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Abstract 
Modern fabrication facilities refine methods for automated and rapid production of goods. Due 

to soaring velocities, visual inspection grows to be impractical for human workers. Machine 

vision systems have grown to be powerful tools for automated quality control of products. 

However, current technologies are limited to monitoring simple objects and to the application 

of proven algorithms. This thesis focuses on the detection of defects in two different polymer 

objects with challenging surfaces. Circular, transparent lids and opaque, highly reflective des 

are the subjects of investigation.  For both problems at hand, stable setups for measurement 

are presented. Additionally, innovative algorithms to find defects are introduced. The first is 

attracting considerable interest due to its rotation-invariant and statistical approach. The 

second stands out by reason of using a colour space transformation and surface modelling 

before the utilization of well-proven thresholding. Furthermore, research on intrinsic quality 

monitoring of machine vision systems provides knowledge for fast and simple diagnosis of 

possible malfunctions. A one-fits-it-all template and several proposed algorithms account for a 

potential remote detection of aforementioned malfunctions. 

 

  



 
 

  



 
 

 

 

 

 

Kurzfassung 
Moderne Fertigungsstätten sind darauf bedacht, Methoden für die schnelle und automatisierte 

Herstellung von Waren, weiterzuentwickeln. Aufgrund immenser Fertigungs- und 

Laufbandgeschwindigkeiten ist die visuelle Kontrolle durch den Menschen eine immer größer 

werdende Herausforderung. Maschinelles Sehen hingegen hat sich für die automatische 

Qualitätskontrolle von Produkten zu einem mächtigen Werkzeug entwickelt. Existierende 

Technologien beschränken sich jedoch derzeit auf die Überwachung einfacher Objekte und die 

Anwendung simpler Algorithmen. Diese Diplomarbeit befasst sich mit der Erkennung von 

Fehlern in zwei verschiedenen Polymer-Objekten mit anspruchsvoller Oberfläche. Zum einen 

sind runde und transparente Deckel, zum anderen opake und stark reflektierende Teile 

Gegenstand der Untersuchung. Für beide Probleme wird ein stabiles Messsystem präsentiert. 

Zusätzlich werden innovative Algorithmen zum Auffinden der vorhandenen Defekte vorgestellt. 

Der erste Algorithmus besticht durch seinen rotationsinvarianten und statistischen Ansatz, der 

zweite durch Verwendung einer Farbraumtransformation und Oberflächenmodellierung vor 

der Anwendung des bewährten Schwellenwertverfahrens. Überdies befasst sich die Studie mit 

der Qualitätssicherung von Systemen für maschinelles Sehen und bietet Vorschläge für die 

schnelle und simple Diagnose möglicher Fehlfunktionen. Diese können durch das Anwenden 

von Algorithmen auf Photographien der entwickelten Schablone dezentral festgestellt werden.  
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1. Introduction 
In the early 1770s the manufacturers all over Europe began transitioning their production 

processes towards both time and workload efficient systems using machines that exceed 

human rate of production. 250 years later engineers have improved their factories to an extent, 

where manpower is becoming less important, whereas smart control and surveillance of rapid 

production systems is crucial to a company’s production rates and thus success. Producers of 

packaging materials are assembling at such a high velocity, that quality control of the produced 

goods is becoming less and less feasible using the human body as a decision maker. Not only is 

a person’s ability to detect defects in packaging product limited due to the rapidness of 

common conveyor belts, but more importantly one’s interpretation of a defect might differ 

from another one’s point of view. Moreover, visually monitoring thousands of parts that pass 

by at high speed is incredibly challenging and exhausting. Thus, it requires a high level of 

concentration that might not be maintained by a human worker.  

Since manual inspection is prone to mistakes due to a lack of human ability and concentration, 

product quality cannot be fully assured. Consequently, waste rates may vary, costing 

unnecessary time and resource expenses. Naturally, to avoid all these factors of inconsistent 

quality control, producers seek to find automated solutions. A technology that is using an image 

acquisition system to process and extract information, giving a decision upon well-defined 

criteria whether an object has to be sorted out or not, is called machine vision (MV) system.  

In chapter 2, the fundamentals of MV systems and statistical tests are explained. Furthermore, 

theory concerning image acquisition and processing is elucidated. This first part of the thesis 

contains basic understanding of image sensor functionality, representation of colours in a 

digital environment and image procession. 

There is little scientific research in the field of the quality monitoring of the MV system itself. 

Producing companies however heavily depend on a well-developed quality management 

system, thus theoretical and experimental research was done to provide solutions on how to 

monitor MV hardware on its performance. Chapter 3 presents several probable malfunctions 

of MV systems, as well as the solutions of how to easily and remotely identify their origins.  

One main aim of this work was to find defects in two use cases using a self-built lab-scale 

machine vision system. Chapter 4.1 introduces a unique MV setup and algorithm, that allows 

the rotation-invariant analysis of circular, transparent polymer lids. The procedure focuses on 

the statistical analysis and comparison of image data. In chapter 4.2, a possible setup and 

algorithm for the detection of defects in opaque, reflective parts is presented. The algorithm 

revolves around the idea of taking advantage of distinct colour space properties. 
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2. Theoretical Background 

2.1. Machine Vision Systems 
A process in which a machine, e.g. a computer, automatically processes an image and 

recognizes its content is called machine vision [1, p. 4]. Accordingly, a common MV system 

consists of the following parts, depicted in Figure 2.1: 

• Camera 

• Illumination 

• Processing unit (computer) 

• Sorting unit 

The inspection process can be described as follows: parts of interest move along a 

transportation line or are being put in a certain position by a robot-arm. In the first case, a 

suitable sensor triggers the image acquisition, in the second case it’s triggered when the robot-

arm is in a well-defined position. When the image process is triggered, the illumination system 

sets off a flashlight and the camera opens its shutter, imaging the object of interest. The data 

of the electronic image is then sent to a central processing unit, where the photograph may be 

subject to some pre-processing steps, before its content is analysed using an algorithm. 

Afterwards, the obtained information is used to control a sorting unit, that eventually separates 

objects from the transportation line, that do not meet the criteria set by the operator. 

 

Figure 2.1: Components of a typical machine vision system  [2, p. 2] 
1: object of interest; 2: camera; 3: illumination; 4: trigger sensor 

5: processing unit; 13: sorting unit 

Cameras operate by opening a shutter, exposing their sensors to light. The appearance of 

objects in the photograph and the image quality in general is defined by the camera’s settings, 

its resolution and the lens’ settings. The variation of the ISO value controls the sensitivity of the 

sensor, while the shutter time defines how much light falls onto the sensor. Object appearance 

is affected by the aperture, which influences the depth of field. For those, who have never 

explored the manifold world of photography, a wide variety of open books [3] and photography 

forums [4] are available to understand the most basic principles of photography and how the 

camera’s settings affect the images taken. 
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2.2. Image Acquisition and Processing 

2.2.1. Introduction 

The key component of every machine vision system is the camera. A century ago, images were 

taken by exposing radiation sensitive materials like silver halide crystals to light. While this 

analogue technique still fascinates photographers around the globe, the consumer market 

relies on a faster and more stable method to obtain images. 

The main part of a so called “digital” camera is a light-sensitive sensor, that we will call the 

camera sensor. Whereas analogue cameras collect the light they are exposed to using a 

chemical reaction, digital cameras convert the light that falls onto their sensor by exploiting the 

photoelectric effect and then saving the digitalised image on a digital memory. Digitization 

describes a process, where information, e.g. an analogue signal like the intensity of light, is 

converted into a computer-readable format [2]. 

2.2.2. Solid-State Sensors 

As previously mentioned, modern solid-state sensors take advantage of Einstein’s Nobel prize 

winning discovery of the photoelectric effect. Those sensors are most commonly arranged in a 

matrix, where every light-sensitive element is called pixel. The intensity of light that falls onto 

a pixel is converted into a charge or a digital value that is then ready for processing. Image 

sensors are categorized according to their geometrical arrangement of their pixels, either in 

line or in a matrix and they are categorized by their manufacturing technology. The most 

common technologies are Charged Coupled Device (CCD) and Complementary Metal Oxide 

Semiconductor (CMOS) sensors [6, p. 204].  

CCD sensors have been dominating the market until the late 1990s, but a more cost-effective 

production and various performance advantages have led to a reversion of the market 

situation. Generally, all solid-state sensors operate following the same principle [6, p. 205]: 

1. Light in the form of photons generates free electrons in the light-sensitive part 

of the solid-state crystal sensor. 

2. The generated electrons are collected over a defined time period, that is the 

exposure time. 

3. The acquired charge is transferred pixel-wise to the converter stage in the CCD 

sensor. 

4. At last, the accumulated charge is converted into a proportional voltage that is 

subsequently converted into a numerical value by an analogue-digital (AD) 

converter. 

Both sensor types exhibit various advantages and disadvantages due to the complex 

mechanisms that take place during image acquisition. Detailed information about the sensor’s 

mannerisms can be found in [6]–[8]. 

The numerical values that were converted by the AD converter are digitally stored in a matrix. 

The values of the image matrix correspond to the brightness, or more specifically the intensity 

of light (the number of photons), that fell onto the pixels. An example is given in Figure 2.2.  
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Figure 2.2: Visualization of an image matrix with values from 0 to 255 

Each cell of the matrix can have a value between 0 and 255. For every value there is distinct 

shade of grey, with the whole scale reaching from total black to total white. A higher value 

indicates a whiter cell, respectively a pixel which was exposed to a higher intensity of light. The 

range of 256 different grey values was not chosen by accident, this will be discussed in detail in 

chapter 2.2.4. 

2.2.3. Colour Sensors 

Especially the mainstream consumer market depends on a technical feature, that provides that 

users can take images not only in black and white, but in colour. While the brightness of grey 

level images is easily explained by the physical quantity of intensity and can therefore also be 

used with ultraviolet or infrared light, colour is inseparably linked to human perception [6, p. 

211].  

Unlike bats or dolphins who are sorely sensitive to ultrasonic, most organisms use a chemical 

reaction in their eyes to convert electromagnetic waves into visual information. Humans see, 

because the brain is able to obtain visual information via the conversion of light-sensitive 

proteins like rhodopsin. Many organisms however, are unable to distinguish between different 

wavelengths of the electromagnetic spectrum, only seeing different shades of grey as the 

example in Figure 2.2. To be able to see colour, organisms have evolved in a way, where they 

use different kinds of proteins to interact with different wavelengths of light [9].  

To the human eye, the visible spectrum, thus the wavelengths of the electromagnetic spectrum 

that interact with the proteins of the retina, has an approximate range of 380 to 780 nm. These 

colour-sensitive photo receptor proteins are divided into three different types, each having its 

own sensitivity for distinct wavelengths. The different receptors are called cones and each cone 

reacts, according to its name, specifically strong to a certain wavelength [6, p. 211]: 
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• L-cones, for long-wave, red light 

• M-cones, for the middle spectrum 

• S-cones, for short-wave, blue light. 

As shown in Figure 2.3,  the human eye is the most sensitive to light in the range of red and 

green light. 

 

Figure 2.3: Spectral sensitivity of cones in the human eye [6, p. 212] 

Since each pixel can only absorb a brightness value that is proportional to its exposure to 

photon intensity, different methods have been developed to image colour in machines. In 

general, the two main types of hardware arrangements of cameras that are commonly used to 

capture colour images with a CCD or a CMOS sensor, are three-chip and one-chip solutions. 

Three-chip colour cameras use a beam splitter to guide the light according to colour onto one 

of the three solid-state sensors. A more common approach however, is a one-chip colour 

camera using a colour filter array in front of the array, that only permits the corresponding 

colour to reach the defined pixels [6, p. 261]. Such an array is called Bayer filter or Bayer array, 

named after its developer Bryce E. Bayer, who worked in 1976 at the Eastman Kodak Company 

in Rochester, NY, USA. The filter array is directly applied to the sensor, making it possible to 

interpolate the complete information between the pixels, since each pixel receives the 

brightness of one colour channel [6, p. 212]. Figure 2.4 shows the schematic drawing of such 

an array in front of the actual camera sensor. 

 

Figure 2.4: Schematic figure of a Bayer pattern (according to [6, p. 213]) 
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In conclusion, coloured pictures veritably consist of three pictures, each representing the 

intensity of a certain part of the electromagnetic spectrum. To clarify this, the picture of Figure 

2.5 was split into its red, green and blue picture (Figure 2.6), each representing the intensity of 

its corresponding colour in a grey scale picture. Keeping in mind the conventions of 

hyperspectral imaging, the red, green and blue image will from now on be called red, green and 

blue layer. 

 

Figure 2.5: Coloured image 

When focussing on the red scarf, it is easy to understand, that the left image of Figure 2.6, 

which is the image obtained by the pixels receiving long-wave red light, exhibit a high intensity 

of radiation in that area, whereas in the other picture that same area is quite dark, indicating a 

low intensity of radiation. Furthermore, one can note, that black and white are not colours but 

rather an equal mixture of each wavelengths, clarified by the fact that the white shirt is equally 

bright, while the black pants are equally dark in all three pictures. 

 

Figure 2.6: Left: red image; middle: green image; right: blue image 
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2.2.4. Bit Depth 

In chapter 2.2.2 and 2.2.3 we learned that the intensity of light is converted and digitally saved 

as a matrix of values, i.e. an image. As a consequence of the computer’s disability to handle 

analogue values, the obtained light intensity has to be discretized into said image matrix. This 

leads to the concept of bit depth, which describes the possible grey levels or numeric values a 

camera sensor can issue. Since computers process information in bits, the same concept is 

applied to each pixel of an image sensor, where the range of possible values is defined by the 

combination of bits. By combining several bits, more detailed information can be displayed. 

Following the mathematical logic of combining zeros and one, shown in Equation 1, the number 

of possible grey levels is two raised to the power of the bit depth.  

 𝑅𝑎𝑛𝑔𝑒 𝑜𝑓 𝑔𝑟𝑒𝑦 𝑠𝑐𝑎𝑙𝑒 =  2𝐵𝑖𝑡 𝑑𝑒𝑝𝑡ℎ (Eq. 1) 

   

This is clarified in Table 2.1, which shows the range of possible values depending on the bit 

depth of the camera sensor. 

Table 2.1: Bit depth and corresponding grey scale 

Bit Depth 1 2 3 4 5 8 12 

Possible Grey Values 2 4 8 16 32 256 4096 

 

Naturally, a greater bit depth corresponds to more information, i.e. better image quality. An 

example is given in Figure 2.7 and Figure 2.8, where the image matrix of a red image was 

discretized to the number of possible values according to the related bit depth. Figure 2.7 

shows bit depths of 1,2 and 3. With a bit depth of 3 and therefore 8 possible grey values, it is 

already possible to adequately image complex structures like faces and transparent objects like 

drinking glasses. 

