
DISSERTATION

Cost Sensitive Screening
Methods for Binary Classification

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der
technischen Wissenschaften unter der Leitung von

Univ.-Prof. Dipl.-Ing. Dr. techn. Peter Filzmoser, Institut für Stochastik und
Wirtschaftsmathematik (E105)

eingereicht an der Technischen Universität Wien an der Fakultät für Mathematik and
Geoinformation

von

Dipl. Ing. Fabian Schroeder M.Sc.
Matrikelnummer 00300500

Diese Dissertation haben begutachtet:

Prof. Priv. Doz. DI Dr. Florian Frommlet Univ.-Prof. Mag. Dr. Andreas Futschik

Wien, 17. Mai 2018
Dipl. Ing. Fabian Schroeder M.Sc.

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der
Arbeit

Dipl. Ing. Fabian Schroeder M.Sc.
Starkfriedgasse 31,1180 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 17. Mai 2018
Dipl. Ing. Fabian Schroeder M.Sc.

iii

Acknowledgements

I would like to express my sincere gratitude to my advisor Professor Peter Filzmoser
for his continuous support on this long dusty path called PhD. His academic as well as
personal guidance is much appreciated. Furthermore, I would like to thank my supervisor
at the AIT Klemens Vierlinger for lively discussions which sparked the following ideas
and for the space he left me to pursue them.

I am forever indebted to my family, in particular my mother Renée for standing as a role
model in many regards. Above all, I would like to thank Marlies, mother of my children,
Sophia, Valerie, and Moritz. Family happiness has been my tower of strength throughout
these exciting years.

v

Abstract

In high-dimensional classification tasks, e.g., case-control experiments for biomarker
detection, variable filters constitute a simple and scalable method to discard uninformative
variables. When screening for interesting variables the neglect of the operating conditions
of the classification task can lead to false conclusions. This thesis, thus, proposes filtering
statistics based on the expected prediction error of a univariate classifier. The choice
of classifier will generally determine the characteristics of the filtering method. An
obvious parametric approach was the Bayesian classifier for a mixture of Gaussian class
conditionals. This approach, however, relies heavily on the parametric assumptions
and any deviation from these will reduce the performance of the filter dramatically.
Opting for a non-parametric classifier seems reasonable in the context of screening
thousands of different variables. Thus, instead of assuming a parametric family for the
class conditionals we will assume that the optimal classifier is a member of the family of
threshold or interval classifiers. This assumption should hold true for a great number of
different distributions. Furthermore, these methods exhibit another interesting property.
It is possible to obtain the exact finite sample distribution of the test statistic under
the null hypothesis of equal class conditional distributions by means of a fast recursive
algorithm. In this thesis, I have studied the proposed screening methods analytically and
evaluated their screening characteristics by means of simulated as well as real data.

vii

Kurzfassung

In hochdimensionalen Klassifikationsaufgaben, z.B. in Fall-Kontroll-Studien für die De-
tektion von Biomarkern, sind Variablenfilter eine einfache und skalierbare Methode
uninformative Variablen zu verwerfen. Die Nichtberücksichtigung der Operation Conditi-
ons bei der Suche nach interessanten Variablen kann jedoch zu falschen Schlüssen führen.
Daher untersuche ich in dieser Arbeit die Verwendung von Variablenfiltern, die auf dem
erwarteten Prognosefehler von eindimensionalen Klassifikatoren basieren. Grundsätzlich
dürfte die Wahl des Klassifikators die Eigenschaften des daraus resultierenden Filters
bestimmen. Ein naheliegender parametrischer Ansatz wäre der Bayes Klassifikator unter
der Annahme von normalverteilten Klassen. Dieser Filter ist jedoch stark abhängig von
der Verteilungsannahme und schneidet schlecht ab wenn die Daten von der Annahme
abweichen. Ein nichtparametrischer Ansatz wäre daher für die Vorauswahl von hundert-
tausenden Variablen verschiedenem Ursprungs zu bevorzugen. Statt einer Annahme über
die Verteilung der Klassen, könnte man einfach annehmen, dass der optimale Klassifikator
von einer bestimmten Gestalt ist, z.B. dass der Annahmebereich für eine Klasse ein
(möglicherweise unbeschränktes) Intervall ist. Diese Annahme dürfte für eine große Anzahl
von Verteilungsfamilien erfüllt sein. Ausserdem haben die daraus resultierenden Metho-
den eine weitere interessante Eigenschaft: es ist möglich die Verteilung der Teststatistik
unter der Nullhypothese für endliche Stichproben exakt zu bestimmen. Die Berechnung
basiert auf einem schnellen rekursiven Algorithmus. In dieser Arbeit untersuche ich die
vorgeschlagenen Filtermethoden analytisch sowie mit Hilfe von simulierten und echten
Daten.

ix

Foreword

In the last two decades, we have witnessed the advent of modern high-throughput devices.
These were made possible by a myriad of different technologies in diverse fields such
as robotics, sensor technologies but also assay systems and informatics. It has become
possible to measure hundreds of thousands of different entities at dramatically lower cost.
These advancements are reshaping the research and development pathways for drugs,
vaccines, and diagnostics and have led to the emergence of a completely novel kind of
experiment: the high-throughput screening experiment.

During my employment at the Department of Molecular Diagnostics at the Austrian
Institute of Technology, I have contributed to the design and the evaluation of many such
studies. The objective was always the same: the development of diagnostic models. In
this context, the screening experiments are most often referred to as biomarker detection.
A biomarker, or biological marker, refers to a “characteristic that is objectively measured
and evaluated as an indicator of normal biological processes, pathogenic processes, or
pharmacological responses to a therapeutic intervention”, see Group (2001). Genome-
wide biomarker discovery, a method comprising the systematic screening of potentially
hundreds of thousands or even millions of different entities, can aid the researcher in
many different ways. Among other objectives, it allows the researcher to identify those
entities which play a crucial role in the development of a disease, to gain a mechanistic
understanding of the differences, or to develop surrogate endpoints for clinical outcomes
which cannot be observed.

The typical setup for such an experiment is a case-control or treatment-control study,
for an in-depth introduction, see Schlesselman and Stolley (1982). This is a type of
observational study, which examines the difference between the case and the control
group with respect to the measured entity. As compared to a randomized controlled trial
they "require fewer resources but also provide less evidence for causal inference". Typical
clinical endpoints for the case and control groups include diseased vs. non-diseased, malign
vs. benign tumor or treatment vs. placebo. Without any prior knowledge, thousands
sometimes even millions of different potential biomarkers are measured. This completely
naive approach is suitable for exploring the variables and for formulating new hypotheses.
Most importantly, its main purpose is to identify those variables which show a significant
discriminatory power between the case and the control groups. The selected biomarkers

xi

are then validated in the second round of experiments using new samples and a different
platform.

The dimensionality of a dataset from high-throughput technology was unprecedented and
has, thus, incited a lot of statistical research, mainly in the field of model selection. This
is a common theme in statistics that technological advances in other scientific fields spur
statistical research and lead to completely new questions. When I first looked into the
literature on high-dimensional classification, I was overwhelmed by the amount of research
that had been conducted in such a short time span. But I was also surprised by the fact
that there were only a few available methods for filtering. In particular, there were no
available methods, which allowed to rank and select the variables taking the operating
characteristics of the classification task into account. The so-called operating conditions
describe the characteristics of the classification task and include the misclassification costs
and the class distribution in the population. The diagnosis of patients is a classification
task which is usually characterized by a highly unbalanced population and strongly
asymmetric costs. Secondly, it was surprising that univariate classification was not used
as a variable filter, which appeared most obvious. This seemingly easy approach was
rarely chosen and, thus, little experience was available which could be built upon. At
some point in time, it became obvious that this topic would deliver sufficient content for
my PhD thesis.

Contents

Abstract vii

Kurzfassung ix

Foreword xi

Contents xiii

1 Introduction 1
1.1 Model Selection and Filtering . 2
1.2 Location Tests . 4
1.3 Multiple Testing . 7
1.4 Outline . 7

2 Preliminaries 11

3 EBC: Expected Prediction Error of the Bayes Classifier 17
3.1 Sample Estimate of EBC . 21
3.2 Derivation of the Null Distribution . 21

4 ETC: Expected Prediction Error of the Threshold Classifier 23
4.1 Sample Estimate of ETC . 23
4.2 Properties of ÊTC . 24
4.3 Derivation of the Null Distribution . 29

5 EIC: Expected Prediction Error of the Interval Classifier 41
5.1 Sample Estimate of EIC . 41
5.2 Properties of ÊIC . 42
5.3 Derivation of the Null Distribution . 48

6 Simulation Studies 57
6.1 Simulation Study A : Power . 58
6.2 Simulation Study B : Power . 59
6.3 Simulation Study C : Robustness to Outliers 61

xiii

6.4 Simulation Study D : Robustness to Skewness 66
6.5 Simulation Study E : Model Selection . 69
6.6 Supplementary Figures . 72

7 Real Data Studies 83
7.1 Description of Data Sets . 84
7.2 Results . 86

8 Conclusions 91

A Appendix 93
A.1 Derivation of Equation (2.6) from the Expected Prediction Error 93
A.2 Implementation of ÊBC . 95
A.3 Implementation of ÊTC . 99
A.4 Implementation of ÊIC . 114

List of Figures 135

List of Tables 137

Bibliography 139

Curriculum Vitae 145

CHAPTER 1
Introduction

The class of statistical models that is suitable when the response is discrete - as in case-
control experiments - are referred to as classification models, see Hastie et al. (2001) for
an introduction. Data from screening experiments, however, have a number of important
idiosyncrasies, which render many classifiers unsuitable.

Firstly, the extremely high number of measured entities, a vast majority of which are
irrelevant for the classification task or redundant. If the number of variables is greatly
superior to the number of instances (p � n), a number of problems occur, which are
subsumed by the term curse of dimensionality.

Secondly, the purpose of the screening experiment. Whereas most classification tasks
aim at identifying a single classifier or statistical model with an optimal prediction
performance, the most important final outcome of a screening experiment is usually a
subset of variables. These are subsequently subject to follow-up experiments with possibly
more complex experimental settings and/or more samples. This experiment is usually
termed validation experiment and is essential due to the high number of incorrectly
identified variables.

Idiosyncrasy number three concerns the medical context of screening experiments. Es-
pecially for the purpose of diagnosis, a false positive has different consequences than a
false negative and the positives are relatively rare in the population. Thus, classifiers
are applied which can account for the operating conditions (OCs) of the classification
task. The OCs comprise the misclassification costs and the prevalence of the classes
in the population, see Viaene and Dedene (2005) for an overview. Medical diagnosis
is a prototypical example of a classification task where asymmetric misclassification
costs or a low prevalence are the rule rather than the exception. This is due to the
fact that most diseases are relatively rare and the inability to detect a diseased patient
has more severe consequences than misdiagnosing a healthy one. Disregarding the OCs
might lead to the selection of suboptimal variables. Nevertheless, it is still often ignored

1

1. Introduction

that the assessment of a classifier by means of the error rate, or the accuracy, in such
situations is flawed, see e.g. Provost and Fawcett (2001) or Provost et al. (1998). The
OCs subsume the conditions under which a classifier is applied, see e.g. Hernández-Orallo
et al. (2012). Numerous possibilities to account for asymmetric costs or unbalanced
classes in a population have been proposed, for an overview see e.g. Viaene and Dedene
(2005).

While it is standard for clinical studies to evaluate the classifier by its sensitivity and its
specificity, no OC sensitive methods exist for filtering variables. Also, the benefit of OC
sensitive filtering on the performance of the subsequent classifier has not been subject to
studies, yet. Cost sensitive classification problems arise not only in the medical field but
also in diverse fields such as agricultural product inspection, credit card fraud, industrial
production processes, text classification, etc.

1.1 Model Selection and Filtering

There are two main approaches to dimension reduction: feature extraction and feature
selection. The first attempts to derive new variables from the existing ones, usually by
finding interesting linear combinations, e.g. Principal Component Analysis or Independent
Component Analysis. While this approach often builds models with a good predictive
power, the interpretability is generally lost or difficult at least. They are, thus, unsuitable,
for the purpose of filtering. The latter approach simply selects a subset of the variables.
Ideally, variable selection methods search the entire space of possible subsets, however, as
the number of features p increases, searching among all 2p competing candidate subsets
quickly becomes infeasible.

Following the categorization of Kohavi and John (1997), feature selection methods can
be categorized into filters, wrappers, and embedded methods. See Guyon and Elisseeff
(2003) or Dash and Liu (1997) for a general introduction.

One of the first attempts to tackle the p� n problem was the LASSO (least absolute
shrinkage and selection operator), which basically introduces a penalty term to the prob-
lem of minimizing the residual sums of squares punishing the number of variables included
in the model, see Tibshirani (1996). Embedded model selection can be characterized
by the fact that the model selection is inherent to the method. In most cases, this is
implemented by means of a two-part objective function. The first term represents the
goodness-of-fit of the model, the second introduces a penalty term that punishes the
number of variables of the model. Another important variant is the elastic net (Zou
and Hastie, 2005). These methods can be distinguished by their modifications of the
penalty function. While embedded variable selection methods show a good prediction
performance, they tend to overestimate the number of variables. Furthermore, they allow
to gain little insight into the set of variables and, thus, they constitute a black box to
the domain specialist.

Wrapper methods choose an altogether different approach. They assess subsets of variables

2

1.1. Model Selection and Filtering

according to their usefulness to a given predictor. In order to construct a wrapper method
one needs to define 1) how to assess the prediction performance of the classifier and 2)
how to search for an optimal subset of variables. There are several approaches. The best
subset selection method evaluates all possible combinations of the p different variables.
This, however, requires the assessment of 2p different models and is only an option for
sample spaces with 25 variables at most since 225 ∼ 3 ∗ 107. Other search strategies
include forward selection or backward elimination (Kittler, 1978), simulated annealing,
genetic algorithms (Holland, 1992). The downside to this approach is the computational
cost, which can be prohibitive at times.

Variable selection by means of a filter consists of two steps. First, one needs to define
a function according to which the variables are ranked and subsequently one needs to
decide on how many variables to select. Filters fall into three different classes based on
the criteria which they are based on: correlation, mutual information, and single variable
classifiers. Popular members include the Fisher Score (Duda et al., 2012), the t-test
(Student, 1908; Welch, 1947), which are based on the correlation between the variable
and the class labels, or methods based on mutual information, see e.g. Peng et al. (2005).
Interestingly, univariate classifiers, that model the probability of belonging to a given
class for every point in the domain, are rarely used for filtering. This is surprising since
they exhibit considerable advantages for filtering, e.g. the possibility to take operating
conditions into account.

Filters are simple to use and easy to interpret. Computationally, they are efficient since
they only require computing p scores and sorting them. Thus, for many different tasks
filtering is the only possible approach. Even the consideration of pairs of variables is
infeasible for most high-throughput screening experiments since for a sample space of 105

different variables this would require 1010 different models to be evaluated. Statistically,
filtering is less prone to overfitting since it introduces a bias but it may have considerably
less variance than other methods, see Hastie et al. (2001).

Filters are not necessarily used to build predictors since often top ranking variables are
highly redundant. In this light, filtering is often considered a pre-processing step. Many
variable selection algorithms include filtering as an auxiliary selection method, yielding
a dramatic reduction of the dimension of the sample space before other methods are
applied. It is, thus, often used as a first and crude step in a multi-step model selection
procedure. Filters can, however, also be seen as an exploratory step. One can learn about
the number of variables with a discriminatory power and one can analyse the correlations
among them. The domain specialist is often capable of interpreting the results.

While all filters are able to rank variables, only those that are formulated as a statistical
test can decide how many variables to select. However, in most experiments, the number
of variables that will be selected is decided upon based on other considerations but
statistical ones, e.g. budget constraints or technical constraint such as the number of
possible variables on the array.

This approach is, however, far from optimal. A variable does not need to exhibit a

3

1. Introduction

strong univariate predictive power to improve the performance of a multivariate classifier.
In fact, it is even possible to build a perfect classifier with two variables that have no
predictive power at all.

1.2 Location Tests
One of the most widely used methods for univariate filtering is a location test, in particular,
the t-test. Locations tests infer whether there is a significant difference in the central
location of two classes. The t-test (Student, 1908) or the Welch test (Welch, 1947), a
modification for the situation when the variances of the class distributions are unequal,
were definitively never intended to serve as a variable filter, yet have become a standard
method for this purpose, see e.g. Jaeger et al. (2003) or Su et al. (2003) for microarray
data and Wu et al. (2003) or Levner (2005) for mass-spectrometry data. "Student’s
t-statistic is finding applications today that were never envisaged when it was introduced
more than a century ago" (Delaigle et al., 2011). There are even modifications of the
t-test just for this purpose, e.g. the moderated t-test (Smyth et al., 2004).

One can only speculate about the reasons for its popularity. Delaigle et al. (2011)
explicitly mention "its robustness against heavy-tailed sampling distributions". By virtue
of the Central Limit Theorem, the Studentized mean’s limiting distribution is standard
normal. The only requirement is finite variances. However, the result holds even for
relaxed assumptions (Giné et al., 1997). Thus, the distribution of the studentized mean
is asymptotically normal for a vast family of distributions and so is the t-statistic, as the
difference of two studentized means. However, we would question the robustness of the
t-test, although Delaigle et al. (2011) argue otherwise. The breakdown point of the t-test
is 1/n since by increasing the value of a single observation we can arbitrarily increase the
test statistic. This issue will be resolved in a simulation experiment.

Furthermore, there are not many other popular filters which are formulated as a statistical
test. The limiting distribution of the test statistic under the null hypothesis is known and
it is, thus, possible to obtain a p-value for every variable. This p-value can subsequently
be adjusted for multiple testing. The t-test as a filtering method, thus, does not only
rank the variables but it also answers the question, how many variables to select.

In the following let us illustrate a few shortcomings of the t-test as a filter statistic by
means of a simple example. These shortcomings were the starting point for this thesis.
Consider operating conditions characterized by asymmetric costs (c0 : c1 = 1 : 3) and
balanced classes (π0 = π1 = 0.5). Under these circumstances we want to select a variable
which best discriminates between classes among the three depicted in the left column of
Figure 1.1. The variables Zi = (Xi, Yi) for i = 1, 2, 3 have Normal distributions for each
class (Xi|Yi = y) ∼ N(µi,y, σ2

i,y) with equal means but unequal variances

Z1 : µ1,0 = −0.5, µ1,1 = 0.5, σ2
1,0 =

√
1/4, σ2

1,1 =
√

7/4,
Z2 : µ2,0 = −0.5, µ2,1 = 0.5, σ2

2,0 = 1, σ2
2,1 = 1,

Z3 : µ3,0 = −0.5, µ3,1 = 0.5, σ2
3,0 =

√
7/4, σ2

3,1 =
√

1/4.

4

1.2. Location Tests

If one had to predict the unobserved class membership based on the value of X, which
of the three variables would yield the best results? If we based our decision on the test
statistic of the t-test, we would be indifferent between the three. The Welch Test statistic,
a variant of the t-test for unequal variances, is defined as

T = µ̂0 − µ̂1√
σ̂2

0
n + σ̂2

1
m

,

where µ̂ and σ̂ denote the maximum likelihood estimators of µ and σ, respectively. n and
m are the training set sample sizes of the negative class and the positive class, respectively.
The distribution of T under the null hypothesis H0 : µ0 = µ1 can be approximated by a
t-statistic with ν degrees of freedom where ν is a function of σ̂2

0, σ̂
2
1, n and m, see Welch

(1947).

It is easy to verify that the Welch Statistic for Z1, Z2, and Z3 have the same expected
value. However, the expected prediction errors, defined in (2.4), that can be obtained by
using a univariate classifier on the respective variables differ substantially. In order to
compare the expected prediction error of a variable the applied classifier must not be
arbitrary. Thus, we used the so-called Bayes classifier, which is defined by its characteristic
that it minimizes the expected prediction error, to compare them. Consider the ROC
curves of the Bayes classifiers of Z1, Z2 and Z3 in the middle column of Figure 1.1. ROC
curves plot the false positive rate against the true positive rate and give a nice graphical
impression of the performance of a binary classifier, see e.g. Bradley (1997). The dashed
grey lines are the isocost lines, indicating all points in the ROC space that incur an equal
prediction error. By definition one is indifferent between all points indicated by these
lines. The slopes of the isocost lines are characterized by the asymmetric cost, e.g. we are
prepared to exchange three false positives for one false negative. The higher the isocost
lines, the lower the induced prediction error, the better. Thus, Z3 performs much better
than Z1 under these operating conditions. In the confusion matrices in the right column,
we can see that Z3 not only yields a lower false negative rate compared to Z2 but that
the false positive rate is also lower. The expected prediction error of the Bayes classifier
of Z1, Z2, and Z3 is 0.468, 0.445, and 0.27, respectively.

This simple example illustrates that common filter statistics, such as the t-test, completely
ignore the asymmetric structure in the variances of these variables. In fact, this is the
case for all location tests. We will see later on that a strong inequality between the
variances, an important source of information about the class membership, reduces the
power of the t-test.

In the simulation studies in Section 6 we will see that even small deviations from the
assumption of Gaussian class conditional distributions, e.g. a contamination with outliers
or skewness, can strongly affect the performance. In the real data examples, we will see
that strong outliers strongly affect the test statistic and, thus, the conclusions that can
be drawn from them.

5

1. Introduction

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

P=[X|Y=0] P=[X|Y=1]
Z1

Class Conditional Distributions

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

●

ROC Curve

0.14 0.49

0.86 0.51

false negatives

true positives

true negatives

false positives

P
re

di
ct

io
n

Truth

Confusion Matrix

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

P=[X|Y=0] P=[X|Y=1]
Z2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

●

0.05 0.27

0.95 0.73

false negatives

true positives

true negatives

false positives

P
re

di
ct

io
n

Truth

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

P=[X|Y=0] P=[X|Y=1]
Z3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

●

0.02 0.53

0.98 0.47

false negatives

true positives

true negatives

false positives
P

re
di

ct
io

n

Truth

Figure 1.1: The class conditional distributions (left column) and the corresponding ROC
curves of the Bayes Classifier of the random variables of Z1, Z2, and Z3 (center column).
The isocost lines in grey indicate the set of points in the ROC space which yield the
same expected cost given a cost ratio of c1 : c0 = 3 : 1. The confusion matrices are
depicted in the right column. The t-statistic of all three variables is identical, however,
the expected prediction error of the Bayes classifier of Z1, Z2, and Z3 is 0.468, 0.445, and
0.27, respectively.

6

1.3. Multiple Testing

Nonparametric location tests

Nonparametric location tests are inexact in the sense that the exact finite sample
distribution of the test statistic under the null hypothesis, also referred to as null
distribution (ND), can rarely be obtained. A notable exception is the Wilcoxon Rank-
Sum Test (Wilcoxon, 1945), where exact inference is possible up to a sample size of about
30. Most methods rely on asymptotic results, which is critical for small sample sizes
and when the p-values of the test statistics used for filtering variables are corrected for
multiple testing. Small errors in the calculation of the p-values can be amplified by the
adjustment.

The most common nonparametric approach is the permutation test, also known as
randomization test (Edgington, 2011). It establishes the ND by calculating all possible
values of the test statistic under rearrangements of the class labels. However, even for
small sample sizes, an exhaustive calculation is computationally infeasible. For example,
two different class labels with 30 samples each can be permuted in

(60
30
)
> 1017 different

ways. Thus, one resolves to draw permutations randomly. This approach is problematic
because the p-values of the most promising variables will lie on the tail of the ND. Since
only a few random permutations will yield values in this region of the ND, the estimation
will be most inaccurate. Knijnenburg et al. (2009) suggest to approximate the tail of the
ND by curve fitting techniques. Thus, although permutation tests are sometimes referred
to as exact tests, in practice exact p-values cannot be obtained.

1.3 Multiple Testing

Many filters are formulated as statistical tests. Due to the high number of conducted
tests in most screening experiments, filtering is generally conceived as a multiple testing
problem, see Miller (1981), Hsu (1996), or Pigeot (2000) for an in-depth introduction.
Leaving the p-values unadjusted would yield approximately αp false positive variables,
where α is the significance of the test. The correction of the p-value for the purpose of
reducing the number of false positives comes at the cost of increasing the probability of
producing false negatives, i.e., reducing statistical power. The decision on how to correct
the p-values is, thus, a delicate task and depends mainly on the purpose of the screening
experiment. The oldest approach is to control the familywise error rate and is attributed
to Carlo Bonferroni. The Bonferroni correction is, however, too conservative for a large
number of tests. Thus, recently a number of alternatives have been suggested, e.g the per
family error, Tukey (1953) or the false discovery rate Benjamini and Hochberg (1995).

1.4 Outline

In this thesis, we will study the use of univariate classifiers as variable filters. In order
to incorporate the operating conditions of the classification task, the filter statistic will
consist of the estimated prediction error (EPE) of the classifiers. In Section 2 all the

7

1. Introduction

necessary terms are defined and we will establish that the EPE can be denoted as a
weighted mean of the expected false positive and false negative rates.

The first univariate classifier under consideration is the Bayes Classifier for Gaussian class
conditional distributions, see Section 3. If the classes are known to follow a Gaussian
distribution with known parameters, it is possible to deduce the classifier that minimizes
the EPE. If the parameters are, however, unknown they can be estimated from the
sample, e.g. by means of the maximum likelihood estimator. This approach is equivalent
to the Quadratic Discriminant Analysis (QDA) or the Linear Discriminant Analysis
(LDA) under the assumption that the Gaussian class conditionals have equal variances.
Thus, the first filter statistic that will be introduced will be referred to as EBC. It is
essentially the prediction error of the Bayes classifier for Gaussian class conditionals
and will serve as a benchmark for extensive simulation studies in Section 6 since we can
simulate data for which it constitutes the optimal filter.

In Section 3 we will derive expressions for EBC and show that the univariate LDA sets a
threshold t on the sample space and maps all instances left of this threshold to one class
and all instances to the right of the threshold to the other class. The threshold can be
written as a function of the estimated parameters of the Gaussian distributions. The
QDA maps all instances within an interval to one class and all instances in its complement
to the other. Again, the boundaries of the interval can be written as a function of the
estimated parameters of the Gaussian class conditional distributions.

It is reasonable to assume that the set of distributions that yields a threshold or interval
classifier as their respective Bayes classifier is vast. In particular, many distributions with
a kurtosis or skewness which differs from the Gaussian family will be among them. Thus,
Sections 4 and 5 will introduce non-parametric counterparts to these two filter statistics,
ETC, the Expected Prediction Error of the Threshold Classifier, and EIC, the Expected
Prediction Error of the Interval Classifier. Instead of making a parametric assumption
about the data, we will assume that the optimal classifier is a member of a family of
classifiers, and calculate the minimal EPE among all members of those respective families.

Another important question concerns the significance of the obtained estimates. Calcu-
lating the p-value would allow us to use the test statistics not only to rank variables but
also to decide on how many variables to select based on the data. For this purpose, we
would need to derive the distribution of EBC, ETC and EIC under the assumption that
the continuous random variable exhibits no information about the class. More formally,
the null hypothesis can be characterized by means of the class-conditional distributions
(CCDs) of the random variable. If the CCDs differ from one another, predicting the class
membership based on the value of the continuous random variable is superior to random
guessing. Sections 4.3 and 5.3 will derive the null distributions for finite samples and a
set of operating characteristics by means of a fast recursive algorithm.

Section 6 will shed light on the capacity of the introduced filter statistics to select signal
variables out of a large number of noise variables. The simulation scenarios A to D were
designed to analyze the power as well as the robustness to outliers and skewness. The

8

1.4. Outline

main question of the simulation study E and the real data studies concerns the importance
of cost-sensitive filtering for the purpose of building a cost-sensitive classifier. In other
words, if a filter is used to reduce the dimension of the sample space and subsequently a
classification model is built with the reduced set of variables, what is the benefit if the
filter is OC sensitive?

9

CHAPTER 2
Preliminaries

The purpose of supervised classification is to conclude on the discrete state or class of
an instance by observing one or many variables which we expect to contain information
about the state. Think about assigning a patient with an unknown health status to one
of two classes, healthy or ill, based on a set of potential biomarkers X = (X1, . . . , Xp).

More formally, consider the random variable (X,Y) defined on X × Y, where X is real
valued (X ⊆ Rp) and Y is discrete representing the classes of the instance. Let P denote
their joint probability distribution. Let the random variables X conditional on a certain
value of Y be denoted Xi := (X|Y = i) and its respective distributions F i.

The purpose of supervised classification is to predict the class labels Y based on the
realization of X. This is the task of a classifier.

Definition 1 A classifier δ : X → Y is a mapping that attaches a class membership to
a realization of X. A classifier is called binary if |Y| = 2. If X ⊆ R we will speak of a
univariate classifier.

Many classifiers allow the representation as a model and a threshold. This distinction
allows a more thorough understanding of the classifier and how it depends on the
parameters of the classification task.

Definition 2 A model m is a function m : X → S ⊆ R from the sample space to the
score space S on an unspecified scale. If it maps instances to estimates of the probability of
belonging to a class, it is referred to as a probabilistic model. In this case m : X → [0, 1].

Definition 3 A threshold t is a function t : S → Y defined by

t(s) =
{

0 if s ≤ t
1 else

}
.

11

2. Preliminaries

A model can be thought of as a family of classifiers parametrized by a threshold. A
model and a threshold m ◦ t yield a classifier, in the sense that, given a predicted score
s = m(x), the instance x is mapped to class 1 if s > t, and to class 0 otherwise.

X Y

S

δ

m t

Every classifier defines a partition of the sample Space X . If the classifier is binary, it
divides the sample space X into 2 disjoint regions R1 and R2 that satisfy R1 ∩R2 = ∅.
One can define Rk as

Rk(δ) := {x ∈ X : δ(x) = k} (2.1)

Using this notation a classifier can be restated as

δ(x) = k iff x ∈ Rk(δ).

The specific form of the partition depends on the discrimination function. The simplest
type of partition possible can be characterized by a single threshold on the sample space.

R1(δ<t) = {x ∈ R : x < t}

In this paper we will consider two simple types of univariate classifiers, in particular,
threshold classifiers and interval classifiers.

Definition 4 (Threshold Classifier) A classifier δ is called a threshold classifier if it
allows the following representation

δ<t(x) := 1(−∞,t)(x), t ∈ R,
δ≥t(x) := 1[t,∞)(x), t ∈ R.

(2.2)

The family of threshold classifiers shall be denoted by FT :=
{
δ<t(x), t ∈ R

}
∪
{
δ≥t(x), t ∈

R
}
.

Threshold classifiers can be motivated in different ways. In Section 3 we will see an
example of a parametric model which leads to a threshold classifier. The model yields
the a-posteriori probability of a class membership given the observed value of X. Setting
a threshold on the probability space partitions the sample space in such a way. However,
more direct approaches to threshold classification will be discussed in Section 4, where
the score space coincides with the sample space.

12

Definition 5 (Interval Classifier) A classifier δ is called an interval classifier if it
allows the following representation

δ(t1,t2](x) := 1(t1,t2](x), t1, t2 ∈ R,
δR\(t1,t2](x) := 1R\(t1,t2], t1, t2 ∈ R.

(2.3)

The family of interval classifiers shall be denoted FI =
{
δ(t1,t2](x), t1, t2 ∈ R

}
∪
{
δR\(t1,t2](x), t1, t2 ∈

R
}
.

In Section 3 we will also see a parametric probabilistic model yielding the a-posteriori
distribution of the classes, which will partition the sample space into an interval and its
complement. A more direct nonparametric approach will be introduced in Section 5.

In the context of supervised classification, the classifier is fitted from a random sample, in
which the class memberships of the instances are known. A common approach is to make
a distributional assumption for the class conditional distribution and to find the optimal
classifier among this family of distributions. This constitutes a parametric approach to
fitting a classifier. One can also assume a specific form of classifier, which is considered a
non-parametric approach. In any case one needs a formal criterion to select the optimal
classifier among the chosen family. The most common approach is based on a functional
called the expected prediction error.

Definition 6 (Expected Prediction Error)

EPE(δ) := E(X,Y)[L(δ(X), Y)], (2.4)

where L denotes the loss function

L(δ(X), Y) :=


c1, δ(X) = 0 ∧ Y = 1
c0, δ(X) = 1 ∧ Y = 0
0, δ(X) = Y

 , (2.5)

and c0 ≥ 0 and c1 ≥ 0 denote the misclassification costs of negative (Y = 0) and positive
(Y = 1) instances, respectively.

