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ABSTRACT The local structure of water on chemically and structurally different surfaces is 

subject of ongoing research. In particular, confined spaces as found in mesoporous silica have a 

pronounced effect on the interplay between adsorbate-adsorbate and adsorbate-surface 

interactions. Mid-infrared spectroscopy is ideally suited to quantitatively and qualitatively study 

such systems as the probed molecular vibrations are highly sensitive to intermolecular interactions. 

Here, the quantity and structure of water adsorbed from the gas phase into silica mesopores at 

different water vapor pressures was monitored using mid-infrared attenuated total reflection (ATR) 

spectroscopy. Germanium ATR crystals were coated with different mesoporous silica films 

prepared by evaporation induced self-assembly. Quantitative analysis of the water bending 

vibration at 1640 cm-1 at varying vapor pressure allowed for retrieving porosity and pore size 

distribution of the mesoporous films. The results were in excellent agreement with those obtained 

from ellipsometric porosimetry. In addition, different degrees of hydrogen bonding of water as 

reflected in the band position and shape of the stretching vibrations (3000 - 3750 cm-1) were 

analyzed and attributed to high-density, unordered bulk and low-density, surface-induced ordered 

water. Thereby, the progression of surface-induced ordered water and bulk water as a function of 

water vapor pressure was studied for different pore sizes. Small pores with 5 nm diameter showed 

a number of two ordered monolayers, while for pores > 12 nm the number of ordered monolayers 

is significantly larger and agrees with the number observed on planar SiO2 surfaces.  
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INTRODUCTION 

All applications of mesoporous materials in industry and research, such as (photo) catalysis,1–3 

separation,4 electrochemistry,5 or (bio-)sensing6,7 benefit from the materials high-surface area and 

defined porosity. Their functionality and applicability in these various disciplines depends, 

however, not only on their large specific surface area, but fundamentally on the adsorbate-surface 

interactions. The latter play a pivotal role and drive researchers to investigate the bonding 

mechanisms e.g. H-bonding or π-π interactions. Such information is of particular interest for water 

at surfaces.8,9 The understanding of the local structure of water, especially in confined spaces like 

mesopores, is still object of intensive studies.10,11 Because of its high polarity, water and its manner 

of adsorption are strongly influenced by the surface’s hydrophobicity and the H-bonding formed 

with the surface.8,9,10,11 Infrared (IR) spectroscopy has proven an ideal method for studying 

adsorbed water, both qualitatively and quantitatively, as it is very sensitive to water and its states 

of hydrogen bonding.9,12,13,14,15 The (O-H) stretching bands located between 3000 cm-1 and 

3800 cm-1 give rich qualitative information as they are strongly affected by the molecule’s 

environment and the structure of water. Several water complexes have been reported that can be 

distinguished within this region based on IR spectroscopy.16,17 The second intense band of water, 

located at 1640 cm-1, is attributed to the H-O-H bending and is widely insensitive to the molecular 

surrounding. Therefore, it can be used as a robust measure for the quantity of adsorbed water.  

Although the plentiful information obtained from IR spectroscopy of water in mesoporous silica 

has been studied, e.g. for low temperatures and/or under static conditions,16,17 the progression of 

water’s local structure during adsorption/desorption has not been investigated yet. Measurements 

during adsorption/desorption from the gas phase at controlled humidity are hence needed to study 

the effect of the degree of pore filling on water’s local structure. While such measurements have 

been reported for planar, dense SiO2 films, the strong effects of confined spaces on the structure 

of adsorbed water sparks interest in a corresponding study on mesoporous materials that is yet 

pending.15,18–20 In order to discuss the water adsorption/desorption process quantitatively and 

qualitatively, characteristic parameters such as porosity and pore size distribution (PSD) are 

needed. The well-characterized optical setup presented herein allows, for the first time, to use ATR 

spectroscopy for porosimetry. Using absolute water contents derived from IR spectra and a 

modified Kelvin equation, PSD and porosity can be calculated. 
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Scheme 1: Mesoporous silica film coated on ATR crystal (Germanium, 20 active bounces) placed 

in a flow cell that is inserted into the beam path of an FTIR spectrometer and purged with 

humidified air.  

