
TECHNISCHE UNIVERSITÄT WIEN

TU WIEN

MASTER THESIS

Comparison of Feature Sets for Detecting Attacks

in Network Traffic

Author:

Fares MEGHDOURI

Supervisors:

Univ. Prof. Dr.-Ing. Tanja ZSEBY

Dr.techn. Félix IGLESIAS

A thesis submitted in fulfillment of the requirements

for the degree of Diplom-Ingenieur

in the

Communication Networks Group

Institute of Telecommunications

July 19, 2018

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

https://www.tuwien.ac.at/en/
https://www.nt.tuwien.ac.at/about-us/staff/tanja-zseby/
https://www.nt.tuwien.ac.at/about-us/staff/felix-iglesias/
https://www.cn.tuwien.ac.at/
https://www.nt.tuwien.ac.at/

iii

Declaration of Authorship
Hiermit erkläre ich, dass die vorliegende Arbeit gemäß dem Code of Con-

duct, insbesondere ohne unzulässige Hilfe Dritter und ohne Benutzung an-

derer als der angegebenen Hilfsmittel, angefertigt wurde. Die aus anderen

Quellen direkt oder indirektübernommenen Daten und Konzepte sind unter

Angabe der Quelle gekennzeichnet. Die Arbeit wurde bisher weder im In–

noch im Ausland in gleicher oder in ähnlicher Form in anderen Prüfungsver-

fahren vorgelegt.

Datum

Unterschrift

Name

v

“Education is not the learning of facts, but the training of the mind to think.”

Albert Einstein

vii

TECHNISCHE UNIVERSITÄT WIEN

Abstract
Faculty of Electrical Engineering and Information Technology

Institute of Telecommunications

Diplom-Ingenieur

Comparison of Feature Sets for Detecting Attacks in Network Traffic

by Fares MEGHDOURI

The growing amount of encrypted traffic in today’s networks makes deep

packet inspection infeasible. In addition, high data rates increase the de-

mand for fast processing of network traffic. Attack detection methods need

to be based on light feature vectors that can be generated from encrypted net-

work traffic and are easy to extract, process and analyze. So far experts have

selected features based on their intuition and previous research works, but

there is no general agreement about the features to use for attack detection in

a broad scope.

In this work we studied five lightweight feature sets recently proposed

in the scientific literature. We compared and evaluated the selected vectors

with supervised classification schemes.

HTTPS://WWW.TUWIEN.AC.AT/EN/
https://etit.tuwien.ac.at/home/EN/
https://www.nt.tuwien.ac.at/

ix

Acknowledgements
This work would not have been possible without the help and the guidance

of my mentor, Dr. Félix Iglesias Vázquez, his advice and experience were

always present while working on this thesis. I would also like to thank Prof.

Tanja Zseby, as my teacher and supervisor, she taught me a lot during my

studies and was always there when I needed advice.

A special thanks to Prof. Gerald Matz and Prof. Christoph Mecklen-

bräuker for being amazing teachers, from who I have learned more than just

scientific lessons.

Special thanks also go to the colleagues with whom I had the pleasure to

study and work, with: Daniel, Valon and Branko.

I would like to thank my family for all the support and encouragement,

my mother, my father and my idol, my brother Walid and my uncle, Lahcen.

xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 2

1.3 Goals . 2

1.4 Arrangement of The Thesis . 3

2 Background Knowledge 5

2.1 Network Traffic Analysis . 5

2.1.1 Intrusion Detection Systems 5

2.2 Types of Classification . 8

2.2.1 Port-based . 8

2.2.2 Deep Packet Inspection 8

2.2.3 Flow-based . 9

2.3 Flow-based Analysis . 9

2.4 Supervised Classification Algorithms 11

2.4.1 Overview . 12

2.4.2 Decision Trees and Random Forests 12

2.4.3 k-Nearest Neighbors . 15

2.4.4 Support Vector Machine 17

2.4.5 Naive Bayes . 19

2.4.6 Logistic Regression . 20

xii

3 Methodology & Experiments 23

3.1 Feature Sets . 25

3.1.1 Time Activity vector . 26

3.1.2 Consensus vector . 27

3.1.3 AGM vector . 28

3.1.4 CAIA vector . 29

3.1.5 UNSW Argus/Bro vector 31

3.2 Extraction Ability for Encrypted Traffic 33

3.2.1 TLS . 34

3.2.2 IPsec . 34

3.3 Preprocessing . 35

3.3.1 Feature Sets Construction 35

3.3.2 Unidirectional to Bidirectional Flows & Aggregation . 36

3.3.3 Labeling . 38

3.3.4 Nominal Features . 39

3.3.5 Scaling & Log-transformation 42

3.3.6 Features Selection & Reduction 44

3.3.7 Features Importance via Decision Trees 44

3.3.8 Principal Component Analysis 45

3.4 Supervised Analysis . 46

3.4.1 Training-Testing. 46

3.4.2 Parameters Tuning . 47

3.5 Evaluation . 48

3.5.1 Metrics . 48

3.5.2 Over-fitting Problem & 5-fold Cross-validation 50

4 Results & Discussion 53

4.1 Extraction Costs Performance 53

4.1.1 Time costs . 53

4.2 Training-Testing Classification Performance 57

4.2.1 Time Activity vector . 57

4.2.2 Consensus vector . 58

xiii

4.2.3 AGM vector . 59

4.2.4 CAIA vector . 60

4.2.5 UNSW Argus/Bro vector 61

4.3 Global comparison . 62

4.4 Features importance . 63

4.4.1 Time Activity vector . 63

4.4.2 Consensus vector . 64

4.4.3 AGM vector . 64

4.4.4 CAIA vector . 65

4.4.5 UNSW Argus/Bro vector 65

5 Conclusions 67

5.1 Conclusions . 67

5.2 Submitted Publication . 68

5.3 Further Work . 69

A Extraction Tool : Flow Extractor 71

A.1 Structure . 74

A.2 Performance . 76

B The NUSW-NB15 Dataset. 79

B.1 Statistics . 79

Bibliography 81

xv

List of Figures

2.1 IDS implementation types . 7

2.2 An example showing two hosts communicating. "Flow 1" rep-

resent a random flow with two numerical features. 10

2.3 An example of 8 flows with their 2D plot. Two clusters are

clearly shown. 11

2.4 An example of an artificial binary data with their respective DT. 14

2.5 The geometric interpretation of kNN classification with k=3. . 16

2.6 2D example of a SVM data separation (ref : en.wikipedia.org/wiki/Support

_vector_machine). 18

2.7 The logistic function (ref : machinelearningma- stery.com/logistic-

regression-for-machine-learning/). 21

3.1 Scheme of the conducted experiment [12]. 23

3.2 An example of mapping two unidirectional flows into one bidi-

rectional flow. 37

3.3 Nominal to numerical feature mapping example. 40

3.4 The structure of a confusion matrix. 48

3.5 How a data set is divided in order to perform a 5-fold cross-

validation. 50

4.1 Time cost of each set. The UNSW set performance is only an

estimation and it can differ. 55

4.2 The importance scale used to classify the features. 0 impor-

tance is classified as negligible. 64

A.1 A simplified structure of the Flow Exporter. 75

xvii

List of Tables

2.1 An example of 8 artificial flows 11

2.2 An example of an artificial binary data with their respective DT. 14

3.1 Features of the Time Activity set. 26

3.2 Features of the Consensus set. 27

3.3 Features of the AGM set. 29

3.4 Features of the CAIA set. 30

3.5 Features of the UNSW Bro/Argus set. 32

3.6 Features of the UNSW Bro/Argus set (continuous). 33

3.7 Traffic encryption and feature sets compatibility. 35

3.8 Nominal to numerical feature mapping example. 40

4.1 Time cost in numbers. 54

4.2 TA classification results. 57

4.3 The optimal parameters for the TA classifiers. 58

4.4 Consensus classification results. 59

4.5 The optimal parameters for the Consensus classifiers. 59

4.6 AGM results. 60

4.7 AGM classifiers optimal parameters. 60

4.8 CAIA classification results. 61

4.9 The optimal parameters for the CAIA classifiers. 61

4.10 UNSW Bro/Argus classification results. 62

4.11 The optimal parameters for the UNSW Bro/Argus classifiers. 62

B.1 Normal to Abnomal distribution of flows. 79

B.2 Attacks distribution. 79

xix

List of Abbreviations

IDS Intrusion Detection System

ML Machine Learning

IPS Intrusion Prevention System

IP Internet Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

HTTP HyperText Transfer Protocol

FTP File Transfer Protocol

DPI Deep Packet Inspection

TLS Transport Layer Security

IPsec Internet Protocol security

DOS Denial Of Service

ICMP Internet Control Message Protocol

OSI Open Systems Interconnection

JSON JavaScript Object Notation

GT Ground Truth

TA Time Activity

CAIA Center for Advanced Internet Architectures

AGM AGgreation & Mode

UNSW University of New South Wales

DT Decision Tree

RF Random Forest

NB Naive Bayes

kNN k-Nearest Neighbors

LR Logistic Regression

SVM Support Vector Machine

xx

PCA Principal Component Analysis

IANA Internet Assigned Numbers Authority

IPFIX IP Flow Information Export

OOP Object Oriented Programming

xxi

Dedicated To My Beloved Parents. . .

1

Chapter 1

Introduction

In this chapter, we discuss the reasons that motivated this work, the results

that we aimed to and the need for such results in the field of anomaly detec-

tion in network traffic.

1.1 Background

Internet traffic classification played a big role in the research related to anomaly

detection and prevention. There exist multiple proposals to build systems

capable of detecting malware or malicious activity on the network based on

different approaches.

One of the basic approaches in order to monitor Internet traffic is keeping

track of packets properties. Using statistical features to represent the traffic is

also a well known and easy approach for further analysis of the traffic but to

the best of our knowledge a few research studied the effect of which feature

set to use for this purpose. Most authors use feature sets by default straight-

forwardly or build their own and keep using it in their research. Studies were

conducted focusing on the influence of classification algorithms on the clas-

sification results, many of them proposed new classification schemes and/or

new representation of the data.

2 Chapter 1. Introduction

1.2 Motivation

The incredible growth of the Internet nowadays implies that more robust

and extremely fast anomaly detection systems need to be developed to se-

cure the network. These systems need first to have the ability to deal with

large amount of traffic, second, to raise correct alarms (low false positives

and false negatives) and finally they must be able to cope with encrypted

traffic since encryption is being progressively adopted in all modern Internet

communications.

A considerable part of the research related to anomaly detection and traf-

fic classification does not properly discuss the importance of the feature selec-

tion. Authors acritically apply the same features as used in previous works,

use default sets, or resort to their own intuition.

In this work, we raise many questions, for instance, which feature set is

most suited for traffic classification? what are the features that carry more

information about the behavior of a network? and finally, does the choice

of the feature set influence the detection results? Beyond these findings, a

main contribution of this work is settling a basis for the discussion of the

feature selection problem in network traffic analysis and network security.

This issue has been previously addressed in [6] where the authors tried to

find the impact of each feature on the classification of traffic and [5] where

a meta-study was carried out to rank the most used features in the latest

research related to anomaly detection and traffic classification.

1.3 Goals

The need for fast and robust systems brings the discussion to the main ele-

ment in traffic classification : the features that are used. This work has mainly

four goals, we summarized them as follows :

• Comparing lightweight feature sets that have been proposed in the re-

lated literature for the last years in terms of classification performance

and processing speed. By analyzing these sets a better representation

1.4. Arrangement of The Thesis 3

of the data and a better classification performance can be achieved in

the future.

• We also discussed the importance of each feature in each studied set,

which allowed us to have a general idea on the most relevant features

in an IDS (Intrusion Detection system).

• From the previous results, we wanted to propose enhancements on the

previously used sets.

• As a last step, we analyzed the relationships between features and at-

tack families, exploring which features were relevant to identify specific

types of network attacks.

1.4 Arrangement of The Thesis

This thesis is divided into five chapters :

• In chapter 2 we introduce background knowledge related to network

traffic analysis and machine learning classification algorithms.

• In chapter 3 we introduce our sets, the methodology used and the eval-

uation of the results.

• In chapter 4 we discuss performance results for both extraction time

costs and classification performance, we then propose enhancements

to the previous sets.

• Finally, we enclose this work with a conclusion in Chapter 5 regarding

findings and research that can use our work as a baseline.

Appendices A and B introduce the tool used in order to extract different

sets and the dataset used in this work.

5

Chapter 2

Background Knowledge

In this chapter two topics are mainly discussed.First, we explain what is

meant by network traffic analysis and the fundamental ideas behind. Sec-

ond, we introduce six ML (Machine Learning) algorithms in the scope of

supervised classification.

2.1 Network Traffic Analysis

In order to detect anomalies in Internet traffic we need well defined methodologies.

Performing analysis on network traffic is a way to have a general idea on the state of

a network. Previous research presented many approaches serving the same goal :

detecting anomalies accurately. In this section we present the basic structures of

these systems.

2.1.1 Intrusion Detection Systems

An IDS (Intrusion Detection System) is defined as any system placed in a net-

work in order to notify the administrator about any suspicious activity or an

anomaly which changes the normal behavior of this network. This concept

was first introduced in 1980 by James Anderson [2]. The main task of these

systems is to raise an alert when necessary, but more advanced systems (IPS

- Intrusion Prevention Systems) can additionally react by their own and exe-

cute preloaded instructions, for instance : filtering. Tunning these systems to

enhance their detection accuracy (less false positives and negatives) is still a

6 Chapter 2. Background Knowledge

challenge. Moreover, these systems need to be robust, able to learn new pat-

terns and adapt to the evolving network characteristics (dynamic reaction).

In this work, a light IDS is used to monitor Internet traffic . It can be

placed everywhere in the network depending on the resources. We present

the overall structure of such systems and the different types that have been

developed in the past. Mainly two categories exist:

Network intrusion detection systems. This type of implementation is the

simplest. The IDS is installed in a defined position on the network (usually

near to a firewall). If this position is properly chosen, the system will be

able to monitor all the traffic going in and out of the network. An alarm

is announced only if the current behavior of the network mismatches the

usual behavior. However, scanning all traffic passing through a single point

is a bad idea (it will create bottlenecks) and requires a lot of computational

efforts. This can be solved by reducing the number of operations needed,

packets filtering/selection or even using a multi-stage IDS. Figure 2.1a shows

a possible implementation.

Host intrusion detection systems. The second type is a host based IDS. The

system here is installed in a network host and keeps track only of the traffic

going in and out of the specific host. The administrator is then notified when-

ever a malicious activity is detected affecting the controlled hosts. Advanced

host based IDS can even prevent the spread of malicious activities to other

hosts. An example of such system is an anti-virus software installed in hosts.

Figure 2.1b shows the respective implementation.

After discussing the two main IDS structures, we now discuss two main

detection methods recently proposed. They are explained in what follows :

Signature-based. This type of detection is based on behavior matching, in

other words, the system has a database preloaded with attack patterns. The

system keeps comparing the current measurements from the network with

2.1. Network Traffic Analysis 7

(a) Network intrusion detection
systems. Note that the IDS can
be placed before, after or together

with the firewall.
(b) Host intrusion detection sys-

tems.

Figure 2.1: IDS implementation types

all entries in the database. It raises an alarm only if the network traffic pattern

matches one of the attack patterns. A pattern is defined as a set of features

having a certain value, e.g, the packet load signature used for worms detec-

tion (in the case of non-encrypted traffic). Well known applications of such

detection technique are anti-viruses where databases are updated regularly.