These costs need not be monetary. Using this loss function makes two important implicit
assumptions. First, the costs for an incorrect prediction of an instance depends only
on its class. This is sufficient in most research situations. A more general approach
would be to assign every instance its own cost. Secondly, the cost for misclassifying a
positive and negative instance need not be equal. This loss function allows to weight
the misclassification of positive and negative instances unequally. The third implicit
assumption is that a correct classification incurs no cost.

Let us introduce the notion of an operating condition (OC), also referred to as deployment
condition, see Hernández-Orallo et al. (2012) for an introduction.

13

2. Preliminaries

Definition 7 (Operating Conditions) The operating conditions consist of a triple
θ = (c0, c1, π1), which parametrizes the circumstances under which the classifier is applied.
π1 denotes the share of positives in the population (Y ∼ Bπ1) known as the prevalence
in epidemiology. Since the share of positives and negatives must add up to one, the
share of negatives π0 equals 1 − π1. c0 and c1 denote the misclassification costs of
negative and positive instances, respectively. Thus, the space of operating conditions is
Θ = R+ × R+ × [0, 1].

There are different possibilities to parametrize this space. Flach (2012) parametrizes
the operating space by (b, c, π0), where b = c0 + c1 and c = c0/b, referred to as the cost
proportion.

The importance of operating conditions can be illustrated by a simple example. Consider
the diagnosis of a cancer patient. Cancer is relatively rare and misdiagnosing a cancer
patient has more severe consequences than misdiagnosing a healthy individual. Not
taking these characteristics of the diagnosis into account when selecting a suitable model
for diagnosis can lead to drawing false conclusions with possibly grave consequences.

Let us now introduce some evaluation metrics for classifiers and their empirical counter-
parts. Suppose (xi, yi), i = 1, . . . , n, are i.i.d. realizations of (X,Y). Let n1 :=

∑n
i=1 yi

and n0 := n − n1 denote the number of positives and negatives, respectively. With-
out loss of generality let us assume that yi = 0 for i = 1, . . . , n0 and yi = 1 for
i = n0 + 1, . . . , n0 + n1 = n.

Definition 8 Given a binary classifier δ and a random variable (X,Y), the True Positive
Rate 1 (TPR) is defined as

TPR := P [δ(X) = 1|Y = 1].

In a similar fashion the False Positive Rate (FPR), the True Negative Rate2 (TNR) and
the False Negative Rate (FNR) are defined

FPR := P [δ(X) = 1|Y = 0],

TNR := P [δ(X) = 0|Y = 0],

FNR := P [δ(X) = 0|Y = 1],

respectively. Their empirical counterparts can be denoted:

tpr := 1
n1

∑
i:yi=1

1(δ(xi) = 1),

1also called Sensitivity.
2also called Specificity.

14

fpr := 1
n0

∑
i:yi=0

1(δ(xi) = 1),

tnr := 1
n0

∑
i:yi=0

1(δ(xi) = 0),

fnr := 1
n1

∑
i:yi=1

1(δ(xi) = 0).

Applying Bayes’ theorem to Equation (2.4), we can rewrite this expression as a weighted
sum of the false positive rate and the false negative rate, where the weights are a function
of the operating conditions.

EPE(δ) = c0π0FPR+ c1π1FNR. (2.6)

The exact derivation of (2.6) can be found in Section A.1 in the Appendix. The empirical
version of this term is simply

ÊPE(δ) = c0π0fpr + c1π1fnr. (2.7)

This will be the most important evaluation metric used throughout this work. However,
a great number of different metrics exist in the classification literature. The simplest loss
function is characterized by an equal valuation of every misclassification (c0 = c1). This
approach amounts to simply counting the number of misclassified cases and is called the
Misclassification Error.

Definition 9 The theoretical Misclassification Error (MCE) of a discrimination rule δ
can be written as

MCE(δ) =
K∑
k=1

P [δ(X) 6= k, Y = k], (2.8)

where P is the joint distribution of (X,Y). The Empirical Classification Error or
Misclassification Rate based on a sample of m observations is simply the rate of incorrectly
classified samples

mce(δ) = 1
m

m∑
i=1

1{δ(xi) 6= ci}. (2.9)

Definition 10 Accuracy is defined as ACC = πTPR + (1 − π)TNR. This can be
estimated by ÂCC := (tp+ tn)/(pos+ neg)

15

2. Preliminaries

Definition 11 The ROC curve is defined as a plot between the FPR (F 1(t)) on the
x-Axis and the TPR (F 0(t)) on the y-Axis as the threshold t shift through the score space.
F 0 and F 1 denote the cumulative distribution function induced by the model m.

The Area Under the ROC curve (AUC) can be defined as

AUC =
∫ 1

0
F 0(s)dF 1(s) =

∫ ∞
−∞

F 0(s)f1(s)ds,

where f1 denotes the density of F 1.

While a classifier δ is depicted as one point in ROC space, a model m is depicted as a
family of classifiers which are on one line between (0,0) and (1,1) (Drummond and Holte,
2006).

So far, we have considered evaluation metrics for two situations. Firstly, EPE where
the operating conditions are required to be known and secondly, AUC which evaluates
the classifier under the implicit assumption that all points in the parameter space Θ are
equally likely. However, in many situation, the operating conditions are not know exactly
but there are certain expectations, e.g. c1 � c0. Thus, evaluation metrics can be defined
as integrals over a probability distribution over the parameter space, see e.g. Adams and
Hand (1999) or Hernández-Orallo et al. (2012).

16

CHAPTER 3
EBC: Expected Prediction Error

of the Bayes Classifier

If the class conditional distributions F 0 and F 1 are known, it is possible to derive the
prediction error minimizing classifier, called the Bayes classifier, see e.g. Hastie et al.
(2001). Let us define

EBC := EPE(δBayes), (3.1)

where
δBayes := min

δ
EPE(δ) = min

δ
E(X,Y)[L(δ(X), Y)], (3.2)

and L denotes the loss functional defined in Equation (2.5). The Bayes classifier is
more of a theoretical concept since the distributions of the class conditionals are rarely
known in practice. However, its defining characteristic can be exploited to define a
benchmark prediction error for a random variable with known distribution. Let us derive
an expression for this classifier by minimizing the expected prediction error (2.4). If we
condition on Y we can write EPE as

EPE(δ) = EX [L(δ(X), Y = 0)P (Y = 0|X) + L(δ(X), Y = 1)P (Y = 1|X)] .

This expression, can be minimized point-wise, yielding

δBayes(x) = arg min
y∈{0,1}

L(δ(X), Y = y)︸ ︷︷ ︸
cy

P [Y = y|X = x] ∀x ∈ X ⊆ Rp. (3.3)

By applying Bayes’ theorem for discrete Y and continuous X

P [Y = y|X] =
fX|Y=yπy

fX|Y=0π0 + fX|Y=1π1

17

3. EBC: Expected Prediction Error of the Bayes Classifier

to express the probability conditional to X as a function of the class conditional proba-
bilities, then ∀x ∈ X ⊆ Rp : P [Y = 0|X = x] > 0 we obtain the following classifier

δBayes(x) =
{

1 if fX|Y =1(x)
fX|Y =0(x) ≥

π0
(1−π0) ·

c0
c1

0 else

}
. (3.4)

From Equation (3.4) we can see that the Bayes classifier can be conceived as a model,
as defined in Definition (2), where m(x) = fX|Y =1(x)

fX|Y =0(x) and the threshold is a function of
the operating conditions t(c0, c1, π1) = π0

(1−π0)
c0
c1
. This helps us understand how the OCs

influence the partition of the classifier.

If the class conditional distributions are Gaussian (X|Y = 1) ∼ N(µ1, σ
2
1) and (X|Y =

0) ∼ N(µ0, σ
2
0) with the corresponding densities f(x;µ0, σ0) and f(x;µ1, σ1), the classifier

is equivalent to a univariate Quadratic Discriminant Analysis (for σ0 6= σ1), or a univariate
Linear Discriminant Analysis (for σ0 = σ1), respectively.

The following theorem derives the discriminant function of LDA and QDA for the
univariate case and is, thus, simply a special case of results from e.g. Example 4.2.2 in
Bickel and Doksum (2015). It should motivate the use of threshold and interval classifiers.

Theorem 1 Consider the class conditional distributions (X|Y = 1) ∼ N(µ1, σ
2
1) and

(X|Y = 0) ∼ N(µ0, σ
2
0). If σ2

0 = σ2
1, the Bayes classifier is a threshold classifier

δBayes(x) =
{
δ<t(x) if µ0 ≤ µ1
δ≥t(x) if µ0 > µ1

,

where t ∈ R is the solution to a linear equation.

If, however, σ2
0 6= σ2

1, then the Bayes classifier is a member of the family of interval
classifiers

δBayes(x) =
{
δ(t1,t2](x) if σ1 ≤ σ0
δR\(t1,t2](x) if σ1 > σ0

,

where t1 ∈ R and t2 ∈ R are the solutions of a quadratic equation.

Proof 1 Let us insert the densities of the Gaussian CCDs in (3.4) and logarithmise both
sides, yielding

ln
(
f(x;µ1, σ1)
f(x;µ0, σ0)

)
= (x− µ0)2

2σ2
0

− (x− µ1)2

2σ2
1

+ ln
(
σ0
σ1

)
≥ ln

(
π0

(1− π0) ·
c0
c1

)
. (3.5)

If σ0 = σ1 then x2 cancels out and (3.5) is a linear function in x and its root equals

18

t = ln
(
c0
c1

π0
π1

)
σ2

(µ1 − µ0) −
(µ1 + µ2)

2 . (3.6)

Thus, the resulting Bayes classifier is given by

δBayes(x) =
{

1(t,∞)(x) if µ0 ≤ µ1
1(−∞,t](x) if µ0 > µ1

.

In the general case (σ0 6= σ1), Equation (3.5) is quadratic in x. If we define a := 1
2σ2

0
− 1

2σ2
1
,

b := µ1
σ2

1
− µ0

σ2
0
, and c := µ2

0
2σ2

0
− µ2

1
2σ2

1
+ ln(σ0

σ1
) − ln(π0

π1
c0
c1

), the equation can be rewritten as
ax2 + bx+ c = 0. If b2− 4ac < 0 there is no real valued solution and the Bayes Classifier
becomes degenerate in the sense that it maps to one class only, irrespective of the value
of X. If b2 − 4ac > 0, the number of solutions is two, t1 and t2. In this case the Bayes
Classifier can be denoted

δBayes(x) =
{

1(t1,t2](x) if σ0 < σ1
1R\(t1,t2](x) if σ0 ≥ σ1

. (3.7)

�

An illustration of the Bayes classifier for the variable Z3 of the example in Section 1 can
be found in Figure 3.1.

Let us derive the corresponding prediction error to the Bayes classifier. If σ0 = σ1, then

EBC =
{
c1π1Φ1(t) + c0π0

(
1− Φ0(t)

)
iff µ0 ≤ µ1

c1π1
(
1− Φ1(t)

)
+ c0π0Φ0(t) else

}
, (3.8)

where Φ0 and Φ1 are the Gaussian cumulative distribution functions of X0 and X1

respectively. Since the cumulative distribution function of the Gaussian distribution does
not have a closed form expression and can only be written as an integral of the Gaussian
density, no closed form expression of EBC exists.

If σ0 6= σ1, then

EBC =
{
c1π1

[
Φ1(t2)− Φ1(t1)

]
+ c0π0

[
1− (Φ0(t2)− Φ0(t1))

]
if σ0 ≥ σ1

c1π1
[
1− (Φ1(t2)− Φ1(t1))

]
+ c0π0

[
Φ0(t2)− Φ0(t1)

]
else

}
. (3.9)

Again, no closed form expression can be given.

19

3. EBC: Expected Prediction Error of the Bayes Classifier

The Bayes Classifier for Z3

0
2

4
6

8
0

0.
25

0.
5

0.
75

−2 −1 0 1 2 3 4 5

δBayes(x) = 1δBayes(x) = 0 δBayes(x) = 0

negatives positves

m(x)

t(π0, c0, c1)

Figure 3.1: Illustration of the Bayes classifier of (X|Y = 0) ∼ N(−0.5,
√

7/8) and
(X|Y = 1) ∼ N(0.5,

√
1/8). This corresponds to Z3 of the example in Figure 1.1 in

Section 1. The upper image depicts the distribution of the positive and negative class and
the interval, in which the Bayes classifier maps instances to the positive class. The lower
image depicts the model m(x) = fX|Y =1(x)

fX|Y =0(x) and the threshold t(c0, c1, π1) = π0
(1−π0)

c0
c1

as
defined in (2) and (3). This image illustrates how the positive domain {x ∈ R : m(x) ≥
t(c0, c1, π0)} depends on the operating conditions of the classification task.

20

3.1. Sample Estimate of EBC

3.1 Sample Estimate of EBC
Consider the situation where the class conditional distributions P (X|Y = 1) and P (X|Y =
0) are assumed to be Gaussian, their parameters (µ1, σ

2
1) and (µ0, σ

2
0) are, however,

unknown. Under this set of assumptions, the expected prediction error can be obtained
by the following steps.

• Estimate the parameters of the Gaussian distributions, e.g. by using the maximum
likelihood estimators or a robust equivalent yielding (µ̂0, σ̂

2
0) and (µ̂1, σ̂

2
1). If equal

variances are assumed, the entire sample can be used for its estimate.

• Derive the corresponding Bayes classifier. If we assume equal variances of the CCDs
this will be

δBayes =
{
δ<t̂ if µ̂1 < µ̂0
δ≥t̂ if µ̂1 ≥ µ̂0

,

where t̂ = t(µ̂0, µ̂1, σ̂) defined in (3.6). If this assumption is relaxed

δBayes(x) =
{
δ(t̂1,t̂2](x) if σ̂1 ≤ σ̂0
δR\(t̂1,t̂2](x) if σ̂1 > σ̂0

,

where t̂1 ∈ R and t̂2 ∈ R are the solutions of the quadratic equation defined in (3.7).
Bare in mind, that if the decision to assume equal variances or not is based on the
data, the estimators are not unbiased any more.

• Calculate the prediction error defined in (2.6). Again, we need to distinguish
between two cases. For σ0 = σ1 we will use Equation (3.8) and plug in the
estimates, yielding

ÊBC =

c1π1Φ(t̂; µ̂1, σ̂
2) + c0π0

(
1− Φ(t̂; µ̂0, σ̂

2)
)

iff µ̂0 ≤ µ̂1

c1π1
(
1− Φ(t̂; µ̂1, σ̂

2)
)

+ c0π0Φ(t̂; µ̂0, σ̂
2) else

.

For σ0 6= σ1 we will use Equation (3.9) and plug in all estimates, yielding

ÊBC =

c1π1
[
Φ(t̂2; µ̂1, σ̂1)− Φ(t̂1; µ̂1, σ̂1)

]
+ c0π0

[
1− (Φ(t̂2; µ̂0, σ̂0)− Φ(t̂1; µ̂0, σ̂0))

]
if σ̂0 ≥ σ̂1

c1π1
[
1− (Φ(t̂2; µ̂1, σ̂1)− Φ(t̂1; µ̂1, σ̂1))

]
+ c0π0

[
Φ(t̂2; µ̂0, σ̂0)− Φ(t̂1; µ̂0, σ̂0)

]
else

.

3.2 Derivation of the Null Distribution
The analytic derivation of the (asymptotic) null distribution of ÊBC is beyond the
scope of this thesis and, thus, we have to resort to a resampling approach. A well
established method for this purpose is by permuting the class labels, see e.g. Edgington

21

3. EBC: Expected Prediction Error of the Bayes Classifier

(2011). Under the assumption of exchangeability of the observations, which is weaker
than independence, the permuted values of the classes follow the same distribution. The
empirical cumulative distribution function of the resulting values will converge to the
true null distribution if H0 is valid. This approach, however, does not yield a good
estimate of the extreme tail of the null distribution, where for the purpose of screening
the most interesting values lie. Even if we draw 105 random permutations, the expected
number of observations below the 0.0001 quantile will be too low for a good estimate
of the density. Knijnenburg et al. (2009) have attempted to approximate the tails by
means of a generalized Pareto distribution. This, however, did not yield satisfying results.
We, thus, used a monotonic interpolation, introduced by Hyman (1983), between the
point (0,0) and the smallest values obtained by permutation to obtain an estimate of
the tail. Even if this approach does not provide a good estimate of the tail, it yields
a monotonically and continuously decreasing function of x and, thus, variables with a
lower statistic will yield a lower p-value and the order of the variables is maintained.

22

CHAPTER 4
ETC: Expected Prediction Error

of the Threshold Classifier

In this section a non-parametric equivalent of EBC for equal variances (σ0 = σ1) will
be introduced and studied. In Theorem 1 we have learned that for Gaussian class
conditionals with equal variances a threshold classifier is optimal. In this section we will
opt for a more direct and nonparametric approach to deriving a classifier. Instead of
making a distributional assumption, we will limit our search to the family of threshold
classifiers, defined in (4), and find the best member using the sample error.

Let us define ETC, the expected prediction error of the optimal threshold classifer

ETC := min
δ∈FT

EPE(δ). (4.1)

This statistic estimates the prediction error resulting from separating the two classes by
simply setting a threshold on the sample space of X. It ranges from 0, when perfect
separation is possible, to min (c0π0, c1π1), when X exhibits no discriminatory power with
respect to the classes of Y .

4.1 Sample Estimate of ETC
Suppose (xi, yi), i = 1, . . . , n, are i.i.d. realizations of (X,Y) and let n1 :=

∑n
i=1 yi and

n0 := n− n1 denote the number of positives and negatives, respectively. Without loss of
generality let us assume that yi = 0 for i = 1, . . . , n0 and yi = 1 for i = n0+1, . . . , n0+n1 =
n. To derive a sample estimate of ETC we simply need to substitute the false positive
and false negative rates in (2.6) by their empirical counterparts (2.7). Due to the
specific form of a threshold classifier its false negative rate P [δ<t(X) = 1|Y = 0] is
simply F 0(t), the cumulative CCD function evaluated at t. By the same argument

23

4. ETC: Expected Prediction Error of the Threshold Classifier

P [δ<t(X) = 0|Y = 1] = 1−F 1(t) and, thus, EPE(δ<t) is simply a weighted sum of F 0(t)
and F 1(t). Substituting these expressions by their empirical counterpart, yields

ÊPE(δ<t) = c0π0
1
n0

∑
i:yi=0

1(−∞,t)(xi)︸ ︷︷ ︸
false positive rate

+ c1π1
1
n1

∑
i:yi=1

1[t,∞)(xi)︸ ︷︷ ︸
false negative rate

ÊPE(δ≥t) = c0π0
1
n0

∑
i:yi=0

1[t,∞)(xi)︸ ︷︷ ︸
false positive rate

+ c1π1
1
n1

∑
i:yi=1

1(−∞,t)(xi)︸ ︷︷ ︸
false negative rate

.
(4.2)

Note that ÊPE(δ<t) is constant for all thresholds t ∈ [x(j), x(j+1)), where x(j) denotes
the j-th order statistic of the sample. Thus, instead of having to search R it suffices
to find the minimum of n + 1 values. Exploiting this fact leads us to the empirical
counterpart of (4.1),

ÊTC = min
{

min
j=1,...,n

ÊPE(δ<xj), min
j=1,...,n

ÊPE(δ≥xj)
}
. (4.3)

The method can more easily be understood when it is described in the following algorithmic
manner. This algorithm builds on the fact that the sample estimate of the prediction
error of a variable is equal for all threshold classifiers δ≶t : t ∈ [x(i), x(i+1)), where x(i)
indicates the i-th order statistic of the sample. Thus, instead of having to search R it
suffices to find the minimum of the estimated prediction errors of 2n threshold classifiers.
An illustration of this procedure can be found in Figure 4.1.

ET C

Consider the data (xi, yi)i=1,...,n.

• Sort (xi, yi), i = 1, . . . , n in increasing order, such that x(1) ≤ x(2) ≤ . . . ≤ x(n).

• Calculate ÊPE(δ<x(i)) and ÊPE(δ≥x(i)) for i = 1, . . . , n and

• find the minimal value

ÊTC = min
{

min
i=1,...,n

ÊPE(δ<x(i)), min
i=1,...,n

ÊPE(δ≥x(i))
}
.

4.2 Properties of ÊTC

This chapter will establish some properties of the sample estimate of ETC. Firstly, ÊTC
is not an unbiased estimator of ETC, even though, ÊPE(δ<t) is an unbiased estimator

24

4.2. Properties of ÊTC

●

−4 −3 −2 −1 0 1 2 3

Position of Threshold

C
os

t

Sensitivity

Specificity

Costs

● ●

−4 −3 −2 −1 0 1 2 3

●●

−4 −3 −2 −1 0 1 2 3

Neg

Pos

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

Figure 4.1: Illustration of the ETC algorithm. The graph on the left hand side shows
the relationship between the threshold t of the classifier δ<t and the expected prediction
error. As the threshold slides through the sample space the number of false positives
and false negatives change. This is depicted in the sensitivity and specificity curves. The
costs, which are a weighted average of the sensitivity and the specificity, have a unique
minimum. The graph on the right depicts the curve of all pairs of sensitivity and 1 -
specificity as the threshold slides through the sample space. These pairs shape the ROC
curve of the classifier. The gray lines are called the isocost lines. They indicate all points
in the sensitivity, 1 - specificity space that generate the same costs. The "higher" the
isocost line, the lower the costs. The optimal point is where the ROC curve touches the
highest isocost line.

of EPE(δ<t),

E
[
ÊPE(δ<t)

]
= c0π0

1
n0

∑
i:yi=0 E1(−∞,t)(xi) + c1π1

1
n1

∑
i:yi=1 E1[t,∞)(xi) =

= c0π0F
0(t) + c1π1

(
1− F 1(t)

)
,

since 1(−∞,t)(X0) ∼ B1,F 0(t) and 1[t,∞)(X0) ∼ B1,1−F 0(t). Let us assume without loss of
generality that δt∗ yields the minimal EPE among all threshold classifiers. Trying to
estimate t∗ by the sample point xj that yields the minimal ÊPE(δ<xj) over all instances
and both directions introduces a bias. Since there will always exist an index i ∈ 1, . . . , n
such that ÊPE(δ<xi) = ÊPE(δ<t∗), the following inequality holds

E
[

min
j=1,...,n

ÊPE(δ<xj)
]
≤ E

[
ÊPE(δ<t∗)

]
.

Thus, the true ETC is an upper bound of our test statistic. We can verify that there

25

4. ETC: Expected Prediction Error of the Threshold Classifier

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

µ1 − µ0

E
P

E
TRUE EPE
EBC
ETC

0 1 2 3 4 5

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

µ1 − µ0

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 E

st
im

at
or

ETC
EBC

Figure 4.2: The left Figure illustrates the true EPE as a function of the difference of the
means of two Gaussian CCDs and the expected value of its estimations by EBC and
ETC. The variance of the two distributions is equal, thus, EBC represents the prediction
error of the Bayes classifier and is, thus, minimal among all possible classifiers. One
can clearly see that ETC is not an unbiased estimator. The right figure illustrates the
variances of the two estimators ÊBC and ÊTC.

exists a negative bias by means of simulation. The results of one such study are illustrated
in Figure 4.2.

Bias(ÊTC) = E(X,Y)
[
ÊTC

]
− EPE(X,Y)(δBayes) < 0

In order to evaluate the bias of ÊTC a simulation study was conducted. For this purpose
random numbers from two Gaussian class conditionals with varying differences in the
means were drawn and the true expected prediction errors of the corresponding Bayes
classifiers were calculated from the known parameters. This was compared to the mean
estimates of EBC and ETC. The results can be found in Figure 4.2.

The following theorem will establish the consistency of ÊTC.

Theorem 2 Assume continuous class conditional distributions F 0 and F 1 and a unique
minimizer of ETC, then ÊTC is a consistent estimator of ETC,

plimn→∞ÊTCn = ETC.

26

4.2. Properties of ÊTC

Proof 2 Consider an independent and identically distributed sample (Xi, Yi)i=1,...,n,
where Xi|Yi = 0 ∼ F 0 and Xi|Yi = 1 ∼ F 1. To establish the consistency, we have to
show that

∀ε > 0 : lim
n→∞

P
[∣∣∣ÊTCn − ETC∣∣∣ > ε

]
= 0. (4.4)

Without loss of generality assume that δ<t∗ minimizes the prediction error among all
threshold classifiers

δ<t∗ = argmin
δ∈Ft

EPE(δ)

and, thus,

ETC = min
δ∈Ft

EPE(δ) = EPE(δ<t∗) = c0π0F
0(t∗) + c1π1(1− F 1(t∗)).

Inserting this expression is (5.4) yields

∀ε > 0 : lim
n→∞

P
[∣∣∣ÊTCn − (c0π0F

0(t∗) + c1π1(1− F 1(t∗))
)∣∣∣ > ε

]
= 0.

Let us start with the definition of ÊTC, perceived as a random variable

ÊTCn = min
{

min
j=1,...,n

ÊPE(δ<Xj), min
j=1,...,n

ÊPE(δ≥Xj)
}
.

The minimum is a continuous function and, thus, by virtue of the continuous map-
ping theorem all we need to show is the consistency of its arguments. Due to the
assumptions made about δ<t∗ we will show the convergence of the first argument. As
n → ∞, both n0, n1 → ∞ at rates n1 ≈ π1n and n0 ≈ π0n. Further, let us denote
F̂ 0
n0(x) := 1

n0

∑
i:Yi=0 1(−∞,x)(Xi) and F̂ 1

n1(x) := 1
n1

∑
i:Yi=1 1(−∞,x)(Xi). The problem

then translates to showing that ∀ε > 0 :

lim
n→∞

P

[∣∣∣∣ min
j=1,...,n

c0π0F̂
0
n0(Xj) + c1π1

(
1− F̂ 1

n1(Xj)
)
−
(
c0π0F

0(t∗) + c1π1(1− F 1(t∗))
)∣∣∣∣ > ε

]
= 0

By virtue of the Glivenko-Cantelli theorem, the empirical distribution functions converge
almost surely uniformly to the true distribution functions supx∈R |F̂ 0

n0(x)− F 0(x)| a.s.−−→ 0
and supx∈R |F̂ 1

n1(x)− F 1(x)| a.s.−−→ 0 and, thus,

sup
x∈R

∣∣∣ c0π0F̂
0
n0(x) + c1π1

(
1− F̂ 1

n1(x)
)

︸ ︷︷ ︸
Qn:=

− c0π0F
0(x) +

(
1− F 1(x)

)
︸ ︷︷ ︸

Q:=

∣∣∣ a.s.−−→ 0,

will also converge uniformly almost surely.

Note that since F 0 and F 1 are continuous, so is Q, which is a nonrandom function with
a unique minimum at t∗. Further, let us denote the minimizer of Qn as

27

4. ETC: Expected Prediction Error of the Threshold Classifier

t̂n := arg min
t∈R

Qn(t) = min
j=1,...,n

Qn(Xj).

The second equation is valid since Qn is a step function.

We will now argue that under these circumstances the minimizer of Qn will converge in
probability to the minimizer of Q.

For every ε > 0 we have

c(ε) := inf
t∈Θ:||t−t∗||≥ε

Q(t) > Q(t∗)

since {t ∈ Θ ⊆ R : ||t− t∗|| ≥ ε} is compact and Q(t) is continuous, and since t∗ is the
unique minimizer of Q. Choose 0 < δ < 1/2(c(ε)−Q(t∗)), i.e., δ is such that

c(ε)− δ > Q(t∗) + δ.

Note that δ = δ(ε). On the event{
sup
t∈Θ
|Qn(t)−Q(t)| < δ

}

we then have

inf
t∈R:||t−t∗||≥ε

Qn(t) ≥ inf
t∈Θ:||t−t∗||≥ε

Q(t)− δ = c(ε)− δ > Q(t∗) + δ ≥ Qn(t∗) ≥ Qn(t̂n)

That is, on the above event we obtain that

||t̂n − t∗|| < ε.

In other words, {
||t̂n − t∗|| < ε

}
⊇
{

sup
t∈Θ
|Qn(t)−Q(t)| < δ

}
.

But

P

(
sup
t∈Θ
|Qn(t)−Q(t)| < δ

)
→ 1,

and hence
P
(
||t̂n − t∗|| < ε

)
→ 1

which establishes the required consistency.

�

28

4.3. Derivation of the Null Distribution

An obvious and serious limitation of ETC as a ranking statistic is the low number of
values it can take. This might be a limiting factor when the sample size is small and
the number of variables is huge. The number depends mainly on n1 and n0, but also
on c1, c0, π0, and π1. The fewest values are obtained when c0 = c1 and π0 = π1. In
this case the number of false positives and false negatives cannot exceed n0/2, and n1/2,
respectively, and the number of possible values for ETC is max{n0/2, n1/2}. Even when
e.g. c1 > n0c0, when one positive outweighs all negatives the number of possible values
n0n1 is limited when p� n.

Furthermore, unlike methods which are not based on the ranks of X, ÊTC cannot
differentiate between variables, which exhibit a perfect discrimination, since it will assign
all those variables the value 0 and the same p-value.

4.3 Derivation of the Null Distribution

We might pose the question of the significance of a certain value of ÊTC. In other
words, what is the probability of the observed or a more extreme outcome under the
null hypothesis that X exhibits no information about the class membership. The null
hypothesis and the alternative hypothesis can be stated H0 : F 0 = F 1 and H1 : F 0 6= F 1,
respectively. For the purpose of filtering, providing a p-value gives additional information,
since it allows not only to rank the variables but also to decide how many variables
should be selected.

An example of a null distribution for n0 = 9, n1 = 9, c0 = 1, c1 = 2, π1 = 0.5 can be
found in Figure 4.3. We will use this example in the following section to explain key
features of the algorithm.

4.3.1 Independence of the CCDs under H0

The first result that we would like to establish is that the distribution of ÊTC under
the null hypothesis is independent of the CCDs. This important property allows us
to calculate the ND once only for any number of CCDs since it only depends on the
operating conditions and the sample size. Let us formulate this in the following theorem.

Theorem 3 Consider the i.i.d. samples of the class conditional random variables X0
i ∼

F 0, i = 1, . . . , n0 and X1
i ∼ F 1, i = n0 +1, . . . , n. Under the null hypothesis H0 : F 0(x) =

F 1(x) = F (x), ∀x ∈ X the sampling distribution of ÊTC is independent of F .

Proof 3 Let us introduce r which maps a sample (xi, yi)i=1,...,n to the permutation of
class labels ordered by increasing value of X

r : (X × {0, 1})n 7→ Pn1,n0 : r((xi, yi)i=1,...,n) = (y(1), y(2), . . . , y(n)), (4.5)

29

4. ETC: Expected Prediction Error of the Threshold Classifier

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Prediction Error

F
re

qu
en

cy

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Prediction Error

P
ro

ba
bi

lit
y

Figure 4.3: The null distribution (on the left) and the cumulative null distribution (on
the right) of ÊTC for the following operating conditions and sample sizes n0 = 9, n1 = 9,
c0 = 1, c1 = 2, π1 = 0.5.

where y(i) denotes the class label of the i-th order statistic. Pn1,n0 denotes the space of
all possible permutations of n1 positive and n0 negative class labels

Pn1,n0 :=
{

(y1, . . . , yn) : yi ∈ {0, 1} ∧
n∑
i=1

yi = n1

}
.

The importance of r lies in the fact that although it reduces the information of the sample
it still contains all the information needed to calculate ÊTC. This can be shown by the
following factorization ÊTC ≡ ÊTCP ◦ r.

(X , {0, 1})n ÊTC //

r
&&

R+

Pn1,n0

ÊTCP

<<

To prove the validity of this factorization we can rewrite the first argument of (4.3)

min
i=1,...,n

ÊPE(δ<x(i)) = min
i=1,...,n

c0π0
1
n0

n0∑
j=1

1(−∞,x(i))(xj) + c1π1
1
n1

n∑
j=n0+1

1[x(i),∞)(xj)

= min
i=1,...,n

c0π0
1
n0

i∑
j=1

y(j) + c1π1
1
n1

n∑
j=i+1

(1− y(j)), (4.6)

30

4.3. Derivation of the Null Distribution

as a function of r((xi, yi)i=1,...,n). The same holds true for the second argument in (4.3)
and, thus, we have the required factorization of ÊTC.

Under the null hypothesis we are effectively drawing independently n times from the
same distribution. The i.i.d. condition implies exchangeability and, thus, every order of
positives and negatives is equally likely. Irrespective of the distribution of (X,Y) on the
sample space, the induced probability distribution of r((Xi, Yi)i=1,...,n) on Pn1,n0 is always
uniform under H0 and, thus, independent of F0 and F1.