 

In this contribution, we present a method for determining porosity and PSD of mesoporous films 

using ATR FTIR spectroscopy non-destructively and at ambient conditions. Ge ATR crystals 

coated with mesoporous silica films of different pore size and arrangement were subjected to 

controlled humidity while monitoring the amount of adsorbed water per film volume (compare 

Scheme 1). Subsequently, PSD and porosity are retrieved from obtained isotherms using a 

modified Kelvin equation. The results were validated against ellipsometric porosimetry (EP),21,22 

a technique that has proven to be a particularly simple alternative to surface acoustic wave 

devices23 and quartz micro balances24. Furthermore, we analyze the O-H stretching bands 

(symmetric and asymmetric) between 3800 cm-1 and 3000 cm-1 to derive information about the 

structure of adsorbed water and its progression during water adsorption/desorption. The spectra 

were deconvolved using six bands associated with differently coordinated water.12,16 These bands 

can be categorized into vibrational modes corresponding to low-density (LD) and high-density 

(HD) water. We find that LD water accounts for the major fraction prior to pore condensation, 

while HD water constitutes the main fraction after pore condensation. Analyzing the area of the 

O-H stretching bands for varying humidity allows, for the first time, in situ monitoring of the 

humidity-dependent structure of adsorbed water in confined mesopores of silica films. Finally, we 

calculate the number of surface-induced ordered monolayers of water for two different pore sizes 

and demonstrate that the number is similar to planar SiO2 surfaces only for big pores, while for 

smaller pores the number is significantly reduced.  

 

EXPERIMENTAL DETAILS 

Materials and Methods 

Tetraethoxysilane (TEOS, Sigma Aldrich 99.5%), abs. ethanol (Fisher, 99.6%), hydrochloric acid 

(VWR, 37%), cetyltrimethylammonium bromide (CTAB, Sigma Aldrich, 99%), Pluronic F127 

(Sigma Aldrich), were used as received.  

The mesoporous silica thin films CTAB 3D hexagonal and CTAB cubic were synthesized as 

previously reported,25 using evaporation induced self-assambly.26 Shortly, sol compositions with 

final molar ratio of 1:13:5:0.005:0.12–0.16 for TEOS:EtOH:H2O:HCl:CTAB with 0.12 eq CTAB 

for the 3D hexagonal and 0.16 eq CTAB for the cubic film, respectively, were heated at 40 °C for 

4 h. The F127 film was prepared by stirring of ethanol, TEOS, water and 0.1 M HCl (molar ratio 

TEOS:ETOH:H2O:HCl = 1:8.7:10.3:0.01) at room temperature for 20 min, followed by addition 

of a polymer solution to the sol. The resulting solution had a final molar ratio of 

TEOS:EtOH:F127:H2O:HCl = 1:16:0.01:16.3:0.015 and the mixture was stirred for 3 h at room 

temperature. All three films were spin coated with a spinner velocity of 2000 rpm and subsequently 
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calcined at 400 °C for 12 h with a heating ramp of 1 K min-1. Details on the characterization of 

mesoporous silica films are given in the ESI. 

ATR FTIR Spectroscopy and Gas Handling 

Mesoporous coatings were prepared on ATR crystals cut from double-side polished Germanium 

wafers into 20 x 10 x 0.5 mm pieces and the facets were polished to a defined angle of 45°. Note 

that double-side polished Si or Ge wafers can be used directly as ATR crystals without using 

angled facets. However, angled facets provide higher depths of penetration and larger optical 

throughput, yielding measurements of better signal to noise ratio.27 This configuration allowed for 

20 active reflections. These ATR crystals were placed in the beam path of a Bruker Vertex 80v 

spectrometer equipped with a liquid nitrogen cooled mercury–cadmium–telluride (MCT) detector 

(InfraRed Associates), as previously reported,25 using a home-built aluminum gas cell with a 

volume of 4 cm3. IR spectra were acquired with a spectral resolution of 4 cm−1 and a total of 

32 scans (4 s, double-sided, backward forward acquisition mode) were averaged per spectrum. The 

noise level was evaluated as the RMS noise of 100% lines, which were obtained by calculating the 

absorbance spectrum of two subsequent single-beam spectra of the same sample under identical 

conditions. The RMS noise between 2000 and 1400 cm−1 was determined to be 4 × 10−5 A.U. from 

32 averaged scans. 

