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Abstract 
 
In this paper, the influence of the variable axial force and of the Secondary Torsion-
Moment Deformation-Effect (STMDE) on the deformations of beams due to 
torsional warping is investigated. The investigation is based on the second-order 
torsional warping theory of doubly symmetric beams with thin-walled open or 
closed cross-sections. The effect of the axial force on the torsional stiffness of thin-
walled beams is considered according to the second-order torsional warping theory. 
The solutions of the underlying differential equations are used for setting up the 
relations, needed for application of the transfer matrix method. They are derived, 
considering both static and dynamic action. This enables stablishing the local 
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element matrix of the twisted beam in the framework of the Finite Element Method 
(FEM). The numerical investigation comprises static and modal analyses of thin-
walled beams with I cross-sections and rectangular hollow cross-sections. The 
results are compared with results obtained by the FEM, using solid and beam 
elements available in standard software. 
 

1. Introduction 

The effect of non-uniform torsion must be considered in structural analysis of thin-
walled beams with open as well as closed cross-sections. The maximum axial stress 
caused by the bimoment occurs at the points of action of external torques (except 
for free ends of beams) and at cross-sections of restrained warping (for example 
clamped cross-sections). A broad comprehensive overview of the literature dealing 
with the issue of non-uniform torsion can be found, for example, in [1] and [2]. 
Recent research results have shown that for non-uniform torsion of beams with 
closed cross-sections the influence of the Secondary Torsion-Moment 
Deformation-Effect (STMDE) is particularly significant. 
Beam structures are frequently exposed to dynamic loads. Commercial FEM codes 
enable modal and transient analysis by 3D finite beam elements without and with 
consideration of warping [3]-[5]. For torsion, very often an improved Saint-Venant 
theory is used and special mass matrices are considered. In general, the bicurvature 
is chosen as an additional warping degree of freedom, and the STMDE is not 
considered (Ref. [5] is an exception). The beam element in [4] can be used with a 
lumped or a consistent mass matrix. The consistent mass matrix includes warping 
effects, but does not include the effect of shear deformations. For standard beam 
elements, the consistent mass matrix is based on reference [6], with the exception 
of additional terms arising from the warping constant I . For the warping element, 

lumped masses for the warping degree of freedom (bicurvature) are defined in [7]. 
As stated in [4], for solid and closed thin-walled sections, standard finite beam 
elements can be used without significant error. However, for open thin-walled 
sections, warping finite beam elements should be used. In [5], however, the warping 
finite beam element is recommended only for use for open thin-walled section 
beams. In [8], a boundary element method is developed for the non-uniform 
torsional vibration problem of doubly symmetric constant cross-sections, 
accounting for non-uniform warping and secondary torsional shear deformation-
effects. Dynamic analysis of 3D beam elements, restrained at their edges and 
subjected to arbitrarily distributed dynamic loading is described in [9]. In [10], an 
elastic non-uniform torsion analysis of simply or multiply connected cylindrical 
bars with arbitrary cross-sections accounts for the effect of geometric non-linearity 
in the framework of the boundary-element method. In [11], the effect of rotary and 
warping inertia is considered. Nonlinear torsional vibrations of thin-walled beams, 
exhibiting primary and secondary warping, are investigated in [12]. A solution for 
the vibrations of Timoshenko beams by the isogeometric approach is presented in 
[13]. Warping effects, however, are not considered. In [14], geometrically non-
linear free and forced vibrations of beams with non-symmetrical cross-sections are 



 

investigated by the Saint-Venant theory of torsion. Axial-torsional vibrations of 
rotating pretwisted thin-walled composite box beams, exhibiting primary and 
secondary warping, are investigated in [15]. A formulation of a 3D beam element 
for computation of transversal and warping eigenmodes is presented in [16]. 
In [17], a new 3D finite element for geometrically nonlinear analysis of beams, 
made of Functionally Graded Material (FGM) with transversally varying material 
properties, is presented. The warping displacements are accurately predicted. 
In [1], the influence of torsional warping of open and closed cross-sections of 
twisted beams, made of materials with constant material properties, on their 
eigenvibrations is investigated, considering the secondary deformations due to the 
angle of twist. Since the bicurvature cannot be used in the constraint equations, see. 
e.g. [4], it was logical to consider the part of the first derivative of the angle of twist, 
caused by the bimoment, as the warping degree of freedom [18] also for modal 
analysis. The results from modal analysis, concerning non-uniform and uniform 
torsion of beams with open cross-sections, have shown large differences of the 
eigenfrequencies. This has corroborated the well-known fact that warping must be 
taken into account also for modal analysis of beams with open cross-sections, 
subjected to torsion. It was also shown that the STMDE does not play a significant 
role in torsion of beams with open cross-sections. On the other hand, the torsional 
eigenfrequencies, obtained in case of consideration of STMDE, are very close to 
the ones obtained by 3D solid finite elements. In contrast to open cross-sections, 
the influence of warping (with or without STMDE) on the non-uniform torsional 
eigenfrequencies of beams with rectangular hollow cross-sections is not significant. 
The best agreement of results obtained by solid finite elements and by the method 
proposed in [1] (both for the Saint-Venant and the warping beam solutions) is 
obviously achieved for the first torsional eigenfrequency. For the higher modes, the 
difference between corresponding results increases especially for short beams.  
Some higher torsional eigenmodes, calculated by means of solid finite elements, 
contain deformations of the side walls of the beams. This effect cannot be 
considered in a straightforward manner by finite beam elements with restrained and 
unrestrained warping. As shown in [19], all eigenfrequencies calculated by solid 
finite elements agree very well with results obtained by experimental 
measurements. 
Other very recent aspects in the area of numerical solutions of non-uniform torsion 
are treated in [20]-[24]. Finally, in [2], a boundary element solution is developed 
for dynamic analysis, considering warping of beams with arbitrary cross-sections, 
including shear lag effects due to both flexure and torsion. High accuracy of the 
results in comparison to the ones obtained by solid finite element solution is 
obtained. However, in the solid model, the distortion effect of the cross-section was 
restrained. 
A common feature of the above cited articles is disregard of the effect of the 
variable axial force on torsional warping.  
In this paper, the work reported in [1] is extended to uniform and non-uniform 
torsional analysis of beams with a variable axial force. In Chapter 2, the differential 
equations of beams with such an axial force are formulated for Saint-Venant and 
non-uniform torsional deformations, including inertial line moments. In non-



