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Abstract 

In this paper, the influence of torsional warping of thin-walled cross-sections of 
twisted Functionally Graded Material (FGM) beams with a longitudinal polynomial 
variation of the material properties on their eigenvibrations is investigated, 
considering the secondary deformations due to the angle of twist. The transfer 
relations needed for the transfer matrix method are derived. Based on them, the local 
finite element equations of the twisted FGM beam are established. The warping part 
of the first derivative of the twist angle, caused by the bimoment, is considered as an 
additional degree of freedom at the beam nodes. The focus of the numerical 
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investigation, with and without consideration of the Deformation due to the Secondary 
Torsional Moment (STMDE), is on modal analysis of straight cantilever FGM beams 
with doubly symmetric open and closed cross-sections. The influence of the 
longitudinal variation of the material properties and the secondary torsion moment on 
the eigenfrequencies is investigated. The obtained results are compared with the ones 
calculated by a very fine mesh of standard solid and warping beam finite elements. 
 

1.Introduction 

The effect of non-uniform torsion on the results of elastostatic and elastodynamic 
structural analysis of thin-walled beams with both open and closed cross-sections may 
be significant. The maximum normal stress due to the bimoment occurs at the points 
of action of external torques (except for free ends of beams) and at cross-sections of 
restrained warping (e.g. clamped cross-sections). A comprehensive overview of the 
literature, dealing with the issue of non-uniform torsion can be found, e.g., in [1, 2]. 
Latest research results have shown that for non-uniform torsion of beams with closed 
cross-sections the impact of the  Secondary Torsion Moment Deformation Effect 
(STMDE) is particularly significant. 
Beam structures are often exposed to time-dependent loads. Commercial FEM codes 
allow performing modal and transient dynamic analysis by 3D finite beam elements 
with and without consideration of the warping effect [3-5]. For torsion, very often an 
improved Saint-Venant theory is used and special mass matrices are proposed. In 
general, the bicurvature is chosen as an additional warping degree of freedom, and the 
STMDE is not considered. The beam element in [4] can be used with a lumped or a 
consistent mass matrix. In the consistent mass matrix the warping effect is considered, 
but the effect of shear deformations is disregarded. For standard beam elements, the 
consistent mass matrix is based on [6], with the exception of additional terms arising 
from the warping constant I . For the warping element, lumped masses for the 

warping degree of freedom (bicurvature) are defined [7]. As stated in [4], for solid 
and closed thin-walled sections, standard finite beam elements can be used without 
significant error. However, for open thin-walled sections, warping finite beam 
elements should be used [5]. In [8], a boundary element method is described for the 
non-uniform torsional vibration problem of doubly symmetric constant cross-
sections, taking non-uniform warping and the STMDE into account. Dynamic 
analysis of 3D beam elements, restrained at their edges, subjected to arbitrarily 
distributed dynamic loading, is the topic of [9]. In [10], Ref. [8] is extended by taking 
geometrical nonlinearity into account, and in [11], the effect of rotary and warping 
inertia is considered. Nonlinear torsional vibrations of thin-walled beams, exhibiting 
primary and secondary warping, are investigated in [12]. A solution for the vibration 
of Timoshenko beams by the isogeometric approach is presented in [13]. The warping 
effect, however, is not considered. In [14], geometrically non-linear free and forced 
vibrations of beams with non-symmetrical cross-sections are investigated by the 
Saint-Venant theory of torsion. Axial-torsional vibrations of rotating pretwisted thin-
walled composite box beams, exhibiting primary and secondary warping, are 
investigated in [15]. The formulation of a 3D beam element for transversal and 
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warping eigenmode analysis is calculated in [16]. In [17], a new 3D beam finite 
element for geometrically nonlinear analysis of FGM structures with transversely 
varying material properties is presented. An accurate prediction of the warping 
displacements has been achieved. 
In [1], the influence of torsional warping of open and closed cross-sections of twisted 
beams with constant material properties on their eigenvibrations is investigated, 
considering the secondary deformations due to the angle of twist. Since the 
bicurvature cannot be used in the constraint equations, see. e.g.[4], the part of the first 
derivative of the angle of twist, caused by the bimoment as the warping degree of 
freedom [18], was also used for modal analysis. The result from modal analysis 
concerning non-uniform and uniform torsion of beams with open cross-sections has 
shown large differences of the eigenfrequencies. This has proved the well-known fact 
that the warping effect must be taken into account also for modal analysis of beams 
with open cross-sections subjected to torsion. It was also shown that the STMDE does 
not play a significant role in torsion of beams with open cross-sections. In contrast to 
such cross-sections, the influence of warping (with or without STMDE) on the non-
uniform torsional eigenfrequencies of beams with rectangular hollow cross-sections 
is not significant. The best agreement of the results obtained by solid finite elements 
and the method proposed in [1] (as well as by the Saint-Venant and the warping beam 
solutions) is achieved for the 1st torsional eigenfrequency. For the higher modes the 
differences between corresponding results are increasing. The higher torsional 
eigenmodes, calculated by solid finite elements, have shown significant deformations 
of the beam walls (known as the distortion of the cross-section), especially for short 
beams. This effect cannot be considered by finite beam elements with restrained and 
unrestrained warping, without additional restrictions. As shown in [19], all 
eigenfrequencies, calculated by solid finite elements, agree very well with results 
obtained by experimental measurements. Finally, in [2], a boundary element solution 
for non-uniform warping dynamic analysis of beams with arbitrary cross-sections, 
including consideration of shear lag effects due to both flexure and torsion, is 
described. High accuracy, compared to the solid finite element solution was obtained, 
but in the solid model the distortion effect of the cross-section was restricted. In [24], 
the distortional effect of the cross-sections is considered by means of additional 
degrees of freedom, included in elastostatic analysis of curved beams. A common 
feature of the cited articles is that constant material properties of the beams in the 
longitudinal direction are assumed. 
 
Novel engineering technologies face the challenge of answering increasingly complex 
questions about the functionality of the developed systems. In material science, one 
of the ground-breaking technologies are functionally graded materials (FGMs), where 
the material properties are spatially graded. Natural biomaterials often possess the 
structure of FGMs, which allow them to satisfy requirements such as corrosion 
resistance, thermal conductivity, strength, elastic stability, fatigue durability, dynamic 
stability, etc. Fabrication of such materials is complicated, but progress in this area 
has been significant in recent years. FGMs are obtained the same as a mixture of two 
or more constituents of almost the same geometry and dimensions. Plasma spraying, 
powder metallurgy, 3D printing and other technologies are used for fabrication of such 



4 

materials. From the macroscopic point of view, FGMs are isotropic at each material 
point, but the material properties can vary continuously or discontinuously in one, 
two, or three directions. The variation of the macroscopic material properties can be 
caused by varying the volume fraction of the constituents or their material. Important 
structural components made of FGMs are beams. Thin-walled beams play an 
important role not only in structural applications, but also in thermal, thermo-electric-
structural or electric-thermal-structural systems (e.g. MEMS actuators), and in 
mechatronics. In all of thermo-electric-structural applications, new materials, such as 
FGMs, can greatly improve the efficiency of engineering systems. 
 
