
Verfahren zur Platzierung
mehrerer Senken in

ungerichteten Flußnetzwerken

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Oliver Hubmer, BSc
Matrikelnummer 0842138

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Assistant Prof. Dipl.-Inform. Dr.rer.nat. Martin Nöllenburg

Wien, 3. Oktober 2017
Oliver Hubmer Martin Nöllenburg

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Techniques for Multiple Sink
Placement in Undirected Flow

Networks

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Oliver Hubmer, BSc
Registration Number 0842138

to the Faculty of Informatics

at the TU Wien

Advisor: Assistant Prof. Dipl.-Inform. Dr.rer.nat. Martin Nöllenburg

Vienna, 3rd October, 2017
Oliver Hubmer Martin Nöllenburg

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Oliver Hubmer, BSc
Breitenfurter Straße 436
1230 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 3. Oktober 2017
Oliver Hubmer

v

Danksagung

Ich möchte hiermit die Möglichkeit nützen, um mich bei allen Beteiligten zu bedanken,
ohne die, die Erstellung der Diplomarbeit nicht möglich gewesen wäre.

Einen besonderen Dank gilt an erster Stelle meinem Betreuer, Herrn Assistant Prof.
Dipl.-Inform. Dr.rer.nat. Martin Nöllenburg für die sehr gute Betreuung während des
gesamten Prozesses der Erarbeitung meiner Diplomarbeit.

Ein herzliches Dankeschön richte ich an meine Freundin, meine Eltern, und meinem
Bruder die immer große Geduld mit mir gehabt haben, und für die große Unterstützung
während der Zeit der Erstellung der Diplomarbeit, als auch während meines gesamten
Studiums.

vii

Acknowledgements

I would like to take the opportunity to thank all those involved, without whom the
preparation of the thesis could not have been possible.

A special thank you goes to my supervisor, Assistant Professor Dipl.-Inform. Dr.rer.nat.
Martin Nöllenburg for the very good support during the entire process of the development
of my diploma thesis.

A hearty thanks to my girlfriend, my parents, and my brother, who have always had
great patience with me, and for the great support during the time of writing the thesis,
as well as throughout my study.

ix

Kurzfassung

In Zeiten von Smartphones und mobilen Technologien ist Telekommunikation ein wichtiger
Teil des modernen Lebens und unentbehrlich für private und professionelle Kommunika-
tion. Mit der Entstehung von Social Media, Musik und Video-Streaming werden immer
mehr Daten über diese Netzwerke gesendet. Diese besitzen jedoch nur eine begrenzte
Bandbreite. Um eine stabile und zuverlässige Kommunikation von mobilen Geräten zu
gewährleisten, muss eine solide Infrastruktur in Form eines Netzwerks sorgfältig geplant
und überwacht werden, sodass für alle Kunden eine ausreichende Bandbreite gewährleistet
wird. Um eine flächendeckende Abdeckung sicherstellen zu können, und um der ständig
wachsenden Nachfrage nach mehr Bandbreite gerecht zu werden, müssen mehr Funktürme
errichten werden, oder neue Technologien wie Glasfasern genutzt werden, um bestehen-
de Funktürme und deren Verbindungen zu erweitern. Dadurch wird die Datenmenge
erhöht, die über ein Netzwerk gesendet werden kann. Diese Diplomarbeit konzentriert
sich auf die letztgenannte Option, auf die Modernisierung bestehender Sendemasten,
und welche Sendemasten am besten für Upgrades geeignet sind. Dies ist abhängig von
unterschiedlichen Kriterien, wie der Bandbreitenverfügbarkeit, den Kosten und anderen
Faktoren wie zukünftigen potenziellen Märkten. Trotz diesem speziellen Usecase sind
die entwickelten Methoden und Algorithm mit wenig bis keinem Aufwand für andere,
ähnliche, Problemstellungen adaptierbar.

Diese Arbeit umfasst sechs Kapitel. Kapitel eins enthält eine Einführung mit allgemeinen
und spezifischen Hintergrundinformationen, eine allgemeine Problemformulierung, und
getroffene Annahmen über das Problem. Kapitel 2 besteht aus der Literaturrecherche und
analysiert Artikel über ähnliche Probleme. In Kapitel 3, der Hauptteil der Arbeit, wird
eine formale Problembeschreibung mit exakten und heuristischen Algorithmen zur Lösung
vorgestellt. Im folgendem Kapitel 4 wird ein exakter Algorithmus zum lösen des Problems
für Baum-Struktur Netzwerke, zusammen mit einem Korrektheitsbeweis beschrieben.
Kapitel 5 behandelt die effiziente Berechnung von Maximalen Flüssen, ein wichtiger
und entscheidender Teil der vorgestellten Algorithmen in Kapitel drei. Schlussendlich
werden in Kapitel 6 die Algorithmen getestet und analysiert. Darüber hinaus wurden die
Algorithmen zusätzlich auf einem echten praktischen Problem getestet.

Die dargestellten Lösungs-Techniken sind in der Lage, gute Lösungen innerhalb von 85%
der optimalen Lösungen zu produzieren, wobei jedoch nur ein Bruchteil der Zeit zum
generieren der Lösungen benötigt wird. Darüber hinaus produzieren die Algorithmen
vielversprechende Ergebnisse für reale Instanzen.

xi

Abstract

In times of smartphones and mobile technologies, telecommunication is a crucial part
of modern life and indispensable for private and professional communication. With the
emergence of social media, music and video streaming, evermore data is send over these
networks, which have a limited bandwidth capacity. In order to ensure a stable and
reliable communication of mobile devices, a solid infrastructure in form of a network
must be planned and monitored carefully, to ensure enough available bandwidth for
all customers. A comprehensive network of radio towers and their connections have
to ensure an area wide coverage. In order to satisfy the ever increasing demand for
more bandwidth more radio towers can be constructed, or new technologies, such as
fiberglass, can be used to upgrade existing radio towers and their connections to increase
the amount of data which can be send through a telecommunication network at any given
time. This thesis focuses on the latter option, in upgrading existing radio towers, and in
which radio towers are best suitable for upgrades depending on different criteria, such
as the bandwidth availability, the costs, and other factors like future potential markets.
Furthermore, despite the specific use case the methods and algorithms can be used for
other problems with little or no adaption.

This thesis comprises six main chapters. Chapter one gives an introduction, with general
and specific background information, general problem formulation, and made assumptions
about the problem. Chapter two consists of the literature review, analysing articles
about similar problems. In chapter three, the main part, a formal problem description
with exact and heuristic solving algorithms are presented. Followed by chapter four, an
exact algorithm for upgrading radio towers in a tree structured network, together with a
proof is introduced. Chapter five treats with the efficient calculation of maximum flows,
an important and crucial part of the presented algorithms in chapter three. Finally, in
chapter six, the computational performance of the algorithms, and the graph generation
process is presented and analysed. Furthermore, the algorithms were tested on a real life
instance.

The presented solution techniques are able to produce solutions within 85% of the optimal
solutions, however, needing only a fraction of the time of the exact solution techniques.
In addition, the algorithms produce promising results for the real world instances.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Assumptions and Problem Statement . 2
1.3 Outline . 4

2 Literature Review 7

3 Multiple Sink Placement in Undirected Flow Networks 11
3.1 Formal Problem Description . 11
3.2 Integer Linear Programming Formulations 12
3.3 Greedy Heuristic . 17
3.4 GRASP . 19
3.5 Greedy-Net . 20
3.6 Clustering . 21
3.7 Post Optimization . 24

4 An Exact Algorithm for Trees 27
4.1 Background and Formal Problem Description 27
4.2 Integer Linear Programming Formulation 27
4.3 Greedy Tree Solver . 28
4.4 Greedy Tree Solver Proof . 30

5 Maximum Flow Calculation 35
5.1 Maximum Flow in an Undirected Network 35
5.2 Maximum Flow Algorithm . 36

6 Computational Performance Evaluation 39
6.1 Graph Generation . 39

xv

6.2 Testing System and Parameter Settings 43
6.3 Performance Evaluation . 44
6.4 Performance Evaluation on an Austrian Network 59

7 Conclusion 65

List of Figures 67

List of Tables 69

List of Algorithms 71

Bibliography 73

CHAPTER 1
Introduction

This chapter gives a brief introduction, with general and specific background information,
general problem formulation, and made assumptions about the problem.

1.1 Background and Motivation
Mobile telecommunication networks are a crucial and important part of modern life,
which allow phone and Internet access in a vast amount of areas around the world. With
the emergence of social media, music and video streaming, evermore data is sent over
these networks, which have a limited bandwidth capacity. Therefore, networks used for
mobile telecommunication have to be planned and monitored carefully, to ensure enough
available bandwidth for all customers. In order to satisfy the ever increasing demand
for more bandwidth more radio towers can be constructed, or new technologies, such as
fiberglass, can be used to upgrade existing radio towers and their connections to increase
the amount of data which can be sent through a telecommunication network at any
given time. This thesis focuses on the latter option, in upgrading existing radio towers
to be capable of handling more data. However, upgrading or replacing old technology
is cost intensive, therefore, the network designer has to plan the upgrades depending
on different criteria, such as the bandwidth availability, the costs, and other factors
like future potential markets. Furthermore, the possible applications of the presented
methods are not limited to telecommunication networks, but also for use cases in general
logistics.

The data is sent over one or more radio towers to the backbone, usually high bandwidth
fiberglass connections, of the telecommunication network which further distributes the
data. Radio towers can be directly connected to the backbone, the more radio towers
are connected to the backbone the better, since more data can be directly sent to the
fiberglass wires of the backbone for further distribution, and therefore, increasing the
performance of the telecommunication network. Upgrading an existing radio tower

1

1. Introduction

with a connection to the backbone network pose a significant cost factor, depending
on the distance to the backbone network and geographical restrictions. In addition to
the cost factor, customer potential and customer value represent other factors to be
considered. Customer potential indicates the market saturation in specific areas together
with the probability that customers switch their provider. In short, how many new
potential customers are in a specific area. Customer value represents the importance of
existing customers, and their fragmentation in groups like business customers or power
users. Consequently, installing new connections between radio towers and the backbone
is a crucial part in designing telecommunication networks and highly influences the
performance (how much data can be sent over the network at the same time) of the
network. This thesis focuses on methods and algorithms to find the best, depending on
different factors, candidates for upgrades.

1.2 Assumptions and Problem Statement

It is assumed that the telecommunications network consist of a backbone network with
unlimited bandwidth (or at least enough to handle all current peaks of occurring data),
and a network of radio towers. Both networks are connected and the data within the
radio tower network is sent to the backbone network for further treatment. Therefore,
radio towers connected to the backbone are considered as sinks. Since backbone networks
have enough bandwidth to handle large amounts of data, they act as a data highway
for connections between distant places, for example between two large cities, and all
radio towers try to route their data to the backbone network. Figure 1.1 shows an
example telecommunications network. The radio towers (or vertices) X,Y, Z are part of
the backbone network depicted in black. The radio tower network is represented with
grey radio towers (vertices) with dotted lines as connections, in addition, the vertices
X,Y, Z are also part of the radio tower network (they are normal radio towers with a
fiberglass connection to the backbone). How the backbone network further handles the
data is not within the scope of this work, and therefore, only the radio tower network is
considered. In the following passages the radio towers are also denoted as vertices.

The accruing data of each radio tower must be sent to the backbone network for further
processing. Since not all radio towers are directly connected to the backbone, the data
must be sent over other radio towers until a connection to the backbone is found. Figure
1.2 illustrates the possible flow path of data from vertex X to the backbone network.
In 1.2a the data has to perform four hops to a backbone connected vertex Z. After
upgrading vertex Y with a connection to the backbone network, only two hops need
to be performed. In general, every vertex produces certain amount of data and all the
data must be sent to backbone connected vertices, consequently, the telecommunications
network can be considered as a flow network, where all vertices are sources (emitting
data), and vertices connected to the backbone are sinks. The target is to find the best
locations for installing new sinks. Each vertex has assigned four specific values influencing
this decision.

2

1.2. Assumptions and Problem Statement

Figure 1.1: A telecommunications network, with the vertices X,Y, Z as part of the
backbone network, and therefore acting as sinks. The remaining grey vertices represent
ordinary radio towers, which need to route their data to the sinks.

Given is a directed graph G(V, E) with vertices V and edges E . If there is a connection
between two vertices v and u then there exist two directed edges, one going from v to u
and one going from u to v. The vertices and edges have the following attributes.

Vertex Attributes:

1. Accruing Data, the amount of data which accrues at each vertex, i.e. the
data which is "produced" at each vertex, not concerning forwarded data of
other vertices. In general this value represents the peak load of a specific time
period, or an average over a certain amount of time.

2. Upgrade Cost, represents the financial expense needed for upgrading a
specific vertex with a connection to the backbone network. This cost is
determined by geographical conditions and, mainly, by the distance from the
vertex to the existing backbone network.

3. Customer Value, indicates the importance of customers, depending on their
status, e.g. business customers usually have a higher customer value than
private customers. The customer value of a vertex is defined by the average
and normalized customer value of all customers served by this vertex.

4. Customer Potential, an artificial value defining the potential of finding
new customers which will be served by this particular vertex. A higher value
indicates a higher likelihood, a lower value the opposite.

3

1. Introduction

Furthermore, the location coordinates of the vertices are also given, however, the coordi-
nates are solely needed for plotting tasks.

Radio towers are connected via directional radio or by other means, further denoted as
edges. Finding a suitable vertex for a sink is also greatly determined by its incident edges,
over which the data is sent and distributed. Each edge has assigned one specific value.

Edge Parameters:

1. Edge Capacity, represents the capacity, the maximum amount of data which
can be sent over this edge at a specific time.

In addition, the vertices connected by the edge are also given.

(a) One connection (Z) to the backbone. (b) Two connections (Y and Z) to the backbone.

Figure 1.2: Possible flow of data from vertex X to a backbone connection.

The network can be considered as a flow network with all vertices as sources and vertices
connected to the backbone as sinks. Sinks have to be placed in such a manner that the
possible maximum flow is as high as possible, regarding the given parameters, like accruing
data, of each vertex. All accruing data of the vertices should be handled. Furthermore,
the utilization of each edge capacity should be as low as possible. Depending on where
the sinks are placed, the optimal flow direction of an edge can change. In general, a static
moment in time is considered for calculating solutions, usually the moment of maximum
utilization of the network, or an average of all values for a certain time period, in order to
reduce the complexity of the computation. Due to this facts, in this paper this problem
is considered as Multiple Sink Placement in Undirected Flow Networks problem.

1.3 Outline
This thesis comprises six main chapters. Chapter two consists of the literature review,
analysing articles about similar problems. In chapter three, the main part, a formal
problem description with exact and heuristic solving algorithms are presented. Followed
by chapter four, an exact algorithm for upgrading radio towers in a tree structured
network, together with a proof is introduced. Chapter five treats with the efficient
calculation of maximum flows, an important and crucial part of the presented algorithms

4

1.3. Outline

in chapter three. Finally, in chapter six, the computational performance of the algorithms,
and the graph generation process is presented and analysed. Furthermore, the algorithms
were tested on a real life instance.

5

CHAPTER 2
Literature Review

The literature research for the Multiple Sink Placement problem in Undirected Flow
Networks showed, that the available literature is limited. Most of the found literature
considers the sink placement of new sinks in a network, whereas, the upgrade of existing
nodes to new sink nodes is rarely considered.

The article [KWS+11] by Kim et al. propose a new multiple-sink positioning problem
in wireless sensor networks, formally defined as the k-Sink Placement Problem (k-SPP).
k-SPP deals with the problem how to minimize the maximum data latency from a node to
its nearest sink, in addition, the goal is to minimize the maximum hop distance between a
node and its nearest sink, given k available sinks. The authors formally define the k-SPP
and prove that k-SPP is APX-complete by showing there is no (2− ε)-approximation
algorithm, where ε is a small positive constant (unless P = NP). Furthermore, the
authors show that an existing greedy approximation algorithm for the k-center problem,
GREEDY-k-CENTER, is also an approximation algorithm for k-SPP. This greedy
approximation algorithm is used as a basis for a simple greedy algorithm (GREEDY-k-
SPP), which uses a larger, but still polynomial-size, feasible solution space, in order to
produce better quality solutions. It is shown that even in the worst case, the cost of an
output of this algorithm is within three times from the cost of an optimal solution. In the
performance analysis the average performance of GREEDY-k-SPP is compared with the
alternative, GREEDY-k-CENTER. For simulations the authors use a 100x100 space grid
and randomly deploy a number of nodes. On average, the GREEDY-k-SPP outperforms
its competitor, and its approximation ratio is very near to the best achievable, 2.