The controlled relative water vapor pressures were generated by mixing a dry N2 flow with a 

moistened N2 flow obtained from bubbling a metered flux through water at 50 °C by means of 

mass flow controllers (controlled using LabVIEW®,National Instruments). The total flux was fixed 

to 2 L min-1. All vessels and the flow cell were connected by 6 mm O.D. tubing. The actual water 

relative vapor pressure was determined by transmission IR Spectroscopy in a 4 cm transmission 

cell with ZnSe windows. The observed ro-vibrational lines between 1800 – 1600 cm-1 were 

integrated and using a 1 ppm/m water spectrum obtained from the PNNL database the relative 

humidity present in the gas flux was calculated. 

For all experiments, films were analyzed directly after calcination to avoid contamination from 

ambient environment. In addition, prior to every water adsorption/desorption measurement, the 

freshly calcined films were exposed to high humidity to rehydrate and stabilize the silanol groups 

on the surface.21 

Ellipsometric Porosimetry  

All films were analyzed by spectroscopic ellipsometry with a UV-visible variable angle 

spectroscopic ellipsometer (M2000, J.A. Woolam) equipped with a controlled atmospheric cell. 

Refractive index dispersions and film thicknesses were extracted from conventional Ψ and Δ fitting 

(where Ψ and Δ are the ratio of the amplitude diminutions and the phase difference induced by the 

reflection) using a Cauchy model (CompleteEASE software, J.A. Woolam) and measured under 

dry atmosphere. The porosities were calculated from the refractive index of the coatings using 

Bruggeman effective medium approximation. Water isotherms were obtained from EP 
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investigations performed on the films just after desorption at 200°C for 30 min to remove adsorbed 

VOCs. The H2O relative vapor pressure was adjusted using mass flow controller systems 

(ACEflow, Solgelway). The flux was set at 5 L min-1.  

RESULTS AND DISCUSSION 

Monitoring Water Adsorption and Desorption 

Before every adsorption/desorption experiment the silica films were exposed to a dry airflow to 

remove water adsorbed from ambient air until the spectra were stable, which was typically 

achieved after 5 min. Afterwards, relative vapor pressures between p/p0 = 0 – 0.95 and back to 0 

with 2 min holding time at each step were applied to the silica films while recording spectra every 

20 s. The thereby obtained spectra of adsorbed water into the mesoporous silica films as function 

of relative vapor pressure are given in Figure 1A. Bands associated with water are found in two 

spectral regions: The H-O-H bending vibration at 1640 cm-1, and a group of bands between 

3000 – 3800 cm-1 corresponding to symmetric and asymmetric O-H stretching vibrations. While 

the latter is greatly affected by water local structure and hydrogen bonding to itself and the surface 

(compare section “water film structure”), the bending vibration does not vary significantly. 

Therefore, its band height is used in this study as a robust quantitative measure for the amount of 

water adsorbed in the film.  
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Figure 1: (A) Evolution of water spectra with adsorption (blue) and desorption (orange) of water 

vapor. Relative humidity is stepped by p/p0=0.1 between consecutive spectra. Background taken 

at p/p0=0. (B-D) Isotherms of CTAB 3D hexagonal film (B), CTAB cubic film (C), and F127 film 

obtained from IR experiments compared with ellipsometric porosimetry (gray). 

For all films we find reversible isotherms type IV, according to IUPAC classification,28 with the 

characteristic steep increase of water content upon capillary condensation in the mesopores and a 

hysteresis between adsorption and desorption branches. 28 The hysteresis can have different 

origins: (i) Change of meniscus between adsorption and desorption from cylindrical to spherical 

due to the formation of nucleation barriers (typically found in cylindrical pores);29 or (ii) Pore 

blocking effects, which are due to the presence of interconnections of smaller size than the pores; 

i.e. bottleneck pores (small necks or mesopores connected through the intrinsic microporosity of 

the thin film). In this case, desorption can occur via the cavitation mechanism, leading to a very 

steep desorption step at p/p0 ≈ 0.3. 

 

Retrieval of Adsorbed Water Concentration and Porosity 

Calculating the porosity and PSD of the film requires calculating the volume fraction of adsorbed 

water per film unit volume, 𝑣𝐻20 ∶= 𝑉𝐻2𝑂/𝑉𝑓𝑖𝑙𝑚, from the recorded values of absorption. To this 

end, we modified the theory for ATR spectroscopy at mesoporous films introduced previously.25 