This detection method is really effective with pre-known attacks hence the

false positive rate is really low. Nowadays, the main issue is reacting to new

attacks (or even old attacks with a different signature), where the system is

obviously not capable of fully adapting itself to changes.

Anomaly-based. This type of detection is suited for applications where

anomalies or attacks are not known or change dynamically. Most of the sys-

tems of this type are based on mathematical formulations with parameters

that can be adjusted. An alarm is raised whenever a statistical condition is

met or network traffic measurements are either out of range or exceeds pre-

defined thresholds. The output of such systems is usually binary (normal or

abnormal). The main drawback of this approach has to do with high false

positive rate, however, many parameters tunning methods were developed

to overcome this issue and even an adaptive tunning based on pattern learn-

ing can be used along with the detection module.

8 Chapter 2. Background Knowledge

One should also be aware that there exists no perfect IDS in the sense

that its accuracy is 100% nevertheless, we can make use of ML technique to

both : construct a robust system and keep tunning it via dynamic learning

processes.

2.2 Types of Classification

Signature based or anomaly based, an IDS needs anyway to gather measurements

from the network. The cost, the possibility of extraction and the data extracted for

each measurement type are not the same. We explain three classification schemes

based on different features.

2.2.1 Port-based

It is one of the simplest ways to classify both TCP and UDP traffic. This is

due to the fact that many services are already known and associated with

famous port numbers (HTTP:80, FTP:20,21...). The classifier needs only to

parse the TCP/UDP header and then classify traffic based on a prestored

database (provided for instance by IANA [9]). Despite the easiness and the

low resource consumption needed, this method is not reliable. An attacker

can easily break the detection system for the only reason that not all port

numbers are well and preassigned; even worst, tunneling over known port

numbers can be used and an attacker can hide a malicious activity pretending

to be a normal service therefore.

2.2.2 Deep Packet Inspection

DPI (Deep Packet Inspection) is the most difficult method to achieve. With

DPI we break one of the most important rules in the Internet : privacy. The

idea behind is analyzing the content of packet payloads. By doing so, many

complex attacks can be detected. Many works propose techniques to do it,

one of the intuitive methods is using well known signatures and try to match

2.3. Flow-based Analysis 9

them with the payload. The encryption of traffic is a big problem for this

approach. In th case of TLS or IPsec usage, the payload is not available to a

third party and therefore, no useful information can be extracted. Another

issue is the bad support and the lack of signatures publicly available from

well known service providers. If a service provider does not want to make

his protocol structure available to the public (open-source), it would be im-

possible to recognize its traffic (e.g., Skype).

2.2.3 Flow-based

Flow statistics can be used to classify network traffic as well. A flow is a

group of packets that belongs to a same connection between two hosts in

a defined time window. It is represented by a key and a set of features ex-

tracted from traffic measurements. That is why it is a good approach to repre-

sent network traffic. Classification schemes based on flow statistics need only

header fields, which makes it faster than DPI and offers more informations

than the port-based method. An endless amount of network traffic features

are available and can be used but a few of them really carry meaningful infor-

mation, when considering the task of network traffic classification. However,

using a high number of features causes challenges in further steps (e.g., curse

of dimensionality [10]), therefore, it is recommended to choose the features

wisely.

2.3 Flow-based Analysis

All vectors studied in this work belong to the flow-based type. In this section, we

discuss in detail this type of representation.

A network traffic flow is defined as the set of packets exchanged between

two hosts, a host and a group of hosts (multi-cast) or a host and all hosts in a

network (broadcast). A flow can be either unidirectional (data transfer in one

direction) or bidirectional (data transfer in both directions). We extend this

definition further by setting a key to each flow so that we can distinguish it

10 Chapter 2. Background Knowledge

Figure 2.2: An example showing two hosts communicating.
"Flow 1" represent a random flow with two numerical features.

from other flows. An example of a flow key is the well known 5-tuple that

contains: the source IP address, the destination IP address, the source Port,

the destination Port and the protocol { sIP, dIP, sPort, dPort, Protocol }. In or-

der to reduce the computational resources, we define two parameters to limit

the flow duration (otherwise, the IDS needs to keep the connection open for-

ever). The first one is the timeout, which is the time needed before the flow

is set to "finished" in case where no activity is detected. Second, active time,

which is the maximum flow duration even if an activity is present. This is

mainly needed in the case of long continuous flows, which are preferably di-

vided into smaller sub-flows to maximize the information gain (many flows

provide more detailed information than a single large flow).

The set of features constructing each flow are parsed simply from the

group of packets belonging to that flow. Sometimes, mathematical operation

or statistical transformation are also used to map a list of numerical values

into only one (the mean for instance). Figure 2.2 shows an example of two

hosts exchanging packets and the extracted flow.

Now back to the main topic, how can a flow be used to classify Inter-

net network traffic? Geometrically speaking, each flow represents a point

in an n-dimensional space where n is the number of flow features. By plot-

ting all these points we see clusters where each one should represent a class

or a category with the same behavior in the respective network traffic. To

give an example, let us consider some artificial flows with two features each

and plot the respective 2D space (Figure 2.3). Table 2.1 shows 8 flows with

2.4. Supervised Classification Algorithms 11

Figure 2.3 & Table 2.1: An example of 8 flows with their 2D
plot. Two clusters are clearly shown.

two features, the first one is the number of packets transmitted between the

hosts, the second feature is the mean inter arrival time (it is the mean time be-

tween received packets). Note that this is an extremely simplified scenario of

a DOS (Denial Of Service) attack, the attacker tries to send a massive amount

of packets in a short time period which will consume the victim’s resources

quickly and thus the victim’s host will fail. From Figure 2.3, we notice that

two clusters are formed, the left cluster consists of flows with a low number

of packets and a large mean inter-arrival time which is considered here as a

normal behavior; the right cluster consists of flows with a large number of

packets and a small mean inter-arrival time. A reasonable system will there-

fore detect and differentiate between the two clusters and more advanced

systems can even predict that this is a DOS attack.

2.4 Supervised Classification Algorithms

In this section, six of the most known ML classification algorithms that were used

in this work are briefly explained.

12 Chapter 2. Background Knowledge

2.4.1 Overview

This work uses supervised classification for analysis tasks. Supervised clas-

sification means that the data analyzed by ML algorithms is already labeled

(the label of each flow is known). A comparison of the predicted labels and

the original ones allows us to measure the performance of correctly classified

flows being able to benchmark both : the features sets and the ML algorithms.

The main idea behind most ML algorithms is similar : create a model

that best fits the mapping data −→ label by learning from training data with

labels. Once the model is ready, we test it with test data and we get predicted

test labels based on the model (note however that one of the algorithms used

in this work is not a model based algorithm –kNN–, it is a lazy learning

algorithm and will be explained later). By comparing the predicted labels

and the original ones using predefined metrics (explained in 3.5.1), we can

study how good is our model.

2.4.2 Decision Trees and Random Forests

Decision Trees One of the most and widely used algorithms in a super-

vised classification is the well known DT (Decision Trees) algorithm. Since

their invention in 1984 by Charles J. Stone [16], it received a lot of interest in

the ML community, where a lot of work has been done to improve their con-

cept and the way they are implemented. Originally, DT were not only used

in ML but also in data mining and statistics. One of the examples of their

usage is the prediction of a house price by observing related collected data.

We used DT in this work simply to classify Internet network traffic by

building a model capable of predicting the class of a flow using its features.

The main idea behind the algorithm is the following : a tree structure is

used, which is based on conditional leaves. We start by defining defining

data points as following :

Di = {di
1, di

2, ..., di
n, yi}

2.4. Supervised Classification Algorithms 13

where di
j f orj = 0, .., n are the features values and yi is the targeted category.

Next, consider a single data point D1 = {d1
1, d1

2...d1
n, y1}, we then create our

tree by starting from a root node and continue further by extending leaves

from this main node and mark the path based on conditions made on each

of the data point’s feature values (d1
j) at each node. At the end we label the

whole respective path as y1. Once the graph is finished, we end up with

a number of leaves that represent the classes (note that multiple different

leaves can represent the same class). Later on, when a new data point arrives

(D2), the search algorithm will try therefore to find the suited path using the

features values {d2
1, d2

2...d2
n}. Once we reach the last leave, the class is then

well defined. The next example helps understanding DT better. Table 2.2

shows a simple binary data and Figure 2.4 shows its respective decision tree.

We assumed the root node to be A. We checked the values of this feature,

then we concluded that two leaves should be derived from it, we had a 0

leave and a 1 leave. We created a list on each leave that summarized which

classes are present with the main condition A = 1 or A = 2. Two cases were

present here : first, if a one to one mapping between the feature value and the

class existed, then we set the class to its respective one (for instance A = 1

means that the category is Blue). Second, if there is no simple mapping, the

leave should be further divided (the case A = 0) and the whole algorithm

is repeated again. Let us continue with the second feature B, since it also

took binary values, two leaves were created from it. We repeat the previous

steps and we end up with two cases: for B = 0 we have a single one to one

mapping that gave Red. For B = 1 we are stuck again so we have to extend

further. After many iterations, the graph in Figure 2.4 was created. Later, any

new point that arrives can be then classified as one of the three classes only

by finding its path within the tree.

We would like to point out to a few things here :

• The order of features choice in reality is not arbitrary, a few metrics

can be used (we cite : Gini Impurity, Information Gain and Variance

Reduction). These metrics ensure that "the right" feature is chosen in

14 Chapter 2. Background Knowledge

Figure 2.4 & Table 2.2: An example of an artificial binary data
with their respective DT.

the next iteration depending on the amount of information gain.

• Many algorithms were developed to execute the explained procedure

in an optimized manner. For example : ID3 (Iterative Dichotomiser 3)

that uses the Information Gain for the choice of the next feature, C4.5

that is based on ID3 but flexible to work with continuous data, C5.0 that

is optimized to use less memory and rule-sets for splitting and CART

(Classification and Regression Trees) that is similar to C4.5 but can sup-

port numerical values as target class (a regression).

• The complexity of a balanced tree at each node is O(n f eatures nsamples

log(nsamples)) which implies for the whole tree a complexity of O(n f eatures

n2
samples log(nsamples)). This is not always true but only if the tree is bal-

anced. However, the complexity can be reduced by keeping state of

the distribution function of the classes at each node (this is the imple-

mentation used by Scikit-learn [15]), which gives a final complexity of

O(n f eatures nsamples log(nsamples)).

• To overcome the over-fitting problem (low bias, but very high vari-

ance), two simple solutions exists. First, by setting the maximum depth

of the tree which will prevent the algorithm from creating leaves for a

very sparse features distribution and group such data points in a main

branch. Second, we can simply remove leaves with a few simples be-

cause most probably they represent noise.

2.4. Supervised Classification Algorithms 15

Random Forests This classification method is based on DT and is used to

improve its performance. Basically by using multiple DT trained with differ-

ent portions of the training data each tree will have its own structure. When

a new data point comes, it will be classified by all trees and the RF (Random

Forests) will come into play and takes the majority vote of the predicted class.

Random forests help us to reduce the variance of the prediction which is

also a solution for the overfiting problem. The new classification model per-

forms much better however, the computational power is increased linearly

with the number of trees and the user looses the easy interpretability of the

classification criteria (in DT, it was quite obvious).

2.4.3 k-Nearest Neighbors

One of the top ML algorithms used for both classification and regression is

the kNN (k-Nearest Neighbors). It was first introduced in 1952 by Fix &

Hodges in an unpublished paper since then, many changes and enhance-

ments were introduced to make it more robust and faster. The state of the art

of this algorithm is that it needs no training procedure (at least comparing to

other algorithms). This is what is known nowadays as Lazy Learning.

The idea is the following : suppose that we have a dataset that contains

data points of such as :

Di = {di
1, di

2, ..., di
n, yi}

where di
j f orj = 0, .., n are the features values and yi is the original class to

be predicted. The algorithm set all the training points in an ndimensional

space and label each one with yi. Next, when a testing point comes, the

algorithm calculates a specific distance (Euclidean for instance) between the

new data point and all existing ones, then sort them incrementally. Next, the

algorithm takes the first k distances and perform a majority vote on the label

of these points which will then give us the predicted class. Figure 2.5 shows

an example where k = 3, there we can see 8 training points each containing

two features in a 2D space. The points are binary classified (left cluster =

16 Chapter 2. Background Knowledge

0, right cluster = 1). When a new testing point arrives (in the middle), the

algorithm with k = 3 will then try to calculate the Euclidean distance for

example to all 8 points and keep only the three shortest. We can see that

among these three, two belongs to the "right" class and one to the "left" class.

Any reasonable majority vote will then predict the "right class" (or a 1) for

this new data point.

Figure 2.5: The geometric interpretation of kNN classification
with k=3.

Mathematically speaking, the formulation is :

ŷ = arg min
y

∑
Ω

I(y = yi)

where ŷ is the predicted category, Ω is the set of "k" nearest neighbors and yi

is the category of each of the nearest neighbors.

We point out to a few things here also :

• As said before, the first step is to calculate distances to all other points.

Many distances can be used and research were conducted and stud-

ied the impact of choosing each distance. Some of the famous distance

metrics are : the Euclidean Distance, Chebychev Distance, Manhattan

Distance... In our context, we simply use the Euclidean Distance which

is based on the l2 norm.

• Another issue is the choice of the parameter k. It is true that the choice

is random but we need to clarify some mistakes that can be made. For

2.4. Supervised Classification Algorithms 17

instance, choosing an even number will cause a confusion in the case

where the classes are equal (50% in one class and 50% in another one in

a binary classification for instance) and, therefore, the majority vote can

not be executed, that is why an odd value need to be chosen. Another

issue is choosing a large value, besides the heavier calculations need to

be done, choosing a large value will cause a smoother boundaries be-

tween classification regions, hence a miss-classification (bias) can occur.

So what is the best value? Well, there is no best value for k, but there

is a heuristic method to find the most suited value for a certain clas-

sification. It is sufficient to run a loop that measures the classification

error for different values of odd k. The error will not converge when

incrementing k but a minima should exists somewhere (most probably

at low values), this minima can be chosen for further analysis.

• kNN is also known to have difficulties when dealing with high dimen-

sional data, the reason behind is the computation of distances. Basi-

cally, if the dimension is too large, the distances will converge to the

same value (vectors will be equidistant) and thus the algorithm will

have hard time to find the nearest neighbors to a given point. Fea-

tures selection/reduction techniques are recommendable before apply-

ing kNN.

• A different flavor of this algorithm is the Weighted Nearest Neighbors

where a set of points have weight and thus, contribute differently to

the vote. This is often useful when the data is coming from sources

with different credibility.

2.4.4 Support Vector Machine

Another ML algorithm used for supervised classification and regression is

the SVM (Support Vector Machine). First invented by Vladimir N. Vapnik

and Alexey Ya. Chervonenkis in 1963. Later, it received a lot of attention and

18 Chapter 2. Background Knowledge

researchers introduced many enhancements e.g., the notion of kernels which

is used to maximize the margin between hyperplanes.

The basic idea behind SVM is the following : building a model that finds

gaps between training data points in an n-dimensional space and consider

them as borders. Later, for each data point in the test set, it finds on which

side of the border the point lays.