In [CQJM04b] Qiu et al. address the efficient integration of multi-hop wireless networks
with the internet. In this case, few Internet Transit Access Points (ITAP) serve as
gateways, and low-cost antennas form a multi-hop wireless network, in order to route
traffic to the internet through the ITAPs. The authors deal with the effiecient placement
of ITAPs in the network, which in its simplest form, is to place a minimum number of
ITAPs to serve a given set of nodes. These nodes are served through paths, which are

7

2. Literature Review

allowed to pass through other nodes. The goal is to place the minimum number of ITAPs
to serve the node’s demands, considering all capacity constraints. Qiu et al. present
several ways to model wireless interference, with the use of a conflict graph or alternate
activation of paths. Furthermore, the throughputl defines the throughput on a link of
length l, assuming each link has a capacity of 1. In addition, g(l) defines the amount of
link capacity consumed on a path of length l with a throughput of 1. In this paper, the
authors study two models separately. The ideal link model defines the throughputl = 1
and g(l) = 1, and the general link model defines the throughputl and g(l) as a linear
function of l. In the paper placement algorithms for the ideal and the general link
model are considered. In detail, the authors present a LP formulation for both problems,
the ideal and general link model. Furthermore, the LP formulations get extended with
constraints ensuring fault tolerance. A theorem, proofed in [CQJM04a], states the ITAP
placement problem has no polynomial approximation algorithm with an approximation
ratio better than lnn, where n is the size of the given nodes. Consequently, the authors
present a greedy placement algorithm, which iteratively picks an ITAP that maximizes
the total demands satisfied when opened in conjunction with the ITAPs chosen in the
previous iterations. Several alternative algorithms are mentioned, augmented placement,
clustering-based placement, and random placement. In order to validate the models, the
authors ran simulations using Qualnet, a commercial network simulator. In addition, the
authors evaluated the performance of the greedy algorithms, using different test instances
of diverse size and with distinct constraints. It is shown that the greedy algorithms give
close to optimal solutions over a variety of scenarios the authors have considered.

In [OE04] Oyman and Ersoy address the Multiple Sink Network Design Problem, which
considers the placement of multiple sinks across a network. In a large-scale networks with
a large number of sensor nodes, multiple sink nodes should be deployed to increase the
manageability of the network, and to reduce the energy dissipation at each node, in order
to prolong the network lifetime in wireless sensor networks. In this paper the authors
define the Best Sink Locations (BSL) problem, the number of sink nodes is known, and
therefore, the number of clusters which are formed around the sink nodes. As clustering
algorithms the authors propose k-means clustering, and mention self-organizing maps. If
the Euclidean distance is used as the clustering metric then the center of mass of the
nodes within a cluster represents the location of the sink nodes. Other distance metrics
can be used depending on the priorities of the routing algorithm. Furthermore, in this
paper the authors define further problems, the Minimization of the Number of Sink Nodes
for a Predefined minimum Operation Period (MSPOP) problem, and the Minimization of
the Number of Sink Nodes while Maximizing the Network Lifetime (MSMNL) problem.
The authors perform computational experiments for the BSL problem, with a test setup
consisting of 200 nodes, and the placing of three sinks. As a result the authors present
the corresponding energy and disconnected region maps on a sample sensor network for
different snapshots in time.

In [ABIK06] Aoun et al. consider the placement of a minimum number of gateways in a
wireless mesh network (WMN). In this topology all the traffic flows either to or from a

8

gateway, as opposed to ad hoc networks where the traffic flows between arbitrary pairs
of nodes. The authors present a polynomial time near-optimal algorithm to divide the
WMN into clusters of bounded radius under relay load and cluster size constraints, while
ensuring given QoS requirements. This consists in logically dividing the WMN into a set
of disjoint clusters, covering all the nodes in the network. In each cluster, one node serves
as a gateway, and serves the other nodes inside the cluster. Furthermore, in each cluster a
spanning tree rooted at the gateway is used for traffic aggregation and forwarding. Each
node is mainly associated to one tree, and would attach to another tree as an alternative
route in case of path failure. As QoS restrictions the following points are considered, an
upper bound on the cluster radius, an upper bound on the cluster size, and an upper
bound on relay traffic. The core algorithm is a greedy approach consisting of the recursive
approximation of the minimum Dominating Sets (DS). At iteration i+ 1, the algorithm
computes a minimum dominating set using the resulting graph and dominating set from
the previous iteration. The recursive calls stop if the cluster radius of the next iteration
is larger than the upper bound on the cluster radius. In this case, the set of required
gateways, satisfying the QoS requirements, is returned. However, each cluster is tested
on feasibility. A cluster is defined as feasible if a spanning tree, rooted at the current
node and covering all nodes in the current cover, satisfies the relay load and cluster size
constraints. The authors prove in a theorem that the gateway placement algorithm can
be implemented to run in time less then

√
2R ∗O(V 2), where R is the upper bound on

the cluster’s radius and V is the number of nodes in the network. The performance is
compared and tested to alternative algorithms, the Iterative Greedy Dominating Set and
the Augmenting Placement. The performance of the different placement algorithms is
evaluated using various QoS parameters in terms of cluster size, relay load, and radius
size. The algorithms are evaluated according to the number of required gateways or
clusters they produce. The evaluations show that one algorithm does not outperform all
other algorithms, the performance is dependent on the QoS parameters.

The article [FKE11] by Flathagen et al. considers the optimal placement of a given
number of sinks in Wireless Sensor Networks (WSN). The authors distinguish two different
schemes in two categories, first, those that require knowledge about the geographical
positions of all nodes (geo-aware), and second, those that rely on the network topology
(topology-aware). In total four different sink deployment strategies are presented, two for
each category. First, K-means placement (KSP): it is used to find the cluster centroids for
a predetermined number of sinks. The clusters are generated and each node is assigned
to the cluster with the closest Euclidean centroid. Then the k centroids are repositioned
to the mass center of each cluster. After this step the iteration starts anew with the
assignment of the nodes to the closest centroids. Second, K-medoid placement (KDP),
is closely related to K-means placement, however, instead of using cluster centroids,
K-medoid builds on the concept of medoids. A medoid is defined as the most central
object in a cluster. Third, Shortest path placement (SPP) builds on KDP and differs
mainly in the distance measure employed. A shortest path matrix between all nodes
is created using Dijkstras algorithm, these shortest path distances now constitutes the
distance measure replacing the Euclidian distance measure used in the KDP algorithm.

9

2. Literature Review

SPP then finds k nodes that minimize the average number of hops in respect to the
remaining nodes in the network. Fourth, Routing Metric placement (RMP) provides an
extension to the SPP algorithm, that uses a metric for each edge before performing the
shortest path calculation. The sink placement will then be optimized according to the
chosen metric, instead of being optimized according to a separate measure, such as the
Euclidean distance. Experiments show that SPP, and especially RMP perform well under
all network conditions, and outperform the geo-aware methods, KSP and KDP.

In [SEHZ12] Safa et al. solve the multiple sink placement problem by proposing an
efficient and robust approach based on Particle Swarm Optimization (PSO) with local
search (LS), called Discrete Particle Swarm Optimization (DPSO). The authors define a
fitness function based on the DISCO network calculator, which calculates the network
delay and throughput and uses curves to describe the network traffic and services. The
objective function in the sink placement problem is to minimize the maximum worst case
delay for each sensor. After initializing a population of particles, at every generation,
an exchange operator is applied where two distinct locations are picked randomly and
swapped with a certain probability. Then, with a specific probability, one-cut crossover
is applied to all particles, with the global and personal best as parents. Next, two-cut
crossover with a certain probability is applied, again with the global and personal best
as parents. In experimental simulations the authors show that DPSO succeeded to get
better results than current alternative approaches, such as Genetic Algorithm-based Sink
Placement (GASP) presented in [PS08], in a shorter time.

10

CHAPTER 3
Multiple Sink Placement in
Undirected Flow Networks

In this chapter various techniques for solving the multiple sink placement problem
in undirected graphs are explained. First, a formal problem description and linear
programming formulations are explained in Sections 3.1 and 3.2, with the objective
function described in Section 3.2. Second, the heuristic algorithms are explained, the LP
Relaxation in Section 3.2.1, the Greedy Heuristic in Section 3.3, another greedy heuristic,
Greedy-Net in Section 3.5, a GRASP method in Section 3.4, and a clustering method in
Section 3.6. Finally, post optimization local search techniques are introduced in Section
3.7.

3.1 Formal Problem Description
In the sections 1.1 and 1.2 general introductions and assumptions were given, followed
by a formal problem description in this section. The problem is modelled such that a
directed graph G = (V, E) of the network is given. The vertices V represent the locations
of radio towers, and the edges E the connections of the vertices. For each vertex v ∈ V
a customer value val(v) is given, where val(v) is a function of the customer value of
the customers who use this vertex, with val : v → [0, 1]. A higher value indicates a
higher customer value. We denote by load(v) the accrued data load at vertex v, where
load(v) ≥ 0. In addition, the customer potential pot(v) is given for each vertex v, which
is a function of the number of potential new attracted customers in this area in the future,
it holds that pot : v → [0, 1]. A higher value indicates a higher potential to gain new
customers. The degree of each vertex is given by deg(v) and the maximum degree of the
graph by 4(G). For each edge e = (v, u) ∈ E (the edge between the two vertices v and
u) information about the maximum capacity (the maximum amount of data that can be
send over this edge) cap(e) is available. The variable cur(e) holds the current load for

11

3. Multiple Sink Placement in Undirected Flow Networks

each edge e ∈ E , the flow of this edge. Some of the vertices v ∈ V are fibreglass vertices,
which we denote by the set F ⊂ V. These fibreglass vertices v ∈ F act as sinks and the
whole data load must be directed to a vertex v ∈ F . Furthermore, a number k is given,
which denotes the number of vertices v ∈ F that can be upgraded to a new fibreglass
vertex. The fibreglass vertices are also denoted as sinks. For each vertex v a specific
cost cost(v) for upgrading this vertex to a sink is given. Furthermore, all other vertices
v ∈ V \ F are sources emitting load(v) as load (in fact all vertices v ∈ V are sources
emitting load(v) as load, however since vertices v ∈ F are also sinks, their load load(v)
can be omitted). The solutions are generated for a static moment in time, usually the
moment of maximum utilization of the network, or an average of all values for a certain
time period.

3.2 Integer Linear Programming Formulations
The presented integer linear programming formulations are able to produce an exact
and optimal solution for a given problem instance and represent the mathematical
formulation of the problem. The problem gets formulated in a mathematical model
whose requirements are represented by linear relationships. Linear programming is a
technique for the optimization of a linear objective function, subject to linear equality
and linear inequality constraints (for further information see [Dan16]). In the following
sections two different linear programming formulations are presented, and one linear
programming relaxation, 3.2.1. The objective function is presented after the two integer
linear programming formulations, 3.2.

Integer Linear Programming Formulation 1

In this formulation, the existing network is extended by two further artificial vertices. A
supersink T , which will be the only sink in the network, and a supersource S, which will
be the only source in the network. In addition, further edges are introduced connecting
the supersink and the supersource with all vertices respectively. Figure 3.1 illustrates the
changes for a given network. In 3.1b the vertices S and T correspond to the supersource
and supersink respectively. The dashed edges are connecting the supersource with all
vertices whereas the dotted edges are connecting all vertices with the supersink. In
addition, the capacity of each dashed edge e = (S, v) from the supersource S to a vertex v
is equal to the produced load load(v) of the connected vertex. Furthermore, the capacity
of each dotted edge e = (v, T) from a vertex v to the supersink T is equal to the sum of the
capacities of all incident edges of vertex v, therefore, cap((v, T)) =

∑
u∈V\{S,T} cap(u, v).

The first integer linear programming formulation uses the following additional variable.

The binary variable used((v, T)) holds the information whether edge e = (v, T), going
from the vertex v to the supersink T , is used or not:

used((v, T)) =
{

1 if edge e = (v, T) ∈ E is used, and therefore v ∈ V is a sink. (v ∈ F)
0 otherwise

12

3.2. Integer Linear Programming Formulations

(a) Example graph with vertices and edges.
(b) Example graph with added supersource S and
supersink T , and their corresponding edges.

Figure 3.1: Example graph and its extension with a supersource and supersink.

The incoming flow has to be equal to the outgoing flow for all vertices v ∈ V except the
supersource S and supersink T .∑

u∈V
cur((u, v)) =

∑
w∈V

cur((v, w)) ∀v ∈ V \ {S, T}

The correct number of k sinks has to be placed. The vertices v connected to an edge
e = (v, T) with value used((v, T)) = 1 are the sinks in the final solution.∑

v∈V
used((v, T)) = k

The edge capacities cap((v, u)), v, u ∈ V can not be exceeded. The edges e = (v, T) going
from a vertex v to the supersink T are a special case. These edges can only be used if
used((v, T)) = 1.

cur((v, u)) ≤ cap((v, u)) ∀e = v, u ∈ E \ {e = (v, T)}
cur((v, T)) ≤ cap((v, T)) ∗ used((v, T)) ∀e = (v, T) ∈ E

Finally, the following constraints have to be considered.

cur((v, u)) ≥ 0 ∀e = (v, u) ∈ E

The presented formulation is correct. Two artificial vertices are added to the network,
representing a supersource S and a supersink T . The supersource is connected to all
vertices by edges with a capacity equal to the produced load load(v) of the corresponding
vertex v. All vertices are connected to the supersink by edges with a capacity equal to
the sum of the capacities of all incoming edges of the corresponding vertex. However,

13

3. Multiple Sink Placement in Undirected Flow Networks

this edge can only be used if this vertex v is a sink (used((v, T)) = 1). In this network,
the incoming flow is equal to the outgoing flow for each vertex, the capacities are not
exceeded. The objective function seeks a maximum flow from the supersource to the
supersink. The k edges (connecting a vertex v with the supersink T) maximizing the
objective function are chosen. The objective function is presented at the end of the next
section, 3.2.

Integer Linear Programming Formulation 2

In the second integer linear programming formulation no additional vertices like the
supersink and supersource are introduced. However, big M and N , which are large
integer values, and following additional variables are used.

The binary variable sink(v) holds the information whether vertex v is a sink or not:

sink(v) =
{

1 if vertex v ∈ V is a sink, therefore v ∈ F
0 otherwise

The variable uload(v) holds the percentage of how much of the produced load load(v)
of vertex v can be processed. Therefore, 0 ≤ uload(v) ≤ 1.

The variable dir((v, u)) holds the information about the flow direction of an edge
e = (v, u):

dir((v, u)) =
{

1 if the load flows from vertex v to vertex u
0 if the load flows from vertex u to vertex v

The following equations ensure that the data flow is handled correctly and given constraints
are not exceeded.

The correct number of k sinks has to be placed.∑
v∈V

sink(v) = k

The edge capacities cap((v, u)) can not be exceeded.

cur((v, u)) ≤ cap((v, u)) ∀e = v, u ∈ E

The incoming flow has to be equal to the outgoing flow. Sinks are an exception where
the outgoing flow has to be 0, to ensure this behaviour a big M formulation is used.∑

u∈V
cur((u, v)) + uload(v)load(v) ≤ sink(v)M +

∑
w∈V

cur((v, w)) ∀v ∈ V

∑
u∈V

cur((u, v)) + uload(v)load(v) ≥ (−1)sink(v)M +
∑
w∈V

cur((v, w)) ∀v ∈ V

∑
u∈V

cur((v, u)) ≤ (1− sink(v))M ∀v ∈ V

14

3.2. Integer Linear Programming Formulations

The load on each edge e = (v, u) can only flow in one direction.

cur((v, u)) ≤ dir((v, u))N ∀e = (v, u) ∈ E
cur((u, v)) ≤ dir((u, v))N ∀e = ((u, v)) ∈ E

dir(v, u) + dir(u, v) = 1 ∀e = (v, u), c = (u, v) ∈ E

Finally, the following constraints have to be considered.

cur((v, u)) ≥ 0 ∀e = (v, u) ∈ E

Objective Function

The objective function is a sum maximization of five sums, each weighted by constant
factors (ωobj

1 ...ωobj
5). The five terms are:

1. First, the total cost cost(v) of all used sinks v is minimized, and normalized by
the topX value, which determines the cost of the top x most expensive sinks. In
this case x is always equal to the number of placed sinks k.

2. Second, the accruing load load(v) of each vertex v is satisfied. For each vertex the
difference of the outgoing flow and the incoming flow, normalized by the accrued
load of vertex v, is calculated. Only the edges from the original network are
considered, therefore without edges to the artificial supersource S and supersink T .

3. Third, the accruing load of the vertices is satisfied as in the second term normalized
by the customer potential of this vertex, therefore, the term is multiplied with
pot(v).

4. Fourth, this term is equal to the third term, however, instead of the customer
potential the customer value val(v) is considered.