The theory builds on Lambert-Beer’s law 

A=·c·de,film·N   Equation 1 

Herein, H2O,1640 cm-1 = 21.4 L mol-1 cm-1 is the specific absorption coefficient of water, c is water’s 

concentration in the film (given as nH2O per Vfilm) and N the number of active bounces of the ATR 

element. de,film is the effective pathlength within the film, defined as the effective pathlength 

commonly used in ATR spectroscopy,30 scaled by the fraction of the evanescent field within the 

film (compare Scheme 1).25 The initial de,film,0 is calculated assuming nfilm = nSiO2 =1.26 at 1640 cm-

1.31 As the refractive index changes as a function of pore filling, this nfilm is corrected by an iterative 

process yielding de,film,corr (see below and ESI). Based on Equation 1, vH2O can be calculated as the 

ratio of measured water absorbance in the silica film, AH2O in film, and the absorbance one would 

measure if no water was displaced by the silica network, i.e. if no silica film was on the ATR 

crystal but a water film with the same thickness (see Equation 2).  

𝑣𝐻2𝑂 =
𝐴𝐻2𝑂 𝑖𝑛 𝑆𝑖𝑂2 𝑓𝑖𝑙𝑚

𝐴 𝑝𝑢𝑟𝑒 𝐻2𝑂 
=

𝐴𝐻2𝑂 𝑖𝑛 𝑆𝑖𝑂2 𝑓𝑖𝑙𝑚

𝜀𝐻2𝑂,1640𝑐𝑚−1∙𝑐𝑝𝑢𝑟𝑒 𝐻2𝑂∙𝑑𝑒,𝑓𝑖𝑙𝑚,𝑐𝑜𝑟𝑟∙𝑁
  Equation 2 

Herein, cpure H2O = 55.6 mol L-1. Equation 2 is valid if the absorption coefficient of adsorbed water 

is the same as for liquid water, which implies that water’s density  = 1 g cm-3 does not change. 

Although previous studies found smaller water densities in mesoporous materials (ca. 0.9 g 

cm-3),32,33 we do not account for this, because data on the change of water density in the course of 

pore filling (compare section “Structure of Confined Water during Adsorption”) as well as for 

different pore size is not available. 

Table 1: Summary of calculated parameters, see ESI for calculations.  
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 de,film,0·N 

initial 

estimation 

Corrected 

de,film,corr·N 

[µm] 

p/p0 = 0 

Corrected 

de,film,corr·N 

[µm] 

p/p0 = 0.95 

cH2O 

[molH2O/dm3
film] 

at p/p0 = 0.95 

Corrected 

Porosity 

(%) 

Porosity 

from EP 

(%) 

nporous 

SiO2 at 

p/p0 = 

0; 

=6.1 

µm 

CTAB 

3D hex 

4.99 4.31 5.31 27.2 49 51 1.13 

CTAB 

cubic 

5.07 4.42 5.07 28.1 51 55 1.13 

F127 5.44 4.51 5.68 35.4 63 68 1.09 

aobtained from ratio of water concentration in film to complete water film with same thickness 

 

The porosity P of the film is defined as the water fraction at fully filled pores at highest humidity, 

P:= vH2O(p/p0=0.95). As de,film and hence vH2O depends, amongst others, on the refractive index of 

the film, it changes significantly during adsorption experiments due to the displacement of air 

(nair=1) by water (nH2O=1.33). To take this into account in the calculation of P, we employ an 

iterative calculation (see ESI). The obtained corrected values of de,film for p/p0=0 and p/p0=0.95 are 

given in Table 1 (see ESI for full range). 

The films were furthermore characterized by EP and the hereby-obtained values for the porosity 

are as well given in Table 1. The corresponding isotherms are given in Figure 1B-D, showing good 

agreement with the values obtained by ATR spectroscopy. We attribute the small differences 

between calculated porosities (i.e. the height of the isotherms) to the wrong assumption for the 

density of water. In contrast to the density of 1 g cm-3 used herein, values of ca. 0.9 g cm-3 were 

reported and explained with either incomplete pore filling32 or, as discussed later, the different 

nature of water in confined pores.  Remaining differences between results obtained via ATR 

spectroscopy and EP may originate from small differences in the measurement setups as for EP 

the p/p0 was ramped, while IR measurements were performed with a stepwise increase. Further 

discussion of the differences would require side-by-side measurements in the same laboratory 

under same conditions. 