Figure 2.6 helps us understand SVM better. We see a group of points in a

2D space and three hyperplanes (lines in this case). The lines have different

rotations and try to find the largest gap between the two clusters. This oper-

ation is also known as "margin maximization". H3 is clearly here the best line

for separating the clusters. When a new point comes, the label is predicted

by looking at which side the sample belongs.

Figure 2.6: 2D example of a SVM data separation (ref :
en.wikipedia.org/wiki/Support _vector_machine).

Sometimes, the data is not linearly separable and constructing hyper-

planes is not possible. In order to solve this problem, the n-dimensional space

can be mapped into a higher dimension space where the data is linearly sep-

arable. To keep calculations light, one uses a method called kernel functions.

Two modes of SVM exists, linear kernel SVM and non linear kernel SVM:

Linear SVM. Is used in the original space and has two variants : Hard mar-

gin; where the data is linearly separable, and soft margin, where the data is

not linearly separable and some error is allowed. Note that the idea behind

2.4. Supervised Classification Algorithms 19

linear SVM can be explained with the 2D example. In a 2D space, assume

that we have two clusters and a margin between them. Try to find a point

from the extreme of each cluster and create two parallel hyperplanes where

each crosses one of the points. Next, try to adjust the rotation of the hyper-

planes until maximizing the distance between them. Finally, create a main

hyperplane which lays in the middle and is parallel to the previous ones.

Nonlinear SVM. Instead of working in the original space, we transform

it into a higher dimensional space (the transformation does not have to be

linear); then, we perform the same steps. The difference here is that the dot

product used in the mathematical formulation in the Linear SVM is trans-

formed into a kernel function.

SVM parameters can be adjusted manually or using a Grid Search (dis-

cussed in Section 3.4.2).

SVM works really good with high dimensional data. It is also memory

efficient and its kernel functions are diverse.

2.4.5 Naive Bayes

The NB (Naive Bayes) classifier is a pure statistical-probabilistic classifier.

The main idea is to apply the Bayes theorem with the assumption that the

data features are independent. The targeted class is the result of comput-

ing probabilities between features that contribute independently. There is a

need for statistically independent features (note that PCA for instance can be

applied beforehand to eliminate correlation between features).

Let Di be a new data point such as :

Di = {di
1, di

2, ..., di
n, yi}

where di
j f orj = 0, .., n are the features values and yi is the targeted category.

Applying the Bayes theorem will lead to :

P(yi | di
1, di

2, ..., di
n) =

P(yi)P(di
1, di

2, ..., di
n | yi)

P(di
1, di

2, ..., di
n)

20 Chapter 2. Background Knowledge

Since the features are assumed to be independent, the following is valid :

P(yi | di
1, di

2, ..., di
n) =

P(yi)∏n
k=1 P(di

k | yi)

P(di
1, di

2, ..., di
n)

where the multi-variables conditional probability is replaced with the marginal

probabilities product. Then since P(di
1, di

2, ..., di
n) is a constant, the relation can

be simplified to

P(yi | di
1, di

2, ..., di
n) ∝ P(yi)

n

∏
k=1

P(di
k | yi)

and the estimate of the class is computed as :

ŷ = arg min
y

P(y)
n

∏
k=1

P(di
k | yi)

The last formula is the core of all NB classifiers, the class can be then esti-

mated once P(y) and P(di
k | yi) are available (can be computed via a MAP

(Maximum A Posteriori) estimator). P(di
k | yi) can be assumed to follow dif-

ferent distributions and therefore, different NB classifiers variants exist. In

this work, P(di
k | yi) follows a Bernoulli distribution.

In the training procedure, probabilities are computed and saved in mem-

ory. Later, these probabilities and observations together are used to predict

classes.

2.4.6 Logistic Regression

LR is also a statistical model used for both classification and regression. It

was first developed by David Cox in 1958. Many versions of it exist how-

ever, the simplest is the binary classifier (two classes). The idea behind the

binary LR is mapping input features values probabilities into output prob-

abilities, which in turns give the predicted class. Similar to Naive Bayes,

Logistic Regression assumes statistically independent features. Having said

that the output is nothing but probabilities, many researches consider LR not

2.4. Supervised Classification Algorithms 21

as a classifier; however, by using a thresholding function, it can be turned

into a binary classifier.

Logistic regression is based on a core function called the logistic function.

This function takes input values and maps them into probabilities (between 0

and 1). The logistic function has an S shape, Figure 2.7 shows such a function.

Figure 2.7: The logistic function (ref : machinelearningma-
stery.com/logistic-regression-for-machine-learning/).

Starting from conditional probabilities, class probabilities can be com-

puted. Later, using the logistic function, the class can be predicted. Con-

verting these probabilities needs coefficients, which will be adjusted during

the training phase and used later in the testing phase.

LR has basically three parameters to tune. We are only interested in the

"penalty parameter" (the other two parameters are adjusted automatically

using parameter tuning, discussed in Section 3.4.2). The penalty represents

the norm used in the penalization, this is an approach used in the training

stage to avoid over-fitting, it is also called regularization. In this work the L2

norm was used as penalty.

We point out here that the LR classifier is similar to NB meaning that

the classification results should be similar. more about this is discussed in

Chapter 4.

23

Chapter 3

Methodology & Experiments

In this chapter, we introduce the analysis framework structure, the five fea-

ture sets and explain afterwards how the experiments were conducted. Pre-

cisely, we explain how we constructed every set, present the different data

transformations performed such as nominal transformation and features se-

lection/reduction etc. Finally, we give details about the supervised analysis

approach and the respective evaluation methodology using well known met-

rics.

Figure 3.1: Scheme of the conducted experiment [12].

Figure 3.1 shows the framework’s structure, it had multiple stages, every

stage is explained briefly in what follows.

1. Feature extractor : in this stage, we used the Flow Exporter to restruc-

ture the dataset as described by the studied sets (the UNSW Argus/Bro

was already constructed and included with the original dataset). Sec-

tion 3.1 presents the five sets, Section 3.3.1 explains how the sets were

24 Chapter 3. Methodology & Experiments

constructed and Appendix A shows more details about the FLow Ex-

porter tool.

2. GT mapping : labeling the data was the second step that we carried

out. Each flow was given a label (normal (0) or malicious (1)) using

a Ground Truth file included with the dataset, simply if a match was

found, a column was then added (called Label). However, the AGM

format needed a different type of labeling. More details are discussed

in Section 3.3.3.

3. Nominal to numerical mapping : next step was getting rid of nominal

features and preparing the data for the classification algorithms. Many

ML algorithms deal only with numerical inputs and thus, we decided

to transform all sets into only numerical data for the sake of uniformity.

Dummy variables were used, which lead into dimensionality increase.

However, some of the nominal features were not relevant, which im-

plied that the dimensionality could be reduced again in further steps.

More details are discussed in Section 3.3.4.

4. Scaling : scaling data before feeding it to a ML algorithm is another

preprocessing step that many researchers ignored in the past in spite

of being necessary. Using unscaled data might lead to a bias in the

classification notably with algorithms that use distance as a basis for

classification decision. Further details about scaling are discussed in

Section 3.3.5.

5. Feature selection : in order to reduce dataset dimensionality some meth-

ods have been proposed in the literature. Feature selection covers a set

of techniques that aim to keep only the features that are meaningful for

the analysis. In this work, we used DT feature importance as a rule in

order to keep only relevant features (relevancy 6= 0). More about this

topic is discussed in Sections 3.3.6 and 3.3.7.

6. Principal component analysis : PCA is a reputable method used to find

and remove feature correlations in datasets. On the other side, network

3.1. Feature Sets 25

traffic features are well known to show high correlation. So applying

PCA is a solution to reduce problems related to feature dependencies

during the analysis. we used PCA first to help the classification algo-

rithms perform better (Naive Bayes is known to perform poorly when

fed with correlated data). In Section 3.3.6 and 3.3.8 we give more de-

tails.

7. Analysis and Cross-validation : after the preprocessing, ML algorithms

performed supervised classification on the preprocessed datasets. Ad-

ditionally, a 5-fold cross-validation was included in order to make sure

that the results are valid and performance are stable. Sections 3.4 and

4.5 discuss this in depth.

8. Evaluation : the core of this work was the evaluation and comparison

of performance results for each set. Additionally to the preprocessing

times, we used the predicted labels from the supervised classification

to evaluate the classification performance. Furthermore, we carried out

some statistical analysis to evaluate the relevancy of each feature in

identifying a certain type of attacks. This step is discussed in depth

in Chapter 4.

An intermediate step was introduced between steps 1 and 2. At the out-

put of the Flow Exporter, all sets were extracted as a group of unidirectional

flows. Afterwards, CAIA and Concensus were converted into bidirectional

flows. The AGM set was on the other hand aggregated by source. More

details about this topic are discussed in Section 3.3.2.

3.1 Feature Sets

This section introduces the five studied feature sets, the way they were constructed

and the adjustments that we had to perform for a proper analysis.

26 Chapter 3. Methodology & Experiments

3.1.1 Time Activity vector

The time activity vector was first presented in [8]. It represents the time be-

havior of a network flow. Using a fixed window size, this vector gathers

statistics on the behavior of the information exchange between two hosts

in a unidirectional manner. Table 3.1 shows the features contained in the

TA set and their respective description. The set contains 15 features plus 5

key features (some key features are also considered as vector features). The

key here is the well known 5-tuple: {sourceIPaddress, destinationIPaddress,

sourceport, destinationport, protocol}. Note that in the experiments, the source

and destination IP addresses were removed because they were relevant only

in the identification of the flows and mapping them into dummy variables

will cause a massive increase in dimensionality.

Key

srcIP source IP address

dstIP destination IP address

srcPort source Port

dstPort destination Port

protocol Protocol

Features

srcPort source Port

dstPort destination Port

protocol Protocol

bytes total amount of data trans-

mitted

pkts total amount of packets

transmitted

secondsactive number of seconds when

the flow was active

bytes_per_seconds-

active

average data per active-

second transmitted (bytes)

pkts_per_seconds-

active

average packets per active-

second transmitted

maxton maximum amount of con-

secutive seconds that the

flow showed activity

minton minimum amount of con-

secutive seconds that the

flow showed activity

maxtoff maximum amount of con-

secutive seconds that the

flow did not show activity

mintoff minimum amount of con-

secutive seconds that the

flow did not show activity

interval number of activity inter-

vals

Table 3.1: Features of the Time Activity set.

The TA set gathers unidirectional flows which allows a better representabil-

ity of both directions in an exchange. However, few attacks are better classi-

fied when the behavior is represented in a bidirectional manner thus, there is

3.1. Feature Sets 27

always a trade-off on which mode to choose. Further details about the later

are discussed when presenting our results.

3.1.2 Consensus vector

The consensus vector is formed by the most used statistical features in last

years research according to [5]. There, the authors carry out a meta-analysis

and disclose at the end which features are repeatedly used. It is constructed

by 23 features and 5 key features where 3 among them (sourceport, destinationport,

protocol) are kept as part of the vector itself. Table 3.2 shows the correspond-

ing features and their description.

Key

srcIP source IP address

dstIP destination IP address

srcPort source Port

dstPort destination Port

protocol Protocol

Features

srcBytes amount of data sent in the

forward direction

srcPkts amount of packets sent in

the forward direction

dstBytes amount of data sent by the

backward direction

dstPkts amount of data sent by the

backward direction

srcPort source Port

dstPort destination Port

protocol Port

duration duration of the flow (in

secondes)

max_srcPktLength the largest packet length in

the forward direction

mode_srcPktLength the packet length that is

most present in forward

direction

median_srcPktLength the median value of packet

lengths in forward direc-

tion

min_srcPktLength the smallest packet sent in

the forward direction

median_srcPktIAT the median value of inter

arrival time in forward di-

rection

variance_srcPktIAT the variance of inter arrival

time in forward direction

max_dstPktLength the largest packet sent in

the backward direction

mode_dstPktLength the packet length that is

most present in backward

direction

median_dstPktLength the median value of packet

lengths in backward direc-

tion

min_dstPktLength the smallest packet length

in the backward direction

median_dstPktIAT the median value of inter

arrival time in backward

direction

variance_dstPktIAT the variance of inter arrival

time in backward direction

Table 3.2: Features of the Consensus set.

28 Chapter 3. Methodology & Experiments

In the original paper [5], the vector contains two features labeled server−

client and client− server. These two features differentiate both directions in

a single connection which makes the set bidirectional. Instead of using these

two features, we discarded them and mapped each of the original features

into two sub-features, the first represented the same feature value in the for-

ward direction and the second represented its value in the backward direc-

tion. An example of this mapping is the PktCount feature which was mapped

into srcpPktCount and dstPktCount. Additionally, authors propose to use a

couple of statistical transformations on many features; in this work, we used

the following : max(f eature), min(f eature), mode(f eature), median(f eature),

where the mode was the most recurrent value in a list. These transformations

were applied to both PktIAT and PktLength.

3.1.3 AGM vector

The AGgregation and Mode vector was first presented in [7]. It introduces a

novel representation based on modeling host behavior by aggregating flows.

It can be used to monitor attack sources as well as victims. In this work we

focused on attackers (sources) where we tracked the activity of a host send-

ing normal or abnormal traffic. The basic features used by the AGM vector

were destinationIPaddress, sourceport, destinationport, protocol, TTL, f lags,

length and numbero f packets. As a key only the sourceIPaddress was used.

Each of these features (excluding numbero f packets) was then mapped into

three sub-features by using statistical transformations given by : #(f eature)

: number of distinct values, M(f eature) : the mode (most recurrent value)

and #pkts[M(f eature)] : number of packets sent to the statistical mode. That

resulted in 22 features which are shown in Table 3.3 with their respective

description.

The AGM vector needed an extra step during the extraction, which is

the aggregation (a set of flows were grouped together if they belonged to

the same host). This extra step might be a deficiency when evaluating the

extraction performance. However, we will discuss this in a later section.

3.1. Feature Sets 29

Additionally, when extracting the AGM vector, a larger time window was

used. This will allow each AGM entry to parse more packets/flows and,

thus, the behavior would have been better represented.

Key

srcIP source IP address

Features

#dstIP the number of distinct des-

tination IP addresses

mode_dstIP the destination IP address

that showed the most re-

currence

pkts_mode_dstIP the number of packets sent

to the mode

#srcPort the number of distinct

source port

mode_srcPort the source port that

showed the most recur-

rence

pkts_mode_srcPort the number of packets sent

to the mode

#dstPort the number of distinct des-

tination port

mode_dstPort the destination port that

showed the most recur-

rence

pkts_mode_dstPort the number of packets sent

to the mode

#protocol the number of distinct pro-

tocols

mode_protocol the protocol that showed

the most recurrence

pkts_mode_protocol the number of packets sent

with the mode protocol

#TTL the number of distinct TTL

values

mode_TTL the TTL value that showed

the most recurrence

pkts_mode_TTL the number of packets sent

with TTL mode

#TCPflag the number of distinct TCP

flags

mode_TCPflag the TCP flags that showed

the most recurrence

pkts_mode_TCPflag the number of packets sent

with mode TCP flags

#pktLength the number of distinct

packet’s lengths

mode_pktLength the packet length that

showed the most recur-

rence

pkts_mode_pktLength the number of packets sent

with mode packet length

pkts the number of packets ex-

changed

Table 3.3: Features of the AGM set.