 

uniform torsion, the part of the bicurvature, caused by the bimoment, is taken into 
account as the warping degree of freedom, and the STMDE is also considered. A 
general semi-analytical solution of the differential equation is presented in Chapter 
3, the transfer matrix relation is established in Chapter 4, from which the finite 
element equations for beam elements with two nodes are derived in Chapter 5. 
Omitting the external load, the FEM equation for the torsional natural free 
vibrations is obtained. The numerical investigation in Chapter 6 deals with torsional 
modal and elastostatic analysis of thin-walled beams with I cross-sections and 
rectangular hollow cross-sections. The obtained results are compared with the ones 
from commercial FEM codes. The effect of the axial force is evaluated. A final 
assessment of the proposed method is contained in the conclusions. Some of the 
mathematical details are explained in the Appendix. 
The main novelties of the present paper are: 
- (1) consideration of a variable axial force and of the STMDE in the differential 
equation for non-uniform torsion of thin-walled beams with open and closed cross-
sections according to the theory of second-order torsional warping; 
- (2) formulation of the equations needed for the transfer matrix method and the 
FEM for elastostatic and modal analysis of non-uniformly twisted beams according 
to this theory. 

2. Differential equation of the torsional deformations of 
beams with variable axial forces  
 
According to the theory of second-order torsional warping, the axial forces affect 
the torsional stiffness TGI , where G is the shear modulus and IT is the torsion 

constant. Basically, compression results in a decrease and traction in an increase of 
the torsional stiffness TGI of the beam. This situation may be considered by an 

additional stiffness pN i2 (e.g. [25]) for doubly symmetric cross-sections, where N

is the known axial force, acting at the center point of the cross-section, and

p Pi I A denotes the radius of gyration and PI  is the polar moment of area. In 

case of a variable axial force ( ) ( )IIN x N x , the corresponding variable torsional 

stiffness is obtained as * ( ) ( )II
T T pGI x GI N x i  2 , where the term ( )II

pN x i2  denotes 

the so-called geometric stiffness. Representing a load, the axial force ( )N x  appears 
in the respective term of the differential equation for the displacement in the 

longitudinal direction. The variable axial force ( )IIN x  appears in the homogeneous 
part of the differential equation for the angle of twist. The variation of the known 

axial force ( )IIN x  accounts for the stiffening or softening of the torsional stiffness 
in the framework of the second-order torsional warping theory. For doubly 
symmetric cross-sections, the torsional deformations are decoupled from the 
bending deformations and the longitudinal deformations.  For this case, the 
differential equation for the angle of twist will be established in this Chapter.   



 

 

 
Fig. 1: Second-order torsional warping theory: axial force, torsional moments and angles of twist. 

Fig. 1 refers to the second-order torsional warping theory. It shows the axial force 

( )IIN x , the torsional moment ( )TM x  as the sum of the primary torsional moment, 

( ),TpM x  and the secondary torsional moment, ( )TsM x , and the bimoment ( )M x

. Fig. 1 also shows the angle of twist, ( )x , corresponding to ( )TpM x . It represents 

the sum of the angle of twist, resulting from the primary deformation, ( )M x  , and 

the secondary deformation ( )S x  .  

 
Fig. 2: Second-order torsional warping theory: static load and moments and static equivalent of the 
respective dynamic load, acting on an infinitesimal beam element. 

Fig. 2 illustrates an infinitesimal element of the beam. I  stands for the warping 

constant and  ω  indicates the circular natural frequency.   
According to modal analysis, the angle of twist, ( , ) ( ) cos( )x t x t   , depends on 
both the location x and the time t. The acceleration is defined as the second 
derivative of the angle of twist ( , )x t with respect to the t, i.e. 

( , ) ( ) cos( )x t x t     2 . The maximum value of the displacement, max ( , )x t , 
is obtained for cos( )t  1 . The equivalent static torsional line moment is defined 

as ( , ) ( ) cos( ) ( )p p pI x t I x t I x          2 2

1




.  

The equivalent static line bimoment is obtained as  

( , ) ( ) cos( ) ( )M M MI x t I x t I x              2 2

1



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These loads represent the static equivalent of the respective dynamic action at the 
instant of time, corresponding to the maximum value of the displacement. In this 
way, the variable t is eliminated. 
The static loads are the warping moment per unit length, m , the torsional moment 

per unit length, Tm  and the axial force per unit length, n . 

 
The polynomial representation of Tm  is given as: 

 
mT

mT

mT

p
pk

T T ,k T , T , T , T ,p
k

m x m x m x m x m x ... m x ,


      0 1 2
0 1 2

0

 (1) 

where T ,km  ( T ,m 0 ,….,
mTT ,Pm ) are constants and x is the axial coordinate. mTp  is the  

maximum degree of this polynomial function, and the index T stands for 
“torsional”. 
 
