269	0			14	0,00105682	179,784	0			14	0,00128122	148,297	0		
15	0,00133189	142,655	0			15	0,00104717	181,441	. 0			15	0,000989263	192,062	0		
16	0,00139462	136,238	0			16	0,000991676	191,595	0			16	0,00068042	279,239	0		
17	0,00093558	203,083	0			17	0,000776933	244,551	. 0			17	0,000583906	325,395	0		
18	0,00113284	167,72	0			18	0,000685246	277,273	0			18	0,00101112	187,91	0		
19	0,0077378	28,4318	0			19	0,000892749	212,826	0			0	0	0	0		0 0
20	0,0111128	19,797	0			0	0	0	0	0	0 0	0	0	0	0		0 0
21	0,0403799	5,44825	0			0	0	0	0	(0 0	0	0	0	0		0 0
22	0,0069463	31,6715	0			0	0	0	0	0	0 0	0	0	0	0		0 0
23	0,01581	13,9152	0			0	0	0	0	0	0 0	0	0	0	0		0 0
24	0,00864329	25,4533	0			0	0	0	0	0	0 0	0	0	0	0		0 0
25	0,00680488	32,3297	0			0	0	0	0	(0 0	0	0	0	0		0 0
		24 24 72	0		1	1 0	0	1 0	0		0 0	0	0	I 0	I 0	1 1	0 0

	D,t	v_p	W/ta	MW D,t	MW v_p
	[s]	[m/s]	wig.	[s]	[m/s]
0	0,00395122	45,5556	0	0,000619725	292,084
1	0,00199946	90,0241	0		
2	0,000569429	316,106	2		
3	0,000693767	259,453	3		
4	0,000617446	291,523	2		
5	0,000651466	276,3	4		
6	0,000622953	288,946	3		
7	0,000626686	287,225	2		
8	0,00054691	329,122	3		
9	0,000563318	319,535	3		
10	0,000649752	277,029	4		
11	0,000374495	400,539	0		
12	0,000693989	216,142	2		

ſ	Me	sfahrten TS	186-193																	
T		D.t	q V		MW D,t	MW v p		D.t	qν		MW D,t	MW v p			D.t	v p		MW D,t	MW v p	5
		[s]	[m/s]	Wtg.	[s]	[m/s]		[s]	[m/s]	Wtg.	[s]	[m/s]			[s]	[m/s]	Wtg.	[s]	[m/s]	
ſ	0	0,00159869	150,122	1	0,00253164	98,8243	0	0,00278956	86,0351	0	0,00107515	263,09	0	0	,00112186	213,931		0,000651042	445,897	7
Γ	1	0,00776634	30,9026	0			1	0,00156098	153,75	0			1	0	,00187805	127,792	0)		-
	2	0,0072439	33,1313	0			2	0,00276423	86,8235	0			2	0	,00117073	205	0)		_
	3	0,00471545	50,8966	0			3	0,00209756	114,419	1			3		0,0014878	161,311	. (D		_
	4	0,00157182	152,69	0			4	0,00173903	138,008	1			4	0	,00204144	117,564	0	D		
	5	0,00269919	88,9157	1			5	0,00262916	91,284	2			5	0	,00241436	99,4054	1	L		_
	6	0,00279675	85,814	2			6	0,000807624	297,168	2			6	0	,00125745	190,862	0)		_
	7	0,00253605	94,6354	0			7	0,000687658	349,011	2			7	0,0	000788997	304,183	2	2		_
	8	0,00167925	142,921	0			8	0,00119584	200,696	3			8	0,0	000702455	341,659	3	3		_
	9	0,00288347	83,2331	0			9	0,000991676	242,015	3			9	0,0	000763166	314,479	3	3		_
ŀ	10	0,00244382	98,207	1			10	0,000297749	806,049	0			10	0,0	000702135	341,814	4	1		_
ŀ	11	0,00285466	84,073	1			11	0,000408574	587,409	1			11	0,0	000439136	546,527	3	3		_
ŀ	12	0,00198928	120,647	0			12	0,000743154	322,948	2			12	0,0	000616365	389,379	3	3		_
ŀ	13	0,00184341	81,3711	3			13	0,000662726	362,141	3			13	0,0	000241284	994,68	2	2		_
ŀ	14	0,00194079	113,356	3			14	0,000998608	240,335	3			14	0,0	000400226	599,661	4	1		_
┟	0	0	0	0	0	0 0	15	0,000889066	269,946	3			15	0,0	000739624	324,489	1	L		_
┟	0	0	0	0	0	0	16	0,000995102	241,181	3			16	0,0	000520914	460,729	2	2		-
╞	0	0	0	0	0	0 0	17	0,000994685	191,015	4			17	0,0	000795268	238,913	1	L		-
I	0	0	0	0	0	0	18	0,00148148	128,25	0			18	0	,00077332	245,694	0)		
Ē				-			-		-								_			
		D,t	v_p	Wtg	MW D,t	MW v	p	D,t	v_p	. wt	g. MW D,1	t MW	v_p		D,t	V_	°. v	Vtg. MW D,	MW	v_p
┝	_	[5]	[m/s]		[5]	[m/s		[5]	[m/s		<u>[s]</u>	[m/	s]		[5]	[m/	sj		[m/	/s]
┝	0	0,00296232	81,0170	5 (0,0006974	97 388,0	33	0 0,002532	53 94,76	33	0 0,000569	104 429,	174	0	0,001640	25 146,	319	0 0,000533	099 453,	,362
┝	1	0,00261856	91,653	3 (0	_	+	1 0,00056	425,0	05	0	_		1	0,001008	13 238,	065	0		
┝	2	0,00426016	56,3355			_	+	2 0,001293	38 185,4	88	0	_		2	0,0006209	27 386,	519	1	_	
┝	3	0,0020813	115,31		0	_	+	3 0,001300	31 184	,5	0	_		3	0,0006032	09 397,	8/2	5	_	
┝	4	0,00301251	/9,66/			_	+	4 0,001008	13 238,0	65	0	_		4	0,0005616	07 427,	345	5	_	
$\left \right $	5	0,00121805	197,030		1	-	+	5 0,0004970	4 482,8	54	3	_		5	0,0004777	42 502,	364	5	_	
┢	7	0,00145257	105,224	+ (+	7 0,0006007	399,	4/	3	_		0	0,0005401	25 444,	34Z	5	_	
ŀ	/	0,000791328	303,288		1		+	7 0,0006930	17 501 6	10	3	_		/	0,0005663	34 437,	115	5	_	
ł	0	0,00060366	404 24		1		+	0,0004600	+/ 321,0	26	2			0	0,0003002	12 423,	009	5		
ŀ	2	0,000335556	201.00		1	-	-	9 0,0005179	0 207 0	72	2	-		- - 7	0,0004370	44 402,	004 409	3	-	
ł	11	0,000745500	201 10		2	_			1 202 6	61	2	_		11	0,0003730	04 525	400 0/1	2	_	
-	12	0.000534041	1/19/10		2			2 0.0006820	251 8	92	0	_		12	0,0004478	06 489	197	2	_	
-	12	0,0000004041	236 829		1			3 0.0001694	1416	17	0			12	0,00045	87 475	166	3		
H	14	0.00012265	1956 7		<u></u>			4 0.001056	32 179 7	84	0		_	14	0.0005083	04 472	158	4		
H	15	0.000267915	895.80	7 1	1	-		0.001047	17 181.4	41	0		_	15	0.0003860	54 621	675	0		
F	16	0.000714825	335.74	7	2			16 0.0009916	76 191.5	95	0			16	0,0003485	84 68	8.5	0		
E	17	0.00093558	203.08	3 (0			7 0.0007769	33 244.5	51	0			17	0.0005839	06 325.	395	0		
Ē	18	0.00113284	167.7		0			8 0.0006852	16 277.2	73	0			18	0.001011	12 187	7.91	0		
Ē	19	0.0077378	28,4318	8 (0			0.0008927	19 212.8	26	0			0	-,	0	0	0	0	(
E	20	0,0111128	19,79	7 0	0		Ť	0	0	0	0	0	0	0		0	0	0	0	
	21	0.0403799	5.4482	5 (0		+	0	0	0	0	0	0	0		0	0	0	0	(
E	22	0,0069463	31.671	5 (D		+	0	0	0	0	0	0	0		0	0	0	0	
E	23	0.01581	13,915	2 (D		+	0	0	0	0	0	0	0		0	0	0	0	_
	24	0,00864329	25,453	3 (D		+	0	0	0	0	0	0	0		0	0	0	0	(
	25	0,00680488	32,329	7 (D			0	0	0	0	0	0	0		0	0	0	0	(
:	26	0,00908442	24,217	3 (D		1	0	0	0	0	0	0	0		0	0	0	0	(
1					•	•						•				•	•	•	•	