In this paper, [1] is extended to uniform and non-uniform modal analysis of FGM 
beams with continuously varying material properties in the longitudinal direction. The 
longitudinal variability of the material properties covers a wide range of possible 
practical applications. Moreover, it facilitates the establishment and the treatment of 
the mathematical model of such composite beams. In Chapter 2, a brief summary of 
the differential equations for Saint-Venant and non-uniform torsional deformations 
including inertial line moments is formulated. In non-uniform torsion, the part of the 
bicurvature caused by the bimoment is taken into account as the warping degree of 
freedom, and the STMDE is also considered. A general semi-analytical solution of 
the differential equation is presented, and the transfer matrix relation is established, 
from which the finite element equations of straight warping torsion (WT) finite beam 
elements with two-nodes are derived. Omitting the external load, the FEM equation 
for torsional natural free vibrations is obtained.  
Chapter 3 contains the numerical investigation. The results from modal analysis of 
cantilever beams with open I cross-sections and rectangular hollow cross-sections are 
presented and compared with results obtained from commercial FEM codes. The 
effect of the longitudinally varying material properties is evaluated. A final 
assessment of the proposed method is contained in the conclusions. 
The main novelty of this paper is the inclusion of the longitudinal variation of the 
material properties in the differential equations for uniform and non-uniform torsion-
free vibrations. The transfer relations are derived, from which equations for the finite 
beam element for calculation of the torsional eigenfrequencies of straight beams 
including warping are deduced. The bimoment and the primary part of the bicurvature 
are also used for specification of the boundary conditions. The proposed approach is 
applied to non-uniform torsional modal analysis of beams with open and closed cross-
sections. 

2. Torsional eigenvibrations of FGM beams with 
longitudinally varying material properties 

In the following, the differential equations with variable parameters for torsional 
eigenvibrations of FGM beams with doubly symmetric open or closed cross-sections 
are presented. A polynomial variation of the material properties in the longitudinal 
direction of the beams is considered. The solution of the differential equations is based 
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on the concept of transfer functions. After derivation of the transfer matrix, the local 
finite element equation for uniform and non-uniform torsion is established. 
 
 
 
 
2.1 Eigenvibrations of FGM beams due to uniform (Saint-Venant) torsion  

Fig. 1 refers to determination of the torsional eigenvibrations (Saint-Venant torsion). 
It contains the definition of a positive torsional moment ( )TM x  and of the 

corresponding twist angle ( )x  at the nodes i and j of a straight beam according to 
the Transfer Matrix Method (TMM) and the Finite Element Method (FEM). 
The structures, investigated in this paper, are single beams. As regards the FEM, they 
can be analyzed by just one single finite element. The results are compared to the ones 
obtained by the TTM which, contrary to the FEM, does not allow the analysis of 
frames. Lack of the possibility of compering the results from FE analysis of frames 
with results from another method of analysis of such structures the reason for 
restricting this work to the analysis of single beams.  

The beams are loaded by the inertial torsional line moment ( ) ( ),pI x x  2  where pI

denotes the polar moment of area, ( )x is the effective longitudinally varying mass 
density for torsion, and   is the circular frequency. This inertial line moment 
represents the static equivalent of the dynamic action. The coordinate x ,L 0 , 

where L is the length of the beams; ( )Tm x  is the torsional line moment, which is equal 

to zero for modal analysis. Constant doubly symmetric, open as well as closed cross-
sections are considered. The differential equations of uniform torsion of a beam are 
formulated in the framework of the TMM. They are given as follows: 

( ) ( ) ( ) ( )T T px x x xM m I      2
,                                      (1) 

( )
( )

( )
T

T

x
x

M

G Ix
   .                                                 (2)  



6 

 
Fig. 1: Saint-Venant torsional eigenvibrations:  torsional moment and angle of twist and equivalent 
static line load acting on a beam element. 

In (2),  x  is the first derivative of the angle of twist.  TM x is the torsional 

moment,  G x  is the effective longitudinally varying shear modulus for torsion, and

 TI  denotes the torsion constant.  

Here and in the following, : /d dx  . 
 
Combining (1) and (2), the differential equation for uniform torsion with variable 
parameters is obtained, after some mathematical manipulations, as 

  '' '( ) ( ) ( ) ( ) ( ) ( ) Tx x x x x x m x          2 1 0 , (3) 

with  ( ) pI xx   2
0 ,    ( ) TI xx G 1 ,   ( ) T G xx I 2 . 

The following polynomial distribution of the line torsional moment is assumed: 

 
mT

mT

mT

p
pk

T T ,k T , T , T , T ,p
k

m x m x m x m x m x ... m x


      0 1 2
0 1 2

0

, where T ,km  are the 

values of the k-th derivative of the line torsional moment  Tm x at beam node i 

( mTp is the maximum degree of the polynomials; the index T denotes torsion.) 

According to [20], the solution of the differential (3) reads as 

 
 
 

   
   

 

 

mT

mT

p

T ,k k T
kiT T

p
iT T

T ,k k T
k

m b x
x b x b x

x b x b x
m b x

 
 







 
                       
 





2
00 1

0 1

2
0

. (4) 
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In (4), kTb and kTb ,  mTk , p  0 2 , are the transfer functions for torsion and their 

first derivatives, respectively, They represent the solution functions of the differential 
equation (3). The transfer functions depend on the longitudinal variation of the 
torsional shear modulus, the natural frequency, the polar moment of inertia, the torsion 
constant, and the consistent mass density distribution. By inserting (1) and (2) into 
(4), the transfer matrix relations for the particular case of uniform torsional free 
vibrations are obtained, after some mathematical manipulations, as follows: 

 

 
 

       
 

         
   

   

     

mT

mT

T
, T ,

T ix

T,iT T
, T T , T

T x

p

, T,k k T
k

p

, T T,k k T
k

b x
A x b x A x

I G xx

MM x I G x
A x I G x b x A x b x

I G x

A x m b x

.

A x I G x m b x

 









 
  

                
  
 

  
 
 

  
 





1
1 1 0 1 2

0

2 1 0 2 2 1

0

1 3 2
0

2 3 2
0

 (5) 

By setting x = L in (5), the dependence of the state variables at point j on the ones at 
the initial point i is obtained. It reads as 

 

 
 
 

   
 
   

 

   

mT

mT

T x L
, T ,x L x Lx L

Tj ix

T, j T,iT x L
, T T , Tx L x Lx L x L x L

T x

p

, T,k k Tx L x L
k

p

, T T,k k Tx L x L x L
k

b x
A b x A

I G x

M MI G x
A I G x b x A b x

I G x

A m b x

A I G x m b x

 


 



   



 


  


 
  

     
      

       
 


 


 






1

1 1 0 1 2

0

2 1 0 2 2 1

0

1 3 2
0

2 3 2
0

.