The polynomial representation of the torsional bimoment per unit length is given 
as: 

 
m

m

m

p
pk

,k , , , ,p
k

m x m x m x m x m x ... m x ,




     


      0 1 2
0 1 2

0  
(2) 

where ,km  ( ,m 0 ,….,
m,Pm
 ) are constants. mp   is the  maximum degree of the 

polynomial function, and the index   refers to the torsional bimoment. 
 
In the following, the equilibrium equations will be formulated according to [1]: 

( ) ( ) ( ),T p TM x I x m x     2  (3) 

 

( ) ( ) ( ) ( ) ( ),T Tp MM x M x M x I x m x        2  (4) 

( ) ( ) ( ) ( ),Ts MM x M x I x m x       2  (5) 

where 

( ) ( ) ( ).T Tp TsM x M x M x   (6) 

According to [26], 
( )

( )M
M x

x
EI



    (7) 

and 

( ) ( ) ( )M Sx x x      , (8) 

with 



 

*

( ) ( )
( )

( ) ( )

Tp Tp
II

T T p

M x M x
x

GI x GI N x i
   

 2
 (9) 

and 
( )

( ) Ts
S

Ts

M x
x

GI
   , (10) 

where TsI  denotes the secondary torsion constant.  

 
Differentiation of equation (8) with respect to x and consideration of the equations 
(7) and (10) gives 

( ) ( ) ( )
( ) ( ) .Ts Ts

M
Ts Ts

M x M x M x
x x

GI EI GI



 

 
       (11) 

Making use of the equations (3) and (7) and of the derivative of equation (6) in 
equation (11) yields 

* *

( ) ( )( ) ( )
( ) ( )

( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
.

T TpTs
M

Ts Ts

p T Tp

Ts

p T T T

Ts

M x M xM x M x
x x

GI EI GI

I x m x M xM x

EI GI

I x m x GI x GI xM x

EI GI













 
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    

 
     

  
  

    
  

2

2

 (12) 

Multiplication of equation (12) by  EI results in  

 

 

* *

*
*

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) .

p T T T
Ts

T
p T T
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EIGI
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
 


 
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    

       

 
         

 

2

21 0

 (13) 

Differentiation of equation (13) with respect to x and substitution of equation (6) into 
the so-obtained relation yields 

 
*

* *( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) .

T
T T p

Ts Ts Ts

T Tp M T
Ts

EI EIGI
EI x GI x GI I x

GI GI GI

EI
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GI
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


 
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  

 
        

 

      

2

2

1 2

0

 (14) 

Consideration of the equations (8), (9), and (10) in equation (14) yields 
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*
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Differentiation of equation (15) with respect to x and consideration of equation (6) 
results in 
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Substitution of equation (3) and of the derivative of equation (9) into equation (16) 
gives 
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Equation (17) is a linear differential equation of fourth order for the angle of twist 
according to the second-order torsional warping theory. 
 

The above linear differential equation of 4th order with variable coefficients can 
formally be written as  

max

,
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In equation (24), ,L s  ( ,L 0 ,…., ,maxL s ) are known constant coefficients.  

In case of a constant torsional stiffness ( *( )II
T TN x GI GI  0 ), equation (17) 

belongs to the category of non-uniform torsion (first-order torsional warping theory, 
e.g. [1]). Equation (17) represents the mathematical formulation of the second-order 
torsional warping theory without consideration of the secondary torsion-moment 
deformation-effect (e.g. [25]). 

Neglecting this effect by setting TsGI   , and setting I  0 , equation (17) 

degenerates to the respective relation in the framework of Saint-Venant torsion, 
including the effect of the variable axial force, which results in the geometric 
stiffness. Thus, 

* *( ) ( ) ( ) ( ).T T p TGI x GI x I x m x        2  (25) 

 

3. Semi-analytical solution of the differential equation of 
fourth order for the angle of twist 
 
The general semi-analytical solution of the differential equation (18) can be written 
as follows [27]: 
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where ( )b x0 , ( )b x1 , ( )b x2 , ( )b x3 ,…, ( )sb x4 , s ,max s > 0 , denote the transfer 

functions [27] and i , i ,  i  , i  represent the integration constants, referring 

to the starting point i. 

 
Equation (26) and its first three derivatives with respect to x are combined to the 
following matrix equation:  
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( )L xψ , which represents the load vector, is obtained from the particular solution 
of the differential equation (18). 
The system of equations (27) can be rewritten as follows: 
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In equation (27), ( )xB  is a matrix, containing the solution functions of the 
homogeneous differential equation and particular solution functions of the 
inhomogeneous part of the differential equation and their first three derivatives at 
x. ( )xψ is a vector, containing the angle of twist and its first three derivatives at x, 

and ψi is a vector, obtained by specialization of ( )xψ  and its first three derivatives 

for the starting point i. The solution functions are calculated numerically by means 
of the algorithm published in [27]. 
  

4. Relations in the framework of the transfer matrix 
method  
 
The transformation matrix T in the following matrix equation relates the vector 

( )xψ to the “static vector” ( ),xZ  containing  ( ),x  ( ),M x  ( )M x , and ( )TM x . 