P[r((Xi, Yi)i=1,...,n) = p] = 1(n
n0

) ∀p ∈ Pn1,n0

As a consequence, the probability distribution on R+ induced by ÊTCP must also be
independent of F0 and F1 and is identical to the distribution induced by ÊTC.

�

Let us comment on some aspects of this theorem. First, the result of this theorem
is not surprising. It is a known fact that ranking statistics also exhibit the feature
of independence of the distribution of the random variable under the assumption of
exchangeability. The statistic r is related to the ranks in the sense that it represents the
vector of class labels sorted according to the ranks of xi.

Secondly, the argument that the vector r(xi, yi) contains all the information necessary to
calculate ÊTC is similar to the property of sufficiency. In fact, the factorization argument
used is similar to the characterization of sufficiency of Neyman (1935). However, we are
not aware of the concept of sufficiency for nonparametric statistical models. Even, the
definition of sufficiency relies heavily on the parametrization of the statistical model.

Thirdly, Theorem (3) can also be proven in a more direct manner, if we assume the
continuity of the class conditional distributions.

Proof of Theorem 3. Let us consider the infimum of (4.2)

inf
t∈R

ÊPE (δ<t) = inf
t∈R

(1− π1) · c0 ·
1
n0

n0∑
i=1

1

(
X0
i < t

)
+ π1 · c1 ·

1
n1

n∑
j=n0+1

1

(
X1
j ≥ t

)
.

Let t′ := F 0(t). Due to the monotonicity of F 0 we can rewrite this expression as

inf
t′∈[0,1]

(1− π1) · c0 ·
1
n0

n0∑
i=1

1

(
F 0(X0

i) < t′
)

+ π1 · c1 ·
1
n1

n∑
j=n0+1

1

(
F 0
(
X1
j

)
≥ t′

)
=

= inf
t′∈[0,1]

(1− π1) · c0 ·
1
n0

n0∑
i=1

1(Ui < t′) + π1 · c1 ·
1
n1

n∑
j=n0+1

1
(
Uj ≥ t′

)
. (4.7)

31

4. ETC: Expected Prediction Error of the Threshold Classifier

Ui ∼ U0,1 follows the uniform distribution since P (F (X) ≤ t) = P (X ≤ F−1(t)) =
F (F−1(t)) = t. Here F 0 is the continuous cumulative distribution function of the random
variables X0 and X1. F−1(t) := min{x : F 0(x) < t} denotes its inverse. Since the
expression (4.7) is independent of F 0 and F 1 and since the same argument holds true for
inf{ÊPE(δ≥t) : t ∈ R}, so is ÊTC.

4.3.2 The Algorithm

A byproduct of the proof of Theorem (3) is that it allows us to shift the problem of
calculating the ND of ÊTC from the sample space (X × {0, 1})n to Pn1,n0 , where we
know that the distribution is uniform. Thus, we can calculate the probability of any event
by simply counting the number of favorable permutations and dividing by the number of
possible permutations

(n
n0

)
. This insight is the basis for the algorithm introduced in this

section.

Let us define the following partition on Pn1,n0

Pn1,n0 =
⋃

0≥fn≥n1
0≥fp≥n0

Sfn,fp, where (4.8)

Sfn,fp := {p ∈ Pn1,n0 : φ(p) = (fn, fp)} , (4.9)

and fn = 0, . . . , n1 and fp = 0, . . . , n0 denote a given number of false negatives and false
positives. The function φ : Pn1,n0 → {(fn, fp) : fn ∈ {0, . . . , n1} ∧ fp ∈ {0, . . . , n0}} is
required since for many permutations the optimal number of false positives and false
negatives of ÊTCP can be ambiguous since the resulting costs are the same. We, thus,
need a well defined function φ, where ÊTCP(p) = ψ ◦ φ(p) where ψ(fp, fn) := c0π0fp+
c1π1fn. For this purpose, we need to introduce two conventions. For permutations where
more than one position of the threshold yields the same minimal prediction error the
threshold is set to the smallest index number. Secondly, for permutations where mapping
positives to the left or the right of the threshold yields the same ÊPE, assigning the
positives to the left is chosen.

φ(p) :=



(
n∑
j=i

pj ,
i−1∑
j=1

(1− pj)
)
, i = min argmin

j=1,...,n
E<j(p) if min

j=1,...,n
E<j(p) ≤ min

j=1,...,n
E≥j(p)(

i−1∑
j=1

pj ,
n∑
j=i

(1− pj)
)
, i = min argmin

j=1,...,n
E≥j(p) else

E<i(p) := c0π0
1
n0

i−1∑
j=1

(1− pj) + c1π1
1
n1

n∑
j=i

pj

32

4.3. Derivation of the Null Distribution

E≥i(p) := c0π0
1
n0

n∑
j=i

(1− pj) + c1π1
1
n1

i−1∑
j=1

pj

The two conventions are set implicitly in the definition of φ. Convention 1 is stated by
using the min argmini, convention 2 is ensured by the "≤" of the if statement.

With the definitions above we can denote the discrete ND under the assumptions made
in Theorem 3 as

P
[
ÊTC = c

]
=

∑
(fn,fp):c0π0fp+c1π1fn=c

|Sfn,fp|(n
n0

) . (4.10)

The ratios of (4.10) can be interpreted as the number of favorable events divided by the
number of possible events, as in every Laplace space.

Let us further split the sets defined in (4.9), by discriminating between those permutations
with the positive domain on the left and those with the positive domain on the right side
of the threshold,

Sfn,fp = S←fn,fp ∪ S→fn,fp. (4.11)

For every permutation p ∈ Pn1,n0 the position of the threshold is unambiguous by the
conventions set in (4.3.2) and divides the permutation into a positive and a negative
domain with tp + fp and tn + fn instances, respectively. The number of favorable
permutations can be counted separately for each domain, since every combination of a
favorable permutation of the positive domain p+ ∈ Ptp,fp and a favorable permutation
of the negative domain p− ∈ Pfn,tn forms a valid permutation of the respective set
p = (p+, p−) ∈ S←fn,fp. Thus, the cardinality of the sets is given by the product of the
number of favorable permutations of the positive domain and the negative domain.

|S←fn,fp| = |S
+,←
fn,fp| · |S

−,←
fn,fp| (4.12)

|S→fn,fp| = |S
+,→
fn,fp| · |S

−,→
fn,fp|, (4.13)

where
S+,←
fn,fp :=

{
p ∈ S←fn,fp : min

i=1,...,n
E<i(p) ≤ min

i=1,...,n
E≥i(p)

}
and

S+,→
fn,fp :=

{
p ∈ S←fn,fp : min

i=1,...,n
E<i(p) > min

i=1,...,n
E≥i(p)

}
.

The sets S+,→
fn,fp and S−,→fn,fp are defined in an analogous way.

33

4. ETC: Expected Prediction Error of the Threshold Classifier

The independence of the two domains can easily be understood with Figure 4.4. Without
loss of generality, consider a permutation with a positive domain on the left side. In this
situation the threshold (in black) is on its optimal position. A negative instance is shifted
one position to the left, from position i to i − 1. This affects the cost of the left and
the right threshold between the two instances, δ<i and δ≥i. All other thresholds remain
unaffected. Only for δ≥i (in grey) the cost decreases by the shift. Thus, if we account for
this, the current threshold remains optimal. The same holds true for instances on the
right side. A shift of a positive instance away from the threshold will leave the cost of
currently optimal threshold unaffected. Thus, we can modify the permutations on the
left and right side independently and the overall number of permutations is given by its
product.

Figure 4.4: Illustration of shifting a negative instance in the positive domain. The only
threshold which is affected by a decreasing cost is indicated in gray. We can, thus, shift
instances away from the currently optimal threshold (in black) as long as the cost of the
gray threshold exceeds the cost of the black one.

For every set of permutations and for both domains, we can construct a starting per-
mutation, which is characterized by the fact that the false negative and false positive
instances are as close to the threshold as possible. Any shift of a false instance towards
the threshold will render the position of the threshold suboptimal and the resulting
permutation will not be element of the respective set. From this initial permutation, the
false positive and false negative instances are shifted away from the threshold as long as
the obtained permutation remains in the set and the stopping permutation is reached.
An example of a starting and stopping permutation for S←(1,2) is illustrated in Figure 4.5.

In order to properly describe this algorithm we need to introduce two conventions. The
first convention concerns the indexation of the positions of a permutation. As illustrated
in Figure 4.5, the indices are in increasing order starting at the threshold. The second
convention concerns the indexation of the false positives or false negatives. The first
false instance will always have the highest position number, the second false instance
the second highest and so on. These two conventions allow us to express the number
of favorable permutations of the positive domain left of the threshold by the following
formula

34

4.3. Derivation of the Null Distribution

1 2 3 4 5 6 7 812345678910

fp1 fn1fp2

Positive Domain Negative Domain

1 2 3 4 5 6 7 812345678910

fp1 fn1fp2

Figure 4.5: Illustration of the starting and stopping permutations for both the positive and
the negative domain for S←(1,2) and for the parameters n0 = 9, n1 = 9, c1 = 2, c0 = 1, and
π1 = 0.5. Black circles indicate negative instances, white circles positive instances. The
bold arrow points in direction of the positive domain. The numbers indicate the position
indices of the algorithm according to (4.14). Inserting these parameters into (4.15) and
(4.16) delivers the starting and stopping indices for the positive domain of S(1,2). The two
false positive instances can shift from position 4 to 10 and 2 to 9, respectively. According
to (4.15) and (4.16) this yields

∑10
i1=4

∑min{9,i1−1}
i2=2 1 = 2 + 3 + 4 + 5 + 6 + 7 + 8 = 35.

As stated in (4.18) and (4.19) the false negative instance can shift from position 3 to
position 8 in the negative domain, yielding

∑8
3 1 = 6 permutations. According to (4.12)

the overall number of permutations is, thus, 6 · 35 = 210.

|S+,←
fn,fp| =

stop1∑
i1=start1

min{stop2,i1−1}∑
i2=start2

· · ·
min{stopfp,ifp−1−1}∑

ifp=startfp

1, where (4.14)

startk = min {tp+ fp− (k − 1), vk + (fp− k) + 1} , (4.15)
vk = min {n ∈ N : nc1π1 > (fp− k + 1)c0π0} ,

stopk = min{tp+ fp− (k − 1), startk + wk}, (4.16)
wk = max {n ∈ N : fp c0π0 + fn c1π1 ≤ (tn+ fp− k)c0π0 + (tp− vk − n) c1π1} .

The parameter startk in (4.15) denotes the starting position of the k-th false positive.
For the threshold to be optimal there must be at least min{n ∈ N : nc1π1 > kc0π0}
positives to the right plus another fp− k negatives. The index of the k-th false positive
is, however, limited to tp− fp− (k− 1), which is the case when no positive instances are
to the left.

The parameter stopk in (4.16) denotes the final stopping position of the k-th false positive.
It equals the starting index plus l2, which denotes the maximal number of shifts the
positive instance can undertake before the threshold becomes suboptimal. In this case
the positive domain would switch to the other side and its position would switch to

35

4. ETC: Expected Prediction Error of the Threshold Classifier

start+ l2 + 1. However, the stopping index can never exceed tp+ fp− (k − 1) because
at this position there are no more positives to the left of the k-th false positive.

Equivalent recursive expressions for |S+,→
fn,fp|, |S

−,←
fn,fp|, and |S

−,→
fn,fp| are (4.17), (4.20), and

(4.22).

|S−,←fn,fp| =
stop1∑

j1=start1

min{stop2,j1−1}∑
j2=start2

· · ·
min{stopfn,jfn−1−1}∑

jfn=startfn

1, where (4.17)

startk = min {tn+ fn− (k − 1), vk + (fn− k) + 1} , (4.18)
vk = {n ∈ N : nc0π0 ≥ (fn− k + 1)c1π1} ,

stopk = min{tn+ fn− (k − 1), startk + wk}, (4.19)
wk = max{n ∈ N : fp c0π0 + fn c1π1 < (tn− vk − n) c0π0 + (tp+ fn− k)c1π1}.

|S+,→
fn,fp| =

stop1∑
i1=start1

min{stop2,i1−1}∑
i2=start2

· · ·
min{stopfp,ifp−1−1}∑

ifp=startfp

1, where (4.20)

startk = min {tp+ fp− (k − 1), vk + (fp− k) + 1} ,
vk = min {n ∈ N : nc1π1 ≥ (fp− k + 1)c0π0} ,

stopk = min {tp+ fp− (k − 1), startk + wk} , (4.21)
wk = max {n ∈ N : fp c0π0 + fn c1π1 < (tp− vk − n) c1π1 + (tn+ fp− k)c0π0} .

|S−,→fn,fp| =
stop1∑

j1=start1

min{stop2,j1−1}∑
j2=start2

· · ·
min{stopfn,jfn−1−1}∑

jfn=startfn

1, where (4.22)

startk = min {tn+ fn− (k − 1), vk + (fn− k) + 1} ,
vk = min {n ∈ N : nc0π0 > (fn− k + 1)c1π1} ,

stopk = min{tn+ fn− (k − 1), startk + wk}, (4.23)
wk = max{n ∈ N : fp c0π0 + fn c1π1 ≤ (tn− vk − n) c0π0 + (tp+ fn− k)c1π1}.

Consider a permutation with a threshold at the optimal position. Without loss of
generality the positive domain is on the left side. In this situation we will modify the
permutation by shifting a positive instance to a higher index number. To be more precise,
we will shift the position of the k-th false positive from position i to i+ 1. Only the cost
of thresholds located at position i are affected by such a shift. The cost of the threshold
with the positive domain on the left is increased, while the cost of the threshold with the
positive domain on the right side is decreased. Thus, the permutations obtained by such
a shift are only valid permutations of the current set, as long as the cost of this threshold
is not lower than the one of the currently optimal threshold. This is guaranteed by the
inequalities (4.16), (4.19), (4.21), and (4.23).

36

4.3. Derivation of the Null Distribution

4.3.3 Implementation

Since the starting and stopping indices of the sum of index ik depend on the current value
of the index ik−1 and the number of sums depends on the number fp and fn, Equation
(4.14) is implemented as a recursive scheme. The initial recursion level equals the number
of false positives or false negatives. The recursive function calls itself, recalculating the
start and stop indices for the lower level until the base case is reached. In this case, the
algorithm simply returns stopifp

− startifp
. A flow chart of this scheme can be found in

Figure 4.6.

The strength of this recursive scheme is that it only requires three arguments: level, start,
and stop. This means that, except for the parameters, the number of possible positions
of ik only depends on the position of ik−1 and ik+1. The position of the other instances
are irrelevant.

r e cu r s i v e_ func t i on (map, l e v e l , s t a r t , stop) {
i f (l e v e l , s t a r t , stop) in map . keys {

return map . va lue s [(l e v e l , s t a r t , stop)]
} e l s e {

i f l e v e l==1 {
map . va lue [(l e v e l , s t a r t , stop)] = stop − s t a r t
re turn stop − s t a r t

} e l s e {
sum = 0 ;
f o r i in s t a r t to stop {

s t a r t . new = ca l c . s t a r t (i , fp , fn , s t a r t , stop)
stop . new = ca l c . stop (i , fp , fn , s t a r t , stop)
sum = sum + recu r s i v e_ func t i on (map , l e v e l − 1 , s t a r t . new , stop . new)

}
map . va lue [(l e v e l , s t a r t , stop)] = sum
return sum
}

}
}

The correctness of the implemented algorithm was tested in two different ways. For
sample sizes up to 15, it was computationally feasible to generate a matrix with all
possible permutations using the allPerm function from the multicool package. The
algorithm is described in Williams (2009). Then row-wise the function phi was applied
and different statistics such as the overall number of permutations for every pair (fp, fn),
the distribution of the cost values, etc. was calculated. The second approach, which
allows to test the correct working of the algorithm for larger sample sizes was simply to
add up the number of permutations for every point in the support and to verify that
they add up to

(n
n1

)
. The code for these tests can be found in etc_tests.R.

The described method has been implemented for the R software platform (R Core

37

4. ETC: Expected Prediction Error of the Threshold Classifier

etc_ND.R

posLeft.cpp

negRight.cpp

posRight.cpp

negLeft.cpp

posLeft_rec.cpp

negRight_rec.cpp

posRight_rec.cpp

negLeft_rec.cpp

Figure 4.6: This figure illustrates the structure of functions used for the calculation of
the null distribution of ÊTC. Different functions are required for the calculation of the
favorable permutation of the positive domain on the left and right and the negative
domain on the left and right. These functions further call recursive functions, calling
themselves until the base case is reached.

Team, 2015) and is part of the UNIC package that has been published unter the GNU
general public license. The challenges of implementing it were twofold. First, since it is
recursive in nature, the number of function calls grows exponentially as the sample size
increases and so does the required computation time, which is O(2n), where n denotes
the sample size. Especially at lower recursion levels the function will be called repeatedly
with the exact same arguments. This can be avoided by means of memoization or
dynamic programming techniques which store the input arguments and the output in
a suitable data object and use the cached results instead of calling the function again.
Furthermore, the recursive functions were implemented in C++ using the Rcpp package,
see Eddelbuettel and François (2011). The modified algorithm is of the order O(1.05n).
The performance gains resulting from these modifications are illustrated in Figure 4.7.

38

4.3. Derivation of the Null Distribution

50 100 150 200

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

Sample Size

T
im

e
 i
n
 S

e
c
o
n
d
s

Figure 4.7: This figure illustrates the time necessary for computing the ND on a standard
PC with 4 kernels in seconds as a function of the sample size. The dotted line represents
the standard algorithm implemented in R. The dashed line introduces memoization to the
algorithm within the R platform. The solid line, which clearly, outperforms the others,
represents the algorithm implemented in C++ including memoization.

Secondly, as the sample size increases, the number of possible permutations quickly
exceeds the maximum integer value. This happens when the sample contains more
than 30 instances. Thus, high precision numbers are needed to run the algorithm and
save its results. The GNU multiple precision arithmetic library GMP (Granlund et al.,
1993–2017) was used.

Another challenge concerns the existence of ties in the data. Theoretically, if the
distribution of X is continuous, there will almost surely be no tied order statistics.
However, in real data applications, there might be instances with the same value and
different class labels. The implemented algorithm proceeds by calculation of both test
statistics and returning the more conservative value.

39

CHAPTER 5
EIC: Expected Prediction Error

of the Interval Classifier

In this section a non-parametric equivalent of EBC with unequal variances (σ0 6= σ1)
will be introduced and studied. In Theorem 1 we have learned that for Gaussian class
conditionals with unequal variances the optimal classifier is an interval classifier. In
this section we will chose a more direct nonparametric approach to deriving a classifier.
Instead of making a parametric assumption for the CCDs and fitting the classifier by
optimizing the parameters, we will limit our search to the family of interval classifiers,
defined in (5) and minimize the sample error. Let us define EIC, the expected prediction
error of the optimal interval classifier

EIC := min
δ∈FI

EPE(δ). (5.1)

This statistic estimates the prediction error resulting from mapping all values from an
interval to one class and all values from its complement to the other class. It ranges
from 0, when perfect separation is possible, to min (c0π0, c1π1), when X exhibits no
discriminatory power with respect to the classes of Y .

5.1 Sample Estimate of EIC
Again, suppose (xi, yi), i = 1, . . . , n, are i.i.d. realizations of (X,Y) and let n1 :=

∑n
i=1 yi

and n0 := n−n1 denote the number of positives and negatives, respectively. Without loss
of generality let us assume that yi = 0 for i = 1, . . . , n0 and yi = 1 for i = n0 + 1, . . . , n.
To derive a sample estimate of EIC we simply need to substitute the false positive and
false negative rates in (2.6) by their empirical counterparts (2.7). Note, that due to the
specific form of an interval classifier its false negative rate P [δ(t1,t2](X) = 1|Y = 0] is
simply F 0(t2) − F 0(t1), the difference of the cumulative CCD evaluated at t2 and t1.

41

5. EIC: Expected Prediction Error of the Interval Classifier

By the same argument P [δR\(t1,t2](X) = 0|Y = 1] = 1− (F 1(t2)− F 1(t1)). Substituting
these expressions by their empirical counterparts, yields

ÊPE(δ(t1,t2]) = c0π0
1
n0

∑
i:yi=0

1(t1,t2](xi)︸ ︷︷ ︸
false positive rate

+ c1π1
1
n1

∑
i:yi=1

1R\(t1,t2](xi)︸ ︷︷ ︸
false negative rate

ÊPE(δR\(t1,t2]) = c0π0
1
n0

∑
i:yi=0

1R\(t1,t2](xi)︸ ︷︷ ︸
false positive rate

+ c1π1
1
n1

∑
i:yi=1

1(t1,t2](xi)︸ ︷︷ ︸
false negative rate

.
(5.2)

Note that ÊPE(δ(t1,t2]) is constant e.g. for all thresholds t1 ∈ [x(i), x(i+1)), where x(i)
denotes the j-th order statistic of the sample and the same holds true for all thresholds
t2 ∈ [x(j), x(j+1)). Thus, instead of having to search R it suffices to find the minimum of
(n+ 1)2/2 values. Exploiting this fact leads us to the empirical counterpart of (5.1),

ÊIC = min
{

min
i≤j=1,...,n

ÊPE(δ(xi,xj]), min
i≤j=1,...,n

ÊPE(δR\(xi,xj])
}
. (5.3)

The method can more easily be understood when it is described in an algorithmic manner.

EIC Consider the data (xi, yi)i=1,...,n.

• Sort (xi, yi), i = 1, . . . , n in increasing order, such that x(1) ≤ x(2) ≤ . . . ≤ x(n).

• Calculate ÊPE(δ(x(i),x(j)]) and ÊPE(δR\(x(i),x(j)]) for i ≤ j = 1, . . . , n and

• find ÊIC = min
{
ÊPE(δ(x(i),x(j)]), ÊPE(δR\(x(i),x(j)]) : i ≤ j = 1, . . . , n

}
.

Note that the sample estimate of ÊIC will always be lower than the sample estimate
of ÊTC. This becomes clear when one realizes that the result of the optimal threshold
classifier can be obtained by setting one boundary to the position of the threshold and
the second either above the maximum sample value or below the minimum sample value
depending on the direction of the threshold classifier.

5.2 Properties of ÊIC

This chapter will establish some results on the bias, consistency and efficiency of the
sample estimate of EIC. Following the same arguments as in Section 4.2 we will see that

42

5.2. Properties of ÊIC

Positive Interval

Position of Right Threshold

P
os

iti
on

 o
f L

ef
t T

hr
es

ho
ld

 0.1

 0
.2

 0.2

 0.2

 0.3

 0
.3

 0.3

 0.3

 0
.3

 0.4

 0
.4

 0.4

 0
.4

 0.5

 0.6

 0.6

 0
.7

 0.7

 0.7
 0.7

 0.8

 0.8

 0
.9

 0.9

 1

 1

 1.1

 1.1

0 10 20 30 40 50

0
10

20
30

40
50

Negative Interval

Position of Left Threshold

P
os

iti
on

 o
f R

ig
ht

 T
hr

es
ho

ld

 0.4

 0.4

 0.
4

 0
.4

 0.5

 0.5

 0.6

 0.6

 0.6

 0
.6

 0.7

 0.7

 0.8

 0.9
 0.9

 0.9

 1
 1.1

 1
.1

 1.2

 1.
2

 1.3

 1.4

0 10 20 30 40 50

0
10

20
30

40
50

Figure 5.1: Illustration of the EIC algorithm. The plot on the left illustrates the cost
generated by an interval classifier with a positive interval depending on the position of
the left and right boundaries. The x and y-axis denote the rank in the vector of ordered
values. The right plot illustrates the costs of a negative interval.

ÊIC is a biased estimator of EIC even though, ÊPE(δ(t1,t2]) is an unbiased estimator
of EPE(δ(t1,t2]),

E
[
ÊPE(δ(t1,t2])

]
= c0π0

1
n0

∑
i:yi=0 E1(t1,t2](xi) + c1π1

1
n1

∑
i:yi=1 E1R\(t1,t2](xi) =

= c0π0(F 0(t2)− F 0(t1)) + c1π1
(
1− (F 1(t2)− F 1(t1))

)
,

since 1(t1,t2](X0) ∼ B1,F 0(t2)−F 0(t1) and 1R\(t1,t2](X0) ∼ B1,1−(F 0(t2)−F 0(t1).

Let us assume without loss of generality that δ(t∗1,t∗2] yields the minimal EPE among
all interval classifiers. Trying to estimate t∗1 and t∗2 by means of the samples xi and xj
which minimize ÊPE(δ(xi,xj]) introduces a bias. Since there will always exist indices
i ≤ j ∈ 1, . . . , n such that ÊPE(δ(xi,xj]) = ÊPE(δ(t∗1,t∗2]), the following inequality holds

E
[

min
i≤j=1,...,n

ÊPE(δ(xi,xj])
]
≤ E

[
ÊPE(δ(t∗1,t∗2])

]
.

In order to visualize the bias of ÊIC a simulation study was conducted. Random numbers
of two Gaussian variables with an increasing difference in their means and an increasing
ratio of their variances were drawn repeatedly and the mean values of the statistics of
ÊIC and ÊBC were calculated. The true prediction error of the Bayes classifier was
calculated and is depicted in Figure 5.2. The differences to the true prediction error are

43

5. EIC: Expected Prediction Error of the Interval Classifier

0

1

2

3

4

5
−3 −2 −1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

µ1 − µ0

log2(σ1 σ0)

Tr
ue

 P
re

di
ct

io
n

E
rr

or

Figure 5.2: This figure illustrates the true prediction error of the Bayes Classifier for two
Gaussian class conditionals X0 ∼ N(µ0, σ

2
0) and X1 ∼ N(µ1, σ

2
1) as a function of µ1−µ0

and log 2(σ1/σ0). One can clearly see that as the CCDs become less alike either by an
increasing difference in their central location or an increasing difference between their
variances the expected error of a prediction falls to 0.

depicted in Figure 5.3. It is not surprising that ÊBC shows only a very small bias, which
probably stems from the estimates of the mean and the variance, which are itself no
unbiased estimates of the parameters of the Gaussian distribution. ÊIC, however, shows
a significant bias which increases as the discriminatory power of the random variable
decreases.

44

5.2. Properties of ÊIC

0

1

2

3

4

5
−3 −2 −1 0 1 2 3

0.00

0.02

0.04

0.06

0.08

0.10

µ1 − µ0

log2(σ1 σ0)

B
ia

s
of

 E
IC

0

1

2

3

4

5
−3 −2 −1 0 1 2 3

0.00

0.02

0.04

0.06

0.08

0.10

µ1 − µ0

log2(σ1 σ0)

B
ia

s
of

 E
B

C

Figure 5.3: The figures illustrate the bias of the estimates ÊIC and ÊBC as a function
of µ1 − µ0 and log 2(σ1/σ0). The bias, thus, depends strongly on the discrimatory power
of the class conditionals. For Gaussian class conditionals with a limited discriminatory
power the bias is greatest.

45

5. EIC: Expected Prediction Error of the Interval Classifier

The following theorem will establish the consistency of ÊTC. It is more or less a corollary
of theorem 2 since the arguments are exactly the same.

Theorem 4 Assume continuous class conditional distributions F 0 and F 1 and a unique
minimizer of EIC, then ÊIC is a consistent estimator of EIC,

plimn→∞ÊICn = EIC.

Proof 4 Consider an independent and identically distributed sample (Xi, Yi)i=1,...,n,
where
Xi|Yi = 0 ∼ F 0 and Xi|Yi = 1 ∼ F 1. To establish the consistency, we have to show that

∀ε > 0 : lim
n→∞

P
[∣∣∣ÊICn − EIC∣∣∣ > ε

]
= 0. (5.4)

Without loss of generality assume that δ(t∗1,t∗2] minimizes the prediction error among all
interval classifiers

δ(t∗1,t∗2] = argmin
δ∈FI

EPE(δ)

and, thus,

EIC = min
δ∈FI

EPE(δ) = EPE(δ(t∗1,t∗2]) = c0π0(F 0(t∗2)−F 0(t∗1))+c1π1(1−(F 1(t∗2)−F 1(t∗1))).

Inserting this expression is (5.4) yields

∀ε > 0 : lim
n→∞

P
[∣∣∣ÊICn − (c0π0(F 0(t∗2)− F 0(t∗1)) + c1π1(1− (F 1(t∗2)− F 1(t∗1)))

)∣∣∣ > ε
]

= 0.

Lets us start with the definition of ÊIC, perceived as a random variable

ÊICn = min
{

min
i≤j=1,...,n

ÊPE(δ(Xi,Xj]), min
j=1,...,n

ÊPE(δR\(Xi,Xj])
}
.

The minimum is a continuous function and, thus, by virtue of the continuous map-
ping theorem all we need to show is the consistency of its arguments. Due to the
assumptions made about δ(t∗1,t∗2] we will show the convergence of the first argument. As
n → ∞, both n0, n1 → ∞ at rates n1 ≈ π1n and n0 ≈ π0n. Further, let us denote
F̂ 0
n0(x) := 1

n0

∑
i:Yi=0 1(−∞,x)(Xi) and F̂ 1

n1(x) := 1
n1

∑
i:Yi=1 1(−∞,x)(Xi). The problem

then translates to showing that ∀ε > 0 :

lim
n→∞

P

[∣∣∣∣∣ min
i≤j=1,...,n

c0π0
(
F̂ 0
n0(Xj)− F̂ 0

n0(Xi)
)

+ c1π1
(
1−

(
F̂ 1
n1(Xj)− F̂ 1

n1(Xi)
))
−

−
(
c0π0(F 0(t∗2)− F 0(t∗1)) + c1π1(1− (F 1(t∗2)− F 1(t∗1)))

) ∣∣∣∣∣ > ε

]
= 0

46

5.2. Properties of ÊIC

By virtue of the Glivenko-Cantelli theorem, the empirical distribution functions converge
almost surely uniformly to the true distribution functions supx∈R |F̂ 0

n0(x)− F 0(x)| a.s.−−→ 0
and supx∈R |F̂ 1

n1(x)− F 1(x)| a.s.−−→ 0. If we define

Qn(t1, t2) := c0π0
(
F̂ 0
n0(t2)− F̂ 0

n0(t1)
)

+ c1π1
(
1−

(
F̂ 1
n1(t2)− F̂ 1

n1(t1)
))

and
Q(t1, t2) :=

(
c0π0(F 0(t2)− F 0(t1)) + c1π1(1− (F 1(t2)− F 1(t1)))

)
then

sup
(t1,t2)∈R2

∣∣∣Qn(t1, t2)−Q(t1, t2)
∣∣∣ a.s.−−→ 0,

will also converge uniformly almost surely.

Note that since F 0 and F 1 are continuous, so is Q, which is a nonrandom function with
a unique minimum at θ∗ = (t∗1, t∗2). Further, let us denote the minimizer of Qn as

θ̂n := arg min
(t1,t2)∈R2

Qn(t1, t2) = min
i≤j=1,...,n

Qn(Xi, Xj).

We will now argue that under these circumstances the minimizer of Qn will converge in
probability to the minimizer of Q.

For every ε > 0 we have

c(ε) := inf
θ∈Θ:||θ−θ∗||≥ε

Q(θ) > Q(θ∗)

since {θ ∈ Θ ⊆ R2 : ||θ− θ∗|| ≥ ε} is compact and Q(θ) is continuous, and since θ∗ is the
unique minimizer of Q. Choose 0 < δ < 1/2(c(ε)−Q(θ∗)), i.e., δ is such that

c(ε)− δ > Q(θ∗) + δ.

Note that δ = δ(ε). On the event{
sup
θ∈Θ
|Qn(θ)−Q(θ)| < δ

}

we then have

inf
θ∈R2:||θ−θ∗||≥ε

Qn(θ) ≥ inf
θ∈Θ:||θ−θ∗||≥ε

Q(θ)− δ = c(ε)− δ > Q(θ∗) + δ ≥ Qn(θ∗) ≥ Qn(θ̂n)

That is, on the above event we obtain that

||θ̂n − θ∗|| < ε.

47

5. EIC: Expected Prediction Error of the Interval Classifier

In other words, {
||θ̂n − θ∗|| < ε

}
⊇
{

sup
θ∈Θ
|Qn(θ)−Q(θ)| < δ

}
.

But

P

(
sup
θ∈Θ
|Qn(θ)−Q(θ)| < δ

)
→ 1,

and hence
P
(
||θ̂n − θ∗|| < ε

)
→ 1

which establishes the required consistency.

�

5.3 Derivation of the Null Distribution
In this section we will establish the distribution of the test statistic ÊIC under the null
hypothesis H0 : F 0 = F 1. This distribution allows to assign a p-value to every value
of ÊIC. It, thus, yields the probability that the observed or a more extreme outcome
is obtained under the null hypothesis that X exhibits no information about the class
membership.