3.1.4 CAIA vector

CAIA stands for the Center for Advanced Internet Architectures at the Swin-

burne University of Technology, where a research group used this vector for

the first time in [18] to the best of our knowledge. Afterwards, many research

papers use the same set, such as [11], [17] and [20]. The set represents a pure

30 Chapter 3. Methodology & Experiments

statistical behavioral model of Internet traffic, it uses four statistical trans-

formations to map basic features. Additionally, it considers both directions,

therefore, every feature is mapped into 8 sub-features as shown in Table 3.4.

Key

srcIP source IP address

dstIP destination IP address

srcPort source Port

dstPort destination Port

protocol Protocol

Features

protocol protocol

duration the duration of the flow

srcPkts the number of packets

transmitted in forward

destination

srcBytes the number of bytes trans-

mitted in forward destina-

tion

dstPkts the number of packets

transmitted in backward

destination

dstBytes the number of bytes trans-

mitted in backward desti-

nation

min_srcPktLength the minimum packet’s

length in forward direc-

tion

mean_srcPktLength the mean packet’s length

in forward direction

max_srcPktLength the maximum packet’s

length in forward direc-

tion

stdev_srcPktLength the standard deviation of

packet’s length in forward

direction

min_dstPktLength the minimum packet’s

length in backward direc-

tion

mean_dstPktLength the mean packet’s length

in backward direction

max_dstPktLength the maximum packet’s

length in backward direc-

tion

stdev_dstPktLength the standard deviation of

packet’s length in back-

ward direction

min_srcPktIAT the minimum inter arrival

time in forward direction

mean_srcPktIAT the mean inter arrival time

in forward direction

max_srcPktIAT the maximum inter arrival

time in forward direction

stdev_srcPktIAT the standard deviation of

the inter arrival time in for-

ward direction

min_dstPktIAT the minimum inter arrival

time in backward direction

mean_dstPktIAT the mean inter arrival time

in backward direction

max_dstPktIAT the maximum inter arrival

time in backward direction

stdev_dstPktIAT the standard deviation of

the inter arrival time in

backward direction

Table 3.4: Features of the CAIA set.

The CAIA is intuitive, simple and purely numerical, so it minimizes the

required preprocessing steps. Additionally, four features were added since

some works use the same basic set plus the following TCP flags: SYN, ACK,

3.1. Feature Sets 31

FIN, CWR (note that each flag is mapped into two sub-features representing

both directions).

3.1.5 UNSW Argus/Bro vector

The UNSW Argus/Bro feature set is included and described in the dataset

used in this work (see Appendix B). In [14] and [13] authors describe the set

and perform analysis using it. The set has 48 features, 5 among them are

used as a flow key. Most of the features are extracted with the Bro and Argus

tools. Tables 3.5 and 3.6 show the features with their respective description.

The features extraction in this set is not always possible (requires deep in-

spection and other techniques that are not explained in the original papers)

and thus, makes the set unusable in some cases (encrypted traffic, for in-

stance). Even when dealing with unencrypted traffic, extracting some of the

features is complicated (keeping state of previous connections) and will lead

into a huge load on the IDS. We included UNSW Argus/Bro feature set in

our analysis for benchmarking purposes.

In the extraction step, we used the version provided by the authors and

did not extract it manually. We took this decision mainly because of the com-

plicated procedure needed to extract some of the features as explained earlier,

in which, some parts are not publicly described. However, we supposed that

the extraction costs are the highest among all sets. This is a realistic assump-

tion due to the number of features needed.

32 Chapter 3. Methodology & Experiments

Key

srcIP source IP address

dstIP destination IP address

srcPort source Port

dstPort destination Port

protocol Protocol

Features

srcIP Source IP address

sport Source port number

dstIP Destination IP address

dsport Destination port number

proto Transaction protocol

state Indicates to the state and

its dependent protocol, e.g.

ACC, CLO, CON, ECO,

ECR, FIN, INT, MAS, PAR,

REQ, RST, TST, TXD, URH,

URN, and (-) (if not used

state)

dur Record total duration

sbytes Source to destination

transaction bytes

dbytes Destination to source

transaction bytes

sttl Source to destination time

to live value

dttl Destination to source time

to live value

sloss Source packets retransmit-

ted or dropped

dloss Destination packets re-

transmitted or dropped

service http, ftp, smtp, ssh, dns,

ftp-data ,irc and (-) if not

much used service

Sload Source bits per second

Dload Destination bits per second

Spkts Source to destination

packet count

Dpkts Destination to source

packet count

swin Source TCP window ad-

vertisement value

dwin Destination TCP window

advertisement value

stcpb Source TCP base sequence

number

dtcpb Destination TCP base se-

quence number

smeansz Mean of the packet size

transmitted by the src

dmeansz Mean of the packet size

transmitted by the dst

trans_depth Represents the pipelined

depth into the connection

of http request/response

transaction

res_bdy_len Actual uncompressed con-

tent size of the data trans-

ferred from the server’s

http service.

Sjit Source jitter (mSec)

Djit Destination jitter (mSec)

Stime record start time

Ltime record last time

Sintpkt Source interpacket arrival

time (mSec)

Dintpkt Destination interpacket ar-

rival time (mSec)

tcprtt TCP connection setup

round-trip time, the sum

of ’synack’ and ’ackdat’.

synack TCP connection setup

time, the time between the

SYN and the SYN_ACK

packets.

Table 3.5: Features of the UNSW Bro/Argus set.

3.2. Extraction Ability for Encrypted Traffic 33

Features

ackdat TCP connection setup

time, the time between the

SYN_ACK and the ACK

packets.

is_sm_ips_ports If source (1) and destina-

tion (3)IP addresses equal

and port numbers (2)(4)

equal then, this variable

takes value 1 else 0

ct_state_ttl No. for each state (6) ac-

cording to specific range of

values for source/destina-

tion time to live (10) (11).

ct_flw_http_mthd No. of flows that has meth-

ods such as Get and Post in

http service.

is_ftp_login If the ftp session is ac-

cessed by user and pass-

word then 1 else 0.

ct_ftp_cmd No of flows that has a com-

mand in ftp session.

ct_srv_src No. of connections that

contain the same service

(14) and source address (1)

in 100 connections accord-

ing to the last time (26).

ct_srv_dst No. of connections that

contain the same service

(14) and destination ad-

dress (3) in 100 connec-

tions according to the last

time (26).

ct_dst_ltm No. of connections of the

same destination address

(3) in 100 connections ac-

cording to the last time

(26).

ct_src_ltm No. of connections of the

same source address (1) in

100 connections according

to the last time (26).

ct_src_dport_ltm No of connections of the

same source address (1)

and the destination port (4)

in 100 connections accord-

ing to the last time (26).

ct_dst_sport_ltm No of connections of the

same destination address

(3) and the source port (2)

in 100 connections accord-

ing to the last time (26).

ct_dst_src_ltm No of connections of the

same source (1) and the

destination (3) address in

in 100 connections accord-

ing to the last time (26).

attack_cat The name of each at-

tack category. In this

data set, nine categories

e.g. Fuzzers, Analysis,

Backdoors, DoS Exploits,

Generic, Reconnaissance,

Shellcode and Worms.

Table 3.6: Features of the UNSW Bro/Argus set (continuous).

3.2 Extraction Ability for Encrypted Traffic

Inspite of the usage of an unencrypted dataset in this work, we would like to

emphasize the ability of extraction of each feature set because, in the case of a real

world IDS implementation, most of the traffic would be encrypted.

34 Chapter 3. Methodology & Experiments

3.2.1 TLS

TLS (Transport Layer Security) is a cryptographic protocol that provides data

integrity and privacy for a communication. Symmetric cryptography is used

between two end points so that the communication is encrypted and both

ends use secret keys generated from a shared key at the TLS handshake.

The data transfer is reliable because of the message integrity check that is

included with each transmission, which censures the manipulation of the

data.

TLS runs on top of the transport layer in the OSI model. If a feature is

extracted from a higher level than the transport layer, its extraction would

not be feasible. In other words, the features derived from the IP header and

the TCP/UDP/ICMP headers are reachable even with TLS but above this

level, everything is encrypted.

3.2.2 IPsec

IPsec (Internet Protocol Security) is a cryptographic scheme that encrypts

data sent over a network. IPsec is an end-to-end security scheme that nego-

tiates encryption keys between end points also at the beginning of a session.

The IPsec runs on top of the Internet layer and has many implementations.

It can be used in transport mode (only the IP payload is encrypted) or in

tunnel mode (the whole IP packet is encrypted and a new artificial header

is appended at the beginning of the packet). The IPsec is then more severe

and, hence, feature extraction will not not be possible even for a lower layer

protocols. For instance, TCP and UDP ports are not accessible with an IPsec

implementation.

From the discussion above, conclusions are summarized in Table 3.7. In

the table we can see the extraction ability of each feature set in both encryp-

tion cases.

3.3. Preprocessing 35

Feature set Flow identification Flow extraction and classification

UNSW TLS/− −/−
CAIA TLS/− TLS/−
Consensus TLS/− TLS/IPsec

TA TLS/− TLS/IPsec

AGM TLS/IPsec TLS/−

Table 3.7: Traffic encryption and feature sets compatibility.

3.3 Preprocessing

Preprocessing was one of the major steps in this work. Starting by constructing the

feature sets with their respective JavaScript Object Notation (JSON) files,

uni-to-bidirectional flow mapping, labeling the data, nominal to numerical feature

transformation, scaling the data and finally feature selection/reduction.

3.3.1 Feature Sets Construction

We constructed the four sets: TA, Consensus, CAIA and AGM using a tool

developed by a member of our research group (see Appendix A). The tool

takes pcap files, a couple of parameters and a JSON file that lists the different

features and operations needed to represent a flow. For each set, we created

a different JSON structure.

The output of the Flow Exporter was not complete in the sense that it

did not represent the final version of each set. For instance, values in for-

ward and backward directions were not grouped together for both Consen-

sus and CAIA (unidirectional flows) and no aggregation existed for AGM

vector. However, the TA vector was on its final version.

We created a script that executed the flow exporter command (see Ap-

pendix A) for each pcap and outputted a CSV file. The CSVs were merged

later to form the final CSV of each set. Additionally, a timeout of 60 seconds

was used for the extraction.

36 Chapter 3. Methodology & Experiments

For a unique identification of flows that showed the same 5-tuple key, we

additionally used the flow starting timestamp. This allowed us to differenti-

ate flows having the same key but occurring in different times.

The AGM format needed packets aggregation; therefore, another script

took care of configuring the Flow Exporter to output basic packet’s header

features (discussed earlier) from pcaps instead of flows. there was no proper

definition of a timeout, but only an observation time window, which was

chosen to be 900 seconds.

After having the outputs from the above steps (four CSV files), we pro-

ceeded to the next step.

Note that a python script was used to control the whole operation and

keep track of the running time which was needed later for the evaluation.

3.3.2 Unidirectional to Bidirectional Flows & Aggregation

The resulting CSVs represented unidirectional flows (and packets for AGM).

In order to convert unidirectional flows into bidirectional we had to find

flows that belonged to the same connection and then merge the values by

creating two sub-features. For instance, number of packets became number

of packets in forward direction and number of packets in backward direc-

tion. The aggregation for the AGM was simple but consumed a considerable

time.

We divide this section into two parts. First we talk about the uni-to-

bidirectional transformation and, second, we discuss the aggregation step

for the AGM set.

Unidirectional to Bidirectional mapping. The goal here was to convert the

resulting (unidirectional) flows for both CAIA and Consensus into bidirec-

tional traffic. We created a python script that loaded the whole data (for each

set), took in consideration the flow key (5-tuple) and the flow starting times-

tamp. Then, the script merged the complete dataset with a copy of it with an

inverted key i.e., if the original key was {srcIPA, dstIPB, srcPortA, dstPortB,

3.3. Preprocessing 37

Figure 3.2: An example of mapping two unidirectional flows
into one bidirectional flow.

Protocol} plus a starting time-stamp, the copy has the following key: {srcIPB,

dstIPA, srcPortB, dstPortA, Protocol}, with the additional condition that the

starting timestamp in the second dataset should be in the range of starting

→ ending timestamp of the original dataset (the obvious reason was to keep

only flows belonging to the same connection). Next, if a match was found,

the script filled up a new table where it stored the key, the feature values

from flow_A extra labeled as forward and features values from flow_B extra

labeled as backward. If no match was found, it kept the original values and

filled up the backward columns with 0. Figure 3.2 shows this operation.

Note that the script kept also track of running times for further evaluation.

Aggregation (AGM). The AGM needed a different step instead of uni-to-

bidirectional mapping. The later keeps track of hosts activity so we had to

aggregate flows or packets belonging to the same source IP addresses. The

script used performed the following: first, scanned the whole dataset to find

distinct source IP addresses, created a hashing table which stored these dis-

tinct values. Afterwards, it went line by line (for every source IP address) and

filled up all possible values from the original AGM dataset. In other words,

for each feature, it stored a list of all distinct observed values and applied the

corresponding statistical transformation on that list as discussed in 3.1.3. The

last step was repeated for all seven features. As regards to the last feature of

the AGM (pkts), we simply kept track of the number of packets in the entire

time window (belonging to the same source IP address).

38 Chapter 3. Methodology & Experiments

From the discussion above, it is now obvious that the AGM vector re-

quired more memory and time.

Note that also here, the script kept track of the running time.

3.3.3 Labeling

Labeling the data carefully was really important since it has a direct impact

on the classification results. We carried out the labeling for TA, CAIA and

Consensus (AGM had a different approach) as follows: we first loaded the

GT file provided with the dataset, then we matched flows from the GT and

the datasets. The key used for the matching was the well knows 5-tuple plus

the starting timestamp of each flow. The timestamp is added here since the

same key could refer to flows that occurred in different time periods. Addi-

tionally, the GT file did not have a timeout and, therefore, a single flow in the

GT could correspond to multiple flows in the extracted data. We labeled all

flows that had a starting timestamp in the range of starting→ ending times-

tamp of the GT file with the same label. Thus, even if the flow was divided

into multiple flows because of the timeout, the new sub-flows had all the

same label and no information lost happened.

Regarding labeling the AGM dataset, it is obvious that the labeling can

not be carried out as previously described since an AGM entry (connected

to one source IP address) might contains multiple flows that represent either

benign or malicious behavior and thus, many labels. Our approach was to

keep track of all flows belonging to a unique source IP address and decide

the label according to the given labels from the GT file. For instance, let say

that a host was identified in 20 flows, 15 of them were malicious and 5 were

benign. One could say that this host tended to show malicious activity more

than benign activity so it should be labeled as malicious (the host in this case

could also be a victim). However, deciding whether a host is malicious or not

is risky. We decided to label an entry as malicious if it contains a least one

malicious flow. Note that this step did not need an extra time because the

label depends only on the previous condition.

3.3. Preprocessing 39

The labeling step created two extra columns in each CSV, one was of a

binary type, i.e., attack or normal (1 or 0) and the other one was the attack

type which represented the name of the attack in order to make deep analysis

easier if needed (the attack category was also extracted from the GT file).

The UNSW Bro/Argus dataset was already labeled so this step was not

necessary.

3.3.4 Nominal Features

Not all classification algorithms are capable to deal with nominal values.