 

Figure 2.7: Left: bit depth of 1; middle: bit depth of 2; right: bit depth of 3 

Figure 2.8 gives a hint, that even with a camera bit depth of 5 and therefore 32 possible values, 

great image quality is achieved. Most consumer camera sensors however use a minimum bit 

depth of 8 to accurately image fine texture or colour differences. This can be observed when 
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one closely examines the girl’s pullover and its pleats. The importance of bit depth becomes 

greater, when objects similar in colour or brightness are imaged. 

 

Figure 2.8: Left: bit depth of 4; middle: bit depth of 5; right: bit depth of 8 

2.2.5. RGB and HSI Colour Space 

Earlier, the concept of colour filter arrays was introduced to understand how coloured pictures 

are obtained with solid-state sensor cameras. Hence, by exploiting this knowledge one can 

conclude, that by combining the colours red, green and blue to different extents, it is possible 

to display the colours we see in reality quite accurately (see Figure 2.9; left).  

Using the RGB system ensures that there is no distortion introduced to the initial information. 

However, one also must be aware of disadvantages. First, representing colours using a mixture 

of red, green and blue is far from the human concept of colour. Due to the mixing of only three 

components, colour features are highly correlated and evaluating the similarity of two colours 

from their distance in the RGB space becomes impossible [10]. Thus, RGB colour space system 

is highly appreciated for hardware-oriented applications, for colour processing however, the 

HSI colour space offers various advantages. HSI is based on how humans perceive colour and 

thus more suitable for describing and interpreting colours. H, S and I represent hue, saturation 

and intensity, respectively [11]. 

 

Figure 2.9: Left: RGB cube [12]; right: HSI cone [13]  
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In the HSI system, Hue represents the colour feature, having the property of being relatively 

unaffected by shadow caused by the light source. In Figure 2.9 (right), hue shows the 

localization of basic colours when stepping in rotational direction of the colour space. The purity 

of hue is measured in saturation, i.e. the mixing of pure white to the hue component, resulting 

in a lower saturation. In Figure 2.9 (right) chroma indicates the saturation. The intensity 

dimension, or value in Figure 2.9 (right), describes the mixing of the colour with black or white 

[10]. 

There are several different ways to perform RGB to HSI conversion, an example [10] is given 

below. First, the RGB values are converted into the YC1C2 tristimulus values (Equation 2).  

 [

𝑦
𝐶1

𝐶2

] = [

1/3    1/3    1/3
1 −1/2 −1/2

0 −√3/2 −√3/2

] ∗ [
𝑅
𝐺
𝐵

] (Eq. 2) 

Then, the tristimulus values are transformed into HSI coordinates by means of Equations 3-5. 

 𝐼 = 𝑌 (Eq. 3) 

 𝑆 =  √𝑐1
2 + 𝑐2

2 (Eq. 4) 

 
𝐼𝑓 𝑐2 ≥ 0 𝑡ℎ𝑒𝑛 𝐻 =  𝑐𝑜𝑠 −1 (

𝑐2

𝑆
) 

𝐸𝑙𝑠𝑒                    𝐻 = 2𝜋 − 𝑐𝑜𝑠 −1 (
𝑐2

𝑆
)  

(Eq. 5) 
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2.2.6. Intensity Distribution 

The image, which is now regarded as an image matrix, with each cell representing a light 

intensity of the corresponding pixels, can be mathematically analysed by examining all the 

occurring values. When the number of every observed intensity from 0 to 255 is drawn into a 

diagram, a distribution of intensities is obtained. This can be done for every layer of a coloured 

image. Figure 2.10 (top left) shows a coloured sample image, Figure 2.10 (top middle) the green 

layer and Figure 2.10 (top right) the blue layer of said image. 

 

Figure 2.10: Top left: coloured sample image for intensity distribution; top middle: green image; top right: blue image; 
bottom left: intensity distribution of green image; bottom right: intensity distribution of blue image 

Figure 2.10 (bottom left and right) shows the intensity distribution analysis of both green and 

blue image layer. When comparing both distributions, the intensity distribution of the green 

layer reflects what we see in the colour picture, namely a higher number of high intensities. 

This is not surprising, as the coloured image exhibits a substantial number of green pixels. 

Moreover, the high number of intensities around 255 indicate that many pixels where 

overexposed to light, i.e. received too much light so that their returning value was the 

maximum intensity. Usually, such a scenario is avoided in photography, due to the difficulty of 

post-processing an overexposed image. 

  

overexposure overexposure 
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2.2.7. Thresholding 

In classical defect detection algorithms of machine vision systems, an image is converted into 

a black and white picture with no grey scale values in between. Such an image would then be 

stacked over another image and afterwards compared if all black and white regions match.  

The process of converting an image into a B&W picture using a threshold is a perfect example 

to understand how thresholding or so-called binary segmentation works. The most frequently 

used method to obtain a B&W picture is by defining a single value as a threshold and comparing 

if the intensity of a pixel lies above or beneath said threshold.  There are global and local 

threshold methods, with local thresholds usually being more efficient [6, p. 84]. An example is 

given in Figure 2.11, where the fact that the green leaf lacks blue light intensity was used to 

separate it from the background. 

 

Figure 2.11: Binary image segmentation using a threshold; left: original image; middle: blue layer; right: segmented image 

Thresholds can also be seen as a limit value of the histogram, i.e. the intensity distribution (e.g. 

in Figure 2.10 (bottom left and right)), where intensities above or below the threshold signalize 

a difference to the other pixels. When smart image post-processing algorithms have made a 

defect visible, because of its difference in intensity to surrounding pixels, that knowledge can 

be exploited by thresholding the image, marking a defected area as white, while non-defected 

areas remain black, which is the same procedure as in Figure 2.11, the only difference being 

that the defect lights up in such a segmented image. 

2.2.8. Masking Pixels 

Another key element for the defect detection algorithms used in this work, was the application 

of pixel masks. Pixel masks are Boolean matrices where each cell is filled with a true or false 

value. When the image matrix of Figure 2.11 (right) is processed via thresholding and every 

black pixel inhibits the information true and every white pixel the information false, the Boolean 

image matrix can later be used to hide and omit either the true or the false pixels from post-

processing. From now on, such a matrix will be called Pixel Mask, because of its property to 

mask and thus leave out certain pixels from processing using an algorithm. 
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2.2.9. Linear Filters 

This chapter presents condensed knowledge about the principle of linear filters and their 

application in image processing. Jähne [14] and Demant [6] provide detailed information on 

formula and theory, here however the main focus lies on understanding the basic principle of 

matrix operations in images. 

Linear filters are local image operations, where the grey value (GV) of a pixel is determined by 

a group of pixels in the source image [6, p. 39]. That means, that the GV of a local group of 

pixels, called neighbourhood, are subject to a mathematical operation with the filter kernel, 

depicted in Figure 2.12. 

 

Figure 2.12: Principle of a linear filter [6, p. 41] 

When the kernel h is applied to a 3x3 matrix of GVs, each source GV is multiplied with the 

weight of 1, then all GVs are summed up and divided by 9.  

ℎ =
1

9
[
1  1  1
1  1  1
1  1  1

] 

The new grey value, which is in fact just an average of the 9 source GVs, is written in a defined 

cell of a new image matrix. This operation is repeated for all pixels of the image. Consequently, 

such a filter is a very basic smoothing filter. Figure 2.13 gives an example of a smoothing filter. 
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Figure 2.13: Smoothing filter; left: original image; right: smoothed image 

Depending on the filter weights, very different effects can be achieved. There are smoothing, 

edge and median filters, as well as morphological and non-linear filters [6]. One filter that will 

be used in this thesis is the Sobel filter. This classical edge filter successively applies the two 

kernels hx and hy to the source image. 

ℎ𝑥 = [
−1 0 1
−2 0 2
−1 0 1

 ]           ℎ𝑦 = [
−1 −2 −1
0 0 0
1 2 1

] 

The application of the filter emphasizes edges in both x- and y-direction, highlighted in Figure 

2.14. Clearly, areas of similar intensity remain dark in the processed image, while areas with 

steep intensity gradients are highlighted, visible on the edges of the scarf or the hood. Further 

information on edge detection was summarized by Gao [15]. 

 

Figure 2.14: Sobel filter; left: original image; right: processed image 

In the same way, a spatial percentile filter can be applied to the image matrix. It also serves as 

a smoothing filter, but in a different way. Here, a user-defined percentile of the neighbourhood 

pixels is determined. Accordingly, the processed image will be free of extreme values. 
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2.3. Statistical Tests 

2.3.1. Introduction 

Many machine vision algorithms for industrial applications are kept simple for reasons of 

applicability and robustness. There is a myriad of different approaches to MV related 

problems, all having in common to perform some kind of pixel processing. The most classical 

method is thresholding, which was previously explained in chapter 2.2.7. Template matching 

is classically used to check the shape of objects. There, two B&W images are directly 

compared by stacking them onto each other and calculating if there is a difference in area. 

Finally edge detection is the method, where various edge filters are applied and the resulting 

image is again compared to a template image [1], [2], [6], [14]. 

A rather unconventional method of defect detection, however, would be using a statistical test 

to compare the intensity distribution of a defected object with the intensity distribution of a 

non-defected object. Such a statistical test that is commonly used to compare distributions, is 

the Chi Square Test. This chapter focusses on the theoretical background of this procedure. 

In defect detection algorithms, there is an utter need for a systematic decision process that 

takes a variation of one sample to another into account. The decision process has to be able to 

reflect the risk of making incorrect decisions [16, p. 189]. 

2.3.2. Hypothesis Testing 

The formal procedure of applying statistical concepts and measures for decision making is 

called hypothesis testing. The following steps are used to perform a statistical analysis of a 

hypothesis [16, p. 209]: 

1. Formulate two hypotheses. 

2. Select the appropriate statistical model that identifies the test statistic. 

3. Specify the level of significance, which is a measure of risk. 

4. Collect a sample of data and compute an estimate of the test statistic. 

5. Define the region of rejection for the test statistic. 

6. Select the appropriate hypothesis. 

Ayyub et al. [16, pp. 210–214] recapitulate the six steps of hypothesis testing in detail, the 

following paragraphs condense their explanations: 

Step 1: Formulation of Hypotheses 

The first step of every statistical test is the formulation of two hypotheses for testing. 

Hypotheses are statements that indicate that a parameter has some specific value or in our 

case, the random variables have some specific distribution. The hypotheses should be 

formulated to indicate the absence or presence of differences. 

The first hypothesis is called null hypothesis, denoted by H0. It is formulated in a way, where it 

declares equality, i.e. a difference does not exist. The second hypothesis is called alternative 

hypothesis, denoted as H1 or HA. It declares inequality, i.e. a difference does exist. Both 

hypotheses should be expressed both grammatically and in mathematical terms and more 

importantly, they should mutually exclude each other in their conditions, as shown in Equation 

6 and Equation 7.  
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 𝐻0 ∪ 𝐻1 = {𝑃} (Eq. 6) 

   

 𝐻0 ∩ 𝐻0 = {} (Eq. 7) 

   

Thus, when H0 is rejected, HA must be accepted. Some users may seek that their conducted 

experiments lead to a difference, expressing H0 in a way where it suggests an existing 

difference. This should be avoided, the null hypothesis must be a statement of equality, not 

inequality. 

Step 2: The Test Statistic and Its Sampling Distribution 

HA of step 1 indicates a difference between specified populations or parameters. This difference 

is tested using a test statistic, which reflects the difference suggested by the alternative 

hypothesis. The computed value of a test statistic varies for every sample and thus is a random 

variable and has a sampling distribution. Hypothesis tests should be based on a theoretical 

model. The model defines the distribution function of the test statistic, which can be used to 

make probability statements about the computed values. 

Step 3: The Level of Significance 

After formulating both hypothesis and selecting an adequate test hypothesis, a probabilistic 

framework for accepting or rejecting H0, i.e. making a decision, is needed. It should reflect the 

chance variation that is expected in a sample of data. Such a chance variation is referred to as 

sampling variation. The website of the New Zealand Ministry of Education [17] explains more 

detailed: 

“Suppose a sample is taken and a sample statistic, such as a sample mean, is calculated. 

If a second sample of the same size is taken from the same population, it is almost 

certain that the sample mean calculated from this sample will be different from that 

calculated from the first sample. If further sample means are calculated, by repeatedly 

taking samples of the same size from the same population, then the differences in these 

sample means illustrate sampling variation.” 

When a decision is made, there are two possible situations and the potential decision may lead 

to a correct or an incorrect outcome of the test. Table 2.2 depicts all the available scenarios. 

Table 2.2: Decision table for hypothesis testing [16, p. 211] 

 Situation 

Decision H0 is true H0 is not true 

Accept H0 Correct decision Incorrect decision: type II error 

Reject H0 Incorrect decision: type I error Correct decision 

 

The decision table suggests two types of error: 

1. Type I error: H0 is rejected, even though H0 is true. 

2. Type II error: H0 is not rejected, even though H0 is false. 
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Both types are not independent from each other. The probability of making a type I error is 

denoted by α. The probability of a type II error is denoted by β. Since the possible incorrect 

decisions are dependent from each other, setting the level of significance very small, α becomes 

smaller but at the same time, β will increase drastically. Hence, the level of significance should 

be selected after extensively investigating the effects of a decision. Nonetheless, α is often 

chosen due to convention and availability of statistical tables. Most frequently α is selected as 

0,05 or 0,01, representing 5% or 1% probability of rejecting H0, when it is in fact, correct. 

Step 4: Data Analysis 

When the level of significance is set, the sample size required to meet any rejection criteria is 

set. Depending on the statistical test and knowledge of the population’s variance, different 

formulas exist for processing its data [16, pp. 232–235]. 

Step 5: The Region of Rejection 

When the possible values for the test statistic are put in a diagram, one finds two main regions. 

Figure 2.15 shows that those are called region of acceptance and region of rejection. The region 

of acceptance contains those values when the null hypothesis is true. When the null hypothesis 

is true, but a value is unlikely to occur, that value lies in the region of rejection. There is a critical 

value that separates both regions. It depends on the statement of the alternative hypothesis, 

the distribution of the test statistic, the level of significance and the characteristic of the data. 

Depending on the question, a test may be either one- or two-sided. 

 

 

Figure 2.15: Region of acceptance and rejection [16] 

 

Step 6: Select the Appropriate Hypothesis 

The decision whether the null hypothesis is rejected depends on the comparison of the 

computed test statistic to the critical value. When the value lies in the region of rejection, the 

null hypothesis is rejected, a difference of its grammatically and mathematically expressed 

statement was found. Two possibilities lead to a rejection: First, the computed value lies purely 
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by incident in the region of rejection, earlier explained as type I error. Secondly, the extreme 

value of the test statistic occurs, because the null hypothesis is false. 