Tab. A.15: Ergebnisse der Auswertung des Testsignals (Messfahrt 186-193)

	D,t	v_p	W/t a	MW D,t	MW v_p		D,t	v_p	W/t a	MW D,t	MW v_p		D,t	v_p	\\/±σ	MW D,t	MW v_p
	[s]	[m/s]	wig.	[s]	[m/s]		[s]	[m/s]	wig.	[s]	[m/s]		[s]	[m/s]	wig.	[s]	[m/s]
0	0,000793188	302,576	1	0,000540893	448,264	0	0,00053565	448,054	2	0,000520438	463,168	0	0,00050187	478,212	1	0,000511954	472,069
1	0,000586319	409,333	2			1	0,00053565	448,054	2			1	0,000499457	480,522	3		
2	0,000571401	420,02	2			2	0,000544401	440,852	3			2	0,000525998	456,275	4		
3	0,000511521	469,189	4			3	0,000566449	423,692	4			3	0,000540475	444,054	3		
4	0,000546205	439,396	5			4	0,000505087	475,166	4			4	0,000458439	523,516	3		
5	0,000574255	417,933	5			5	0,000566212	423,869	3			5	0,000510093	470,502	4		
6	0,000548697	437,4	5			6	0,000550127	436,263	3			6	0,000510404	470,215	3		
7	0,000533905	449,518	4			7	0,000530824	452,127	3			7	0,000589862	406,875	4		
8	0,000516347	464,804	2			8	0,000506696	473,657	4			8	0,000550273	436,147	4		
9	0,000486108	493,717	2			9	0,000493201	486,617	4			9	0,000519644	461,855	3		
10	0,000655014	366,405	0			10	0,000510449	470,174	3			10	0,000448577	535,025	4		
11	0,00045683	525,359	3			11	0,000498653	481,297	3			11	0,000438054	547,877	2		
12	0,000614469	390,581	3			12	0,000545301	440,124	3			12	0,000567054	423,24	2		
13	0,00046809	512,722	4			13	0,000464779	516,375	3			13	0,000453613	529,085	2		
14	0,000550127	436,263	4			14	0,000469699	510,966	5			14	0,000511521	469,189	4		
15	0,000595166	403,249	2			15	0,00061286	391,606	1			15	0,000588732	407,656	0		
16	0,000463265	518,063	2			16	0,000400531	599,205	0			16	0,000839667	285,828	0		
17	0,000977971	245,406	0			0	0	0	0	0	0	0	0	0	0	0	0

Me	essfahrten TS	201-205																			
	D,t	v_p		MW D,t	MW v_p		D,t		v_p		MW D,t	MW	/v_p			D,t	v_p			MW D,t	MW v_p
	[s]	[m/s]	wtg.	[s]	[m/s]		[s]		[m/s]	wtg.	[s]	[m	n/s]			[s]	[m/s]	wtg	6	[s]	[m/s]
0	0,00208874	81,3886	0	0,00284669	64,7792	0	0,00117	988	144,083	2	0,00115513	156	6 <mark>,</mark> 821	0	0,	000670768	253,441		30,	000702793	259,283
1	0,0016342	104,026	0			1	0,000934	852	181,847	1				1	0,	000497044	342,022		3		
2	0,00124188	136,889	0			2	0,000723	851	234,855	4				2	0,	000661117	257,141		4		
3	0,00245436	69,2645	1			3	0,000939	684	180,912	3				3	0,	000738328	230,25		3		
4	0,00137324	123,794	0			4	0,00113	645	149,589	3				4	0,	000651466	260,95		4		
5	0,00143322	118,614	0			5	0,00105	121	161,719	3				5	0,	000588732	288,756		3		
6	0,00385413	44,1085	0			6	0,000991	165	171,515	3				6	0,	000733502	231,765		3		
7	0,00180365	94,2531	1			7	0,0008989	901	189,12	1				7	0,	000586319	289,944		3		
8	0,00431151	39,4293	3			8	0,00118	712	143,204	3				8	0,	000602785	282,024		3		
9	0,00181122	93,8593	2			9	0,00106	647	159,404	2				9	0,	000575665	295,311		4		
10	0,00239582	70,9571	3			10	0,00132	016	128,772	3				10	0,	000689124	246,69		3		
11	0,00288758	58,8729	3			11	0,000991	129	171,522	2				11	0,	000588732	288,756		3		
12	0,00301756	56,3369	2			12	0,000998	914	170,185	3				12	0,	000733502	231,765		3		
13	0,00184341	81,3711	3			13	0,00152	974	111,13	3				13	0,	000540475	314,538		3		
14	0,00194079	113,356	3			14	0,001814	445	93,6922	2				14	0	,00150561	112,911		4		
0	0	0	0	0	0	15	0,0019	544	86,9833	2				15	0,	000540475	314,538		0		
0	0	0	0	0	0	16	0,00142	284	119,014	0				16	0,	000656291	259,031		1		
0	0	0	0	0	0	17	0,002374	423	71,6021	0				17	0,	000716612	237,227		0		
0	0	0	0	0	0	18	0,00148	148	128,25	0				18	0	,00046809	363,178		0		
	D,t	v p	l	MW D,t	MW v	р	D,t		vp	1	MW D,t	t N	MW v	р		D,t	V			MW D,t	MW v r
	[s]	[m/s]	Wtg.	[s]	[m/s]		[s]		[m/s]	Wt	g. [s]		[m/s]	1		[s]	[m/	5] V	Vtg.	[s]	[m/s]
0	0,000697416	243,757	4	0,00059339	93 291,64	13	0 0,00055	4952	2 306,33	3	4 0,0005785	913	299,54	44	0	0,00046326	5 366,	961	2	0,00063248	38 288,57
1	0,000487393	348,795	4				1 0,00049	7044	1 342,02	2	4				1	0,00082040	06 207,	215	2		
2	0,000525998	323,195	5				2 0,00049	1632	2 345,78	7	4				2	0,0007832	77 217,	037	3		
3	0,00050187	338,733	3				3 0,00052	20162	2 326,82	1	3				3	0,00065252	29 260,	525	0		
4	0,00062898	270,279	3			T	4 0,00052	25998	3 323,19	5	3				4	0,00037379	4 454,	796	3		
5	0,000603847	281,528	3			+	5 0,00056	i9429	9 298,54	4	3				5	0,00073890	3 230,	071	3		-
6	0,000597353	284,589	4			$^{+}$	6 0,00058	39614	1 288,32	4	4				6	0,00064980	08 261,	516	3		
7	0,000572297	297,049	4				7 0,00061	6277	7 275,8	5	2				7	0,00060419	3 281,	367	3		
8	0,000617686	275,221	. 2				8 0,00068	3222	2 248,82	1	3				8	0,0071173	39 23,8	352	0		
9	0.000636989	266.881	2				9 0.00083	30704	1 204.64	6	0				9	0.00072	29 233.	196	0		
10	0.000482567	352.283	2			1	.0 0.00070	5698	3 240,89	6	2				10	0.00063480	6 267.	799	0		
11	0.000670768	253,441	2			1	1 0,00058	30025	5 293,09	1	3				11	0,00066232	24 256.	572	0		
12	0,000627337	270,987	2			1	2 0,00072	20198	3 236,04	6	3			1	12	0,000490	6 489,	197	3		1
13	0,000636989	266,881	2			1	3 0,00049	3022	2 344,81	.3	3			1	13	0,00050508	37 475,	166	3		1
14	0,000572646	296,867	0)		1	4 0,00092	9307	7 182,93	2	1			1	14	0,00050830	472,	158	4		1
15	0,000919291	184,925	1			1	5 0,00051	4773	3 330,24	3	2			1	15	0,00038605	621,	575	0	[1
16	0,000437528	388,547	0			1	6 0,00060	9027	7 279,13	4	2			1	16	0,00034858	34 68	8,5	0		1
17	0,00154904	109,745	0			1	7 0,0014	4523	3 117,62	8	0			1	17	0,00058390	06 325,	395	0		1
18	0,000888889	191,25	0)		1	8 0,0011	1655	5 152,25	5	0				18	0,0010111	12 187	,91	0		1
19	0,0077378	28,4318	0			1	9 0,0023	9985	5 70,837	6	0			1	0		0	0	0		0 (
20	0,0111128	19,797	0)		1	0	()	0	0	0		0	0		0	0	0		0
21	0,0403799	5,44825	0		1	╈	0	(b	0	0	0		0	0		0	0	0		0
22	0,0069463	31,6715	0			╈	0	(b	0	0	0		0	0		0	0	0		0
23	0.01581	13,9152	0		1	╈	0	(0	0	0	0		0	0		0	0	0		0
24	0,00864329	25,4533	0)		╈	0	(0	0	0	0		0	0		0	0	0		0
25	0,00680488	32,3297	0)		\top	0	()	0	0	0		0	0		0	0	0		0
26	0,00908442	24,2173	0				0	()	0	0	0		0	0		0	0	0		0
					-	1	1			•	•				-		•		-	1	-
_	D.4	1	1	MAKET	LA DAY	-1			1	-						D.4	1			MALE	LADA/CO.
	D,t	v_p	Wtg.	ww.b,t	WW V	ρ	D,t		v_p	Wt	g. MW D,t			_p		D,t		, Iv	Vtg.	ww.b,t	WW V_
_	[5]	[m/s]		[5]	[m/s]		S		[m/s]		[S]		[m/s	1		[5]	[m/	sj		[5]	[m/s]