This matrix equation is given as 
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Details concerning determination of T are given in the Appendix.  
By setting equation (28) equal to equation (29), the static vector ( )xZ  is obtained 
as 

  ( ) ,xiZ F Zix x   (30) 

where Zi  is the static vector at the starting point i and  ( )xiF x is the transfer matrix, 

given as 
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(32) 

is obtained. 
By neglecting the secondary torsion-moment deformation-effect and setting the 
warping constant equal to zero, equation (32) degenerates to the relation for Saint-
Venant torsion, including the influence of the variable axial force, resulting in a 
geometric stiffness. This gives 
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5. Finite beam element obtained from the transfer matrix 
method relations  
 
From the viewpoint of practical analysis there is no need for a transition from 
transfer matrix to a stiffness matrix for a beam element. Nevertheless, for the sake 
of completeness, such a transition is briefly described in the following. 
 
Fig. 3 illustrates the beam element. It is loaded by the inertial torsional line moment

( ) ( )px I x  2  and the inertial line bimoment ( ) ( )Mx I x   2 , the torsional line 

moment Tm x   and the torsional warping line moment m x    per unit length, 

where I  stands for the warping constant. These line moments represent the static 

equivalent of the respective dynamic action.  
 

 
 

Fig. 3: Positive orientation of the axial force, the torsional moments, and the rotation angles at the 
element nodes for the transfer matrix method and the finite element method. 



 

The kinematic and kinetic variables at node i are denoted by the index i in (32) and 
in Fig. 3. By setting Lx   in (32), the dependence of the nodal variables at node j 
on the nodal variables at node i is obtained. Then, using appropriate mathematical 
operations, the local finite element equations for the second-order torsional warping 
theory read as follows (considering the definition of a positive coordinate system in 
the framework of the finite element method, resulting in T ,i T ,iM M  , 

,i ,iM M   , M ,i M ,i     and M , j M , j    ): 
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respectively. 
 
The local finite element matrix K in (34) contains the linear and the geometric stiffness 
matrix and the consistent mass matrix. 
 By neglecting the secondary torsion-moment deformation-effect and by the setting 
warping constant equal to zero, equation (35) degenerates to the relations for Saint-
Venant torsion, including the influence of the variable axial force, resulting in a 
geometric stiffness. This gives 
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6. Numerical investigation 
 
The finite element relations were implemented into the software MATHEMATICA  
[28]. The numerical investigation includes modal and elastostatic torsional analyses 
of thin-walled beams. 
 
In this Chapter, two kinds of modal and elastostatic analyses of beams with a variable 
axial force are considered. The described algorithm was implemented into the 
aforementioned software [28]. The results of the numerical experiments are 
presented in the Subchapters 6.1, 6.2 and 6.3. 

6.1 Modal analyses of a cantilever beam with an I cross-section, subjected to an 
axial load 

 

 
Fig. 4: Cantilever beam with an I cross-section: a) system, axial line load, b) cross-section. 

 
The length of the beam, L, is 2.5 m. The cross-section is the one of a HEB-500 [29]. 
In Table 1 and Table 2, the material properties and the cross-sectional parameters, 
respectively, are listed. The axial, flexural, Saint-Venant torsional and warping 
eigenfrequencies, and the radius of gyration, are calculated for the cantilever beam 

for a variable axial force ( )IIN x , given as follows: 

II ( ) ( )xx xN n L  ,  xn  [ , ], kN m 3000 3000 . (37) 

The calculation of the eigenfrequencies according to the second-order torsional 
warping theory with STMDE consists of the following steps: At first, the transfer 
matrix  ( )xi xF , see equation (32), is specialized for L and for the nodes a and b (see 

Fig. 4). For modal analysis the influence of the load vector in the transfer matrix 
( ) ba x LF  is equal to zero. Taking the boundary conditions, given in equation (38), 

into account, the reduced system of two homogeneous algebraic equations is 



 

obtained. They represent an eigenvalue problem. The circular natural frequencies j ω

, j , , ,   1 2 follow from the zeros of the determinant of the reduced system of 
equations. An iterative method was used to find these zeros [1]. The natural 
frequencies j jf / ω  2 , j , , , 1 2 are computed subsequently. 

In the same way, the calculation of the eigenfrequencies according to Saint-Venant 
torsion, including the influence of the variable axial-force effect is carried out. 
The above algorithm was implemented into the software MATHEMATICA [28]. In 
this Subchapter, the results of the numerical experiments are presented and compared 
with the ones obtained by means of the available commercial software. 
 
Table 1: Material properties. 

Material properties 
Young’s modulus  E   721 10  kN/m² 

Poisson’s ratio v = 0.3  

Shear modulus   . G  78 0769 10  kN/m² 

Mass density = 7.85 t/m³ 
 
Table 2: Cross-sectional parameters [29]. 

Cross-sectional parameters [29] 
Cross-sectional area A   4239 10  m² 

Shear area in the y - direction . yA   4140 27 10  m² 

Shear area in the z - direction  .zA   465 77 10  m²  

Second moment of area about the y-axis  yI   8107200 10  m4 

Second moment of area about the z-axis  zI   812620 10  m4 

Polar moment of area  p y zI =I +I   8119820 10  m4 

Radius of gyration  .pi =  222 41 10  m 

Torsion constant .TI
  8538 4 10  m4 

Secondary torsion constant . TsI   877974 4 10  m4 

Warping constant  I
  127017700 10  m6 

 
The following boundary conditions are applied: 
 

a) Saint-Venant torsional vibrations: 

 ( ) ,axx    
0

0 , . ( )T T bx L
M x M   0  (38) 

b) Warping vibrations: 

,, , ( ) ( )Mx xa M ax x   
    

0 0
0 0  (39) 



 

, ,, .( ) ( )b T T bx Lx L
M x M M x M      0 0  

Table 3 and Table 4 contain a comparison of the results for the first three torsional 
eigenfrequencies, obtained by the proposed method (Saint-Venant torsion and 
second-order torsional warping theory with STMDE), with corresponding results, 
obtained by the computer programs ANSYS [3], RSTAB [30], and RFEM [33].  