 
 
 


 (6) 

By simple mathematical manipulations, the local finite element equation for uniform 
torsion, where T,i T,iM M  according to the definition of the positive orientation of 

the state variables – see Fig. 1, is obtained as 
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, x L
, ,

, , iT,i x L x L

jT, j , , ,x L x L x L
, , ,x L

, ,x L x L

, x L

, x L

, ,x L x L
, x L

, x L

A
B B

A AM

M A A A
B A B

A A

A
F

A
.

A A
F A

A






 

  


 





 




 
   

         
      

  
 

 
   
  
  

11

11 1 2

12 12

11 2 2 2 2

21 21 2 2

12 1 2

13

1

1 2

13 22

2 23

1 2

1

 (7) 

The transfer constants kT x L
b


   and kT x L

b


   ,  mxk , p  0 2 , can be calculated with 

the help of a simple numerical algorithm [21], which was programmed by the authors 
of [23], using the software MATHEMATICA [22]. The beam element matrix B is 
symmetric. 

2.2 Eigenvibrations due to non-uniform torsion (warping eigenvibrations) 

Fig.  2 refers to determination of the eigenvibrations due to non-uniform torsion. It 
shows the torsional moment )(TM x , representing the sum of the primary torsional 

moment )(TpM x  and the secondary torsional moment )(TsM x , and the bimoment

( )M x  according to the formulation in the framework of the transfer matrix method 

(TMM). Fig.  2 also shows the angle of twist )(x , corresponding to )(TpM x . It 

represents the sum of the angle of twist, resulting from the primary deformation, 
)(M x  , and from the secondary deformation, )(S x  .  

 
Fig.  2: Non-uniform torsion: torsional moments, bimoment, and angles of twist.  

Fig. 3 illustrates the beam element. It is loaded by the equivalent inertial torsional line 

moment ) )( (pI x x  2 , the equivalent inertial line bimoment ) )( (MI x x   2 , 

where I  stands for the warping constant, and the torsional line moment )(Tm x , 

which is equal to zero for modal analysis. These line moments represent the static 
equivalent of the respective dynamic action. In the following, the equilibrium 
equations will be formulated. They are obtained as 

 ) )( ( ( ) ( )T T pM x m x I x x      2 , (8) 
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where 
max

,)(
k

k
m kT

k
T x xm 


 

0

  is the polynomial representation of the torsion moment 

with the parameters ,m kT
 , and 

( ( ( ( ( (

( ( ( (

) ) ) ) ) )

) ) ) ),

T Tp M

Ts M

M x M x M x m x I x x

M x m x I x x

  

 

  

  

     

  

2

2
         

(9) 

where 
max

,)(
k

k
m k

k

m x x 


 
0

  is the polynomial representation of the warping 

moment with the parameters ,m k , and 

 ( ( ) () )T Tp TsM x M x M x  . (10) 

 

Fig.  3: Positive orientation of the moments and rotation angles at element nodes for the TMM and 
the  FEM.  
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According to [1], 

 
)

)
(

(
( )M

M x
x

E x I



     (11) 

and 

 ( ( ) () )M Sx x x       (12) 

with 

 
( )

( )
)(

Tp

T

M x
x

G x I
    (13) 

and 

 
( )

) ,
)

(
(
Ts

S
Ts

M x
x

G x I
   (14) 

where TsI  denotes the secondary torsion constant and )(E x  and )(G x  stand for the 

longitudinally varying effective elasticity modulus and shear modulus, respectively. 

The new polynomial )( TsG x I is obtained by multiplication of the secondary torsion 

constant TsI  with the polynomial for the shear modulus, )(G x . 

The polynomial )(E x I  is obtained by multiplication of the warping constant I  with 

the polynomial representation of Young’s modulus, )(E x . 

Differentiation of (14) with respect to x and multiplication by ( )I E x gives 

              
  

 
Ts Ts Ts Ts Ts

Ts

EI M G I GI M GI
M

GI




    
 

2
0 .                                 (15) 

Differentiation of (15) with respect to x, multiplication by ( )EI
2 , and use of (14) 

yields 

 

 
 

     
   

   
.

Ts Ts Ts Ts Ts Ts Ts Ts

Ts Ts Ts Ts

Ts

Ts Ts

EI M G I G I GI E I M EI M EI M G I

EI
GI I M E I M EI M

GI
EI M m I E I EI

   


  

   

 

   

         
 

      
 
         

2

2
2 2

3

3 2

2 2

0

  (16) 

According to (13), TpM is inserted into (10). After some mathematical manipulations, 

this yields 

 .Ts T Tp T TM M M M GI      (17) 

The first and the second derivative of (17) with respect to x is substituted into (16), 
and the torsion moment is expressed as 
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      T Ts Ts Ts Ts Ts Ts TsM GI GI I GI E I G I EI G I EI GI G I            
3 2 22 2  

    p Ts Ts p Ts TsI EI GI G I I GI E I I EI GI          
2 22 2 22  .  

          
       

 
 

(

))

T Ts p Ts T Ts Ts T Ts

Ts T Ts Ts Ts T

T Ts Ts Ts T Ts T Ts

Ts T T Ts Ts

p

GI GI I EI GI I GI GI I GI GI GI

EI GI GI GI GI GI E I G I

GI GI E I G I EI GI G I G I EI GI G I

EI GI G I EI GI GI G I

I I I 

  

 

  

 

     

    

   

    

      

  

3 2 4 3 32 2 2

2 2 3 22 2 2

2

2

2 2
 .   

      T Ts Ts T Ts Ts Ts TEI GI GI G I GI GI E I GI E I EI GI G I         
2 3 2

2 2  .   

    T Ts TsEI GI GI EI GI  
2 3  .  

      Ts Ts Ts Ts T Ts TGI m E I GI EI GI G I m EI GI m         
3 2 2

2   

 (18) 
The first derivative of (18) is formally established and set equal to

T T pM m I     2 . In this way, the following differential equation of fourth order 

is obtained: 
max

,( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
s

s
L L s

s

x x x x x x x x x x x x         


        4 3 2 1
0

0

                                                                                                                      (19) 
The variable polynomial coefficients are given in Appendix A1. 

The general semi-analytical solution of the differential equation (19) can be written 
as follows: 

            
max

, 
s

Li i i i s s
s

x b x b x b x b x b x     


      0 1 2 3 4
0

.  (20) 

In (20),        ,  , ,b x b x b x b x0 1 2 3 , and   maxsb x , s ,  s > 4 0  denote the transfer 

functions and ,  ,  ,i i i i       stand for the integration constants of the starting point 

i, see Figs. 3 and 4, (e.g.  i x   for 0x , etc…). 