Tab. A.16: Ergebnisse der Auswertung des Test	signals (Messfahrt 201-205)
---	-----------------------------

	D,t	v_p	14/4-0	MW D,t	MW v_p		D,t	v_p	14/4-07	MW D,t	MW v_p		D,t	v_p	14/4-	MW D,t	MW v_p
	[s]	[m/s]	vvig.	[s]	[m/s]		[s]	[m/s]	wig.	[s]	[m/s]		[s]	[m/s]	vvig.	[s]	[m/s]
0	0,000793188	302,576	1	0,000540893	448,264	0	0,00053565	448,054	2	0,000520438	463,168	0	0,00050187	478,212	1	0,000511954	472,069
1	0,000586319	409,333	2			1	0,00053565	448,054	2			1	0,000499457	480,522	3		
2	0,000571401	420,02	2			2	0,000544401	440,852	3			2	0,000525998	456,275	4		
3	0,000511521	469,189	4			3	0,000566449	423,692	4			3	0,000540475	444,054	3		
4	0,000546205	439,396	5			4	0,000505087	475,166	4			4	0,000458439	523,516	3		
5	0,000574255	417,933	5			5	0,000566212	423,869	3			5	0,000510093	470,502	4		
6	0,000548697	437,4	5			6	0,000550127	436,263	3			6	0,000510404	470,215	3		
7	0,000533905	449,518	4			7	0,000530824	452,127	3			7	0,000589862	406,875	4		
8	0,000516347	464,804	2			8	0,000506696	473,657	4			8	0,000550273	436,147	4		
9	0,000486108	493,717	2			9	0,000493201	486,617	4			9	0,000519644	461,855	3		
10	0,000655014	366,405	0			10	0,000510449	470,174	3			10	0,000448577	535,025	4		
11	0,00045683	525,359	3			11	0,000498653	481,297	3			11	0,000438054	547,877	2		
12	0,000614469	390,581	3			12	0,000545301	440,124	3			12	0,000567054	423,24	2		
13	0,00046809	512,722	4			13	0,000464779	516,375	3			13	0,000453613	529,085	2		
14	0,000550127	436,263	4			14	0,000469699	510,966	5			14	0,000511521	469,189	4		
15	0,000595166	403,249	2			15	0,00061286	391,606	1			15	0,000588732	407,656	0		
16	0,000463265	518,063	2			16	0,000400531	599,205	0			16	0,000839667	285,828	0		
17	0.000977971	245,406	0			0	0	0	0	0	0	0	0	0	0	0	0