The computational models for the proposed method (Saint-Venant and warping 
torsion) consisted of only one finite beam element. Alternatively, 100 beam elements 
of RSTAB [30] were used for Saint-Venant modal analysis. This element does not 
allow  consideration of a variable axial force. A very fine mesh, consisting of 16080 
3D and 2D - Solid finite elements was used in the analysis by ANSYS [3], and 100 
3D-Solid elements were used in the analysis RFEM [33]. The variation of the axial 
force in the 3D-Solid model was considered by applying mechanicaly consistent 
forces to the nodes of the elements. 

The eigenfrequencies and eigenmodes obtained by ANSYS [3] with 16080 Solid186 
elements contain modes with deformations of the walls (Fig. 5). This effect can not 
be considered by the proposed method and by finite beam elements.  Table 3 and 
Table 4 contain only torsional eigenfrequencies and thus, disregards results as shown 
in Fig. 5.  

 

 
Fig. 5: Eigenmode obtained by ANSYS [3] with SOLID186 elements showing deformations of the 
walls. 

Table 3 and Table 4 show a comparison of the results for the eigenfrequencies for a 
cantilever beam with an I cross-section and a varyiable axial force

II ( ) ( )xx xN n L  ,  xn  [ ] ,3000 3000 , kN/m. They were obtained by the 

proposed method, using only one element, by RSTAB [30] 100 beams-elements, 
RFEM [33] 100 2D-Solid elements, with corresponding results, obtained by ANSYS 
[3] 16080 SOLID 186 elements. 

 

 

 

 

 



 

Table 3: Comparison of the results for the eigenfrequencies obtained by the proposed method, by 
RSTAB [30] 100 beams-elements, RFEM [33] 100 2D-Solid elements, with corresponding results, 
obtained by ANSYS [3] 16080 SOLID 186 elements, for a cantilever beam with an I cross-section 
and a variable axial force.  
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Table 4: Comparison of the results for the eigenfrequencies obtained by the proposed method, by 
RSTAB [30] 100 beams-elements, RFEM [33] 100 2D-Solid elements, with corresponding results, 
obtained by ANSYS [3] 16080 SOLID 186 elements, for a cantilever beam with an I cross-section 
and a variable axial force.  
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f 2  219.12 ------- 217.93 215.56 214.49 

f 3  545.52 ------- 551.56 554.32 552.34 

 n
x=

 
20

00
 

Sa
in

t-
V

en
an

t 
to

rs
io

n f 1  16.23 21.50 ------- ------- ------- 

f 2  52.74 64.51 ------- ------- ------- 

f 3  88.41 107.54 ------- ------- ------- 

W
ar

pi
ng

 
to

rs
io

n f 1  43.33 ------- 40.37 41.97 42.02 

f 2  218.08 ------- 215.96 214.56 213.86 

f 3  544.33 ------- 550.39 553.23 551.55 

 
n

=
 

30
00

 
Sa

in
t-

V
en

an
t 

to
rs

io
n f 1  11.92 21.50 ------- ------- ------- 

f 2  43.16 64.51 ------- ------- ------- 

f 3  72.88 107.54 ------- ------- ------- 

W
ar

pi
ng

 
to

rs
io

n f 1  42.35 ------- 39.32 41.02 41.39 

f 2  217.03 ------- 215.99 213.67 213.24 

f 3  543.14 ------- 549.22 552.14 550.76 

 



 

As shown in Table 3 and Table 4, the eigenfrequencies obtained by the proposed 
second-order torsional warping elements agree very well with the ones obtained with 
3D-Solid elememts. As expected, the Saint Venant solution (with and without the 
axial force effect) gave incorrect results. 
Analogous to the situation for bending vibrations, axial tension in addition to torsion 
results in an increase and axial compression in addition to torsion in a decrease of 
the torsional eigenfrequencies. 

Fig. 6 shows the results for the first three torsional eigenfrequencies for Saint–
Venant torsion, including the influence of the variable axial force, as obtained by the 
proposed method, see  equation (36), and by RSTAB [30] “, but without the influence 
of a variable axial force,” for a cantilever beam with an I cross-section and a variable 

axial force II ( ) ( )xx xN n L  ,  xn  [ ] ,3000 3000  [kN/m]. The difference 

between the results from both methods increases with, increasing number of the 
eigenfrequency. For the case  n x  0 , the eigenfrequencies obtained by the two 

approaches are the same. 

 

 
Fig. 6: Comparison of the first three torsional eigenfrequencies (Saint–Venant torsion), obtained by 
the proposed method (second row in the table 6) and obtained by RSTAB [30] 100 beams-elements 
(third row in the table 6), for a cantilever beam with an I cross-section and a variable axial force. 

6.2 Elastostatic analyses of a cantilever beam with an I cross-section and 
variable axial forces 

The length of the beam, L, is 2.5 m. The cross-section is the one of a HEB-500 [29] 
with no rounded corners. In Table 1 and Table 5, the material properties and the cross-
sectional parameters, respectively, are listed. The elastostatic analyses are performed 

for a cantilever beam, subjected to a variable axial force II ( ) ( )xx xN n L  ,  xn 
[ ] ,3000 3000  according to equation (37). The boundary torsional moment at point 

b is given as , k . NmT bM  10  



 

 
Fig. 7: Cantilever beam with an I cross-section: a) system, axial line load, torsional moment, b) 
cross-section. 