5. Fifth, the usage of an edge e = (v, u) is determined by its current load cur(v, u)
normalized by the capacity cap(v, u) of this edge, and should be minimized for all
edges. This sum of the usage of all vertices is normalized by the amount of edges
|V|.

Each term is always between (including) 0 and 1 before the multiplication with the
weighting constants.

15

3. Multiple Sink Placement in Undirected Flow Networks

Maximize:

(3.1)

ωobj
1 (1−

∑
v sink(v)cost(v)

topX
)

+ ωobj
2

∑
v

(
∑

u6=v cur((v, u))−
∑

w 6=v cur((w, v)))
load(v)

+ ωobj
3

∑
v

(
∑

u6=v cur((v, u))−
∑

w 6=v cur((w, v)))pot(v)
load(v)

+ ωobj
4

∑
v

(
∑

u6=v cur((v, u))−
∑

w 6=v cur((w, v)))val(v)
load(v)

+ ωobj
5 (1−

∑
v

∑
u6=v(cur((v,u))

cap((v,u)))
|E|

)

3.2.1 Linear Programming Formulation Relaxation

The linear programming relaxation of the presented 0-1 integer program is the problem
that arises by replacing the constraints that each variable must be 0 or 1 by a weaker
constraint, that each variable belongs to the interval between 0 and 1. In the presented
linear programming relaxation the variable sink(v), which defines whether vertex v
becomes a sink, gets relaxed. Instead of the strict enforcement used((v, T)) ∈ {0, 1}, the
variable used((v, T)) can take values in the interval 0 ≤ used((v, T)) ≤ 1. Therefore, the
relaxed integer program formulation consists of the following equations, based on the
formulation 1 in section 3.2.

∑
u∈V

cur((u, v)) =
∑
w∈V

cur((v, w)) ∀v ∈ V \ {S, T} (3.2)

∑
v∈V

used((v, T)) = k (3.3)

cur((v, u)) ≤ cap((v, u)) ∀e = (v, u) ∈ E \ {e = (v, T)} (3.4)
cur((v, T)) ≤ cap((v, T)) ∗ used((v, T)) ∀e = (v, T) ∈ E (3.5)

0 ≤ used(v, T) ≤ 1 (3.6)

In order to ensure the correct termination of the formulation the capacity cap((v, T)) of
the edges between each vertex vi and the supersink T have to be updated. Using positive
infinite, will yield unusable results, since the produced load load(v) of each vertex v gets
immediately satisfied with every value sink(v) > 0. In order to prevent this behaviour
the capacity cap((v, T)) gets changed to the sum of the capacity of all connecting edges,
exclusive the edge connecting v to the supersink T .

16

3.3. Greedy Heuristic

cap((v, T)) =
∑
u∈V

cap((u, v)) ∀v ∈ V (3.7)

Therefore the maximum flow which can flow from v to the supersink T equals the
maximum flow from all vertices u to v. In this case the relaxed sink(v) variable indicates
how much capacity of the connecting edges is used to achieve an optimal solution. The
sink(v) values of the relaxed solution can be used as probability that v is upgraded to a
sink in the integer solution. The algorithm of the production of the linear programming
relaxation solution and the rounding to a correct integer solution is described in the
pseudo code in 3.1. A simple extension of the algorithm is that the sinks are placed using
the probabilities given by the relaxed sink(v) values. This process is repeated a defined
amount of time and the best solution is taken.

Algorithm 3.1: LP Relaxation Rounding
Input: A graph, and a number k of sinks to set
Output: A graph with k new sinks

1 calculate LP Relaxation solution;
2 while not repeated a specific amount do
3 round to integer solution using the relaxed solution;
4 store as best solution if score is better than current best;
5 end
6 return best solution

3.3 Greedy Heuristic

A greedy heuristic selects the next sinks sequentially, which are chosen based on a
sink-choosing function Z. This procedure continues until a feasible solution has been
created and no more sinks can be placed. The basic idea for finding a solution is to chose
the next station on seven specific properties; The customer value val(v), the customer
potential pot(v), the average utilization of the outgoing edges, the average capacity
of the outgoing edges normalized using the maximum capacity C = max(cap(e)) of all
edges e, the degree deg(v) of the current vertex normalized by the maximum degree of
the graph 4(G), the produced data load load(v) of the current vertex normalized by
the maximum produced data load of the graph L = max(load(v)), the cost to upgrade
cost(v) the current vertex normalized by the maximum cost to upgrade of the graph,
O = max(cost(v)). Before each calculation of the Z values, the maximum flow of the
network must be calculated to obtain the current correct cur(e) values for each edge e.

17

3. Multiple Sink Placement in Undirected Flow Networks

Z(v) = ωgreedy
1 val(v) + ωgreedy

2 pot(v) + ωgreedy
3

∑
u∈V

cur((v,u))
cap((v,u))
|E|

+ ωgreedy
4

∑
u∈V

cap((v, u))
C

+ ωgreedy
5

deg(v)
4(G) + ωgreedy

6
load(v)

L
+ ωgreedy

7 (1− cost(v)
O

)

(3.8)

The Z values are calculated for all vertices that are not sinks already, and the vertex v
with the maximum Z(v) value is chosen to become the next sink. Then the maximum
flow of the network is calculated to update the cur(e) values for each edge e. This
procedure is repeated until all k sinks are placed. Furthermore, in order to improve the
results, the vertices of the top x Z values can be consecutively upgraded to sinks, and
the vertex with the best performance according to the objective function is picked. A
pseudo code example is given with algorithm 3.2.

Algorithm 3.2: Greedy-Heuristic
Input: A graph, and a number k of sinks to set
Output: A graph with k new sinks

1 while not all sinks set do
2 for all vertices which are not sinks do
3 calculate the Z value for the current vertex;
4 end
5 check the top x Z value vertices;
6 pick the vertex with the best performances according to the objective function;
7 upgrade this vertex to a sink;
8 calculate/update the max flow of the new graph;
9 end

10 return graph with k sinks

The greedy heuristic can be randomized, instead of picking vertices of the top x Z values
one of the top y% candidates according to the sink-choosing function Z is chosen at
random at each iteration. A pseudo code example is given with algorithm 3.3.

The (random) greedy algorithm has a running time of O(k(V − k−1
2 +maxflow)), for each

of the k sinks to place all remaining non-sink vertices are checked and their Z value is
calculated. After each iteration the number of available non-sink vertices gets reduced by
1, and therefore, the number of vertices which need to be checked is also reduced by 1. In
addition, the current max flow, with a running time of maxflow, is calculated after each
iteration. In chapter 5 two used algorithms and methods for calculating the maximum
flow in undirected networks are presented and discussed. The faster method, based
on Dinic’s algorithm ([Din70]), has a running time of O(V 2E), resulting in a running
time of O(k(V − k−1

2 + V 2E)) for the (random) greedy algorithm. Since, calculating the
maximum flow is the dominating part, O(k(V 2E)) is the final running time.

18

3.4. GRASP

Algorithm 3.3: Random Greedy-Heuristic
Input: A graph, and a number k of sinks to set
Output: A graph with k new sinks

1 while not all sinks set do
2 for all vertices which are not sinks do
3 calculate the Z value for the current vertex;
4 end
5 pick a random vertex of the top y% Z value vertices;
6 upgrade this vertex to a sink;
7 calculate/update the max flow of the new graph;
8 end
9 return graph with k sinks

3.4 GRASP
The greedy randomized adaptive search procedure (GRASP) is a metaheuristic, consisting
of m iterations made up from successive constructions of a greedy randomized solution
and subsequent iterative improvements of it through a local search. The greedy heuristic
is based on the sink-choosing function Z presented in 3.3. In order to obtain variability
in the candidate set of greedy solutions one of the top x% candidates according to the
sink-choosing function Z is chosen at random at each iteration when building up the
initial solution. The initial solutions are further improved using a local search technique.
In detail, the Exchange Sinks Random method presented in 3.9, which exchanges one
used sink with a random vertex that is not used as sink in the current solution. Each
solution that provides an improvement according to the objective function is picked, and
the process is repeated until no further improvements are found. A pseudo code example
is given with algorithm 3.4.

Algorithm 3.4: GRASP
Input: A graph, and a number k of sinks to set
Output: A graph with k new sinks

1 while not all m iterations done do
2 calculate current greedy solution;
3 improve the current solution using a local search technique;
4 store as best solution if score is better than current best;
5 end
6 return best solution

The running time and explanation of the random greedy heuristic is presented in 3.3, and is
O(k(V−k−1

2 +maxflow)), where maxflow is the running time of a maximum flow algorithm.
Performing the Exchange Sinks Random method needs O(kV) to finish. Therefore, the
running time of the GRASP algorithm is O(m(k(V − k−1

2) + kV + k maxflow)).

19

3. Multiple Sink Placement in Undirected Flow Networks

3.5 Greedy-Net
Greedy-Net, called net because the sinks are equally distributed over all vertices like a net,
is an alternative greedy heuristic which also selects the sinks sequentially. Sinks are chosen
depending on their potential maximum influence on the graph score, and their distance
to other sinks. In general, the problem is transformed to a maximum coverage problem,
where several sets are given. The set may have some elements in common, and at most k
sets have to be picked such that the maximum number of elements are covered. First, the
sets have to be defined. Each vertex vi gets assigned several other neighbouring vertices.
Vertex vj gets assigned to vertex vi, the main vertex, if the accrued (produced) load
load(vj) of vertex vj can be fully satisfied by a possible sink at vertex vi. Fully satisfied
means that, for at least one path from vi to vj (with the denotion vi, vi+1, ..., vi+n, vj for
the intermediate steps) the equation cap(vj−m−1, vj−m) ≥

∑m
0 load(vj−m)∀0 ≤ m < n

is valid. In other words, the sum of the accrued load of all vertices along the path from
vj to vi can be satisfied, without violating any capacity constraints. Therefore, maximum
|V|2 sets are defined. However, the number of sets can be reduced, such that each set
which is fully contained within another set is removed. The remaining sets are denoted as
Va, with a indicating the amount of sets. Figure 3.2a illustrates all found sets (note that
each vertex on its own is already a set) and figure 3.2b gives the final sets where each set
which is fully contained within another set is removed. Second, the accrued load of each
vertex v gets weighted using the corresponding customer value val(v), customer potential
pot(v), and upgrade cost cost(v). Then the greedy algorithm at each stage chooses a,
not already picked, set that contains the maximum weight of uncovered vertices.

(a) Example graph with all sets. (b) Example graph with the final sets.

Figure 3.2: Example graph with all found sets, and the final remaining sets after all sets
which were fully contained within another set were removed.

At each stage the set score setscore(Va) of each set Va is defined as the sum of the
setscore(v) of each vertex v contained in Va:

setscore(Va) =
∑

v∈Va

setscore(v) ∀Va, a > 0

20

3.6. Clustering

Whereas the setscore(v) of a vertex v is 0 if the vertex v is already in a picked set,
otherwise it is a weighted value of the corresponding customer value val(v), customer
potential pot(v), and upgrade cost cost(v), using the weights ωobj of the objective
function, indicating the importance of this vertex:

setscore(v) =

0 if any set containing vertex v has already been chosen, v is covered
ωobj

3 pot(v) + ωobj
4 val(v)− ωobj

1
cost(v)

max(cost(v)) else

The set Va with the highest set score setscore(Va) is taken at each iteration. One
advantage of this approach is that no maximum flow needs to be calculated for each
intermediate step after a new sink was placed. This significantly speeds up the calculation
time. Figure 3.3 shows two times the same example graph with three different picked
sets each time.

(a) Example graph with picked sets. (b) Example graph with different picked sets.

Figure 3.3: Example graphs where three sets were picked.

The Greedy-Net algorithm has a running time of O(V 2 +k(V 2−V k−1
2)), for each vertex a

set gets calculated, where, in the worst case, all vertices are checked, in total V 2. For the
k sinks to place all remaining non-chosen sets are checked (O(V − k−1

2)) and their current
scores are calculated needing V in the worst case. After each iteration the number of
available non-chosen sets gets reduced by 1, and therefore, the number of sets which need
to be checked is also reduced by 1. The final running time would be therefore O(V 2).

3.6 Clustering
The presented clustering method is inspired by k-medoids clustering, which aims to
minimize the distance between points labeled to be in a cluster and a point designated
as the center of that cluster. However, instead of using the Manhattan or Euclidean
distance between two vertices, the shortest path with a specific distance measure is used.
In detail, to determine the distance between two connected vertices v to u following
asymmetric distance measure is used.

21

3. Multiple Sink Placement in Undirected Flow Networks

Algorithm 3.5: Greedy-Net-Heuristic
Input: A graph, and a number k of sinks to set
Output: A graph with k new sinks

1 calculate the sets, one for each vertex;
2 calculate the score for each vertex;
3 while not all sinks set do
4 for all sets do
5 calculate the set score for the current set;
6 store the best set;
7 end
8 mark all vertices of the best set as covered;
9 upgrade the main vertex of the best set to a sink;

10 end
11 calculate the max flow of the new graph to obtain the correct objective function

values;
12 return graph with k sinks

dv,u = deg(v)
cap((v, u))load(u)(1− val(u))(1− pot(u)) (3.9)

The distance between two vertices from v to u is mainly defined by the capacity cap(e), e =
(v, u) of the connecting edge and the produced load load(u) by vertex u. A high cap(e)
together with a low load(u) indicates a lower distance, whereas a low cap(e) together
with a high load(u) indicates the opposite. For the distance measure the load(u) gets
fine tuned depending on the customer value val(u) and potential pot(u), since higher
values suggest more important vertices, therefore, the produced load by such vertices
gets reduced by the same amount for the distance measure. Furthermore, at vertices
with a high degree deg(u) the load can be split between different connections.

At first k random vertices are picked as initial cluster centres, or an initial random greedy
solution is generated with the sinks as initial cluster centres. Then all pairs shortest paths
of the graph are calculated, using the Floyd-Warshall or Johnson-Dijkstra algorithm.
Furthermore, all vertices are assigned to one of the k chosen centres with the shortest
path distance. These vertices form a cluster. Within these clusters, the average distance
from one vertex to all other vertices is calculated using the previously computed shortest
path distances. The vertex with the lowest average distance becomes the new cluster
centre. This loop is repeated x times or until no more changes of the centre occur.

Figure 3.4 presents two example iterations of the clustering algorithm. In figure 3.4a the
first iteration is given and in figure figure 3.4b the second iteration, where three vertices
of the red cluster became members of the blue cluster. Furthermore, their cluster centre,
denoted with C changed.

22

3.6. Clustering

(a) First iteration. (b) Second iteration with changed clusters.

Figure 3.4: Two example iterations, where identically coloured vertices represent clusters
and vertices marked with C the corresponding cluster centre. In the second iteration
two cluster centres and their members changed.

It is possible to randomize the process in such a way that each vertex does not get
assigned to the nearest centre, but to each centre with a specific probability dependent
on the shortest distance to all centres.

pv,w = dv,k∑
u∈centres dv,u

w ∈ centres (3.10)

The probability pv,w that vertex v gets assigned to centre w equals the share of dv,w in
the sum of all distances from v to all centres. In this case the loop is repeated a certain
amount of time.

Algorithm 3.6: Clustering
Input: A graph, and a number k of sinks to set
Output: A graph with k new sinks

1 calculate all pairwise shortest paths;
2 calculate an initial solution, and use the sinks as cluster centres;
3 while clusters changed and not maximum iterations reached do
4 assign each vertex to the nearest cluster center;
5 calculate new cluster centers, using the average distance from one vertex to all

other vertices;
6 end
7 return latest solution

The Floyd-Warshall algorithm has a running time of O(V 3), assigning all vertices to a
cluster is done in O(V), and calculating the average distances within a cluster needs

23

3. Multiple Sink Placement in Undirected Flow Networks

Algorithm 3.7: Clustering Random
Input: A graph, and a number k of sinks to set
Output: A graph with k new sinks

1 calculate all pairwise shortest paths;
2 calculate an initial solution, with the sinks as cluster centers;
3 while clusters changed and not maximum iterations reached do
4 assign each vertex to a cluster center with a probability dependent on the

distance;
5 calculate new cluster centres, using the average distance from one vertex to all

other vertices;
6 end
7 return latest solution

O(V 2) time. The running time of the clustering algorithm is therefore O(V 3 +xV 2 +xV),
with x as the maximum number of iterations. It is clearly visible that the running time
is dominated by the all pairs shortest paths algorithm while x < V resulting in O(V 3),
with x ≥ V the running time is O(xV 2).

3.7 Post Optimization
In order to improve existing solutions, two simple local search algorithms are presented.
First, the Exchange-Sinks-Depending-on-Z algorithm in 3.7.1, and second, the Exchange
Sinks Random algorithm in 3.7.2 which is a random version of the first algorithm.