5.3.1 Independence of the CCDs under H0

Similar to the theorem in Section 4.3.1, we would like to obtain the result that the ND
of ÊIC is independent of F 0 and F 1 under H0 : F 0 = F 1. The proof follows the exact
same arguments as Theorem 3.

Theorem 5 Consider the i.i.d. samples of the class-conditional random variables X0
i ∼

F 0, i = 1, . . . , n0 and X1
i ∼ F 1, i = n0 +1, . . . , n. Under the null hypothesis H0 : F 0(x) =

F 1(x), ∀x ∈ X the sampling distribution of ÊIC is independent of F 0 and F 1.

Proof 5 Consider r, defined in (4.5), which will factorize ÊIC in the following manner
ÊIC ≡ ÊICP ◦ r. The following commutative diagram illustrates this factorization.

(X , {0, 1})n ÊIC //

r
&&

R+

Pn1,n0

ÊICP

<<

If we show the validity of this factorization, all other arguments of the proof of Theorem
(3) hold true. Thus, let us rewrite the first argument of (5.3).

48

5.3. Derivation of the Null Distribution

min
i≤j=1,...,n

ÊPE(δ(x(i),x(j)]) = min
i≤j=1,...,n

c0π0
1
n0

∑
i:yi=0

1(t1,t2](xi) + c1π1
1
n1

∑
i:yi=1

1R\(t1,t2](xi)

= min
i≤j=1,...,n

c0π0
1
n0

j∑
k=i

(1− y(k)) + c1π1
1
n1

 i∑
k=1

y(k) +
n∑

k=j+1
y(k)


The factorization of mini≤j=1,...,n ÊPE(δR\(t1,t2]) follows along the same lines.

�

The derivation of the ND of ÊIC differs from the approach chosen for the ND of ÊTC.
For ÊTC the calculation is based on an efficient recursive counting scheme in Pn1,n0

which requires only three arguments, the recursion level and the starting and stopping
value for the index, three integer values. Unfortunately, for ÊIC an analogous approach
is not entirely possible, since it would require the position of all the false instances in
the domain. However, for "small values" of fp and fn, the position of the neighboring
instances are sufficient. Thus, a similar recursive scheme, introduced in Section 5.3.2,
can be used to calculate the ND of the tail in an exact manner. For the rest of the
distribution we will use two other approaches. The region around the mode of the ND
will be obtained by means of random permutations of the class labels, see Section 5.3.3.
This is where the applied method yields the most accurate approximations of the true
value of the ND. All other points in the support of the ND will be obtained by means of
an interpolation, see Section 5.3.4. The approach is illustrated in Figure 5.5.

5.3.2 The Algorithm

The counting algorithm for ÊIC proceeds in a similar manner as in Section 4.3.2. However,
we will see that the simplified version presented in this section only allows an exact
calculation up to fp, fn ≤ floor(min(n1, n0)/2). An algorithm suitable for the entire
support of the ND would require many more arguments rendering the memoization
inefficient. Thus, the calculation would not be feasible in a reasonable time span.

First we shall shift the problem of calculating the ND of ÊIC from the sample space
(X , {0, 1})n) to Pn1,n0 , where we know that the induced distribution is uniform. Then we
will define a partition of Pn1,n0 with sets R that are characterized by the fact that they
incur the same number of false positives and false negatives under the optimal interval
classifier.

Pn1,n0 =
⋃

0≥fn≥n1
0≥fp≥n0

Rfn,fp, where (5.5)

Rfn,fp := {p ∈ Pn1,n0 : ψ(p) = (fn, fp)} , (5.6)

49

5. EIC: Expected Prediction Error of the Interval Classifier

ψ(p) :=



(
i∑

k=1
pk +

n∑
k=j+1

pk,
j∑

k=i+1
1− pk

)
, (i, j) = argmin

i≤j
j − i : argmin

i≤j=1,...,n
E{i,...,j}(p)

if min
j=1,...,n

E{i,...,j}(p) ≤ min
j=1,...,n

E{1,...,i}∪{j+1,...,n}(p)(
j∑

k=i+1
pk,

i∑
k=1

1− pk +
n∑

k=j+1
1− pk

)
, (i, j) = min

j−i
argmin
i≤j=1,...,n

E{1,...,i}∪{j+1,...,n}(p)

else
(5.7)

Also for ÊIC for a given permutation the minimal prediction error can be obtained by
different positions of the thresholds. Thus, we require two conventions which are implicit
in Equation (5.7). First, if there are several pairs (fp, fn) which yield the same cost,
the pair with the smallest number of false negatives is chosen. This is ensured by the
expression argmin j − i. Secondly, if a positive interval yields the same cost as a positive
complement, then the positive interval is selected. This convention is ensured by the "≤"
in the if statement of (5.7).

The algorithm devised in the section is supposed to count the permutation for the sets
Rfn,fp which lie on the tail of the ND. First, we shall further split these sets

Rfn,fp = R+
fn,fp ∪R

−
fn,fp,

where R+
fn,fp denotes the set of permutations with a positive interval domain

R+
fn,fp :=

{
p ∈ Pn1,n0 : min

i≤j=0,...,n
E{i+1,...,j} ≤ min

i≤j=0,...,n
E{0,...,1}∪{j,...,n}

}
and R−fn,fp denotes the set of permutations with a negative interval domain

R−fn,fp :=
{
p ∈ Pn1,n0 : min

i≤j=0,...,n
E{i+1,...,j} > min

i≤j=0,...,n
E{0,...,1}∪{j,...,n}

}

For every permutation p ∈ Pn1,n0 the position of the left and the right threshold
is unambiguous by convention and divides the permutation into an interval and a
complement with tp+ fn or tn+ fp instances, respectively, depending on the position of
the positive domain. The complement consists of a left and a right side. The instances of
the complement are divided between the two sides. The number of favorable permutations
can be counted separately for each domain since every combination of a permutation of
the left complement, the interval, and the right complement form a valid permutation.
Thus, similar to Equation (4.12) we can express the cardinality of R+

fn,fp and R−fn,fp as

|R+
fn,fp| = |R

−,←
fn,fp| · |R

+,><
fn,fp | · |R

−,→
fn,fp|

50

5.3. Derivation of the Null Distribution

... ...

Figure 5.4: This figure illustrates two characteristics of the algorithm. First, it shows
the independence of the domains. The optimality of the boundaries indicated in black
after a shift of a negative instance in a positive domain only depends on the position of
the negative instances in the same domain. Secondly, it also depicts a situation which
illustrates why a recursive function calculating the number of permutations for a given
set must take more arguments into account than the level, the start index, and the
stopping index. In this case cost attributed to the gray boundaries depend on the position
of the false negative instances to the right of the shifting instance. If there are three
negative instances in a row, then the gray boundaries will become optimal. Thus, the
recursive scheme must consider the position of every negative instance, rendering the
memoization method ineffective and ultimately making the execution of the recursive
schema computationally infeasible for sample sizes above 20.

|R−fn,fp| = |R
+,←
fn,fp| · |R

−,><
fn,fp | · |R

+,→
fn,fp|

For every set we can construct a starting permutation. For the complement this permuta-
tion is characterized by the quality that the false instances are as close to the boundaries
of the interval as possible. For the interval the starting permutation is characterized
by the quality that the instances are as far left as possible. The number of instances
in the left complement can vary between 0 and fp+ tn or fn+ tp for R+,←

fn,fp or R−,←fn,fp,
respectively. The same holds true for the right complements R+,→

fn,fp and R−,→fn,fp. Thus,
we need to generate the starting and stopping permutations for every single cardinality.

There is a big difference compared to the algorithm of Section 4.3.2. Remember that the
starting and stopping indexes of false instance i depend only on the current positions of
i− 1 and i+ 1, if they exist. This nice feature allows a very easy recursive algorithm.
This nice feature, unfortunately, does not hold true for ÊIC. In Figure 5.4 we can see an
example of a situation where the evaluation of whether an instance can shift one position
further depends on many other instances in this domain.

In the following expression fp.l, fp.r, fn.l, and fn.r denote the false positives and
the false negatives on the left and the right complement, respectively. The indexing
convention is as follows: The positions in the interval are numbered from left to right.
The positions in the complement increase when moving away from the threshold. The
false instances in the interval are numbered from left to right. The left-most instance
has the number one which corresponds with the level of the recursive algorithm. The

51

5. EIC: Expected Prediction Error of the Interval Classifier

false instances in the complements are numbered from the extremes to the center. The
outermost false instance has the number one, which again corresponds with the level of
the recursive algorithm.

|R+,><
fn,fp | =


0 if ∃k ∈ {1, . . . , n} : vk + k > fp+ tp− (fp− k − 1)− vfp−k+1

min{i2−1,stop1}∑
i1=start1

min{i3−1,stop2}∑
i2=max{i1+1,start2}

· · ·
stopfp∑

ifp=max{ifp−1+1,startfp}
1 else ,

(5.8)

where

vk = min {n ∈ N : nc1π1/n1 ≥ kc0π0/n0} , (5.9)
startk = vk + fp− k + 1, (5.10)
stopk = fp+ tp− (k − 1)− vfp−k+1. (5.11)

The name of the implementation of this recursive scheme is posInt.cpp.

|R−,><fn,fp | =


0 if ∃k ∈ {1, . . . , n} : vk + k ≥ fn+ tn− (fn− k − 1)− vfn−k+1

min{i2−1,stop1}∑
i1=start1

min{i3−1,stop2}∑
i2=max{i1+1,start2}

· · ·
stopfn∑

ifn=max{ifn−1+1,startfn}
1 else ,

(5.12)

where

vk = min {n ∈ N : nc0π0/n0 ≥ kc1π1/n1} , (5.13)
startk = vk + fn− k + 1, (5.14)
stopk = fn+ tn− (k − 1)− vfn−k+1. (5.15)

The name of the implementation of this recursive scheme is negInt.cpp.

|R+,←
fn,fp| =


0 if ∃k ∈ {1, . . . , n} : vk + fp.l − k + 1 > fp.l + tp.l − wk

stop1∑
i1=max{i2+1,start1}

min{i1−1,stop2}∑
i2=max{i3+1,start2}

· · ·
min{ifp.l−1−1,stopfp.l}∑

ifp.l=startfp.l

1 else
,

(5.16)

where

vk = min {n ∈ N : nc1π1/n1 ≥ kc0π0/n0} , (5.17)
startk = vk + k, (5.18)

wk = min {n ∈ N : (n+ tp.r)c1π1/n1 ≥ c0π0/n0(fp.r + (fp.l − k + 1))} (5.19)
stopk = fp.l + tp.l − (wk + (fp.l − k)). (5.20)

52

5.3. Derivation of the Null Distribution

|R+,→
fn,fp| =


0 if ∃k ∈ {1, . . . , n} : vk + fp.r − k + 1 ≥ fp.r + tp.r − wk

stop1∑
i1=max{i2+1,start1}

min{i1−1,stop2}∑
i2=max{i3+1,start2}

· · ·
min{ifp.r−1−1,stopfp.r}∑

ifp.r=startfp.r

1 else
,

(5.21)

where

vk = min {n ∈ N : nc1π1/n1 ≥ kc0π0/n0} , (5.22)
startk = vk + k, (5.23)

wk = min {n ∈ N : (n+ tp.l)c1π1/n1 ≥ c0π0/n0(fp.l + (fp.r − k + 1))} (5.24)
stopk = fp.r + tp.r − (wk + (fp.r − k)). (5.25)

The name of the implementation of these two recursive schemes is posComp.cpp.

|R−,←fn,fp| =


0 if ∃k ∈ {1, . . . , n} : vk + fnl − k + 1 > fn.l + tn.l − wk

stop1∑
i1=max{i2+1,start1}

min{i1−1,stop2}∑
i2=max{i3+1,start2}

· · ·
min{ifn.l−1−1,stopfn.l}∑

ifn.l=startfn.l

1 else
,

(5.26)

where

vk = min {n ∈ N : nc0π0/n0 ≥ kc1π1/n1} , (5.27)
startk = vk + k, (5.28)

wk = min {n ∈ N : (n+ tn.r)c0π0/n0 ≥ c1π1/n1(fn.r + (fn.l − k + 1))} (5.29)
stopk = fn.l + tn.l − (wk + (fn.l − k)). (5.30)

|R−,→fn,fp| =


0 if ∃k ∈ {1, . . . , n} : vk + fn.r − k + 1 ≥ fn.r + tn.r − wk

stop1∑
i1=max{i2+1,start1}

min{i1−1,stop2}∑
i2=max{i3+1,start2}

· · ·
min{ifn.r−1−1,stopfn.r}∑

ifn.r=startfn.r

1 else
,

(5.31)

where

vk = min {n ∈ N : nc0π0/n0 ≥ kc1π1/n1} , (5.32)
startk = vk + k, (5.33)

wk = min {n ∈ N : (n+ tn.l)c0π0/n0 ≥ c1π1/n1(fn.l + (fn.r − k + 1))} (5.34)
stopk = fn.r + tn.r − (wk + (fn.r − k)). (5.35)

The name of the implementation of these two recursive schemes is negComp.cpp.

53

5. EIC: Expected Prediction Error of the Interval Classifier

5.3.3 Random Permutation

Since the algorithm does not deliver the number of permutations for all points in the
support of ÊIC we will resort to a resampling approach for the estimation of the remaining
values of the distribution, see Edgington (2011) for an introduction. This approach
establishes the ND by randomly rearranging the class labels N times and calculating the
test statistic ÊIC((Xi, Ypj(i))i=1,...,n) for j = 1, . . . , N , yielding ÊIC1, . . . , ÊICN . The
probability is then estimated by the share of instances that yields a certain value

P
[
ÊIC = x

]
=

1 +
∑N
j=1 1(ÊICj=x)

N
.

However, even for N ≈ 1 · 106 the number of observed permutations which yield a certain
value will be small if P [ÊIC = x] < 1 · 10−5 and, thus, the obtained estimation will be
inaccurate. Thus, only values that account for more than 0.1% of all permutations will
be estimated by this approach.

5.3.4 Interpolation

For those values in the support of ÊIC which could not be calculated by means of the
algorithm described in Section 5.3.2 and which had too little probability mass to allow
an accurate estimation by means of random permutations we will resort to interpolation.
In Figure 5.5 we can see that this is the case for two regions - to the left and to the
right of the mode. For both regions we will calculate the cumulative probability function
and interpolate using a method introduced by Hyman (1983). This algorithm constructs
monotonicity preserving cubic Hermite interpolants.

For the left region we can use the values obtained through the algorithm to the left
and the permutation approach to the right. For the right region we can use the values
obtained through the permutation approach and the rightmost value which must equal 1.
The results for such an interpolation task can be seen in Figure 5.5, illustrated by the
red points.

5.3.5 Implementation

A flow chart of the implementation of the recursive schema can be found in Figure 5.6.
The correctness of its implementation can only be assessed for small sample sizes. As
for ÊTC this was achieved by generating the matrix of all possible permutations and
applying ψ row-wise. This was undertaken by means of the allPerm function of the
multicool package. The algorithm is described in Williams (2009). The code for these
tests can be found in eic_tests.R.

The described method has been implemented for the R software platform and is also
part of the UNIC package. The challenges were the same as for ÊTC. The problem
of repeatedly calling the recursive function with the same arguments was tackled with

54

5.3. Derivation of the Null Distribution

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Null Distribution of EIC

x

f(
x)

● ● ● ● ● ●
●

●

●

●

●

●

●

●

● ●● ● ● ● ● ●
●

●

●

●

●

●

●
●

● ●

●

●

●

exact
permutation
intrapolation

Figure 5.5: This figure illustrates how the three different approaches used to generate the
ND, an exact counting algorithm, random permutations, and interpolation are spread
over the support. The parameters are n0 = 15, n1 = 15, c0 = 1, c1 = 3, and π0 = 0.5.

55

5. EIC: Expected Prediction Error of the Interval Classifier

eic_ND.R

posInt.cpp

negInt.cpp

posComp.cpp

negComp.cpp

posInt_rec.cpp

negInt_rec.cpp

posComp_rec.cpp

negComp_rec.cpp

Figure 5.6: This figure illustrates the structure of functions used for the calculation
of the null distribution of ÊIC. Different functions are required for the calculation
of the favorable permutation of the positive interval and complement as well as the
negative interval and complement. These functions further call recursive functions,
calling themselves until the base case is reached.

memoization. The problem that the space allocated for integers is not sufficient for the
number of permutations. This happens when the sample contains more than 30 instances.
Thus, high precision numbers are needed to run the algorithm and save its results. The
GNU multiple precision arithmetic library GMP (Granlund et al., 1993–2017) was used.

56

CHAPTER 6
Simulation Studies

This section intends to shed light on the capacity of EBCT , EBC, ETC, EIC, and
other comparable filters to select signal variables out of a large number of noise variables.
Filters are generally used in two ways. Either they are used as a ranking statistic and
the number of selected variables is based on other criteria, or the p-value of the statistic
is used to further decide on the number of selected variables. We will study both of these
capacities.

The first capacity will be quantified by the percentage of signal variables among the top
ranking variables, which we will call the filtering performance (FP). More formally, let
us generate 1000 signal variables and 99000 noise variables and draw a sample of size n
from each

Xij ∼ F 1 i = 1, . . . , n1; j = 1, . . . , 1000
Xij ∼ F 0 i = n1 + 1, . . . , n; j = 1, . . . , 1000
Xij ∼ F i = 1, . . . , n; j = 1001, . . . , 100000

. (6.1)

Thus, a signal variable is one that exhibits differing CCDs (F 0 6= F 1), whereas for a
noise variable the CCDs are identical. Since the true underlying distributions are known,
Yij = 1 for j ∈ 1, . . . , n1 and Yij = 0 for j ∈ n1 + 1, . . . , n. The performance of a filter f
for setting (6.1) can then be defined as

Performance(f) := 1
1000

1000∑
k=1

1(Rk < 1000),

where Rk is the rank of the k-th variable, if the filter f is monotone in its arguments and
yields small values to good random variables.

The second capacity will be quantified by the percentage of signal variables that are
labeled as insignificant by the filter, also referred to as false negative variables. Since the

57

6. Simulation Studies

number of false positives is highly influenced by the number of noise variables in the data
set, we would like to blend out this effect. Thus, we will simulate 1000 signal variables
and observe the percentage of variables that exhibit a p-value above 0.05.

% False Negatives = 1
1000

1000∑
k=1

1(pk > 0.05),

where pk denotes the p-value of the k-th variable. Since the results of the two approaches
are often comparable we will not plot the results for all settings but only for a selected
few.

The methods under scrutiny are EBCT , the prediction error of the LDA, EBC, the
prediction error of the QDA, ETC and EIC. Performance will serve as a proxy for
different qualities of the filters. The power will be considered in simulation studies A
and B, robustness to outliers in simulation study C and skewness in simulation study
D. The final experiment of this Chapter (simulation study E) will answer the question
how the performance of the filter statistics influences the classifier based on the filtered
subset of variables.

6.1 Simulation Study A : Power
In simulation study A, we will study the power of the methods under scrutiny. Since
the performance and the power of the statistics are closely related we can observe how
the performance of the filters increases with increasing sample size. In this experiment,
characterized in (6.2), the signal variables with a sample size of n ∈ [10, 200], where
n1 = n0 = n/2, are drawn from two Gaussian distributions N(µ1, 1) and N(µ0, 1), which
differ only with respect to their central location, ∆µ = µ1 − µ0 ∈ [0, 2.5].

Xij ∼ N (µ1, 1) i = 1, . . . , n1; j = 1, . . . , 1000
Xij ∼ N (µ0, 1) i = n1 + 1, . . . , n; j = 1, . . . , 1000
Xij ∼ N (0, 1) i = 1, . . . , n; j = 1001, . . . , 100000

(6.2)

Under these assumptions, the LDA is the Bayes classifier and, thus, EBCT will serve
as the benchmark to evaluate the loss in filtering performance of ETC and EBC, since
it represents the smallest obtainable value. The results can be found in Figures 6.10
and 6.11 in the appendix. To illustrate the differences more clearly, Figure 6.1 depicts
the performance differences of EBC, ETC and EIC to the benchmark EBCT . The left
column in Figure 6.1 assumes c1 = 1 and the second c1 = 6. The rows illustrate the
performance differences of EBC, ETC, and EIC, respectively. Not, surprisingly, the
nonparametric methods have a smaller power and, thus, their performance is inferior
when the sample size is limited. As the sample size increases this effect initially gets
larger. After a certain sample size depending on ∆µ the difference weakens and diminishes
completely. For a better illustration of the effects, however, these sample sizes were
excluded from the figure.

58

6.2. Simulation Study B : Power

EBC shows a slightly inferior power which stems from the fact that is has to estimate two
variances with only half the sample size than EBCT . However, by comparing the second
column to the first, it also becomes clear that with an increasing cost inequality the
performance difference of EBC increases faster than the nonparametric methods. This
seems to indicate that as the costs become more unequal small errors in the estimation
of the variances affect the estimation of the prediction error more heavily.

6.2 Simulation Study B : Power
In simulation study B, characterized in (6.3), we will generalize simulation setting A by
relaxing the assumption of equal variances of the Gaussian class conditionals. We, thus,
add one more dimension to the simulation experiment log2(σ1/σ0), where σ1 ∈ 2[−3,3]

and σ0 = 1/σ1. Since this makes a visual inspection impossible, we will hold the sample
size fixed at a level (n = 100) where the performance differences between the filters
manifest. As in simulation study A we will allow the difference in the central location to
differ, ∆µ = µ1 − µ0 ∈ [0, 2.5].

Xij ∼ N (µ1, σ
2
1) i = 1, . . . , 50; j = 1, . . . , 1000

Xij ∼ N (µ0, σ
2
0) i = 51, . . . , 100; j = 1, . . . , 1000

Xij ∼ N (0, 1) i = 1, . . . , 100; j = 1001, . . . , 100000
(6.3)

The results of simulation study B for varying costs c1 can be found in Figures 6.2 and
6.3 (c1 = 1) and Figures 6.12, 6.13, 6.14, and 6.15 (c1 = 3, 6) in the appendix. These
results clearly indicate that there are systematic differences in the performance of the
filter statistics when the assumption of equal variances is not met. Intuitively, the
stronger the CCDs differ from another, the easier it should be to predict the class based
on the observation of X. This characteristic can be observed for EBC, which yields
the prediction error the Bayes classifier under the current assumptions, except for the
hyperplane characterized by σ1 = σ0. The greater the difference between σ1 and σ0 the
better the filtering performance of EBC, see the top right illustration in Figures 6.2,
6.12, and 6.14. EIC the nonparametric equivalent shows the same trend as EBC with a
slightly inferior performance.

As we move away from the hyperplane σ1 = σ0, the Bayes classifier is not a member of
the family of threshold classifiers, since the optimal positive and negative domains are an
interval and its respective complement. The two filters based on threshold classification,
thus, become biased. However, this bias manifests differently. The performance of
EBCT deteriorates equally when we move away from the hyperplane and this trend is
independent of the costs. Contrary to EBCT , the performance of ETC depends strongly
on the misclassification costs. While for c1 = c0 ETC shows no systematic bias, for
c1 = 3, 6 the filter performance deteriorates completely on one side of the hyperplane.
ETC can benefit from differences in the variances of the CCDs if the positive class
exhibits the relatively lower variance and c1 > c0. This becomes clear, if one considers
the extreme case of σ1 = 0, where the positive CCD degenerates to a single point. Even

59

6. Simulation Studies

0.0 0.5 1.0 1.5 2.0 2.50
50

100
150

200

−100

−80

−60

−40

−20

0

∆µ

S
am

ple S
ize

∆
P

e
rf

o
rm

a
n
c
e 0.0 0.5 1.0 1.5 2.0 2.50

50
100

150
200

−100

−80

−60

−40

−20

0

∆µ
S
am

ple S
ize

∆
P

e
rf

o
rm

a
n
c
e

0.0 0.5 1.0 1.5 2.0 2.50
50

100
150

200

−100

−80

−60

−40

−20

0

∆µ
S
am

ple S
ize

∆
P

e
rf

o
rm

a
n
c
e 0.0 0.5 1.0 1.5 2.0 2.50

50
100

150
200

−100

−80

−60

−40

−20

0

∆µ

S
am

ple S
ize

∆
P

e
rf

o
rm

a
n
c
e

0.0 0.5 1.0 1.5 2.0 2.50
50

100
150

200

−100

−80

−60

−40

−20

0

∆µ

S
am

ple S
ize

∆
P

e
rf

o
rm

a
n
c
e 0.0 0.5 1.0 1.5 2.0 2.50

50
100

150
200

−100

−80

−60

−40

−20

0

∆µ

S
am

ple S
ize

∆
P

e
rf

o
rm

a
n
c
e

C1 = 1 C1 = 6
E

B
C

E
T

C
E

IC

Figure 6.1: Simulation Study A studies the differences in power of the filter statistics
under scrutiny by means of the performance differences of the filters EBC, ETC, and
EIC with respect to EBCT . This filter yields the prediction error of the Bayes classifier
under these assumptions and is, thus, used as a benchmark value. The simulation
experiment has been conducted for two different misclassification costs c1 = 1 (left
column) and c1 = 6 (right column).

60

6.3. Simulation Study C : Robustness to Outliers

if ∆µ = 0, one can obtain a false negative rate of 0 and a false positive rate of 0.5 by
setting a threshold just below this point.

Further, as the costs become more unequal the region where EBCT outperforms EBC
increases. This is the case when the bias introduced by incorrectly assuming σ1 = σ0 is
made up by the reduced variance. EBC is then strongly affected, to an extent that it is
even outperformed by EIC.

6.3 Simulation Study C : Robustness to Outliers
This experiment, characterized in (6.4), considers data that are contaminated with a
varying proportion of outliers, φ ∈ [0, 0.2]. Furthermore, we shall vary the difference in
the central location, ∆µ = µ1 − µ0 ∈ [0, 2.5]. Again the number of samples are fixed at
n = 100, with an equal number of positives and negatives. In order to blend out the
differences in the filtering performance caused by other effects we shall compare the FP
with the FP of the data without outliers. Thus, let us define ∆FP(φ) :=FP(φ)−FP(0),
where FP(φ) denotes the filtering performance with a proportion of φ outlying values,
ceteris paribus. The results for varying misclassification costs (c1 = 3, 1, 6) are depicted
in Figures 6.4 and 6.5 as well as Figures 6.16, and 6.17 in the appendix.

Xij ∼ N (µ1, 1) i = 1, . . . , 50− bφ · 50c ; j = 1, . . . , 1000
Xij ∼ N (µ1, 5) i = bφ · 50c+ 1, . . . , 50; j = 1, . . . , 1000
Xij ∼ N (µ0, 1) i = 51, . . . , 100− bφ · 50c ; j = 1, . . . , 1000
Xij ∼ N (µ0, 5) i = 100− bφ · 50c+ 1, . . . , 100; j = 1, . . . , 1000
Xij ∼ N (0, 1) i = 1, . . . , 100− bφ · 100c ; j = 1001, . . . , 100000
Xij ∼ N (0, 5) i = 100− bφ · 100c+ 1, . . . , 100; j = 1001, . . . , 100000

(6.4)

Simulation Setting C sheds light on the robustness of the classifiers in the presence of
outliers. The performance, defined in 6 will serve as a proxy for robustness, since a
higher robustness will consequently improve the performance of a filter. Not surprisingly,
the filtering performance deteriorates in all methods under scrutiny when outliers are
introduced, however ETC and EIC prove to be fairly robust. This is not surprising,
since these methods are based on the ranks and, thus, exhibit a breakdown point close
to 0.5. The performance of the default implementations of the parametric filters EBCT
and EBC deteriorate quickly when the data contain outliers. However, the EBC function
allows substituting the maximum likelihood estimates of the parameters of Gaussian class
conditionals by robust estimates. More precisely, if the argument robust is set to TRUE,
the median and MAD are calculated. The robust versions are indicated by rEBCT and
rEBC, respectively. One can clearly see that the robust versions even outperform ETC
and EIC, especially when the misclassification costs become more unequal.

Surprisingly, ETC is more affected by unequal misclassification costs than other methods.
rEBCT proved to be the most robust filter statistic.

61

6. Simulation Studies

0.0

0.5

1.0

1.5

2.0

2.5

−3 −2 −1 0 1 2 3

0

20

40

60

80

100

∆µ

log2(σ1 σ0)

P
e

rf
o

rm
a

n
c
e

0.0

0.5

1.0

1.5

2.0

2.5

−3 −2 −1 0 1 2 3

0

20

40

60

80

100

∆µ

log2(σ1 σ0)
P

e
rf

o
rm

a
n

c
e

0.0

0.5

1.0

1.5

2.0

2.5

−3 −2 −1 0 1 2 3

0

20

40

60

80

100

∆µ

log2(σ1 σ0)

P
e

rf
o

rm
a

n
c
e

0.0

0.5

1.0

1.5

2.0

2.5

−3 −2 −1 0 1 2 3

0

20

40

60

80

100

∆µ

log2(σ1 σ0)

P
e

rf
o

rm
a

n
c
e

EBC_T EBC

ETC EIC

Figure 6.2: This figure illustrates the performance of the filter statistics EBCT , EBC,
ETC, and EIC for varying differences in the central location of the Gaussian class
conditionals and varying ratios of their spread. The misclassification costs are set to
c0 = 1 and c1 = 1. The EBC filter yields the prediction error of the Bayes classifier for
all points except for the hyperplane characterized by σ1 = σ0.

62

6.3. Simulation Study C : Robustness to Outliers

0.0

0.5

1.0

1.5

2.0

2.5−3
−2

−1
0

1
2

3
0.0

0.2

0.4

0.6

0.8

1.0

∆µ
log2(σ1 σ0)

%
 F

a
ls

e
 N

e
g

a
ti
ve

s

0.0

0.5

1.0

1.5

2.0

2.5−3
−2

−1
0

1
2

3
0.0

0.2

0.4

0.6

0.8

1.0

∆µ
log2(σ1 σ0)

%
 F

a
ls

e
 N

e
g

a
ti
ve

s

0.0

0.5

1.0

1.5

2.0

2.5−3
−2

−1
0

1
2

3
0.0

0.2

0.4

0.6

0.8

1.0

∆µ
log2(σ1 σ0)

%
 F

a
ls

e
 N

e
g

a
ti
ve

s

0.0

0.5

1.0

1.5

2.0

2.5−3
−2

−1
0

1
2

3
0.0

0.2

0.4

0.6

0.8

1.0

∆µ
log2(σ1 σ0)

%
 F

a
ls

e
 N

e
g

a
ti
ve

s

EBC_T EBC

ETC EIC

Figure 6.3: This figure illustrates the percentage of false negative variables of the filter
statistics EBCT , EBC, ETC, and EIC for varying differences in the central location of
the Gaussian class conditionals and varying ratios of their spread. The misclassification
costs are set to c0 = 1 and c1 = 1. The EBC filter yields the prediction error of the
Bayes classifier for all points except for the hyperplane characterized by σ1 = σ0. The
interpretation of the results is equivalent to the interpretation for the performance.

63

6. Simulation Studies

0.0 0.5 1.0 1.5 2.0 2.5 0 5 10
15

20

−100

−80

−60

−40

−20

0

∆µ % Outliers

∆
P

e
rf

o
rm

a
n
c
e

0.0 0.5 1.0 1.5 2.0 2.5 0 5 10
15

20

−100

−80

−60

−40

−20

0

∆µ % Outliers

∆
P

e
rf

o
rm

a
n
c
e

0.0 0.5 1.0 1.5 2.0 2.5 0 5 10
15

20

−100

−80

−60

−40

−20

0

∆µ % Outliers

∆
P

e
rf

o
rm

a
n
c
e

0.0 0.5 1.0 1.5 2.0 2.5 0 5 10
15

20

−100

−80

−60

−40

−20

0

∆µ % Outliers

∆
P

e
rf

o
rm

a
n
c
e

0.0 0.5 1.0 1.5 2.0 2.5 0 5 10
15

20

−100

−80

−60

−40

−20

0

∆µ % Outliers

∆
P

e
rf

o
rm

a
n
c
e

0.0 0.5 1.0 1.5 2.0 2.5 0 5 10
15

20

−100

−80

−60

−40

−20

0

∆µ % Outliers

∆
P

e
rf

o
rm

a
n
c
e

ETC EIC

EBC_T EBC

rEBC_T rEBC

Figure 6.4: Results of Simulation study C for c1 = 3. This experiment analyses the
performance of the filters under scrutiny for two Gaussian class conditional distributions
that are contaminated with a varying degree of outliers. ∆FP denotes the difference in
performance as compared to the simulation study without outliers, all other parameters
being equal.