 
The following boundary conditions are applied: 
 

a) Saint-Venant torsion: 

 ( ) ,axx    
0

0 , ( ) [kNm].T T bx L
M x M   10  (40) 

b) Second-order torsional warping theory: 
 

,, , ( ) ( )Mx xa M ax x   
    

0 0
0 0  

, , ( ) (, [kNm .) ]b T T bx Lx L
M x M M x M      0 10  

(41) 

 

 
Fig. 8: Angle of twist, [rad], according to the second-order warping theory for a cantilever beam of 

length  L = 2.5 m, subjected to the torsion-moment , T bM  10 kNm and to a variable axial force

II ( ) ( ) nN L xxx   ,  nx  [ , ] 3000 3000 , [kN/m].  



 

 
Fig. 9: Warping moment,  M  [kNm²], according to the second-order warping theory for a cantilever 

beam of length L= 2.5 m, subjected to the torsion-moment , T bM  10 kNm and to a variable axial 

force II ( ) ( ) nN L xxx   ,  nx  [ , ] 3000 3000 , [kN/m].  

 
 
 
 

Fig. 10: Secondary torsional moment,  TsM  [kNm], according to the second-order warping theory for 

a cantilever beam of length L= 2.5 m, subjected to the torsion-moment , T bM  10  kNm and to a 

variable axial force II ( ) ( ) nN L xxx   ,  nx  [ , ] 3000 3000 , [kN/m].  

 
As shown in Fig. 10 and Fig. 11, at the point with the coordinate x = 2.267 [m], where 
the individual curves are intersecting, the primary torsional moment and the secondary 

torsional moment are obtained as T
Tp Ts

M
M M   5

2
 [kNm], and they are 

independent of the axial forces. 



 

 

Fig. 11: Primary torsional moment,  TpM  [kNm], according to the second-order warping theory 

for a cantilever beam of length L = 2.5 m, subjected to the torsion-moment , T bM  10 kNm and 

to a variable axial force II ( ) ( ) nN L xxx   ,  nx  [ , ] 3000 3000 , [kN/m].  

 

 
Fig. 12: a) Cross-section, b) primary shear stress, c) secondary shear stress, d) axial stress according 
to axial forces, e) axial stress due to warping  

Table 5 contains the cross-sectional parameters, which are taken from [32]. 

 

 

 



 

Table 5: Cross-sectional parameters [32]. 

Torsion constant TI   94764 10  m4 

Secondary torsion constant  TsI   77609 10  m4 

Warping constant  I
  1068481 10  m6 

Warping-ordinate at the corner points  .R
  23 54 10  m2 

Radius of gyration  .pi =  222 41 10  m 

 

The equations (42)-(46) are taken from [32]. 

 

   , , ,SGS G
s

A A A
t

A sh tb A   2
2

  ,R
bh 
4

 (42) 

 

( ), , ,
.

 G G
T G S R Ts

A A h
A II t A s I    

2
2 2 21 2

2
3 3 2 4

 (43) 

 
The axial stresses due to the warping moment at the corner points are given as follows: 

 .R
M

I



    (44) 

The total axial stresses at corner points are obtained as 

 ,total n      where    .n
N

A
   (45) 

The shear stress resulting from the secondary moment is given as 

, . .Ts
s

M

thb
 1 1 5  (46) 

The shear stresses resulting from the primary moment are given as 

*
, ,* *

( )
, , with ( ) .

II
Tp Tp T p

p p T
T T

M M GI N x i
t s I x

GI I
 


  

2

1 2  (47) 

According to Fig. 12, the total shear stresses are obtained as follow: 

, , ,  , .total total
s p p      1 1 1 2 2  (48) 

Table 6 contains the values of the axial force IIN , the bimoment M , the torsional 

moment TM , the primary torsional moment TpM , the secondary torsional moment 

TsM , and the angle of twist, ( )x , at x  1m, obtained by the proposed method, 

using only one element for a cantilever beam of length L = 2.5 m, subjected to the 

torsion-moment , kN mT bM  10 and to a variable axial force II ( ) ( )x xN n Lx  ,

 nx  [ ] ,3000 3000  [kN/m].  



 

Table 6:  Value of the axial force, the bimoment, the primary torsional moment, the secondary 
torsional moment, and the angle of twist at x  1m, obtained by the  proposed method. 

nx  
[kN/m] 

N  
[kN] 

 M
[kNm²] 

 TM

[kNm] 
 TpM

[kNm] 

 TsM

[kNm] 

 . 1000 
[Rad] 

3000 4500 -7.520 10 4.614 5.386 4.2598 
2000 3000 -7.797 10 4.217 5.783 4.4402 
1000 1500 -8.095 10 3.784 6.216 4.6359 

0 0 -8.419 10 3.311 6.690 4.8490 
-1000 -1500 -8.771 10 2.791 7.209 5.0818 
-2000 -3000 -9.155 10 2.218 7.782 5.3372 
-3000 -4500 -9.577 10 1.584 8.416 5.6185 

Table 7 permits a comparison of the results for the total axial stress at x  1m, 
obtained by the proposed method, with corresponding results, obtained by means of 
ABAQUS/CAE [5] 92960 Elements, Type: C3D8RH for a cantilever beam of length 
L = 2.5 m, subjected to the torsion-moment , kN mT bM  10 and to a variable axial 

force II ( ) ( )x xN n Lx  ,  nx  [ ] ,3000 3000  [kN/m]. The results for the 

normal stress, obtained by the two methods, agree very well. 