3.7.1 Exchange Sinks Depending on Z

The Exchange-Sinks-Depending-on-Z algorithm exchanges an existing, chosen sink with
another vertex depending on their sink-choosing function Z value presented in 3.3. All
placed sinks (or a subset of all sinks) are iterated. At each step the current sink gets
removed and all Z values of the remaining vertices are calculated. The removed sink gets
replaced by the top Z value vertex. The data flow is updated and the new graph score
calculated. If the new solution is better performing the changes retain, otherwise the
previous solution is restored. A pseudo code is given in 3.8.

The local search has a running time of O(V 2). For each sink all Z values of all vertices
are calculated.

3.7.2 Exchange Sinks Random

The Exchange-Sinks-Random algorithm exchanges an existing, chosen sink with another
random vertex. All placed sinks (or a subset of all sinks) are iterated. At each step the
current sink gets removed, and replaced by a random vertex. The data flow is updated
and the new graph score calculated. If the new solution is better performing the changes

24

3.7. Post Optimization

Algorithm 3.8: Exchange-Sinks-Depending-on-Z
Input: A graph, an initial solution
Output: A copy of the graph with equal or better score

1 for all sinks do
2 remove current sink;
3 calculated all Z values for all vertices;
4 replace the removed sink with the highest Z value vertex;
5 calculate the new graph score;
6 if the new score is higher than the old score then
7 keep the current solution;
8 else
9 restore previous solution;

10 end
11 end
12 return latest solution

retain, otherwise the previous solution is restored. For each sink r random vertices are
tested. A pseudo code is given in 3.9.

The local search has a running time of O(V r). For each sink all r random vertices are
tested.

Algorithm 3.9: Exchange-Sinks-Random
Input: A graph, an initial solution
Output: A copy of the graph with equal or better score

1 for all sinks do
2 remove current sink;
3 for r times do
4 replace the removed sink with a random vertex;
5 calculate the new graph score;
6 if the new score is higher than the old score then
7 keep the current solution;
8 else
9 restore previous solution;

10 end
11 end
12 end
13 return latest solution

25

CHAPTER 4
An Exact Algorithm for Trees

In this chapter an exact algorithm for solving the multiple sink placing problem in
undirected tree graphs is introduced. First, a formal description and a mathematical
formulation is presented. Then the exact algorithm with an according proof is explained.

4.1 Background and Formal Problem Description
In the sections 1.1 and 1.2 general introductions and assumptions were given, followed by
a formal problem description in section 3.1. In this chapter a related simpler problem is
introduced, where the problem is to find the minimum amount of needed sinks, such that
the whole accrued (produced) load load(v) of all vertices v is satisfied without violating
any capacity constraints. Therefore, upgrade cost cost(v), customer value val(v), and
customer potential pot(v) of each vertex v are not considered, and a number k of sinks
to place is not needed. The notations are the same as in section 3.1.

4.2 Integer Linear Programming Formulation
This formulation, is similar to the formulation presented in 3.2, the existing network is
extended by two further artificial vertices. A supersink T , which will be the only sink
in the network, and a supersource S, which will be the only source in the network. In
addition, further edges are introduced connecting the supersink and the supersource
with all vertices respectively. Figure 3.1 illustrates the changes for a given network. In
3.1b the vertices S and T correspond to the supersource and supersink respectively. The
dashed edges are connecting the supersource with all vertices whereas the dotted edges
are connecting all vertices with the supersink. In addition, the capacity of each dashed
edge e = (S, v) from the supersource S to a vertex v is equal to the produced load load(v)
of the connected vertex. Furthermore, the capacity of each dotted edge e = (v, T) from a
vertex v to the supersink T is equal to the sum of the capacity all incident edges of vertex

27

4. An Exact Algorithm for Trees

v, therefore, cap((v, T)) =
∑

u∈V\{s,T} cap((v, u)). The variable used((v, T)) holds the
information whether edge e = (v, T), going from the vertex v to the supersink T , is used
or not.

The only main difference is the objective function, which is to minimize the number of
placed sinks. Therefore, the sum of all used((v, T)) is minimized.

Minimize:

(4.1)
∑
v ∈V

used((v, T))

4.3 Greedy Tree Solver
The Tree Solver is a special algorithm especially suitable for solving trees, however can
be used to solve any graph. The method produces an optimal solution for trees, and valid
solutions for non-tree graphs. In contrast to other presented algorithms the Tree Solver
uses a different target function. Given is an input graph, and the Tree Solver produces a
solution where all vertices are satisfied with the minimal amount of sinks set. In contrary
to other methods, customer value, customer potential, and upgrade cost of each vertex
are not considered and needed to produce the solution. Hence, the Tree Solver calculates
a solution where all vertices are satisfied, and the number of placed sinks is minimal.
Sinks are solely placed in regard of their ability to satisfy vertices, without focusing on
customer value, customer potential, and upgrade cost. Since the algorithm places as
much sinks as needed to satisfy all vertices no input parameter k, the amount of sinks to
place, is used.

All vertices are iterated in a DFS (Depth First Search) postordering, this means the
algorithm always starts at a leaf vertex with degree 1, and every currently processed
vertex is connected to exactly one parent and one or more already processed vertices
(see figure 4.1a). The data load which needs to be processed for each vertex is defined
as processLoad(v), processLoad(v) must be 0 for already processed vertices, and
processLoad(v) is initialized with 0. At each iteration three steps are performed. First,
in step one, the load to process processLoad(v) of vertex v is updated, processLoad(v) =
processLoad(v) + load(v). Then as much load as possible is sent back to sinks within
the already visited/processed vertices. Therefore, all paths to sinks within the visited
vertices are checked. In order to decrease the running time the maximum load which
can be send to a sink over a particular visited vertex can be stored and updated at each
iteration. In this case only the visited neighbours of the current vertex need to be checked.
In detail, at the current iteration, the maximum possible flow send able from vertex v to
a sink minus the amount of flow which was actually send during the current iteration is
stored as sendable(v). During the next iteration the neighbouring vertex u only needs
to check the maximum possible flow send able to v, min(sendable(v), cap(u, v)) , instead
of checking all paths, and calculates the same value sendable(u) for itself in the same

28

4.3. Greedy Tree Solver

way. This method can be safely used since the only path, if any exists, to an already
visited sink would be over the current vertex, otherwise it would not be a tree. Therefore,
checking the value of the neighbouring vertices suffices. If the whole load to process,
processLoad(v), of the current vertex v is satisfied the algorithm proceeds to the next
vertex u. Figure 4.1b illustrates this step, with the green framed circle representing sinks,
and the red arrows the vertices which were checked. Second, in step two, if the remaining
data load to process, processLoad(v) = processLoad(v) − loadProcessedInStepOne,
is greater than 0, the algorithm checks if processLoad(v) can be forwarded to the parent
vertex w, if processLoad(v) ≤ cap((v, w)). In this case, the data load of the parent
vertex is updated, processLoad(w) = processLoad(w) + processLoad(v), and the next
vertex w is processed. See figure 4.1c for an illustration of this step. Third, in step 3, if
the load to process processLoad(v) can not be fully forwarded to the parent vertex, v
must be upgraded to a sink, and the algorithm proceeds to the next vertex to process (see
figure 4.1d). The algorithm terminates after all vertices are iterated, or the maximum
amount of sinks was placed. In the latter case an optimal solution is not guaranteed.
Furthermore, if more sinks to place are available after the termination of the DFS
iteration, the remaining sinks are placed at non-sink vertices with the maximum sum of
the (weighted) customer value and customer potential. A pseudo code example of the
basic situation, where no maximum amount of sinks allowed to place is specified, is given
with algorithm 4.1. Furthermore, for this situation a proof is presented in section 4.4.

Algorithm 4.1: TreeSolver
Input: A tree T=(V,E) with loads and capacities
Output: A minimum set of sinks for T

1 init sendable(v) = 0 for each vertex v;
2 for each vertex vi in DFS postordering do
3 processLoad(vi) = processLoad(vi) + load(v);
4 send as much current data as possible back to already visited vertices/sinks;
5 (check sendable(vj) of each visited neighbouring vertex vj of vi and calculate

processLoad(vi) = processLoad(vi)− min(sendable(vj), cap(vi, vj)) until
processLoad(vi) = 0 or all neighbours vj checked

6 sendable(vi) = sum of the maximum possible flow send able from vertex vi to
each neighbour vj minus the amount of flow which was actually send);

7 if processLoad(vi) > 0 and edge capacity from current vertex vi to its parent
p(vi) ≥ processLoad(vi) then

8 forward the whole current data to parent vertex;
9 (processLoad(p(vi)) = processLoad(p(vi)) + processLoad(vi));

10 else
11 upgrade the current vertex vi to a sink;
12 end
13 end
14 return tree with satisfied vertices and minimum amount of sinks

29

4. An Exact Algorithm for Trees

The Greedy Tree Solver algorithm has a running time of O(V +E), determined by the
DFS, each vertex is processed once, and at each iteration all the neighbours of the current
vertex are checked.

The algorithm works the same for non-tree graphs, with two minor changes. First, the
load, sendable(v) which can be send back over a specific vertex v to already placed sinks
can not be stored for each vertex, since more than one path to each sink could exist. This
means, at each iteration the paths have to be checked anew, resulting in a higher running
time. Second, again since the graph is not a tree, more than one neighbour could be
available for forwarding the load. In this case the algorithm checks if the sum of the edge
capacity to all these neighbours is greater or equal than the remaining load to process,
processLoad(v). If not the current vertex is again upgraded to a sink, otherwise the
load to process processLoad(v) is equally distributed, in respect to their edge capacity,
between all possible neighbours. For non-tree graphs the algorithm will not produce a
guaranteed optimal solution.

4.4 Greedy Tree Solver Proof

The Greedy Tree Solver algorithm produces optimal solutions for trees. The proof of this
is presented in this section.

Theorem 1. Given is a tree T=(V,E) with n vertices, denoted as v1, ..., vn. Algorithm
TreeSolver computes a valid solution (all vertices are satisfied) with a minimum number
of sinks.

Proof. The Theorem is proven using induction. Claim: at each iteration i of the
algorithm, the first i vertices are satisfied and processed, and i ≤ n. Furthermore,
it holds that, for these i vertices the number of set sinks is minimal, and for these i
vertices v1, ..., vn no constraints are violated.

Base State i = 0, all invariants are valid, 0 vertices are satisfied and 0 sinks are set.
The claim obviously holds for the initial state.

Inductive Step i > 0, i− 1 vertices are satisfied with a minimal number of set sinks
and no constraints of these i− 1 vertices are violated.

Due to DFS search postorder, the connections of the currently treated vertex can be split
in two groups as presented in Figure 4.2a. First, the group of already visited vertices,
denoted by X, second, the group of not processed vertices Y , with the parent vertex p(vi)
of vertex vi as only important vertex and only connection of Y to vertex vi. vi is the
single connection of X and Y . Furthermore, there is no other path from any vertex in X
to any vertex in Y , other than the sole path over vi, otherwise it would not be a tree,
since if there would be a vj , such that a path from any vertex in X to any vertex in Y over
vertex vj ({X} → vj → {Y } would be possible, then together with the path from any

30

4.4. Greedy Tree Solver Proof

vertex in X to any vertex in Y over vertex vi, the path {X} → vi → {Y } → vj → {X}
would form a cycle and the graph would not be a tree. See Figure 4.2b for an illustration.

There are three possibilities to process the load of the current vertex vi during the
inductive step, and satisfy (adding the current vertex to the group of vertices X) this
vertex without violating any constraints and placing the minimum amount of needed
sinks.

First, the flow is sent to sinks located in area X using augmenting paths (see Figure 4.1b).
If the whole flow located at the current vertex vi can be satisfied in this way, the current
vertex can be added to X and i vertices are satisfied, no constraints are violated and the
number of sinks is minimal, since no further sinks were placed. This would satisfy the
claim. However, in the case that not all of the current load at the current vertex vi can
be handled by existing sinks, as much load as possible is sent over the augmenting paths.
This would reduce the remaining load as much as possible, and since no other path could
use the remaining edge capacities, this is a valid step.

Second, after step 1, if there is current load left, the only possibility to further send the
load is to the parent vertex p(vi) in Y (see Figure 4.1c). If cap((vi, p(vi))) is greater or
equal to the remaining current load, the whole current load can be forwarded to the
parent vertex. In this case vertex vi is satisfied, no constraint violated, and the number
of sinks is minimal, since no further sinks were placed and the amount of sinks in for the
vertices in area X is minimal. This, again, satisfies the claim.

Third, after step 1 and 2, if there is load left, there is no further option to send the load.
All possibilities, sending load to existing sinks, and forwarding load to the parent vertex
were exhausted. In this case the current vertex must become a sink in order to satisfy
the current load (see Figure 4.1d). In this case the number of sinks is minimal since all
possibilities to satisfy the current vertex were checked, no constraints were violated, and
the number of sinks in step i − 1 is minimal. Again this satisfies the claim. The load
sent from vi to p(vi) in step 2 can be returned to vi. However, this would not influence
the final result (all vertices satisfied and minimum amount of sinks placed) and further
computation of the algorithm, since the edge (vi, p(vi)) will not be used in the further
computation steps.

These three possibilities to process the load show that the maintenance state is always
valid, and together with the valid initialization state the algorithm produces optimal
solutions for trees.

Theorem 2. Given is a tree T=(V,E) with n vertices, denoted as v1, ..., vn. Algorithm
TreeSolver has a running time of O(V + E).

Proof. The tree is traversed using Depth-First-Search (DFS), which has a worst-case
running time of O(V + E). At each iteration all the neighbours of the current vertex
vi are checked (implicitly done by DFS) and load of vi is, if at all, sent to these

31

4. An Exact Algorithm for Trees

neighbours (sendable() of visited neighbours is reduced, and/or processLoad() of the
parent increased). This results in a running time determined by DFS, therefore, O(V +E).

32

4.4. Greedy Tree Solver Proof

(a) Current vertex vi, already visited vertices
(v0, ..., vi−1), and the parent vertex p(vi) of vi.

(b) Sending flow to already visited vertices
(v0, ..., vi−1).

(c) Sending flow to the parent of vertex vi. (d) Upgrading the current vertex vi to a sink.

Figure 4.1: Possibilities how to handle the accruing (produced) data load. Green framed
circles represent sinks, and red arrows show possible flow directions

33

4. An Exact Algorithm for Trees

(a) Valid tree, with already processed vertices X,
unprocessed vertices Y , and the only connecting
vertex v1.

(b) Invalid tree, with already processed vertices
X, unprocessed vertices Y , and the connecting
vertices v1 and v2.

Figure 4.2: Valid and invalid tree

34

CHAPTER 5
Maximum Flow Calculation

Calculating the maximum flow of a graph is an important, commonly reoccurring part of
the presented algorithms. Therefore, the implementation and used method should be
performant. Furthermore, since the used graphs are undirected the flow direction of each
edge should be selected depending on their contribution to the maximum flow. In 5.1 a
general method of calculating a maximum flow in an undirected network is presented,
and in section 5.2 the used algorithms for the maximum flow calculation are introduced.

5.1 Maximum Flow in an Undirected Network
In order to obtain a maximum flow of an undirected graph, two algorithms are introduced
which are based on the ideas presented in [SGJ04]. The algorithms use the concepts of
the Ford–Fulkerson method, which calculates the maximum flow of a graph based on the
computation of flow augmenting paths. These paths take an existing flow and construct
a new flow that is greater than the original flow. The two used algorithms are equivalent
to just applying the Ford-Fulkerson method to the directed graph obtained from original
graph, where each edge got replaced by two directed arcs, one in each way. Figure 5.1
shows an example of an undirected graph and its corresponding directed graph. The
Ford–Fulkerson method can be applied due to the fact that, considering the two arcs
between a given pair of vertices, an arc is used in a flow, the other arc cannot be used,
otherwise it would not satisfy the skew symmetry. In [SGJ04] a proof of correctness is
presented.

Each graph edge is replaced by two arcs, as mentioned above, and then the algorithms are
applied. The two algorithms are similar to the Edmonds–Karp (see [EK72]) algorithm
and Dinic’s algorithm (see [Din70]). The sole difference is that each time the flow between
vertex u and vertex v is increased by an amount ∆, the flow between vertex v and vertex
u is decreased by ∆. Instead of updating the residual graph, the reverse arc is updated.
In detail, this property is called the skew symmetry property, and says that the net flow

35

5. Maximum Flow Calculation

(a) Undirected Graph. (b) Directed Graph.

Figure 5.1: An undirected graph and its corresponding directed graph.