Pore Size Distribution 

Similar to other porosimetry techniques, the isotherms obtained in the previous section were 

analyzed by the Kelvin equation to derive the pore size distribution.21,34,22,35 The Kelvin equation 

describes the behavior of a fluid in confined spaces such as a capillary. The Kelvin radius rK equals 

the radius of curvature of the meniscus formed in this capillary, which depends on the relative 
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vapor pressure p/p0, surface tension , molar volume of the adsorbate Vm, contact angle , a 

geometric factor G, temperature T and gas constant R: 

𝑟𝐾 =
−𝐺∙𝛾∙𝑉𝑚∙cos (𝜃)

𝑅∙𝑇∙ln (
𝑃

𝑃0
)

  Equation 3 

𝛾 = 𝛾0(
1

1+
𝐺𝛿

𝑟𝐾

)  Equation 4 

The surface tension  is a function of curvature and was modified by the Tolman model with a 

fixed Tolman length , with  being the molecular diameter of adsorbate.36,37 For the adsorbate 

water, 0=7.28·10-2 J m-2, Vm = 18.04·10-6 m3 mol-1, =27° (obtained from contact angle 

measurements), R= 8.314 kg m2 s-2 mol-1 K-1, T=298 K, =9.6 10-11 m were inserted. The 

geometric factor G was calculated according to the Isotropic Inorganic Pore Contraction (IIC) 

model,21 which describes the pore anisotropy resulting from the shrinkage of the film upon 

calcination (see ESI). 

rK solely describes the radius of curvature of the meniscus and for determining the actual pore 

diameter the thickness t of the adsorbate layer on the pore wall has to be added: Dpore = 2(rk + t).38 

As for gas sorption measurements, data on t is not available and needs to be estimated.28 Due to 

the lack of data for porous materials, we use the film thickness t of water adsorbed on planar SiO2 

as a function of relative humidity as obtained from literature and fitted with a third order 

polynomial function (see ESI).39,18 Finally, the pore size distribution is obtained following the BJH 

method,40 by taking the derivative of the adsorbed volume vH2O with respect to Dpore and plotting 

the result versus Dpore on the x-axis (see Figure 2). The hysteresis present in the isotherms is 

relatively large for water, characteristic of bottleneck pores as discussed in the previous section. 

In this case, the adsorption branch can be used to estimate the pore size whereas the desorption 

branch is associated to the interconnection size and not the pore size itself.38,41 For both CTAB 

films desorption occurs at p/p0 ≈ 0.3, the typical experimentally obtained cavitation pressure for 

water in mesopores. This suggests that water desorbs under cavitation conditions rather than 

equilibrium conditions from these films as a similar behavior was reported for inert gases.42,43 

Thus, the interconnection size distributions may be overestimated. In contrast, the desorption 

branch obtained from the F127 film occurs at p/p0 > 0.3 (p/p0 ≈ 0.7), therefore equilibrium 

desorption can be concluded and the obtained PSD reflects the real size distribution of the 

interconnections. 

The obtained PSDs for all films were compared with the established EP. The results are included 

in Figure 2 and show excellent agreement with the PSDs obtained from ATR spectroscopy.  
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Figure 2: Pore Size Distribution of CTAB 3D hexagonal film (A), CTAB cubic film (B) and F127 

film (C) obtained from ATR spectroscopy compared with the results of EP (gray). 

Structure of Confined Water during Adsorption 

O-H stretching vibrations and the less intense overtone of water’s bending vibration between 

3000 and 3800 cm-1 provide rich information about the structure of silica as well as the adsorbed 

water44,45 Figure 3 shows a close-up of the normalized bands in this spectral region corresponding 

to the adsorption branch in Figure 1B.  
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Figure 3: FTIR spectra of water adsorption into the 3D hexagonal film in the (O-H) region 

normalized to the entire band area between 2400 and 3800 cm-1. Background spectrum was taken 

under dry (p/p0=0) conditions. Bands between 3000 – 2800 cm-1 are attributed to hydrocarbons 

accumulated from the gas phase.  