Table 7:  Total axial stress at x  1m, obtained by the proposed method and by [5]. 

nx  
[kN/m] 

 n   

[N/mm²] 
obtained 
by the 

proposed 
method 

    

[N/mm²] 
obtained 
by the 

proposed 
method 

min     
[N/mm²] 
obtained 
by the 

proposed 
method 

max     
[N/mm²] 
obtained 
by the 

proposed 
method 

min     
[N/mm²] 
obtained 

by [5] 

max     
[N/mm²] 
obtained 

by [5] 

3000 193.648 -38.875 154.773 232.524 155.280 234.300  
2000 129.099 -40.304 88.795 169.403 89.300 169.600 
1000 64.549 -41.847 22.703 106.396 23.300 106.007 

0 0 -43.519 -43.519 43.519 -43.770 43.770 
-1000 -64.549 -45.338 -109.888 -19.211 -110.800 -19.400 
-2000 -129.099 -47.326 -176.424 -81.773 -177.400 -81.600 
-3000 -193.648 -49.505 -243.154 -144.143 -244.600 -143.900 

 

Table 8 permits a comparison of the results for the total shear stress at x  1m, 
obtained by the proposed method, with corresponding results, obtained by means of 
ABAQUS/CAE [5] 92960 Elements, Type: C3D8RH, for a cantilever beam of length 
L = 2.5 m, subjected to the torsion-moment  , kN mT bM  10 , and to the variable 

axial force II ( )N x    ( )n L xx  ,  nx  [ ] ,3000 3000  [kN/m]. The results for the 

shear stress obtained by the two methods agree very well. 

Table 8:  Total shear stress at x  1  m, obtained by the proposed method and by [5]. 



 

nx  
[kN/m] 

 p 1   

[N/mm²] 
obtained 
by the 

proposed 
method 

 p 2   

[N/mm²] 
obtained 
by the 

proposed 
method 

 s 1   

[N/mm²] 
obtained 
by the  

proposed 
method 

total1   

[N/mm²] 
obtained 
by the 

proposed 
method 

total2  

[N/mm²] 
obtained 
by the  

proposed 
method 

total1   

[N/mm²] 
obtained 

by [5] 

total2   

[N/mm²] 
obtained 

by [5] 

3000 17.082 8.846 2.037 19.119 8.846 18.100 7.820 
2000 17.810 9.223 2.187 19.997 9.223 18.810 8.190 
1000 18.599 9.631 2.351 20.950 9.631 19.620 8.550 

0 19.457 10.076 2.531 21.988 10.076 20.630 9.000 
-1000 20.394 10.561 2.727 23.121 10.561 21.530 9.430 
-2000 21.422 11.093 2.944 24.366 11.093 22.620 10.010 
-3000 22.554 11.680 3.184 25.738 11.680 23.830 10.550 

6.3 Elastostatic analyses of a fork-fork supported beam with a rectangular 
hollow cross-section, subjected to an axial load and a uniformly distributed 
torsional moment 

 

 
Fig. 13: Fork-fork supported beam with rectangular hollow cross-section: a) system, axial load, 
torsional moment, b) cross-section. 
 

The length of the beam, L, is 2.5 m. The material properties and the cross-sectional 
parameters are listed in Table 1 and Table 9, respectively. The elastostatic analyses 
are performed for the beam for the following axial force:  

II ( ) ( )x FN N x   1500 kN. (49) 

The torsional moment is assumed to be constant: 

 ( )Tm x  200 [kNm m]. (50) 

Table 9: Cross-sectional parameters [29]. 



 

Cross-sectional area A   4116 10  m² 

Shear area in the y - direction  .yA   425 26 10  m² 

Shear area in the z - direction  .zA   471 59 10  m²  

Second moment of area about the y-axis  yI   824358 10  m4 

Second moment of area about the z-axis  zI   88198 10  m4 

Polar moment of area  p y zI =I +I   832557 10  m4 

Radius of gyration  .pi =  216 75 10  m 

 
As regards the proposed method, only one finite element was used for the whole 
beam. The boundary conditions according to second-order torsional warping theory 
are given as follow: 

, ( ) (, ,)a ax x
x M x M      

0 0
0 0  

, ( ) ( ), .bx L x Lbx M x M      0 0  
(51) 

 

 
Fig. 14: a) Cross-section, b) primary shear stress, c) secondary shear stress, d) axial stress due to 
axial forces e) axial stress due to warping  

Table 10 contains the cross-sectional parameters, which are taken from [32]. 



 

Table 10: Cross-sectional parameters [32]. 

Torsion constant .TI   818933 8 10  m4 

Secondary torsion constant  .TsI   81953 6 10  m4 

Warping constant  I
  12157782 10  m6 

Warping-ordinate at the corner points  .R
  263 879 10  m2 

Radius of gyration  .pi =  416 75 10  m 

 

The equations (52)-(58) are taken from [32]: 

 
 

, ,   ( ),S G SGA AA sh tb A A   2  
(52) 
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(54) 

 

,  ,  ,R R
R G S

h b
S S S A S S A

 


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2 2

0 1 0 2 0
6 4 4

 (55) 

 
The axial stresses due to the warping moment at the corner points are given as follows: 

 .R
M

I



    (56) 

 
The total axial stress is obtained as follows: 

 ,total n       where  .n
N

A
   (57) 

 
The shear stress resulting from the secondary moment is given as 

, , , ,, , .Ts Ts Ts Ts
s s s s

M M M M
S S S S

t I s I t I s I   
      1 0 2 0 3 1 4 2  (58) 

 
The shear stress resulting from the primary moment is given as 

*
, ,* *

( )
, , with ( ) .