2.3.3. The p-Value 

An additional approach to whether the null hypothesis is rejected would be the application of 

the p-value. Instead of using the comparison of the computed test statistic and the critical value 

one might use a value of probability, the so-called p-value. When H0 is true, the p-value of the 

null hypothesis corresponds to the probability of computing an observed or more extreme 

value of the test statistic. The meaning of extreme depends on the alternative hypothesis. As a 

convention, the following scheme has become most common for the interpretation of the p-

value [18, p. 42]: 

- < 0,01 → very strong objection against H0 

- 0,01 – 0,05 → strong objection against H0 

- 0,05 -0,10 → weak objection against H0 

- > 0,10 → no objection against H0 

Later in this thesis the rejection of the null hypothesis will be handled using the p-value. Two 

distributions will be compared of being equal using the Chi Square (denoted as χ2) test and p-

values with a lower value than the level of significance will result in a rejection of the null 

hypothesis. 

2.3.4. χ2 Test 

When two empirical distributions should be compared, whether they match or differ from each 

other, the easiest way would be comparing both distributions visually. Nonetheless, the aim of 

using machine vision systems is to hand tasks over to machines which can handle them with 

higher speed and crucial accuracy. Therefore, two empirical distributions of intensity 

distributions obtained from an image matrix taken by the image sensor, will later be compared 

using a χ2 test. 

Lohninger [19] recapitulates the theoretical background, a short overview is given in the 

following passages: 

The χ2 test compares an empirical with theoretical distribution that is a parametric distribution. 

A well-known problem is that the evaluation of parametric distribution functions results in 

probabilities and not in frequencies [19]. When the distributions are compared, the expected 

frequencies have to be estimated by multiplying the theoretical probabilities by the number of 

samples. 

The probability of the variable falling into a bin [ai, ai+1] is the difference of the probabilities of 

x being less than the bin boundaries ai and ai+1, shown in Equation 7 and graphically underlined 

in Figure 2.16: 

 𝑃𝑟𝑜𝑏 (𝑎𝑖 < 𝑥 < 𝑎𝑖+1) = 𝑃𝑟𝑜𝑏 (𝑥 < 𝑎𝑖+1) − 𝑃𝑟𝑜𝑏 (𝑥 <  𝑎𝑖) (Eq. 7) 
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Figure 2.16: χ2 test of distributions [19] 

The next step is calculating the difference of each bin between the empirical and the theoretical 

distribution, which is then squared and divided by the expected frequencies. The sum of these 

relative or weighted squared differences is the Chi Square test statistic, shown in Equation 8. 

The corresponding null hypothesis of the test is that both distributions are the same and that 

the differences between them are due to random errors. 

 χ2 =  ∑(𝐹𝑖 − 𝐸𝑖)
2 / 𝐸𝑖

𝑘

𝑖=1

 (Eq. 8) 

Fi … empirical frequency in bin i 

Ei … theoretical frequency in bin i 

k … number of bins 

Table 2.3 gives an overview over the details of the χ2 test. 

Table 2.3: χ2 test overview 

Hypothesis H0 : distributions are equal 
H1 : distributions differ 

Test statistic See Equation 8 

Degrees of freedom k-3 

Rejection Reject H0 if Χ2 > Χ2
α, k-3 
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3. Quality Monitoring of Machine Vision Systems 
Modern production facilities are using automated image-based quality control of their 

produced goods. There is however little open source knowledge about how to control the 

quality control system itself.  Therefore, a part of this thesis concentrates on the question how 

to ensure the quality of the taken images and more important on a how a transnationally 

operating company can remotely detect which part of a machine vision system is 

malfunctioning. This is especially important since travelling to a production site and determine 

the machine vision system’s problem is genuinely time consuming. Idle time on production sites 

is usually causing production delays that could lead to immense costs in case of not meeting 

the customers’ production deadlines. 

Hence, this work proposes a procedure where locally available templates are used to specify 

the defected part of a machine vision system. Ideally, a local worker would place several of 

these templates on the conveyor belt, respectively at the focal plane of the part that is usually 

inspected. Then, the machine vision system should obtain images that are then sent to the 

company’s skilled expert on machine vision quality control, who then carries out various 

algorithms and visual inspections of those images to determine the reason for the malfunction. 

This procedure should be more time efficient than sending the company’s expert around the 

world and more cost efficient than hiring several experts who are able to address the same 

problem. 

Furthermore, a routine-based quality control of the machine vision system should enable the 

company to improve on when it is necessary to change the MV system’s body parts and thus 

improve the organisation of ordering and changing spare parts to avoid any production stops 

in inconvenient periods. 

This chapter lists a variety of possible malfunctions of a MV system and how to detect those 

malfunctions using only a small number of templates. 

3.1. Illumination Related Defects 
The key component to a stable machine vision system is the source of illumination. Demant et 

al. [6] as well as Martin [20] show that there are many approaches to address different kinds of 

illumination problems. For industry applications, however, it is of most importance to monitor 

whether the illumination system fails to deliver the intended performance and when the light 

source is due for maintenance.  

3.1.1. Degradation of Light Source 

To ensure the stability of an algorithm in machine vision systems, one must focus on using a 

light source that is not changing in its performance power. Varying intensity of light emittance 

due to production errors or degradation of the light source might lead to a failure of the 

algorithms, especially, when a statistical approach of comparing intensity distributions is 

chosen to differentiate between defected objects. Figure 3.1 shows the red layer intensity 

distributions of images of a white blank sheet of paper with decreasing power of the light 

source. A commercially available ring flashlight unit was set to different lighting power in each 

photo. 
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Figure 3.1: Intensity distributions of a white blank sheet with varying power of the light source 

One can easily see that with differing intensity of the flashlight, the intensity distributions shift. 

A quality monitoring system might exploit that knowledge by regularly acquiring images of a 

white blank page, denoted as Template W, and save the obtained intensity distributions for a 

later on comparison with newer intensity distributions. In this way, the intensity distributions 

can be added to a timeline of distributions, indicating when the light source has degraded to 

an extent, where it is due to replacement. 

However, a possible drawback has to be taken into account: Template W should have a non-

reflective surface or should be tested with low light intensity. Reflections of the template might 

lead to different outcomes when the camera is not mounted on the square of the examined 

object. This can be cross-checked by determining if the camera is in a 90° angle, described in 

chapter 3.2.1 for mount related defects. 

3.1.2. Inhomogeneous Illumination 

The previous chapter focused on the general observation of the performance of light sources. 

Most illumination systems however contain not only one light source, but many built into a 

single casing. Martin [20] and Demant [6] explain in detail advantages and disadvantages of 

different types of illumination systems, concluding with LED being the most common light 

source in industrial applications, independent from the type of casing. Despite their high life 

expectancy compared to other light sources, they are not immune to sudden failure. When a 

casing consists of many LEDs, it is of most importance to ensure that all diodes are working. 

Single malfunctioning diodes might result in inhomogeneous illumination of the examined 

object, which might cause threshold or intensity distribution-based algorithms for defect 

detection to fail. Thus, Template A, as seen in Figure 3.2, is introduced. 
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Figure 3.2: Template A for black and white sensors 

Figure 3.2 gives an impression of the template’s design, which in any case can and should be 

adapted to meet the camera’s performance. The shown template consists of four similar 

squares of grey value patterns. Each square consists of 256 grey values, ascending from 1 to 

256. The grey value patterns are surrounded by a black, white and another black frame. The 

main idea of such a template is that, under perfect illumination conditions, all patterns would 

show the same intensity distribution, regardless of their position or rotation on the template. 

Ideally, the intensity distribution of one pattern should cover a broad range of intensities. 

However, the intensity distribution will never have a range from the minimum to the maximum 

possible intensity. This would only be the case if certain pixels would be completely saturated, 

while others would receive no light at all. Therefore, the 256 grey values in the pattern may be 

reduced to an extent that is satisfying for the system’s setup. 

Patterns next to each other are rotated to be able to obtain more information of compared 

patterns. The number and size of the patterns should be fitted to the camera’s resolution and 

distance to the examined object. 

The surrounding frames serve for the ability to individually detect each pattern. By using a post 

processing algorithm like a flood fill algorithm, every pixel surrounding the black frame that lies 

within a certain intensity range will be set to zero. Then, a threshold can be applied, detecting 

every pattern individually, because any pixel of any pattern, except for the ones previously set 

to zero, will have an intensity higher than zero. This procedure is shown in Figure 3.3, where 

Template A was printed out using a consumer office printer and then photographed. 
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Figure 3.3: Left: photo of Template A; right: detection of individual squares 

The right picture indicates that after performing the algorithm, only the distinct areas of blue 

pixels are taken into account for further calculations, namely the statistical analysis of each 

square compared to the others. The Nassi-Shneiderman diagram of the algorithm is shown in 

Figure 3.4. 

 

Figure 3.4: Nassi-Shneiderman diagram of the Inhomogeneous Illumination algorithm using Template A with green 
background 
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For colour sensors, a second approach to detect each pattern individually is using a coloured 

background for differentiation. This variation of Template A is shown in Figure 3.5.  

 

Figure 3.5: Template A for colour sensors 

When the background is painted in colour, the fact that the grey values have similar intensity 

in each colour channel can be exploited to distinguish them from the background. This is shown 

in Figure 3.6 and Figure 3.7, where the intensity of the corresponding colour channel at the 

marked pixel is drawn in a graph. 

 

Figure 3.6: Left: photo of Template A and marked pixel within the green background;  
right: RGB intensities at marked pixel in the green background 

The green background has a high intensity of green light in each pixel, while red and blue 

intensities are significantly lower. Using this knowledge, the algorithm is programmed to again 

create a pixel mask that only detects the grey value patterns, as previously shown in Figure 3.3 

(right). 

 

Figure 3.7: Left: photo of Template A and marked pixel within the grey value pattern;  
right: RGB intensities at marked pixel in the grey value pattern 
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The next part of the algorithm is the comparison of each pattern to the others. Before, one 

pattern is artificially brightened to mark a clear difference to the others and simulate an 

illumination defect. Then, each pattern is analysed on its intensity distribution. Both steps are 

depicted in Figure 3.8.  

 

Figure 3.8: Left: photo of Template A with upper right pattern artificially brightened;  
right: intensity distribution of all four patterns 

Afterwards, the intensity distributions were scaled in a way, where every frequency bin was 

divided by a constant factor. This results in fewer counts for each frequency bin, the shape of 

the distribution, however, stays the same. The scaling is necessary, because the high number 

of counts lead to the χ2 test being insensitive. When all the bins have a high number of counts 

and thus the total sum of counts is high, the differences between the compared distributions 

are weighing less. When the number of total counts is low and thus the number of counts per 

bin is low, the differences between the compared distribution are weighing more.  

Table 3.1 shows the results when the intensity distribution of each pattern of Figure 3.8 (left) 

is compared to the others. The test outputs the test statistic χ2 and a p-value. Their meaning 

was explained in chapter 2.3. High values of the test statistic and low values of p indicate that 

the distributions differ. The level of significance was chosen to be 0,05. This means, that if the 

p-value is lower than 0,05, the null hypothesis is rejected and the distributions are not the 

same. Table 3.1 displays that the upper right pattern of Figure 3.8 is always recognised to be 

different to the others. For multiple comparisons, the Bonferroni correction is necessary in 

order to maintain the level of significance. 

Table 3.1: Results of χ2 test of Template A with coloured background 

Pattern Top left Bottom left Top right 

 χ2 p-Value χ2 p-Value χ2 p-Value 

Bottom left 192 0,35     

Top right 226 0,03 271 0,00   

Bottom right 211 0,09 60 1,00 227 0,02 

 

Figure 3.9 (top) shows the scaled distributions of the top left and bottom left pattern being 

quite similar. Figure 3.9 (bottom) displays the scaled distributions of the bottom left and top 

right pattern differing in the grey value region of 40 to 60. 
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Figure 3.9: Top: distributions of top left and bottom left pattern; 
bottom: distributions of bottom left and top right pattern 

These results were only achieved after scaling the distributions properly and the rather low 

values of the top left pattern compared to the bottom left and bottom right pattern indicate 

potential for improvement. It is, however, considering the low budget equipment that was 

used, a satisfactory outcome of the aim to show that differences in illumination can be 

determined by using a simple pattern and a consumer camera. 

Additionally, it is stated, that the comparison of one pattern to the others should follow a 

strategic thinking. One might program the algorithm to compare one pattern to all the others, 

this however will lead to extensive computing time, especially when a high number of patterns 

is used in one template. More patterns in one template, however, will lead to more accurate 

testing of uniform illumination. One possible strategy would be comparing only neighbouring 

patterns or divide the template in regions, where a randomly selected pattern is compared to 

one of a different region. Figure 3.10 shows the Nassi-Shneiderman diagram of the algorithm. 
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Figure 3.10: Nassi-Shneiderman diagram of the Inhomogeneous Illumination algorithm using Template A with frame 

At last, an important detail is discussed. How is it possible to differentiate between one or 

several diodes malfunctioning or the pixels of the camera being less sensitive or broken? Figure 

3.11 depicts a modification of Template A with 8x8 grey value patterns. The red stripes indicate 

broken arrays of sensor pixels, while the red circle represents one or several broken light 

sources.  
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Figure 3.11: Schematic differentiation of the defected light source and the defected pixels 

First, light sources are more prone to degradation, due to the higher thermal stress they are 

set out to. Furthermore, it is less likely that all pixels fail at the same time, it is more probable 

that certain arrays or distinct pixels will break. When certain pixels fail, this will be noted, 

because only in the distinct pattern where the failing pixels are located, a difference of the 

intensity distribution is noted. When diodes of the light source are malfunctioning, a difference 

of several patterns to the others will be noted, because usually the light source is emitting light 

in a cone or even more broadly distributed in a diffuse form. Figure 3.12 depicts the 

malfunctioning of a single diode. The pattern located under the defected light source receive 

less light and will thus be recognized by the algorithm. 

In the unlikely case of all sensor pixels degrading at the same time to the same extent, one first 

might to drive the light source with more power. When this fails to reach the same intensity 

distributions for all patterns as when they were mounted, the light source has degraded and 

must be changed. 

 

Figure 3.12: Schematic failure of one diode in a 4-diode illumination case 

3.2. Mount Related Defects 
When a MV system is first installed, a key challenge is to check whether the one or usually the 

several cameras are mounted in such a way that all of them are focussing the desired object in 

the right angle. Once the MV system is operating, the angle of the cameras might change due 

to vibrations at or around the production machine that are strong enough to loosen the 

mounting screws of the cameras. This then would lead to blurred images because the originally 

vibration isolated camera is starting to shake as well. A worse outcome of crooked mounted 

cameras is that they have a different perspective of the object than intended. This might cause 
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the defect detection algorithm of the system to fail, because the spatial resolution of the 

analysed object changes, as depicted in Figure 3.13. When viewed from a central position, a 

rectangular object with the same side length will appear as a square. However, when the same 

object is recognised from a different angle, it is imaged as a trapezoid, because the distance to 

the corner points has changed. 