64

6.3. Simulation Study C : Robustness to Outliers

0.00.51.01.52.02.50

5
10
15
20

−0.2

0.0

0.2

0.4

∆µ

%
 O

u
tlie

rs

∆
%

 F
a

ls
e

 N
e

g
a

ti
ve

s

0.00.51.01.52.02.50

5
10
15
20

−0.2

0.0

0.2

0.4

∆µ

%
 O

u
tlie

rs

∆
%

 F
a

ls
e

 N
e

g
a

ti
ve

s

0.00.51.01.52.02.50

5
10
15
20

−0.2

0.0

0.2

0.4

∆µ

%
 O

u
tlie

rs

∆
%

 F
a

ls
e

 N
e

g
a

ti
ve

s

0.00.51.01.52.02.50

5
10
15
20

−0.2

0.0

0.2

0.4

∆µ

%
 O

u
tlie

rs

∆
%

 F
a

ls
e

 N
e

g
a

ti
ve

s

0.00.51.01.52.02.50

5
10
15
20

−0.2

0.0

0.2

0.4

∆µ

%
 O

u
tlie

rs

∆
%

 F
a

ls
e

 N
e

g
a

ti
ve

s

0.00.51.01.52.02.50

5
10
15
20

−0.2

0.0

0.2

0.4

∆µ

%
 O

u
tlie

rs

∆
%

 F
a

ls
e

 N
e

g
a

ti
ve

s

ETC EIC

EBC_T EBC

rEBC_T rEBC

Figure 6.5: Results of Simulation study C for c1 = 3. This experiment analyses the
percentage of false negative variables of the filters under scrutiny for two Gaussian class
conditional distributions that are contaminated with a varying degree of outliers. ∆ %
false negatives denotes the difference in percentage of false negatives as compared to the
simulation study without outliers, all other parameters being equal. The robustness of
rEBC seems to outperform EIC even more.

65

6. Simulation Studies

6.4 Simulation Study D : Robustness to Skewness
In this simulation study, characterized in (6.5), we would like to study the effect of
skewness on the filtering performance. The random variables are, thus, drawn from
a log-normal distribution with the parameters µ = 0 and σ ∈

√
2[−3,3]. In order to

introduce a difference in the central location, the parameter ∆ ∈ [0, 2.5] controls the
shift in the central location of the distribution. Again, the number of samples is fixed at
n = 100, with n1 = n0 = n/2. The results are depicted in Figures 6.6, 6.18 and 6.19 for
varying misclassification costs (c1 = 1, 3, 6).

ln(Xij) ∼ N (0, σ2) i = 1, . . . , n1; j = 1, . . . , 1000
ln(Xij) ∼ N (0, σ2)−∆ i = n1 + 1, . . . , n; j = 1, . . . , 1000
ln(Xij) ∼ N (0, σ2) i = 1, . . . , n; j = 1001, . . . , 100000

(6.5)

Simulation Setting D sheds light on the filtering performance of the filter statistics
under scrutiny when the CCDs are non-symmetric or skewed. ETC and EIC are not
only completely resilient to deviations from symmetry, their performance seems to even
improve slightly. EBCT and EBC clearly show a strong deterioration in the filtering
performance, which is independent of the misclassification costs.

Comparing the results of Figures 6.6 and 6.7 one clear difference stands out. While the
performance of EBC drops to 0 when log2(σ) > 0 the percentage of false negatives does
not deteriorate equally dramatically. This seems to suggest that EBC struggles with
false positive variables. While the number of false negatives drops to 0 as log2(σ) goes
to three the performance still deteriorates. This can only occur if the number of false
positive variables increases and as a result the number of positives among to top ranked
variables decreases.

66

6.4. Simulation Study D : Robustness to Skewness

0.0

0.5

1.0

1.5

2.0

−3 −2 −1 0 1 2 3

0

20

40

60

80

100

∆µ

log2(σ)

P
e

rf
o

rm
a

n
c
e

0.0

0.5

1.0

1.5

2.0

−3 −2 −1 0 1 2 3

0

20

40

60

80

100

∆µ

log2(σ)

P
e

rf
o

rm
a

n
c
e

0.0

0.5

1.0

1.5

2.0

−3 −2 −1 0 1 2 3

0

20

40

60

80

100

∆µ

log2(σ)

P
e

rf
o

rm
a

n
c
e

0.0

0.5

1.0

1.5

2.0

−3 −2 −1 0 1 2 3

0

20

40

60

80

100

∆µ

log2(σ)

P
e

rf
o

rm
a

n
c
e

EBC_T EBC

ETC EIC

Figure 6.6: Results of Simulation study D for c1 = 1. This experiment analyses the
performance of the filter statistics under scrutiny for two lognormal class conditional
distributions with varying degrees of skewness.

67

6. Simulation Studies

0.0

0.5

1.0

1.5

2.0−3
−2

−1
0

1
2

3
0.0

0.2

0.4

0.6

0.8

1.0

∆µ

log2(σ)

%
 F

a
ls

e
 N

e
g

a
ti
ve

s

0.0

0.5

1.0

1.5

2.0−3
−2

−1
0

1
2

3
0.0

0.2

0.4

0.6

0.8

1.0

∆µ

log2(σ)
%

 F
a

ls
e

 N
e

g
a

ti
ve

s

0.0

0.5

1.0

1.5

2.0−3
−2

−1
0

1
2

3
0.0

0.2

0.4

0.6

0.8

1.0

∆µ

log2(σ)

%
 F

a
ls

e
 N

e
g

a
ti
ve

s

0.0

0.5

1.0

1.5

2.0−3
−2

−1
0

1
2

3
0.0

0.2

0.4

0.6

0.8

1.0

∆µ

log2(σ)

%
 F

a
ls

e
 N

e
g

a
ti
ve

s

EBC_T EBC

ETC EIC

Figure 6.7: Results of Simulation study D for c1 = 1. This experiment analyses the
percentage of false negative variables of the filter statistics under scrutiny for two
lognormal class conditional distributions with varying degrees of skewness. Note, that
in order to better illustrate the function in three dimensions the position of the x and
y-axis were inverted compared to Figure 6.6

68

6.5. Simulation Study E : Model Selection

6.5 Simulation Study E : Model Selection
The performance of a variable filter can not only be evaluated by the share of signal
variables it succeeded to identify but also by the performance of a multivariate classifier
which builds models using the selected subset of variables. This section is, thus, dedicated
to analyzing the predictive power when filtering is used as a model selection method.

The simulation study, characterized in (6.6), simulates 40 signal variables and 960
noise variables. The signal variables are drawn from mixtures of Gaussian class con-
ditionals and fall into five groups depending on the relative variances log2(σ1/σ0) ∈
{−2,−1, 0, 1, 2}. There are, thus, variables with equal variances and variables with
varying degrees of differing variances. The differences in the central locations are
∆µ = µ1 − µ0 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4}. One variable is drawn for every combina-
tion of ∆µ, log2(σ1/σ0), yielding 40 signal variables over all. The operating conditions
for this simulation study were set to oc = c(5, 1, 0.5)

Xij ∼ N (µ1, σ
2
1) i = 1, . . . , 50; j = 1, . . . , 40

Xij ∼ N (µ0, σ
2
0) i = 51, . . . , 100; j = 1, . . . , 40

Xij ∼ N (0, 1) i = 1, . . . , 100; j = 41, . . . , 1000
(6.6)

Three independent data sets with these specifications were generated: one for filtering,
one for fitting the multivariate classification model using only the subset of variables,
and one for prediction. All five different filters were applied to the exact same datasets
and the resulting ranks were recorded. For subsets ranging from one to ten top ranked
variables a best subset model selection was implemented. This means, that for every
possible combination of variables in the subset a classifier is fitted. Consequently, the
fitted model is used to predict the instances of the third data set. The classifier is a
multivariate QDA that is OC-sensitive. The results are depicted in Figure 6.8.

From Figure 6.8 we can see that all filters obtain perfect classification results at a model
size of ten. The smaller the cardinality of the subset the weaker the predictive power
of the model. However, the performance of the filters fall into two groups. A weak
performance is shown by the t-test and EBCT . Those filters will probably select variables
with equal variances, which will experience difficulties in building good OC-sensitive
classifiers. The second group of filters comprised of EBC, ETC, and EIC. These filters
tend to select variables with relative variances suitable for the general classification task
and will, thus, build stronger models. Even though, this represents a stylized example,
its results can clearly emphasize the importance of OC-sensitive filtering.

Figure 6.9 depicts other interesting aspects of the filters. The ranks of the t-test and
EBCT show perfect correlation for the top 350 variables. This is not surprising since
they are both functions of the sample mean and variance. The ranks of the lower ranking
variables, however, seem to be completely uncorrelated.

The correlation of the ranks of the t-test with the other methods is very weak (=0.16),
see Table 6.1. Among the top ranked variables there is some correlation but the ranks

69

6. Simulation Studies

0.
00

0.
05

0.
10

0.
15

0.
20

Model Size

P
re

di
ct

io
n

E
rr

or
t−test
EBC_T
EBC
ETC
EIC

1 2 3 4 5 6 7 8 9 10

S
im

ul
at

io
n

E

Figure 6.8: illustrates the results of Simulation Study E. The x-axis depicts the model size
and the y-axis the expected prediction error. Every curve depicts one filtering method.
As the number of variables increases, the prediction error decreases. In this stylized
example all filters exhibit a perfect discrimination between the two classes at a model
size of 10. However, one can see that the variables selected by EBC, ETC, and EIC
show a better performance with fewer variables, which emphasizes the importance of
cost-sensitive filtering.

among the lower ranks seem to be completely independent. The same holds true for the
correlation of EBCT with the other filters. The overall correlation is negligible, only
among the top ranked variables there is some similarity. Interesting, because unexpected
is the correlation between EBC and ETC (=0.62). In Simulation Study B we have
learned that ETC can benefit of unequal variances only if the positive class has a smaller
variance. Thus, for those variables the correlation of the ranks will be high. For all other
variables the correlation is supposedly very low.

The perfect fit between the higher ranked variables of EBCT and EBC has an easy
explanation. If the discriminatory power of a variable is very low, the classifier degenerates
and the expected prediction error will be set to min{c0π0, c1π1}. Thus, all these variables
have the same EPE and consequently the rank is given by the position in the vector.
To be more precise, if there are a number of variables with the same test statistic, the
variable with lowest index number among those will be assigned the lowest rank, the
variable with the second lowest index number, the second lowest rank and so on.

The lines in the scatter plots of ETC and EIC are caused by the discrete nature of these
filters. There is only a finite number of values the test statistic can take and, thus, there
will be a high number of variables sharing the same rank.

70

6.5. Simulation Study E : Model Selection

t-test EBC_T EBC ETC EIC
t-test 1

EBC_T 0.86 1
EBC 0.17 0.17 1
ETC 0.15 0.15 0.62 1
EIC 0.16 0.18 0.12 0.13 1

Table 6.1: Spearman’s rank correlations of the ranks of five different filtering statistics.

t−test

0 400 800 0 400 800

0
40

0
80

0

0
40

0
80

0 EBC_T

EBC

0
40

0
80

0

0
40

0
80

0 ETC

0 400 800 0 400 800 0 400 800

0
40

0
80

0EIC

Figure 6.9: plots the ranks of the different filter statistics against each other. The most
striking fact is that the ranks of the t-test and EBCT exhibit a perfect correlation for
the 400 top ranking features.

71

6. Simulation Studies

6.6 Supplementary Figures

0.0

0.5

1.0

1.5

2.0

2.5

0
50

100
150

200

0

20

40

60

80

100

∆µ

Sample Size

P
e

rf
o

rm
a

n
c
e

0.0

0.5

1.0

1.5

2.0

2.5

0
50

100
150

200

0

20

40

60

80

100

∆µ

Sample Size

P
e

rf
o

rm
a

n
c
e

0.0

0.5

1.0

1.5

2.0

2.5

0
50

100
150

200

0

20

40

60

80

100

∆µ

Sample Size

P
e

rf
o

rm
a

n
c
e

0.0

0.5

1.0

1.5

2.0

2.5

0
50

100
150

200

0

20

40

60

80

100

∆µ

Sample Size

P
e

rf
o

rm
a

n
c
e

EBC_T EBC

ETC EIC

Figure 6.10: This Figure illustrates the performance for all filters under scrutiny for
Gaussian class conditionals with equal variances and a varying difference in the central
location. EBCT yields the prediction error of the Bayes classifier under these assumptions
and we can see that this filter exhibits the greatest power. Its performance increases the
fastest with increasing sample size.

72

6.6. Supplementary Figures

0.0

0.5

1.0

1.5

2.0

2.520

40

60

80

100
0.0

0.2

0.4

0.6

0.8

1.0

∆µ
Sample Size

%
 F

a
ls

e
 N

e
g

a
ti
ve

s

0.0

0.5

1.0

1.5

2.0

2.520

40

60

80

100
0.0

0.2

0.4

0.6

0.8

1.0

∆µ
Sample Size

%
 F

a
ls

e
 N

e
g

a
ti
ve

s

0.0

0.5

1.0

1.5

2.0

2.520

40

60

80

100
0.0

0.2

0.4

0.6

0.8

1.0

∆µ
Sample Size

%
 F

a
ls

e
 N

e
g

a
ti
ve

s

0.0

0.5

1.0

1.5

2.0

2.520

40

60

80

100
0.0

0.2

0.4

0.6

0.8

1.0

∆µ
Sample Size

%
 F

a
ls

e
 N

e
g

a
ti
ve

s

EBC_T EBC

ETC EIC

Figure 6.11: This Figure illustrates the percentage of false negatives for all filters under
scrutiny for Gaussian class conditionals with equal variances and a varying difference in
the central location. EBCT yields the prediction error of the Bayes classifier under these
assumptions and we can see that this filter exhibits lowest share of false negatives.

73

6. Simulation Studies

0.0

0.5

1.0

1.5

2.0

2.5

−3 −2 −1 0 1 2 3

0

20

40

60

80

100

∆µ

log2(σ1 σ0)

P
e

rf
o

rm
a

n
c
e

0.0

0.5

1.0

1.5

2.0

2.5

−3 −2 −1 0 1 2 3

0

20

40

60

80

100

∆µ

log2(σ1 σ0)

P
e

rf
o

rm
a

n
c
e

0.0

0.5

1.0

1.5

2.0

2.5

−3 −2 −1 0 1 2 3

0

20

40

60

80

100

∆µ

log2(σ1 σ0)

P
e

rf
o

rm
a

n
c
e

0.0

0.5

1.0

1.5

2.0

2.5

−3 −2 −1 0 1 2 3

0

20

40

60

80

100

∆µ

log2(σ1 σ0)

P
e

rf
o

rm
a

n
c
e

EBC_T EBC

ETC EIC

Figure 6.12: This figure illustrates the performance of the filter statistics EBCT , EBC,
ETC, and EIC for varying differences in the central location of the Gaussian class
conditionals and varying ratios of their spread. The misclassification costs are set to
c0 = 1 and c1 = 3. The EBC filter yields the prediction error of the Bayes classifier for
all points except for the hyperplane characterized by σ1 = σ0.

74

6.6. Supplementary Figures

0.0

0.5

1.0

1.5

2.0

2.5−3
−2

−1
0

1
2

3
0.0

0.2

0.4

0.6

0.8

1.0

∆µ
log2(σ1 σ0)

%
 F

a
ls

e
 N

e
g

a
ti
ve

s

0.0

0.5

1.0

1.5

2.0

2.5−3
−2

−1
0

1
2

3
0.0

0.2

0.4

0.6

0.8

1.0

∆µ
log2(σ1 σ0)

%
 F

a
ls

e
 N

e
g

a
ti
ve

s

0.0

0.5

1.0

1.5

2.0

2.5−3
−2

−1
0

1
2

3
0.0

0.2

0.4

0.6

0.8

1.0

∆µ
log2(σ1 σ0)

%
 F

a
ls

e
 N

e
g

a
ti
ve

s

0.0

0.5

1.0

1.5

2.0

2.5−3
−2

−1
0

1
2

3
0.0

0.2

0.4

0.6

0.8

1.0

∆µ
log2(σ1 σ0)

%
 F

a
ls

e
 N

e
g

a
ti
ve

s

EBC_T EBC

ETC EIC

Figure 6.13: This figure illustrates the percentage of false negatives of the filter statistics
EBCT , EBC, ETC, and EIC for varying differences in the central location of the
Gaussian class conditionals and varying ratios of their spread. The misclassification costs
are set to c0 = 1 and c1 = 3. The EBC filter yields the prediction error of the Bayes
classifier for all points except for the hyperplane characterized by σ1 = σ0.

75

6. Simulation Studies

0.0

0.5

1.0

1.5

2.0

2.5

−3 −2 −1 0 1 2 3

0

20

40

60

80

100

∆µ

log2(σ1 σ0)

P
e

rf
o

rm
a

n
c
e

0.0

0.5

1.0

1.5

2.0

2.5

−3 −2 −1 0 1 2 3

0

20

40

60

80

100

∆µ

log2(σ1 σ0)

P
e

rf
o

rm
a

n
c
e

0.0

0.5

1.0

1.5

2.0

2.5

−3 −2 −1 0 1 2 3

0

20

40

60

80

100

∆µ

log2(σ1 σ0)

P
e

rf
o

rm
a

n
c
e

0.0

0.5

1.0

1.5

2.0

2.5

−3 −2 −1 0 1 2 3

0

20

40

60

80

100

∆µ

log2(σ1 σ0)

P
e

rf
o

rm
a

n
c
e

EBC_T EBC

ETC EIC

Figure 6.14: This figure illustrates the performance of the filter statistics EBCT , EBC,
ETC, and EIC for varying differences in the central location of the Gaussian class
conditionals and varying ratios of their spread. The misclassification costs are set to
c0 = 1 and c1 = 6. The EBC filter yields the prediction error of the Bayes classifier for
all points except for the hyperplane characterized by σ1 = σ0.

76

6.6. Supplementary Figures

0.0

0.5

1.0

1.5

2.0

2.5−3
−2

−1
0

1
2

3
0.0

0.2

0.4

0.6

0.8

1.0

∆µ
log2(σ1 σ0)

%
 F

a
ls

e
 N

e
g

a
ti
ve

s

0.0

0.5

1.0

1.5

2.0

2.5−3
−2

−1
0

1
2

3
0.0

0.2

0.4

0.6

0.8

1.0

∆µ
log2(σ1 σ0)

%
 F

a
ls

e
 N

e
g

a
ti
ve

s

0.0

0.5

1.0

1.5

2.0

2.5−3
−2

−1
0

1
2

3
0.0

0.2

0.4

0.6

0.8

1.0

∆µ
log2(σ1 σ0)

%
 F

a
ls

e
 N

e
g

a
ti
ve

s

0.0

0.5

1.0

1.5

2.0

2.5−3
−2

−1
0

1
2

3
0.0

0.2

0.4

0.6

0.8

1.0

∆µ
log2(σ1 σ0)

%
 F

a
ls

e
 N

e
g

a
ti
ve

s

EBC_T EBC

ETC EIC

Figure 6.15: This figure illustrates the percentage of false negatives of the filter statistics
EBCT , EBC, ETC, and EIC for varying differences in the central location of the
Gaussian class conditionals and varying ratios of their spread. The misclassification costs
are set to c0 = 1 and c1 = 6. The EBC filter yields the prediction error of the Bayes
classifier for all points except for the hyperplane characterized by σ1 = σ0.

77

6. Simulation Studies

0.0 0.5 1.0 1.5 2.0 2.5 0 5 10
15

20

−100

−80

−60

−40

−20

0

∆µ % Outliers

∆
P

e
rf

o
rm

a
n
c
e

0.0 0.5 1.0 1.5 2.0 2.5 0 5 10
15

20

−100

−80

−60

−40

−20

0

∆µ % Outliers

∆
P

e
rf

o
rm

a
n
c
e

0.0 0.5 1.0 1.5 2.0 2.5 0 5 10
15

20

−100

−80

−60

−40

−20

0

∆µ % Outliers

∆
P

e
rf

o
rm

a
n
c
e

0.0 0.5 1.0 1.5 2.0 2.5 0 5 10
15

20

−100

−80

−60

−40

−20

0

∆µ % Outliers

∆
P

e
rf

o
rm

a
n
c
e

0.0 0.5 1.0 1.5 2.0 2.5 0 5 10
15

20

−100

−80

−60

−40

−20

0

∆µ % Outliers

∆
P

e
rf

o
rm

a
n
c
e

0.0 0.5 1.0 1.5 2.0 2.5 0 5 10
15

20

−100

−80

−60

−40

−20

0

∆µ % Outliers

∆
P

e
rf

o
rm

a
n
c
e

ETC EIC

EBC_T EBC

rEBC_T rEBC

Figure 6.16: Results of Simulation study C for c1 = 1. This experiment analyses the
performance of the filters under scrutiny for two Gaussian class conditional distributions
that are contaminated with a varying degree of outliers. ∆FP denotes the difference in
performance as compared to the simulation study without outliers, all other parameters
being equal.

78

6.6. Supplementary Figures

0.0 0.5 1.0 1.5 2.0 2.5 0 5 10
15

20

−100

−80

−60

−40

−20

0

∆µ % Outliers

∆
P

e
rf

o
rm

a
n
c
e

0.0 0.5 1.0 1.5 2.0 2.5 0 5 10
15

20

−100

−80

−60

−40

−20

0

∆µ % Outliers

∆
P

e
rf

o
rm

a
n
c
e

0.0 0.5 1.0 1.5 2.0 2.5 0 5 10
15

20

−100

−80

−60

−40

−20

0

∆µ % Outliers

∆
P

e
rf

o
rm

a
n
c
e

0.0 0.5 1.0 1.5 2.0 2.5 0 5 10
15

20

−100

−80

−60

−40

−20

0

∆µ % Outliers
∆

P
e

rf
o

rm
a

n
c
e

0.0 0.5 1.0 1.5 2.0 2.5 0 5 10
15

20

−100

−80

−60

−40

−20

0

∆µ % Outliers

∆
P

e
rf

o
rm

a
n
c
e

0.0 0.5 1.0 1.5 2.0 2.5 0 5 10
15

20

−100

−80

−60

−40

−20

0

∆µ % Outliers

∆
P

e
rf

o
rm

a
n
c
e

ETC EIC

EBC_T EBC

rEBC_T rEBC

Figure 6.17: Results of Simulation study C for c1 = 6. This experiment analyses the
performance of the filters under scrutiny for two Gaussian class conditional distributions
that are contaminated with a varying degree of outliers. ∆FP denotes the difference in
performance as compared to the simulation study without outliers, all other parameters
being equal.

79

6. Simulation Studies

0.0

0.5

1.0

1.5

2.0

−3 −2 −1 0 1 2 3

0

20

40

60

80

100

∆µ

log2(σ)

P
e

rf
o

rm
a

n
c
e

0.0

0.5

1.0

1.5

2.0

−3 −2 −1 0 1 2 3

0

20

40

60

80

100

∆µ

log2(σ)

P
e

rf
o

rm
a

n
c
e

0.0

0.5

1.0

1.5

2.0

−3 −2 −1 0 1 2 3

0

20

40

60

80

100

∆µ

log2(σ)

P
e

rf
o

rm
a

n
c
e

0.0

0.5

1.0

1.5

2.0

−3 −2 −1 0 1 2 3

0

20

40

60

80

100

∆µ

log2(σ)

P
e

rf
o

rm
a

n
c
e

EBC_T EBC

ETC EIC

Figure 6.18: Results of Simulation study D for c1 = 3. This experiment analyses the
performance of the filter statistics under scrutiny for two lognormal class conditional
distributions with varying degrees of skewness.

80

6.6. Supplementary Figures

0.0

0.5

1.0

1.5

2.0

−3 −2 −1 0 1 2 3

0

20

40

60

80

100

∆µ

log2(σ)

P
e

rf
o

rm
a

n
c
e

0.0

0.5

1.0

1.5

2.0

−3 −2 −1 0 1 2 3

0

20

40

60

80

100

∆µ

log2(σ)

P
e

rf
o

rm
a

n
c
e

0.0

0.5

1.0

1.5

2.0

−3 −2 −1 0 1 2 3

0

20

40

60

80

100

∆µ

log2(σ)

P
e

rf
o

rm
a

n
c
e

0.0

0.5

1.0

1.5

2.0

−3 −2 −1 0 1 2 3

0

20

40

60

80

100

∆µ

log2(σ)

P
e

rf
o

rm
a

n
c
e

EBC_T EBC

ETC EIC

Figure 6.19: Results of Simulation study D for c1 = 6. This experiment analyses the
performance of the filter statistics under scrutiny for two lognormal class conditional
distributions with varying degrees of skewness.

81

CHAPTER 7
Real Data Studies

In this section we will finally apply the filters to real data. Generally it is not completely
clear what lessons we can expect to learn from real data sets since the performance of a
filter depends to a large extent on the data it is applied to. E.g. the presence of outliers
will favor one method, skewness another. The characteristics of a data set are usually
not known a-priori. The results are, thus, highly domain specific. Since the motivating
example for this thesis concerned gene expression data, we will use five famous and
publicly available data sets for this analysis. A brief description plus information where
to access the data can be found in Section 7.1.

We will limit our analysis to the following two questions: Firstly, what is the benefit of
OC-sensitive filtering for a OC-sensitive classification task. We will, thus, compare the
performance of the t-test, which stands as a proxy for a variable filter that is non-sensitive
to OCs with the performance of EBCT , EBC, ETC, and EIC. All filters will be
applied to the data sets to rank the variables. For the first m top ranked variables,
where m ∈ {1, . . . , 10}, models will be fitted with all possible combinations of variables
from the subset and the in-sample prediction error will be calculated. The classifier is a
multivariate QDA that is OC-sensitive. This approach is equivalent to the simulation
study E. The results are depicted in Figure 7.1.

The second question concerns the similarity of the variable filters. To shed some light on
this question we will calculate Spearman’s rank correlation and generate scatterplots of
the ranks of the different filter statistics. Again, this constitutes the same approach as in
simulation study E. The results can be found in Tables 7.1 to 7.5 and Figure 7.2.

83

7. Real Data Studies

7.1 Description of Data Sets

Golub et al.

Title: Molecular classification of cancer: class discovery and class prediction by gene
expression monitoring.
Description: This data set is probably the most famous and most studied gene expres-
sion data set. It analyses the gene expression profiles of human acute myeloid (AML)
and acute lymphoblastic leukemias (ALL). The original research is one of the first to
show a new approach to cancer classification based on gene expression monitoring by
DNA microarrays.
Citation: T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P.
Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and
E. S. Lander. Molecular classification of cancer: class discovery and class prediction by
gene expression monitoring. Science, 286(5439):531–537, Oct. 1999
Number of genes: 5147
Number of samples: 72
Diagnostic classes: Acute Lymphoblastic Leukemia (ALL): 47 samples and Acute
Myeloid Leukemia (AML): 25 samples.
Platform: Affymetrix HuGeneFL array
Data Source: The golubEsets package on Bioconductor.

Mura and De Perrot

Title: Gene expression profiles based on Pulmonary Artery Pressures in Pulmonary
Fibrosis.
Description: Identify the gene expression profiles in Pulmonary Fibrosis patients with
and without Pulmonary Hypertension.
Citation: M. Mura, M. Anraku, Z. Yun, K. McRae, M. Liu, T. K. Waddell, L. G. Singer,
J. T. Granton, S. Keshavjee, and M. de Perrot. Gene expression profiling in the lungs
of patients with pulmonary hypertension associated with pulmonary fibrosis. CHEST
Journal, 141(3):661–673, 2012
Number of genes: 20916
Number of samples: 84
Diagnostic classes: severe PH: 67 samples and without PH: 17 samples
Platform: Affymetrix Human Gene 1.0 ST Array
Data Source: Gene Expression Omnibus (GSE24988)

MacDonald et al.

Title: Expression profiling of medulloblastoma
Description: This publication provides the first insight into the genetic regulation of
medulloblastoma metastasis and is the first to suggest a role for PDGFRA and the

84

7.1. Description of Data Sets

RAS/MAPK signaling pathway in medulloblastoma metastasis. Inhibitors of PDGFRA
and RAS proteins should therefore be considered for investigation as possible novel
therapeutic strategies against medulloblastoma.
Citation: T. J. MacDonald, K. M. Brown, B. LaFleur, K. Peterson, C. Lawlor, Y. Chen,
R. J. Packer, P. Cogen, and D. A. Stephan. Expression profiling of medulloblastoma:
PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease.
Nature Genetics, 29(2):143–152, 2001
Number of genes: 2059
Number of samples: 23
Diagnostic classes: Metastatic and non-metastatic.
Platform: Affymetrix Human Cancer Array
Data Source: Gene Expression Omnibus (GSE468)

Tsukamoto et al.

Title: Clinical Significance of Osteoprotegerin Expression in Human Colorectal Cancer
Description: This study aimed to identify a novel biomarker or a target of treatment
for colorectal cancer (CRC). The expression profiles of cancer cells in 148 patients with
CRC were examined using laser microdissection and oligonucleotide microarray analysis.
Citation: S. Tsukamoto, T. Ishikawa, S. Iida, M. Ishiguro, K. Mogushi, H. Mizushima,
H. Uetake, H. Tanaka, and K. Sugihara. Clinical significance of osteoprotegerin expression
in human colorectal cancer. Clinical Cancer Research, 17(8):2444–2450, 2011
Number of genes: 54675
Number of samples: 148
Diagnostic classes: Metastatis and non-metastasis
Platform: Affymetrix Human Genome U133 Plus 2.0 Array
Data Source: Gene Expression Omnibus (GSE21510)

Heap et al.

Title: Primary human leucocyte RNA expression of unrelated celiac disease cases and
unrelated healthy controls.
Description: The goal of this study was to study the effect of genetic variation on gene
expression of untouched primary leucocytes. This expression data is used in conjunction
with genome-wide association genotype data.
Citation: G. A. Heap, G. Trynka, R. C. Jansen, M. Bruinenberg, M. A. Swertz, L. C.
Dinesen, K. A. Hunt, C. Wijmenga, L. Franke, et al. Complex nature of snp genotype
effects on gene expression in primary human leucocytes. BMC Medical Genomics, 2(1):1,
2009
Number of genes: 18981
Number of samples: 132
Diagnostic classes: Celiac disease and healthy controls.

85

7. Real Data Studies

Platform: Illumina humanRef-8 v2.0 expression beadchip
Data Source: Gene Expression Omnibus (GSE11501)

7.2 Results
Figure 7.1 depicts the evolution of the EPE of the best model for the m top ranked
variables by five different variable filters. The first observation is that there is not one
filter that dominates all others in the sense that it always performs better. Building on
the lessons learned in the simulation studies, this was not to be expected anyway. The
top performing filter in one method can be the worst performer in another depending
on the idiosyncrasies of the data set. The obvious conclusion that can be drawn from
this observation is that if one is concerned about false negative variables one could apply
several filters and join the subsets of top ranked variables.

The range of the filter performance is considerable. In two out of the three data sets
the EPE of the best performer is less than half the EPE of the weakest performer. The
choice of filter is, thus, not negligible.

As a general impression also from other studies which were not included in this thesis
is that the t-test performs mediocre and that it obviously depends of the operating
conditions (among other things). The more unequal the misclassification costs are, the
weaker its performance.

The ranks for data set 2 (Mura and De Perrot) of five different variable filters are plotted
against each other in Figure 7.2. The conclusions that can be drawn from the real data
result are the same as for simulation study E. The ranks of the t-test and EBCT show a
very high degree of correlation for the top ranking variables. The corresponding values
in Tables 7.1 to 7.5 range from 0.89 to 0.96. These methods can, thus, almost be used as
substitutes. The second highest correlation that can be observed is between EBC and
ETC and ranges from 0.45 to 0.7.

For the other correlations no clear pattern can be observed. Even though most of the
correlation coefficients are positive the variance is extremely high. The correlation of
ETC and EIC varies from -0.21 to 0.84, the correlation of EBC and EIC from 0.62 to
-0.37. This is further evidence of the fact that the performance of a filter is extremely
domain dependent. Even among the class of gene expression data sets the variety of data
is so big that no clear conclusions can be drawn as to which filter to use. Only if some
aspects of the data are known, e.g. that the data contains strong outliers, preferences for
certain methods can be drawn.

The lines in the scatter plots of ETC and EIC are caused by the discrete nature of these
filters. There is only a finite number of values the test statistic can take and, thus, there
will be a high number of variables sharing the same rank.