With increased filling of the pores, a clear shift in the maximum of the spectra from 3230 cm-1 to 

3400 cm-1 is visible. This shift has been previously observed for planar silica surfaces and was 

attributed to different ratios of referred to as “ice-like” water (3230 cm-1) and “liquid-like” water 

(3400 cm-1) on SiO2 films upon increasing relative humidity.18 Asay et al. ascribe the “ice-like” 

character of the first monolayers of the adsorbed water to surface-induced ordering due to strong 

hydrogen bonding with the silica surface. After the third monolayer of water, this structuring effect 

decreases and the water band shifts to higher wavenumbers. Furthermore, Mallamace et al. studied 

water confined in mesoporous silica at low temperature using FTIR spectroscopy. They 

distinguished five bands within the (O-H) region: I) 3220 cm-1 attributed to fully bonded water 

of low density having a coordination number close to four, as observed in ice; II) 3400 cm-1 for 

water having an average degree of connection greater than for dimers and trimers but lower than 

for I), III) 3540 cm-1 corresponding to water molecules that are poorly connected to their 

environment, IV) 3620 cm-1 for water in trimers and tetramers, and V) 3140 cm-1 for a second local 

structure of low-density water.16 Probing the local H-bonding environment of the water molecule 

via the band positions allows for correlating these bands with water’s density.12,16,46,47 The bands 

observed at higher frequencies (II-IV) were attributed to high-density (HD) water, whose local 

tetrahedrally coordinated H-bonding structures is not fully developed.16 Here, water molecules 

exist in small clusters of up to four molecules. Bands I+V were attributed to low density water 

(LD water, with a density close to the one of ice).12,16,46  

In the present study, an additional band at 3745 cm-1 was observed that corresponds to isolated 

silanol groups (Si-O-H) that exist only in anhydrous conditions. Due to their hydrophilic nature, 

these silanol groups are hydrated immediately if water vapor is present and since the background 

spectra are recorded on dry films this leads to the negative peak observed in Figure 3.44 Since the 

silanol groups influence the hydrophilicity and hence the hydration mechanism of silica, the silanol 
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content was calculated for the CTAB 3D hexagonal and the F127 film (see ESI for details). Due 

to the similar Si-OH coverage for both films we assume similar wetting properties allowing a 

comparison of the two films.  

The (O-H) region of the spectra obtained for the smallest (CTAB 3D hexagonal) and the biggest 

(F127) pore system were deconvolved, in accordance with Refs. 12,16, by fitting the spectra using 

six Gaussian profiles with fixed peak positions (3140, 3220, 3400, 3540, 3620 and 3745 cm-1) and 

widths.12,16 Here, the band fitting was adopted where different spectral bands were curve assigned 

to single absorption bands, where contributions of the asymmetric and symmetric stretch were 

combined into a single band. The results are given in Figure 4 and Figure 5, respectively. 

 

Figure 4: Deconvolution of (O-H) region obtained for CTAB 3D hexagonal film during 

increasing p/p0: peak area for different bands (A), band area normalized to the total band areas (B), 

multi-Gaussian fit of spectra before (C) and after (D) pore condensation. 



 12 

 

Figure 5: Deconvolution of (O-H) region obtained for F127 film during increasing p/p0: peak 

area for different bands (A), band area normalized to the total band areas (B), multi-Gaussian fit 

of spectra before (C) and after (D) pore condensation. 

All band areas except for the isolated silanol groups at 3745 cm-1 increase with p/p0 (compare 

Figure 4A and 5A). As can be seen from Figure 4B and 5B, the relative amount of LD water 

changes significantly during pore condensation. Before pore condensation at p/p0=0.5 or p/p0=0.8, 

respectively, (see Figure 1B and 1C) the major fraction of water species corresponds to LD water. 

After pore condensation, the main fraction is the sum of peak III and IV that corresponds to HD, 

liquid-like water with low order.  

If considering the simplest picture of pore filling, a complete layer of water on the materials surface 

is assumed before a subsequent layer is formed (compare Scheme 2A). Based on this hypothesis, 

several monolayers of water, most of which are strongly associated with the surface and hence 

contributing to the fraction of LD water, are forming before capillary condensation occurs. At this 

point, the remaining center part of the pores is filled predominately with bulk-like, less structured 

HD water. A stable concentration of the LD water after pore condensation would verify this 

hypothesis. However, our results do not fully agree with this simple picture, but show an increase 

of the LD water at and after capillary condensation at p/p0= 0.5 and p/p0=0.8 as visible in Figure 

4A and 5A, respectively. From the abrupt increase of the LD fraction at capillary condensation we 

can assume that the center of the pore is not exclusively filled with HD water but also LD water. 

In return, the HD fraction is also growing less strongly from p/p0= 0 on.  
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Scheme 2: Schematic representation of different hypothesis of water adsorption in mesopores for 

LD water (light blue) and HD water (dark blue) adsorption at different p/p0. (A) Before pore 

condensation (PC) LD water fully convers the pore surface. (B) Pore surface is fully covered after 

pore condensation. 