Instance 100 500 1000 2000 5000 10000
DI EK DI EK DI EK DI EK DI EK DI EK

0.0 0.004 0.01 0.034 0.136 0.035 0.104 0.191 0.643 1.078 2.515 4.844 9.783
0.1 0.001 0.001 0.008 0.027 0.038 0.138 0.217 0.581 1.351 3.565 6.373 15.464
0.4 0.001 0.002 0.018 0.062 0.052 0.298 0.323 1.218 2.568 7.869 12.346 30.58
1.0 0.001 0.003 0.017 0.102 0.114 0.475 0.657 1.888 4.163 12.548 28.464 56.516

Table 5.1: Dinic’s (DI) algorithm and Edmonds-Karp (EK) algorithm time (in s)

from a vertex v to a vertex u is the negative of the net flow in the reverse direction. The
running time of the algorithms is determined by the maximum flow algorithms they are
based on. In detail this would be a running time of O(V E2) for Edmonds-Karp, and
O(V 2E) for Dinic’s algorithm.

The running time of Dinic’s algorithm and Edmonds-Karp algorithm is compared for
instances with 100, 500, 1000, 2000, 5000 or 10000 vertices, and 10% of these vertices as
sinks. Four Different versions of the same graphs were used for testing, first, the graph
as a tree (with an edge-add probability of 0.0), second, with an edge-add probability of
0.1, third, with an edge-add probability of 0.4, and fourth with an edge-add probability
of 1.0, which represents a Delaunay triangulated version of the graph. These instances
were created using a graph generator, for furthermore and detailed descriptions about
the graph creation process see section 6.1. In the table 5.1 the running time of both
algorithms in seconds for the different instances is presented. Dinic’s algorithm is faster
in all test instances with a factor of ~2.

5.2 Maximum Flow Algorithm
The Edmonds-Karp and Dinic’s algorithm calculate the maximum flow from one source
s to one target sink t. In order to get correct maximum flow results with more than
one source and one sink, artificial vertices have to be added to the graph. One artificial

36

5.2. Maximum Flow Algorithm

supersource (in figure 5.2b denoted as S) and one artificial supersink (in figure 5.2b
denoted as T). The supersource is connected to all vertices with edges, whose capacity is
equal to the produced load of their corresponding connecting vertex (the dot-like lines
connected to vertex S in 5.2b). Every vertex produces a certain amount of load, therefore
every vertex is considered as a source. On the other hand, the supersink is connected
to all sinks of the graph with edges whose capacity is the sum of the capacity of all
edges connected to the corresponding sink in the graph (the dotted lines connected to
vertex T in 5.2b). After these updates the algorithms for calculating the maximum flow
between the supersource and supersink can be applied. Finally, in order to obtain the
final maximum flow of the graph the added artificial supersource and supersink with
their connecting edges are removed. Figure 5.2 shows an illustration of the calculation of
a maximum flow with more than one source and sink.

(a) Given graph with one sink X (green border),
one more sink X + 1 is added (dotted green
border).

(b) Calculating the new maximum flow, with
adding a supersource S and a supersink T , with
corresponding edges.

Figure 5.2: Maximum flow calculation with more than one source and sink.

The presented algorithms often use an iterative approach, for example the presented
greedy algorithm in 3.3, which means that one sink is added to a solution at a time.
Calculating the maximum flow each iteration is time consuming. Therefore, in order
to decrease the needed time a specific concept of the Ford–Fulkerson method can be
exploited. The Ford-Fulkerson method calculates the maximum flow of a graph based
on the computation of all flow augmenting paths between the source and the sink. If a
vertex is added or removed as sink in step y+ 1, the already calculated maximum flow of
step y can be used to calculate the new maximum flow in shorter time.

First, in the case that a new sink is added in step y + 1 the already calculated maximum
flow of step y can be used. In detail, the maximum flow graph (as seen in figure 5.2b)
of step y is used with one more edge added from the new sink to the supersink. As
mentioned before, this edge needs to have a capacity which is equal to the sum of the
capacity of all edges connected to the corresponding sink in the graph. On this new
graph the maximum flow algorithms can be applied, and since most of the augmenting

37

5. Maximum Flow Calculation

Instance 100 500 1000 2000 5000 10000
EX AN EX AN EX AN EX AN EX AN EX AN

0.0 0.023 0.036 0.274 0.697 0.387 5.011 1.242 43.893 9.404 893.312 30.909 2983.662
0.1 0.002 0.010 0.088 0.704 0.354 4.535 1.431 63.901 11.100 1148.085 39.111 4245.618
0.4 0.006 0.010 0.141 1.093 0.575 7.317 2.460 87.959 16.134 1518.826 65.390 5908.233
1.0 0.007 0.018 0.221 1.502 0.930 12.847 3.987 143.321 26.905 2455.647 107.496 9503.353

Table 5.2: Time for a maximum flow calculation using an existing calculated flow graph
(EX) and starting anew for each set sink (AN) (Dinic’s algorithm as used method in both
cases) (in s)

paths were already found in step y the time for finding the maximum flow (equal to
finding all augmenting paths) is drastically reduced.

Second, in the case that a sink is removed the already calculated maximum flow graph
(as seen in figure 5.2b) of step y is used with the edge connecting the removed sink and
the supersink removed. Then the capacity of the edges connected to the former sink is set
to zero, and a maximum flow from the former sink to the supersource is calculated. This
would reduce the flow that was send to the supersink over the former sink to zero. After
this step the original capacities are restored and the maximum flow from the supersource
to the supersink is computed. Again, since most of the augmenting paths were already
found in step y the time for finding the maximum flow (equal to finding all augmenting
paths) is drastically reduced.

The running time of the presented iterative algorithm (using Dinic’s algorithm for the
maximum flow calculation) is compared to a simple naive algorithm which calculates
the maximum flow anew for at each step (using Dinic’s algorithm for the maximum flow
calculation). The needed time is tested for instances with 100, 500, 1000, 2000, 5000
or 10000 vertices, and 10% of these vertices are randomly upgraded to sinks one after
another. After each upgrade the maximum flow is calculated. The iterative algorithm
reuses already calculated flow networks of previous iterations, whereas the simple naive
algorithm calculates the maximum flow anew at each step. As mentioned before, four
different versions of each graph were generated (with an edge-add probability of 0.0, 0.1,
0.4, 1.0) using the graph generator presented in section 6.1. In the table 5.2 the running
time of both algorithms in seconds for the different instances is presented. Reusing
already calculated flow networks drastically reduces the running time, needing only a
fraction of the time of the simple naive algorithm.

In all presented algorithms the iterative maximum flow algorithm is used.

38

CHAPTER 6
Computational Performance

Evaluation

In this chapter the computational performance of the presented algorithms is tested
and evaluated. This chapter is structured in the following way. First, in section 6.1 the
graph generation process of the test instances is explained. Second, in section 6.2 the
test system and the parameter settings of the algorithms are described. Third, in section
6.3 the computational results are presented and analysed. Finally, in section 6.4 the
algorithms are tested on a created real world instance of an Austrian network system.

6.1 Graph Generation

6.1.1 Random Graph Generator

The graph generation for testing purposes is a crucial part to ensure well tested algorithms.
Each generated graph should resemble a real world instance, in order to test the algorithms
for practical use. The image shown in Figure 6.1 illustrates the concept of the graph
generation. In a first step, presented in Figure 6.1a, a rectangular area with and edge
length l is created, and a defined amount of vertices are semi-randomly placed in this area.
Depending on an input probability p and a number c, more or less vertices are placed
closer together in one or more clusters, mimicking cities, and the rest of vertices are
spread across the area representing the countryside. The number c represents the number
of clusters to be placed, which are randomly selected points (with x and y coordinates)
as cluster center on the area. The probability p defines whether a vertex is placed near
a cluster center or randomly on the area. For the placement near the cluster center a
specific method is used. Outgoing from the random chosen cluster center a straight line
with a maximum random length h < l

2 with a random angle is temporarily placed. The
length of the line is normal distributed with 0 as mean and h as standard deviation.

39

6. Computational Performance Evaluation

The new vertex gets placed at the end of this line, which is afterwards removed. This
results in vertices which are close to the cluster center and become less likely further
away from the center. Each placed vertex gets a random load, which is produced at
this vertex, a random customer potential, a random customer value, and a random
cost value, determining the costs to upgrade this vertex. Furthermore, these random
values are in general higher at vertices within city-cluster than at vertices located on the
countryside. In detail, they get increased by a specific percentage. During the second step
a Delaunay Triangulation over the placed vertices is computed, which is a triangulation
for a given set of vertices such that no vertex is inside the circumcircle, which is a circle
that passes through all the vertices of a triangle, of any triangle of the triangulation.
The motivation to use this method is to obtain a planar graph. Figure 6.1b illustrates
this step. The implementation computes the Delaunay Triangulation using randomized
incremental construction presented in [dBCvKO08] with a running time of O(n logn).
Each placed edge gets a random capacity, whereas the capacities of edges connecting
vertices in city-clusters is in general higher than of edges connecting countryside vertices
(get multiplied by a specific number). In the third step, presented in Figure 6.1c with the
red edges, a minimum spanning tree, using the Euclidean distances of the edges inserted
in step two, is computed. These edges are fixed and ensure that the graph remains
connected in step four. During the last step, illustrated in Figure 6.1d edges are deleted
with a specified probability. Again, this probability is higher for edges connecting vertices
in the countryside and lower for edges connecting vertices in city-clusters. Furthermore,
the edges of the minimum spanning tree created in step three can not be deleted. In
conclusion, with careful adjustment of the input parameters it is possible to create
instances containing zero or more city-clusters, or solely consisting of countryside vertices.
Furthermore, the amount of edges can be influenced and additionally tree-like graphs
can be created.

6.1.2 Graph Test Instances

The presented algorithms were tested using several graph instances created by the
previously introduced method. Graphs with 100, 500, 1000, 2000, 5000, 10000 vertices
were created to measure the performance of the algorithms on instances of different
size. The variable p was set to 0.33, and the the variable c was set to 2 for the 100,
500, 1000 instances and to 4 for the 2000, 5000, 10000 instances. Furthermore, for each
generated graph four distinct versions with a different amount of edges were created.
In step four of the graph generation process in 6.1.1, illustrated in Figure 6.1d, edges
are deleted with a specified probability edgeDel, or equivalent, edges are kept with a
probability edgeProb = 1− edgeDel, which is used to identify the versions. Edges of the
minimum spanning tree created in step three illustrated in Figure 6.1c are excluded from
the deletion process. Four edgeProb values were used to create four versions of the same
graph.

1. edgeProb = 0.0 and edgeDel = 1.0, all edges, except the minimum spanning tree
edges were deleted, resulting in a tree version of the graph (see Figure 6.2a).

40

6.1. Graph Generation

(a) Random placed vertices. (b) Computing Delaunay Triangulation.

(c) Calculating a minimum spanning tree. (d) Removing edges (except the MST edges).

Figure 6.1: Graph Generation Concept

2. edgeProb = 0.1 edgeDel = 0.9, 90% of the edges are deleted, resulting in a tree-like
version of the graph (see Figure 6.2b).

3. edgeProb = 0.4 and edgeDel = 0.6, 60% of the edges are deleted (see Figure 6.2c).

4. edgeProb = 1.0 edgeDel = 0.0, no edges are deleted, resulting in a planar Delaunay
triangulated version of the graph (see Figure 6.2d).

41

6. Computational Performance Evaluation

In Figure 6.2 an example graph with 15 vertices is shown in its four different versions.

(a) 0.0 version (tree). (b) 0.1 version (tree-like).

(c) 0.4 version. (d) 1.0 version (Delaunay triangulated).

Figure 6.2: Four versions of an example graph with 15 vertices.

In conclusion, the problem instances consist of 6 different sets, reaching from 100 to
10000 vertices. Each set contains 10 different instances. A problem instance describes
the produced load, customer value, customer potential, upgrade costs for each vertex,
and the capacity of the connecting edges. These values are randomly generated. Each
instance exists in four different versions as described above, with an edgeProb of 0.0, 0.1,
0.4, and 1.0. All instances and versions were tested and the average results calculated.

42

6.2. Testing System and Parameter Settings

6.2 Testing System and Parameter Settings

This section presents the testing system and the parameters used for the computational
analysis. The test system consisted of an Intel Core I5-4460 CPU with up to 3.4 GHz, 8
GB RAM and using the Linux distribution Ubuntu 16.04 as operation system.

The weights of the objective function, ωobj
1 , ωobj

2 , ωobj
3 , ωobj

4 and ωobj
5 , were set to 1 each,

to equally weight all the terms.

IBM ILOG CPLEX, in version 12.6.1, and Gurobi, in version 7.0, were used for solving
the linear programs. Both solvers were set up to use 4 cores, and solve to 100% optimality,
without a time limit. Java was used to describe the model and access the APIs.

The heuristic methods were coded in Java with no use of multi-threading or parallel
computing. The following paragraphs describe the chosen parameters in detail.

Linear Programming Formulation Relaxation Settings

The LP Relaxation was solved using CPLEX, and the rounding process was repeated as
long as no more improvement occurred five times in a row.

Greedy Heuristic Settings

The Greedy algorithm has several parameters which must be chosen before running
the calculation. These parameters influence, and greatly determine the quality of the
produced solution. Therefore, the parameters must be carefully chosen in order to obtain
high performing solution given the objective function. To obtain useful values for the
terms ωgreedy

1 , ωgreedy
2 , ωgreedy

3 , ωgreedy
4 , ωgreedy

5 , ωgreedy
6 , and ωgreedy

7 , of the sink-choosing
function Z, 1000 random generated instances with 1000 vertices and 100 sinks to place
were solved using different combinations, values between 0 and 1, of settings for the
weights. The top 10% of the best performing parameters were picked and their average
rounded value selected. This results in the greedy parameters shown in table 6.1.

ωgreedy
1 1
ωgreedy

2 1
ωgreedy

3 0.5
ωgreedy

4 0.5
ωgreedy

5 0.5
ωgreedy

6 1
ωgreedy

7 1

Table 6.1: Greedy Heuristic Parameters

The Greedy Heuristic was tested using the deterministic and random approach. For
the deterministic test run, the best performing vertex, according to the Z function was

43

6. Computational Performance Evaluation

chosen, whereas for the random test run, a random vertex of the top 15% according to
the Z function was picked.

GRASP Settings

GRASP was tested using the random Greedy approach with the same parameters as
explained before. Furthermore, within each GRASP test run, 10 solutions were generated
and further improved by the local search technique Exchange Sinks Random.

Greedy-Net, Greedy Tree Solver, and Cluster Settings

Greedy-Net, and Greedy Tree Solver, and Cluster did not have any further parameters
to define.

Post Optimization Settings

The two local search techniques for post optimization, Exchange Sinks Depending on
Z, further denoted as Exchange Sinks Z, and Exchange Sinks Random, were checking
50 random sinks, and for each checked sink, 100 vertices were tested. For a better
comparison random solutions were created, where the sinks were chosen randomly.

6.3 Performance Evaluation

The tables 6.2, 6.5, 6.8, and 6.11 present the average results of the algorithms tested on
the generated test instances, as described in section 6.1.2. The algorithms were tested
using the same parameters and settings explained in 6.2. In the main test instance 10%
of the vertices were upgraded to sinks, with no initial sinks set. This value was obtained
empirically by the Greedy Tree Solver algorithm which was run on random instances
(created with the same settings and properties as described), and fully satisfied these
instances. On average 10% of the vertices were upgraded to sinks. Furthermore, for better
comparison, the algorithms were also tested with 5% and 2% of the vertices upgraded to
sinks. The first value indicates the performance in % of the optimal maximum, optimal
values achieved by the exact solution techniques have 100%. The value in the parenthesis
shows the running time in seconds for solving the instance. The same data is shown for
the post optimization local search techniques in table 6.14. The values are averages of
100 test runs on randomly generated solutions with Greedy Random, using random 0.4
instances.

6.3.1 Performance 0.0 Instances (Trees)

From the optimal, 100%, integer linear programming models Model 1, in general, had a
lower running time of a factor of 2 than Model 2. In most instances CPLEX produced
the optimal solution in half the time of Gurobi.