(20) and its first three derivatives with respect to x are condensed to the following 
matrix equation:  
 



12 

 

 
 
 
 

       
       
       
       

 

 

 

max

max

max

s

Ls s
s

s
i

Ls s
si

s
i

Ls s
si

Ls s

b x

x b x b x b x b x
b x

x b x b x b x b x

x b x b x b x b x
b x

x b x b x b x b x

b



 


 
 


 














     
                 

         
              









4
0

0 1 2 3

4
00 1 2 3

0 1 2 3
4

00 1 2 3

4  
max

.

L

s

s

x


 
 
 
 
 
 
 
 
 
 
 
 


0



 (21) 

Then, the load vector, and the matrix b in (21) are established: 

 
 
 
 

         

         

         

         

max

max

max

max

s

Ls s
s

s

Ls s
s

s

Ls s
s

s

Ls s
s

b x b x b x b x b x

x
b x b x b x b x b x

x

x
b x b x b x b x b x

x

b x b x b x b x b x


























 
 
 

            
           
        


 









0 1 2 3 4
0

0 1 2 3 4
0

0 1 2 3 4
0

0 1 2 3 4
0

1

0 0 0 0 1



b

i

i

i

i

i





 
  

 
   
   




1



,               (22) 

In (22), b is a matrix, containing the solution functions of the differential equation  
(20)  and of their first three derivatives at x (the so-called transfer functions for torsion 
with warping),ψ  is a vector containing the angle of twist and its first three derivatives 

at x, and iψ is a vector containing the values of the angle of twist and its first three 

derivatives at the starting point i, and Lψ is a load vector. Based on the dependence 

of ( )x , ( )x , and ( )x  on ( )TM x  and ( )M x , the transfer matrix expression 

(24) is obtained.  
The transfer matrix A relates the “static vector” iZ  to the vector xZ .  

 

 
 
 
 

         
         
         
         

i, , , , ,

M ,iM , , , , ,

,i, , , , ,

T ,iT , , , , ,

x i
x A x A x A x A x A x

x A x A x A x A x A x

MM x A x A x A x A x A x

MM x A x A x A x A x A x

A






     
          
      
     
     
         

1 1 1 2 1 3 1 4 1 5

2 1 2 2 2 3 2 4 2 5

3 1 3 2 3 3 3 4 3 5

4 1 4 2 4 3 4 4 4 5

11 0 0 0 0 1

ZZ

. (23) 

A detailed description of these terms is given in Appendix A2. 
The kinematic and kinetic variables at node i are denoted by the index i in (23). By 
setting Lx   in this relation, the dependence of the nodal variables at node j on the 
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nodal variables at node i is obtained. Then, using appropriate mathematical 
operations, the local finite element equations for non-uniform torsion (in particular 
for free torsional vibrations) read as follows (considering the definitions of positive 
quantities in the framework of the FEM, resulting in T ,i T ,iM M  , ,i ,iM M   , 

M ,i M ,i    , and M ,j M , j    ): 

 

i, , , ,T ,i

M ,i, , , ,,i

j, , , ,T , j

M , j, , , ,, j

B B B BM F

B B B BM F

B B B BM F

B B B BM F










      
                    
              

1 1 1 2 1 3 1 4 1

2 1 2 2 2 3 2 4 2

3 1 3 2 3 3 3 4 3

4 1 4 2 4 3 4 4 4

, (24) 

A detailed description of the matrix coefficients in (24) is presented in Appendix A3. 
 
The local finite element matrix B in (25) is symmetric. It consists of the stiffness 
matrix K and the consistent mass matrix M: 

      
2B K M . (25) 

For a structure consisting of straight beams, the global structural matrix is obtained 
by assembling the element matrices according to standard FEM technology. Since the 
TMM does not allow for analyzing frames, FE analysis of frames would not be 
particularly useful, since the results could not be compared with results from other 
methods. 
In modal analysis, an eigenvalue problem must be solved. For given longitudinally 
varying effective material properties and global boundary conditions, the value of the 
circular frequency   is increased until the determinant of the global system matrix 
becomes zero. The respective circular frequency is the natural circular frequency, 
from which the natural frequency (eigenfrequency) can be calculated. Further, the 
mode shape can be calculated by the transfer relations (23), by considering the first 
line without the load term.  
The described solution algorithm was implemented into MATHEMATICA [22]. The 
eigenfrequencies were calculated for selected cantilever beams with thin-walled open 
and closed cross-sections. In Chapter 3, the results of the numerical experiments are 
presented and compared with the results obtained from the available commercial 
software. 

3. Numerical investigation  

In this Chapter, modal analysis of cantilever FGM beams with an I-cross-section and 
a hollow cross-section of length 0.1L  m is performed. The FGM consists of a 
mixture of aluminum (denoted with the index m) and tungsten (denoted with the index 
f ). The material properties are shown in Table 1. 
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Material properties: 

Young’s modulus  ,. .f mE E  11 1101 694 108 0  Pa 

Poisson’s ratio vf = 0.2, vm = 0.33 - 

Shear modulus  ,  2.   0.26f mG G   11 110 10 10  Pa 

Mass density f= 4920, m= 2700 kg/m³ 
Table 1: Material properties of the FGM constituents. 

The longitudinal polynomial variation of the effective Young’s modulus (26) and the 
effective Poisson’s ratio (27) is assumed as: 

    
n

f m f
x

E x E E E
L

     
 

, (26) 

    
n

f m f
x

x
L

         
 

,  (27) 

Despite the rather academic nature of these material properties, they allow for 
determination of the effect of their variability on the eigenvibrations of thin-walled 
beams, considering the influence of non-uniform torsion. 
 
In (26) and (27), n is the order of the polynomial. The effective shear modulus reads 
as: 

    
  

E x
G x

x


2 1
. (28) 

The effective mass density is chosen as 

    
n

f m f
x

x
L

         
 

. (29) 

The longitudinal beam axis x begins at the clamped end of the cantilever beam 
( 0x  ). The axial variations of the material properties are shown in Figs. 4 and 5 for 

1,5n  . 

      
                              a)                                                                           b) 

Fig. 4: Variation of a) Young’s modulus and b) Poisson’s ratio. 
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                              a)                                                                           b) 

Fig. 5: Variation of a) shear modulus and b) mass density. 
 

3.1 Eigenfrequencies and mode shapes of a cantilever beam with an I cross-
section, with longitudinally varying material properties 

 
Fig. 6: Cantilever beam with an I cross-section a) system, b) cross-section. 