86

7.2. Results

0.
00

0.
05

0.
10

0.
15

Model Size

E
P

E

t−test
EBC_T
EBC
ETC
EIC

1 2 3 4 5 6 7 8 9 10

G
ol

ub
 e

t a
l.

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Model Size

E
P

E

t−test
EBC_T
EBC
ETC
EIC

1 2 3 4 5 6 7 8 9 10

M
ur

a
an

d
D

e
P

er
ro

t

●

0.
00

0.
10

0.
20

0.
30

Model Size

E
P

E

t−test
EBC_T
EBC
ETC
EIC

1 2 3 4 5 6 7 8 9 10

M
ac

D
on

al
d

et
 a

l.

0.
00

0.
05

0.
10

0.
15

Model Size

E
P

E

t−test
EBC_T
EBC
ETC
EIC

1 2 3 4 5 6 7 8 9 10

T
su

ka
m

ot
o

et
 a

l.

0.
00

0.
04

0.
08

Model Size

E
P

E

t−test
EBC_T
EBC
ETC
EIC

1 2 3 4 5 6 7 8 9 10

H
ea

p
et

 a
l.

Figure 7.1: depicts the evolution of the EPE of the best model for the m top ranked
variables by five different variable filters.

87

7. Real Data Studies

t−test

0 10000 20000 0 10000 20000

0
10

00
0

20
00

0

0
10

00
0

20
00

0

EBC_T

EBC

0
10

00
0

20
00

0

0
10

00
0

20
00

0

ETC

0 10000 20000 0 10000 20000 0 10000 20000

0
10

00
0

20
00

0
EIC

Figure 7.2: plots the ranks of data set 2 (Mura and De Perrot) of five different filters
against each other.

88

7.2. Results

t-test EBC_T EBC ETC EIC
t-test 1

EBC_T 0.94 1
EBC 0.12 0.23 1
ETC 0.25 0.32 0.58 1
EIC 0.33 0.36 0.16 0.19 1

Table 7.1: Spearman’s rank correlations of the dataset of Golub et al.

t-test EBC_T EBC ETC EIC
t-test 1

EBC_T 0.98 1
EBC 0.16 0.28 1
ETC 0.37 0.47 0.67 1
EIC 0.24 0.33 0.62 0.84 1

Table 7.2: Spearman’s rank correlations of the dataset of Mura and De Perrot

t-test EBC_T EBC ETC EIC
t-test 1

EBC_T 0.94 1
EBC 0.29 0.03 1
ETC 0.41 0.31 0.45 1
EIC 0.26 0.39 -0.37 -0.21 1

Table 7.3: Spearman’s rank correlations of the dataset of MacDonald et al.

t-test EBC_T EBC ETC EIC
t-test 1

EBC_T 0.89 1
EBC 0.19 0.23 1
ETC 0.17 0.21 0.6 1
EIC 0.31 0.34 0.45 0.3 1

Table 7.4: Spearman’s rank correlations of the dataset of Tsukamoto et al.

t-test EBC_T EBC ETC EIC
t-test 1

EBC_T 0.96 1
EBC 0.26 0.39 1
ETC 0.27 0.37 0.7 1
EIC 0.1 0.18 0.51 0.7 1

Table 7.5: Spearman’s rank correlations of the dataset of Heap et al.

89

CHAPTER 8
Conclusions

The starting point of this thesis was the apparent lack of filter methods that are sensitive
to the operating conditions. In the introductory chapter, we argued that the neglect of
the operating conditions can lead to wrong conclusions, in particular, it can lead to a
ranking which ignores the idiosyncrasies of the classification task. We, thus, proposed
filtering statistics based on the expected prediction error of a univariate classifier. This
statistic can be written as a weighted mean of the false positive and the false negative
rates, where the weights are functions of the operating conditions. Any classifiers will
do, however, the choice should not be arbitrary since it will generally determine the
characteristics of the filtering method. An obvious parametric approach was the Bayesian
classifier for a mixture of Gaussian class conditionals, yielding a filter coined EBC.
In Section 3 we have seen that this classifier is a member of the family of threshold
classifiers or of interval classifiers depending on the variances of the class conditional
distributions. A filter based on such a parametric model will have similar characteristics
as the classifier itself. It relies largely on the parametric assumptions made and any
deviation from these will reduce the performance of the filter dramatically. Choosing
the classifier is critical and must not be arbitrary. If the class conditionals were known,
we could simply choose the classifier that minimizes the prediction error. However, this
is rarely the case and would furthermore require a different classifier for every variable.
Choosing a non-parametric classifier should remedy this issue. Thus, instead of assuming
a parametric family for the class conditionals we will assume that the optimal classifier
is a member of the threshold or the interval classifiers. This assumption should hold
true for a great number of distributions. Furthermore, it is very popular for medical
applications due to its straightforward interpretability, e.g. a fever thermometer. If
the measured temperature exceeds a certain critical value the individual is classified as
ill. Subsequently, we will fit the model, by finding the optimal classifier among these
families. The resulting filters should exhibit the same features as the classifier itself. The
simulation studies conducted in Section 6 verify that the filter is robust against outliers

91

8. Conclusions

or skewness and that the loss in power is negligible in many situations.

These methods exhibit another interesting property. It is possible to obtain the exact finite
sample distribution of the test statistic under the null hypothesis of equal class conditional
distributions. This distribution is further independent of the class conditional distribution.
This allows to apply the null distribution to a mixture of any two distributions, and,
thus, constitutes a truly non-parametric method. This distribution is derived in Sections
4.3.2 and 5.3.2. From a practical perspective, this means that the proposed methods can
not only be used to rank variables but also to decide how many variables to select based
on the data. The proposed filter methods were analyzed both by simulated and real data
in Sections 6 and 7. The following conclusions can be drawn: Firstly, the performance
of a filter depends strongly on the variables and, thus, no single filter statistic can ever
be expected to outperform its competitors in all situations. The performance of a filter
is strongly dependent on the domain of the data. If the specific idiosyncrasies of the
data are known one can decide on the most promising filter. In all other situations, we
would advise to apply several filters and merge the top ranking variables of different filter
statistics.

92

APPENDIX A
Appendix

A.1 Derivation of Equation (2.6) from the Expected
Prediction Error

Consider the random variable (X,Y) : Ω 7→ R × {0, 1}, where X is continuous and Y
denotes the class membership and is, thus, discrete. Y is not observable and is supposed
to be predicted by a classifier δ : R → {0, 1}. In order to evaluate the classifier, we
will estimate the expected prediction error defined in (2.4), where L(δ(X), Y) is a loss
function defined in (2.5). If there exists a density f(x, y) for the probability distribution
of (X,Y) and it is integrable with respect to the product measure then by Fubini’s
theorem the integral can be split into iterated integrals, yielding

EPE(δ) =
∫

R×{0,1}
L(δ(x), y)f(x, y)d(x, y) =

∫
R

∫
{0,1}

L(δ(x), y)f(x, y)dydx.

If we substitute the joint density by the conditional probability and the marginal density
and integrate, this yields

EPE(δ) =
∫

R
c01δ(x)=1(x)P (y = 0|x)fX(x)dx+

∫
R
c11δ(x)=0(x)P (y = 1|x)fX(x)dx.

Using Bayes’ theorem we can substitute for P (y|x), yielding

93

A. Appendix

EPE(δ) =
∫

R
c01δ(x)=1(x)fX(x|y = 0)P (Y = 0)

fX(x) fX(x)dx+

+
∫

R
c11δ(x)=0(x)fX(x|y = 1)P (Y = 1)

fX(x) fX(x)dx =

=c0(1− π1)
∫
{x∈R:δ(x)=1}

fX(x|y = 0)dx+ c1π1

∫
{x∈R:δ(x)=0}

fX(x|y = 1)dx =

=c0(1− π1)P (δ(X) = 1|Y = 0)︸ ︷︷ ︸
false positive rate

+c1π1 P (δ(X) = 0|Y = 1)︸ ︷︷ ︸
false negative rate

.

94

A.2. Implementation of ÊBC

A.2 Implementation of ÊBC

A.2.1 ebc.R

#’ Expected Loss o f the Bayesian C l a s s i f i e r
#’
#’ @descr ip t ion The func t i on o f f e r s a method to s e l e c t v a r i a b l e s by

un i v a r i a t e
#’ f i l t e r i n g based on the es t imated l o s s o f the un i v a r i a t e Bayesian

C l a s s i f e r .
#’ The s t a t i s t i c r e q u i r e s the parametr ic assumption t ha t the

v a r i a b l e c o n s i s t s
#’ o f a mixture o f Gaussian v a r i a b l e s .
#’
#’ @param c l a s s a f a c t o r v ec t o r i n d i c a t i n g the c l a s s membership o f

the
#’ in s t ance s . Must have e x a c t l y two l e v e l s .
#’ @param data a data frame with the v a r i a b l e s to f i l e r in columns .
#’ @param oc a vec to r con ta in ing th r ee e lements . oc [1] , the co s t o f
#’ m i s c l a s s i f y i n g a nega t i v e ins tance , oc [2] , the co s t o f

m i s s c l a s s i f y i n g a
#’ p o s i t i v e ins tance , and oc [3] , the share o f nega t i v e in s t ance s in

the
#’ popu la t i on .
#’ @param p o s i t i v e a charac t e r o b j e c t i n d i c a t i n g the f a c t o r l a b e l o f

the
#’ p o s i t i v e c l a s s .
#’ @param robus t a l o g i c a l i n d i c a t i n g whether a robus t e s t imator o f

the mean
#’ and var iance o f the two c l a s s e s shou ld be used .
#’ @param p . va l a l o g i c a l i n d i c a t i n g whether the p−va l u e s o f ebc

va l u e s under
#’ the n u l l h ypo t h e s i s t h a t both c l a s s e s are equa l shou ld be

c a l c u l a t e d .
#’ Current ly the n u l l d i s t r i b u t i o n i s c a l c u l a t e d by permutat ion .
#’ @param adj . method a charac t e r s t r i n g i n d i c a t i n g the method wi th

which to
#’ co r r e c t the p−va l u e s f o r mu l t i p l e t e s t i n g . See ?p . ad j u s t .
#’
#’ @return a l i s t con ta in ing th r ee components :
#’ \ item{ ebc }{ a numerical v e c t o r con ta in ing the e t c va l u e s f o r

every v a r i a b l e
#’ o f dat . }
#’ \ item{p . v a l }{ the corresponding p−va l u e s o f e t c . (o p t i ona l) }
#’ \ item{p . v a l . ad j }{ the corresponding ad ju s t ed p−va l u e s o f ebc . (

op t i ona l) }
#’
#’ @examples
#’ oc <− c (1 ,3 , 0 . 5)

95

A. Appendix

#’ c l a s s <− f a c t o r (c (rep (0 , 25) , rep (1 , 25)) , l a b e l s=c (" neg " , " pos ")
)

#’ data <− data . frame (" var1"=c (rnorm(25 , 0 , 1/2) , rnorm(25 , 1 , 2)))
#’ res <− ebc (c l a s s , data , oc , p o s i t i v e="pos " , p . v a l=TRUE)
#’ @export

ebc <− function (class , data , p o s i t i v e = levels (class) [1] , oc = c (1 ,
1 , 0 . 5) ,

robust = FALSE, p . va l = TRUE, adj . method = "BH" ,
equalVars = FALSE) {

Error hand l ing
i f (i s . null (dim(data))) data <− as . data . frame (data)
e r r o r_handl ing (" ebc " , class , data , p o s i t i v e , oc , p . val , adj . method

)

Define v a r i a b l e s
p <− i f e l s e (class (data) == " numeric " , 1 , ncol (data))
n <− length (class)
pos <− class == po s i t i v e
neg <− ! pos

Return o b j e c t s
epe <− vector (mode = " numeric " , length = p)
names(epe) <− colnames (data)
p . va lue <− vector (length = p)

Ca lcu l a t e the p r e d i c t i on error f o r every v a r i a b l e in the data
s e t

for (i in 1 : p) {
mu1 <− i f e l s e (robust , median(data [pos , i] , na .rm = TRUE) ,

mean(data [pos , i] , na .rm = TRUE))
mu0 <− i f e l s e (robust , median(data [neg , i] , na .rm = TRUE) ,

mean(data [neg , i] , na .rm = TRUE))
sigma1 <− i f e l s e (robust , mad(data [pos , i] , na .rm = TRUE) ,

sd (data [pos , i] , na .rm = TRUE))
sigma0 <− i f e l s e (robust , mad(data [neg , i] , na .rm = TRUE) ,

sd (data [neg , i] , na .rm = TRUE))

i f (sigma1 == 0) sigma1 <− 1e−12
i f (sigma0 == 0) sigma0 <− 1e−12

i f (sigma0 == sigma1 | equalVars) { # equa l var iances

d . std <− data [, i]
d . s td [pos] <− d . std [pos] − mean(data [pos , i] , na .rm = TRUE)
d . std [neg] <− d . std [neg] − mean(data [neg , i] , na .rm = TRUE)

96

A.2. Implementation of ÊBC

sigma <− i f e l s e (robust , mad(d . std , na .rm = TRUE) , sd (d . std , na
.rm = TRUE))

x <− log (oc [1] / oc [2] ∗ oc [3] / (1 − oc [3])) ∗ sigma^2 / (mu1
− mu0) + (mu1 + mu0)/2

epe [i] <− i f e l s e (mu0 < mu1,
oc [3] ∗ oc [1] ∗ (1 − pnorm(x , mu0 , sigma)) +

(1 − oc [3]) ∗ oc [2] ∗ pnorm(x , mu1 , sigma) ,
oc [3] ∗ oc [1] ∗ pnorm(x , mu0 , sigma) +

(1 − oc [3]) ∗ oc [2] ∗ (1 − pnorm(x , mu1 ,
sigma)))

} else { # unequal var iances

i f (mu0 < mu1) {
xm <− r oo t s (mu0 , mu1 , sigma0 , sigma1 , oc [1] , oc [2] , oc [3])

[2]
xa <− r oo t s (mu0 , mu1 , sigma0 , sigma1 , oc [1] , oc [2] , oc [3])

[1]
i f (i s .na(xm)) {

epe [i] <− (min((1 − oc [3]) ∗ oc [2] , oc [3] ∗ oc [1]))
} else {

epe [i] <− i f e l s e (sigma0 < sigma1 ,
oc [3] ∗ oc [1] ∗ (1 − pnorm(xm, mu0 ,

sigma0) + pnorm(xa , mu0 , sigma0)) +
(1 − oc [3]) ∗ oc [2] ∗ (pnorm(xm, mu1 ,

sigma1) − pnorm(xa , mu1 , sigma1)) ,
oc [3] ∗ oc [1] ∗ (pnorm(xa , mu0 , sigma0)
− pnorm(xm, mu0 , sigma0)) +

(1 − oc [3]) ∗ oc [2] ∗ (1 − pnorm(xa ,
mu1 , sigma1) + pnorm(xm, mu1 ,
sigma1)))

}
} else {

xm <− r oo t s (mu0 , mu1 , sigma0 , sigma1 , oc [1] , oc [2] , oc [3])
[1]

xa <− r oo t s (mu0 , mu1 , sigma0 , sigma1 , oc [1] , oc [2] , oc [3])
[2]

i f (i s .na(xm)) {
epe [i] <− (min((1 − oc [3]) ∗ oc [2] , oc [3] ∗ oc [1]))

} else {
epe [i] <− i f e l s e (sigma0 < sigma1 ,

oc [3] ∗ oc [1] ∗ (1 − pnorm(xa , mu0 ,
sigma0) + pnorm(xm, mu0 , sigma0)) +

(1 − oc [3]) ∗ oc [2] ∗ (pnorm(xa , mu1 ,
sigma1) − pnorm(xm, mu1 , sigma1)) ,

oc [3] ∗ oc [1] ∗ (pnorm(xm, mu0 , sigma0)
− pnorm(xa , mu0 , sigma0)) +

97

A. Appendix

(1 − oc [3]) ∗ oc [2] ∗ (1 − pnorm(xm, mu1
, sigma1) + pnorm(xa , mu1 , sigma1)))

}
}
i f (sigma0 == 0 | sigma1 == 0) {

epe [i] <− NA
}

i f (i s .na(xm)) {
epe [i] <− (min((1 − oc [3]) ∗ oc [2] , oc [3] ∗ oc [1]))
}

}
}

genera te the n u l l d i s t r i b u t i o n and c a l c u l a t e the p−va l u e s
i f (p . va l) {

reps <− 100000
data . h0 <− matrix (ncol = reps , nrow = length (class) , data=rnorm(

reps∗length (class)))
d i s t r . h0 <− ebc (class = class , data = data . h0 , oc = oc , p o s i t i v e

= po s i t i v e , p . va l = FALSE)$ebc
min . va l <− min(d i s t r . h0)

f i t emp i r i ca l cumula t ive d i s t r i b u t i o n func t i on
h0 . ecd f <− ecd f (d i s t r . h0)

f i t monotonic s p l i n e
d i s t r . h0 . t a i l <− d i s t r . h0 [which(rank (d i s t r . h0)<=200)]
grid <− seq (0 ,max(d i s t r . h0 . t a i l) , 0 . 0 1)
pts <− which(h0 . e cd f (grid)>0)
h0 . spline <− splinefun (c (0 , grid [pts]) , c (0 , h0 . e cd f (grid [pts])) ,

method = "hyman")
pval <− function (x) i f e l s e (x < min . val , h0 . spline (x) , h0 . e cd f (x)

)
p . va lue <− sapply (epe , pval)
p . va l . adj <− p . ad jus t (p . value , method = adj . method)

} else {
p . va lue <− NULL
p . va l . adj <− NULL
}

return (l i s t (" ebc " = epe , "p . va lue " = p . value , "p . va lue . adj " = p .
va l . adj))

}

roo t s <− function (mu0 , mu1 , sigma0 , sigma1 , c0 , c1 , p i0) {

98

A.3. Implementation of ÊTC

a <− 1 / (2 ∗ sigma0 ^2) − 1 / (2 ∗ sigma1 ^2)
b <− mu1 / sigma1^2 − mu0 / sigma0^2
c <− mu0^2 / (2 ∗ sigma0 ^2) − mu1^2 / (2 ∗ sigma1 ^2) + log (sigma0

/ sigma1) − log (p i0 / (1 − pi0) ∗ c0 / c1)

i f (b^2 − 4 ∗ a ∗ c >= 0) { return (c((− b − sqrt (b^2 − 4 ∗ a ∗ c))
/ (2 ∗ a) , (− b + sqrt (b^2 − 4 ∗ a ∗ c)) / (2 ∗ a)))

} else {
return (c (NA, NA))
}

}

A.3 Implementation of ÊTC

A.3.1 etc.R

#’ Expected Loss o f the Threshold C l a s s i f i e r .
#’
#’ @descr ip t ion The func t i on o f f e r s a method to s e l e c t v a r i a b l e s by

un i v a r i a t e
#’ f i l t e r i n g based on the es t imated l o s s o f the opt imal un i v a r i a t e

t h r e s ho l d
#’ c l a s s i f e r . No parametr ic assumption about the c l a s s c ond i t i ona l
#’ d i s t r i b u t i o n s i s r e qu i r ed .
#’
#’ @param c l a s s a f a c t o r v ec t o r i n d i c a t i n g the c l a s s membership o f

the
#’ in s t ance s . Must have e x a c t l y two l e v e l s .
#’ @param data a data frame with v a r i a b l e s in columns .
#’ @param oc a vec to r con ta in ing th r ee e lements . oc [1] , the co s t o f
#’ m i s c l a s s i f y i n g a nega t i v e ins tance , oc [2] , the co s t o f

m i s s c l a s s i f y i n g a
#’ p o s i t i v e ins tance , and oc [3] , the share o f nega t i v e in s t ance s in

the
#’ popu la t i on .
#’ @param p o s i t i v e a charac t e r o b j e c t i n d i c a t i n g the f a c t o r l a b e l o f

the
#’ p o s i t i v e c l a s s .
#’ @param p . va l a l o g i c a l i n d i c a t i n g whether the p−va l u e s o f e t c

va l u e s under
#’ the n u l l h ypo t h e s i s t h a t both c l a s s e s are equa l shou ld be

c a l c u l a t e d . The
#’ exac t n u l l d i s t r i b u t i o n i s c a l c u l a t e d by means o f a r e cu r s i v e

a l gor i thm .
#’ @param adj . method a charac t e r s t r i n g i n d i c a t i n g the method wi th

which to
#’ co r r e c t the p−va l u e s f o r mu l t i p l e t e s t i n g . See ?p . ad j u s t .

99

A. Appendix

#’ @param p l o t a l o g i c a l . I f TRUE a p l o t o f the n u l l d i s t r i b u t i o n
w i l l be

#’ genera ted .
#’
#’ @return a l i s t con ta in ing th r ee components :
#’ \ item{ e t c }{ a numerical v e c t o r con ta in ing the e t c va l u e s f o r

every v a r i a b l e
#’ o f dat . }
#’ \ item{p . v a l }{ the corresponding p−va l u e s o f e t c . (o p t i ona l) }
#’ \ item{p . v a l . ad j }{ the corresponding ad ju s t ed p−va l u e s o f e t c . (

o p t i ona l) }
#’
#’ @examples
#’ oc <− c (1 , 3 , 0 .5)
#’ c l a s s <− f a c t o r (c (rep (0 , 25) , rep (1 , 25)) , l a b e l s = c (" neg " , " pos

"))
#’ data <− data . frame (" var1 " = c (rnorm(25 , 0 , 1/2) , rnorm(25 , 1 , 2))

)
#’ res <− e t c (c l a s s , data , p o s i t i v e = " pos " , oc , p . v a l = TRUE)
#’
#’ @export

e t c <− function (class , data , p o s i t i v e = levels (class) [1] , oc = c (1 ,
1 , 0 . 5) ,

p . va l = TRUE, plot = FALSE, adj . method = "BH") {

Error hand l ing
i f (i s . null (dim(data))) data <− as . data . frame (data)
e r r o r_handl ing (" e t c " , class , data , p o s i t i v e , oc , p . val , plot , adj .

method)

Define v a r i a b l e s
pos <− class == po s i t i v e
neg <− ! pos
p <− i f e l s e (class (data) == " numeric " , 1 , ncol (data))
i f (class (data) == " numeric ") data <− as . data . frame (data)
npos <− as .numeric (table (class) [p o s i t i v e])
nneg <− as .numeric (table (class) [levels (class) [! levels (class) ==

po s i t i v e]])

Return op j e c t s
epe <− vector (mode = " numeric " , length = p)
names(epe) <− colnames (data)
p . va lue <− vector (length = p)

Ca lcu l a t e the p r e d i c t i on error f o r every v a r i a b l e in the data
s e t

for (i in 1 : p) {

100

A.3. Implementation of ÊTC

ord <− order (data [, i])
class . ord <− class [ord]
f e a t . ord <− data [ord , i]

fp1 <− c (0 , cumsum(as .numeric (class . ord == po s i t i v e)))
fn1 <− c (nneg , nneg − cumsum(as .numeric (! c lass . ord == po s i t i v e))

)
fp2 <− c (npos , npos − cumsum(as .numeric (class . ord == po s i t i v e)))
fn2 <− c (0 , cumsum(as .numeric (! c lass . ord == po s i t i v e)))

epe [i] <− min(min(fp1 / npos ∗ oc [2] ∗ (1 − oc [3]) + fn1 / nneg
∗ oc [1] ∗ oc [3]) ,

min(fp2 / npos ∗ oc [2] ∗ (1 − oc [3]) + fn2 / nneg
∗ oc [1] ∗ oc [3]))

}

genera te the n u l l d i s t r i b u t i o n and c a l c u l a t e the p−va l u e s
i f (p . va l) {
ND <− e t c . genND(nneg , npos , oc [1] , oc [2] , oc [3])
p . va l <− cumsum(as .numeric (ND$ fav . perm / ND$pos . perm)) [match(

round(epe , 4) , round(ND$val , 4))]
p . va lue . adj <− p . ad jus t (p . val , method = adj . method)

Generate p l o t
i f (plot) {
plot (s t a t s : : s t ep fun (ND$val ,

c (cumsum(as .numeric (ND$ fav . perm / ND$pos .
perm)) , 1)) ,

main = " Cumulative␣Nul l ␣ D i s t r i bu t i on ␣ o f ␣
ETC" ,

xlab = "EPE" ,
ylab = " " ,
pch = " . ")

hist . i n f o <− hist (epe , breaks = ND$val , plot = FALSE)
points (hist . i n f o$mids [hist . i n f o$count != 0] ,

hist . i n f o$counts [hist . i n f o$count != 0] / sum(hist . i n f o$
counts [hist . i n f o$count != 0]) ,

col = " red " ,
pch = 20)

text (hist . i n f o$mids [hist . i n f o$count != 0] ,
y = hist . i n f o$counts [hist . i n f o$count != 0] / sum(hist .

i n f o$counts [hist . i n f o$count != 0]) ,
labels = hist . i n f o$counts [hist . i n f o$count != 0] ,
col = " red ")

}

} else {
p . va lue <− NULL
p . va lue . adj <− NULL

101

A. Appendix

}

return (l i s t (" e t c " = epe , "p . va lue " = p . val , "p . va lue . adj " = p .
va lue . adj))

}

A.3.2 etc_nd.R

#’ Generate the Nul l D i s t r i b u t i o n o f the Threshold C l a s s i f i e r .
#’
#’ @descr ip t ion The func t i on o f f e r s an a l g o r i t hm i c aproach to

genera t ing the
#’ nu l l d i s t r i b u t i o n o f the e t c c l a s s i f i e r under the n u l l h ypo t h e s i s

t ha t the
#’ d i s t r i b u t i o n s o f the p o s i t i v e and the nega t i v e c l a s s are

i d e n t i c a l .
#’
#’ @param n0 i n t e g e r i n d i c a t i n g the number o f nega t i v e in s t ance s in

the
#’ sample .
#’ @param n1 i n t e g e r i n d i c a t i n g the number o f p o s i t i v e in s t ance s in

the
#’ sample .
#’ @param c0 the co s t o f m i s c l a s s i f y i n g a nega t i v e in s tance .
#’ @param c1 the co s t o f m i s c l a s s i f y i n g a p o s i t i v e in s tance .
#’ @param pi0 a r e a l number between 0 and 1 i n d i c a t i n g the

percentage o f
#’ nega t i v e in s t ance s in the popu la t i on .
#’
#’ @return a l i s t con ta in ing th r ee components :
#’ \ item{ va l }{ a vec to r wi th the number o f p o s s i b l e va l u e s than e t c

can take .}
#’ \ item{pos . perm}{ the number o f p o s s i b l e permutat ions f o r the

g iven number o f
#’ p o s i t i v e s and ne ga t i v e s . }
#’ \ item{ fav . perm}{ a vec t o r wi th the number o f f a v o r a b l e

permutat ions f o r every
#’ va lue in va l . }
#’
#’ @examples
#’ e t c . genND(25 , 27 , 1 , 3 , 0 .5)
#’
#’ @export

e t c . genND <− function (n0 , n1 , c0 , c1 , p i0) {

error hand l i g

102

A.3. Implementation of ÊTC

genera te l i s t wi th pa i r s (fp , fn) , f o r which to c a l c u l a t e the
number o f

f a v o r a b l e permutat ions
mat <− round(outer (seq (0 , n0) / n0 ∗ c0 ∗ pi0 , seq (0 , n1) / n1 ∗

c1 ∗ (1 − pi0) , FUN = "+") , 4)
va l <− sort (as . vector (mat) [! duplicated (as . vector (mat))])
va l <− va l [va l <= min(c1 ∗ (1 − pi0) , c0 ∗ pi0)]
c l s t <− l i s t ()
for (v in va l) { c l s t [[as . character (v)]] <− t (which(mat == v , ar r .

ind = TRUE) − 1) }

un l i s t c l s t
c l s t . vec <− c l s t [[1]]
colnames (c l s t . vec) [1] <− paste0 (c l s t [[1]] , c o l l a p s e = " , ")
for (i in 2 : length (c l s t)) {

c l s t . vec <− cbind (c l s t . vec , c l s t [[i]])
colnames (c l s t . vec) [(ncol (c l s t . vec) − ncol (c l s t [[i]]) + 1) : ncol

(c l s t . vec)] <−
apply (c l s t [[i]] , 2 , function (x) paste0 (x , c o l l a p s e = " , "))

}

ca l c u l a t e the number o f p o s s i b l e permutat ions
pos . perm <− gmp : : chooseZ (n0 + n1 , n0)

for every pa i r in c l s t c a l c u l a t e the number o f f a v o r a b l e
permutat ions

fav . perm <− rep (gmp : : as . b igz (0) , length (va l))

posLe f t . l s t <− posLe f t (c l s t . vec , n0 , n1 , c0 , c1 , p i0)
negRght . l s t <− negRght (c l s t . vec , n0 , n1 , c0 , c1 , p i0)
posRght . l s t <− posRght (c l s t . vec , n0 , n1 , c0 , c1 , p i0)
negLeft . l s t <− negLeft (c l s t . vec , n0 , n1 , c0 , c1 , p i0)

fav . perm . vec <− posLe f t . l s t ∗ negRght . l s t + negLeft . l s t ∗ posRght .
l s t

add a l l permutat ions o f pa i r (fp , fn) t ha t add up to the same
cos t

cntr <− 1
for (i in 1 : length (c l s t)) {

erg <− gmp : : as . b igz (0)

for (j in 1 : ncol (c l s t [[i]])) {

erg <− gmp : : add . b igz (erg , fav . perm . vec [cnt r])
cnt r <− cntr + 1

}
fav . perm [i] <− erg

103

A. Appendix

}

return (l i s t (" va l " = val , " pos . perm" = pos . perm , " fav . perm" = fav .
perm))

}

A.3.3 etc_posL.cpp

/∗ These f unc t i on s c a l c u l a t e the number o f f avo rab l e permutat ions o f
the nu l l d i s t r i b u t i o n

∗ o f the e t c c l a s s i f i e r for the p o s i t i v e l e f t s i d e for a given s e t
o f parameters fp , fn ,

∗ n0 , n1 , c0 , c1 , p i0 . posLe f t c a l c u l a t e s the s t a r t i n g va lue s and
c a l l s the r e c u r s i v e

∗ f unc t i on posLe f t_r e c .
∗/

#include <wrap . hpp>
#include <map>
#include <gmpxx . h>
#include <Rcpp . h>
#include <math . h>

using namespace Rcpp ;

// [[Rcpp : : p lug in s (cpp11)]]
void posLe f t_r e c (std : : map <std : : vector<int>, mpz_class>& memo, mpz_

class∗ sums , int l e v e l , int s ta r t , int stop , int& tp , int& fn ,
int& tn , int& fp , double& wght) {

// memoization
int ar r [3] = { l e v e l , s t a r t , stop } ;
std : : vector<int> itm (arr , a r r+3) ;

i f (memo. f i nd (itm) != memo. end ()) { // map lookup
∗sums = ∗sums + memo. at (itm) ;

} else {
i f (l e v e l == 1) { // r e cu r s i on base case

∗sums = ∗sums + s t a r t − stop + 1 ;
memo. i n s e r t (std : : make_pa i r (itm , s t a r t − stop + 1)) ;

} else {

int l e v e l_new = l e v e l − 1 ;
int mnpsr , mxpsr ;
double c r t ;
c r t = round ((fp − l e v e l_new + 1) ∗ wght ∗1e4)/1e4 ;
mnpsr = (fabs (c e i l (c r t) − c r t) < 1e−6) ? round (c r t + 1) : c e i l

(c r t) ;
c r t = round ((tp − fn − mnpsr − (l e v e l_new − tn) ∗ wght) ∗ 1e4)

104

A.3. Implementation of ÊTC

/ 1e4 ;
mxpsr = f l o o r (c r t) ;
i f (mxpsr >= 0) {
int s t a r t_new = (fp + tp) − mnpsr − (fp − l e v e l_new) ;
int stop_new = std : : max(l e v e l_new, tp − mnpsr + l e v e l_new −

mxpsr) ;
mpz_class b f r (∗sums) ;
for (int i = s t a r t ; i >= stop ; i−−) {

s t a r t_new = std : : min (i −1, s t a r t_new) ;
posLe f t_r e c (memo, sums , l e v e l_new, s t a r t_new, s top_new, tp

, fn , tn , fp , wght) ;
}
mpz_class a f t r (∗sums) ;
memo. i n s e r t (std : : make_pa i r (itm , a f t r − b f r)) ;