Me	ssfahrten TS	214-219																			
	D.t	y p		MW D.t	MW v p			D.t	vр	1	MW D.t	Im	a v W			D.t	v p		MW D.t	MM	/v p
	[5]	[m/s]	Wtg.	[5]	[m/s]			[5]	[m/s]	Wtg.	[5]	ſ	m/sl			[5]	[m/s]	Wtg.	[5]	ſ'n	1/s1
	0.00225094	52 2926	1	0.00296949	57 7492	0	0	0009790/10	216 290		0.000926197	1 2	24 622	0	0.0	00564604	226 510	4	0.00065941	201	5 5 9 6
	0,00323034	51 0929	1	0,00230043	57,7452	1	0,	000706326	210,303		0,000830187	2	.54,025	1	0,0	00072605	261.69	4	0,000000041	25.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	0,00332792	31,0829	1			1	0,	000750230	256,023			+		1	0,	00072003	201,09	2		I	
	0,00427354	39,7797	0			2	0,	,000753709	252,087	4		+		2	0,0	00673181	282,242	4		-	
3	0,00576299	29,4986	0			3	0,	,000843401	225,278	3		+		3	0,0	00583174	325,803	3		-	
4	0,00352586	48,2152	0			4	0,	,000785839	241,78	4				4	0,0	00636989	298,278	3		\vdash	
5	0,00219512	77,4444	0			5	0,	,000774361	245,364	2				5	0,0	00617686	307,6	3			
6	0,00492622	34,5092	0			6	0,	,000928513	204,628	2				6	0,0	00588403	322,908	1			
7	0,00277997	61,1518	0			7	0,	,000665943	285,31	. 3				7	0,0	00629325	301,911	3		1	
8	0,00282927	60,0862	0			8	0,	,000794886	239,028	3				8	0,0	00593558	320,104	3			
9	0,00327371	51,9288	1			9	0,	,000754065	251,968	4				9	0,	00106241	178,838	1			
10	0.0044065	38,5793	0			10	0.	000668871	284.061	3				10	0.0	00536325	354,263	0			
11	0.00272087	62 4801	3			11	0	000632569	300 363	5		1		11	0.0	00873447	217 529	0			
12	0.00275422	61 5	1			12	0,	0000002000	215 152			+		12	0,0	0011/269	166 12	0			
12	0,00270423	01,0711	1			12	0,	00000000000	213,132			+		12	0,	00114308	250.000			-	
13	0,00184341	81,3711	3			13	0,	,000933708	203,477	3		-		13	0,0	00731089	239,880	0		-	
14	0,00194079	113,350	3			14		0,00125467	151,434	3		+		14	0,	00100374	189,292	1		-	
	0	0	0	0	0	15	(0,00117191	162,129	3		-		15	0,0	00738328	257,338	1		\vdash	
0	0	0	0	0	0	16	0,	,000784976	242,046	i 2				16	0,0	00545301	348,431	1			
0	0	0	0	0	0	17	0,	,000738328	257,338	1				17	0,0	00918101	206,949	1			
0	0	0	0	0	0	18	0	0,00108738	174,731	. 0				18	0,	00177343	107,137	0			
0	0	0	0	0	0	19		0,0010713	177,355	1				19	0	0,0010928	173,866	0			
0	0	0	0	0	0	0		0	C	0	0)	0	20	0,	00110569	171,838	0			
					-	-					•		-					•	-		
	D.t	V p		MW D.t	MWV	p		D.t	l v p		MW D.t		MWV	p		D.t	V P		MW D.	t I	MW v a
	[5]	[m/s]	Wtg	[s]	[m/s	1		[5]	[m/s	w I	tg. [s]		[m/s]			[5]	[m/s	1 W1	^{tg.} [s]		[m/s]
0	0.000617686	307	6	4 0.0005641	95 339 2	205	0	0.0005486	97 346 3	275	3 0 0005908	229	336.70	18	0 0	0.00054530	1 348 4	31	4 0 000551	316	351 51
1	0.000559779	2201	2	4 0,0003041	.55 555,2		1	0,0005927	26 220 0	112	4		330,70		1 0	0 00062722	7 202 9	67	2 0,000001		331,31
1	0,000533778	335,4		-	_	-	-	0,0005537	20 320,0	15	4	-		-	1 0	0,00002733	/ 302,6	26	3	-	
2	0,00051300	370,3		3	_	-	2	0,0005533	33 343,3	105	4	-		-	2 0	0,00049704	4 382,	20	4	-	
3	0,000637103	3 298,22	5	3	_	-	3	0,0005563	28 341,5	525	3	_		-	3 (0,00049704	4 382,	26	3	\rightarrow	
4	0,000575864	329,93	9	3	_	_	4	0,0005573	65 340	,89	3	_		_	4 (0,00049221	9 386,0	07	3	\rightarrow	
5	0,000523311	363,07	3	3	_	_	5	0,0005625	42 337,7	752	3				5 (0,00057425	5 330,8	63	3	\rightarrow	
6	0,000524171	362,47	7	2			6	0,0004375	28 434,2	258	4				6 (0,00044878	8 423,3	63	1		
7	0,00103752	183,12	9 (0			7	0,0005115	21 371,4	41	1				7 (0,00089757	5 211,6	81	1		
8)	0	0			8	0,001006	15 188,8	338	3				8	0,0011050	8 171,9	33	0		
9	()	0	0			9	0,0002412	84 787,4	155	0				9	0,0025474	3 74,58	51	0		
10	0,000927589	204,83	2 (0			10	0,001233	98 153,9	974	0				10	0,00105	2 180,6	09	0		
11	0,000470448	403.8	7	1			11	0,002707	32 70.18	302	0			1	11 (0,00073162	9 259.6	95	0	1	
12	(0 0	0			12	0.001047	17 181 4	41	0			1	12 0	0.00085414	4 222 4	45	0	+	
12			0	0		+	13	0.0008612	83 220	76	0			+	13 0	0.00059194	9 320 9	74	1	+	
1/	0.00110740	171 55		0		+	14	0.001162	99 162 3	172	0	-		┥	1/ 0	0 00005540	3 100 0	52	-	+	
14	0.00111/7	170.44		0	_	┥	15	0.0007202	20 257 2	000	0	-		+	15	0.000953340	7 221 1	05	0	+	
15	0,00111473	160.70		0	_	+	10	0,0007383	20 237,3	001	0	-		+	10 -	0,0008389	221,1	55 06	0	+	
16	0,00118229	160,70	5 (-	0	_	-	10	0,001266	/4 149,9	191	0	_		+	10 (0,00076004	3 249,9	80	0	\dashv	
17	0,000801062	2 237,18	5	0	_	\rightarrow	17	0,000936	18 202,9	52	0	_		+	17 (0,00083966	/ 226,	28	U	\rightarrow	
18	0,000815539	232,97	5 (0			18	0,0007302	85 260,1	172	0				18 (0,00099891	4 190,2	07	0	\square	
19	0,000994089	191,1	3 (0			19	0,000875	86 216	,93	0				19 (0,00063698	9 298,2	78	0		
20	0,000601269	315,99	8 (0			20	0,0008975	75 211,6	581	0				20 0	0,00060320	9 314,9	82	0		
21	0,0403799	5,4482	5	0			21	0,001170	73 162,2	292	0			_[0		0	0	0	0	1
22	0,0069463	31,671	5 (0			0		0	0	0	0		0	0		0	0	0	0	(
23	0,01581	13,915	2 (0			0		0	0	0	0		0	0		0	0	0	0	(
24	0.0086432	25.453	3 (0		1	0		0	0	0	0		0	0		0	0	0	0	
25	0.00680489	32,329	7	0			0		0	0	0	0		0	0		0	0	0	0	
26	0.0090844	24 217	3	0		╡	õ		0	0	0	0		0	0		0	0	0	0	
20	0,0000044	24,217	~I '	Ч	- 1		v		4	Ч	Ч	~		Y	v		~	4	Ч	v	
		_											_								

Tab. A.17: Ergebnisse der Auswertung des Testsignals (Messfahrt 214-219)

	D,t	v_p	W/ta	MW D,t	MW v_p		D,t	v_p	W/t a	MW D,t	MW v_p		D,t	v_p	W/t a	MW D,t	MW v_p
	[s]	[m/s]	wig.	[s]	[m/s]		[s]	[m/s]	wig.	[s]	[m/s]		[s]	[m/s]	wig.	[s]	[m/s]
0	0,000439853	431,963	4	0,000470282	405,579	0	0,00053565	448,054	2	0,000520438	463,168	0	0,00050187	478,212	1	0,000511954	472,069
1	0,000442269	429,602	5			1	0,00053565	448,054	2			1	0,000499457	480,522	3		
2	0,000485771	391,131	4			2	0,000544401	440,852	3			2	0,000525998	456,275	4		
3	0,000468854	405,244	5			3	0,000566449	423,692	4			3	0,000540475	444,054	3		
4	0,00052601	361,21	5			4	0,000505087	475,166	4			4	0,000458439	523,516	3		
5	0,00045595	416,713	5			5	0,000566212	423,869	3			5	0,000510093	470,502	4		
6	0,000730697	260,026	0			6	0,000550127	436,263	3			6	0,000510404	470,215	3		
7	0,000802368	236,799	0			7	0,000530824	452,127	3			7	0,000589862	406,875	4		
8	0,000609027	311,973	0			8	0,000506696	473,657	4			8	0,000550273	436,147	4		
9	0,00135291	140,438	0			9	0,000493201	486,617	4			9	0,000519644	461,855	3		
10	0,00127451	149,077	0			10	0,000510449	470,174	3			10	0,000448577	535,025	4		
11	0,00148208	128,198	0			11	0,000498653	481,297	3			11	0,000438054	547,877	2		
12	0,0011528	164,816	0			12	0,000545301	440,124	3			12	0,000567054	423,24	2		
13	0,00113105	167,986	0			13	0,000464779	516,375	3			13	0,000453613	529,085	2		
14	0,00102229	185,856	0			14	0,000469699	510,966	5			14	0,000511521	469,189	4		
15	0,000904608	210,036	0			15	0,00061286	391,606	1			15	0,000588732	407,656	0		
16	0,000463265	518,063	2			16	0,000400531	599,205	0			16	0,000839667	285,828	0		
17	0,000977971	245,406	0			0	0	0	0	0	0	0	0	0	0	0	0

A.3 Ergebnisse der Auswertung der Impulsanregung

Tab. A.18: Legende zu den verwendeten Abkürzungen in den Ergebnissen der Auswertung der Impulsanregung

Abkürzung	Langbezeichnung
DT_	Wellenlaufzeit [s]
CP_	Wellenlaufgeschwindigkeit [m/s]
We_	Wertung der Signalqualität [-]
Mittelwert_dT	gewichteter Mittelwert der Wellenlaufzeit [s]
Mittelwert_cp	gewichteter Mittelwert der Wellenlaufgeschwindigkeit [m/s]

Tab. A.19: Ergebnisse der Auswertung der Impulsanregung (Messfahrt 109-112)