Kocherbitov et al. found a similar adsorption behavior and concluded that in contrast to the simple 

hypothesis, the pore surface is only partially covered with water and hydrophobic patches at the 

pore walls, i.e. spots with low silanol density, are wetted at higher relative vapor pressures after 

capillary condensation (compare Scheme 2B).32,33 This conclusion is in accordance with our 

findings: The concentration of surface-associated water species, i.e. water, still increases after 

capillary condensation (Figure 4A and 5A). 

Furthermore, the obtained water concentrations can be used to estimate the thickness of the LD 

water film with a monolayer thickness of 0.28 nm48 in the fully filled pores (see ESI for 

calculation). Only at high humidity (p/p0=0.95) the pores are fully filled and monolayers of water 

are not disrupted by hydrophobic patches (compare Scheme 2B). Therefore this analysis was only 

performed for the fully filled pores. For the calculations, we assumed a porous volume comprised 

of spheroids with pore diameter of b = 4.7 nm and a = 6.3 nm for the 3D hexagonal film, and b = 

12.5 nm and a = 19.5 nm for the F127 film, respectively, with a retrieved from the anisotropy 

factor q = a/b (see Table 1 in ESI). If assuming a monodisperse system, the calculations yield 3 

and 7 monolayers for the CTAB and F127 film, respectively. These values represent an upper limit 

for the numbers of LD monolayers because pore interconnections and microporosity were 

excluded which leads to an underestimation of the pore surface. Even for this upper limit 

assumption, the number of monolayers for the CTAB film is smaller than the number of 4 

monolayers reported for planar SiO2.
49 However, PSD confirms pore interconnections > 2 nm for 

the F127 film and the microporosity of both films can be assessed from isotherms (see ESI) to be 

8 % and 4 % of the total porosity for the CTAB and the F127 film, respectively. To account for 

the microporosity, we assumed a bidisperse system with pore diameters as given above and 1 nm 

micropores constituting 8 % and 4 %, respectively, of the total pore volume. This assumption may 

be not correct but is given as an example. This yielded 2 and 4 monolayers for the CTAB and F127 

film, respectively. The result for the large pore system (F127 film) is in agreement with the 

previously reported number of 4 surface-induced ordered monolayers found on planer SiO2.
49 

However, the number of LD water monolayers found in the small pore film is considerably smaller. 
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For the CTAB 3D hexagonal film 3 and 2 monolayers of LD water with and without microporosity, 

respectively, were observed. These values agree well with the generally observed number of two 

surface-affected monolayers in confined fluids at pore surfaces.50  

Note that the thicknesses of surface-induced structured water does not allow for conclusions about 

the overall water thickness t as needed for PSD calculations in the previous section.  

 

CONCLUSION 

In conclusion, we observed the evolution of water’s structure in mesoporous silica films in situ 

during adsorption and desorption. In addition to the structural study of adsorbed water, ATR-FTIR 

spectroscopy is also used for determining the porosity and pore size distribution of the mesoporous 

silica films under study. The porosity and pore size distribution retrieved using the Kelvin equation 

are in excellent agreement with values obtained from established ellipsometric porosimetry. The 

high sensitivity of the stretching vibrations to the water molecule’s states of hydrogen bonding 

enabled distinguishing bulk liquid and surface-induced ordered water, depending on its proximity 

to the surface. The IR spectra between 3000 and 3800 cm-1 were deconvolved giving the humidity-

dependent development of different water species in SiO2 mesopores. Based on this, the number 

of surface-induced ordered water monolayers was estimated and pores with a diameter of ca. 13 nm 

yielded values that coincide with reported values for water on planar SiO2 surfaces, while smaller 

pores showed a significantly lower number of ordered water layers. Given these results, a drastic 

change in the water structure in confined spaces between a 5 and 13 nm pore diameter is observed.  

In conclusion, we presented an instrumentally straightforward approach to study a variety of 

adsorption processes and phenomena in porous films in situ based on mid-IR ATR spectroscopy. 

Besides its application to porosimetry and analysis of adsorbed water’s intermolecular structure, 

this method could be used for other adsorbates in porous materials and especially mixtures thereof 

to study displacement of one adsorbate by another based on characteristic IR bands. The presented 

setup allows for studying fundamental surface-molecule interactions beyond water as the 

absorption bands of many functional groups change upon adsorption depending on the adsorption 

mechanism. 
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