( ) ( )
 

II
Tp Tp T p

p p T
T T

M sbh M tbh GI N x i
I x

GI ht bs I ht bs
 


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 

2

1 2  (59) 

 



 

According to Fig. 14, the total shear stress is obtained as follows: 

, , , ,

, , , ,

  

 

,

 

,

, .

total total
s p s p

total total
s p s p
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     

   

   

1 1 1 3 3 1

2 2 2 4 4 2

 (60) 

 

Table 11 permits a comparison of the results for the total axial stress at midpoint 
/ .x L 2 1 25m, obtained by the proposed method with only one element, with 

corresponding results obtained by ABAQUS/CAE [5] 44156 Elements, Type: 
C3D8R for a fork-fork supported beam with a rectangular hollow cross-section, 

subjected to the axial force II FN N   1500 kN and to uniformly distributed 
torsional moments 200 kN m m/ .Tm   

Table 11:  Total axial stress at the midpoint / .x L 2 1 25m, obtained by the proposed method 
and by ABAQUS/CAE [5] 44156 Elements, Type: C3D8R. 

  M  

[kNm²] 
 n

[N/mm²] 
   

[N/mm²] 
 min total  
[N/mm²] 

 max total  
[N/mm²] 

proposed 
method 

0.4319 129.310 17.486 111.82 146.80 

obtained 
by [5] 

------- ------- ------- 111.65 146.02 

 

Table 12 permits a comparison of the results for the total shear stress at the starting 
point x  0  m, obtained by the proposed method and by ABAQUS/CAE [5] 44156 
Elements, Type: C3D8R for a fork-fork supported beam with a rectangular hollow 

cross-section, subjected to an axial force II FN N   1500 kN and a uniformly 
distributed torsional moment 200 kN m m/ .Tm   

Table 12: Total shear stress at the starting point x  0  m, obtained by proposed method and by 
ABAQUS/CAE [5] 44156 Elements, Type: C3D8R. 

 , ,  p p 1 2

[N/mm²] 
, s 2  

[N/mm²] 
, s 3  

[N/mm²] 

total2  

[N/mm²] 

total3  

[N/mm²] 
proposed 
method 

166.775 3.832 9.293 170.15 175.61 

obtained by 
[5] 

------- ------- ------- 172.90 177.40 

 
The quality of the agreement of the results for the total shear stresses is very good. 
 
 
 
 
 

7. Summary and conclusions 
 



 

In this paper, the differential equation for the torsional deformation of a beam, 
subjected to variable axial forces, was formulated for Saint-Venant and non-uniform 
torsional deformations, including inertial line moments. The influence of the axial 
force on the torsional stiffness of the thin-walled beam was considered according to 
second-order torsional warping theory. For non-uniform torsion, the part of the 
bicurvature, caused by the bimoment, was taken into account as the warping degree 
of freedom, and the STMDE was also considered. A general semi-analytical solution 
of the differential equation was presented and the transfer matrix relation was 
established. Based on the relations of the transfer matrix method, a straight finite 
beam element with two nodes was derived. Omitting the external load, the 
relationship for the torsional free vibrations was obtained in the framework of the 
FEM. The numerical investigation involved torsional modal and elastostatic analysis 
of thin-walled beams with I cross-sections and rectangular hollow cross-sections. 
The obtained results were compared with the ones computed with the help of 
commercial FEM codes. The new finite element for non-uniform torsion of thin-
walled beams has proved to be very effective and accurate. It was also shown that 
the tensile axial forces result in an increase of the eigenfrequencies, whereas 
compressive axial forces lead to their decrease. In structural analysis, the axial 
stresses, caused by the bimoment, exhibit a significant influence on the total axial 
stresses. 
The main novelties of this paper are: 
- (1) consideration of a variable axial force and of the STMDE in the differential 
equation for non-uniform torsion of thin-walled beams with open and closed cross-
sections according to the theory of second-order torsional warping; 
-  (2) the formulation of the transfer matrix method and its use for the development 
of a finite beam element for elastostatic and modal analysis of non-uniformly twisted 
beams according to second-order torsional warping theory. 
 

8. Appendices 
 

8.1 Derivation of the transformation matrix T 
 
The first row of the transformation matrix T is given as follows:  

t 11 1 , t 12 0 , t 13 0 , t 14 0 , t 15 0 , (61) 

The second row of the transformation matrix T is obtained by inserting equation (6) 
into equation (9) and equation (10) into equation (8) and combining the results to 

* *
.Ts

M T
T Ts T Ts

GI
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GI GI GI GI
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 
1

0  (62) 

 
t22  is the coefficient of M   and  t24  is the one of TM . Thus, 
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,  t 23 0 ,   
*
T Ts

t
GI GI




24
1 ,   t 25 0 .                              (63) 



 

 
The third row of the transformation matrix T follows from differentiation of 
equation (62) with respect to x and consideration of equation (7): 
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By analogy to (63), 
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The fourth row of the transformation matrix T is obtained from differentiation of 
equation (64) and combination of the equations (7), (5), and (62): 
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8.2 Derivation of the element stiffness matrix K 
 
Based on the transfer matrix   Fxi x , specialized for x = L by changing of rows and 

columns and of the signs according to Fig. 3, the coefficients of the element stiffness 
matrix K are obtained as follows:  
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