The cross-sectional dimensions of the cantilever beam of length 0.1L  m, shown in 
Fig. 6, are given as 0.01h  m, 0.005b  m, 0.00125t s  m. In Table 2, the required 
cross-sectional parameters are listed. The geometric constants in Table 2 are 
computed by means of ANSYS [3], except the secondary torsion constant and the 
warping torsion constant, which were calculated by means of Thin Tube Theory [25].  
 

Cross-sectional parameters [3], [25] 
Cross-sectional area .A   40 21875 10  m2 

Second moment of area about the y-axis . yI   90 28483 10  m4 

Second moment of area about the z-axis . zI   100 27262 10  m4 

Polar moment of area . p y zI =I +I   90 31212 10  m4 

Torsion constant .TI
  100 1119 10  m4 

Secondary torsion constant . TsI   90 19938 10  m4 

Warping constant . I
  150 498 10  m6 

 Table 2: Cross-sectional parameters for warping torsion. 
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The first three Saint-Venant torsional and warping eigenfrequencies were calculated 
for the considered cantilever beam. 
For modal analysis, the following boundary conditions were specified: 
a) Saint-Venant torsional vibrations (according to Subchapter 2.1): 

  ( ) ,ixx    
0

0     , . ( )T T kx L
M x M  0  (30) 

b) Warping vibrations (according to Subchapter 2.2): 

 
 

 , ,, .( ) ( )k T T kx Lx L
M x M M x M      0 0  (31) 

Important remark: According to the analogy between non-uniform torsion and the 
Timoshenko beam theory [25], the following conditions hold at the clamped end of 
the beam: 

for the case of flexural vibrations:  i
x

w
w

x 

  
 0

0 ,   but  ix   0 0 , and 

for the case of warping vibrations:  i
xx

 


  
 0

0 ,  but 
,

 M
M i

xx

 


  
 0

0 , 

where  w w x is the deflection and  x  is the angle of rotation of the cross-

section about the y-axis. 
For determination of the warping vibrations, taking the boundary conditions into 
account, a reduced system of two homogeneous algebraic equations with the 

unknowns , ( ) ix
M x M  

0
 and  , ( )T T ix

M x M 
0

is obtained. 

 
 
The first three torsional eigenfrequencies were calculated by 
a) one warping torsion finite beam element (WT), simplified for Saint-Venant torsion 
(SV), one warping torsion finite beam element with STMDE (WT - with STMDE), 
and for warping torsion without STMDE (WT-without STMDE).  
b) a very fine mesh of 3D solid finite elements of the commercial software ABAQUS 
[5] - (258000 finite elements) and ANSYS [3] - (7560/16000/105000 SOLID186 
elements). The results are shown in Table 3. 
  

f [Hz] n SV 
WT - 
with 

STMDE 

WT - 
without 
STMDE 

ANSYS 
SOLID186 

ABAQUS 

 
 

1 

1 3003.1 3217.5 3287.4 3346.8/3332.5/3329.6 3368.5 
2 3422.5 3502.5 3614.2 3625.1/3609.7/3606.7 3614.2 
3 3287.5 3560.4 3706.4 3686.3/3670.9/3667.9 3675.8 
4 3227.4 3553.0 3729.8 3690.4/3675.0/3672.0 3679.5 
5 3208.6 3524.4 3731.4 3678.4/3663.2/3660.2 3667.6 

 
 

1 7369.7 8444.9 8699.7 8799.3/8768.4/8762.5 8832.2 
2 7683.0 9171.4 9648.3 9639.6/9605.6/9599.7 9617.1 

,, , ( ) ( )Mx xi M ix x   
    

0 0
0 0
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2 3 8531.1 9510.1 10208.7 10120.1/10084.8/10078.5 10097.0 
4 8800.1 9682.8 10587.6 10434.4/10398.1/10391.7 10411.0 
5 8970.7 9760.7 10853.4 10647.4/10610.4/10604.0 10624.0 

 
 

3 

1 11979.2 15440.3 15920.0 16025.7/15986.9/15979.7 16074.0 
2 16017.2 16557.3 17440.3 17479.8/17438.4/17431.1 17454.0 
3 13768.5 16982.5 18273.7 18260.0/18217.5/18210.5 18235.0 
4 14172.6 17149.8 18828.1 18753.4/18710.4/18703.7 18729.0 
5 14451.5 17198.5 19234.1 19092.4/19048.9/19042.5 19069.0 

Table 3: Eigenfrequencies  calculated by WT and 3D solid finite elements with material properties 
for 1,5n   according  to Figs. 5 and 6. 

Plots of the dependence of the first eigenfrequency on the order n of the polynomial, 
describing the longitudinal variation of the material properties, are shown in Fig. 8. 
The dependence of the 1st eigenfrequency on the number of SOLID186 finite elements 
is shown in Fig. 8. 
 

 
 

Fig. 7: Dependence of the 1st eigenfrequency on the order n in (26), (27), and (29).   
 

 
Fig. 8: Dependence of the 1st eigenfrequency on the number of BEAM186 elements. 

 
As shown in Table 3 and Fig. 7, the best agreement of the results with 3D solid finite 
elements is obtained by the warping torsion finite beam element without consideration 
STDME for all of the investigated beams. Consideration of STMDE results in a 
decrease of the torsional stiffness. The difference from the benchmark solution 
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becomes notable for the higher modes. As expected, the Saint-Venant solution (SV) 
is characterized by unsuitable results. It is also shown that the variation of the material 
properties has a significant influence on the results.  
The same example was solved with BEAM188 finite elements [3], with the following 
options: warping unrestrained (WU) and warping restrained (WR). A very fine mesh 
with 100 BEAM188 finite beam elements was used. The relevant material properties 
were assigned to each element according to the variations shown in Figs. 4 and 5. The 
obtained results are listed in Table 4. 
 

f [Hz] n 
BEAM188 

WU 
BEAM188 

WR 
WT - with 
STMDE 

WT - 
without 
STMDE 

SOLID186 
105000 FE 

 
 

1 

1 3086.9 3343.3 3217.5 3287.4 3329.6 
2 3301.7 3621.7 3502.5 3614.2 3606.7 
3 3329.2 3682.8 3560.4 3706.4 3667.9 
4 3317.3 3686.7 3553.0 3729.8 3672.0 
5 3298.0 3674.6 3524.4 3731.4 3660.2 

 
 

2 

1 7575.8 8873.7 8444.9 8.699.7 8832.2 
2 8331.7 9721.7 9171.4 9648.3 9617.1 
3 8769.6 10205.4 9510.1 10208.7 10097.0 
4 9046.0 10521.1 9682.8 10587.6 10411.0 
5 9221.2 10734.6 9760.7 10853.4 10604.0 

 
 

3 

1 12319.4 16319.0 15440.3 15920.0 16074.0 
2 13504.2 17801.5 16557.3 17440.3 17431.1 
3 14155.6 18597.8 16982.5 18273.7 18235.0 
4 14570.9 19102.1 17149.8 18828.1 18729.0 
5 14857.5 19449.0 17198.5 19234.1 19069.0 

Table 4: Eigenfrequencies  calculated by BEAM186 finite elements with material properties for 

1,5n   - according to Figs. 4 and 5. 