 

Figure 3.13: Perception of geometry due to different angles 

3.2.1. Crooked Mounting 

Ideally, a machine vision system’s camera should be mounted in a central position to the 

detected object. This is of course, especially when using more than one camera, a rather 

difficult task. To check whether the camera is mounted in a 90° angle to the examined object, 

again Template A might be used. Figure 3.14 (left) shows a photograph of Template A shot in a 

crooked position. Figure 3.14 (right) depicts the detection of the individual patterns using the 

same algorithm as in chapter 3.1.2. 

 

Figure 3.14: Left: Template A photographed from slightly above the central position; 
right: detection of the individual squares 

Now, the size of the patterns is examined to check whether they all face the same distance 

from the camera. If the camera was mounted in the very middle of the template, all patterns 

would be detected with a similar amount of pixels. If, however, the perspective of the camera 

was changed, this would result in a difference of overall detected pixels between the patterns. 

This is concluded in Table 3.2. 

Table 3.2: Pixel size of crooked perspective photograph of Template A 

Pattern Top left Top right Bottom left Bottom right 

Size [px] 694 964 688 925 662 777 659 871 

 

Since the image was taken from a slightly higher angle than the central position, the top 

patterns have a smaller distance to the lens, making them appear bigger than if they were 

photographed from the central position. The bottom patterns have a wider distance, resulting 
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in a smaller appearance and less counted pixels. In conclusion, the difference between the top 

and the bottom patterns is about 30 000 pixels. 

This method offers a great outlook to be developed into a tool, that is not only able to state 

that there is crooked mounting, but how much the degrees the camera is off to the central 

position. The Nassi-Shneiderman diagram of the algorithm is shown in Figure 3.15. 

 

Figure 3.15: Nassi-Shneiderman diagram of the Crooked Mounting algorithm 

3.3. Sensor Related Defects 
The two key hardware components of a machine vision system are the camera sensor and the 

illumination. While illumination is prone to failure due to mechanical and thermal stress of 

operation, the sensor might cause quite different problems. These are examined in the 

following chapter. 

3.3.1. Pixel Degradation and Breakdown 

In chapter 2.2.2, the theoretical background of camera sensors was explained. There might 

occur two defects, when closely examining the sensor. First, individual or several pixels are 

subject to complete failure. Electronic or manufacturing failure might cause individual or an 

array of pixels not to transmit any signal, resulting in minimum or maximum values, when 

reading out the electronic image. According to G.  Klinglmayr [21], broken pixels are recognised, 

when a new sensor is installed. The problem of degrading light is more extensive than sudden 

failure of pixels.  
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Nonetheless, the defects are described as follows: First, there are so many broken pixels that 

the image quality is poor, which would be easily visible when doing visual inspection of an 

image. When there are too few broken pixels to visually recognise the defects, this might not 

cause an algorithm to fail. Still, a minor possibility of failure remains. It is thus worthy of 

inspection. At last, the least likely, but at the same time the most delicate complication would 

be the degradation of the light-sensitive elements or the electronics behind them. Depending 

on the manufacturing quality of sensors, terminal capacitance of transistors or other material 

changes might occur, leading to a degradation of pixel sensitivity. While the total failure of 

several pixels in relation to the total amount of pixels might have very little to no effects on 

defect detection algorithms, a change of sensitivity leads to the same problems as previously 

described in chapter 1, namely a change or constant offset of the obtained intensity 

distribution. For a deeper understanding of pixel defects, Geradts et al. [22] summarize the 

subject in detail. 

The number of broken pixels can be encountered by applying the following algorithm to a white 

blank page, Template One. In order to obtain optimal results, over- or underexposure in the 

obtained image must be avoided. The Nassi-Shneiderman diagram of the algorithm is depicted 

in Figure 3.16. 

 

Figure 3.16: Nassi-Shneiderman diagram of the Pixel Breakdown algorithm 

Pixel degradation should be supervised by doing a regular check on the intensity distribution of 

Template One. The periodically obtained distributions can be cross-checked to earlier 

distributions either visually or using the χ2 test. 

3.3.2. Dark Current and Temperature Related Pixel Sensitivity 

One of the easiest quality monitoring measurements is the periodical acquisition of a dark 

current or dark noise image. For this, the lens of the camera has to be covered, prohibiting any 

light to fall onto the sensor array. The image that is then registered consists only of the dark 

current. The current that is registered is composed of the thermo-induced movement of atoms 

and extra-terrestrial radiation the pixels are exposed to. On the one hand the current is random 

and should stay constant over time. However, when stronger noise is detected after a certain 

time span, this may indicate some kind of alteration of the sensor’s performance. On the other 

hand, the movement of electrons always correlates to the temperature of a material. Thus, also 
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the photo-sensitive components, as well as the electronic hardware should issue different 

magnitudes of dark current at different temperatures.  

This was revised with a simple experiment. The camera was kept in a room of 27°C and several 

images were taken using different aperture and shutter times. The same was done after 

keeping the camera in a fridge with 6°C temperature. For every temperature, the aperture was 

set and five photos were taken for each shutter time. A detailed overview for the used settings 

is shown in Table 3.3. The temperature was measured using a standard lab thermometer.  

Table 3.3: Design of experiment for dark current investigation 

Shutter Time 60 200 500 

Aperture 2 4.5 

 

The data that was generated leads to the following conclusion: at 27°C the dark current is 

higher than at 6°C, showing a few hundred counts more at dark intensities. Regarding the total 

number of pixels, however, the registered noise is diminutively low. All the distributions show 

similar results, thus only a small selection of distributions was put in the appendix, respectively 

in Table A.1 and Table A.2. A summary of the obtained values is shown in Table 3.4. In the table 

only the first 10 intensities, i.e. the ten darkest GV of the intensity distribution, are displayed, 

because the recording of brighter values was thoroughly low. 

Table 3.4: Summary of dark current data 

Temp. [°C] 6 27 27 

Shutter Time 60 60 200 

Intensity x ̄ s x ̄ s x ̄ s 

1 12205069 0 12204808 61 12204796 45 
2 6 0 141 18 197 44 
3 6 0 63 43 34 5 
4 4 0 21 9 16 1 
5 4 0 20 10 15 1 
6 0 0 7 1 10 1 
7 0 0 3 1 5 1 
8 0 0 4 3 3 1 
9 0 0 3 2 3 1 

10 0 0 5 3 3 2 
 

Naturally, the goal of the experiment was to show that the dark current affects the image 

acquisition of the sensor. However, the numbers indicate that the effect, regarding the 

resolution of the sensor, is so little, that a strong influence on the image quality is very unlikely. 

Nonetheless, the monitoring of ambient temperatures might be interesting for production sites 

that are subject to grave temperature fluctuations. 
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3.3.3. Pixel Overdrive and Electronic Defects 

Another problem of the sensor and its electronics is an overdriven output. If, for whatever 

reason, a pixel registers a higher intensity value than possible considering the bit depth of the 

sensor, a simple algorithm is able to find such a defect. The algorithm can be run with any taken 

image. Figure 3.17 shows the Nassi-Shneiderman diagram of the algorithm. 

 

Figure 3.17: Nassi-Shneiderman diagram of the Pixel Overdrive algorithm 

3.3.4. Resolution 

The sensor’s resolution is not subject to changes, nonetheless, it may be checked using 

commercially available test charts. Figure 3.18 depicts such a test chart, with which it is possible 

the determine the resolution of the camera. Koren [23] explains the concept of image 

sharpness in detail, while Jähne  [14] explicitly summarizes resolution theory. 

 

Figure 3.18: Koren 2003 Lens Test Chart [24] 

3.3.5. Exposure Time 

A hardware feature that is well worth investigating is the camera’s exposure time. Being crucial 

for the image brightness, the exposure time has to be kept constant to avoid falsely detecting 

the sensor’s sensitivity or the illumination systems as malfunctioning parts, when the intensity 

distribution of Template One is changing over time. There are various shutter types [6], all of 

them face mechanical stress when in use. Therefore, the performance of the mechanism has 

to be monitored. Due to their mobility, consumer cameras are easy to handle and checked on 

their exposure times building different setups around them. In industry applications, however, 

detaching the camera from its setup is vividly avoided. Thus, the design of a periodically light 

emitting box, denoted as PLEB is introduced. It might be easily manufactured using basic 

electronic engineering and programming skills.  
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The PLEB consists of several light emitting diodes and is computer-controlled. LEDs can be 

addressed with great precision, thus being perfect for monitoring a shutter that is open for only 

a few milliseconds. The PLEB’s diodes are built in in a simple array. Using an adequately 

programmed software, they are controlled in way, where two LEDs flash at the same time. After 

a user-defined time span, the next two LEDs flash at same time, the left diode being the right 

diode from the previous flash. This is depicted in Figure 3.19. In this way, two flashing diodes 

are “running” over the device. 

 

Figure 3.19: Light emitting scheme of a PLEB 

When a user-defined time span is set, the same time should be set as the shutter time in the 

camera setup. Thus, when an image is taken, a precise shutter would lead to images in which 

there are always just two LEDs flashing. If there are four or even six lights flashing, the shutter 

opens and closes too slow, making the image brighter than intended. In conclusion, the PLEB 

can be used to check whether the shutter in fact opens for the time span it was set to. 
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3.4. Lens Related Defects 
Regarding the optical system of the camera, certain features of the lens might lead to a 

malfunctioning of the machine vision system. However, lens related issues are less to be seen 

as a defect, they rather limit the system’s performance due to bad quality of hardware 

components or weakly adjusted settings. 

3.4.1. Defocussing 

A weakly adjusted focus has always been a nightmare for every hobby photographer. In 

industry, the problem of an incorrectly set focus is not a spontaneous phenomenon, it’s rather 

a matter of adjustment when the machine vision system is implemented. Nonetheless, it 

deserves mentioning that there are commercially available test templates. Visual interpretation 

of photos of those templates can be used for an optimal focus setting of the machine vision 

system. An example for determining focus is shown in Figure 3.20. 

 

Figure 3.20: Image Engineering’s TE202 test template [25] 

3.4.2. Geometrical Distortion 

A tremendously important feature of lenses is their liability for the distortion of an object’s 

shape. Weak design or mechanical and optical constraints deteriorate the lens’ pathway of light 

to the sensor, leading to a distortion of the imaged shapes. There are two possible distortions: 

the barrel distortion and the pincushion distortion. Both types are shown in Figure 3.21. 

 

Figure 3.21: Visualisation of geometrical distortion [26] 

Geometric distortion can be detected visually by using a grid template like in Figure 3.21. 

However, to eliminate individual human perception and to introduce a standardized detection 

procedure, an algorithm using Template A is introduced. The algorithm is similar to the one 

used for detection of crooked mounting. The main idea is to adapt Template A so that it is 

similar to a grid shown in Figure 3.21. To avoid lens distortion, the user should use telecentric 

lenses as they usually show minimum distortion. 



35 
 

4. Defect Detection in Polymer Products 
Following Jähne [14], Demant [6], Snyder [1] and relevant publications [27]–[29] in the scientific 

imaging community, it is important to emphasize that machine vision is a powerful tool for 

various applications due to its versatility, but at the same time exhibits sundry difficulties. The 

task of making our perceptible world visible to a machine is a difficulty on its own. However, 

the idea to configure a machine vision system in a way, where it not only acquires images, but 

finds abnormalities in the latter has been subject of investigation and development since the 

birth of computer and machine vision. 

The previously mentioned sources explain a variety of machine vision related problems 

occurring in industry and the corresponding approaches of how to solve them. In contrast to 

those standard approaches, new algorithms and general solutions have to be investigated to 

be able to face more delicate defect detection problems. Chapter 4 contains the examination 

of two unusual, yet highly interesting defects on objects with a hard-to-handle surface. The 

programming and application of the algorithms was done using the software ImageLab [30]. 

4.1. Defect Detection of Transparent Circular Shaped Lids 
Regular machine vision applications process images of opaque objects to identify certain kinds 

of defects or irregularities. Admittedly, detecting defects in a both transparent and reflective 

material might be grasped as an idea of lunacy, this avant-garde thinking, however, is one of 

the main entitlements of science and thus an idea worth investigating. 

4.1.1. Image Acquisition 

The experimental setup that was used was successively adjusted and consisted in its final stage 

of the following parts, represented in Figure 4.1: 

• Nikon D90 digital single-lens reflex camera with a 23,6 mm x 15,8 mm CMOS sensor and 

a resolution of 4288 x 2848 pixels (12,3 megapixels) 

• Nikorr 50 mm (fixed focal length) lens 

• Low-end LED ring-flashlight powered by 4 AA batteries 

• Remote trigger control 

• Tripod 

• Physical enclosure 

 

Figure 4.1: Experimental setup for defect detection of transparent circular shaped lids 
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The investigated lids were placed on a white sheet with marks to ensure similar positioning 

when the lids were exchanged. A spirit level was used to adjust the tripod perpendicular to the 

examined lid. In order to ensure constant light conditions, the cardboard box serving as a 

physical enclosure against ambient light was shut. The flashlight was operated in continuous 

mode and finally a photo was taken by manually triggering the remote control. A wide variety 

of different settings were tested. The most prosperous that was chosen at last and with which 

all images were taken is shown in Table 4.1.  

Table 4.1: Settings for image acquisition of transparent circular shaped lids 

Shutter time  Aperture ISO File format 

1/500 sec 4.5 200 RAW 

 

The images were taken in RAW format, which means that no camera-internal post-processing 

was done. Afterwards, the RAW-files were converted into TIFF-files using IrfanView. The 

conversion was done without any alteration or compression, maintaining the originally 

registered intensity values of the sensor. Finally, the images were imported into ImageLab, 

where the post-processing defect detection algorithm was applied. 

In total, exactly 100 different lids were photographed. 67 of those lids were non-defected 

(NDL), while 37 exhibited different types of defects. Figure 4.2 depicts three images of non-

defected lids. Incidentally, it is noted that the 37 lids represent the entirety of defected lids (DL) 

that were available for testing. 

 

Figure 4.2: Non-defected lids; left: NDL sample 2; middle: NDL sample 3; right: NDL sample 4 

4.1.2. Types of Defects 

The examined object is a transparent, circular lid with an elongated indentation, in which a 

spoon is placed. The spoon’s palm is randomly either facing the top or the bottom. Additionally, 

the indentation is slightly wider than the spoon’s width, allowing the spoon carrying out minor 

rotations. On top, a foil is neatly applied, ensuring a contamination-free storage and transport 

of the spoon. 