18041	9-052					18041	9-53				
	DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp		DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp
0	5,46E-03	25,625	1	1,71E-03	124,717	0	6,39E-04	219,254	9	1,70E-03	129,378
1	7,15E-04	195,682	3			1	6,61E-04	211,721	6		
2	1,94E-03	72,1508	5			2	2,98E-03	46,9636	5		
3	1,94E-03	72,1508	7			3	2,04E-03	68,6968	5		
4	1,04E-03	134,531	5			4	2,71E-03	51,66	7		
5	3,45E-03	40,6132	8			5	2,91E-03	48,1903	6		
6	6,01E-04	233,024	7			6	7,26E-04	192,761	7		
7	7,80E-04	179,375	7			7	0	0	0		
8	0	0	0			8	0	0	0		
9	0	0	0			9	0	0	0		
10	0	0	0			10	0	0	0		
11	0	0	0			11	0	0	0		

1804	19-055					1804	19-056				
	DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp		DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp
(2,38E-03	58,7045	3	1,26E-03	127,132	0	2,36E-03	59,3394	2	1,27E-03	119,881
1	L 9,09E-04	154	5			1	1,27E-03	110,564	2		
	2 1,02E-03	137,394	6			2	1,09E-03	128,855	4		
	3 2,09E-03	66,9171	4			3	1,09E-03	128,855	0		
4	1,34E-03	104,546	6			4	1,11E-03	125,591	3		
	5 6,99E-04	200,233	6			5	1,11E-03	125,591	0		
(5 1,17E-03	119,583	7			6	9,41E-04	148,777	3		
	7 0	0	0								
-	3 0	0	0								
) (0	0								
1() 0	0	0								
1	L 0	0	0								

180419	-067					1804:	L9-069					18041	9-070				
	DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp		DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp		DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp
0	3,47E-03	54,6916	2	1,21E-03	191,042	0	6,01E-04	316,324	3	8,93E-04	289,521	0	5,30E-04	358,286	5	9,79E-04	221,481
1	8,94E-04	212,455	5			1	1,04E-03	182,578	3			1	1,34E-03	141,637	7		
2	1,27E-03	149,808	6			2	3,25E-04	584,25	3			2	6,39E-04	297,559	7		
3	7,37E-04	257,757	7	•		3	6,88E-04	276,3	2			3	8,22E-04	231,034	7		
4	1,95E-03	97,375	4			4	4,23E-04	449,423	5			4	1,53E-03	124,309	7		
5	8,02E-04	236,858	7			5	1,45E-03	131,243	6			5	8,83E-04	215,152	7		
6	0	0	0			6	1,42E-03	133,798	3			6	0	0	0		
						7	0	0	0			7	0	0	0		
						8	0	0	0			8	0	0	0		
												9	0	0	0		
												10	0	0	0		
												11	0	0	0		

Tab. A.20: Ergebnisse der Auswertung der Impulsanregung (Messfahrt 118-122)

1804	19-072					180419	-073				
	DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp		DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp
0	1,12E-03	169,348	3	1,22E-03	173,695	0	5,20E-04	365,156	7	1,10E-03	209,204
1	7,03E-04	270,092	5			1	1,17E-03	163,034	6		
2	1,59E-03	119,429	7			2	1,38E-03	138,15	7		
3	1,75E-03	108,37	7			3	1,32E-03	144,223	6		
4	1,08E-03	175,275	7			4	5,75E-04	330,708	5		
5	8,46E-04	224,712	7			5	1,58E-03	120,051	6		
6	0	0	0			6	0	0	0		
7	0	0	0								
8	0	0	0								
9	0	0	0								
10	0	0	0								
11	0	0	0								
12	0	0	0								
13	0	0	0								
14	0	0	0								
15	0	0	0								

Tab. A.21: Ergebnisse der Auswertung der Impulsanregung (Messfahrt 123-127)

180419	-075					18041	9-077					18041	9-078				
	DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp		DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp		DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp
0	7,03E-02	2,70092	0	1,76E-03	123,179	0	1,23E-03	154	1	1,29E-03	151,118	0	2,24E-03	84,8116	2	1,04E-03	208,053
1	7,03E-02	2,70092	0			1	1,47E-03	129,088	4			1	6,68E-04	284,537	6		
2	2,17E-03	87,6704	2			2	9,27E-04	205,066	6			2	1,31E-03	144,855	5		
3	1,64E-03	115,881	6			3	1,47E-03	128,879	7			3	6,96E-04	272,857	4		
4	2,89E-03	65,6461	8			4	1,40E-03	135,872	7			4	9,11E-04	208,661	4		
5	1,51E-03	126,097	6			5	1,22E-03	155,111	6			5	1,13E-03	168,534	4		
6	1,16E-03	164,042	2			6	0	0	0			6	0	0	0		
7	1,04E-03	182,578	2			7	0	0	0								
8	1,25E-03	152,413	3			8	0	0	0								
9	1,07E-03	177,045	5			9	0	0	0								
10	0	0	0			10	0	0	0								
11	0	0	0														
12	0	0	0														
13	0	0	0														

180419-	-080					180419	9-081				
DT	r	CP_	We_	Mittelwert_dT	Mittelwert_cp		DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp
07,	22E-04	249,48	5	1,09E-03	194,484	0	1,77E-03	101,725	2	1,25E-03	151,267
1 1,	19E-03	151,875	2			1	1,77E-03	101,725	0		
2 1,	35E-03	133,195	4			2	1,57E-03	114,703	3		
36,	84E-04	263,107	4			3	9,76E-04	184,5	3		
4 8,	89E-04	202,5	4			4	1,34E-03	133,911	4		
5 2,	61E-03	68,9004	2			5	9,11E-04	197,679	2		
						6	1,04E-03	172,688	4		
						7	0	0	0		
						8	0	0	0		
						9	0	0	0		
						10	0	0	0		

10040	0.001						1004						10045	0.004				
18042	3-001						1804.	23-003					18042	3-004				
	DT_	C	P_	We_	Mittelwert_dT	Mittelwert_cp		DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp		DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp
0	1,09E-	03 165	,493		2 1,11E-0	174,698	3 0	8,41E-02	2,13923	0	1,23E-03	164,289	0	9,28E-02	1,94023	0	1,37E-03	143,113
1	9,43E-	04 190	,862		3		1	1,51E-03	118,981	3			1	9,28E-02	1,94023	0		
2	7,37E-	04 244	,191		3		2	6,61E-04	272,213	5	5		2	1,43E-03	125,795	5		
3	1,04E-	03 172	,633		3		3	1,53E-03	117,773	3	1		3	1,38E-03	130,748	7		
4	1,06E-	03 169	,439		3		4	1,03E-03	174,789	4			4	1,54E-03	116,937	5		
5	1.76E-	03 10	2.5		3		5	1.73E-03	103.781	4			5	1.38E-03	130.748	6		
6		0	0		0		6	1.21E-03	148,259	4	L .		6	1.77E-03	101.871	6		
7		0	0		0		7	. 0	0	C)		7	1.25E-03	144,391	6		
8		0	0		0		8	0	0	0)		8	1,25E-03	144,391	0		
9		0	0		0		9	0	0)		9	6.05E-04	297.61	4		
-			-		-		-	-					-	-,				
10041	2 006					1	00400	007										
10042	5-000					1	.00425	-007										
	DT	CP_	N	/e_ I	Mittelwert_dT	Mittelwert_cp		DT	CP_	We_	Mittelwert_dT	Mittelwert_cp						
0	7,55E-02	2,383	371	0	1,05E-03	211,413	0	7,01E-02	2,56708	0	1,26E-03	144,55						
1	1,40E-03	128,	/21	4			1	1,23E-03	145,895	5								
2	7,05E-04	255,4	62	5			2	1,07E-03	167,727	6								
3	7,91E-04	227,4	42	6			3	1,41E-03	127,731	6								
4	7,37E-04	244,:	91	6			4	1,47E-03	122,096	6								
5	5,83E-04	308,5	576	6			5	1,20E-03	149,595	7								
6	2,15E-03	83,80	536	6			6	1,18E-03	152,339	7								
7	. 0		0	0			7	0	0	0								
8	0		0	0			8	0	0	0								
9	0		0	0			9	0	0	0								
-			-															