 
Plots of the dependence of the 1st eigenfrequency, computed with BEAM188 and the 
WT finite beam element, on the order n of the polynomial, describing the variation of 
the material properties, are shown in Fig. 9. 
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Fig. 9: Dependence of the 1st eigenfrequency on the order n in (26), (27) and (29).   

 
As shown in Table 5 and Fig. 9, the results obtained by BEAM188 WR are very close 
to the results obtained by only one WT - without STDME finite element, and both 
agree well with the benchmark solution (by 105000 SOLID186 finite elements). The 
calculated modes are shown in Fig.10. No distortion of the cross-section occurs in the 
solved cases. 
 

 

 
Fig. 10: Mode shapes corresponding to the 1st,  2nd,  and 3rd  warping torsion eigenfrequency [3]. 
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3.2 Warping eigenfrequencies and mode shapes of a cantilever beam with a 
rectangular hollow cross-section, with longitudinally varying material 
properties. 

 
Fig. 11: Cantilever beam with a rectangular hollow cross-section: a) system, b) cross-section. 

The cross-sectional parameters including the mechanical characteristics are calculated 
by ANSYS [3] and TTT [25]. They are listed in Table 5. 

Cross-sectional parameters [3], [25] 
Cross-sectional area .A   40 21875 10  m² 

Second moment of area about the y-axis . yI   100 71208 10  m4 

Second moment of area about the z-axis . zI   90 28483 10  m4 

Polar moment of area  .p y zI =I +I   90 31209 10  m4 

Torsion constant .TI
  90 16748 10  m4 

Secondary torsion constant . TsI   100 717773 10  m4 

Warping constant  .I
  150 240426 10  m6 

Table 5: Cross-sectional parameters of the hollow cross-section. 

The material characteristics are listed in Table 1. The boundary conditions are the 
same as in Chapter 3, (26) and (29). 
The aim of this investigation is to evaluate the influence of warping and of the 
variation of the material properties on the eigenfrequencies of beams with closed 
cross-sections, with longitudinally varying material properties according to Figs. 4 
and 5. 
The first three torsional eigenfrequencies were calculated by 

a) only one warping torsion finite element (WT) for Saint-Venant torsion (SV), 
for warping torsion with STMDE (WT - with STMDE), and for warping 
torsion without STMDE (WT-without STMDE).  
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b) a very fine mesh of 3D solid finite elements of the commercial software 
ABAQUS [5] (258000 finite elements) and ANSYS [3] (26100/100800 
SOLID186 elements). The results are shown in Table 6. 

 
 
f 

[Hz] 

 
n 

 
SV 

WT - with 
STMDE 

WT - 
without 
STMDE 

 
ANSYS 

SOLID186 

 
ABAQUS 

1 

1 11345.9 10911.7 11422.5 11026.1/11021.3 11130.0 
2 12135.6 11663.1 12239.9 11846.4/11841.5 11857.0 
3 12236.8 11746.0 12342.7 11993.3/11988.6 12003.0 
4 12193.1 11683.8 12292.0 11981.5/11977.1 11991.0 
5 12122.1 11592.2 12212.3 11931.9/11927.6 11941.0 

2 

1 27843.1 26822.7 28425.7 22141.2/22099.8 22258.0 
2 30621.3 29346.7 31250.5 24063.3/24017.6 24145.0 
3 32230.9 30755.4 32796.4 25337.0/25289.2 25420.0 
4 33247.1 31617.3 33743.0 26267.8/26218.9 26351.0 
5 33891.3 32503.1 34329.7 26957.2/26908.0 27040.0 

3 

1 45257.7 43799.2 46516.4 29200.2/29147.1 29316.0 
2 49623 47713.3 51033.5 31667.4/31610.8 31772.0 
3 52017.4 49719.3 53402.3 32963.3/32903.3 33070.0 
4 53544.2 50907.7 54856.3 33774.3/33711.3 33884.0 
5 54597.8 51663.6 55822.4 34342.4/34276.8 34454.0 

Table 6: Eigenfrequencies calculated by WT and 3D solid finite elements with material properties for 

1,5n   according to Figs. 5 and 6. 

 
Plots of the dependence of the 1st eigenfrequency on the order n of the polynomial 
describing the longitudinal variation of the material properties are shown in Fig. 12. 
 

 
Fig. 12: Dependence of the 1st eigenfrequency on the order n in (26), (27), and (29).  
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As shown in Table 6 and Fig. 12, the ANSYS and ABAQUS solid finite elements 
produce consistent results, which were considered as benchmark solutions. 
Comparable results by the warping finite element (WT - with and without STMDE) 
are only obtained for the first eigenfrequency. A significant difference occurs for the 
higher modes. This is likely caused by the incorrect stiffness of the cross-section by 
the approach on which the WT finite elements are based. It is characterized by 
computation of the warping constant for hollow cross-sections without consideration 
of the distortion effect). In reality, the stiffness is influenced not only by warping but 
also by the distortion of the cross-section [24]. This is shown by the eigenmodes in 
Fig. 13, calculated by the BEAM186 solid finite elements [3]. As expected, the results 
are characterized by a significant influence of the variation of the material properties. 
 

 

 

Fig. 13: Mode shapes corresponding to the 1st, 2nd, and 3rd  warping torsion eigenfrequency [3]. 

 

The same example was solved by means of 100 BEAM188 finite elements [3] with 
the following options: warping unrestrained (WU) and warping restrained (WR). The 
results are shown in Table 7. 
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f [Hz] n 
BEAM188 

WU 
BEAM188 

WR 
WT - with 
STMDE 

WT - 
without 
STMDE 

ANSYS 
100860 FE 
SOLID186 

1 

1 11346.1 11472.5 10911.7 11422.5 11021.3 
2 12135.7 12309.2 11663.1 12239.9 11857.0 
3 12237.0 12429.0 11746.0 12342.7 12003.0 
4 12193.3 12391.8 11683.8 12292.0 11991.0 
5 12122.2 12322.6 11592.2 12212.3 11941.0 

2 

1 27845.8 28296.2 26822.7 28425.7 22258.0 
2 30624.0 31136.9 29346.7 31250.5 24145.0 
3 32233.6 32775.2 30755.4 32796.4 25420.0 
4 33249.6 33815.7 31617.3 33743.0 26351.0 
5 33893.8 34482.0 32503.1 34329.7 27040.0 

3 

1 45270.5 46348.9 43799.2 46516.4 29316.0 
2 49636.4 50818.7 47713.3 51033.5 31772.0 
3 52030.6 53261.2 49719.3 53402.3 33070.0 
4 53557.0 54821.1 50907.7 54856.3 33884.0 
5 54610.5 55900.7 51663.5 55822.4 34454.0 

Table 7: Eigenfrequencies  calculated by BEAM188 finite elements with material properties for 

1,5n   according to Figs. 4 and 5. 