The lids exhibited three different types of defects that were categorized as follows: 

I. Crinkled foil 

II. Displaced spoon 

III. Displaced foil 
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Defect Type I and Type II, shown in Figure 4.3 and Figure 4.4, share the same feature that 

accounts for their removal in the production process. A foil that does not stick neatly on the 

surface of the lid exposes the spoon to contamination. Defect Type III, shown in Figure 4.5, 

might detain the user from uncasing the spoon. 

  

Figure 4.3: Type I defected lids; left: DL sample 9; right DL sample 5 

 

Figure 4.4: Type II defected lids; left: DL sample 31; right: DL sample 34 

  

Figure 4.5: Type III defected lids; left: DL sample 30; right: DL sample 25 
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4.1.3. Algorithm for Defect Detection 

The foregoing explanations make it obvious, that finding defects in transparent and reflective 

surfaces inhibits many difficulties. For this study, several approaches were tested to detect the 

difference between non-defected lids (NDLs) and defected lids (DLs). However, most of them 

performed very poorly. Due to the complicated structure, template matching was not an 

option. Classic thresholding failed, also because the lid’s structure does not provide constant 

conditions for an algorithm to detect irregularities. These options do not even keep in mind the 

lighting difficulties caused by the surface. 

For all the stated reasons, a completely new and unusual approach was chosen to be 

implemented in a machine vision defect detection algorithm. The main idea was creating a 

rotation-invariant algorithm, that is able to distinguish between NDLs and DLs lids by using a 

simple statistical test. Therefore, the hardware (Figure 4.1) was set up in a way, so that the 

obtained images were always taken from a 90° angle. In this way, one would always see a similar 

amount of light reflected, when the lid is not defected. For DLs, however, a crinkled foil or 

misplaced spoon would severely change the reflection of the flashlight. This change is easily 

visible to the human eye, but also a computer can be trained to recognize such a difference. 

When an algorithm only analyses the intensity distribution of the lid itself, ignoring the 

surrounding background, a clear difference between NDLs and DLs can be noted. This 

difference of the distributions is recognised by the χ2 test. The algorithm consists of the 

following four main steps: 

1) Create a circular-shaped mask 

2) Analyse intensity distribution of the circular shaped mask 

3) Scale and shift distributions 

4) (Calculate a mean distribution from non-defected lids) 

5) Compare distributions using the χ2 test 

The first step of creating a mask is necessary to exclude the background from being processed 

for both precision and computing time reasons. The mask is created by firstly applying a Sobel 

filter and then using a Hough Circle detection. The Sobel filter is a typical edge detection 

algorithm, that highlights stark spatial differences of intensity. A detailed explanation of its 

functionality is given in chapter 2.2.9. In this way, the circular edge of the lid is highlighted, 

resulting in a faster calculation of the Hough Circle detection, that searches for such 

conspicuous circles within a certain threshold. The detected circle is then used to create a mask, 

ignoring pixels outside of the lid’s circle from further processing. 

Afterwards, all the pixels within the circle are analysed on their intensity, by simply adding every 

occurring value in the corresponding intensity bin. Regarding the bit depth of the camera, the 

desired precision and the low time availability that was aimed for, the values were put in 256 

bins. 

The third step was necessary for two reasons. First, all the obtained distributions had to be 

shifted in a way, where all the distributions would show the first occurring value at the same 

bin. Visually speaking, this was an adaption to change the brightness of the picture. Even though 

not desired, this step was vital for further calculations, because the battery-driven low-quality 

flashlight emitted less light on the lids that were photographed at last, than on the ones 
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photographed in the beginning, resulting in shifted distributions. The second reason is the 

precision of the χ2 test. The sensitivity of the test has to be adjusted by dividing the counts of 

every bin with the same number. A detailed explanation for this procedure is given in the 

chapter on Inhomogeneous Illumination 3.1.2. 

Finally, a mean of all the NDL distributions was calculated. In further tests this was optimized 

to use only 15 distributions, obtaining the same results as with using all 63 NDL distributions. 

The 15 distributions that were used for the calculation of a mean distribution were cross-

checked by comparing every single one of them to a mean of the other ones to ensure equality 

of the distributions.  

The mean distributions calculated by ten NDL distributions was then subsequently compared 

to the DL distributions using the χ2 test. A threshold for the p-value was set, marking 

distributions with a p-value under 0,05 as defected lids. The results are explained in detail in 

the following chapter 4.1.4. A detailed overview for the algorithm is given in the following 

section. 

Pseudo-code for Defect Detection of Circular Shaped Lids 

This pseudo-code is a simplified version of the code that was used for defect detection. The 

functions in the top section contain the main procedures. The main code with the sequence of 

the functions can be found in the bottom section. 

function SetImageMatrix (ImageMatrix : TDouble2DArray; Mask : TBool2DArray); 

begin 

ImageMatrix := GetCubeLayer (RedLayer); 

for every pixel do 

  if pixel is part of Mask then 

    set intensity to 0; 

end; 

function SobelFilter (ImageMatrix : TDouble2DArray); 

begin 

Apply SobelFilter to ImageMatrix; 

end; 

function CreateCircularShapedMask (Image : TDouble2DArray; LidRadius: integer; 

                                   Mask : TBool2DArray); 

var  

HoughImage, CircleParameters : TInt2DArray; 

begin 

HoughCircleTransformation (Image, LidRadius, HoughImage); 

DetectHoughCircleCenters (HoughImage, CircleParameters); 

for every pixel do 

  if pixel is not part of CircleParameters then 

    add pixel to Mask; 

end; 

function AnalyseFrequencyDistribution (Image : TDouble2DArray;  

                                       var FreqDist : TIntArray); 

begin 

for every pixel do 

  FreqDist [intensity] := FreqDist [intensity] + 1; 

end; 

function ScaleIntensityDistribution (FreqDist : TIntArray;  

                                     ScalingFactor : integer); 

for intensity := 0 to 255 do 

  begin 

  FreqDist [intensity] := FreqDist [intensity] div ScalingFactor; 

  end; 
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function SetShiftProperties (FreqDist : TIntArray; 

                             var LowValueBin : integer); 

begin 

for intensity := 1 to 255 do 

  begin 

  if (FreqDist [intensity] <> 0) and (FreqDist [intensity] < LowValueBin) then 

    FreqDist := LowValueBin; 

  end;  

end; 

function ShiftIntensityDistribution (FreqDist : TIntArray; LowValueBin : integer); 

begin 

for intensity := 0 to 255 do 

  begin 

  if (FreqDist [intensity] <> 0) and (intensity > LowValueBin) then 

    begin 

    ShiftValue := intensity - LowValueBin; 

    stop loop if ShiftValue <> 0; 

    end; 

  end; 

if ShiftValue <> 0 then 

  for intensity := 0 to 255 do 

    begin 

    FreqDist [intensity-ShiftValue] := FreqDist [intensity]; 

    end; 

end; 

function CalculateMeanIntensityDistribution (NumberOfNonDefectedSamples, 

                                             pValueThreshold : integer; 

                                             var MeanDist : TIntArray); 

var 

  pThres                   : bool; 

  TestArray, Resultvector  : TIntArray; 

  TestMatrix               : TDouble2DArray; 

begin 

while pThres = true do 

  for SampleNumber := 1 to NumberOfNonDefectedSamples do 

    begin 

    TestArray := FreqDist (SampleNumber); 

    for FillTestMatrix := 1 to NumberOfNonDefectedSamples do 

      begin 

      if (FillTestMatrix <> SampleNumber) and (FillTestMatrix <> DeletedArray) then 

        begin 

        TestMatrix [FillTestMatrix] := FreqDist (SampleNumber); 

        end; 

      MeanArray := CalculateMeanVector (TestMatrix) 

      ResultVector [SampleNumber] := ChiSquareTest (TestArray, MeanArray);  

      end; 

    SortResultVector; 

    if ResultVector [max] < pValueThreshold     

      then begin 

           pThres := true; 

           end 

      else begin 

           DeleteResultvector [max]; 

           end; 

    end; 

    MeanDist := CalculateMeanVector (ResultVectorMatrix); 

end; 
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//Main Code 

var  

  LidRadius, ScalingFactor, LowValueBin, pValue : integer; 

  ImageMatrix                                   : TDouble2DArray; 

  Mask                                          : TBool2DArray; 

  FreqDist, MeandDist, TestArray                : TIntArray; 

begin  

Set LidRadius; 

Set ScalingFactor; 

Set pValueThreshold; 

for i := 1 to NumberOfSamples do 

  begin 

  SetImageMatrix (ImageMatrix, Mask); 

  SobelFilter (ImageMatrix); 

  CreateCircularShapedMask (ImageMatrix, Mask); 

  SetImageMatrix (ImageMatrix, Mask); 

  AnalyseFrequencyDistribution (ImageMatrix, FreqDist(SampleNumber)); 

  end; 

for SampleNumber := 1 to NumberOfSamples do 

  begin 

  FreqDist := FreqDist (SampleNumber); 

  ScaleIntensityDistribution (FreqDist, ScalingFactor); 

  end; 

for SampleNumber := 1 to NumberOfNonDefectedSamples do 

  begin 

  SetShiftProperties (FreqDist, LowValueBin); 

  end; 

for SampleNumber := 1 to NumberOfSamples do 

  begin 

  FreqDist := FreqDist (SampleNumber); 

  ShiftIntensityDistribution (FreqDist, LowValueBin); 

  end; 

CalculateMeanIntensityDistribution (NumberOfNonDefectedSamples,  

                                    pValueThreshold, MeanDist); 

for SampleNumber := 1 to NumberOfSamples do 

  begin 

  TestArray := FreqDist (SampleNumber); 

  pValue := ChiSquareTest (TestArray, MeanDist); 

  WritePValueToTxtFile; 

  end; 

end. 
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4.1.4. Results 

After applying the algorithm, a χ2 value and a p-value was obtained for every comparison of a 

DL distribution with the mean distribution. The results are shown in Table 4.2. 

Table 4.2: Results of χ2 test: mean distribution compared to DL 

Sample χ2 Value p-Value  Sample χ2 Value p-Value 

1 50,69 1,00 20 1991,66 0,00 

2 208,76 0,03 21 2313,11 0,00 

3 162,85 0,74 22 2456,08 0,00 

4 1415,09 0,00 23 2401,64 0,00 

5 859,97 0,00 24 1929,98 0,00 

6 2063,09 0,00 25 283,59 0,00 

7 2375,36 0,00 26 1894,14 0,00 

8 2334,67 0,00 27 119,50 0,99 

9 2365,76 0,00 28 1059,24 0,00 

10 2034,41 0,00 29 2029,45 0,00 

11 3123,31 0,00 30 1850,72 0,00 

12 657,91 0,00 31 1646,32 0,00 

13 1145,89 0,00 32 1958,93 0,00 

14 2053,55 0,00 33 1324,09 0,00 

15 1408,07 0,00 34 1220,37 0,00 

16 1030,58 0,00 35 1405,53 0,00 

17 2865,61 0,00 36 1195,48 0,00 

18 2222,91 0,00 37 979,12 0,00 

19 1575,09 0,00    

 

After careful examination of the results, it is revealed that the algorithm detects 34 of the 37 

DL as defected. This corresponds to a type II error percentage of 8,12%. The three lids that were 

not detected are shown in Figure 4.6. The reason for this rather contradictory result is still not 

entirely clear. One possible explanation is that random reflections account for a resemblance 

of the distribution of NDL and thus forbid detection using the presented algorithm. The images 

of all DL can be found in the appendix on pages 74-76. 

 

Figure 4.6: Not detected DL: left: DL sample 1; middle: DL sample 3; right: DL sample 27 
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The first question one might ask, is how to improve the quality of the algorithm. When using all 

63 NDL for the calculation of the mean distribution, the p-value of sample 3 is lowered to 0,22. 

The p-values of the samples 1 and 3 however stay the same, meaning that increasing the 

samples taken for the NDL mean distribution not necessarily improves the selection process. 

Another important fact to keep in mind, is the scaling of the distributions. Lowering the total 

number of counts per distributions indeed increases the precision of the statistical test, 

however, the three non-detected DL are still not recognized to be defected. Nevertheless, 

NDLs, such as sample 39 and 43 are then detected as defected, resulting in an augmented 

waste rate, because NDL are falsely recognised as defected. Thus, surely the easiest way to 

generate better results is to invest in adequate hardware, as these tests were conducted with 

rather low-quality equipment. 

Additionally, all the NDL distributions that were not used for the mean distribution, were tested 

as well. These results are shown in Table 4.3, clarifying that no NDL was falsely detected to be 

defected. 

Table 4.3: Results of χ2 test: mean distribution compared to NDL 

Sample χ2 Value p-Value  Sample χ2 Value p-Value 

16 16,69 1,00 40 73,51 1,00 

17 27,88 1,00 41 87,09 1,00 

18 77,05 1,00 42 29,32 1,00 

19 51,29 1,00 43 202,09 0,06 

20 48,53 1,00 44 73,14 1,00 

21 49,88 1,00 45 98,81 1,00 

22 41,92 1,00 46 91,94 1,00 

23 26,74 1,00 47 80,35 1,00 

24 103,29 1,00 48 66,44 1,00 

25 56,19 1,00 49 149,08 0,87 

26 75,42 1,00 50 77,66 1,00 

27 95,31 1,00 51 61,52 1,00 

28 69,99 1,00 52 135,29 0,98 

29 112,54 0,99 53 70,99 1,00 

30 81,42 1,00 54 27,69 1,00 

31 92,07 1,00 55 99,04 1,00 

32 123,39 1,00 56 90,70 1,00 

33 95,43 1,00 57 191,55 0,19 

34 138,15 0,98 58 128,38 0,99 

35 92,04 1,00 59 88,59 1,00 

36 68,55 1,00 60 99,39 1,00 

37 101,57 0,99 61 118,43 0,99 

38 79,63 1,00 62 132,81 1,00 

39 170,07 0,53 63 109,99 0,99 

 

The computing time for the analysis of one image was roughly 35 seconds. Due to fast 

production rates of packaging products, processing time should be less than half a second. 
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Merely by reducing the image’s resolution by half, the computing time was reduced to 18 

seconds. As the calculation was done using a regular consumer notebook, the time required for 

the calculation can certainly be cut drastically by optimizing both the hardware and vital 

software procedures. 

In conclusion, it is emphasized that the power of the selection process heavily depends on the 

required quality demands and thus the chosen settings. Naturally, a high rate of correctly 

detected defects corresponds to a higher rate of falsely sorted out NDL, resulting in a higher 

overall waste rate. All the same, this is rather an economical question than a technical one. 