Most of the algorithms that are based on pure mathematical formulations

need numerical data at the input and thus, by having categorical features,

the classification algorithm will ignore them or outputs an error. However,

these features might carry precious informations that might lead into better

classification performance therefore discarding them should not be an op-

tion. Not only categorical features are not supported but also for instance: IP

addresses and port numbers. Even though they are represented by numbers,

performing mathematical transformations on them is illogical. A possible

solution is using the so-called "dummy variables".

The first step of this approach is to create frequency tables of nominals

features. Frequency tables show the number of times a precise and unique

value occurs. A popular example is the computation of the frequency table

for the protocol feature where most graphical representations would show

three main peaks corresponding to TCP, UDP and ICMP respectively fol-

lowed by other negligible peaks corresponding to all other protocols. The

first three peaks can represent up to 90% of the traffic sometimes. We show

next how the Protocol feature was be replaced by three dummy features. Ta-

ble 3.8 shows the new dummy features and Figure 3.3 shows the frequency

plot of the Protocol feature. This approach for transforming traffic features is

proposed in [7].

40 Chapter 3. Methodology & Experiments

protocol feat_1 feat_2 feat_3
TCP 0 0 1
UDP 0 1 0
ICMP 1 0 0
others 0 0 0

Figure 3.3 & Table 3.8: Nominal to numerical feature mapping
example.

In what follows, we will extend this example to all our sets. Note how-

ever that in some cases the nominal features either have a very sparse dis-

tribution and thus, one can not convert them into hundreds of features or

their relevance in the classification is negligible so they can discard. In this

work, we proceed as follows (the same methodology was proposed in [7]):

we created a frequency table for each nominal feature then, if the distribution

was sparse, we ignored it otherwise we kept it for the analysis. Later, if the

relevance of these dummy features was too low, we discarded them in the

features selection step (Sections 3.3.6 and 3.3.7).

We discuss next details about the nominal features in each set.

TA and Consensus. In these two sets, the only nominal features were {srcPort,

dstPort, Protocol}. We created frequency tables for each one of them. The

Protocol feature got mapped into three dummy variables as expected. How-

ever, the srcPort and the dstPort showed a very sparse distribution. Actually,

the first 5000 distinct dstPort represented only 72% of the total traffic and the

3.3. Preprocessing 41

first 50000 distinct srcPort represented only 85% of the total traffic. It was

then not feasible to create 5000 or 50000 new features only to keep the infor-

mation carried by these two features (very sparse distribution will minimize

the information gain so the feature will not carry any information for the

classification procedure anyways and, also, the classification algorithms will

build a very complex models to take all dummy variables in consideration).

CAIA. The CAIA set had only one nominal feature which was the Protocol.

We replaced it with three dummy variables (as was shown in the example of

Figure 3.3 and Table 3.8).

AGM. In the AGM, the mode feature gave always nominal values. We

computed the frequency tables and we found: mode_srcPort the first 500 val-

ues represented 89% of the data thus, not feasible to map it. Mode_dstPort

the first 500 values represented 75% of the data thus, also not feasible to map

it. Mode_protocol had a condensed distribution so it was mapped into three

dummy variables and finally mode_TCP f lag also was mapped into three

dummies. mode_TTL represented numerical values and was kept as it is.

Note that later it turned out that most of these dummy features had a

negligible relevance for the classification and were hence discarded by the

feature selection (the relevancy is discussed in Chapter 4).

UNSW Bro/Argus. The UNSW Bro/Argus set had also many nominal fea-

tures. In addition to those which were present in TA and Consensus (same

conclusion applied to them), this set had also state and service which needed

to be converted into dummy variables. For the state feature, the two most

frequent values represented more than 98% of the traffic (we talk here about

FIN and CON states), thus, the state was replaced by two dummy variables.

The second feature which was the service showed that the first seven values

represented more than 99% of the traffic (nothing, dns, http, ftp-data, smtp,

ssh and ftp-control) thus, we replaced it by seven dummy variables. The

same conclusion as previously discussed applies here; the original features

42 Chapter 3. Methodology & Experiments

were not relevant in the classification and thus the effort made here was not

worth it.

One can notice that the source and destination IP addresses were neither

used in the classification nor mapped into dummies, the simple reason be-

hind was that the IP address did not contain any information and were only

used to identify flows.

3.3.5 Scaling & Log-transformation

Scaling. An important step in the preprocessing was scaling the data and

having it prepared for either a direct classification or further preprocessing

techniques such as PCA. ML algorithms that use distance as basis for the

classification are very sensitive to ranges and to the scale of the different di-

mensions (features). Without scaling, large features will always have a larger

impact on the distance computed by the algorithm and smaller range features

will not be relevant. It is then very important to bring down all ranges to the

same order of magnitude. Geometrically speaking, unscaled features can be

viewed at as an n-dimensional space that has a non-uniform basis vectors,

the space is stretched when features have large ranges and very tight when

features have small ranges.

A few types of scaling are available, we cite:

1. Min-Max scaling: the data scaled this way will lay in the range [0, 1].

The formula used is:

xscaled =
xoriginal −min(xoriginal)

max(xoriginal)−min(xoriginal)

2. Mean normalization: this scaling will convert the data into a zero-mean

data (µ = 0). The corresponding formula is:

xscaled = xoriginal − µ

where µ is the mean of xoriginal.

3.3. Preprocessing 43

3. Standardization: here, we remove the variance from the data and thus,

it is a risky operation especially when dealing with Internet traffic (it

was not used in this work). One should keep in mind that despite the

benefits that a standardization would offer to some algorithms (SVM

or Logistic Regression for instance), using it would cause a lost of in-

formation. However, we included it here for the sake of completeness.

The formula is:

xscaled =
xoriginal − µ

σ

where µ is the mean of xoriginal and σ is the standard deviation.

In this work we combined 1 and 2. The first let the classification algo-

rithms perform well without any bias and the second was necessary as a

preparation of the data for the PCA. Many works in the past ignored these

steps before performing PCA which would lead into a wrong transformation

of data. This issue will be addressed in more details in Section 3.3.8.

Note that the dummy variables were not affected by these transforma-

tions for the simple reason that they are binary..

Log-transformation Basically, the log-transformation is used when a fea-

ture has a lage range that is logarithmically distributed, this transformation

will then fix this issue and makes the data again linearly distributed. How-

ever, the content and shape will both be changed since this transformation

will cause a non-linear change of distances. In [4] the authors discussed the

effects of this transformation deeply and concluded that it is better to avoid

it.

The formula used for the log-transform is:

xtrans f ormed = log(1 + xoriginal)

In this work, we tried the log-transformation in our experiments but it turned

out that it had practically no effect. In addition and as said before, [4] discour-

aged to use it so it was not used.

44 Chapter 3. Methodology & Experiments

3.3.6 Features Selection & Reduction

Some of the features are not relevant for the classification in the sense that

they do not contribute to any decision, therefore, selecting which features to

keep is really important. Feature selection might also be used to simplify the

model that will be created by the ML algorithm, reduce training and classi-

fication times, avoid curse of dimensionality and solve the over-fitting prob-

lem. Many methods were proposed in the literature for an optimal selection.

Each method uses different approaches, i.e., correlation, relevance, redun-

dancy etc. In this work we opted for selecting features based on DT feature

importance, which is explained in Section 3.3.7.

After finding the best parameters for a DT classifier (the parameters tun-

ing is discussed in 3.4.2), the DT model computed feature importance. This

was the basis for selecting features that had a non-zero importance. Results

are discussed later in Chapter 4.

Another way of reducing dimension is features reduction. PCA can be

used for this task, it would result in a set of a smaller dimension however, the

new data will have some losses and the new features will have no practical

or physical meaning, thus we used PCA only for decorrelating the data and

not for features reduction. Note that PCA is based on variance maximization

and is discussed in Section 3.3.8.

3.3.7 Features Importance via Decision Trees

When using DT or RF classifiers, an internal metric is calculated. It is called:

The Gini importance and defined as follows:

I = Gparent − Gsplit1 − Gsplit2

where Gi is the Gini index for a parent node or a children node that can be

calculated as:

G =
nc

∑
i=1

pi(1− pi)

3.3. Preprocessing 45

here nc represents the number of classes (binary in this work) and pi is the

ratio of classes in a tree branch. The sum of the Gini importance among all

features results in a 1.

We will see later that DT and RF gave the best results in term of classi-

fication performance and, therefore, using them as a basis for the features

selection is suitable.

3.3.8 Principal Component Analysis

One main drawback of having a large set of features is the so-called curse of

dimensionality as discussed in [1] and [10]. We need to reduce the dimen-

sionality as much as possible without any loss of information. Keeping a

large number of features increases classification time cost and causes lower

performances for some classifiers, especially if they include redundant and

correlated features, i.e., Naive Bayesian, Neural Networks.

As discussed earlier, one of the most powerful methods used for features

reduction is the well known PCA. It allows to construct a new representation

of the data which maximizes the variance only in the first few new features

without an acceptable degree of of information loss.

After computing the covariance matrix of the data, PCA projects the orig-

inal space into a rotated version that fits the data best with less dimensions.

However, features in the new space have no meaning or physical interpreta-

tion, they are nothing but a linear combination of the original features. The

eigen values of the covariance matrix tell us about the amount of information

(or variance) contained in each new dimension.

In this work we used PCA to project the data into a newer space only to

get rid of the correlation present on it which will help some classifiers per-

form better. Later, we again used DTs feature importance to remove features

with zero relevancy. We could have also removed feature with a very low

variance (corresponding to a very low eigenvalue) but we decided to keep

100 % of the data because feature selection already reduced the dimensional-

ity and in any case, the dimensions in this work were not of a high order.

46 Chapter 3. Methodology & Experiments

The key step before performing PCA was scaling the data and, most im-

portantly, centering it (removing the mean). We already said that PCA is a

rotation of all axis thus, working with a non-zero-mean data would cause a

bias since the rotation center would not lay in the the origin (all-zeros coordi-

nates) but at a point with different coordinates (the mean of each dimension).

That is why the data need to be zero-mean before performing a PCA projec-

tion.

3.4 Supervised Analysis

In Chapter 2, we discussed the classification algorithms used in this work. These

algorithms are used in a supervised manner. Supervised analysis are the type of

analysis where one tries to predict a category or label under the assumption that one

already know them. Obviously, since both original and predicted labels will be

known, one can disclose how accurate and precise the resulting classification model

is.

3.4.1 Training-Testing.

Our data was already labeled, so we proceeded as follows:

• First, we divided the entire dataset (for each feature set) into two parts,

a training part and a testing part. The partition was not random but

tried to keep the same ratio of normal-to-abnormal traffic distribution.

The training set contained 80 % of the data where the testing set con-

tained the other 20 %;

• once having the training and testing partitions, we train each algorithm

first with the training data and the training labels. The algorithm would

then build a model that fits the mapping: flow⇔ label;

• once the model was built, we tested it with the testing data, which

would then produce a prediction of the test labels;

3.4. Supervised Analysis 47

• the predicted labels were compared wit the original testing labels and

afterwards metrics were computed (see Section 3.5).

Note that the script used to run all these operations was a bit more com-

plex because it included a cross-validation step which was performed on the

training part (discussed in Section 3.5.2).

3.4.2 Parameters Tuning

After deciding which ML classification algorithms to use in this work, we

faced the problem of parameter tuning to get the best performance/over-

fitting trade-off. The methodology followed here was the so-called Grid

Search which was utilized for each algorithm and each feature set. A grid

Search is a technique used to tune ML algorithms in order to maximize a cer-

tain metric. The main idea is as follows: assume a simple n-dimensional ma-

trix where every dimension represents a parameter to tune. Next, consider a

single dimension as a vector, so that the length and the values contained in

this vector can be adjusted. The idea is to compute the metric that we want

to maximize at each point and for all n-dimensions of the matrix. The output

should be the tuple of parameters (coordinate in the n-dimensional space)

that maximizes the metric. As an example: DT requires two parameters to be

tuned : maximum depth and minimum number of leafs), therefore, a 2D ma-

trix is created and later all 2D tuples contained are tested for the best output

accuracy.

In this work, we tried to maximize the f1-score (it is discussed in Section

3.5.1). To make sure that the results were valid even for a different dataset,

the maximization was carried out with an additional 5-fold cross-validation

scheme.

A few things to note here: first, the Grid Search approach runs on pre-

defined intervals. In this work, intervals were chosen first based on ex-

pert knowledge then enhanced depending on the results (scanning through

a smaller range with smaller steps in each iteration). Second, some other

48 Chapter 3. Methodology & Experiments

methodologies and algorithms are proposed in the literature for the parame-

ters tuning. We cite the random search [3] and genetic algorithms [19].

We created a script that executes all the previous steps and outputs a list

that contains the best parameters of all five algorithms for all feature sets.

The tuning results are shown and discussed in Chapter 4.

3.5 Evaluation

The final step was the result comparison. For this purpose, we needed a couple of

evaluation metrics, we will introduce the ones used further in the performance

analysis and also comment on the over-fitting problem. We discuss how to solve it

using the cross-validation.

3.5.1 Metrics

We needed to compare the predicted labels versus the original ones. Some

metrics exists to achieve this goal but their meanings are different. We chose

the five most popular metrics used for a classification evaluation; however,

they are all derived from the confusion matrix, which is the matrix that sum-

marizes classification results. The confusion matrix contains four fields for a

binary classification: False Positives, False Negatives, True Positives and True

Negatives. Figure 3.4 shows an example of a two-class confusion matrix.

Figure 3.4: The structure of a confusion matrix.

• True Positives (TP): when both labels –original and predicted by the

classifier– are 1,

3.5. Evaluation 49

• True Negatives (TN): when both labels –original and predicted by the

classifier– are 0,

• False Positives (FP): when the original label is 0 but the algorithm pre-

dicts a 1,

• False Negatives (FN): when the original label is 1 but the algorithm

predicts a 0.

The five metrics derived from the confusion matrix and used in this work

were:

• Accuracy : the accuracy gives a hint on the ratio of correctly classified

data points. However, it is advised to avoid it when having unbalanced

data. The accuracy is defined as :

Accuracy =
TP + TN

TP + FP + FN + TN

• Precision : the precision gives a hint on the goodness of a classifier.

In other words, it tells us to which degree we can trust the classifier’s

results. The precision is defined as following :

Precision =
TP

TP + FP

• Recall : the recall gives a hint on how good the classifier performs. In

other words, how well it classifies data points. It is defined as :

Recall =
TP

TP + FN

• F1 score : the f1 score is not a metric by itself but a combination of

Precision and Recall. It calculates the mean metric (harmonic mean) of

both Precision and Recall and tends to be closer to the lowest values

among the two. It can be defined as :

F1score =
TP + TN

TP + FP + FN + TN

50 Chapter 3. Methodology & Experiments

Or :

F1score =
2 ∗ Precision ∗ Recall

Precision + Recall

Actually, this is why we tried to maximize the f1-score in the Grid

Search method (to tune the parameters) because, by doing so, we were

maximizing two metrics simultaneously.

• Roc_Auc : or, in other words, Area Under the Receiver Operation Char-

acteristic curve. It represents the probability that the classifier will rank

a randomly chosen positive sample higher than a randomly chosen

negative sample.

3.5.2 Over-fitting Problem & 5-fold Cross-validation

Over-fitting. When training a model to fit some data, over-fitting occurs

when the model fits the data so good that even the noise contained inside is

taken into the decision rules. We can summarize what we just explained by

saying: a model that over-fits the data is not a robust model.

Cross-validation. Cross-validation is a technique to enhance and validate

the classification results. The idea is simple but computationally expensive.