}
}

}
}

// [[Rcpp : : export]]
SEXP posLe f t (Rcpp : : NumericMatrix c l s t , int n0 , int n1 , double c0 ,

double c1 , double pi0) {

int nco l = c l s t . nco l () ;
s td : : vec to r <mpz_class> perm(nco l) ;

for (int i = 0 ; i < nco l ; i = i + 1) {

int fp = c l s t (0 , i) ;
int fn = c l s t (1 , i) ;
int tp = n1 − fn ;
int tn = n0 − fp ;
int n = n0 + n1 ;
mpz_class sums (0) ;

s td : : map <std : : vector<int>, mpz_class> memo; // c r e a t e map

i f (fp == 0) {

sums = (tp == 0) ? 0 : 1 ;
perm [i] = sums ;

} else {

int l e v e l = fp ;
double wght = c0 / c1 ∗ n1 / n0 ∗ pi0 / (1 − pi0) ;
double c r t = wght ;
int mnpsr = (fabs (c e i l (c r t) − c r t) < 1e−6) ? round (c r t+1) : c e i l

105

A. Appendix

(c r t) ;
c r t = round ((tp − fn − mnpsr − (l e v e l − tn)∗wght)∗1e4)/1e4 ;
int mxpsr = f l o o r (c r t) ;

i f (mxpsr >= 0) {
int s t a r t = fp + tp − mnpsr ;
int stop = std : : max(l e v e l , tp − mnpsr + l e v e l − mxpsr) ;

// s t a r t r e cu r s i on
posLe f t_r e c (memo, &sums , l e v e l , s t a r t , stop , tp , fn , tn , fp ,

wght) ;
perm [i] = sums ;

}
}
memo. c l e a r () ; // delete map
}
return (wrap (perm)) ;

}

A.3.4 etc_posR.cpp

/∗ These f unc t i on s c a l c u l a t e the number o f f avo rab l e permutat ions o f
the nu l l d i s t r i b u t i o n

∗ o f the e t c c l a s s i f i e r for the p o s i t i v e r i g h t s i d e for a given s e t
o f parameters fp , fn ,

∗ n0 , n1 , c0 , c1 , p i0 . posRght c a l c u l a t e s the s t a r t i n g va lue s and
c a l l s the r e c u r s i v e

∗ f unc t i on posRght_r e c .
∗/

#include <wrap . hpp>
#include <map>
#include <Rcpp . h>
#include <math . h>
#include <gmpxx . h>

using namespace Rcpp ;

// [[Rcpp : : p lug in s (cpp11)]]

void posRght_r e c (std : : map <std : : vector<int>, mpz_class>& memo, mpz_
class∗ sums , int l e v e l , int s ta r t , int stop , int& tp , int& fn ,
int& tn , int& fp , double& wght) {

// memoization
int ar r [3] = { l e v e l , s t a r t , stop } ;
std : : vector<int> itm (arr , a r r+3) ;

106

A.3. Implementation of ÊTC

i f (memo. f i nd (itm) != memo. end ()) { // map lookup
∗sums = ∗sums + memo. at (itm) ;

} else {
i f (l e v e l == 1) { // r e cu r s i on base case

∗sums = ∗sums + s t a r t − stop + 1 ;
memo. i n s e r t (std : : make_pa i r (itm , s t a r t − stop + 1)) ;

} else {
int l e v e l_new = l e v e l − 1 ;
int mnpsr , mxpsr ;
double c r t ;
c r t = round ((fp − l e v e l_new + 1) ∗ wght ∗1e4)/1e4 ;
mnpsr = (fabs (c e i l (c r t)) − c r t < 1e−6) ? round (c r t) : c e i l (c r t

) ;
c r t = round ((tp − fn − mnpsr − (l e v e l_new − tn) ∗ wght) ∗ 1e4)

/ 1e4 ;
mxpsr = (fabs (f l o o r (c r t) − c r t) < 1e−6) ? round (c r t − 1) :

f l o o r (c r t) ;
i f (mxpsr >= 0) {

int s t a r t_new = (fp + tp) − mnpsr − (fp − l e v e l_new) ;
int stop_new = std : : max(l e v e l_new, tp − mnpsr + l e v e l_new −

mxpsr) ;
mpz_class b f r (∗sums) ;
for (int i = s t a r t ; i >= stop ; i−−) {

s t a r t_new = std : : min (i −1, s t a r t_new) ;
posRght_r e c (memo, sums , l e v e l_new, s t a r t_new, s top_new, tp

, fn , tn , fp , wght) ;
}
mpz_class a f t r (∗sums) ;
memo. i n s e r t (std : : make_pa i r (itm , a f t r − b f r)) ;

}
}

}
}

// [[Rcpp : : export]]
SEXP posRght (Rcpp : : NumericMatrix c l s t , int n0 , int n1 , double c0 ,

double c1 , double pi0) {

int nco l = c l s t . nco l () ;
s td : : vec to r <mpz_class> perm(nco l) ;

for (int i = 0 ; i < nco l ; i = i + 1) {

int fp = c l s t (0 , i) ;
int fn = c l s t (1 , i) ;
int tp = n1 − fn ;
int tn = n0 − fp ;

107

A. Appendix

int n = n0 + n1 ;
mpz_class sums (0) ;
double c r t ;

s td : : map <std : : vector<int>, mpz_class> memo; // c r e a t e map

i f (fp == 0) {

sums = (tp == 0) ? 0 : 1 ;
perm [i] = sums ;

} else {

int l e v e l = fp ;
int mnpsr , mxpsr ;
double wght = c0 / c1 ∗ n1 / n0 ∗ pi0 / (1 − pi0) ;
double c r t ;
c r t = wght ;
mnpsr = (fabs (c e i l (c r t)) − c r t < 1e−6) ? round (c r t) : c e i l (c r t

) ;
c r t = round ((tp − fn − mnpsr − (l e v e l − tn) ∗ wght) ∗ 1e4) / 1

e4 ;
mxpsr = (fabs (f l o o r (c r t) − c r t) < 1e−6) ? round (c r t − 1) :

f l o o r (c r t) ;

i f (mxpsr >= 0) {
int s t a r t = (fp + tp) − mnpsr ;
int stop = std : : max(l e v e l , tp − mnpsr + l e v e l − mxpsr) ;

// s t a r t r e cu r s i on
posRght_r e c (memo, &sums , l e v e l , s t a r t , stop , tp , fn , tn , fp ,

wght) ;
perm [i] = sums ;

}
}
memo. c l e a r () ; // delete map

}
return (wrap (perm)) ;

}

A.3.5 etc_negL.cpp

/∗ These f unc t i on s c a l c u l a t e the number o f f avo rab l e permutat ions o f
the nu l l d i s t r i b u t i o n

∗ o f the e t c c l a s s i f i e r for the p o s i t i v e l e f t s i d e for a given s e t
o f parameters fp , fn ,

∗ n0 , n1 , c0 , c1 , p i0 . negLeft c a l c u l a t e s the s t a r t i n g va lue s and
c a l l s the r e c u r s i v e

∗ f unc t i on negLeft_r e c .

108

A.3. Implementation of ÊTC

∗/

#include <wrap . hpp>
#include <map>
#include <gmpxx . h>
#include <gmp . h>
#include <Rcpp . h>
#include <math . h>

using namespace Rcpp ;

// [[Rcpp : : p lug in s (cpp11)]]
void negLeft_r e c (std : : map <std : : vector<int>, mpz_class>& memo, mpz_

class∗ sums , int l e v e l , int s ta r t , int stop , int& tp , int& fn ,
int& tn , int& fp , double& wght) {

// memoization
int ar r [3] = { l e v e l , s t a r t , stop } ;
std : : vector<int> itm (arr , a r r+3) ;

i f (memo. f i nd (itm) != memo. end ()) { // map lookup
∗sums = ∗sums + memo. at (itm) ;

} else {
i f (l e v e l == 1) { // r e cu r s i on base case

∗sums = ∗sums + s t a r t − stop + 1 ;
memo. i n s e r t (std : : make_pa i r (itm , s t a r t − stop + 1)) ;

} else {

int l e v e l_new = l e v e l − 1 ;
int mnpsr , mxpsr ;
double c r t ;
c r t = round ((fn − l e v e l_new + 1) ∗ wght ∗1e4)/1e4 ;
mnpsr = (fabs (c e i l (c r t) − c r t) < 1e−6) ? round (c r t+1) : c e i l (

c r t) ;
c r t = round ((tn − fp − mnpsr − (l e v e l_new − tp) ∗ wght) ∗ 1e4

) / 1e4 ;
mxpsr = (fabs (f l o o r (c r t) − c r t) < 1e−6) ? round (c r t − 1) :

f l o o r (c r t) ;
i f (mxpsr >= 0) {
int s t a r t_new = (fn + tn) − mnpsr − (fn − l e v e l_new) ;
int stop_new = std : : max(l e v e l_new, tn − mnpsr + l e v e l_new −

mxpsr) ;
mpz_class b f r (∗sums) ;
for (int i = s t a r t ; i >= stop ; i−−) {

s t a r t_new = std : : min (i −1, s t a r t_new) ;
negLeft_r e c (memo, sums , l e v e l_new, s t a r t_new, s top_new, tp

, fn , tn , fp , wght) ;
}

109

A. Appendix

mpz_class a f t r (∗sums) ;
memo. i n s e r t (std : : make_pa i r (itm , a f t r − b f r)) ;

}
}

}
}

// [[Rcpp : : export]]
SEXP negLeft (Rcpp : : NumericMatrix c l s t , int n0 , int n1 , double c0 ,

double c1 , double pi0) {

int nco l = c l s t . nco l () ;
s td : : vec to r <mpz_class> perm(nco l) ;

for (int i = 0 ; i < nco l ; i = i + 1) {

int fp = c l s t (0 , i) ;
int fn = c l s t (1 , i) ;
int tp = n1 − fn ;
int tn = n0 − fp ;
int n = n0 + n1 ;
mpz_class sums (0) ;
double c r t ;

s td : : map <std : : vector<int>, mpz_class> memo; // c r e a t e map

i f (fn == 0) {

sums = (tn == 0) ? 0 : 1 ;
perm [i] = sums ;

} else {

int l e v e l = fn ;
int mnpsr , mxpsr ;
double c r t ;
double wght = c1 / c0 ∗ (tn + fp) / (tp + fn) ∗ (1 − pi0) /

pi0 ;
c r t = wght ;
mnpsr = (fabs (c e i l (c r t) − c r t) < 1e−6) ? round (c r t + 1) : c e i l

(c r t) ;
c r t = round ((tn − fp − mnpsr − (l e v e l − tp) ∗ wght) ∗ 1e4) /

1e4 ;
mxpsr = (fabs (f l o o r (c r t) − c r t) < 1e−6) ? round (c r t − 1) :

f l o o r (c r t) ;

i f (mxpsr >= 0) {

110

A.3. Implementation of ÊTC

int s t a r t = (fn + tn) − mnpsr − (fn − l e v e l) ;
int stop = std : : max(l e v e l , tn − mnpsr + l e v e l − mxpsr) ;

// s t a r t r e cu r s i on
negLeft_r e c (memo, &sums , l e v e l , s t a r t , stop , tp , fn , tn , fp ,

wght) ;
perm [i] = sums ;

}
}
memo. c l e a r () ; // delete map

}
return (wrap (perm)) ;

}

A.3.6 etc_negR.cpp

/∗ These f unc t i on s c a l c u l a t e the number o f f avo rab l e permutat ions o f
the nu l l d i s t r i b u t i o n

∗ o f the e t c c l a s s i f i e r for the negat ive r i g h t s i d e for a given s e t
o f parameters fp , fn ,

∗ n0 , n1 , c0 , c1 , p i0 . negRght c a l c u l a t e s the s t a r t i n g va lue s and
c a l l s the r e c u r s i v e

∗ f unc t i on negRght_r e c .
∗/

#include <wrap . hpp>
#include <map>
#include <gmpxx . h>
#include <Rcpp . h>
#include <math . h>

using namespace Rcpp ;

// [[Rcpp : : p lug in s (cpp11)]]
void negRght_r e c (std : : map <std : : vector<int>, mpz_class>& memo, mpz_

class∗ sums , int l e v e l , int s ta r t , int stop , int& tp , int& fn ,
int& tn , int& fp , double& wght) {

// memoization
int ar r [3] = { l e v e l , s t a r t , stop } ;
std : : vector<int> itm (arr , a r r+3) ;

i f (memo. f i nd (itm) != memo. end ()) { // map lookup
∗sums = ∗sums + memo. at (itm) ;

} else { // c a l c u l a t e key value
i f (l e v e l == 1) { // r e cu r s i on base case

∗sums = ∗sums + s t a r t − stop + 1 ;
memo. i n s e r t (std : : make_pa i r (itm , s t a r t − stop + 1)) ;

} else {

111

A. Appendix

int l e v e l_new = l e v e l − 1 ;
int mnpsr , mxpsr ;
double c r t ;
c r t = round ((fn − l e v e l_new + 1) ∗ wght ∗1e4)/1e4 ;
mnpsr=c e i l (c r t) ;
c r t = round ((tn − fp − mnpsr − (l e v e l_new − tp) ∗ wght) ∗ 1e4

) / 1e4 ;
mxpsr = f l o o r (c r t) ;
i f (mxpsr >= 0) {
int s t a r t_new = (fn + tn) − mnpsr − (fn − l e v e l_new) ;
int stop_new = std : : max(l e v e l_new, tn − mnpsr + l e v e l_new −

mxpsr) ;
mpz_class b f r (∗sums) ;
for (int i = s t a r t ; i >= stop ; i−−) {

s t a r t_new = std : : min (i −1, s t a r t_new) ;
negRght_r e c (memo, sums , l e v e l_new, s t a r t_new, s top_new, tp

, fn , tn , fp , wght) ;
}
mpz_class a f t r (∗sums) ;
memo. i n s e r t (std : : make_pa i r (itm , a f t r − b f r)) ;

}
}

}
}

// [[Rcpp : : export]]
SEXP negRght (Rcpp : : NumericMatrix c l s t , int n0 , int n1 , double c0 ,

double c1 , double pi0) {

int nco l = c l s t . nco l () ;
s td : : vec to r <mpz_class> perm(nco l) ;

for (int i = 0 ; i < nco l ; i = i + 1) {

int fp = c l s t (0 , i) ;
int fn = c l s t (1 , i) ;
int tp = n1 − fn ;
int tn = n0 − fp ;
int n = n0 + n1 ;
mpz_class sums (0) ;
double c r t ;

s td : : map <std : : vector<int>, mpz_class> memo; // c r e a t e map

i f (fn == 0) {

sums = 1 ;

112

A.3. Implementation of ÊTC

perm [i] = sums ;

} else {

int l e v e l = fn ;
double wght = c1 / c0 ∗ n0 / n1 ∗ (1 − pi0) / pi0 ;
c r t = wght ;
int mnpsr = (fabs (c e i l (c r t) − c r t) < 1e−9) ? round (c r t) : c e i l

(c r t) ;
c r t = (tn − fp − mnpsr − (l e v e l − tp) ∗ wght) ;
int mxpsr = (fabs (f l o o r (c r t) − c r t) < 1e−9) ? round (c r t) :

f l o o r (c r t) ;

i f (mxpsr >= 0) {
int s t a r t = (fn + tn) − mnpsr ;
int stop = std : : max(l e v e l , tn − mnpsr + l e v e l − mxpsr) ;

// s t a r t r e cu r s i on
negRght_r e c (memo, &sums , l e v e l , s t a r t , stop , tp , fn , tn , fp ,

wght) ;
perm [i] = sums ;

}
}
memo. c l e a r () ; // delete map

}
return (wrap (perm)) ;

}

113

A. Appendix

A.4 Implementation of ÊIC

A.4.1 eic.R

#’ Expected Loss o f the I n t e r v a l C l a s s i f i e r .
#’
#’ @descr ip t ion The func t i on o f f e r s a method to s e l e c t v a r i a b l e s by

un i v a r i a t e
#’ f i l t e r i n g based on the es t imated l o s s o f the opt imal un i v a r i a t e

i n t e r v a l
#’ c l a s s i f e r . No parametr ic assumption about the c l a s s c ond i t i ona l
#’ d i s t r i b u t i o n s i s r e qu i r ed .
#’
#’ @param c l a s s a f a c t o r v ec t o r i n d i c a t i n g the c l a s s membership o f

the
#’ in s t ance s . Must have e x a c t l y two l e v e l s .
#’ @param data a data frame with v a r i a b l e s in columns .
#’ @param oc a vec to r con ta in ing th r ee e lements . oc [1] , the co s t o f
#’ m i s c l a s s i f y i n g a nega t i v e ins tance , oc [2] , the co s t o f

m i s s c l a s s i f y i n g a
#’ p o s i t i v e ins tance , and oc [3] , the share o f nega t i v e in s t ance s in

the
#’ popu la t i on .
#’ @param p o s i t i v e a charac t e r o b j e c t i n d i c a t i n g the f a c t o r l a b e l o f

the
#’ p o s i t i v e c l a s s .
#’ @param p . va l a l o g i c a l i n d i c a t i n g whether the p−va l u e s o f e t c

va l u e s under
#’ the n u l l h ypo t h e s i s t h a t both c l a s s e s are equa l shou ld be

c a l c u l a t e d . The
#’ exac t n u l l d i s t r i b u t i o n i s c a l c u l a t e d by means o f a r e cu r s i v e

a l gor i thm .
#’ @param adj . method a charac t e r s t r i n g i n d i c a t i n g the method wi th

which to
#’ co r r e c t the p−va l u e s f o r mu l t i p l e t e s t i n g . See ?p . ad j u s t .
#’ @param p l o t a l o g i c a l . I f TRUE a p l o t o f the n u l l d i s t r i b u t i o n

w i l l be
#’ genera ted .
#’
#’ @return a l i s t con ta in ing th r ee components :
#’ \ item{ e i c }{ a numerical v e c t o r con ta in ing the e t c va l u e s f o r

every v a r i a b l e
#’ o f dat . }
#’ \ item{p . v a l }{ the corresponding p−va l u e s o f e t c . (o p t i ona l) }
#’ \ item{p . v a l . ad j }{ the corresponding ad ju s t ed p−va l u e s o f e t c . (

o p t i ona l) }
#’
#’ @examples
#’ oc <− c (1 ,3 , 0 . 5)

114

A.4. Implementation of ÊIC

#’ c l a s s <− f a c t o r (c (rep (0 , 25) , rep (1 , 25)) , l a b e l s=c (" neg " , " pos ")
)

#’ data <− data . frame (" var1"=c (rnorm(25 , 0 , 1/2) , rnorm(25 , 1 , 2)))
#’ res <− e i c (c l a s s , data , oc , p o s i t i v e="pos " , p . v a l=TRUE)
#’
#’ @export

e i c <− function (class , data , p o s i t i v e = levels (class) [1] , oc = c (1 ,
1 , 0 . 5) ,

p . va l = TRUE, plot = FALSE, adj . method = "BH") {

Error hand l ing
i f (i s . null (dim(data))) data <− as . data . frame (data)
e r r o r_handl ing (" e i c " , class , data , p o s i t i v e , oc , p . val , plot , adj .

method)

Define v a r i a b l e s
p <− i f e l s e (class (data) == " numeric " , 1 , ncol (data))
n1 <− as .numeric (table (class) [p o s i t i v e])
n0 <− length (class) − n1
n <− n0 + n1
d1 <− − oc [2] / n1 ∗ (1 − oc [3])
d0 <− oc [1] / n0 ∗ oc [3]

Return o b j e c t s
epe <− vector (mode=" numeric " , length = p)
names(epe) <− colnames (data)
p . va lue <− vector (length = p)

Ca lcu l a t e the p r e d i c t i on error f o r every v a r i a b l e in the data
s e t

order the c l a s s l a b e l s accord ing to the ranks o f the v a r i a b l e s
data . ord <− matrix (nrow = length (class) , data = as .numeric (class) [

apply (data , 2 , order)])

for (i in 1 : p) {
min . va l <− min(oc [2] ∗ (1 − oc [3]) , oc [1] ∗ oc [3])

for (j in 1 : n) { # po s i t i v e i n t e r v a l
row .min <− min(cumsum(c (oc [2] ∗ (1 − oc [3]) , c (d0 , d1) [data .

ord [j : n , i]])))
min . va l <− min(min . val , row .min)

}

for (j in 1 : n) { # nega t i v e i n t e r v a l
row .min <− min(cumsum(c (oc [1] ∗ oc [3] , c(−d0 , −d1) [data . ord [j :

n , i]])))

115

A. Appendix

min . va l <− min(min . val , row .min)
}

epe [i] <− min . va l

}

Generate the n u l l d i s t r i b u t i o n and c a l c u l a t e the p−va l u e s

i f (p . va l) {
ND <− e i c . genND(n0 , n1 , oc [1] , oc [2] , oc [3] , data , class ,

p o s i t i v e)
p . va l <− cumsum(as .numeric (ND$ fav . perm/ND$pos . perm)) [match(round

(epe , 4) , round(ND$val , 4))]

i f (plot) {
plot (s t a t s : : s t ep fun (ND$val , c (cumsum(as .numeric (ND$ fav . perm /

ND$pos . perm)) , 1)) ,
main = " Cumulative␣Nul l ␣ D i s t r i bu t i on ␣ o f ␣ETC" , xlab = "EPE

" , ylab = " " , pch = " . ")
hist . i n f o <− hist (epe , breaks = ND$val , plot = FALSE)
points (hist . i n f o$mids [hist . i n f o$count != 0] , hist . i n f o$counts [

hist . i n f o$count != 0] / sum(hist . i n f o$counts [hist . i n f o$
count != 0]) , col = " red " , pch = 20)

text (hist . i n f o$mids [hist . i n f o$count != 0] , y = hist . i n f o$
counts [hist . i n f o$count != 0] / sum(hist . i n f o$counts [hist .
i n f o$count != 0]) , labels = hist . i n f o$counts [hist . i n f o$
count != 0] , col = " red ")

p . va l . adj <− i f e l s e (i s . null (adj . method) , NULL, p . ad jus t (p . val ,
method = adj . method))

}

} else {
p . va l <− NULL
p . va l . adj <− NULL

}

return (l i s t (" e i c " = epe , "p . va lue " = p . val , "p . va lue . adj " = p . va l .
adj))

}

A.4.2 eic_nd.R

#’ Generate the Nul l D i s t r i b u t i o n o f EIC .
#’
#’ @descr ip t ion The func t i on o f f e r s a h e u r i s t i c aproach to

genera t ing the n u l l

116

A.4. Implementation of ÊIC

#’ d i s t r i b u t i o n o f the e i c c l a s s i f i e r under the n u l l h ypo t h e s i s t ha t
the

#’ d i s t r i b u t i o n s o f the p o s i t i v e and the nega t i v e c l a s s are
i d e n t i c a l .

#’
#’ @param n0 an i n t e g e r i n d i c a t i n g the number o f nega t i v e in s t ance s

in the
#’ sample .
#’ @param n1 an i n t e g e r i n d i c a t i n g the number o f p o s i t i v e in s t ance s

in the
#’ sample .
#’ @param c0 the co s t o f m i s c l a s s i f y i n g a nega t i v e in s tance .
#’ @param c1 the co s t o f m i s c l a s s i f y i n g a p o s i t i v e in s tance .
#’ @param pi0 a r e a l number between 0 and 1 i n d i c a t i n g the

percentage o f
#’ nega t i v e in s t ance s in the popu la t i on .
#’
#’ @return a l i s t con ta in ing th r ee components :
#’ \ item{ va l }{ a vec to r wi th the number o f p o s s i b l e va l u e s than e i c

can take .}
#’ \ item{pos . perm}{ the number o f p o s s i b l e permutat ions f o r the

g iven number o f
#’ p o s i t i v e s and ne ga t i v e s . }
#’ \ item{ fav . perm}{ a vec t o r wi th the number o f f a v o r a b l e

permutat ions f o r
#’ every va lue in va l . }
#’
#’ @examples
#’ e i c . genND(25 , 27 , 1 , 3 , 0 . 5)
#’
#’ @export

e i c . genND <− function (n0 , n1 , c0 , c1 , pi0 , data , class , p o s i t i v e ,
plot = FALSE) {

genera te l i s t wi th pa i r s (fp , fn) , f o r which to c a l c u l a t e the
f a v o r a b l e permutat ions

mat <− round(outer (seq (0 , n0) / n0 ∗ c0 ∗ pi0 , seq (0 , n1) / n1 ∗
c1 ∗ (1 − pi0) , FUN = "+") , 4)

va l <− sort (as . vector (mat) [! duplicated (as . vector (mat))])
va l <− va l [va l <= min(c1 ∗ (1 − pi0) , c0 ∗ pi0)]

genera te l i s t wi th pa i r s (fp , fn) , f o r which to c a l c u l a t e the
f a v o r a b l e permutat ions

c l s t <− l i s t ()
for (v in va l) { c l s t [[as . character (v)]] <− t (which(mat == v , ar r .

ind = TRUE) − 1) }

s e l e c t on ly those co s t va l u e s where a l l p a i r s o f (fp , fn) do not

117

A. Appendix

exceed f l o o r (min(n0 , n1) / 2)
s e l <− sapply (c l s t , function (y) a l l (apply (y , 2 , function (x) a l l (x

<= f loor (min(n0 , n1) / 2)))))
c l s t <− c l s t [s e l]

un l i s t c l s t
c l s t . vec <− c l s t [[1]]
colnames (c l s t . vec) [1] <− paste0 (c l s t [[1]] , c o l l a p s e=" , ")
for (i in 2 : length (c l s t)) {

c l s t . vec <− cbind (c l s t . vec , c l s t [[i]])
colnames (c l s t . vec) [(ncol (c l s t . vec) − ncol (c l s t [[i]]) + 1) : ncol

(c l s t . vec)] <− apply (c l s t [[i]] , 2 , function (x) paste0 (x ,
c o l l a p s e=" , "))

}

number o f p o s s i b l e permutat ions
pos . perm <− gmp : : chooseZ (n0 + n1 , n0)

number o f f a v o r a b l e permutat ions f o r every va lue
fav . perm <− rep (gmp : : as . b igz (0) , length (va l))

ca l c u l a t e the exac t number o f f a v o r a b l e permutat ion f o r the
f i r s t f l o o r (min(n1 , n0)/2) va l u e s

posInt . l s t <− posInt (c l s t . vec , n0 , n1 , c0 , c1 , p i0)
negInt . l s t <− negInt (c l s t . vec , n0 , n1 , c0 , c1 , p i0)
posComp . l s t <− posComp(c l s t . vec , n0 , n1 , c0 , c1 , p i0)
negComp . l s t <− negComp(c l s t . vec , n0 , n1 , c0 , c1 , p i0)
fav . perm . vec <− posInt . l s t ∗ negComp . l s t + posComp . l s t ∗ negInt .

l s t

cntr <− 1

for (i in 1 : (f loor (min(n0 , n1) / 2))) {
erg <− gmp : : as . b igz (0)

for (j in 1 : ncol (c l s t [[i]])) {

erg <− gmp : : add . b igz (erg , fav . perm . vec [cnt r])
cnt r <− cntr + 1

}
fav . perm [i] <− erg

}

ind . count <− which(fav . perm != 0)

ESTIMATE THE NUMBER OF FAVORABLE PERMUTATIONS BY MEANS OF
RANDOM PERMUTATIONS

for a l l v a l u e s t ha t e x h i b i t more than 5% of o v e r a l l permutat ions

118

A.4. Implementation of ÊIC

reps <− 20000 # number o f random permutat ions
fav . perm . rnd <− rep (0 , length (va l))
names(fav . perm . rnd) <− va l
dt <− matrix (nrow = nrow(data) , ncol = reps)
for (l in 1 : ncol (dt)) { dt [, l] <− sample (data [, sample (ncol (data)

, 1)]) } # f i l l the matrix wi th randomly permuted v e c t o r s
cva l s <− e i c (class , dt , c (c0 , c1 , p i0) , p o s i t i v e = po s i t i v e , p . va l

= FALSE, plot = FALSE, adj . method = NULL)

for (i in 1 : length (va l)) { fav . perm . rnd [i] <− sum(round(c va l s$ e i c ,
4) == round(va l [i] , 4)) }

ind . perm <− fav . perm . rnd >= 0.01 ∗ reps
fav . perm . rnd <− round(fav . perm . rnd ∗ as .numeric (pos . perm / reps))
fav . perm . rnd [! ind . perm] <− 0
fav . perm . rnd [ind . count] <− 0
fav . perm [fav . perm . rnd != 0] <− fav . perm . rnd [fav . perm . rnd != 0]

ESTIMATE THE NUMBER OF FAVORABLE PERMUTATIONS FOR ALL OTHER
VALUES BY MEANS OF INTRAPOLATION OR EXTRAPOLATION

for those va l u e s between the maximal va lue o f the exac t count ing
schema and the minimal va lue o f the permutat ion

i f (max(ind . count) < min(which(ind . perm))) {

va l . r . imp <− c (ind . count [(length (ind . count) − 2) : length (ind .
count)] , which(ind . perm) [c (1 , 2 , 3)])

va l . 2 . imp <− (max(ind . count) + 1) : (min(which(ind . perm))−1)
p t sSp l i n e . mid <− spline (va l [va l . r . imp] , fav . perm [va l . r . imp] ,

xout = va l [va l . 2 . imp] , method = "hyman")

p l o t
#p t s Sp l i n e . p l t <− s p l i n e (va l [v a l . r . imp] , f av . perm [va l . r . imp] , n

= 200 , method = "hyman ")
#p l o t (p t s S p l i n e . p l t , type = " l ")
#po in t s (v a l [v a l . r . imp] , f av . perm [va l . r . imp])
#po in t s (v a l [v a l . 2 . imp] , p t s S p l i n e . mid$y , c o l="red ")

fav . perm [va l . 2 . imp] <− pt sSp l i n e . mid$y

}

for those va l u e s at the r i g h t end

i f (sum(fav . perm == 0) > 1) {

i f (sum(fav . perm) < pos . perm) {

119

A. Appendix

va l . ext <− fav . perm == 0
in t r a p o l a t e the cumulat ive d en s i t y
fav . perm . cum <− cumsum(fav . perm)
fav . perm . cum [va l . ext] <− NA
fav . perm . cum [length (fav . perm . cum)] <− pos . perm
va l . r . imp <− c (which(ind . perm) [(sum(ind . perm)−2) :sum(ind . perm)

] , length (va l))
va l . 2 . imp <− (max(which(ind . perm)) + 1) : (length (va l) − 1)
p t sSp l i n e . rght <− spline (va l [va l . r . imp] , fav . perm . cum [va l . r .

imp] , xout = va l [va l . 2 . imp] , method = "hyman")
fav . perm . cum [va l . 2 . imp] <− round(p t sSp l i n e . rght$y)

d f s <− as .numeric (fav . perm . cum [c (va l . 2 . imp , length (va l))] −
fav . perm . cum [c (va l . 2 . imp [1] −1) : max(va l . 2 . imp)])

fav . perm [(max(which(ind . perm)) + 1) : length (va l)] <− sapply (
dfs , function (z) max(0 , z))

} else {
round b i g q not implemented ye t
#fav . perm[− ind . count] <− round (fav . perm[− ind . count] ∗ (pos .

perm − sum(fav . perm [ind . count])) / sum(fav . perm[− ind . count
]))

}
} else i f (sum(fav . perm == 0) == 1) {

fav . perm [fav . perm == 0] <− max(pos . perm − sum(fav . perm) , 0)
}

i f (p l o t) {
p l o t (s t ep fun (va l , c (0 , as . numeric (fav . perm / pos . perm))) , main

= " Nul l D i s t r i b u t i o n o f EIC")
po in t s (v a l [ind . count] , as . numeric (fav . perm / pos . perm) [ind .

count] , c o l="red ")
po in t s (v a l [ind . perm] , as . numeric (fav . perm / pos . perm) [ind . perm

] , c o l="green ")
po in t s (v a l [−c (ind . count , which (ind . perm))] , as . numeric (fav . perm

/ pos . perm) [−c (ind . count , which (ind . perm))] , c o l=" b l u e ")
legend (" t o p l e f t " , l e gend = c (" exac t " , " permutat ion " , "

i n t r a p o l a t i o n ") , c o l = c (" red " , " green " , " b l u e ") , pch = rep (1 ,3))
}

return (l i s t (" va l " = val , " pos . perm" = pos . perm , " fav . perm" = fav .
perm))

}

A.4.3 eic_posI.cpp

/∗ These f unc t i on s c a l c u l a t e the number o f f avo rab l e permutat ions o f
the nu l l d i s t r i b u t i o n

120

A.4. Implementation of ÊIC

∗ o f the e i c c l a s s i f i e r for a p o s i t i v e i n t e r v a l for a given s e t o f
parameters fp , fn ,

∗ n0 , n1 , c0 , c1 , p i0 . pos Int c a l c u l a t e s the s t a r t i n g va lue s and
c a l l s the r e c u r s i v e