Computing time was not satisfactory, nevertheless, optimization potential strongly suggests 

that the chosen approach offers compelling benefits.  
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4.2. Defect Detection of Opaque Parts 
There are few lines of business in the producing sector, where polymer materials do not play 

an important role in manufacturing. When glossy polymers are applied in products, they usually 

get covered by an extra layer of polymer foil to prevent scratches or bumps that damage the 

product and resultingly lower the visual experience and sensation for the consumer. Other 

products, such as medical supplies, require flawless surfaces for hygienical reasons. A primary 

and challenging problem is the assurance of producing flawless, reflective and glossy polymer 

surfaces. One has to keep in mind that these products are also subject to receiving surface 

defects during production. Thus, quality control naturally urges machine vision technologies to 

find such defects. 

4.1.1. Image Acquisition 

The algorithm that is subsequently introduced, heavily depends on uniform illumination over 

the whole area of the parts. The defects of the parts are only visible, both for the eye and the 

camera, when both the viewer and the light source are located in a certain angle to the object. 

Accordingly, choosing the hardware and setting up the latter is an elaborate task.  

Ideally, the sample would be imaged using a scanner, so that every area of the part receives 

the same amount of illumination. The constant close distance of the scanner’s light source to a 

flat part would ensure even illumination. Since this is a rather impractical solution for high 

velocity industry applications, the more difficult approach of using a camera setup was chosen. 

After various experiments, illumination was identified as the most challenging difficulty. 

The best results were obtained using a setup that contained the following parts, its 

arrangement shown in Figure 4.7: 

• Nikon D90 digital single-lens reflex camera with a 23,6 mm x 15,8 mm CMOS sensor and 

a resolution of 4288 x 2848 pixels (12,3 megapixels) 

• Nikorr 50 mm (fixed focal length) lens 

• High-end Profoto B1X flashlight 

• Diffusor 

• Nikon SB 900 flashlight 

• Remote trigger control 

• Riser for camera mounting 

 

Figure 4.7: Schematic drawing of experimental setup for defect detection of the opaque parts 
1: Profoto B1X flashlight; 2: diffusor; 3: Nikon SB 900 flashlight;  

4: Nikon D90 with Nikorr 50mm; 5: Riser for camera mounting; 6: investigated sample 
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The investigated parts were placed on a white sheet, in order to obtain an even and easy-to-

handle background. The camera was mounted above the parts and focused on the area of 

interest. Flashlights were placed on both sides of the sample. In order to achieve a more 

uniform illumination, a diffusor was put in front of the high-performance flashlight. The latter 

was triggered using the camera, the consumer flashlight was triggered in slave mode, a setting 

where the flash is released when detecting light from another flashlight, in this case the high-

performance flashlight. A wide variety of flash settings were tested to achieve the most uniform 

illumination possible. All images were taken with the camera settings shown in Table 4.4.  

Table 4.4: Settings for image acquisition of opaque parts 

Shutter time  Aperture ISO File format 

1/200 sec 10 200 RAW 

 

Similar to the lids, the images were taken in RAW format and afterwards converted into TIFF-

files using IrfanView. Eventually, the images were imported into ImageLab, where the post-

processing defect detection algorithm was applied. 

4.1.2. Types of Defects 

The key to understanding surface defects of reflective objects lies in basic physics knowledge. 

Figure 4.8 depicts specular reflection of flat surfaces and diffuse reflection of rough surfaces. 

Generally, the angle of reflection is the same as the angle of incidence. Glossy polymers reflect 

the light as shown in Figure 4.8 (left), giving them their mirror-like properties. If the surface is 

damaged for whatever reason during production, the reflection becomes diffuse, as depicted 

in Figure 4.8 (right). Therefore, to be able to recognize such defects, one must look at the object 

in the right angle. This phenomenon can easily be tested using any glossy surface and turning 

it under fixed spot light. Depending on the angle of the viewer and light source, more or less 

details of the surface will be visible. 

 

Figure 4.8: Left: reflection of light on flat surfaces; right: diffuse reflection [31] of light on rough surface 

Mechanical forming processes of thermoplastic polymers, such as injection moulding or deep 

drawing, always depend on an adequately set temperature to process the polymers without 

defects. If that is not the case, scratch-like defects are caused. The latter are denoted as silver 

stains and highlighted in Figure 4.9 and Figure 4.10. 
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Figure 4.9: Left: red part with silver stain; right: zoomed in on silver stain 

 

Figure 4.10: Left: cyan part with silver stain; right: zoomed in on silver stain 

Aggravatingly, the silver stains should be detected on parts of different colours. Figure 4.11 

shows the given samples, which are blue, cyan, pink and red parts. 

 

Figure 4.11: Left: blue sample part; middle left: cyan sample part; middle right: pink sample part; right: red sample part 

Although there are several defects that are likely to occur, this work focusses on the detection 

of silver stains. Figure 4.12 depicts the red, green and blue layer of the coloured image of the 

cyan sample part, previously shown in Figure 4.10. 
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Figure 4.12: Left: red layer of cyan sample part; middle: green layer of cyan sample part; right: blue layer of cyan sample part 

As a first approach, Figure 4.12 indicates that the detection of a silver stain defect heavily 

depends on the feature of taking coloured images. This is due to the fact, that when the 

coloured image is split into its three layers, depending on the colour of the part, the defect is 

visible on a different layer. To clarify said observation, Figure 4.13 shows the three layers of a 

red sample part, with the defect visible only in the green and blue layer, where the light 

intensities are naturally low. Concurrently, the silver stain in the cyan part is best visible in the 

red layer. Hence, one must take advantage of the image that is the complementary colour of 

the actual part colour. 

 

Figure 4.13: Left: red layer of red sample part; middle: green layer of red sample part; right: blue layer of red sample part 

Unfortunately, simply choosing the right layer for a given part colour and applying an intensity 

threshold is not the solution to build a stable algorithm. Partly, this is due to the rather low 

differences of the intensity of defected pixels compared to the background. Figure 4.14 may 



49 
 

indeed suggest, that the pixels, where the defect is located, show a higher intensity than non-

defected pixels.  

 

Figure 4.14: Left: green layer of red sample part with intensity cross section; right: intensity distribution of cross section 

Nonetheless, the assumption of applying a threshold within the area of the part and 

subsequently finding defects has proven to be unsuccessful. The reason can be found in the 

baseline of the non-defected area of Figure 4.14. Even with a high-performance flash light, it 

was quite difficult to accomplish roughly the same power of illumination over the whole area 

of the part. Figure 4.15 shows the 3D surface plot of the part from Figure 4.14. It clarifies that 

the most insidious problems of finding silver stain defects lies within the proper illumination 

setup. To be able to distinguish defected areas from non-defected areas, the illumination 

should be so consistent, that the 3D surface plot shows a flat surface. Hence, a defected area, 

qualified by an incline or decrease of intensity, would light up in such a plot. 

 

Figure 4.15: 3D surface plot of the blue layer of the red sample part 



50 
 

Another main reason for a consistent illumination is the overall size of a defected area. Parts 

that exhibit large defected areas, as the previously shown cyan sample part from Figure 4.12, 

may even be correctly detected by simple thresholding. Such a large area defect is depicted in 

a 3D surface plot in Figure 4.16. However, the detection of smaller silver stains has proven to 

be unsuccessful for reasons that were stated previously. 

 

Figure 4.16: 3D surface plot of the red layer of the cyan sample part 

In conclusion, the approach of thresholding the 3D plot was adjusted and developed to an 

extent, where it was possible to also find small area defects. The algorithm is presented in the 

following chapter. 

4.1.3. Algorithm for Defect Detection 

The algorithm for finding defects resembling scratches, such as the previously described silver 

stains, consists of seven main parts: 

1) Create a background mask 

2) Trim the image using the mask 

3) Convert the RGB image into an HSI image 

4) Model the saturation surface and subtract the result from the original image 

5) Apply percentile filter 

6) Dichotomize image 

7) Apply threshold and detect defects 

First, for each part colour the relevant counter layer with the lowest intensities was taken to 

distinguish the area of the part from the background. The layer where the defects were best 

visible is denoted as counter layer. Table 4.5 gives an overview for which part colour which layer 

was used. 

Table 4.5: Image layers used for creating background mask of opaque parts 

Part Colour Red Blue Pink Cyan 

Counter Layer Blue Red Red / Green Blue / Red 
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The colours pink and cyan require the combination of two layers to achieve better mask quality. 

This is due to need of combining colours when working in the RGB colour space. The algorithm 

however is explained using the cyan part, previously shown in Figure 4.10 and Figure 4.12. Thus, 

Figure 4.17 shows the same image as Figure 4.12 (left), but with the background intensity set 

to zero using the background mask. The part itself appears to be brighter, this is due to shifting 

the colour scale for reasons of better visibility of the difference between background and 

colour. 

 

Figure 4.17: Red layer of the cyan part with applied background mask 

Then, every pixel that is not hidden because of the background mask is detected as the part’s 

surface. This is done using ImageLab’s Particle Detection tool, which is ultimately a thresholding 

tool that unites neighbouring pixels that lie above or beneath a threshold to a so-called particle. 

The obtained particle naturally represents the part, because the background mask only hides 

the pixels surrounding the part. As every particle in ImageLab contains various properties, such 

as the centre, length and width of the particle, this information is used to trim the image. A 

rectangular area is cut out of the image, resulting in a smaller image that does only contain the 

area of the part. Naturally, this approach is rather unsatisfying, especially when the parts are 

not photographed in the same position. In a worst-case scenario, a rotated part would only be 

grasped partly. Nevertheless, it is assumed that for industrial applications the parts are imaged 

in the same position using a robot arm. In theory, the algorithm could be designed rotation-

invariant, by using the mask to omit background pixels from further processing. However, this 

step was avoided to reduce computing time. 

Figure 4.18 depicts the red, green and blue layer of the trimmed image with a cross-section line 

and the corresponding intensity distribution along the cross-section. 
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Figure 4.18: Top left: red layer with cross-section; top right: intensity distribution of the cross-section 
middle left: green layer with cross-section; middle right: intensity distribution of the cross-section 
bottom left: blue layer with cross-section; bottom right: intensity distribution of the cross-section 
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The cross-section intensity distributions of the different layers clarify, why the counter layer of 

the corresponding part colour was investigated for finding silver stains. Relatively, there the 

silver stains show a greater difference to the baseline of intensities than at the part’s colour 

layer, where the peak lies within the baseline noise. However, thresholding such an image has 

not proven to be successful for lighter or smaller defects. Thus, for a more stable and powerful 

detection, post-processing was expanded. 

The enhancement of the defect detection was achieved by handling the obtained image in a 

different colour space. Thus, the image consisting of the three RGB layers was converted into 

an HSI image. The latter consists also of three layers, shown in Figure 4.19, Figure 4.20 and 

Figure 4.21. These three images represent the hue, saturation and intensity values. A detailed 

explanation for the conversion can be found in Chapter 2.2.5, starting on page 8. 

 

Figure 4.19: Left: hue image with cross-section; right: intensity distribution of the cross-section 

 

Figure 4.20: Left: saturation image with cross-section; right: intensity distribution of the cross-section 
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Figure 4.21: Left: intensity/value image with cross-section; right: intensity distribution of the cross-section 

After close examination, Figure 4.20 depicts that the saturation image in HSI colour space 

promotes a quite clear image of defected areas of the part. The hue image representing the 

colour sphere and the value image representing the mixing with black or white, naturally do 

not offer any information with respect to the investigated defect and will thus be neglected in 

further processing. 

The saturation image indeed may be suited for thresholding, nonetheless, when looking both 

at the image and cross-section distribution of Figure 4.20, one finds that illumination is not 

equal on all areas of the part. Naturally, a single spot light source emits a cone of illumination, 

which is visible in Figure 4.21. As the central point beyond the light source is closest, it receives 

the highest light intensity because it has to pass the fewest air molecules, that absorb small 

amounts of the radiation. Therefore, it is not surprising that even with the high-performance 

flashlight uneven illumination is imaged. This drawback might be reduced by using a light source 

with more lamps, however, due to difficulty of setting up the flashlights in a suitable geometry 

to the camera and investigated part, it is more than likely that this issue can never be fully 

resolved. 

Consequently, a stable algorithm depends on the minimization of irregularities in illumination 

caused by the setup. When all the intensities of the image are drawn into a three-dimensional 

picture, they can be understood as a base surface, depicted in Figure 4.22. 



55 
 

 

Figure 4.22: 3D surface plot of the saturation image from different angles 

Hence, in the next step this base surface is modelled and then subtracted from the original 

image, enhancing the contrast between defect and surface. The modelling was done with a 

built-in function of ImageLab, which estimates a regression surface by applying a regular raster 

of pivot points over the whole parabolic or hyperbolic surface, suggested in Figure 4.23. 

Naturally, the number of set pivot points is a trade-off between several effects. The higher the 

number of pivot points, the better the mapping of the surface. However, simultaneously 

computing time will increase and more importantly, the risk of overfitting and thus hiding small 

defects as a part of the estimated surface is augmenting all the same. Hence, a suitable raster 

width has to be determined experimentally, with regard to the camera’s resolution and the 

minimal size of defects that should be detected. 

 

Figure 4.23: Regular raster of pivot points over a parabolic/hyperbolic surface [30] 

In this study, the number of 1000 pivot points was set to calculate the estimated paraboloid, 

shown in Figure 4.24. The image appositely clarifies the uneven illumination over the area of 

the investigated object.  

The next step consisted of calculating the difference of intensities of the saturation image 

(Figure 4.20) and the estimated paraboloid (Figure 4.24). The result is shown in Figure 4.25. 
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Figure 4.24: Left: estimated paraboloidal surface with a cross-section of the trimmed image;  
right: intensity distribution of the cross-section 

 

Figure 4.25: Left: difference of the saturation image and the estimated surface image with the cross-section; 
right: intensity distribution of the cross-section 

Close examination of Figure 4.25 offers insight that the previously tilted surface and ascending 

cross-section were manipulated to be practically levelled out. As a result, the contrast between 

defect and noise of non-defected areas was improved. 

In order to neglect possible intensity spikes and for soft surface smoothing reasons, a percentile 

filter was applied. The schematic procedure of applying such a kernel filter is shown in Figure 

4.26. Detailed information about linear filters is given in chapter 2.2.9. Here, it is important to 

understand that the new value of the schematic blue matrix in Figure 4.26 is the chosen 

percentile of said matrix. During the operation extreme values are eliminated. 
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Figure 4.26: Schematic process of applying a spatial percentile filter [30] 

After application of the percentile filter, the processed image, depicted in Figure 4.27, is 

obtained. Compared to the initial, unprocessed red layer image, it offers a better signal-to-

noise ratio. 