Tab. A.22: Ergebnisse der Auswertung der Impulsanregung (Messfahrt 147-151)

Tab. A.23: Ergebnisse der Auswertung der Impulsanregung (Messfahrt 152-155)

18042	3-009					18042	23-011				
	DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp		DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp
0	1,75E-03	125,685	4	2,06E-03	108	0	1,38E-03	159,07	2	1,94E-03	114,662
1	2,34E-03	94,1111	4			1	1,79E-03	123	5		
2	1,79E-03	123	6			2	1,86E-03	117,994	5		
3	2,14E-03	103,02	6			3	2,16E-03	101,985	6		
4	2,31E-03	95,2817	6			4	2,04E-03	107,952	5		
5	2,15E-03	102,5	5			5	1,99E-03	110,299	5		
6	1,95E-03	112,75	6			6	1,97E-03	111,511	5		
7	1,95E-03	112,75	0								

18042	23-012					1804	23-014				
	DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp		DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp
0	2,58E-03	85,2327	2	2,00E-03	110,531	0	2,12E-03	103,714	6	1,85E-03	119,563
1	2,03E-03	108,529	6			1	1,70E-03	129,478	6		
2	1,95E-03	112,75	6			2	1,81E-03	121,527	6		
3	2,09E-03	105,155	6			3	1,80E-03	121,892	6		
4	1,98E-03	110,902	6			4	1,89E-03	116,259	6		
5	1,78E-03	123,75	6			5	1,77E-03	124,509	6		
						6	0	0	0		
						7	0	0	0		

Tab. A.24: Ergebnisse der Auswertung der Impulsanregung (Messfahrt 156-161)

	18042	3-016					18	30423	3-018					1804	23-019				
		DT_	CP_	We	Mittelwert	dT Mittelwert	ср	C	DT_	CP_	We_	Mittelwert_d1	Mittelwert_cp		DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp
	0	3,97E-	04 377,38	36	0 1,058	-03 147,4	78	0	2,58E-03	58,2236	5 2	1,61E-0	3 96,809	0	6,55E-04	228,929	5	5 8,73E-04	180,244
	1	9,19E-	04 163,16	59	3			1	1,20E-03	124,834	1 5	5		1	6,70E-04	223,988	6	5	
Γ	2	1,36E-	03 110,54	1	5			2	1,99E-03	75,3689	5	i		2	8,09E-04	185,324	. 6	5	
	3	1,05E-	03 143,24	13	4			3	1,62E-03	92,7873	5			3	9,97E-04	150,405	6	5	
Γ	4	9,12E-	04 164,46	j4	2			4	1,39E-03	107,556	i 5	i		4	1,32E-03	113,86	3	3	
	5	8,44E-	04 177,62	21	4			5	1,63E-03	91,7827	7 5	;		5	9,75E-04	153,88	6	5	
Γ								6	1,44E-03	103,959	5	i							
ł	8042	3-021					1804	23-0	22					18042	3-025				
	C	т	CP_	We_	Mittelwert_d	Mittelwert_cp		DT	[CP_	We_	Mittelwert_dT	Mittelwert_cp	D	т_	CP_	We_	Mittelwert_dT	Mittelwert_cp
1	0	,28E-03	116,798	2	1,29E-0	3 143,109		0 2	2,02E-03	74,3952	2	1,27E-03	134,417	0	1,56E-03	96,261	6	1,34E-03	123,63
	1 3	2,26E-03	66,3139	2				1 9	9,36E-04	160,226	5			1	6,85E-04	218,9	6		
1	2	3.09F-04	185,324	4				2 5	8.25F-04	181.776	5			2	1 21E-03	124,335	6		

1,38E-03 109,066

92,5112

89,2742

1,62E-03

6

6

3

4

5 1,68E-03

3 1,80E-03 83,1116

5 8,40E-04 178,642

93,767

1,60E-03

4

3 7,37E-04 203,493

4 2,11E-03 71,2113

3

18042	3-027					1804	23-029				
	DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp		DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp
0	5,76E-04	329,862	4	6,67E-04	286,422	0	4,38E-04	434,077	2	5,02E-04	4 380,564
1	7,24E-04	4 262,485	7			1	5,01E-04	379,201	5		
2	6,54E-04	1 290,7	7			2	5,65E-04	336,519	6		
3	6,47E-04	1 293,826	7			3	5,28E-04	359,568	6		
4	6,45E-04	1 294,707	7			4	4,92E-04	386,007	7		
5	7,15E-04	265,568	7			5	4,88E-04	389,5	7		
						6	4,66E-04	407,616	7		
18042	23-030					18042	23-032				
	DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp	I	DT_ (CP\	Ve_ N	/littelwert_dT	Mittelwert_cp
0	3,95E-04	480,938	3	4,90E-04	390,186	0	6,06E-04	313,319	3	4,95E-04	387,535
1	5,20E-04	365,156	6			1	4,42E-04	430,303	6		
2	4,91E-04	386,636	6			2	4,79E-04	396,409	6		
3	4,78E-04	397,705	6			3	5,53E-04	343,676	6		
4	4,77E-04	398,352	6			4	4,49E-04	423,363	6		
5	5,31E-04	357,704	6			5	4,99E-04	381,033	6		
0 1 2 3 4 5	3,95E-04 5,20E-04 4,91E-04 4,78E-04 4,77E-04 5,31E-04	480,938 365,156 386,636 397,705 398,352 357,704	3 6 6 6 6 6	4,90E-04	390,186	0 1 2 3 4 5	6,06E-04 4,42E-04 4,79E-04 5,53E-04 4,49E-04 4,99E-04	313,319 430,303 396,409 343,676 423,363 381,033	3 6 6 6 6	4,95E-04	387,5

Tab. A.25: Ergebnisse der Auswertung der Impulsanregung (Messfahrt 163-166)

Tab. A.26: Ergebnisse der Auswertung der Impulsanregung (Messfahrt 169-173)

180423	-034					18042	3-036					18042	3-037				
	DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp		DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp		DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp
0	9,18E-04	207,018	2	7,31E-04	265,988	0	3,03E-04	627	5	6,31E-04	362,137	0	4,98E-04	381,652	6	5,63E-04	338,709
1	6,23E-04	305,215	5			1	8,12E-04	234,08	7			1	5,41E-04	351,12	6		
2	8,35E-04	227,588	5			2	7,80E-04	243,437	3			2	5,95E-04	319,2	4		
3	7,19E-04	264,247	3			3	1,16E-03	164,053	5			3	5,84E-04	325,111	6		
4	7,87E-04	241,551	5			4	3,62E-04	524,97	7			4	5,75E-04	330,708	6		
5	5,82E-04	326,294	4			5	5,43E-04	349,98	7			5	6,07E-04	312,991	6		
6	0	0	0			6	5,79E-04	328,106	4			6	5,53E-04	343,676	6		
7	0	0	0			7	0	0	0			7	0	0	0		
8	0	0	0			8	0	0	0			8	0	0	0		
9	0	0	0			9	0	0	0			9	0	0	0		
10	0	0	0			10	0	0	0			10	0	0	0		
11	0	0	0			11	0	0	0			11	0	0	0		
12	0	0	0			12	0	0	0			12	0	0	0		