Let us assume that the dataset was already partitioned into testing and train-

ing sets. The next step would be to take the training part and divide it into

"n" smaller sets, then, compute the previous metrics for each one of the "n"

sets and average them. Finally, validate these results with the testing part

(compare the values from both classifications –training/testing–). Figure 3.5

shows how this was done in the case of a 5-fold cross-validation where n = 5

in this case.

Figure 3.5: How a data set is divided in order to perform a 5-
fold cross-validation.

3.5. Evaluation 51

A few things to note: first, dividing the training part into five folds needs

to be done carefully such that the labels ratio should be kept the same among

all folds (every part should have the same number of normal/abnormal la-

bels). Second, averaging the scores of all folds is not a complete representa-

tion of the results, that is why we have to add the standard deviation. Third,

in our case, the experiments were repeated also for the training part, this

was mainly done to ensure that the model had the same performances for

both training as well as testing parts which was another confirmation that no

over-fitting occurred. The second and third points here are discussed further

in depth in Chapter 4.

53

Chapter 4

Results & Discussion

This chapter summarizes the evaluation of results. Experiments discussed in

Chapter 3 were conducted in a machine with the following characteristics :

• 4x Intel(R) Core(TM) i5-4300 CPU @ 1.90GHz

• Memory: 4GB

• OS: Ubuntu 16.04 LTS

• Kernel: Ubuntu 4.13.0-37 generic

The evaluation was divided into two parts: extraction times performance and

classification performance. Note that a 5-fold cross-validation was used dur-

ing the classification in order to validate our results. From all these results,

we conducted a global comparison and a specific individual analysis.

4.1 Extraction Costs Performance

The extraction performance of each feature set can be evaluated using different

metrics. In this work, we chose to evaluate it using the time needed to extract every

set (time cost).

4.1.1 Time costs

The time cost was recorded simultaneously when the scripts were running.

We tried our best to extract all feature sets by keeping the same extraction

54 Chapter 4. Results & Discussion

methodology; however, some feature sets needed extra steps. These steps

are summarized as follows:

• Extraction: this operation is directly influenced by the Flow Extrac-

tor. We expected however that the time performance would depend

strongly on the number of features to extract. This step was performed

for TA, Consensus, AGM and CAIA.

• Uni-to-Bidirectional mapping: the CAIA and Consensus sets needed

this extra step because of their bidirectional nature.

• Aggregation: the AGM set needed this step because it aggregates flows

in order to represent a single host behavior rather than presenting 5-

tuple flows.

• Labeling: we labeled TA, Consensus, AGM and CAIA using the GT file

as explained in Chapter 3.

The UNSW Bro/Argus feature set was not evaluated in terms of time costs.

When inspecting its features and the extraction process, we assumed that this

set was more costly than the other sets. Beyond that, authors do not provide a

complete description of the extraction procedure in the corresponding papers

[14] and [13].

Figure 4.1 shows a graphical representation of the time costs of all five

sets (the UNSW Bro/Argus has an estimated curve). The exact values are

shown in Table 4.1. These results were actually expected. We summarized

them as follows :

Feature set Extraction Uni to Bidirectional Aggregation Labeling

UNSW > 1h n/a − n/a

CAIA 46m 34s 04m 21s − 02m 21s

Consensus 41m 49s 03m 26s − 02m 07s

TA 41m 32s − − 02m 01s

AGM 58m 37s − 57m 16s 29m 17s

Table 4.1: Time cost in numbers.

4.1. Extraction Costs Performance 55

Figure 4.1: Time cost of each set. The UNSW set performance
is only an estimation and it can differ.

Extraction

• TA and Consensus showed approximately the same extraction time.

This is due to the same number of features that they contained and the

similarities between them.

• CAIA had a longer extraction time because it involved more features

than TA and Consensus.

• AGM had even a longer extraction time because hash structures based

on only IP source address as key are much more complex than when

using the 5-tuple as key. Even though the number of features is small,

the aggregated packets per flow is are much higher.

• UNSW Bro/Argus was assumed to have the largest extraction time.

This assumption was based on the nature of its features. UNSW Bro/Ar-

gus requires deeper inspection of traffic than the other options and uses

12 extraction methods that are not publicly available.

Uni-to-Bidirectional mapping

56 Chapter 4. Results & Discussion

• There was a slight difference between CAIA and Consensus due only to

the number of features needed to be converted into bidirectional mode;

• UNSW Bro/Argus also required this step. However, by manually in-

specting the features and considering the overlapping with the CAIA

vector, the time needed to perform the conversion would definitely be

larger, therefore, it was set to the highest value again.

Aggregation

• This step was necessary only in the case of the AGM vector, which con-

sumed notably more time.

Labeling

• CAIA, Consensus, TA and UNSW required the same time for labeling.

The labeling strategy explained in Section 3.3.3 was the same for all of

them;

• AGM needed a longer time due to its different labeling approach and

the complex algorithmic structure. (details are explained in Section

3.3.3).

To summarize, in terms of extraction time costs, the TA vector was the

fastest –it has less features and less steps were needed to extract it– the AGM

was the slowest –the aggregation and labeling consumed more time and also

memory– and the UNSW Bro/Argus set required a longer extraction time but

then required a similar time cost as CAIA, TA and Consensus in other steps;

so intuitively, it was safe to assume that it needs longer extraction time.

Regarding memory consumption, all sets had practically the same mem-

ory consumption. The later was proportional to the number of features used

except AGM which needed more memory to store the hashing tables during

the aggregation step.

4.2. Training-Testing Classification Performance 57

4.2 Training-Testing Classification Performance

The next step is the evaluation of the classification performance. As described in

Chapter 3, we used the algorithms with the five sets and performed a 5-fold

cross-validation. Later, we computed a couple of metrics to compare classification

results. Both training and test subsets were evaluated to ensure the nonexistence of

over-fitting.

4.2.1 Time Activity vector

We started the comparison with the TA vector. A model was built using the

best parameters extracted from the grid search and then used to predict the

class of flows in the test set. The classification results are depicted in Table

4.2.

algorithm train/test accuracy precision recall f1score roc_auc

DT training 0.988 (+/- 0.009) 0.798 (+/- 0.228) 0.835 (+/- 0.031) 0.811 (+/- 0.111) 0.983 (+/- 0.004)

DT test 0.986 (+/- 0.009) 0.781 (+/- 0.221) 0.798 (+/- 0.030) 0.785 (+/- 0.116) 0.967 (+/- 0.008)

NB training 0.968 (+/- 0.008) 0.634 (+/- 0.465) 0.613 (+/- 0.065) 0.356 (+/- 0.176) 0.831 (+/- 0.005)

NB test 0.970 (+/- 0.007) 0.633 (+/- 0.476) 0.523 (+/- 0.061) 0.397 (+/- 0.109) 0.827 (+/- 0.010)

L2 training 0.973 (+/- 0.012) 0.762 (+/- 0.653) 0.422 (+/- 0.070) 0.301 (+/- 0.293) 0.840 (+/- 0.009)

L2 test 0.971 (+/- 0.013) 0.867 (+/- 0.680) 0.412 (+/- 0.069) 0.298 (+/- 0.296) 0.842 (+/- 0.010)

RF training 0.988 (+/- 0.010) 0.786 (+/- 0.235) 0.851 (+/- 0.049) 0.811 (+/- 0.118) 0.994 (+/- 0.004)

RF test 0.987 (+/- 0.009) 0.778 (+/- 0.224) 0.825 (+/- 0.034) 0.796 (+/- 0.116) 0.990 (+/- 0.005)

SVM training 0.805 (+/- 0.182) 0.123 (+/- 0.457) 0.133 (+/- 0.378) 0.040 (+/- 0.058) 0.446 (+/- 0.199)

SVM test 0.634 (+/- 0.411) 0.083 (+/- 0.143) 0.709 (+/- 0.543) 0.112 (+/- 0.097) 0.727 (+/- 0.293)

kNN training 0.987 (+/- 0.009) 0.788 (+/- 0.228) 0.805 (+/- 0.101) 0.790 (+/- 0.111) 0.980 (+/- 0.007)

kNN test 0.985 (+/- 0.009) 0.772 (+/- 0.210) 0.767 (+/- 0.088) 0.765 (+/- 0.112) 0.974 (+/- 0.023)

Table 4.2: TA classification results.

From these results, we can emphasize:

• Training and test results of each algorithm were almost the same, this

confirmed that the prediction model did not over-fit the training set;

• the standard deviation which represents the cross-validation or the sta-

bility results showed good values for DT, RF and kNN. SVN, NB and

LR2 had lower performance, these are deterministic problems that are

58 Chapter 4. Results & Discussion

related to the dataset used which leads into high sensitivity when using

ML algorithms;

• the three algorithms that performed the best overall are DT, RF and

kNN;

• SVM and LR2 show the worst performances.

The parameters used for each of the classifiers are shown in Table 4.3.

These parameters were obtained using the parameters tunning strategy dis-

cussed in Section 3.4.2.

DT NB L2 RF SVM kNN

min_samp_leaf = 2 alpha = 0.1 C = 11.421 min_samp_leaf = 2 C = 2000 k = 5

max_depth = 23 Tol = 0.003 max_depth = 23 gamma = 1000

criterion = “gini” criterion = “gini” max_iter = 400

number_of_trees = 7

Table 4.3: The optimal parameters for the TA classifiers.

4.2.2 Consensus vector

The consensus set classification results are shown in Table 4.4. The results

indicated the following :

• Training and test results of each algorithm were almost the same, this

confirmed that the prediction model did not over-fit the training set;

• the standard deviation in the case of SVM showed lower performance,

this means that SVM has deterministic problems and high sensitivity;

however, this problem was already addressed in the TA results. Other

algorithms had a lower standard deviation which corresponded to a

stable model;

• the three algorithms that performed the best are DT, RF and kNN;

• SVM, NB and LR2 show the worst performances, especially SVM.

4.2. Training-Testing Classification Performance 59

The parameters used for each classifier are shown in Table 4.5. These

parameters were obtained using the parameters tunning strategy discussed

in Section 3.4.2.

algorithm train/test accuracy precision recall f1score roc_auc

DT training 0.989 (+/- 0.011) 0.820 (+/- 0.227) 0.882 (+/- 0.052) 0.847 (+/- 0.143) 0.995 (+/- 0.004)

DT test 0.989 (+/- 0.008) 0.849 (+/- 0.216) 0.826 (+/- 0.058) 0.832 (+/- 0.088) 0.994 (+/- 0.005)

NB training 0.972 (+/- 0.023) 0.631 (+/- 0.378) 0.650 (+/- 0.025) 0.625 (+/- 0.198) 0.964 (+/- 0.016)

NB test 0.972 (+/- 0.024) 0.625 (+/- 0.384) 0.646 (+/- 0.031) 0.621 (+/- 0.211) 0.962 (+/- 0.015)

L2 training 0.969 (+/- 0.008) 0.621 (+/- 0.316) 0.266 (+/- 0.019) 0.366 (+/- 0.050) 0.982 (+/- 0.018)

L2 test 0.969 (+/- 0.007) 0.615 (+/- 0.313) 0.248 (+/- 0.034) 0.346 (+/- 0.043) 0.980 (+/- 0.018)

RF training 0.991 (+/- 0.006) 0.887 (+/- 0.177) 0.844 (+/- 0.030) 0.862 (+/- 0.076) 0.998 (+/- 0.003)

RF test 0.990 (+/- 0.008) 0.864 (+/- 0.217) 0.851 (+/- 0.046) 0.853 (+/- 0.091) 0.998 (+/- 0.003)

SVM training 0.657 (+/- 0.725) 0.196 (+/- 0.516) 0.452 (+/- 0.874) 0.099 (+/- 0.058) 0.686 (+/- 0.092)

SVM test 0.567 (+/- 0.864) 0.422 (+/- 0.738) 0.476 (+/- 0.833) 0.112 (+/- 0.118) 0.622 (+/- 0.072)

kNN training 0.990 (+/- 0.007) 0.861 (+/- 0.196) 0.842 (+/- 0.035) 0.848 (+/- 0.086) 0.986 (+/- 0.004)

kNN test 0.989 (+/- 0.007) 0.849 (+/- 0.194) 0.828 (+/- 0.033) 0.835 (+/- 0.091) 0.984 (+/- 0.008)

Table 4.4: Consensus classification results.

DT NB L2 RF SVM kNN

min_samp_leaf = 1 alpha = 47.076 C = 94.789 min_samp_leaf = 1 C = 100 k = 5

max_depth = 9 Tol = 0.0009 max_depth = 9 gamma = 1000

criterion = “gini” criterion = “gini” max_iter = 400

number_of_trees = 10

Table 4.5: The optimal parameters for the Consensus classifiers.

4.2.3 AGM vector

The AGM set classification’s results are shown in Table 4.6. From these re-

sults, a few things to note :

• The training and test results sometimes significantly differ, this is due to

the number of simples used in this set (as we already discussed, AGM

aggregates flows thus, its size was much smaller than other sets);

• the standard deviation which represents only the cross-validation or

the stability results showed good values for RF, LR2 and NB. kNN, SVN

60 Chapter 4. Results & Discussion

and DT had poor results. This time, it was DT who has deterministic

problems;

• the two algorithms that showed the best performance are RL2 and RF;

• generally speaking, all algorithms excluding NB showed good perfor-

mance; however, sometimes the standard deviation was too large which

may lead into a non-consistent results.

The parameters used for each classifier (after tunning) are shown in Table

4.7.

algorithm train/test accuracy precision recall f1score roc_auc

DT training 0.991 (+/- 0.014) 0.985 (+/- 0.080) 0.899 (+/- 0.194) 0.936 (+/- 0.110) 0.988 (+/- 0.038)

DT test 0.964 (+/- 0.068) 0.772 (+/- 0.535) 0.778 (+/- 0.617) 0.753 (+/- 0.532) 0.993 (+/- 0.027)

NB training 0.982 (+/- 0.033) 0.858 (+/- 0.296) 0.944 (+/- 0.099) 0.892 (+/- 0.179) 0.990 (+/- 0.026)

NB test 0.985 (+/- 0.036) 0.867 (+/- 0.303) 1.000 (+/- 0.000) 0.921 (+/- 0.183) 0.993 (+/- 0.020)

L2 training 0.995 (+/- 0.009) 0.979 (+/- 0.086) 0.955 (+/- 0.084) 0.966 (+/- 0.062) 0.996 (+/- 0.016)

L2 test 0.993 (+/- 0.022) 0.983 (+/- 0.125) 0.939 (+/- 0.247) 0.954 (+/- 0.154) 0.999 (+/- 0.009)

RF training 0.995 (+/- 0.011) 0.989 (+/- 0.057) 0.949 (+/- 0.147) 0.967 (+/- 0.086) 0.997 (+/- 0.022)

RF test 0.988 (+/- 0.036) 0.973 (+/- 0.200) 0.889 (+/- 0.398) 0.910 (+/- 0.288) 0.995 (+/- 0.022)

SVM training 0.997 (+/- 0.006) 0.995 (+/- 0.038) 0.961 (+/- 0.084) 0.977 (+/- 0.044) 0.994 (+/- 0.037)

SVM test 0.997 (+/- 0.017) 1.000 (+/- 0.000) 0.961 (+/- 0.201) 0.977 (+/- 0.118) 0.997 (+/- 0.022)

kNN training 0.998 (+/- 0.006) 1.000 (+/- 0.000) 0.966 (+/- 0.083) 0.982 (+/- 0.043) 0.994 (+/- 0.030)

kNN test 0.998 (+/- 0.012) 1.000 (+/- 0.000) 0.978 (+/- 0.166) 0.987 (+/- 0.100) 0.989 (+/- 0.083)

Table 4.6: AGM results.