 

Figure 4.27: Left: contrast-enhanced image with applied percentile filter with cross-section; 
right: intensity distribution of the cross-section 

Finally, the image of Figure 4.27 is ready for detecting the defects via thresholding. The last part 

of the algorithm consists of dichotomizing the image matrix. In this procedure, a threshold is 

applied. Depending on whether the value of a pixel lies below or above said threshold, a zero 

or one value is assigned to the prompted pixel. In this way, a 1-bit black and white picture, as 

shown in Figure 4.28, is obtained. 

 

Figure 4.28: Dichotomized post-processed image of the cyan part 
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Afterwards, all connected pixels that credit a one value are detected as a particle using the 

Particle Detection tool. As previously explained, Particle Detection refers to a thresholding tool 

that unites neighbouring pixels that lie above or beneath a threshold to a so-called particle.  In 

fact, the dichotomizing of the image is not necessary for a succeeding particle detection, 

especially, because the algorithm behind both processes is the same. However, for reasons of 

easy visibility and fast calculation, this method was chosen to highlight and conveniently 

visualize the defect detection for the user. 

In this manner, a list of particles is obtained, where every particle exhibits information such as 

size, length, width and aspect ratio. By exploiting this information, it is possible to distinguish 

between small size particles, that are not actual defects but rather singular pixels with intensity 

spikes, and larger, actual defects. Furthermore, cut-offs for the various properties can be 

introduced, avoiding artefacts to be detected as defects. When introducing a reasonable cut-

off criterion for the particle size, in this case a minimum size of 1000 pixels per particle, the 

remaining particles are then identified as defects. They can be added to an image mask, which 

is applied to the original photograph, depicted in Figure 4.29. Hence, the user receives visual 

feedback of the found defects. 

 

Figure 4.29: Marked defects on the original image of the cyan part 

A detailed overview of the algorithm is given in the following section: 
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Pseudo-algorithm for Defect Detection of Opaque Parts 

This pseudo-code is a simplified version of the code that was used for defect detection. The 

functions in the top section contain the main procedures. The main code with the sequence of 

the functions can be found in the bottom section. 

function SetRedPixelMask; 

begin 

for every pixel do 

 if blue light intensity < low then 

   add pixel to mask; 

end; 

function SetBluePixelMask; 

begin 

for every pixel do 

 if red light intensity < low then 

   add pixel to mask; 

end;  

function SetPinkPixelMask; 

begin 

for every pixel do 

 if red and green light intensity > high then 

   add pixel to mask; 

end;  

function SetCyanPixelMask; 

begin 

for every pixel do 

 if red and blue light intensity > high then 

   add pixel to mask; 

end;  

function TrimImage; 

begin 

for every pixel do 

 if intensity > 0 and not part of mask do 

   detect as part of particle; 

Trim image in x-dimension from (PartCenter-PartWidth) to (PartCenter+PartWidth); 

Trim image in y-dimension from (PartCenter-PartLength) to (PartCenter+PartLength); 

end; 

function ConvertRGBToHSIImage (var SaturationImage : TDouble2DArray); 

var 

  RedLayer, BlueLayer, GreenLayer : TDouble2DArray; 

  Hue, Saturation, intensity      : TDouble2DArray; 

begin 

RedLayer := GetCubeLayer (1); 

BlueLayer := GetCubeLayer (2); 

GreenLayer := GetCubeLayer (3); 

ConvertRGBToHSIImage (RedLayer, BlueLayer, GreenLayer, Hue, Saturation, Intensity); 

SaturationImage := Saturation;  

end; 

function EstimateParaboloidicSurface (SaturationImage : TDouble2DArray; 

                                      var ParSurface : TDouble2DArray); 

var  

  PivotPoints : integer; 

begin 

PivotPoints := 1000; 

ParSurface := EstimateParaboloid (SaturationImage, PivotPoints); 

end; 
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function PostProcessing (DichotomizeThreshold : integer; 

                         SaturationImage, ParSurface : TDouble2DArray 

                         var ProcessedImage : TDouble2DArray); 

var 

  LevelledImage, FilteredImage : TDouble2DArray; 

  KernelSize, Percentile       : integer; 

begin 

LevelledImage := MatrixSum (SaturationImage, -ParSurface); 

KernelSize := 5; 

Percentile := 80; 

FilteredImage := SpatialPercentileFilter (KernelSize, Percentile, LevelledImage); 

ProcessedImage := DichotomizeMatrix (DichotomizeThreshold, LevelledImage); 

end; 

function FindDefects (ImageMatrix : TDouble2DArray;  

            DichotomizeThreshold, DefectSize : integer); 

begin 

for every pixel of ImageMatrix do 

 if intensity < DichotomizeThreshold and 

   pixel is neighbour of previous pixel  

     then begin 

       add pixel to particle; 

       end 

     else begin 

       add pixel to new particle; 

       end; 

end; 

 

//Main Code 

var 

  SaturationImage, ParSurface       : TDouble2DArray; 

  DichotomizeThreshold, DefectSize  : integer; 

  ProcessedImage                    : TDouble2DArray; 

begin 

Set DichotomizeThreshold; 

Set DefectSize; 

case AskPartColour of 

  1 : SetRedPixelMask; 

  2 : SetBluePixelMask; 

  3 : SetPinkPixelMask; 

  4 : SetCyanPixelMask; 

end; 

TrimImage; 

ConvertRGBToHSIImage (SaturationImage); 

EstimateParaboloidicSurface (SaturationImage, ParSurface); 

PostProcessing (DichotomizeThreshold, SaturationImage, ParSurface, ProcessedImage); 

FindDefects (ProcessedImage, DichotomizeThreshold, DefectSize); 

end. 
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4.1.4. Results 

The detection of silver stains was tested on opaque parts of four different colours, namely red, 

blue, pink and cyan. For every colour, the part’s sidewall that contained a conspicuous silver 

stain was imaged and processed with the defect detection algorithm. The number of 

investigated samples was limited to one part per colour, since resources were scarce and 

imaging the parts with professional photographer’s equipment was done under high time 

pressure due to cost minimization. Furthermore, the scope of the study was confined to a 

preliminary scale, were the main aim was to show that such defects can be found in hard-to-

handle surfaces.  

The following figures show the results of the application of the algorithm. All figures contain 

one of the RGB layers in which the defect is easiest visible, the processed image where the 

found defects are shown after dichotomization and an image-stack of the original RGB with the 

size excluded defects. An image-stack is the combination of two or more images into one 

visualisation. It is very much like the fusion of different photograph layers in common image 

editing programs. In our case it is possible to stack the artificial processed image that contains 

the found defects on top of the original RGB image. Before the dichotomized image is stacked, 

a particle boundary of a minimum pixel size of 1000 per defect was set. In this way, small 

particles that are not actual defects were excluded from the defect detection process. This was 

a simple measure to enhance the results, no selection was done regarding length, width or 

aspect ratio. As an introduction to the results, Figure 4.30 shows the familiar cyan part sample 

that was used to explain the algorithm in the previous chapter. The three silver stains were fully 

detected, there was no false-positive detection of unsuspicious areas. 

 

Figure 4.30: Cyan sample 1: left: red layer of the defected cyan part (original image);  
middle: dichotomized image of the detected defects;  

right: image-stack of the size-relevant defects and the original RGB photograph 

Figure 4.31 shows a different cyan part sample. The two silver stripes next to the edge on the 

right were both detected. The small and thin silver stain, top right to the detected scratch on 

the left side was not detected. One can see that it was originally detected in the dichotomized 

image, but then eliminated from the defect list. This is due to its small size. In order to lower 
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the risk of false-positive detection of defects, the size limit for defects must not be set too low. 

Here, another power of the algorithm is revealed. It does not only find silver stains, but similar 

defects like the big scratch on the left. 

 

Figure 4.31: Cyan sample 2: left: red layer of the original RGB image; middle: dichotomized image of the detected defects;  
right: image-stack of the size-relevant defects and the original RGB photograph 

After the analysis of the red part in Figure 4.32, another difficulty arose. In the previous example 

the found defects were decimated regarding their size. However, the detection can be adjusted 

before by modifying the sensitivity of the dichotomization. Figure 4.32 (middle) shows the 

analysis of the red part with the same threshold that was used for the cyan parts. It is obvious, 

that the detection of false-positive areas is quite extensive.  

 

Figure 4.32: Red sample: left: blue layer of the original RGB image; middle: dichotomized image of the detected defects;  
right: image-stack of the size-relevant defects and the original RGB photograph 

This behaviour leads to two conclusions. First, for the correct analysis of the defects of interest, 

the threshold must be experimentally examined for each part colour separately. Secondly, it is 

suspected that there is a relation between the part colour and the nature of the image sensor, 



63 
 

which affects the sensitivity of the analysis. Since the CMOS sensor uses a Bayer filter (see 2.2.3 

Colour Sensors) for the differentiation of the wavelengths, the colours respectively, the 

questions arises if the sensor-pure colours like red, green or blue parts deliver a different 

detection precision than colours that only can be represented as a mixture of the latter. Cyan 

is the mixture of blue and green and is thus differently processed when transformed into HSI 

colour space (see 2.2.5 RGB and HSI Colour Space). However, due to lack of data, namely more 

part images, this relation could not be tested thoroughly, but remains an objective for further 

studies. 

In order to illustrate the necessity of proper thresholding, Figure 4.33 depicts the percentile 

image, on which the dichotomization is applied. There the contrast suggests that it is possible 

to detect the defects of interest quite easily. Unlike in Figure 4.32, where the threshold was set 

too low, which resulted in false-positive detection, it was set high enough so that the detection 

of the four main silver stripes was possible.  

 

Figure 4.33: Red sample: left: percentile image before the application of the particle detection; middle: dichotomized image of 
the detected defects; right: image-stack of size-relevant defects and the original RGB photograph 

Figure 4.34 and Figure 4.35 clarify why the thresholding has to be adjusted for each colour 

separately. Both figures contain the percentile image with a cross-section line and the intensity 

distribution of the cross-section. If one focuses on the intensity scale, it becomes obvious that 

the intensity drop for the defect in the red part is higher than the one in the cyan part. Thus, 

the threshold can be set higher (relative to the intensity baseline), which results in detection of 

fewer false-positive defects. In fact, this relation can be seen as a classical signal-to-noise 

relation. Ideally, the surface would be photographed and processed in a way, where areas 

without defects have intensities closely scattering around zero and defects have intensities well 

outside this base surface noise. It is therefore important to optimally photograph and process 

the part’s surface, so that this variance, which can be seen as noise, is kept as low as possible. 

In conclusion, the MV setup and especially the lighting should strive for lowering the noise of 

non-defected areas. This will improve the signal-to-noise ratio. In this way, the defects that are 

characterised by a clear intensity drop, can be detected with a higher sensitivity. Thus, small-
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area defect detection will improve, because silver stains or scratches that are ultimately just 

areas of lower saturation in the HSI space, will stand out more clearly. 

 

Figure 4.34: Red sample: left: percentile image with the intensity cross section; right: intensity distribution of the cross section 

 

Figure 4.35: Cyan sample: left: percentile image with the intensity cross section;  
right: intensity distribution of the cross section 

The sampled blue part exhibited a different type of problem. Again, it is assumed that the blue 

pixel array is the reason for a more detailed image of the nuances of the blue surface. 

Principally, high sensitivity is a main goal when setting up the MV system. In this case, however, 

it complicates the thresholding and size exclusion process. Because the algorithm is so 

sensitive, it detects not only the true silver stains in the top-right area, but also the brighter 

area in the middle-left area of the part, as seen in Figure 4.36. The middle-left area is 

presumably brighter due to the production process or stretching of the part’s wall during 

transport, which results in an alteration of the surface. This effect is often observed when 

coloured polymers are bent. 
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Figure 4.36: Blue sample: left: green layer of the defected cyan part (original image);  
middle: dichotomized image of the detected defects;  

right: image-stack of the size-relevant defects and the original RGB photograph 

Unfortunately, the problem at hand can neither be resolved by an optimization of the 

threshold, nor by adjusting the boundaries of the size exclusion of the found defects. When the 

threshold is set lower, so that less particles are detected, the actual defects in the top-right 

area become so thin and small, that they vanish when a characterization depending on size is 

done. Thus, they cannot be distinguished from the bulged area on the middle-left, as seen in 

Figure 4.37. 

 

Figure 4.37: Blue sample: left: dichotomized image of the detected defects; 
 right: image-stack of the size-relevant defects and the original RGB photograph 

The indicated issue can again be explained by examining the intensity distribution of the cross-

section of the percentile image, shown in Figure 4.38. The polymer in the bulged area was 

altered to such an extent, that it shows an even higher drop of intensity than the silver stain in 

the top-right area. Hence, when such surface alteration is accepted, but silver stains are not, 

there is no possibility to detect silver stains with the suggested algorithm. However, if bulged 
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areas are considered to be defects, the used setup and algorithm are certainly powerful and 

sensitive enough to detect them. 

 

Figure 4.38: Blue sample: left: percentile image with the intensity cross section; right: intensity distribution of the cross section 

Finally, the analysis of the pink part brought forth satisfactory results. Figure 4.39 illustrates 

that both the silver stain in the top-right and bottom-right, as well as the scratch in the middle 

area were found. However, due to positioning of illumination and camera, a strong reflection 

can be seen on the left and bottom edge of the part. This reflection is naturally detected as a 

defect, since it is significantly brighter than the regular surface. Such false-positive detections 

of side reflections might be reduced by hardware adaptions: if not by repositioning of the 

illumination system, then by adjusting the trim of the algorithm. Assuming that the parts will 

be photographed at constant conditions, because a robot arm is locating them with a minimum 

of variation at the same place, the image trim, which is part two of the algorithm, can be set in 

a way where it just cuts off reflections at the edges of the part, omitting them in the analysis. 

 

Figure 4.39: Pink sample: left: blue layer of defected cyan part (original image);  
middle: dichotomized image of detected defects; right: image-stack of size-relevant defects and original RGB photograph 
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In conclusion, it is highlighted that the crucial hardware component for satisfying results is 

certainly a well-designed illumination system. It will avoid further problems that occur when 

thresholding is chosen as the method to detect defects. Hence, the accomplishment of the 

most uniform illumination possible has to be the key objective when setting up the system. 

Moreover, computation time of the algorithm amounted to roughly 15 seconds. Considering 

the slower production rates of such parts, the duration of processing is more than satisfactory. 

Especially because computation time can be optimized by using professional hardware and 

enhancing the algorithm. For instance, when a robot arm is used for positioning the parts, the 

calculation of an image mask, before necessary to trim the photograph, becomes obsolete. The 

area of interest can directly be cut out of the original photograph, moving along with a 

conversion of the trimmed image into an HSI image, reducing computing time. 