18	04	23-039					180423	-040				
		DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp		DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp
	0	7,36E-04	258,176	4	6,52E-04	301,382	0	2,90E-03	65,4326	2	1,12E-03	232,315
	1	6,71E-04	283,161	3			1	1,32E-03	143,668	3		
	2	4,58E-04	415,125	2			2	8,47E-04	224,346	3		
	3	0	0	0			3	1,02E-03	186,463	3		
	4	0	0	0			4	1,36E-03	139,321	3		
	5	0	0	0			5	6,40E-04	297,076	1		
	6	0	0	0			6	1,47E-03	128,879	3		
	7	0	0	0			7	9,43E-04	201,466	3		
	8	0	0	0			8	7,96E-04	238,623	2		
							9	1,30E-03	146,063	2		
							10	2,65E-04	715,868	4		
							11	1,30E-03	145,649	4		
							12	8,64E-04	219,959	4		

180423	3-042					1804	23-044					18042	3-045						1804	23-047				
	DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp		DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp		DT_	CP_	We_	Mitte	elwert_dT	Mittelwert_cp		DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp
0	4,98E-04	361,56	2	6,48E-04	288,096	0	1,05E-03	172,172	0	6,29E-04	317,349	0	1,27E-0	3 142,15	4	3	8,96E-04	246,503	0	1,05E-03	171,464	7	1,22E-03	166,042
1	5,35E-04	336,588	3			1	9,49E-04	189,689	5			1	5,14E-0	4 350,23	9	3			1	1,54E-03	116,937	3		
2	7,29E-04	247,023	5			2	4,85E-04	371,312	7			2	9,34E-0	4 192,69	8	3			2	1,44E-03	124,96	3		
3	4,63E-04	388,547	3			3	8,54E-04	210,7	5			3	9,84E-0	4 182,84	6	3			3	1,49E-03	121,106	3		
4	7,14E-04	252,03	5			4	4,14E-04	434,802	5			4	3,81E-0	4 472,15	8	3			4	1,46E-03	123	3		
5	7,62E-04	236,079	4			5	5,02E-04	358,659	5			5	1,30E-0	3 138,92	2	3			5	5,43E-04	331,56	3		
6	0	0	0			6	0	0	0			6		0	0	0			6	5,43E-04	331,56	0		
												7		0	0	0								
						100																		
18042	3-049	0.0		A 414 - 1		180	423-050			A ATA A A A A A A A A A A A A A A A A A		10	50423-05	1 00		144								
	DI_	CP_	we_	Mittelwert_di	i Mittelwert_cp)	UI_	CP_	we	Mittelwert_d	i Mittelwert	ср		CP	-	we_	witterwei	t_ai mitteiw	ert_c	p				
0	9,12E-04	1 197,27	8	2 7,87E-04	4 260,484	1 0	7,36E-04	4 244,58	\$	5 /,9/E-	04 266,	108	0 1,	17E-03	154	5	6,	58E-04	310,5	01				
1	9,09E-04	19	8 .	4		1	1,/3E-0:	3 103,9		5			1 5,	52E-04	26,118	2								
2	2,60E-04	691,87	5	1		2	5,79E-04	4 310,83	3	/			2 7,	08E-04	54,158	5								
3	6,07E-04	296,51	8	1		3	5,31E-04	4 339,09	5	7			34,	48E-04 4	01,734	5								
4	6,94E-04	259,45	3	2		4	8,80E-04	4 204,55	3	7			4 6,	56E-04	74,268	3								
5	5,31E-04	338,87	8	2		5	4,85E-04	4 371,14)	5			54,	02E-04 4	47,606	5								
6	1,01E-03	3 178,54	8	3		6	(0)	0			64,	02E-04 4	47,606	0	1			4.00				
7	1 015-03	170 54	0	0																				

Tab. A.27: Ergebnisse der Auswertung der Impulsanregung (Messfahrt 174-179)

Tab. A.28: Ergebnisse der Auswertung der Impulsanregung (Messfahrt 181-185)

180423-053 V <th<< th=""><th>ittelwert_cp 84,826</th></th<<>	ittelwert_cp 84,826
DT CP We Mittelwert_dT Mittelwert	ittelwert_cp 84,826
0 6,90E-02 2,46234 0 2,28E-03 88,4923 0 2,69E-03 63,1867 2 2,30E-03 77,4391 0 1,11E-03 152,505 3 2,10E-03 1 3,16E-03 53,7945 2 1 1,39E-03 12,252 3 1 2,20E-03 77,4391 0 1,11E-03 152,505 3 2,10E-03 2 3,16E-03 53,7945 2 - 1 3,95E-03 77,379 5 - </td <td>84,826</td>	84,826
1 3,16E-03 53,7945 2 1 1,39E-03 122,52 3 1 2,20E-03 77,3793 5 2 3,12E-03 54,4531 5 2 1,78E-03 95,625 3 2 2,36E-03 72,1521 5 3 1,95E-03 87,3067 5 3 2,51E-03 67,597 5 3 2,19E-03 77,687 5 4 1,89E-03 89,9828 5 4 2,23E-03 76,1286 5 4 2,21E-03 76,875 5	
2 3,12E-03 5,44531 5 2 1,78E-03 95,625 3 2 2,36E-03 72,1521 5 3 1,95E-03 87,3067 5 3 2,51E-03 67,597 5 3 2,19E-03 77,7687 5 4 1,89E-03 89,9828 5 4 2,23E-03 76,1286 5 4 2,21E-03 76,875 5	
3 1,95E-03 87,3067 5 3 2,51E-03 67,597 5 3 2,19E-03 77,7687 5 4 1,89E-03 89,9828 5 4 2,23E-03 76,1286 5 4 2,21E-03 76,875 5	
4 1,89E-03 89,9828 5 4 2,23E-03 76,1286 5 4 2,21E-03 76,875 5	
5 6,66E-04 255,277 2 5 2,27E-03 75,0359 5 5 2,14E-03 79,3477 5	
6 2,45E-03 69,3916 5 6 2,89E-03 58,736 5 6 2,14E-03 79,3477 0	
180423-059 180423-059	
DT_ CP_ We_Mittelwert_dT Mittelwert_cp DT_ CP_ We_Mittelwert_dT Mittelwert_cp	
0 1,01E-03 168,903 4 2,11E-03 96,8918 0 2,12E-03 80,1429 2 2,73E-03 67,9523	
1 1,40E-03 121,767 4 1 3,65E-03 46,6113 5	
2 1,96E-03 86,7845 4 2 2,58E-03 65,8929 3	
3 1,69E-03 100,529 4 3 3,45E-03 49,316 5	
4 3,24E-03 52,4498 4 4 1,81E-03 93,9072 7	
5 3,34E-03 50,9172 4 5 0 0 0	

Tab. A.29: Ergebnisse der Auswertung der Impulsanregung (Messfahrt 186-193)