 
Plots of the dependence of the first eigenfrequency, determined with BEAM188 
elements as well as with 100 WT beam finite elements, on the order of the polynomial, 
describing the longitudinal variation of the material properties, are shown in Fig.14. 
 

+  

Fig. 14: Dependence of the 1st eigenfrequency on the order n in (26), (27) and (29).  

As shown in Table 7 and Fig. 14, consideration of the STMDE in the proposed method 
improves the accuracy of the results. However, as previously shown, all finite beam 
elements produce markedly higher eigenfrequencies as compared to the benchmark 
solution. Except for the 1st eigenfrequency, as regards the modes, the distortion of the 
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cross-section is not considered by the WT finite elements for the case of torsion with 
warping. As shown in [26], the distortion dose not play such a strong role in the 
analysis of elastostatic warping torsion, unless the deformation of the twisted beam is 
similar to its first eigenform and the distortion of the hollow cross-section dominates 
the reduction of the torsional stiffness. 

 

4. Summary and Conclusions 

The differential equations of second order for Saint Venant torsional eigenvariations 
and of fourth order for non-uniform torsional eigenvibrations of FGM beams with 
doubly symmetric thin-walled open and closed cross-section were established. A 
polynomial longitudinal continuous variation of the effective material properties was 
considered. It may e.g. be obtained by homogenization of spatially varying material 
properties [18]. The general semi-analytical solution of the differential equation (19) 
was presented and the transfer matrix relations were formulated, from which the finite 
element equations for FGM beams were obtained. Results from modal analysis of 
open I beams and rectangular hollow cross-sections by the proposed method were 
presented and compared with results, obtained by commercial FEM codes. In the 
theoretical investigation, the secondary torsional moment deformation effect 
(STDME) was taken into account. A part of the expression for the first derivative of 
the twist angle was chosen as the warping degree of freedom.  
The main conclusions that can be drawn from this investigation are as follows: 
 
(1) Torsional eigenvibrations of open I cross-section cantilever FGM beams: 

- The results from modal analysis, using the proposed torsion finite beam 
elements, concerning non-uniform (WT) and uniform torsion (SV) of FGM 
beams with open doubly symmetric cross-sections, have shown large 
differences of the eigenfrequencies. This proves that the warping effect must 
be taken into account not only for homogeneous beams but also for beams 
made of FGM. 

- The proposed approach for calculation of non-uniform torsional 
eigenvibrations with and without consideration of STMDE produces slightly 
different results for the higher modes. Probably, the STMDE results in a 
decrease of the torsional stiffness of open cross-sections that is greater than in 
reality. Evidence of this assumption is the fact that the eigenfrequencies, 
calculated without consideration of STMDE, agree better with the results 
obtained by 3D solid finite elements. 

- The proposed warping torsion beam finite element is effective, because the 
FGM beam with a polynomial variation of the material properties can be 
modelled with only one such finite element. Results obtained by a coarse mesh 
agree well with results from a very fine mesh of the 3D SOLID186 or the 
BEAM188 (WR) finite element [3]. 

-   As expected, the obtained results show a significant influence of the variation 
of the material properties on the eigenfrequencies. 
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(2) Torsional eigenvibrations of a FGM cantilever beam with a rectangular hollow 

cross-section: 

 -  A reasonably good agreement of the results obtained by the proposed warping 
finite beam element (WT - with and without STMDE) with the ones obtained 
by 3D elements is restricted to the 1st eigenfrequency. The significant difference 
of the results for the higher modes is likely caused by the higher stiffness of the 
cross-section in case of the proposed approach, where the warping constant is 
calculated for a rectangular undistorted hollow cross-section. In reality, the 
decrease of the torsional stiffness is not only caused by warping and STMDE, 
but also by the distortion of the cross-section [24] (see the second and the third 
eigenmode in Fig. 14). There effects were not considered by the proposed 
method. As expected a significant influence of variation of the material 
properties on the eigenfrequencies occurred, also for the hollow cross-sections. 

 
In future work, the scope of the presented torsional warping beam finite elements will 
be extended for use in non-uniform torsion elastostatic analysis of FGM beams with 
a spatial variation of the material properties. As shown in [26], wherein the elastostatic 
second-order warping torsion analysis of beams with constant material properties is 
described, the obtained results agree very well with the results from finite solid 
elements. There, the distortion probably does not play such a strong role, unless the 
deformation of the twisted beam is similar to its first torsional eigenform.  

 

5. Appendices 

A1. The variable polynomial coefficients in (19) given as: 
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The load polynomial, for several load conditions, on the right-hand side of (19), reads 
as: 

A2. Coefficients of the Transformation matrix T.  
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Firstly, the transformation matrix T is derived. It transforms the vector Zx to the vector 
ψ , i.e   xψ T Z : 
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x T x T x T x T x T x x

x T x T x T x T x T x x

x T x T x T x T x T x M x

x T x T x T x T x T x M x


 
 



     
           
       
          
     
     

xZ
1 1 1 2 1 3 1 4 1 5

2 1 2 2 2 3 2 4 2 5

3 1 3 2 3 3 3 4 3 5

4 1 4 2 4 3 4 4 4 5

1 0 0 0 0 1 1



. (32) 

The first line of the transformation matrix T reads as 

, , , , ,, , , , .T T T T T    1 1 1 2 1 3 1 4 1 51 0 0 0 0                    (33) 

Substitution of (14) into (12) gives 

         
 

.Ts
M S M

Ts

M x
x x x x

G x I
                               (34) 

Inserting  TpM x , obtained from (13), into (10) yields 

       .Ts T TM x M x G x I x                                     (35) 

 Substitution of (35) into (34) gives 

   
           .Ts

M T
Ts T Ts T

G x I
x x M x

G x I G x I G x I G x I
 

        
  

1
     (36) 

The second line of the transformation matrix T reads as 

, , , , .Ts

Ts T Ts T

GI

GI G
T T T T T

I GI GI
    

 21 22 23 24 25

1
0 0 0        (37) 

Inserting  M x  , obtained from (11), and  TM x , obtained from (8),  into the 

expression for  x  , obtained from derivation of (36) with respect to x, yields the 

third line of the transformation matrix: 

, ,
( )

p Ts T T Ts

Ts T Ts T

I GI G I GI G I

GI GI GI I
T T

G

 
 


  




2

1 32 23      

, ,
( ) (

.
)