DT NB L2 RF SVM kNN

min_samp_leaf = 6 alpha = 0.1 C = 11.421 min_samp_leaf = 6 C = 0.1 k = 5

max_depth = 7 Tol = 0.003 max_depth = 7 gamma = 10

criterion = “gini” criterion = “gini” max_iter = 400

number_of_trees = 12

Table 4.7: AGM classifiers optimal parameters.

4.2.4 CAIA vector

The CAIA set classification results are shown in Table 4.8. These results are

practically similar to those of Consensus, discussed earlier in Section 4.2.2.

4.2. Training-Testing Classification Performance 61

However, CAIA showed slightly better performances, which is intuitive due

to the overlapping between the sets on one hand, and more features in CAIA

on the other hand. Note that the same conclusions in Consensus regarding

classification performance apply to CAIA.

The parameters used for each classifier are shown in Table 4.9. These

parameters were obtained using the parameters tunning strategy discussed

in Section 3.4.2.

algorithm train/test accuracy precision recall f1score roc_auc

DT training 0.990 (+/- 0.006) 0.882 (+/- 0.176) 0.827 (+/- 0.028) 0.851 (+/- 0.076) 0.976 (+/- 0.008)

DT test 0.989 (+/- 0.008) 0.843 (+/- 0.229) 0.834 (+/- 0.054) 0.833 (+/- 0.098) 0.975 (+/- 0.011)

NB training 0.967 (+/- 0.021) 0.526 (+/- 0.227) 0.731 (+/- 0.015) 0.605 (+/- 0.154) 0.957 (+/- 0.014)

NB test 0.967 (+/- 0.022) 0.526 (+/- 0.228) 0.730 (+/- 0.031) 0.604 (+/- 0.161) 0.957 (+/- 0.017)

L2 training 0.979 (+/- 0.020) 0.695 (+/- 0.343) 0.817 (+/- 0.092) 0.735 (+/- 0.178) 0.983 (+/- 0.013)

L2 test 0.975 (+/- 0.019) 0.676 (+/- 0.361) 0.682 (+/- 0.089) 0.661 (+/- 0.159) 0.981 (+/- 0.015)

RF training 0.991 (+/- 0.006) 0.888 (+/- 0.177) 0.848 (+/- 0.031) 0.864 (+/- 0.075) 0.998 (+/- 0.003)

RF test 0.990 (+/- 0.008) 0.860 (+/- 0.224) 0.855 (+/- 0.054) 0.852 (+/- 0.095) 0.998 (+/- 0.004)

SVM training 0.554 (+/- 0.696) 0.031 (+/- 0.041) 0.400 (+/- 0.813) 0.047 (+/- 0.028) 0.465 (+/- 0.063)

SVM test 0.881 (+/- 0.327) 0.309 (+/- 0.544) 0.296 (+/- 0.383) 0.211 (+/- 0.185) 0.689 (+/- 0.124)

kNN training 0.990 (+/- 0.007) 0.866 (+/- 0.194) 0.844 (+/- 0.035) 0.851 (+/- 0.086) 0.985 (+/- 0.006)

kNN test 0.989 (+/- 0.007) 0.853 (+/- 0.200) 0.832 (+/- 0.049) 0.838 (+/- 0.092) 0.984 (+/- 0.008)

Table 4.8: CAIA classification results.

DT NB L2 RF SVM kNN

min_samp_leaf = 5 alpha = 59.167 C = 100 min_samp_leaf = 5 C = 100 k = 5

max_depth = 21 Tol = 0.0009 max_depth = 21 gamma = 100

criterion = “gini” criterion = “gini” max_iter = 400

number_of_trees = 16

Table 4.9: The optimal parameters for the CAIA classifiers.

4.2.5 UNSW Argus/Bro vector

Finally, we discuss the UNSW set classification results. They are in Table 4.10.

These results showed in general a really good performance similar to that of

CAIA and Consensus. In the case of the SVM classifier, there was even an im-

provement thus, one can conclude that large dimensions help SVM performs

62 Chapter 4. Results & Discussion

better, the reason behind is the better representability of the data when using

more dimensions which leads into a reduction of the inconsistency present

at the edge of the decision regions.

The parameters used for each classifier are shown in Table 4.11. These

parameters were obtained using the parameters tunning strategy discussed

in Section 3.4.2.

algorithm train/test accuracy precision recall f1score roc_auc

DT training 0.989 (+/- 0.007) 0.864 (+/- 0.194) 0.831 (+/- 0.023) 0.844 (+/- 0.086) 0.971 (+/- 0.007)

DT test 0.988 (+/- 0.008) 0.850 (+/- 0.209) 0.823 (+/- 0.044) 0.832 (+/- 0.096) 0.960 (+/- 0.013)

NB training 0.975 (+/- 0.006) 0.775 (+/- 0.195) 0.376 (+/- 0.079) 0.505 (+/- 0.104) 0.985 (+/- 0.007)

NB test 0.975 (+/- 0.006) 0.782 (+/- 0.192) 0.371 (+/- 0.084) 0.502 (+/- 0.106) 0.985 (+/- 0.007)

L2 training 0.986 (+/- 0.014) 0.790 (+/- 0.311) 0.869 (+/- 0.081) 0.816 (+/- 0.155) 0.997 (+/- 0.005)

L2 test 0.986 (+/- 0.014) 0.791 (+/- 0.309) 0.861 (+/- 0.085) 0.813 (+/- 0.150) 0.996 (+/- 0.006)

RF training 0.991 (+/- 0.006) 0.874 (+/- 0.168) 0.871 (+/- 0.018) 0.870 (+/- 0.081) 0.998 (+/- 0.002)

RF test 0.990 (+/- 0.007) 0.858 (+/- 0.186) 0.873 (+/- 0.030) 0.862 (+/- 0.088) 0.998 (+/- 0.003)

SVM training 0.967 (+/- 0.003) 0.768 (+/- 0.443) 0.046 (+/- 0.116) 0.078 (+/- 0.154) 0.775 (+/- 0.214)

SVM test 0.968 (+/- 0.010) 0.635 (+/- 0.414) 0.251 (+/- 0.066) 0.353 (+/- 0.113) 0.795 (+/- 0.108)

kNN training 0.988 (+/- 0.008) 0.846 (+/- 0.222) 0.818 (+/- 0.037) 0.827 (+/- 0.095) 0.988 (+/- 0.003)

kNN test 0.987 (+/- 0.009) 0.829 (+/- 0.238) 0.807 (+/- 0.057) 0.812 (+/- 0.101) 0.988 (+/- 0.005)

Table 4.10: UNSW Bro/Argus classification results.

DT NB L2 RF SVM kNN

min_samp_leaf = 6 alpha = 0 C = 100 min_samp_leaf = 6 C = 100 k = 5

max_depth = 22 Tol = 0.0009 max_depth = 22 gamma = 1

criterion = “gini” criterion = “gini” max_iter = 400

number_of_trees = 23

Table 4.11: The optimal parameters for the UNSW Bro/Argus
classifiers.

4.3 Global comparison

All the previous results can be gathered together, we discuss them if a few points

that are presented in the following.

4.4. Features importance 63

• The Consensus set showed the best extraction-classification trade-off.

For a light IDS it might be the best choice;

• if preprocessing speed in one of the priorities besides the classification

performances, the TA set is the best choice in this case;

• if we do not care about the speed but we want a really accurate clas-

sification, AGM or UNSW Argus/Bro are the ones to go for. AGM is

preferable with encrypted traffic but it does not provide much details

about the attack (because of the aggregation). UNSW Bro/Argus pro-

vides detailed information about the attack but can not be extracted

from encrypted traffic, so another trade-off raises here;

• CAIA is an enhanced version of the Consensus. If we want a slightly

better classification results on the price of a small extra time, CAIA in

the one to choose.

4.4 Features importance

In this section, we analyzed each feature set separately. We try to determine how

every feature impacts the decision of each classifier. Note, however, that feature

importance is not valid or has no meaning when features are isolated (analysis only

with a single feature). In our case, feature importance is mainly valid in the context

of the whole set.

We classified the features along the following scale : highly relevant fea-

tures, relevant, low relevance and negligible, Figure 4.2 depicts this scale.

4.4.1 Time Activity vector

• Highly relevant : bytes (13.9), pkts (17.1), bytes_per_seconds-active

(50.4), interval (10.1)

• Relevant : pkts_per_secondsactive (5.6), maxtoff (1.1), protocol:TCP

(1.1)

64 Chapter 4. Results & Discussion

Figure 4.2: The importance scale used to classify the features. 0
importance is classified as negligible.

• Low relevance : maxton (0.4), minton (0.1), protocol:UDP (0.1)

• Negligible : seconds-active (0.0), mintoff (0)

4.4.2 Consensus vector

• Highly relevant : min_dstPktLength (75.5)

• Relevant : dstBytes (6.9), max_srcPktLength (6.2), median_srcPktLength

(5.4), max_dstPktLength (2.2)

• Low relevance : srcBytes (0.9), duration (0.9), min_srcPktLength (0.9),

protocol:UDP (0.2), median_srcPktIAT (0.2), mode_srcPktLength (0.1),

variance_srcPktIAT (0.1), variance_dstPktIAT (0.1)

• Negligible : srcPkts (0.1), dstPkts (0.0), median_dstPktIAT (0.0), mode_

dstPktLength (0), protocol:TCP (0)

4.4.3 AGM vector

• Highly relevant : #pktLength (85.2)

• Relevant : pkts_mode_srcPort (2.1), pkts_mode_dstPort (6.1), #proto-

col (2.7), pkts_mode_pktLength (3.7)

• Low relevance : mode_pktLength (0.1)

• Negligible : #dstIP (0), mode_dstIP (0), pkts_mode_dstIP (0), #srcPort

(0), mode_srcPort (0), #dstPort (0), mode_dstPort (0), mode_protocol

4.4. Features importance 65

(0), pkts_mode_protocol (0), #TTL (0), mode_TTL (0), pkts_mode_TTL

(0), #TCPflag (0), mode_TCPflag (0), pkts_mode_TCPflag (0), pkts (0)

4.4.4 CAIA vector

• Highly relevant : min_dstPktLength (74.8)

• Relevant : max_srcPktLength (7.1), dstBytes (6.1), mean_srcPktLength

(2.3), max_dstPktLength (2.0), protocol:tcp (1.7), stdev_srcPktLength

(1.5), mean_dstPktLength (1.1), duration (1.1)

• Low relevance : srcBytes (0.5), min_srcPktLength (0.5), mean_dstPktIAT

(0.3), mean_srcPktIAT (0.2), stdev_dstPktLength (0.2), stdev_dstPktIAT

(0.2), #srcTCPflag:syn (0.2), stdev_srcPktIAT (0.1)

• Negligible : srcPkts (0.0), dstPkts (0.0), max_srcPktIAT (0.0), proto-

col:UDP (0.0), #srcTCPflag:fin (0.0), #srcTCPflag:ack (0.0), #dstTCPflag:ack

(0.0), #dstTCPflag:fin (0.0), max_dstPktIAT (0.0), min_srcPktIAT (0), min

_dstPktIAT (0), #srcTCPflag:cwr (0), #dstTCPflag:syn (0), #dstTCPflag:cwr

(0)

4.4.5 UNSW Argus/Bro vector

• Highly relevant : ct_state_TTL (80.0), ct_srv_dst (11.1)

• Relevant : dstMeansz (1.7), dstBytes (1.4), srcBytes (1.2)

• Low relevance : srcWin (0.7), srcMeansz (0.5), service:http (0.4), dstP-

kts (0.3), ct_dst_src_ltm (0.3), dstIntpkt (0.3), synack (0.3), service:other

(0.2), duration (0.2), srcTTL (0.1)

• Negligible : service:ftp (0.0), dstLoss (0.0), srcLoad (0.0), dstLoad (0.0),

srcPkts (0.0), srcTcpb (0.0), dstTcpb (0.0), res_bdy_len (0.0), srcJit (0.0),

dstJit (0.0), srcIntpkt (0.0), tcprtt (0.2), ackdat (0.0), ct_flw_http_mthd

(0.0), ct_srv_src (0.8), ct_src_ltm (0.0), ct_src_dport_ltm (0) dstTTL (0),

srcLoss (0), dstWin (0), trans_depth (0), is_sm_ips_ports (0), is_ftp_login

66 Chapter 4. Results & Discussion

(0), ct_ftp_cmd (0), ct_dst_ltm (0), ct_dst_sport_ltm (0), state:CON (0),

state:FIN (0), state:INT (0), service:dns (0), service:ftp-data (0), service:

smtp(0), service:ssh (0)

We can see some remarkable details that are present in all sets. For in-

stance, features related to packet’s length show a high relevance in all sets.

This was somehow self explanatory because most of the time, the packet’s

length of a malicious packet is static and thus represents a footprint of an at-

tack (research already disclosed this phenomena before so these results were

expected). Another thing that we noticed is that different statistical transfor-

mations of the "number of packets" feature creates sub-features with a mod-

est relevance.

Constructing a new set based on best features from each set does not nec-

essarily mean the construction of a perfect set because the relevancy scale

was relative to the set itself. Highly relevant features in a set can be negli-

gible in another. This is due to many reasons; the most intuitive one is that

if two features are highly correlated and grouped together in the same set,

one of them will for sure govern the relevance scale and the other will be

negligible.

67

Chapter 5

Conclusions

5.1 Conclusions

In this work we compared five feature vectors recently proposed and used for

traffic classification and anomaly detection in communication networks. We

conducted experiments to study the performance of each feature set in terms

of preprocessing costs and classification accuracy. In order to accomplish this

task, a labeled dataset containing 100GB of modern Internet traffic was used

(Appendix B). The used dataset is the UNSW-NB15, which mixes legitimate

and illegitimate traffic which correspond to 9 different families of attacks.

Six well known ML algorithms were used for the classification tasks : Naive

Bayes classifiers, Decision Trees, Random Forests, Support Vector Machines,

l2-Logistic Regression and k-Nearest Neighbors.

The comparison was mainly intended to obtain insights about different

ways of representing network traffic. For instance, the TA feature set repre-

sents the unidirectional footprint of Internet traffic activities, CAIA groups

popular statistical features in a bidirectional manner, Consensus is similar to

CAIA but constructed based on a meta-analysis of the most used features

in the recent literature, UNSW Bro/Argus is based of Bro and Argus tools,

which carry out a complicated and a deep packets inspection methodology,

and finally the AGM, which focuses on analyzing and the aggregation of

sources. By doing so, we compared actually five different "types" of sets.

The conducted experiments lead to three main conclusions:

1. The AGM feature set showed the best classification results, therefor,

68 Chapter 5. Conclusions

profiling hosts instead of connections (flows) may reveal some attacks

categories better. However, due to its extraction complexity, its imple-

mentation is therefor challenging.