18042	23-06	1					18042	23-063					18043	23-064						180423-0	066					
	DT_		CP_	We_	Mittelwert_dT	Mittelwert_cp		DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp		DT_	CP_	We_	Mitte	telwert_dT N	littelwert_cp	DT		CP_	We_ N	/ittelwer	_dT Mittel	vert_cp
0	1,0	07E-03	223,273	5	9,53E-04	282,333	0	1,51E-03	159,022	5	5 1,09E-03	254,794	0	2,55E-03	94,059	6 5		1,24E-03	217,944	0 1,5	56E-03	153,5	3	9,35	E-04	280,135
3	7,5	50E-04	319,826	3			1	1,30E-03	184,2	7	7		1	1,32E-03	182,3	8 7				1 5,8	86E-04	409,333	3			
2	6,	74E-04	355,935	5			2	1,50E-03	159,913	4	L		2	8,59E-04	279,34	2 5				2 1,0	09E-03	220,68	5			
3	5,8	87E-04	408,667	5			3	7,07E-04	339,508	4	i i		3	1,01E-03	238,06	5 7	r			3 7,9	91E-04	303,288	3			
4	1,4	42E-03	168,458	3			4	5,98E-04	401,236	4	L		4	1,01E-03	238,06	5 4	ŧ.			4 6,2	29E-04	381,724	5			
5	1,:	14E-03	211,21	3			5	6,63E-04	361,77	4	L .		5	8,02E-04	299,18	9 5				5 1,1	L6E-03	206,916	5			
6	1,	59E-03	151,397	2			6	4,77E-04	503,182	0)		6	1,16E-03	206,91	6 6				6 8,2	24E-04	291,316	7			
													7	1,16E-03	206,91	6 0)			7 4,6	56E-04	514,884	0			
1804	3-068	R					1804	23-070					18	0423-072						18	80423-	074				
20012	DT		CP	We	Mittelwert dT	Mittelwert co	1001	DT	CP	We	Mittelwert dT	Mittelwert o	1	DT	CP	N	Ve	Mittelwert	T Mittelwer	t cn	00120	r (-p	We M	ttelwert dT	Mittely
-	1 3	32E-03	72 2353	5	1 28E-03	276 984	. 0	2 73E-03	88		7 1 35E-0	3 232.7	25	0 3 24	E-03 7	1 1672	5	1 175	-03 26	9 223	0	2 19E-03	109 783	3	1 125-0	3
1	1.4	44E-03	166 195	3	2,202 00	270,50	1	1 30E-03	184.8		5			1 8 25	E-04 2	0 842	3	2,275		, J, LL J	1	1 36E-03	176 833	2 3		
	8	77E-04	273 778	5			2	1 145-03	211.2		5			2 8 48	E-04 2	22 923	5				2	7 275-04	379.91	3		
-	4	73E-04	507.49	3			3	7 59E-04	316 286		5			3 1 07	E-03 2	23 636	7				3	R 05E-04	298 216	5 5		
-		005 04	200.47				4	7 495 04	220.07		2			4 6 29	E-04 3	31 724	5				4	1.05E-03	227 505	5 5		
	6							- 44 OF 11 M																		
	6,0	01E-04	340 946	4			- 4	6 51E-04	368.4		5			5 8 13	E-04	295.2	5				5	1.08E-03	222 909	3 5		
5	6,0 7,0	01E-04 04E-04	340,946	4			5	6,51E-04	368,4		5			5 8,13	E-04 E-04	295,2	5				5	1,08E-03	222,909	9 5		

180424	-002					18042	4-004					18042	4-005				
[DT	CP	We	Mittelwert dT	Mittelwert cp		DT	СР	We	Mittelwert dT	Mittelwert cp		DT	СР	We	Mittelwert dT	Mittelwert cp
0	1,11E-03	152,752	1	8,90E-04	201,703	0	5,63E-04	302,077	3	8,62E-04	215,123	0	7,31E-04	232,711	5	7,52E-04	235,047
1	9,59E-04	177,203	3			1	5,09E-04	333,67	3			1	7,90E-04	215,178	5		
2	8,94E-04	190,091	3			2	9,41E-04	180,658	3			2	7,58E-04	224,4	5		
3	1,11E-03	153,75	4			3	8,56E-04	198,513	3			3	8,33E-04	204	5		
4	5,53E-04	307,5	2			4	1,20E-03	141,284	3			4	9,32E-04	182,355	5		
5	8,24E-04	206,349	2			5	1,07E-03	158,409	3			5	8,13E-04	209,1	5		
6	6,40E-04	265,805	2			6	8,89E-04	191,25	3			6	5,31E-04	320,051	2		
7	0	0	0			7	0	0	0			7	4,66E-04	364,709	5		
8	0	0	0			8	0	0	0			8	7,02E-04	242,119	2		
9	0	0	0			9	0	0	0			9	9,97E-04	170,462	4		
10	0	0	0			10	0	0	0			10	7,09E-04	239,648	4		
11	0	0	0			11	0	0	0			11	6,72E-04	252,944	4		
12	0	0	0			12	0	0	0			12	8,35E-04	203,669	5		
13	0	0	0			13	0	0	0			13	5,94E-04	286,409	4		
180424	-007				18	80424-	008										
DT	CF	_ w	e_ M	ittelwert_dT M	littelwert_cp	D	т_ (CP_	We_	Mittelwert_dT	Mittelwert_cp						
0 1	16E-03 1	46,804	3	5,14E-04	372,11	0	4,87E-04	349,067	5	4,69E-04	387,409						
14	77E-04	356,42	6			1	3,68E-04	462	4								
2 6	07E-04 2	80,045	6			2	3,79E-04	448,071	5								
3 4,	88E-04	348,5	6			3	4,23E-04	402,115	5								
4 4	12E-04 4	12,697	6			4	4,12E-04	412,697	5								
5 5,	42E-04	313,65	6			5	4,77E-04	356,42	5								
6 5	75E-04 2	95,896	3			6	3,47E-04	490,078	5								
7 5	96E-04 2	285,136	5			7	9,43E-04	180,259	4								

4

5,21E-04 326,188

 9
 3,47E-04
 489,281

 10
 6,23E-04
 273,087

11 4,68E-04 363,178

 12
 3,69E-04
 460,5

 13
 3,55E-04
 479,296

Tab. A.30: Ergebnisse der Auswertung der Impulsanregung (Messfahrt 201-205)

Tab. A.31: Ergebnisse der Auswertung der Impulsanregung (Messfahrt 214-219)

18042	24-014					1804	24-015					18042	4-016				
	DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp		DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp		DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp
0	8,98E-0	4 189,253	5	9,09E-04	194,656	0	5,40E-04	314,67	5	7,84E-04	229,897	0	8,55E-04	198,835	5	7,63E-04	224,835
1	7,31E-0	4 232,711	5	i		1	4,32E-04	393,337	5			1	7,25E-04	234,448	5		
2	9,42E-0	4 180,552	5	i		2	8,01E-04	212,27	2			2	7,05E-04	241,269	5		
3	1,42E-0	3 119,714	5	;		3	6,49E-04	261,8	5			3	7,15E-04	237,614	5		
4	1,11E-0	3 153,75	5	i		4	8,23E-04	206,684	5			4	7,15E-04	237,614	5		
5	8,02E-0	4 211,926	5	i		5	6,83E-04	248,929	5			5	7,80E-04	217,812	5		
6	7,05E-0	4 241,269	5	i		6	9,97E-04	170,462	5			6	9,32E-04	182,355	5		
7	7,80E-0	4 217,813	5	i		7	8,67E-04	196,031	5			7	7,48E-04	227,283	5		
8	8,46E-0	4 201,058	5	i		8	9,43E-04	180,259	5			8	7,91E-04	214,829	5		
9	8,56E-0	4 198,513	5	;		9	1,04E-03	163,359	5			9	7,59E-04	224,036	5		
						10	7,91E-04	214,829	5			10	6,61E-04	257,09	5		
						11	8,13E-04	209,1	5								
						12	8,24E-04	206,349	5								

180	424-018					180424	-019				
	DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp		DT_	CP_	We_	Mittelwert_dT	Mittelwert_cp
C	2,01E-03	84,5887	3	8,48E-04	214,16	0	1,33E-03	127,707	5	7,00E-04	256,036
1	1,18E-03	144,11	5			1	7,26E-04	234,067	5		
2	7,25E-04	234,448	5			2	7,48E-04	227,283	5		
3	7,68E-04	221,239	5			3	6,50E-04	261,375	5		
4	8,44E-04	201,385	5			4	4,99E-04	340,924	5		
5	6,72E-04	252,944	5			5	5,85E-04	290,417	5		
6	6,83E-04	248,929	5			6	6,85E-04	248,119	5		
7	8,24E-04	206,349	5			7	1,62E-03	105,263	0		
8	8,89E-04	191,25	5			8	6,18E-04	275,132	5		
9	8,02E-04	211,926	5			9	6,40E-04	265,805	5		
10	7,37E-04	230,625	5			10	7,05E-04	241,269	5		
11	6,29E-04	270,388	5			11	6,29E-04	270,388	5		
12	7,26E-04	234,067	5			12	5,86E-04	289,944	5		

2

 8
 6,50E-04
 261,375

 9
 2,38E-04
 712,841

 10
 3,58E-04
 475,227

 10
 3,58E-04
 475,227

 11
 2,75E-04
 618,039

 12
 5,57E-04
 305,006

 13
 3,18E-04
 533,761