Ts T Ts T

Ts T Ts T Ts T

GI G I G I m

EI GI GI GI GI GI GI
T T T



 
 


  

  33 34 32 5
          (38) 

The fourth line of the transformation matrix is obtained from the second derivative of 
(36) with respect to x. The resulting expression for  x  contains  x  ,  M x  , 

 M x , and  TM x .  M x  is given in (11) and  TM x  in (8).  M x  is obtained 
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from (9) after inserting  M x   from (34) and  TsM x  from (35) into (9). In this way, 

the fourth line of the transformation matrix is obtained as follows:  

( ( ) ( ) )

( )
,p Ts T Ts T p

Ts T

I G I G I GI GI I

GI
T

GI

   




  2

41 2

2
 

( )( ( ) )
(

( )

( ( ) ( ))

( ( ) ( )) ,)

Ts T Ts T Ts T Ts

Ts T

Ts T Ts T Ts p T

T Ts Ts T Ts T Ts T Ts

GI GI GI GI GI GI GI I

GI GI EI

GI G I G I G I GI I G I

GI G I G I G I GI I G I G I G I

T

I G







 

 

 

  

      

        



 





2

3

2

2

42

2

1

2

2

 

(
,

( ) )

( )
Ts Ts T T T Ts

Ts T

GI GI GI E I EI G I EI GI G I

EI GI G
T

I
  



 



 

2 243

2 2
 

( ) ( ) ( )

( )

(( ) ( ))

( )
,

Ts T Ts Ts p T Ts

Ts T

T Ts p T Ts

Ts T

GI EI G I G I EI GI I G I G I

EI GI GI

GI GI EI I G I

T

G I

EI GI GI

 







 

 

       
 

 




 



3 2 2

3

2

4

2

4

3

2

 

   
( )

.
( ) ( )

Ts T T Ts T

Ts T Ts T Ts T

GI m m G I G I m

EI GI GI GI GI GI G
T

I




  
  

  45 2

2
                (39) 

 
Secondly, the load vector and the matrix b in (22) are established. 
The matrix A, which is needed for (23), follows from 
 

x i
 

 1 1
0b b      .                         (40) 

 
A3. Coefficients of the matrix B in (24). 

, ,
,

, ,

, , , ,

A A A A

A A A
B

A




 


1 3 2 1 1 2 2 3

1 4 2 3 1 3

1

2

1

4

,
, , , ,

, , , ,
,

A A A A

A A A
B

A

 





1 4 2 2 1 2 2 4

1 4 2 3 1 3

1

2

2

4

,  

, , , , , , , , , , , ,
,

, , , , , , , , , , , , , ,

, , ,

, , ,

,

,

( )

,

A A A A A A A A A A A A
A

A A A A A A A A A A A A A
B

A

A A A

A A A A

   
   




 




1 1 4 3 1 4 2 1 4 3 1 1 1 4 2 3 4 3 1 3 2 1 4 4

4 1

1 3 1 4 2 3 1 3 2 4 1 3 1 4 2 3 1 3 2 4 1 4 2 3 1 3 2 4

1 1 2 3 4 4

1 4 2

3

3

1

3 1 2 4

, , , , , , , , , , , , , , , , , ,

, , , ,
,

A A A A A A A A A A A A A A A A A A

A A A A
B

    





1 4 2 3 3 1 1 3 2 4 3 1 1 4 2 1 3 3 1 1 2 4 3 3 1 3 2 1 3 4 1 1 2 3 3 4

1 4 2 3 1 3

4

2

1

4

, 
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, ,
,

, ,

, , , ,

A A A A

A A A
B

A




 


1 3 2 1 1 2 2 3

1 4 2 3 1 3

2

2

1

4

,
, , , ,

, , , ,
,

A A A A

A A A
B

A

 





1 4 2 2 1 2 2 4

1 4 2 3 1 3

2

2

2

4

, 

, , , , , , , , ,
,

, , , , , ,
,

, , , ,( )

A A A A A A
B

A A A
A

A A A A A A A A A A
  

  



1 2 4 3 1 4 2 2 4 3 1 2 1 4 2 3 4 3

4 2

1 3 1 4 2 3 1 3

3 2

2 4 1 3 1 4 2 3 1 3 2 4

, 

, , , , , , , , , , , , , , , , , ,

, , , ,
,

A A A A A A A A A A A A A A A A A A

A A A A
B

    





1 4 2 3 3 2 1 3 2 4 3 2 1 4 2 2 3 3 1 2 2 4 3 3 1 3 2 2 3 4 1 2 2 3 3 4

1 4 2 3 1 3

4

2

2

4

, 

,

,
,

, , ,

B
A

A A A A 
  2 3

1 4 2 3 1 3

3

2

1

4

,
,

, , , ,
,

A

A A A A
B





2 4

1 4 2 3 1 3

3

2

2

4

, 

, , , , , ,

, , , , , , , , , ,
, ( )

A A A A A A

A A A A A A A A A
B

A
 
   

 4 3 2 3 4 4 1 4 2 3 4 3

1 3 1 4 2 3 1 3 2 4 1 3 1 4 2 3 1 3 2

3

4

3 , 

, , , ,

, , , ,
,

A A A A

A A A
B

A

 





2 4 3 3 2 3 3 4

1 4 2 3 1 3

3

2

4

4

, 
,

,
,

, , ,

A

A A
B

A A
 1 3

1 4 2 3 1 3

4

2

1

4

, 
,

, ,
,

, ,

B
A

A A A A
  1 4

1 4 2 3 1 3

4

2

2

4

, 

, , , ,
,

, , , ,

A

A
B

A A A

A A A







1 4 4 3 1 3 4 4

1 4 2 3 1 3

4

2

3

4

,
, , , ,

, , , , , , , ,
,

A A A A

A A A A A
B

A A A


  



 1 4 3 3 1 3 3 4

1 4 2 3 1 3 2 4 1 4 2 3 1 3

4

2

4

4

,       

, , , ,

, , , ,

A A A A

A
F

A A A


 

 1 5 2 3 1 3 2 5

1 4 2 3 1 3 2

1

4

, , , , ,

, , , ,

A A A A

A A A
F

A


1 5 2 4 1 4 2 5

1 4 2 3 1 3 2

2

4

, 

, , , , , , , , , , , ,
,

, , , ,

A A A A A A A A A A A A
A

A A A A
F

  



 1 5 2 4 4 3 1 4 2 5 4 3 1 5 2 3 4 4 1 3 2 5 4 4

4 5

1 4 2 3 3 2 4

3

1

, 

, , , , , , , , , , , ,
,

, , , ,

.F
A A A A A A A A A A A A

A
A A A A


  


 

1 5 2 4 4 3 1 4 2 5 3 3 1 5 2 3 3 4 1 3 2 5 3 4

3 5

1 4 2 3 1 3 2 4

4  
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