2. The feature set constructed by performing meta-analysis on past re-

search (Consensus) showed the best classification/extraction perfor-

mance trade-off. This revealed the following related facts: when using

a flow features based set, first, not all statistical features are relevant

(the case of CAIA feature set). Second, not all possible network traffic

features are needed (the case of UNSW Bro/Argus feature set) and fi-

nally monitoring flows in a bidirectional manner will improve the per-

formance (the TA feature set was unidirectional) since it offers more

information about the connection.

3. The most relevant feature in approximately all sets was the packet′s

length and its different statistical transformations. This implies that,

when constructing a new set, it might be beneficial to use more features

based on packet′s length. This however does not mean that the packet′s

length is capable of classifying traffic by itself, other features are still

needed.

5.2 Submitted Publication

A paper entitled “Analysis of Lightweight Feature Vectors for Attack De-

tection in Encrypted Network Traffic” was derived from this work. In this

paper, we compared the five feature sets by evaluating the time costs and

the classification performance only using the RF classifier since it showed

the best results. We also covered traffic encryption and tried to study the

extraction capability of each set before and after the features selection step.

The paper has been submitted as to the IEEE International Conference on

Data Mining series (ICDM 2018) and is currently under review.

5.3. Further Work 69

5.3 Further Work

Based on this work, many questions arise and need to be answered. Exam-

ples of further work are:

• Further research can study and compare the usage of these feature sets

in the case of unsupervised classification.

• New combinations of statistical transformations can likewise be ap-

plied to the basic features and their relevancy should be studied. This

can really affect classification results since a good transformation might

reveal hidden information carried by a raw feature.

• Enhanced feature sets can be created based on the calculated features

relevancy. Then, tested first with the same dataset, for which good re-

sults are expected. And later tested with a different new dataset in

order to have a general and final validation.

• With deep analysis, the effect of the ML learning algorithms on the clas-

sification can also be studied in depth. This mean: Does a certain algo-

rithm always misclassify a certain attack or a kind of traffic and why?

71

Appendix A

Extraction Tool : Flow Extractor

The Flow Exporter is a tool developed in Go language by one of the Commu-

nication Networks Group’s members, at the Technische Universität Wien. Its

main goal is to extract information from traffic captures (pcaps for instance)

with the possibility of providing different outputs i.e.,: flows, packets etc.

By specifying which features to extract (defined by IANA [9]), the Flow

Exporter takes in our case a pcap file and outputs a CSV file. The selection

of the set of features needed is done using a JSON file. Few parameters also

need to be set for a correct operation, for example : timeout, maximum actif

time, type (flows or packets) etc. The usage syntax is depicted in the follow-

ing listing :

Usage :

go−f lows [f l a g s] ca l lgraph f e a t u r e s [f e a t u r e a r g s] spec . j son

[f e a t u r e s . . .] [export type [exportargs]] [export . . .]

[. . .]

Usage :

go−f lows [f l a g s] ca l lgraph [args] −spec commands . j son

Writes the r e s u l t i n g ca l lgraph in dot r e p r e s e n t a t i o n to

stdout .

F e a t u r e s e t s (f e a t u r e s) , outputs (export) , and , opt iona l ly ,

sources need to

https://www.cn.tuwien.ac.at/
https://www.cn.tuwien.ac.at/
https://www.tuwien.ac.at/en/

72 Appendix A. Extraction Tool : Flow Extractor

be provided . I t i s p o s s i b l e to s p e c i f y mult ip le f e a t u r e

statements and

mult ip le export s tatements . Al l the s p e c i f i e d expor ters

always export the

f e a t u r e s s p e c i f i e d by the preceeding f e a t u r e group .

At l e a s t one f e a t u r e s p e c i f i c a t i o n and one exporter i s needed

.

I d e n t i c a l exportes can be s p e c i f i e d mult ip le times . Beware ,

t h a t those w i l l

share a common exporter ins tance , r e s u l t i n g in a f i e l d s e t

s p e c i f i c a t i o n

per s p e c i f i e d f e a t u r e s e t , and mixed f i e l d s e t s (depending on

the f e a t u r e

s p e c i f i c a t i o n) .

Ins tead of providing the commands on the command l i n e , i t i s

a l s o p o s s i b l e

to use a j son f i l e .

A l i s t of supported expor ters and f e a t u r e s can be seen with

the l i s t

command . See a l s o go−f lows ca l lgraph f e a t u r e s −h .

Examples :

Export the f e a t u r e s e t s p e c i f i e d in example . j son to example

. csv

go−f lows ca l lgraph f e a t u r e s example . j son export csv

example . csv input [input . . .]

Export the f e a t u r e s e t s a . j son and b . j son to a . csv and b .

csv

Appendix A. Extraction Tool : Flow Extractor 73

go−f lows ca l lgraph f e a t u r e s a . j son export csv a . csv

f e a t u r e s b . j son export b . csv input [input . . .]

Export the f e a t u r e s e t s a . j son and b . j son to a s i n g l e

common . csv (t h i s

r e s u l t s in a csv with f e a t u r e s from a in the odd l i n e s , and

f e a t u r e s

from b in the even l i n e s)

go−f lows ca l lgraph f e a t u r e s a . j son f e a t u r e s b . j son export

common . csv input [input . . .]

Execute the commands provided in commands . j son

go−f lows ca l lgraph −spec commands . j son [. . .]

F lags :

−b l o c k p r o f i l e s t r i n g

Write goroutine blocking p r o f i l e

−c p u p r o f i l e s t r i n g

Write cpu p r o f i l e

−hea pprof i l e s t r i n g

Write heap p r o f i l e

−memprofile s t r i n g

Write memory p r o f i l e

−memprofi lerate i n t

Set MemProfileRate

−mutexprof i le s t r i n g

Write mutex blocking p r o f i l e

−t r a c e s t r i n g

Turn on t r a c i n g

Args :

−a c t i v e uint

Active timeout in seconds (d e f a u l t 1800)

74 Appendix A. Extraction Tool : Flow Extractor

−expire uint

Check f o r expired t imers with t h i s period in seconds .

(d e f a u l t 100)

− f i l t e r s t r i n g

Process only packets matching s p e c i f i e d bpf f i l t e r

−i d l e uint

I d l e timeout in seconds (d e f a u l t 300)

−n uint

Number of p a r a l l e l process ing t a b l e s (d e f a u l t 4)

−perpacket

Export one flow per Packet

−s i z e uint

Maximum packet s i z e read from source . 0 = automatic (

d e f a u l t 9000)

−spec s t r i n g

Load expor ters and f e a t u r e s from s p e c i f i e d j son f i l e

−s t a t s

Output s t a t i s t i c s

The complete syntax used for TA, Consensus and CAIA is :

go-flows offline -idle 60 -active 60 features input.json export csv

output.csv input input.pcap

and for the AGM :

go-flows offline -perpacket features AGM.json export csv output.csv

input.pcap

A.1 Structure

The structure of the flow extractor is depicted in Figure A.1

The state of the art of the Flow Extractor is described as follows, The tool

start by creating hashing tables that contains all features provided via the

JSON file. Next, by exploring the pcaps, for each packet, it checks the flow

A.1. Structure 75

Figure A.1: A simplified structure of the Flow Exporter.

key and execute one of two functions, if the flow is new, it execute the Start

function or if the flow exist already, it executes the Event function. these two

functions are executed for each feature provided. At the end (timeout), it

executes the End function. Now let us explain what these three functions

represent:

• Start function : This function is called each time a new flow is detected.

It consists basically of some initializations of internal variables. An ex-

ample of this function is the following :

func (f *count) Start(context EventContext) {

f.count = 0

}

The exact syntax is not important for us but we can see an initiation of

the variable f .count (OOP is used here).

• Event function : This function is called if a flow is already created and a

new packet with the same flow key is identified. Basically this function

tells the tool what to do with the specific feature value in the identified

flow. An example of it is the following :

76 Appendix A. Extraction Tool : Flow Extractor

func (f *count) Event(new interface{}, context EventContext, src

interface{}) {

f.count++

}

Here we can see that it is a simple incrementation of the variable f .count.

Note that the syntax can be more complicated for instance if we use a

value from the packet itself (for instance packet length or record time)

and perform operations on it.

• End function : The end function is called when the flow ends (by a

timeout for instance) and exports the final results performed on the in-

ternal variables. An example is :

func (f *count) Stop(reason FlowEndReason, context EventContext)

{

f.SetValue(f.count, context, f)

Here we are outputting the final value of the counter that we already

incremented on each packet arrival. More complex operations can be

done (for instance calculate a mean or a statistical property of a feature).

By grouping the three functions together, the count feature function is

constructed, which simply calculates the number of packets in a flow.

The complete syntax is more complicated and is not explained in this

work.

A.2 Performance

We chose the Flow Exporter in this work for three reasons :

• First, because it is written in Golang where the execution speed is much

larger than most of the tools available in public;

• second, because it is easy to use and features can be constructed based

on needs;

A.2. Performance 77

• third, because it is developed by one of our team members and thus,

the need to promote it :-)

When comparing the Flow Extractor’s performance to other tools devel-

oped in other languages (Java, python...) we found out that the Flow Ex-

porter in Go language outperforms them by far.

Note : the Flow Exporter is not on its full version and thus, not refer-

enceable. It is available for private usage only and will be available to public

later.

79

Appendix B

The NUSW-NB15 Dataset.

The raw network packets (Pcap files) of the UNSW-NB 15 data set is cre-

ated by the IXIA PerfectStorm tool in the Cyber Range Lab of the Australian

Centre for Cyber Security (ACCS) for generating a hybrid of real modern

normal activities and synthetic contemporary attack activities. The UNSW-

NB15 source files are provided in different formats, Pcap files, BRO files, Ar-

gus Files and CSV files. The source files of the data set were divided based

in the date of the simulation 22-1-2015 and 17-2-2015, respectively.

The creation procedure and more statistics can be found in [13] and [14].

B.1 Statistics

Traffic type Count

0 - legitimate 2218755

1 - attacks 321283

total 2540038

Table B.1: Normal
to Abnomal distribu-

tion of flows.

Attacks Count

fuzzers 24246

reconnaissance 13987

shellcode 1511

analysis 2677

ackdoor 2329

DoS 16353

exploits 44525

generic 215481

worms 321283

Table B.2: Attacks
distribution.

81

Bibliography

[1] Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. “On

the surprising behavior of distance metrics in high dimensional space”.

In: International conference on database theory. Springer. 2001, pp. 420–

434.

[2] James P Anderson. “Computer security threat monitoring and surveil-

lance”. In: Technical Report, James P. Anderson Company (1980).

[3] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter

optimization”. In: Journal of Machine Learning Research 13.Feb (2012),

pp. 281–305.

[4] FENG Changyong et al. “Log-transformation and its implications for

data analysis”. In: Shanghai archives of psychiatry 26.2 (2014), p. 105.

[5] Daniel C Ferreira et al. “A meta-analysis approach for feature selection

in network traffic research”. In: Proceedings of the Reproducibility Work-

shop. ACM. 2017, pp. 17–20.

[6] Félix Iglesias and Tanja Zseby. “Analysis of network traffic features for

anomaly detection”. In: Machine Learning 101.1-3 (2015), pp. 59–84.

[7] Félix Iglesias and Tanja Zseby. “Pattern Discovery in Internet Back-

ground Radiation”. In: IEEE Transactions on Big Data (2017).

[8] Félix Iglesias and Tanja Zseby. “Time-activity footprints in IP traffic”.

In: Computer Networks 107 (2016), pp. 64–75.

[9] Internet Assigned Numbers Authority. URL: https://www.iana.org/.

[10] Eamonn Keogh and Abdullah Mueen. “Curse of dimensionality”. In:

Encyclopedia of Machine Learning and Data Mining. Springer, 2017, pp. 314–

315.

https://www.iana.org/

82 BIBLIOGRAPHY

[11] Yeon-sup Lim et al. “Internet traffic classification demystified: on the

sources of the discriminative power”. In: Proceedings of the 6th Interna-

tional COnference. ACM. 2010, p. 9.

[12] Fares Meghdouri, Félix Iglesias, and Tanja Zseby. “Analysis of Lightweight

Feature Vectors for Attack Detection in Encrypted Network Traffic”. In:

(2018). Pending.

[13] Nour Moustafa and Jill Slay. “The evaluation of Network Anomaly De-

tection Systems: Statistical analysis of the UNSW-NB15 data set and the

comparison with the KDD99 data set”. In: Information Security Journal:

A Global Perspective 25.1-3 (2016), pp. 18–31.

[14] Nour Moustafa and Jill Slay. “UNSW-NB15: a comprehensive data set

for network intrusion detection systems (UNSW-NB15 network data

set)”. In: Military Communications and Information Systems Conference (Mil-

CIS), 2015. IEEE. 2015, pp. 1–6.

[15] scikit-learn, Machine Learning in Python. URL: http://scikit-learn.

org/stable/.

[16] Charles J Stone. “Classification and regression trees”. In: Wadsworth In-

ternational Group 8 (1984), pp. 452–456.

[17] Alina Vlăduţu, Dragoş Comăneci, and Ciprian Dobre. “Internet traffic

classification based on flows’ statistical properties with machine learn-

ing”. In: International Journal of Network Management 27.3 (2017).

[18] Nigel Williams, Sebastian Zander, and Grenville Armitage. “A prelim-

inary performance comparison of five machine learning algorithms for

practical IP traffic flow classification”. In: ACM SIGCOMM Computer

Communication Review 36.5 (2006), pp. 5–16.

[19] Alden H Wright. “Genetic algorithms for real parameter optimization”.

In: Foundations of genetic algorithms. Vol. 1. Elsevier, 1991, pp. 205–218.

[20] Jun Zhang et al. “Robust network traffic classification”. In: IEEE/ACM

Transactions on Networking (TON) 23.4 (2015), pp. 1257–1270.

http://scikit-learn.org/stable/
http://scikit-learn.org/stable/

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Background
	Motivation
	Goals
	Arrangement of The Thesis

	Background Knowledge
	Network Traffic Analysis
	Intrusion Detection Systems

	Types of Classification
	Port-based
	Deep Packet Inspection
	Flow-based

	Flow-based Analysis
	Supervised Classification Algorithms
	Overview
	Decision Trees and Random Forests
	k-Nearest Neighbors
	Support Vector Machine
	Naive Bayes
	Logistic Regression

	Methodology & Experiments
	Feature Sets
	Time Activity vector
	Consensus vector
	AGM vector
	CAIA vector
	UNSW Argus/Bro vector

	Extraction Ability for Encrypted Traffic
	TLS
	IPsec

	Preprocessing
	Feature Sets Construction
	Unidirectional to Bidirectional Flows & Aggregation
	Labeling
	Nominal Features
	Scaling & Log-transformation
	Features Selection & Reduction
	Features Importance via Decision Trees
	Principal Component Analysis

	Supervised Analysis
	Training-Testing.
	Parameters Tuning

	Evaluation
	Metrics
	Over-fitting Problem & 5-fold Cross-validation

	Results & Discussion
	Extraction Costs Performance
	Time costs

	Training-Testing Classification Performance
	Time Activity vector
	Consensus vector
	AGM vector
	CAIA vector
	UNSW Argus/Bro vector

	Global comparison
	Features importance
	Time Activity vector
	Consensus vector
	AGM vector
	CAIA vector
	UNSW Argus/Bro vector

	Conclusions
	Conclusions
	Submitted Publication
	Further Work

	Extraction Tool : Flow Extractor
	Structure
	Performance

	The NUSW-NB15 Dataset.
	Statistics

	Bibliography