44

6.3. Performance Evaluation

Algorithm 100 500 1000 2000 5000 10000
opt time opt time opt time opt time opt time opt time

CPLEX Model 1 100.0 0.3 100.0 0.8 100.0 2.3 100.0 6.4 100.0 42.2 100.0 124.8
CPLEX Model 2 100.0 0.4 100.0 2.2 100.0 5.9 100.0 17.2 100.0 86.0 100.0 250.0
Gurobi Model 1 100.0 0.1 100.0 1.9 100.0 4.5 100.0 24.5 100.0 72.1 100.0 131.9
Gurobi Model 2 100.0 0.3 100.0 2.5 100.0 6.0 100.0 35.3 100.0 232.7 100.0 665.8
Greedy 72.3 0.0 68.2 0.1 70.6 0.5 71.5 0.8 71.3 5.1 71.9 22.9
Greedy Random 100.0 0.0 86.8 0.1 86.1 0.7 87.9 0.9 87.1 5.2 87.9 24.8
GRASP 100.0 0.0 86.9 0.9 86.1 11.0 87.3 18.1 87.7 168.3 88.0 673.1
LP Relaxation 95.6 0.2 89.9 0.3 89.9 0.9 88.2 2.6 89.5 32.1 88.2 86.2
Greedy-Net 94.7 0.0 93.6 0.1 93.8 0.1 93.2 0.2 94.7 1.5 93.8 5.9
Greedy Tree Solver 94.8 0.0 84.7 0.0 85.6 0.0 86.5 0.2 87.4 1.2 86.9 4.7
Clustering 90.0 0.0 86.9 0.3 89.0 0.8 86.5 2.4 88.7 13.5 88.3 57.7
Random 68.7 0.0 61.3 0.0 61.1 0.0 60.3 0.1 62.5 1.0 61.3 4.4

Table 6.2: Results for the 0.0 instances with 10% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value (time)
indicates the average running time in seconds. The best heuristics performances are bold.

Algorithm 100 500 1000 2000 5000 10000
opt time opt time opt time opt time opt time opt time

CPLEX Model 1 100.0 1.5 100.0 4.0 100.0 8.5 100.0 59.1 100.0 231.7 100.0 1042.6
CPLEX Model 2 100.0 1.4 100.0 10.0 100.0 28.6 100.0 153.9 100.0 507.6 100.0 2484.2
Gurobi Model 1 100.0 0.7 100.0 8.3 100.0 24.0 100.0 139.9 100.0 628.6 100.0 2901.1
Gurobi Model 2 100.0 0.9 100.0 19.4 100.0 47.1 100.0 155.7 100.0 1110.0 100.0 6281.6
Greedy 64.5 0.0 70.5 0.2 72.6 0.3 73.1 0.9 75.2 4.0 75.1 16.0
Greedy Random 80.1 0.0 91.1 0.2 90.9 0.4 92.7 0.9 94.4 3.6 94.8 7.2
GRASP 80.9 0.0 91.7 0.6 91.3 8.5 93.2 13.9 95.0 110.9 95.2 390.9
LP Relaxation 100.0 0.2 95.0 0.6 97.4 1.5 94.3 4.2 95.1 32.0 94.5 213.3
Greedy-Net 90.5 0.0 93.2 0.0 93.4 0.1 95.3 0.3 96.3 1.5 96.1 3.4
Greedy Tree Solver 87.5 0.0 90.1 0.0 92.0 0.1 91.0 0.2 93.0 1.4 92.9 2.1
Clustering 76.8 0.1 88.9 0.4 90.9 0.7 90.0 2.9 92.9 11.9 93.0 33.7
Random 49.8 0.0 59.8 0.1 61.0 0.1 61.3 0.2 59.8 0.9 60.1 1.9

Table 6.3: Results for the 0.0 instances with 5% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value (time)
indicates the average running time in seconds. The best heuristics performances are bold.

45

6. Computational Performance Evaluation

Algorithm 100 500 1000 2000 5000 10000
opt time opt time opt time opt time opt time opt time

CPLEX Model 1 100.0 1.3 100.0 27.8 100.0 62.8 100.0 174.2 100.0 523.2 100.0 3056.4
CPLEX Model 2 100.0 1.1 100.0 55.9 100.0 112.0 100.0 825.2 100.0 3498.1 100.0 20382.8
Gurobi Model 1 100.0 0.9 100.0 38.5 100.0 444.7 100.0 6687.9 100.0 28383.9 - -
Gurobi Model 2 100.0 1.0 100.0 122.7 100.0 305.8 100.0 1124.0 100.0 3593.0 100.0 22345.1
Greedy 65.9 0.0 70.7 0.1 67.7 0.1 73.0 0.4 73.7 1.7 74.3 3.4
Greedy Random 100.0 0.0 91.0 0.1 90.5 0.2 91.3 0.4 89.4 1.8 90.2 3.2
GRASP 100.0 0.1 91.4 0.6 90.8 4.3 91.8 8.8 89.8 82.3 90.3 331.8
LP Relaxation 99.9 0.2 98.2 0.5 100.0 1.4 98.3 3.4 97.0 17.9 98.3 48.8
Greedy-Net 94.9 0.0 94.0 0.0 94.9 0.1 96.1 0.3 95.0 1.6 95.7 4.0
Greedy Tree Solver 89.1 0.0 100.0 0.0 94.3 0.1 95.9 0.2 95.3 1.4 95.2 3.2
Clustering 95.1 0.1 91.1 0.4 93.9 0.6 92.0 1.7 93.2 10.2 94.1 73.1
Random 61.3 0.0 59.0 0.0 59.4 0.0 60.1 0.3 60.3 1.5 60.2 3.4

Table 6.4: Results for the 0.0 instances with 2% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value (time)
indicates the average running time in seconds. The best heuristics performances are bold.

Figure 6.3: Results for the 0.0 instances with 10% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value (time)
indicates the average running time in seconds. The linear programming models were
omitted from this plot.

46

6.3. Performance Evaluation

Figure 6.4: Results for the 0.0 instances with 5% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value (time)
indicates the average running time in seconds. The linear programming models were
omitted from this plot.

Figure 6.5: Results for the 0.0 instances with 2% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value (time)
indicates the average running time in seconds. The linear programming models were
omitted from this plot.

47

6. Computational Performance Evaluation

The random Greedy Heuristic (denoted as Greedy Random) outperforms the deterministic
Greedy Heuristic (denoted as Greedy), always producing over 86% results (with placing
5% sinks in 100 vertices being the only exception), whereas Greedy has an average of
~73%. The running time, with 22.9 and 24.8 for the largest instances, is mid-table
compared to the other heuristics in the 10% sinks instances. The running time for the
5% and 2% sinks instances is significantly lower, since less sinks are placed.

GRASP was the slowest heuristic for placing 10%, 5%, and 2% sinks, while producing
solutions which were maximum 1% point better than Greedy Random. However, this can
be explained with the low performance of the local search techniques shown in table 6.14.

LP Relaxation was the second slowest heuristic tested, and in general, was not producing
better results than faster algorithms like Greedy Random for 10% sinks instances.
However, the solutions produced for the 5% and 2% sinks instances are among the best
and second best results.

The Greedy-Net heuristic was the second fastest calculating heuristic, and producing
stable, ~94% solutions for all 10% sinks instances.

The Greedy Tree Solver produced results, which were 1% to 6% points worse than Greedy
Random, within the fastest running time for the 10% sinks instances. The Greedy Tree
Solver did not produce optimal solutions since customer value, customer potential and
upgrade cost are not considered in the algorithm, but in the objective function.

The Clustering algorithm calculated similar performing solutions as Greedy Random
for the 10% sinks instances, however, needing the second longest running time of all
heuristics.

The results of Greedy-Net, Greedy Tree Solver, and Clustering for the for the 5% and
2% sinks instances are performing equally with results of ~93%.

As expected, picking sinks randomly yields the worst performing results, being ~25
percent points lower than the best performing heuristic.

6.3.2 Performance 0.1 Instances

The performance of the 0.1 instances is similar to the 0.0 instances, however, in general
needing longer for calculating a solution, and with slightly less good performing results
for the heuristics. CPLEX with Model 1 is the fastest exact solution method. Greedy
Random outperforms the deterministic Greedy Heuristic, and GRASP was the slowest
heuristic, while producing solutions which were hardly better than Greedy Random. LP
Relaxation was the second slowest heuristic tested, and in general, was not producing
better results than faster algorithms like Greedy Random. The Greedy-Net heuristic
was the fastest calculating heuristic, and producing stable ~90% - 95% solutions for all
instances. The Greedy Tree Solver produced results, which were ~1% - 2% points worse
than Greedy Random, within the second fastest running time, and finally, the Clustering
algorithm calculated slightly better, ~1% - 2% points, performing solutions as Greedy
Random, however, needing the second longest running time of all heuristics.

48

6.3. Performance Evaluation

Algorithm 100 500 1000 2000 5000 10000
opt time opt time opt time opt time opt time opt time

CPLEX Model 1 100.0 0.2 100.0 0.5 100.0 2.2 100.0 6.9 100.0 35.9 100.0 185.3
CPLEX Model 2 100.0 0.4 100.0 2.4 100.0 9.1 100.0 31.0 100.0 92.4 100.0 346.7
Gurobi Model 1 100.0 0.3 100.0 2.6 100.0 9.4 100.0 12.4 100.0 300.7 100.0 1243.5
Gurobi Model 2 100.0 0.6 100.0 5.2 100.0 17.5 100.0 44.7 100.0 241.4 100.0 1014.1
Greedy 72.7 0.0 67.8 0.1 69.9 0.2 68.1 0.9 70.8 6.1 70.1 27.0
Greedy Random 85.3 0.0 85.7 0.1 87.0 0.2 83.5 1.0 85.1 6.6 85.4 31.1
GRASP 85.7 0.0 86.5 1.0 87.2 14.1 83.9 22.3 84.9 199.6 85.5 782.7
LP Relaxation 94.2 0.0 90.3 0.4 84.6 1.0 84.8 5.7 85.6 42.4 85.8 97.5
Greedy-Net 86.5 0.0 91.5 0.0 90.0 0.0 90.0 0.2 90.0 1.8 91.0 6.8
Greedy Tree Solver 85.5 0.0 83.8 0.0 81.9 0.0 81.9 0.2 82.7 2.0 83.6 10.8
Clustering 90.7 0.0 87.9 0.2 82.1 0.6 85.5 2.7 87.2 23.4 86.3 164.0
Random 58.9 0.0 61.4 0.0 58.8 0.0 58.0 0.2 59.2 1.2 59.7 5.2

Table 6.5: Results for the 0.1 instances with 10% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value (time)
indicates the average running time in seconds. The best heuristics performances are bold.

Algorithm 100 500 1000 2000 5000 10000
opt time opt time opt time opt time opt time opt time

CPLEX Model 1 100.0 0.2 100.0 4.9 100.0 5.0 100.0 11.1 100.0 75.8 100.0 589.3
CPLEX Model 2 100.0 0.5 100.0 15.6 100.0 33.6 100.0 61.3 100.0 692.9 100.0 7821.7
Gurobi Model 1 100.0 0.1 100.0 7.2 100.0 24.4 100.0 30.8 100.0 471.0 100.0 5501.4
Gurobi Model 2 100.0 0.2 100.0 14.5 100.0 58.8 100.0 98.3 100.0 458.9 100.0 8081.6
Greedy 74.7 0.0 71.8 0.0 69.3 0.1 71.1 0.6 72.0 3.8 72.1 16.9
Greedy Random 90.9 0.0 91.7 0.0 88.4 0.1 89.6 0.6 87.9 4.2 88.3 17.1
GRASP 92.3 0.1 92.0 0.1 89.1 0.2 89.9 0.9 88.5 4.9 89.0 19.2
LP Relaxation 94.5 0.0 95.8 0.5 89.7 1.6 89.5 4.2 92.2 31.2 91.7 182.8
Greedy-Net 91.2 0.0 95.2 0.0 92.1 0.0 92.9 0.2 94.3 1.6 93.2 2.5
Greedy Tree Solver 96.4 0.0 86.7 0.0 85.7 0.0 86.3 0.2 86.7 1.7 86.9 2.6
Clustering 87.2 0.0 94.6 0.2 88.2 1.0 89.4 2.4 91.6 21.5 90.5 71.4
Random 48.4 0.0 57.0 0.0 58.4 0.1 56.1 0.2 57.2 1.2 56.1 2.7

Table 6.6: Results for the 0.1 instances with 5% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value (time)
indicates the average running time in seconds. The best heuristics performances are bold.

49

6. Computational Performance Evaluation

Algorithm 100 500 1000 2000 5000 10000
opt time opt time opt time opt time opt time opt time

CPLEX Model 1 100.0 0.3 100.0 4.1 100.0 5.6 100.0 42.7 100.0 200.0 100.0 701.3
CPLEX Model 2 100.0 0.7 100.0 23.8 100.0 52.5 100.0 470.3 100.0 1786.1 100.0 19573.8
Gurobi Model 1 100.0 0.6 100.0 7.5 100.0 20.2 100.0 127.8 100.0 777.9 100.0 8391.5
Gurobi Model 2 100.0 0.9 100.0 23.8 100.0 61.0 100.0 247.9 100.0 885.6 100.0 9891.3
Greedy 69.1 0.0 66.2 0.0 70.4 0.1 70.2 0.3 71.7 1.7 70.7 3.8
Greedy Random 81.1 0.0 88.3 0.0 87.0 0.1 91.3 0.3 91.4 2.0 91.2 4.5
GRASP 81.8 0.1 88.7 0.2 87.6 0.2 91.8 0.4 91.9 2.7 91.8 5.1
LP Relaxation 100.0 0.0 100.0 0.3 94.5 1.3 95.6 3.2 94.8 21.7 95.3 71.3
Greedy-Net 71.5 0.0 96.9 0.0 94.5 0.0 95.9 0.1 96.0 1.0 95.4 2.0
Greedy Tree Solver 97.4 0.0 87.5 0.0 92.8 0.0 89.4 0.2 88.7 1.9 89.2 3.9
Clustering 85.3 0.0 88.3 0.3 88.1 0.9 90.1 3.0 95.7 23.0 94.2 89.2
Random 49.1 0.0 58.9 0.0 56.1 0.1 60.3 0.2 60.7 1.3 60.1 3.2

Table 6.7: Results for the 0.1 instances with 2% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value (time)
indicates the average running time in seconds. The best heuristics performances are bold.

6.3.3 Performance 0.4 Instances

Algorithm 100 500 1000 2000 5000 10000
opt time opt time opt time opt time opt time opt time

CPLEX Model 1 100.0 0.1 100.0 1.4 100.0 3.9 100.0 13.0 100.0 40.4 100.0 177.8
CPLEX Model 2 100.0 0.1 100.0 2.9 100.0 44.5 100.0 65.6 100.0 348.5 100.0 3980.9
Gurobi Model 1 100.0 0.1 100.0 3.7 100.0 7.2 100.0 68.3 100.0 171.1 100.0 1992.5
Gurobi Model 2 100.0 0.1 100.0 8.0 100.0 38.5 100.0 87.6 100.0 377.6 100.0 1485.6
Greedy 67.2 0.0 71.1 0.1 72.0 0.3 68.8 1.4 69.3 9.3 68.8 40.9
Greedy Random 87.9 0.0 84.7 0.1 83.2 0.3 83.4 1.5 83.0 10.1 81.9 44.9
GRASP 88.0 0.0 84.9 1.1 83.8 18.3 83.5 25.3 83.0 221.7 81.9 881.2
LP Relaxation 91.9 0.0 88.9 0.5 85.3 2.3 84.2 8.5 83.7 27.2 82.9 189.3
Greedy-Net 93.5 0.0 86.5 0.0 87.5 0.1 86.4 0.3 88.6 2.1 87.1 10.5
Greedy Tree Solver 81.6 0.0 77.1 0.0 77.8 0.1 77.0 0.4 78.1 4.2 78.1 18.5
Clustering 89.3 0.0 81.5 0.2 84.0 1.0 83.5 7.0 84.7 120.1 84.4 1373.4
Random 63.1 0.0 58.3 0.0 58.8 0.0 57.2 0.3 58.2 1.8 58.2 7.2

Table 6.8: Results for the 0.4 instances with 10% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value (time)
indicates the average running time in seconds. The best heuristics performances are bold.