Sensitivity is an issue regarding the colour of the parts. Further studies have to be carried out 

to investigate the relation between part colour and type of colour filter that is used in the 

camera. Regarding the power of the algorithm, more samples with well-defined defects need 

to be photographed to be able to determine limits and possibilities of the method to full extent.  
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Conclusion 
This study is the first step towards establishing an academic point of view regarding the quality 

monitoring of machine vision systems. An innovative solution was presented to detect several 

issues concerning MV hardware. This was done by creating and photographing a test template. 

The obtained images were processed with algorithms, that indicate the nature and graveness 

of the malfunction.  

The author’s method supplies knowledge to develop a remote-controlled system, which is able 

to monitor the degradation and homogeneity of the illumination, the correct mounting of the 

camera system, the pixel degradation and defects, as well as the geometrical distortion of 

lenses. Additionally, pseudo-algorithms are supplied to build such a system. The academic 

charm of the test template is the power of handling several issues with one image and simply 

applying a series of rapid algorithms to detect the problem’s nature. The algorithms provide 

statistical analysis of the images in order to avoid biased decisions from human experts. 

Certainly, a routine control of the parameters is suggested to monitor quality requirements of 

the hardware. The test template consists of a user-defined and thus flexible number of squares 

filled with a range of grey values. It can be adapted to the sensor’s resolution and the lenses 

focal length.  

Moreover, an idea was given on how to build a device, that allows the measurement of 

exposure times without a demounting of the camera. The research on dark current suggests 

that effects of ambient temperature changes on the quality of the taken images are minor.  

The second part of the thesis relates to the investigation of detecting defects in two objects 

with challenging surfaces. In the first case, a setup was introduced to standardize the imaging 

of circular, transparent, polymer lids, which contain a spoon and are covered by a transparent 

foil. The objective of distinguishing non-defected from defected lids, where the foil was crinkled 

and thus not sealing correctly, was done by introducing several pre-processing steps, before 

applying a statistical test on the data. The main pre-processing steps consisted of finding the 

circular object using Hough circle detection, analysing and scaling its intensity distribution, 

before comparing the final distribution with an averaged distribution of non-defected lids using 

a χ2 test. Out of 37 defected samples, 91.88 % were detected correctly. Accordingly, correct 

scaling of the data is certainly a vital part to increase the algorithm’s performance. The 

restricted use of resources and time omitted further optimizations, however, it is emphasized 

that both setup and algorithm, as well as computation time have potential of performance 

enhancement.  

In the second case, walls of opaque parts were examined on production-related defects called 

silver stains and scratches. An innovative algorithm was presented to detect surface defects, as 

traditional thresholding will fail dealing with such challenging surfaces. The devised 

methodology consisted of locating the part, converting the RGB into an HSI image, modelling 

of the saturation surface with subsequent subtraction, smoothing the obtained image using a 

percentile filter and finally applying a suitable threshold to highlight the defects. Final 

characterization was done due to defect size. 
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Contrary to expectations, the most crucial part was setting up proper illumination. Thoroughly 

uniform illumination is still an open problem and subject to optimization. The algorithm itself 

has proven to be effective on both silver stains and scratches exceeding a certain size limit, 

however, distinction between the latter and altered areas, that were brighter due to bulging, 

was not possible. When bulged areas are considered to be defects, the methodology can be 

used to find them as such. Given the small sample size, the results have to be regarded with 

care, nonetheless the discoveries promise a bright outlook for defect detection in opaque, 

reflective surfaces. 

In addition, the findings suggest a relation between the colour filter array and the part colour, 

however, these results are still subject to further investigations. Computing time of the 

algorithm was decent and has potential for optimization. Overall, elaborate testing of the 

methodology requires supplementary data collection. 

All these results provide new insights and approaches for defect detection of hard-to-handle 

surfaces. In the view of the author, development of new hardware ensures that machine vision 

technologies and their application for quality control face exciting years.  



70 
 

References 
[1] W. E. Snyder and H. Qi, Machine vision. New York: Cambridge University Press, 2010. 

[2] C. Steger, M. Ulrich, and C. Wiedemann, Machine vision algorithms and applications, 
First Edit., vol. 46, no. 02. Wiley-VCH-Verlag, 2013. 

[3] “Modern Photography/The Camera,” 2018. [Online]. Available: 
https://en.wikibooks.org/wiki/Modern_Photography/The_camera. [Accessed: 25-Feb-
2019]. 

[4] N. Mansurov, “Understanding ISO, Shutter Speed and Aperture – A Beginner’s Guide,” 
2018. [Online]. Available: https://photographylife.com/iso-shutter-speed-and-
aperture-for-beginners. [Accessed: 25-Feb-2019]. 

[5] L. Bountouri, “Digitization,” Arch. Digit. Age, pp. 29–36, 2017. 

[6] C. Demant, B. Streicher-Abel, and C. Garnica, Industrial Image Processing. visual quality 
control in manufacturing, 2nd Edition. Heidelberg: Springer, 2013. 

[7] R. Hain, C. J. Köhler, and C. Tropea, “Comparison of CCD, CMOS and intensified 
cameras,” Exp. Fluids, vol. 42, no. 3, pp. 403–411, 2007. 

[8] P. G. R. Inc., “How to Evaluate Camera Sensitivity,” Point Grey White Paper Series, 2015. 
[Online]. Available: https://www.ptgrey.com/white-paper/id/10912. 

[9] T. Goldsmith, “Optimization, Constraint and History in the Evolution of Eyes,” Q. Rev. 
Biol., vol. 65, no. 3, pp. 281–322, 2008. 

[10] T. Carron and P. Lambert, “Color edge detector using jointly hue, saturation and 
intensity,” Proc. - Int. Conf. Image Process. ICIP, vol. 3, pp. 977–981, 1994. 

[11] F. Kong and Y. Peng, “Color Image Watermarking Algorithm Based On HSI Color Space,” 
in 2nd International Conference on Industrial and Information Systems, 2010, pp. 464–
467. 

[12] SharkD, “RGB Cube Show lowgamma cutout b.png,” 22 March 2010, 08:45, 2010. 
[Online]. Available: 
https://upload.wikimedia.org/wikipedia/commons/8/83/RGB_Cube_Show_lowgamm
a_cutout_b.png. [Accessed: 02-Aug-2018]. 

[13] J. Rus, “HSV color solid cone chroma gray.png,” 22. March 2010. [Online]. Available: 
https://upload.wikimedia.org/wikipedia/commons/0/00/HSV_color_solid_cone_chro
ma_gray.png. [Accessed: 02-Aug-2018]. 

[14] B. Jähne, Digitale Bildverarbeitung, 6. Edition. Heidelberg: Springer, 2005. 

[15] W. Gao, L. Yang, X. Zhang, and H. Liu, “An improved Sobel edge detection,” Proc. - 2010 
3rd IEEE Int. Conf. Comput. Sci. Inf. Technol. ICCSIT 2010, vol. 5, pp. 67–71, 2010. 

[16] B. M. Ayyub and R. H. McCuen, Probability, Statistics, & Reliability for Engineers, First 
Edit. CRC Press, 1997. 

[17] New Zealand Ministry of Education, “Sampling Variation.” [Online]. Available: 
https://nzmaths.co.nz/category/glossary/sampling-variation. [Accessed: 08-Aug-
2018]. 



71 
 

[18] J. Abfalter, “Statistik Gurker WS 2014 / 2015 Zusammenfassung,” 2015. [Online]. 
Available: https://vowi.fsinf.at/images/6/60/TU_Wien-
Statistik_und_Wahrscheinlichkeitstheorie_VO_%28Gurker%29_-
_Zusammenfassung_WS_2014.pdf. [Accessed: 15-Aug-2018]. 

[19] H. Lohninger, “Fundamentals of Statistics,” 2012. [Online]. Available: 
http://www.statistics4u.com/fundstat_eng/cc_test_chi-square.html. [Accessed: 08-
Aug-2018]. 

[20] D. Martin, “Practical Guide to Machine Vision Lighting,” Advanced Illumination, 2012. 
[Online]. Available: http://www.ni.com/white-paper/6901/en/. 

[21] G. Klinglmayr, “Personal Communication, 12.07.2018,” 2018. 

[22] Z. J. Geradts, J. Bijhold, M. Kieft, K. Kurosawa, K. Kuroki, and N. Saitoh, “Methods for 
identification of images acquired with digital cameras,” Enabling Technol. Law Enforc. 
Secur., vol. 4232, no. February 2002, pp. 505–512, 2000. 

[23] N. Koren, “Understanding Image Sharpness.” [Online]. Available: 
http://www.normankoren.com/Tutorials/MTF5.html. [Accessed: 30-Aug-2018]. 

[24] N. Koren, “Koren 2003 Lens Test Chart,” 2003. [Online]. Available: 
http://www.normankoren.com/Tutorials/Lenstarg_25_7086p_15g_0is.png. 
[Accessed: 30-Aug-2018]. 

[25] I. Engineering, “TE 202 Lens Chart.” [Online]. Available: https://www.image-
engineering.de/products/charts/all/524-te202. [Accessed: 03-Sep-2018]. 

[26] “Geometrical Distortion.” [Online]. Available: 
https://learn.foundry.com/modo/902/content/help/pages/rendering/camera_matchi
ng.html. [Accessed: 05-May-2018]. 

[27] G. Cao, S. Ruan, Y. Peng, S. Huang, and N. Kwok, “Large-Complex-Surface Defect 
Detection by Hybrid Gradient Threshold Segmentation and Image Registration,” IEEE 
Access, vol. 6, pp. 36235–36246, 2018. 

[28] N. M. Zaitoun and M. J. Aqel, “Survey on Image Segmentation Techniques,” Procedia 
Comput. Sci., vol. 65, no. Iccmit, pp. 797–806, 2015. 

[29] J. Bandouch, “Grundlagen: Bildverarbeitung / Objekterkennung,” 2006. [Online]. 
Available: https://www.cosy.sbg.ac.at/~uhl/imgProcess.pdf. 

[30] H. Lohninger, “ImageLab.” Epina GmbH, Retz, Austria, 2018. 

[31] M. Reis, “Diffuse Reflection,” 27.10.2005. [Online]. Available: 
https://upload.wikimedia.org/wikipedia/commons/6/6e/Difracao.svg. [Accessed: 20-
Sep-2018]. 

 

 

  



72 
 

Appendix 
Table A.1: Section of intensity distributions of the dark current pictures 

Temp. [°C] 6 6 6 27 27 27 

Shutter Time 60 60 500 60 60 60 

Aperture 2 4.5 4.5 2 2 2 

 Intensity Red Red Red Red Green Blue 

1 12205069 12205069 12205069 12204837 12204814 12204701 

2 6 6 6 143 162 113 

3 6 6 6 46 52 139 

4 4 4 4 15 19 37 

5 4 4 4 17 18 37 

6 0 0 0 7 6 9 

7 0 0 0 4 2 1 

8 0 0 0 2 2 9 

9 0 0 0 2 2 1 

10 0 0 0 6 4 9 

11 0 0 0 3 2 3 

12 0 0 0 1 1 5 

13 0 0 0 0 0 2 

14 0 0 0 1 0 0 

15 0 0 0 0 0 0 

16 0 0 0 0 0 0 

17 0 0 0 0 0 2 

18 0 0 0 0 0 0 

19 0 0 0 0 0 0 

20 0 0 0 0 0 2 

21 0 0 0 0 0 0 

22 0 0 0 0 0 1 

23 0 0 0 1 1 2 

24 0 0 0 1 1 2 

25 0 0 0 0 0 0 

26 0 0 0 1 1 1 

27 0 0 0 1 1 1 

28 0 0 0 0 0 1 

29 0 0 0 0 0 1 

30 0 0 0 0 0 2 

31 0 0 0 0 0 0 

32 0 0 0 0 0 0 

33 0 0 0 0 0 0 

34 0 0 0 0 0 1 

35 0 0 0 0 0 0 

36 0 0 0 0 0 0 

37 0 0 0 0 0 1 

38 0 0 0 0 0 0 
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Table A.2: Section of intensity distributions of the dark current pictures 

Temp. [°C] 27 27 27 27 27 27 

Shutter Time 60 60 200 200 200 500 

Aperture 2 4.5 2 2 4.5 2 

Intensity Red Red Red Red Red Red 

1 12204834 12204852 12204774 12204752 12204820 12204837 

2 148 137 220 240 169 160 

3 44 32 30 38 37 29 

4 14 21 16 16 15 17 

5 15 12 15 15 15 16 

6 8 7 12 10 10 8 

7 2 4 5 5 6 4 

8 3 4 3 3 2 3 

9 5 4 2 2 3 3 

10 1 4 3 1 3 5 

11 3 2 2 1 3 1 

12 1 0 1 1 0 0 

13 1 0 0 0 0 0 

14 1 0 1 0 1 1 

15 1 1 0 0 0 0 

16 2 1 0 0 1 0 

17 0 3 0 0 0 1 

18 0 0 0 0 0 0 

19 0 1 0 0 1 1 

20 2 1 2 2 0 1 

21 0 0 0 0 1 0 

22 1 0 1 1 0 0 

23 1 0 0 0 0 0 

24 1 1 1 1 0 0 

25 0 1 0 0 1 1 

26 0 0 0 0 0 0 

27 0 0 0 0 0 0 

28 0 0 0 0 0 0 

29 0 0 0 0 0 0 

30 0 0 0 0 0 0 

31 0 0 0 0 0 0 

32 0 0 0 0 0 0 

33 0 0 0 0 0 0 

34 0 0 0 0 0 0 

35 0 1 0 0 0 1 

36 0 0 0 0 1 0 

37 0 0 0 0 0 0 

38 0 0 0 0 0 0 
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Figure A.1: Left: DL sample 1; middle left: DL sample 2; middle right: DL sample 3; right: DL sample 4 

 

Figure A.2: Left: DL sample 5; middle left: DL sample 6; middle right: DL sample 7; right: DL sample 8 

 

Figure A.3: Left: DL sample 9; middle left: DL sample 10; middle right: DL sample 11; right: DL sample 12 

 

Figure A.4: Left: DL sample 13; middle left: DL sample 14; middle right: DL sample 15; right: DL sample 16 
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Figure A.5: Left: DL sample 17; middle left: DL sample 18; middle right: DL sample 19; right: DL sample 20 

 

Figure A.6: Left: DL sample 21; middle left: DL sample 22; middle right: DL sample 23; right: DL sample 24 

 

Figure A.7: Left: DL sample 25; middle left: DL sample 26; middle right: DL sample 27; right: DL sample 28 

 

Figure A.8: Left: DL sample 29; middle left: DL sample 30; middle right: DL sample 31; right: DL sample 32 
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Figure A.9: Left: DL sample 33; middle left: DL sample 34; middle right: DL sample 35; right: DL sample 36 

 

Figure A.10: DL sample 37 