The performance of the 0.4 instances similar to the previous instances, again with in
general longer running times and with slightly less good performing results for the
heuristics. CPLEX with Model 1 stays the fastest exact solution method. Greedy
Random outperforms the deterministic Greedy Heuristic, and GRASP was the slowest
heuristic, and again producing solutions which were hardly better than Greedy Random.
LP Relaxation was the second slowest heuristic tested, and again in general, was not
producing better results than faster algorithms like Greedy Random. The Greedy-
Net heuristic was the fastest calculating heuristic, and the Greedy Tree Solver the
second fastest. Again, the Clustering algorithm calculated slightly better, ~1.5% points,

50

6.3. Performance Evaluation

Algorithm 100 500 1000 2000 5000 10000
opt time opt time opt time opt time opt time opt time

CPLEX Model 1 100.0 0.1 100.0 1.8 100.0 1.8 100.0 5.0 100.0 20.7 100.0 196.6
CPLEX Model 2 100.0 0.3 100.0 7.1 100.0 9.9 100.0 37.3 100.0 107.9 100.0 1083.4
Gurobi Model 1 100.0 0.1 100.0 3.8 100.0 3.3 100.0 15.1 100.0 67.0 100.0 633.6
Gurobi Model 2 100.0 0.1 100.0 8.6 100.0 8.5 100.0 57.2 100.0 159.6 100.0 2455.1
Greedy 68.7 0.0 68.5 0.1 71.7 0.2 69.5 0.8 70.4 5.5 70.1 24.7
Greedy Random 78.4 0.0 79.4 0.1 84.7 0.3 85.6 1.0 87.3 5.8 86.7 25.9
GRASP 79.2 0.1 79.9 0.2 85.4 0.4 86.1 1.2 87.9 6.1 87.2 27.3
LP Relaxation 81.8 0.0 90.8 0.5 87.9 1.3 87.1 6.1 88.6 30.8 88.1 86.5
Greedy-Net 90.9 0.0 88.1 0.0 89.0 0.0 88.5 0.2 89.7 1.6 89.6 3.0
Greedy Tree Solver 85.4 0.0 78.1 0.0 80.8 0.1 79.9 0.4 81.7 3.7 81.1 5.3
Clustering 82.8 0.0 85.1 0.2 84.9 0.9 85.5 6.6 87.8 128.2 88.2 421.3
Random 54.8 0.0 57.9 0.0 59.4 0.0 57.6 0.2 61.2 1.7 60.9 2.5

Table 6.9: Results for the 0.4 instances with 5% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value (time)
indicates the average running time in seconds. The best heuristics performances are bold.

Algorithm 100 500 1000 2000 5000 10000
opt time opt time opt time opt time opt time opt time

CPLEX Model 1 100.0 0.1 100.0 1.4 100.0 1.9 100.0 4.3 100.0 17.6 100.0 183.4
CPLEX Model 2 100.0 0.2 100.0 6.3 100.0 5.9 100.0 19.0 100.0 71.7 100.0 671.2
Gurobi Model 1 100.0 0.0 100.0 1.2 100.0 3.7 100.0 3.3 100.0 14.0 100.0 154.9
Gurobi Model 2 100.0 0.2 100.0 7.2 100.0 13.5 100.0 41.2 100.0 133.6 100.0 1834.7
Greedy 53.3 0.0 66.4 0.0 72.7 0.1 68.7 0.4 71.3 2.6 69.4 5.3
Greedy Random 95.7 0.0 90.3 0.0 90.2 0.2 93.3 0.4 92.6 2.6 91.3 4.3
GRASP 96.1 0.1 90.8 0.2 90.8 0.3 93.8 0.5 92.9 3.0 91.8 5.2
LP Relaxation 98.9 0.0 96.5 0.4 97.0 0.8 92.8 4.5 93.4 26.0 92.7 79.3
Greedy-Net 75.5 0.0 90.5 0.0 86.6 0.0 85.3 0.1 92.9 0.9 91.1 2.0
Greedy Tree Solver 87.4 0.0 86.2 0.0 85.4 0.1 84.1 0.4 90.0 3.9 89.4 8.2
Clustering 67.7 0.0 82.3 0.2 90.5 1.0 89.9 7.4 91.4 148.5 90.5 481.4
Random 57.0 0.0 55.1 0.0 57.1 0.1 55.3 0.2 58.1 2.0 58.3 3.1

Table 6.10: Results for the 0.4 instances with 2% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value (time)
indicates the average running time in seconds. The best heuristics performances are bold.

51

6. Computational Performance Evaluation

Figure 6.6: Results for the 0.1 instances with 10% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value (time)
indicates the average running time in seconds. The linear programming models were
omitted from this plot.

performing solutions as Greedy Random, however, needing the second longest running
time of all heuristics. Interestingly, the result of the deterministic Greedy heuristic for
100 vertices with 2% sinks is worse than the according Random result.

6.3.4 Performance 1.0 Instances

The performance of the 1.0 instances similar to the previous instances, and again with
in general longer running times and with slightly less good performing results for the
heuristics. CPLEX with Model 1 stays the fastest exact solution method. Greedy
Random outperforms the deterministic Greedy Heuristic, and GRASP was the slowest
Greedy heuristic. The Greedy-Net heuristic was the fastest calculating heuristic, and
producing the best results overall. Greedy Tree Solver the second fastest, however, the
performance decreased even further compared to the previous instances. Again, the
Clustering algorithm was the slowest algorithm producing the second best results.

6.3.5 Performance Local Search

Table 6.14 shows the performance of the local search techniques. The running time is
over 34.1 seconds for the random local search and over 38.5 seconds for the deterministic
version. The results of Exchange Sinks Random are slightly better, around 0.1 percent
points, than of Exchange Sinks Z.

52

6.3. Performance Evaluation

Figure 6.7: Results for the 0.1 instances with 5% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value (time)
indicates the average running time in seconds. The linear programming models were
omitted from this plot.

Figure 6.8: Results for the 0.1 instances with 2% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value (time)
indicates the average running time in seconds. The linear programming models were
omitted from this plot.

53

6. Computational Performance Evaluation

Figure 6.9: Results for the 0.4 instances with 10% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value (time)
indicates the average running time in seconds. The linear programming models were
omitted from this plot.

Figure 6.10: Results for the 0.4 instances with 5% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value (time)
indicates the average running time in seconds. The linear programming models were
omitted from this plot.

54

6.3. Performance Evaluation

Figure 6.11: Results for the 0.4 instances with 2% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value (time)
indicates the average running time in seconds. The linear programming models were
omitted from this plot.

Algorithm 100 500 1000 2000 5000 10000
opt time opt time opt time opt time opt time opt time

CPLEX Model 1 100.0 0.1 100.0 0.8 100.0 2.9 100.0 6.8 100.0 21.3 100.0 250.7
CPLEX Model 2 100.0 0.4 100.0 7.0 100.0 17.6 100.0 88.6 100.0 311.8 100.0 780.5
Gurobi Model 1 100.0 0.1 100.0 1.0 100.0 6.6 100.0 18.5 100.0 259.6 100.0 1225.9
Gurobi Model 2 100.0 0.3 100.0 1.8 100.0 7.8 100.0 91.9 100.0 1008.7 100.0 4522.4
Greedy 66.6 0.0 67.5 0.1 70.4 0.5 69.1 2.2 69.8 14.5 69.4 62.2
Greedy Random 79.2 0.0 81.4 0.1 79.2 0.5 80.8 2.3 82.4 15.9 80.2 69.1
GRASP 79.6 0.0 81.5 1.4 79.0 22.2 80.7 32.1 82.4 261.9 80.2 1034.5
LP Relaxation 90.5 0.0 80.2 0.3 81.0 1.1 79.5 5.1 81.2 70.3 80.5 149.8
Greedy-Net 85.4 0.0 82.0 0.0 86.0 0.1 82.2 0.4 84.4 3.5 84.5 13.0
Greedy Tree Solver 77.4 0.0 73.0 0.0 74.6 0.1 73.0 0.8 75.5 4.8 74.5 29.6
Clustering 87.2 0.0 81.8 0.3 81.4 1.9 80.4 16.4 83.3 349.5 81.8 3088.6
Random 59.3 0.0 56.9 0.0 56.3 0.0 56.1 0.3 57.2 2.3 57.0 10.4

Table 6.11: Results for the 1.0 instances with 10% vertices. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value (time)
indicates the average running time in seconds. The best heuristics performances are bold.

55

6. Computational Performance Evaluation

Algorithm 100 500 1000 2000 5000 10000
opt time opt time opt time opt time opt time opt time

CPLEX Model 1 100.0 0.1 100.0 0.6 100.0 2.9 100.0 5.4 100.0 21.0 100.0 181.9
CPLEX Model 2 100.0 0.3 100.0 1.0 100.0 7.2 100.0 15.7 100.0 77.1 100.0 589.3
Gurobi Model 1 100.0 0.0 100.0 0.6 100.0 3.1 100.0 10.7 100.0 42.3 100.0 299.2
Gurobi Model 2 100.0 0.2 100.0 4.2 100.0 5.5 100.0 17.4 100.0 64.9 100.0 501.1
Greedy 66.1 0.0 70.7 0.1 76.7 0.3 68.2 1.3 72.0 8.3 71.7 40.0
Greedy Random 90.3 0.0 84.6 0.1 87.4 0.3 85.6 1.3 86.4 9.5 87.3 51.2
GRASP 90.7 0.1 85.1 0.2 87.9 0.3 86.2 1.8 86.9 9.9 87.8 55.1
LP Relaxation 97.0 0.0 84.6 0.4 92.1 1.6 87.7 7.5 87.8 34.7 88.2 132.4
Greedy-Net 84.3 0.0 83.0 0.0 87.8 0.1 87.5 0.2 89.6 1.8 87.2 2.4
Greedy Tree Solver 78.2 0.0 73.4 0.0 82.8 0.1 79.7 0.7 79.6 6.6 78.8 28.1
Clustering 91.0 0.0 85.9 0.3 89.8 1.8 87.6 15.9 88.9 374.7 86.2 281.2
Random 53.1 0.0 53.4 0.0 57.3 0.0 54.7 0.1 55.9 1.5 54.0 2.0

Table 6.12: Results for the 1.0 instances with 5% vertices. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value (time)
indicates the average running time in seconds. The best heuristics performances are bold.

Algorithm 100 500 1000 2000 5000 10000
opt time opt time opt time opt time opt time opt time

CPLEX Model 1 100.0 0.1 100.0 0.5 100.0 1.8 100.0 5.2 100.0 28.8 100.0 210.2
CPLEX Model 2 100.0 0.6 100.0 0.7 100.0 3.9 100.0 11.1 100.0 52.1 100.0 352.1
Gurobi Model 1 100.0 0.1 100.0 0.8 100.0 2.0 100.0 4.9 100.0 36.6 100.0 262.6
Gurobi Model 2 100.0 0.1 100.0 1.5 100.0 4.1 100.0 29.8 100.0 48.8 100.0 302.9
Greedy 58.4 0.0 69.0 0.0 77.1 0.1 68.8 0.5 72.0 3.5 71.4 7.2
Greedy Random 87.5 0.0 93.1 0.0 94.0 0.1 89.1 0.6 93.2 3.9 92.6 8.1
GRASP 87.9 0.1 93.7 0.2 94.4 0.2 89.7 0.6 93.8 4.3 92.9 9.3
LP Relaxation 100.0 0.1 100.0 0.5 97.5 1.4 92.7 8.0 95.9 23.4 94.4 81.4
Greedy-Net 77.9 0.0 81.6 0.0 95.2 0.0 89.1 0.1 93.8 1.0 92.8 2.8
Greedy Tree Solver 75.8 0.0 80.5 0.0 93.2 0.1 88.1 0.3 87.4 4.8 87.5 9.5
Clustering 77.1 0.0 90.9 0.3 96.8 1.9 85.9 18.7 95.6 451.7 95.1 1245.9
Random 42.4 0.0 54.9 0.0 60.9 0.0 57.5 0.2 59.8 1.6 60.1 2.4

Table 6.13: Results for the 1.0 instances with 2% vertices. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value (time)
indicates the average running time in seconds. The best heuristics performances are bold.

Algorithm 100 500 1000 2000 5000 10000
opt time opt time opt time opt time opt time opt time

Exchange Sinks Random 0.4 0.0 0.5 0.9 0.8 3.3 0.7 7.2 0.1 14.6 0.0 34.1
Exchange Sinks Z 0.3 0.0 0.3 1.2 0.7 3.2 0.5 8.4 0.0 18.0 0.0 38.5

Table 6.14: Results of the local search techniques for random 0.4 instances using Greedy
Random solutions as a basis. The first value indicates the average performance increase
in percent points (new performance − old performance), and the second value in the
parenthesis indicates the average running time in seconds.

56

6.3. Performance Evaluation

Figure 6.12: Results for the 1.0 instances with 10% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value (time)
indicates the average running time in seconds. The linear programming models were
omitted from this plot.

6.3.6 Analysis

The performance results presented in section 6.3 show that some algorithms yield good
results over all test instances.

Integer Linear Programming Formulations

The two integer linear programming models were tested with CPLEX and Gurobi.
Obviously, all models optimally solved the test instances. In general Model 1 is faster
than Model 2 in all instances, and CPLEX calculates the solution faster than Gurobi.
Model 1 with CPLEX was solved in under 5 minutes for all instances, making this model
suitable for non-artificial instances.

Greedy, Greedy Random and GRASP

Greedy Random produces better results than the deterministic Greedy version for all
instances. The running time is mid-class for both variants. GRASP is producing equally
good results as Greedy Random, however, within a much higher running time. This is
due to the time needed by the local search techniques, which are hardly improving the
quality of the instance. In general, the other heuristics are producing more promising
results in less time.

57

6. Computational Performance Evaluation

Figure 6.13: Results for the 1.0 instances with 5% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value (time)
indicates the average running time in seconds. The linear programming models were
omitted from this plot.

Figure 6.14: Results for the 1.0 instances with 2% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value (time)
indicates the average running time in seconds. The linear programming models were
omitted from this plot.

58

6.4. Performance Evaluation on an Austrian Network

LP Relaxation

The LP Relaxation is the second slowest heuristic, however, producing the second best
results in general.

Greedy-Net

Greedy-Net is the best performing algorithm, both in the quality of the results and the
time needed for the calculating the results. In ~90% of the instances Greedy-Net was the
fastest and best performing algorithm, making it the most suitable algorithm for solving
the instances.

Greedy Tree Solver

The Greedy Tree Solver is the second fastest algorithm, however, due to its characteristics
it is producing especially suitable for solving trees, where it is producing the second best
result. However, the results for the other instances were mediocre compared to the other
heuristics.

Clustering

In general, Clustering is the second or third best performing algorithm, however, it
was the slowest heuristic for all instances, making it only limited usable for solving the
instances.

6.4 Performance Evaluation on an Austrian Network

The algorithms were tested on a created real world instance representing an Austrian
communication network. It consists of 5264 vertices and 5272 edges. Therefore, the
structure of this network is similar to a tree. For all vertices and edges the needed
information was given, including the accrued data load load(v), customer value val(v),
and customer potential pot(v) for each vertex, and the capacity cap(e) for each edge.
The upgrade costs cost(v) for each vertex were not available, therefore an equal cost of 1
was assumed. Some of the vertices were already treated as sinks. Figure 6.15 illustrates
the network, the shape of Austria an bigger cities with a dense population of vertices are
clearly visible.

The algorithms were tested using the same parameters and settings explained in 6.2.
In this test instance between 50 and 500 sinks were placed, in detail four different
variants were tested, adding 50, 100, 250, and 500 additional sinks. Table 6.15 shows
the computational results. The first value indicates the performance in % of the optimal
maximum, optimal values achieved by the exact solution techniques have 100%. The
value in the second columns shows the running time in seconds for solving the instance.
The same data is shown for the post optimization local search techniques in table 6.16.

59

6. Computational Performance Evaluation

Figure 6.15: Telecommunication network in Austria.

The values are averages of 100 test runs on randomly generated solutions with Greedy
Random.

Algorithm 50 100 250 500
opt time opt time opt time opt time

CPLEX Model 1 100.0 200.4 100.0 61.4 100.0 54.9 100.0 2.0
CPLEX Model 2 100.0 3580.0 100.0 205.0 100.0 48.7 100.0 16.0
Gurobi Model 1 100.0 48.1 100.0 44.3 100.0 36.4 100.0 6.5
Gurobi Model 2 100.0 3580.0 100.0 1492.3 100.0 50.8 100.0 93.0
Greedy 50.9 3.2 52.6 2.9 68.5 5.3 89.7 8.9
Greedy Random 72.4 4.0 83.1 4.7 95.2 6.0 98.8 8.2
GRASP 73.2 141.1 84.0 148.8 95.8 171.0 98.8 196.7
LP Relaxation 82.8 51.4 88.9 27.3 97.3 47.2 99.1 29.4
Greedy-Net 62.2 1.5 77.6 2.3 96.8 3.0 99.0 2.6
Greedy Tree Solver 76.0 1.3 85.6 1.7 95.4 3.0 97.3 4.7
Clustering 91.9 14.0 94.2 14.1 98.1 15.9 99.5 18.8
Random 41.1 2.1 52.7 3.0 66.1 3.2 68.4 2.7

Table 6.15: Results for the Austrian network. The first value indicates the average
performance in % of the optimal maximum, and the second value in the parenthesis
indicates the average running time in seconds.

The results of the algorithms for the Austrian network instance differ from the artificial

60

6.4. Performance Evaluation on an Austrian Network

Algorithm 50 100 250 500
opt time opt time opt time opt time

Exchange Sinks Random 0.8 14.4 0.8 14.2 0.5 14.6 0.0 14.1
Exchange Sinks Z 0.7 18.2 0.6 18.4 0.5 18.0 0.0 18.5

Table 6.16: Results of the local search techniques for the Austrian network using Greedy
Random solutions as a basis. The first value indicates the average performance increase
in percent points (new performance − old performance), and the second value in the
parenthesis indicates the average running time in seconds.

random instances. This could be due to a specific characteristic of the Austrian network
instance, where specific vertices of the graph form the center of a (or part of a) graph
with more connections to neighbouring vertices than average, as pictured in figure 6.16.
This vertices are defined as stars (vertices with more than 2 neighbours), and predestined
to be sinks, since due to their central position they are capable to satisfy more vertices
than in general.

In the Austrian network instance 19.4% of the vertices are stars (with minimum 3
neighbours), and connected (including themselves) to 81% of all vertices. In the randomly
generated instances only 5.5% of the vertices are stars (with minimum 3 neighbours)
connected (including themselves) to 22% of all vertices. This characteristic could be an
explanation of the slightly differing performance of algorithms between the randomly
generated instances and the Austrian network instance, since algorithms which efficiently
identify these star vertices as sinks are potentially capable to satisfy more vertices. See
figure 6.17 presenting a diagram comparing the amount of star vertices for the artificial
random instances and the Austrian network instance.

Figure 6.16: Example graph with a star vertex (S) in the center.

The integer linear programming models produce, of course, optimal solutions with 100%.

61

6. Computational Performance Evaluation

Figure 6.17: Number of star vertices with more than 2, 3 or 4 neighbouring vertices in %
of all vertices for the artificial random 5000 vertices instance (Random) and the Austrian
network instance (Real).

In general Model 1 had a much lower running time, about a factor of 8, than Model 2.
It is interesting to see that CPLEX performed faster in Model 2, and Gurobi generally
performed faster in Model 1. Placing 50 sinks optimally took the longest time, since the
sinks had to be placed more carefully, whereas for placing 500 sinks the solution was
calculated more than a 100 times faster than for 50 sinks. For this instance Gurobi with
Model 1 is the best choice, producing the optimal solution in the shortest time. This
is in contrast to the artificially created instances, in which CPLEX with Model 1 was
better performing.

The Greedy Heuristic was tested using a deterministic (denoted as Greedy) and random
(denoted as Greedy Random) version, where the random version outperforms the de-
terministic test run. However, the random results are mid-table compared to the other
tested heuristics. The deterministic approach yields the worst results of all heuristics,
being only around 9 to 20 percent points better than naively selecting the sinks randomly.
Both test runs, the deterministic and random, nearly needed the same time to calculate
the solution.

GRASP had the highest running time, while producing solutions which were maximum
1% point better than Greedy Random. This is due to the low performance of the local
search techniques shown in table 6.16.

Calculating the solution with the LP Relaxation was the second slowest heuristic tested,
even slower than calculating an exact solution with Gurobi and Model 1. The resulting

62

6.4. Performance Evaluation on an Austrian Network

solutions were better than average of all the heuristics, however, still up to 8% worse
than the best performing heuristics.

The Greedy-Net heuristic was the second fastest calculating heuristic, however, yielding
results which were only a few percent points, around 8 to 10%, better than the worst
performing heuristic Greedy deterministic. This is in contrast to the results for the
random instances and could be related to the specific characteristic of the Austrian
network instance described above.

The Greedy Tree Solver produced the third best results within the fastest running time.
The results for placing 50 and 100 sinks are mediocre, since the algorithm terminated
before iterating all vertices. However, for placing 250 and 500 sinks the results are near
the optimal value. This good performance is unexpected, since the Greedy Tree Solver is
not taking specific parameters, such as customer potential, customer value, and upgrade
cost into account for calculating the solution. A possible explanation could be that
vertices with high customer value and customer potential are also predestined as sinks
due to their connections and location.

The Clustering algorithm calculated the best solutions for the heuristics, being maximum
8% points worse than the optimal solution. Compared to the heuristics, the Clustering
method is the third slowest algorithm needing around 10 times the time of the fastest
algorithm, however, producing significantly better results.

Table 6.16 shows the performance of the local search techniques. The running time
is around 14 seconds for the random local search and 18 seconds for the deterministic
version. The results of Exchange Sinks Random are slightly better, around 0.1 percent
points, than of Exchange Sinks Z.

63

CHAPTER 7
Conclusion

Telecommunications networks are a crucial and important part of modern life, and
therefore, have to be planned and monitored carefully, to ensure enough available
bandwidth for all customers. In order to satisfy the ever increasing demand for more
bandwidth existing radio towers can be upgraded to act as sink for all accruing data.
The network can then be considered as an undirected graph. This thesis proposes
various heuristics and exact models for solving the problem of placing multiple sinks
in an undirected flow network, a problem which is, for example, of special interest for
telecommunication companies in order to decide where to upgrade the existing network.
Each network consists of vertices and edges, with assigned properties, such as customer
value, customer potential or costs. A given amount of vertices can be upgraded to
sinks (which means these vertices get a connection to the backbone network for further
processing of the data). The placement of these sinks has to be carefully chosen in regard
to cost efficiency, and satisfying customer value, customer potential and the accruing
data load.

In this thesis several algorithms and methods for solving this problem were presented.
Two integer linear programming models, five heuristics, and one exact algorithm for
solving a special case of instances. The methods were tested using artificial random test
instances and a created Austrian telecommunication network instance. All algorithms
are producing reasonable results, however differing depending on the type of instances
used. Greedy-Net is the fastest heuristic, and producing the best results for the random
instances. However, for the tested Austrian network instance other heuristics proved to
be better performing, especially Clustering, producing mid-class results for the random
instances, is producing the best results for the Austrian network instance. This varying
results could be due to a specific differing property of the two instance types. The
Austrian network instance has 4 times as much star vertices than the random instances.

The Greedy Tree Solver is producing optimal solutions for trees, not taking customer
value, customer potential and upgrade costs into account. An according proof was

65

7. Conclusion

presented. Future work could determine if the algorithm can be improved to handle
graphs with circles, or planar graphs in general.

With the adaption of the parameters, the presented heuristics can be used for solving
other similar problems. For example, finding a logistic center to upgrade among a network
of logistic centers and customer locations. In this case only logistic centers would be
valid candidates for sinks.

Furthermore, calculating the maximum flow is an important and time consuming part of
three of the presented algorithms. Instead of using the exact methods, approximations
can be used which only need a fraction of running time. In [CKM+11] a possible usable
algorithm is presented, using such methods will significantly reduce the running time at
the expense of accuracy of the solution.

66

List of Figures

1.1 A telecommunications network, with the vertices X,Y, Z as part of the back-
bone network, and therefore acting as sinks. The remaining grey vertices
represent ordinary radio towers, which need to route their data to the sinks. . 3

1.2 Possible flow of data from vertex X to a backbone connection. 4

3.1 Example graph and its extension with a supersource and supersink. 13
3.2 Example graph with all found sets, and the final remaining sets after all sets

which were fully contained within another set were removed. 20
3.3 Example graphs where three sets were picked. 21
3.4 Two example iterations, where identically coloured vertices represent clusters

and vertices marked with C the corresponding cluster centre. In the second
iteration two cluster centres and their members changed. 23

4.1 Possibilities how to handle the accruing (produced) data load. Green framed
circles represent sinks, and red arrows show possible flow directions 33

4.2 Valid and invalid tree . 34

5.1 An undirected graph and its corresponding directed graph. 36
5.2 Maximum flow calculation with more than one source and sink. 37

6.1 Graph Generation Concept . 41
6.2 Four versions of an example graph with 15 vertices. 42
6.3 Results for the 0.0 instances with 10% sinks. The first value indicates the

average performance in % of the optimal maximum (opt), and the second value
(time) indicates the average running time in seconds. The linear programming
models were omitted from this plot. 46

6.4 Results for the 0.0 instances with 5% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value
(time) indicates the average running time in seconds. The linear programming
models were omitted from this plot. 47

6.5 Results for the 0.0 instances with 2% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value
(time) indicates the average running time in seconds. The linear programming
models were omitted from this plot. 47

67

6.6 Results for the 0.1 instances with 10% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value
(time) indicates the average running time in seconds. The linear programming
models were omitted from this plot. 52

6.7 Results for the 0.1 instances with 5% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value
(time) indicates the average running time in seconds. The linear programming
models were omitted from this plot. 53

6.8 Results for the 0.1 instances with 2% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value
(time) indicates the average running time in seconds. The linear programming
models were omitted from this plot. 53

6.9 Results for the 0.4 instances with 10% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value
(time) indicates the average running time in seconds. The linear programming
models were omitted from this plot. 54

6.10 Results for the 0.4 instances with 5% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value
(time) indicates the average running time in seconds. The linear programming
models were omitted from this plot. 54

6.11 Results for the 0.4 instances with 2% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value
(time) indicates the average running time in seconds. The linear programming
models were omitted from this plot. 55

6.12 Results for the 1.0 instances with 10% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value
(time) indicates the average running time in seconds. The linear programming
models were omitted from this plot. 57

6.13 Results for the 1.0 instances with 5% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value
(time) indicates the average running time in seconds. The linear programming
models were omitted from this plot. 58

6.14 Results for the 1.0 instances with 2% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second value
(time) indicates the average running time in seconds. The linear programming
models were omitted from this plot. 58

6.15 Telecommunication network in Austria. 60
6.16 Example graph with a star vertex (S) in the center. 61
6.17 Number of star vertices with more than 2, 3 or 4 neighbouring vertices in %

of all vertices for the artificial random 5000 vertices instance (Random) and
the Austrian network instance (Real). 62

68

List of Tables

5.1 Dinic’s (DI) algorithm and Edmonds-Karp (EK) algorithm time (in s) 36
5.2 Time for a maximum flow calculation using an existing calculated flow graph

(EX) and starting anew for each set sink (AN) (Dinic’s algorithm as used
method in both cases) (in s) . 38

6.1 Greedy Heuristic Parameters . 43
6.2 Results for the 0.0 instances with 10% sinks. The first value indicates the

average performance in % of the optimal maximum (opt), and the second
value (time) indicates the average running time in seconds. The best heuristics
performances are bold. 45

6.3 Results for the 0.0 instances with 5% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second
value (time) indicates the average running time in seconds. The best heuristics
performances are bold. 45

6.4 Results for the 0.0 instances with 2% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second
value (time) indicates the average running time in seconds. The best heuristics
performances are bold. 46

6.5 Results for the 0.1 instances with 10% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second
value (time) indicates the average running time in seconds. The best heuristics
performances are bold. 49

6.6 Results for the 0.1 instances with 5% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second
value (time) indicates the average running time in seconds. The best heuristics
performances are bold. 49

6.7 Results for the 0.1 instances with 2% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second
value (time) indicates the average running time in seconds. The best heuristics
performances are bold. 50

69

6.8 Results for the 0.4 instances with 10% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second
value (time) indicates the average running time in seconds. The best heuristics
performances are bold. 50

6.9 Results for the 0.4 instances with 5% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second
value (time) indicates the average running time in seconds. The best heuristics
performances are bold. 51

6.10 Results for the 0.4 instances with 2% sinks. The first value indicates the
average performance in % of the optimal maximum (opt), and the second
value (time) indicates the average running time in seconds. The best heuristics
performances are bold. 51

6.11 Results for the 1.0 instances with 10% vertices. The first value indicates the
average performance in % of the optimal maximum (opt), and the second
value (time) indicates the average running time in seconds. The best heuristics
performances are bold. 55

6.12 Results for the 1.0 instances with 5% vertices. The first value indicates the
average performance in % of the optimal maximum (opt), and the second
value (time) indicates the average running time in seconds. The best heuristics
performances are bold. 56

6.13 Results for the 1.0 instances with 2% vertices. The first value indicates the
average performance in % of the optimal maximum (opt), and the second
value (time) indicates the average running time in seconds. The best heuristics
performances are bold. 56

6.14 Results of the local search techniques for random 0.4 instances using Greedy
Random solutions as a basis. The first value indicates the average performance
increase in percent points (new performance − old performance), and the
second value in the parenthesis indicates the average running time in seconds. 56

6.15 Results for the Austrian network. The first value indicates the average
performance in % of the optimal maximum, and the second value in the
parenthesis indicates the average running time in seconds. 60

6.16 Results of the local search techniques for the Austrian network using Greedy
Random solutions as a basis. The first value indicates the average performance
increase in percent points (new performance − old performance), and the
second value in the parenthesis indicates the average running time in seconds. 61

70

List of Algorithms

3.1 LP Relaxation Rounding . 17

3.2 Greedy-Heuristic . 18

3.3 Random Greedy-Heuristic . 19

3.4 GRASP . 19

3.5 Greedy-Net-Heuristic . 22

3.6 Clustering . 23

3.7 Clustering Random . 24

3.8 Exchange-Sinks-Depending-on-Z . 25

3.9 Exchange-Sinks-Random . 25

4.1 TreeSolver . 29

71

Bibliography

[ABIK06] Bassam Aoun, R. Boutaba, Youssef Iraqi, and Gary Kenward. Gateway
placement optimization in wireless mesh networks with qos constraints.
IEEE Journal on Selected Areas in Communications, (Volume:24, Issue:11,
Pages:2127 - 2136), 2006.

[CKM+11] Paul Christiano, Jonathan A. Kelner, Aleksander Mądry, Daniel Spiel-
man, and Shang-Hua Teng. Electrical flows, laplacian systems, and faster
approximation of maximum flow in undirected graphs. STOC11 Proceed-
ings of the forty-third annual ACM symposium on Theory of computing,
(Pages:273-282), 2011.

[CQJM04a] Ranveer Chandra, Lili Qiu, Kamal Jain, and Mohammad Mahdian. On
the placement of integration points in multi-hop wireless networks. MSR
Technical Report MSR-TR-2004-43, 2004.

[CQJM04b] Ranveer Chandra, Lili Qiu, Kamal Jain, and Mohammad Mahdian. Opti-
mizing the placement of integration points in multi-hop wireless networks.
IEEE International Conference on Network Protocols (ICNP), (Pages:271-
282), 2004.

[Dan16] George Dantzig. Linear programming and extensions. Princeton university
press, 2016.

[dBCvKO08] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars.
Computational Geometry: Algorithms and Applications. Springer-Verlag
TELOS, 3rd ed. edition, 2008.

[Din70] E. A. Dinic. Algorithm for solution of a problem of maximum flow in a
network with power estimation. Soviet Mathematics Doklady, 1970.

[EK72] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorith-
mic efficiency for network flow problems. Journal of the ACM. Association
for Computing Machinery. (Volume:19 (2), Pages:248–264, 1972.

73

[FKE11] Joakim Flathagen, Oivind Kure, and Paal E. Engelstad. Constrained-based
multiple sink placement for wireless sensor networks. Eighth IEEE Interna-
tional Conference on Mobile Ad-Hoc and Sensor Systems, (Pages:783-788),
2011.

[KWS+11] Donghyun Kim, Wei Wang, Nassim Sohaee, Changcun Ma, Weili Wu,
Wonjun Lee, and Ding-Zhu Du. Minimum data-latency-bound k-sink
placement problem in wireless sensor networks. IEEE/ACM Transactions
on Networking (Volume:19, Issue:5), 2011.

[OE04] E. Ilker Oyman and Cem Ersoy. Multiple sink network design problem in
large scale wireless sensor networks. 2004 IEEE International Conference
on Communications, (Volume:6, Pages:3663-3667), 2004.

[PS08] Wint Yi Poe and Jens B. Schmitt. Placing multiple sinks in time-sensitive
wireless sensor networks using a genetic algorithm. Proceedings of the
14th GI/ITG Conference on Measurement, Modeling, and Evaluation of
Computer and Communication Systems, (Pages:1-15), 2008.

[SEHZ12] Haidar Safa, Wassim El-Hajj, and Hanan Zoubian. Particle swarm opti-
mization based approach to solve the multiple sink placement problem in
wsns. IEEE ICC 2012 - Wireless Networks Symposium, (Pages:5445-5450),
2012.

[SGJ04] Jonatan Schroeder, Andre Pires Guedes, and Elias P. Duarte Jr. Computing
the minimum cut and maximum flow of undirected graphs. Technical report,
Federal University of Paraná - Dept. of Informatics, 2004.

74

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background and Motivation
	Assumptions and Problem Statement
	Outline

	Literature Review
	Multiple Sink Placement in Undirected Flow Networks
	Formal Problem Description
	Integer Linear Programming Formulations
	Greedy Heuristic
	GRASP
	Greedy-Net
	Clustering
	Post Optimization

	An Exact Algorithm for Trees
	Background and Formal Problem Description
	Integer Linear Programming Formulation
	Greedy Tree Solver
	Greedy Tree Solver Proof

	Maximum Flow Calculation
	Maximum Flow in an Undirected Network
	Maximum Flow Algorithm

	Computational Performance Evaluation
	Graph Generation
	Testing System and Parameter Settings
	Performance Evaluation
	Performance Evaluation on an Austrian Network

	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