∗ f unc t i on posInt_r e c .
∗/

#include <wrap . hpp>
#include <map>
#include <gmpxx . h>
#include <Rcpp . h>
#include <math . h>

using namespace Rcpp ;

void posInt_r e c (std : : map <std : : vector<int>, mpz_class>& memo, mpz_
class∗ sum_posInt , int l e v e l , int s ta r t , int stop , int fp , int fn
, int n0 , int n1 , double c0 , double c1 , double pi0) {

int ar r [5] = { l e v e l , s t a r t , stop , fp , fn } ; // map key
std : : vector<int> itm (arr , a r r+5) ;

i f (memo. f i nd (itm) != memo. end ()) { // map look up

∗sum_posInt = ∗sum_posInt + memo. at (itm) ;

} else { // i f key does not e x i s t in map, c a l c u l a t e the
corre spond ing value

i f (l e v e l == 1) { // end o f r e cu r s i on

∗sum_posInt = ∗sum_posInt + stop − s t a r t + 1 ;

} else { // r e cu r s i on step

// c a l c u l a t e new r e cu r s i on arguments
int l e v e l_new = l e v e l − 1 ;
double c r t = (fp − l e v e l_new + 1) ∗ c0 / c1 ∗ n1 / n0 ;
int mnpsr = fabs (c e i l (c r t) − c r t) < 1e−6 ? round (c r t) : c e i l (

c r t) ;
c r t = l e v e l_new ∗ c0 / c1 ∗ n1 / n0 ;
int mxpsr = fabs (c e i l (c r t) − c r t) < 1e−6 ? round (c r t) : c e i l (

c r t) ;
int s t a r t_new = mnpsr + (fp − l e v e l_new) + 1 ;
int stop_new = (n1 − fn + fp) − (mxpsr + (l e v e l_new − 1)) ;

mpz_class b f r (∗sum_posInt) ;

for (int i = s t a r t ; i <= stop ; i = i + 1) {

121

A. Appendix

// c a l l r e cu r s i on
posInt_r e c (memo, sum_posInt , l e v e l_new, s td : : max(i +1, s t a r t_

new) , stop_new, fp , fn , n0 , n1 , c0 , c1 , p i0) ;
}

mpz_class a f t r (∗sum_posInt) ;
memo. i n s e r t (std : : make_pa i r (itm , a f t r − b f r)) ; // save pa i r o f

(key , va lue) in to map

}
}

}

// [[Rcpp : : export]]
SEXP posInt (Rcpp : : NumericMatrix c l s t , int n0 , int n1 , double c0 ,

double c1 , double pi0) {

int nco l = c l s t . nco l () ;
s td : : vec to r <mpz_class> perm(nco l) ;
s td : : map <std : : vector<int>, mpz_class> memo; // c r e a t e map

for (int i = 0 ; i < nco l ; i = i + 1) {

mpz_class sums (0) ;
int fp = c l s t (0 , i) ;
int fn = c l s t (1 , i) ;

i f (fp == 0) {
sums = 1 ;
perm [i] = sums ;

} else {

// c a l c u l a t e i n i t i a l va lue s for r e cu r s i on
int l e v e l_i n i t = fp ;
double c r t = c0 / c1 ∗ n1 / n0 ;
int mnpsr = fabs (c e i l (c r t) − c r t) < 1e−6 ? round (c r t) : c e i l (

c r t) ;
c r t = fp ∗ c0 / c1 ∗ n1 / n0 ;
int mxpsr = fabs (c e i l (c r t) − c r t) < 1e−6 ? round (c r t) : c e i l (

c r t) ;
int s t a r t_i n i t = mnpsr + 1 ;
int stop_i n i t = (n1 − fn + fp) − (mxpsr + (fp − 1)) ;

// s t a r t r e cu r s i on
posInt_r e c (memo, &sums , l e v e l_i n i t , s t a r t_i n i t , s top_i n i t ,

c l s t (0 , i) , c l s t (1 , i) , n0 , n1 , c0 , c1 , p i0) ;
perm [i] = sums ;

122

A.4. Implementation of ÊIC

}
}

memo. c l e a r () ; // delete map
return (wrap (perm)) ;

}

A.4.4 eic_negI.cpp

/∗ These f unc t i on s c a l c u l a t e the number o f f avo rab l e permutat ions o f
the nu l l d i s t r i b u t i o n

∗ o f the e i c c l a s s i f i e r for a negat ive i n t e r v a l for a given s e t o f
parameters fp , fn ,

∗ n0 , n1 , c0 , c1 , p i0 . negInt c a l c u l a t e s the s t a r t i n g va lue s and
c a l l s the r e c u r s i v e

∗ f unc t i on negInt_r e c .
∗/

#include <wrap . hpp>
#include <map>
#include <gmpxx . h>
#include <Rcpp . h>
#include <math . h>

using namespace Rcpp ;

void negInt_r e c (std : : map <std : : vector<int>, mpz_class>& memo_negInt ,
mpz_class∗ sum_negInt , int l e v e l , int s ta r t , int stop , int fp ,
int fn , int n0 , int n1 , double c0 , double c1 , double pi0) {

int ar r [5] = { l e v e l , s t a r t , stop , fp , fn } ; // map key
std : : vector<int> itm (arr , a r r+5) ;

i f (memo_negInt . f i nd (itm) != memo_negInt . end ()) { // map look up

∗sum_negInt = ∗sum_negInt + memo_negInt . at (itm) ;

} else { // i f key does not e x i s t in map, c a l c u l a t e the
corre spond ing value

i f (l e v e l == 1) { // end o f r e cu r s i on

∗sum_negInt = ∗sum_negInt + stop − s t a r t + 1 ;

} else { // r e cu r s i on step

// c a l c u l a t e new r e cu r s i on arguments
int l e v e l_new = l e v e l − 1 ;
double c r t = (fn − l e v e l_new + 1) ∗ c1 / c0 ∗ n0 / n1 ;

123

A. Appendix

int mnpsr = fabs (round (c r t) − c r t) < 1e−6 ? round (c r t + 1) :
c e i l (c r t) ;

c r t = l e v e l_new ∗ c1 / c0 ∗ n0 / n1 ;
int mxpsr = fabs (round (c r t) − c r t) < 1e−6 ? round (c r t + 1) :

c e i l (c r t) ;
int s t a r t_new = mnpsr + (fn − l e v e l_new) + 1 ;
int stop_new = (n0 − fp + fn) − (mxpsr + (l e v e l_new − 1)) ;

mpz_class b f r (∗sum_negInt) ;

for (int i = s t a r t ; i <= stop ; i = i + 1) {
// c a l l r e cu r s i on
negInt_r e c (memo_negInt , sum_negInt , l e v e l_new, s td : : max(i +1,

s t a r t_new) , stop_new, fp , fn , n0 , n1 , c0 , c1 , p i0) ;
}

mpz_class a f t r (∗sum_negInt) ;
memo_negInt . i n s e r t (std : : make_pa i r (itm , a f t r − b f r)) ; // save

pa i r o f (key , va lue) in to map

}
}

}

// [[Rcpp : : export]]
SEXP negInt (Rcpp : : NumericMatrix c l s t , int n0 , int n1 , double c0 ,

double c1 , double pi0) {

int nco l = c l s t . nco l () ;
s td : : vec to r <mpz_class> perm(nco l) ;
s td : : map <std : : vector<int>, mpz_class> memo; // c r e a t e map

for (int i = 0 ; i < nco l ; i = i + 1) {

mpz_class sums (0) ;
int fp = c l s t (0 , i) ;
int fn = c l s t (1 , i) ;

i f (fn == 0) {
sums = 1 ;
perm [i] = sums ;

} else {

// c a l c u l a t e i n i t i a l va lue s o f r e cu r s i on
int l e v e l_i n i t = fn ;
double c r t = c1 / c0 ∗ n0 / n1 ;
int mnpsr = fabs (round (c r t) − c r t) < 1e−6 ? round (c r t + 1) :

c e i l (c r t) ;

124

A.4. Implementation of ÊIC

c r t = fn ∗ c1 / c0 ∗ n0 / n1 ;
int mxpsr = fabs (round (c r t) − c r t) < 1e−6 ? round (c r t + 1) :

c e i l (c r t) ;

int s t a r t_i n i t = mnpsr + 1 ;
int stop_i n i t = (n0 − fp + fn) − (mxpsr + (fn − 1)) ;

i f (s t a r t_i n i t > stop_i n i t) {
sums = 0 ;
perm [i] = sums ;

} else {

// s t a r t r e cu r s i on
negInt_r e c (memo, &sums , l e v e l_i n i t , s t a r t_i n i t , s top_i n i t ,

c l s t (0 , i) , c l s t (1 , i) , n0 , n1 , c0 , c1 , p i0) ;
perm [i] = sums ;

}
}

}

memo. c l e a r () ; // delete map
return (wrap (perm)) ;

}

A.4.5 eic_posC.cpp

/∗ These f unc t i on s c a l c u l a t e the number o f f avo rab l e permutat ions o f
the nu l l d i s t r i b u t i o n

∗ o f the e i c c l a s s i f i e r for a p o s i t i v e complement for a given s e t
o f parameters fp , fn ,

∗ n0 , n1 , c0 , c1 , p i0 . posComp c a l c u l a t e s the s t a r t i n g va lue s and
c a l l s the r e c u r s i v e

∗ f unc t i on posComp_r e c .
∗/

#include <wrap . hpp>
#include <map>
#include <gmpxx . h>
#include <Rcpp . h>
#include <math . h>

using namespace Rcpp ;

void posComp_r e c (std : : map <std : : vector<int>, mpz_class>& memo, mpz_
class∗ sums , int l e v e l , int s ta r t , int stop , int tp_h , int tp_o ,
int fp_h , int fp_o , int n0 , int n1 , double c0 , double c1 , double
pi0) {

125

A. Appendix

int ar r [7] = { l e v e l , s t a r t , stop , tp_h , tp_o , fp_h , fp_o } ; // map
key

std : : vector<int> itm (arr , a r r+7) ;

i f (memo. f i nd (itm) != memo. end ()) { // map look up

∗sums = ∗sums + memo. at (itm) ;

} else { // i f key does not e x i s t in map, c a l c u l a t e the
corre spond ing value

i f (l e v e l == 1) { // end o f r e cu r s i on

∗sums = ∗sums + stop − s t a r t + 1 ;

} else { // r e cu r s i on step

// c a l c u l a t e new r e cu r s i on arguments
int l e v e l_new = l e v e l − 1 ;
double c r t = l e v e l_new ∗ c0 / c1 ∗ n1 / n0 ;
int mnpsr = fabs (round (c r t) − c r t) < 1e−6 ? round (c r t) : c e i l (

c r t) ;
c r t = std : : max((fp_o + (fp_h − l e v e l_new + 1)) ∗ c0 / c1 ∗ n1

/ n0 − tp_o , 0 . 0) ;
int mxpsr = fabs (round (c r t) − c r t) < 1e−6 ? round (c r t) : c e i l (

c r t) ;
int s t a r t_new = mnpsr + l e v e l_new ;
int stop_new = (fp_h + tp_h) − (mxpsr + (fp_h − l e v e l_new)) ;

mpz_class b f r (∗sums) ;

for (int i = s t a r t ; i <= stop ; i = i + 1) {
posComp_r e c (memo, sums , l e v e l_new, s t a r t_new, s td : : min (stop_

new, i − 1) , tp_h , tp_o , fp_h , fp_o , n0 , n1 , c0 , c1 , p i0)
;

}

mpz_class a f t r (∗sums) ;
memo. i n s e r t (std : : make_pa i r (itm , a f t r − b f r)) ; // save pa i r o f

(key , va lue) in to map

}
}

}

// [[Rcpp : : export]]
SEXP posComp(Rcpp : : NumericMatrix c l s t , int n0 , int n1 , double c0 ,

126

A.4. Implementation of ÊIC

double c1 , double pi0) {

// de c l a r a t i on o f v a r i a b l e s
int nco l = c l s t . nco l () ;
s td : : vec to r <mpz_class> perm(nco l) ;
s td : : map <std : : vector<int>, mpz_class> memo; // c r e a t e map
int fp , fn , mid ;
int l_minpsr , r_minpsr , l_mxpsr , r_mxpsr ;
int l_l e v e l_i n i t , r_l e v e l_i n i t , l_s t a r t_i n i t , r_s t a r t_i n i t , l_stop

_i n i t , r_stop_i n i t ;
double c r t ;
mpz_class sum_l f t (0) , sum_rght (0) , sum_to t (0) ;

for (int i = 0 ; i < nco l ; i = i + 1) {

// s e t t i n g
fp = c l s t (0 , i) ;
fn = c l s t (1 , i) ;
sum_l f t = 0 ;
sum_rght = 0 ;
sum_to t = 0 ;

c r t = stat ic_cast<double>(n1 − fn + fp − 1) / 2 ;
int mx = stat ic_cast<int>(c e i l (c r t)) ;
mid = ((n1 − fn + fp − 1) % 2 == 0) ? −1 : mx;

for (int l = 1 ; l <= mx; l = l + 1) {
for (int fp_l = 0 ; fp_l <= fp ; fp_l = fp_l + 1) {

int tp_l = l − fp_l ; // true nega t i v e s on the l e f t s i d e
int tp_r = (n1 − fn) − tp_l ; // true nega t i v e s on the r i g h t

s i d e
int fp_r = fp − fp_l ; // fa l se nega t i v e s on the r i g h t s i d e

sum_l f t = 0 ;
sum_rght = 0 ;

// s e t l_minpsr and r_minpsr
i f (fp_l == 0) { l_minpsr = −1;
} else {

c r t = fp_l ∗ c0 / c1 ∗ n1 / n0 ;
l_minpsr = fabs (c e i l (c r t) − c r t) < 1e−6 ? round (c r t) :

c e i l (c r t) ;
}

i f (fp_r == 0) { r_minpsr = −1;
} else {

c r t = fp_r ∗ c0 / c1 ∗ n1 / n0 ;
r_minpsr = fabs (c e i l (c r t) − c r t) < 1e−6 ? round (c r t) :

127

A. Appendix

c e i l (c r t) ;
}

i f (tp_l >= l_minpsr & tp_r >= r_minpsr) {

// permutat ions o f the l e f t complement
i f (fp_l == 0) { sum_l f t = 1 ;
} else {

// c a l c u l a t e i n i t i a l r e cu r s i on arguments
l_l e v e l_i n i t = fp_l ;
c r t = (fp_r + 1) ∗ c0 / c1 ∗ n1 / n0 − tp_r ;
l_mxpsr = fabs (c e i l (c r t) − c r t) < 1e−6 ? round (c r t) :

c e i l (c r t) ;
l_mxpsr = std : : max(0 , l_mxpsr) ;
l_s t a r t_i n i t = l_minpsr + (fp_l − 1) + 1 ;
l_stop_i n i t = (fp_l + tp_l) − l_mxpsr ;

i f (l_s t a r t_i n i t <= l_stop_i n i t & l_stop_i n i t <= fp_l +
tp_l) {

// s t a r t r e cu r s i on
posComp_r e c (memo, &sum_l f t , l_l e v e l_i n i t , l_s t a r t_i n i t

, l_stop_i n i t , tp_l , tp_r , fp_l , fp_r , n0 , n1 , c0 ,
c1 , p i0) ;

} else { sum_l f t = 0 ; }
}

// permutat ions o f the r i g h t complement

i f (fp_r == 0) { sum_rght = 1 ;
} else {

// c a l c u l a t e i n i t i a l r e cu r s i on arguments
r_l e v e l_i n i t = fp_r ;
c r t = (fp_l + 1) ∗ c0 / c1 ∗ n1 / n0 − tp_l ;
r_mxpsr = fabs (c e i l (c r t) − c r t) < 1e−6 ? round (c r t) : c e i l

(c r t) ;
r_mxpsr = std : : max(r_mxpsr , 0) ;
r_s t a r t_i n i t = r_minpsr + (fp_r − 1) + 1 ;
r_stop_i n i t = (fp_r + tp_r) − r_mxpsr ;

i f (r_s t a r t_i n i t <= r_stop_i n i t & r_stop_i n i t <= fp_r + tp
_r) {

// s t a r t r e cu r s i on
posComp_r e c (memo, &sum_rght , r_l e v e l_i n i t , r_s t a r t_i n i t ,

128

A.4. Implementation of ÊIC

r_stop_i n i t , tp_r , tp_l , fp_r , fp_l , n0 , n1 , c0 , c1 ,
p i0) ;

} else { sum_rght = 0 ; }

}

// o v e r a l l number o f permutat ions equa l s t h e i r product
i f (l == mid) {

sum_to t = sum_to t + sum_l f t ∗ sum_rght ;
} else {

sum_to t = sum_to t + 2 ∗ sum_l f t ∗ sum_rght ;
}

}
}

}

perm [i] = sum_to t ;

}

memo. c l e a r () ; // delete map

return (wrap (perm)) ;

}

A.4.6 eic_negC.cpp

/∗ These f unc t i on s c a l c u l a t e the number o f f avo rab l e permutat ions o f
the nu l l d i s t r i b u t i o n

∗ o f the e i c c l a s s i f i e r for a negat ive complement for a given s e t
o f parameters fp , fn ,

∗ n0 , n1 , c0 , c1 , p i0 . negComp c a l c u l a t e s the s t a r t i n g va lue s and
c a l l s the r e c u r s i v e

∗ f unc t i on negComp_r e c .
∗/

#include <wrap . hpp>
#include <map>
#include <gmpxx . h>
#include <Rcpp . h>
#include <math . h>

using namespace Rcpp ;

void negComp_r e c (std : : map <std : : vector<int>, mpz_class>& memo, mpz_
class∗ sums , int l e v e l , int s ta r t , int stop , int tn_h , int tn_o ,
int fn_h , int fn_o , int n0 , int n1 , double c0 , double c1 , double

129

A. Appendix

pi0) {

int ar r [7] = { l e v e l , s t a r t , stop , tn_h , tn_o , fn_h , fn_o } ; // map
key

std : : vector<int> itm (arr , a r r+7) ;

i f (memo. f i nd (itm) != memo. end ()) { // map look up

∗sums = ∗sums + memo. at (itm) ;

} else { // i f key does not e x i s t in map, c a l c u l a t e the
corre spond ing value

i f (l e v e l == 1) { // end o f r e cu r s i on

∗sums = ∗sums + stop − s t a r t + 1 ;

} else { // r e cu r s i on step

// c a l c u l a t e new r e cu r s i on arguments
int l e v e l_new = l e v e l − 1 ;
double c r t = l e v e l_new ∗ c1 / c0 ∗ n0 / n1 ;
int mnpsr = fabs (round (c r t) − c r t) < 1e−6 ? round (c r t + 1) :

c e i l (c r t) ;
c r t = std : : max((fn_o + (fn_h − l e v e l_new + 1)) ∗ c1 / c0 ∗ n0

/ n1 − tn_o , −0.0001) ;
int mxpsr = fabs (round (c r t) − c r t) < 1e−6 ? round (c r t + 1) :

c e i l (c r t) ;
int s t a r t_new = mnpsr + l e v e l_new ;
int stop_new = (fn_h + tn_h) − (mxpsr + (fn_h − l e v e l_new)) ;

mpz_class b f r (∗sums) ;

for (int i = s t a r t ; i <= stop ; i = i + 1) {
// c a l l r e cu r s i on
negComp_r e c (memo, sums , l e v e l_new, s t a r t_new, s td : : min (stop_

new, i − 1) , tn_h , tn_o , fn_h , fn_o , n0 , n1 , c0 , c1 , p i0)
;

}

mpz_class a f t r (∗sums) ;
memo. i n s e r t (std : : make_pa i r (itm , a f t r − b f r)) ; // save pa i r o f

(key , va lue) in to map

}
}

}

130

A.4. Implementation of ÊIC

// [[Rcpp : : export]]
SEXP negComp(Rcpp : : NumericMatrix c l s t , int n0 , int n1 , double c0 ,

double c1 , double pi0) {

// de c l a r a t i on o f v a r i a b l e s
int nco l = c l s t . nco l () ;
s td : : vec to r <mpz_class> perm(nco l) ;
s td : : map <std : : vector<int>, mpz_class> memo; // c r e a t e map
int fp , fn , mid ;
int l_minpsr , r_minpsr , l_mxpsr , r_mxpsr ;
int l_l e v e l_i n i t , r_l e v e l_i n i t , l_s t a r t_i n i t , r_s t a r t_i n i t , l_stop

_i n i t , r_stop_i n i t ;
double c r t ;
mpz_class sum_l f t (0) , sum_rght (0) , sum_to t (0) ;

for (int i = 0 ; i < nco l ; i = i + 1) {

// s e t t i n g
fp = c l s t (0 , i) ;
fn = c l s t (1 , i) ;
sum_l f t = 0 ;
sum_rght = 0 ;
sum_to t = 0 ;

c r t = stat ic_cast<double>((n0 − fp + fn)/2) ;
int mx = stat ic_cast<int>(c e i l (c r t)) ;
mid = ((n0 − fp + fn) % 2 == 0) ? mx : −1;

for (int l = 0 ; l <= mx; l = l + 1) {
for (int fn_l = 0 ; fn_l <= fn ; fn_l = fn_l + 1) {

int tn_l = l − fn_l ; // true nega t i v e s on the l e f t s i d e
int tn_r = (n0 − fp) − tn_l ; // true nega t i v e s on the r i g h t

s i d e
int fn_r = fn − fn_l ; // fa l se nega t i v e s on the r i g h t s i d e

sum_l f t = 0 ;
sum_rght = 0 ;

// s e t l_minpsr and r_minpsr
i f (fn_l == 0) { l_minpsr = −1;
} else {

c r t = fn_l ∗ c1 / c0 ∗ n0 / n1 ;
l_minpsr = fabs (c e i l (c r t) − c r t) < 1e−6 ? round (c r t + 1) :

c e i l (c r t) ;
}

i f (fn_r == 0) { r_minpsr = −1;
} else {

131

A. Appendix

c r t = fn_r ∗ c1 / c0 ∗ n0 / n1 ;
r_minpsr = fabs (c e i l (c r t) − c r t) < 1e−6 ? round (c r t + 1) :

c e i l (c r t) ;
}

i f (tn_l >= l_minpsr & tn_r >= r_minpsr) {

// permutat ions o f the l e f t complement
i f (fn_l == 0) { sum_l f t = 1 ;
} else {

// c a l c u l a t e i n i t i a l r e cu r s i on arguments
l_l e v e l_i n i t = fn_l ;
c r t = (fn_r + 1) ∗ c1 / c0 ∗ n0 / n1 − tn_r ;
l_mxpsr = fabs (c e i l (c r t) − c r t) < 1e−6 ? round (c r t + 1)

: c e i l (c r t) ;
l_mxpsr = std : : max(0 , l_mxpsr) ;
l_s t a r t_i n i t = l_minpsr + (fn_l − 1) + 1 ;
l_stop_i n i t = (fn_l + tn_l) − l_mxpsr ;

i f (l_s t a r t_i n i t <= l_stop_i n i t & l_stop_i n i t <= fn_l +
tn_l) {

// s t a r t r e cu r s i on
negComp_r e c (memo, &sum_l f t , l_l e v e l_i n i t , l_s t a r t_i n i t

, l_stop_i n i t , tn_l , tn_r , fn_l , fn_r , n0 , n1 , c0 ,
c1 , p i0) ;

} else { sum_l f t = 0 ; }
}

// permutat ions o f the r i g h t complement

i f (fn_r == 0) { sum_rght = 1 ;
} else {

// c a l c u l a t e i n i t i a l r e cu r s i on arguments
r_l e v e l_i n i t = fn_r ;
c r t = (fn_l + 1) ∗ c1 / c0 ∗ n0 / n1 − tn_l ;
r_mxpsr = fabs (c e i l (c r t) − c r t) < 1e−6 ? round (c r t + 1)

: c e i l (c r t) ;
r_mxpsr = std : : max(0 , r_mxpsr) ;
r_s t a r t_i n i t = r_minpsr + (fn_r − 1) + 1 ;
r_stop_i n i t = (fn_r + tn_r) − r_mxpsr ;

i f (r_s t a r t_i n i t <= r_stop_i n i t & r_stop_i n i t <= fn_r +
tn_r) {

// s t a r t r e cu r s i on

132

A.4. Implementation of ÊIC

negComp_r e c (memo, &sum_rght , r_l e v e l_i n i t , r_s t a r t_
i n i t , r_stop_i n i t , tn_r , tn_l , fn_r , fn_l , n0 , n1 ,
c0 , c1 , p i0) ;

} else { sum_rght = 0 ; }

}

// o v e r a l l number o f permutat ions
i f (l == mid) {

sum_to t = sum_to t + sum_l f t ∗ sum_rght ;
} else {

sum_to t = sum_to t + 2 ∗ sum_l f t ∗ sum_rght ;
}

}
}

}

perm [i] = sum_to t ;

}

memo. c l e a r () ; // delete map

return (wrap (perm)) ;

}

133

List of Figures

1.1 Example illustrating the disadvantages of using the t-test as a variable filter . 6

3.1 Illustration of the Bayes classifier of (X|Y = 0) ∼ N(−0.5,
√

7/8) and (X|Y =
1) ∼ N(0.5,

√
1/8). This corresponds to Z3 of the example in Figure 1.1 in

Section 1. The upper image depicts the distribution of the positive and
negative class and the interval, in which the Bayes classifier maps instances to
the positive class. The lower image depicts the model m(x) = fX|Y =1(x)

fX|Y =0(x) and
the threshold t(c0, c1, π1) = π0

(1−π0)
c0
c1

as defined in (2) and (3). This image
illustrates how the positive domain {x ∈ R : m(x) ≥ t(c0, c1, π0)} depends on
the operating conditions of the classification task. 20

4.1 Illustration of the ETC algorithm . 25
4.2 The bias and variance of the EBC and ETC estimators. 26
4.3 The null distribution of ETC . 30
4.4 Illustration of shifting a negative instance in the positive domain. The only

threshold which is affected by a decreasing cost is indicated in gray. We can,
thus, shift instances away from the currently optimal threshold (in black) as
long as the cost of the gray threshold exceeds the cost of the black one. . . . 34

4.5 Illustration of the counting schema . 35
4.6 This figure illustrates the structure of functions used for the calculation of the

null distribution of ÊTC. Different functions are required for the calculation
of the favorable permutation of the positive domain on the left and right
and the negative domain on the left and right. These functions further call
recursive functions, calling themselves until the base case is reached. 38

4.7 Illustration of computing time gains through memoization and implementation
in C++ . 39

5.1 Illustration of the EIC algorithm . 43

135

5.2 This figure illustrates the true prediction error of the Bayes Classifier for
two Gaussian class conditionals X0 ∼ N(µ0, σ

2
0) and X1 ∼ N(µ1, σ

2
1) as a

function of µ1 − µ0 and log 2(σ1/σ0). One can clearly see that as the CCDs
become less alike either by an increasing difference in their central location
or an increasing difference between their variances the expected error of a
prediction falls to 0. 44

5.3 The figures illustrate the bias of the estimates ÊIC and ÊBC as a function of
µ1−µ0 and log 2(σ1/σ0). The bias, thus, depends strongly on the discrimatory
power of the class conditionals. For Gaussian class conditionals with a limited
discriminatory power the bias is greatest. 45

5.4 This figure illustrates two characteristics of the algorithm. First, it shows the
independence of the domains. The optimality of the boundaries indicated in
black after a shift of a negative instance in a positive domain only depends on
the position of the negative instances in the same domain. Secondly, it also
depicts a situation which illustrates why a recursive function calculating the
number of permutations for a given set must take more arguments into account
than the level, the start index, and the stopping index. In this case cost
attributed to the gray boundaries depend on the position of the false negative
instances to the right of the shifting instance. If there are three negative
instances in a row, then the gray boundaries will become optimal. Thus,
the recursive scheme must consider the position of every negative instance,
rendering the memoization method ineffective and ultimately making the
execution of the recursive schema computationally infeasible for sample sizes
above 20. 51

5.5 This figure illustrates how the three different approaches used to generate the
ND, an exact counting algorithm, random permutations, and interpolation
are spread over the support. The parameters are n0 = 15, n1 = 15, c0 = 1,
c1 = 3, and π0 = 0.5. 55

5.6 This figure illustrates the structure of functions used for the calculation of the
null distribution of ÊIC. Different functions are required for the calculation of
the favorable permutation of the positive interval and complement as well as
the negative interval and complement. These functions further call recursive
functions, calling themselves until the base case is reached. 56

6.1 Results of simulation study A . 60
6.2 Results of simulation study B . 62
6.3 Results of simulation study B . 63
6.4 Results of simulation study C . 64
6.5 Results of simulation study C . 65
6.6 Results of simulation study D . 67
6.7 Results of simulation study D . 68
6.8 Results of simulation study E . 70
6.9 Results of simulation study E . 71

136

6.10 Results of simulation study A . 72
6.11 Results of simulation study A . 73
6.12 Results of simulation study B . 74
6.13 Results of simulation study B . 75
6.14 Results of simulation study B . 76
6.15 Results of simulation study B . 77
6.16 Results of simulation study C . 78
6.17 Results of simulation study C . 79
6.18 Results of simulation study D . 80
6.19 Results of simulation study D . 81

7.1 Results of the data sets 1 - 5. 87
7.2 Results of the real data studies . 88

List of Tables

6.1 Spearman’s rank correlations of the ranks of five different filtering statistics. . 71

7.1 Spearman’s rank correlations of the dataset of Golub et al. 89
7.2 Spearman’s rank correlations of the dataset of Mura and De Perrot 89
7.3 Spearman’s rank correlations of the dataset of MacDonald et al. 89
7.4 Spearman’s rank correlations of the dataset of Tsukamoto et al. 89
7.5 Spearman’s rank correlations of the dataset of Heap et al. 89

137

Bibliography

N. M. Adams and D. J. Hand. Comparing classifiers when the misallocation costs are
uncertain. Pattern Recognition, 32(7):1139–1147, 1999.

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practival and
powerful approach to multiple testing. Journal of the Royal Statistical Society B 57,
No. 1, 57(1):289–300, 1995.

P. J. Bickel and K. A. Doksum. Mathematical statistics: basic ideas and selected topics,
volume I, volume 117. CRC Press, 2015.

A. P. Bradley. The use of the area under the roc curve in the evaluation of machine learning
algorithms. Pattern Recogn., 30(7):1145–1159, July 1997. ISSN 0031-3203. doi: 10.1016/
S0031-3203(96)00142-2. URL http://dx.doi.org/10.1016/S0031-3203(96)
00142-2.

M. Dash and H. Liu. Feature selection for classification. Intelligent Data Analysis 1,
pages 131–156, 1997.

A. Delaigle, P. Hall, and J. Jin. Robustness and accuracy of methods for high dimensional
data analysis based on student’s t-statistic. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 73(3):283–301, 2011. ISSN 1467-9868. doi: 10.1111/
j.1467-9868.2010.00761.x. URL http://dx.doi.org/10.1111/j.1467-9868.
2010.00761.x.

C. Drummond and R. C. Holte. Cost curves: An improved method for visualizing classifier
performance. Machine Learning, 65(1):95–130, Oct 2006. ISSN 1573-0565. doi: 10.1007/
s10994-006-8199-5. URL https://doi.org/10.1007/s10994-006-8199-5.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. Intelligent Data Analysis
1 (1-4), pages 131–156, 2012.

D. Eddelbuettel and R. François. Rcpp: Seamless R and C++ integration. Journal of
Statistical Software, 40(8):1–18, 2011. URL http://www.jstatsoft.org/v40/
i08/.

139

http://dx.doi.org/10.1016/S0031-3203(96)00142-2
http://dx.doi.org/10.1016/S0031-3203(96)00142-2
http://dx.doi.org/10.1111/j.1467-9868.2010.00761.x
http://dx.doi.org/10.1111/j.1467-9868.2010.00761.x
https://doi.org/10.1007/s10994-006-8199-5
http://www.jstatsoft.org/v40/i08/
http://www.jstatsoft.org/v40/i08/

E. S. Edgington. Randomization Tests, pages 1182–1183. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011. ISBN 978-3-642-04898-2. doi: 10.1007/978-3-642-04898-2_56.
URL http://dx.doi.org/10.1007/978-3-642-04898-2_56.

E. Giné, F. Götze, and D. M. Mason. When is the Student t-statistic asymptotically
standard normal? Ann. Probab., 25(3):1514–1531, 07 1997. doi: 10.1214/aop/
1024404523. URL http://dx.doi.org/10.1214/aop/1024404523.

T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov,
H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S.
Lander. Molecular classification of cancer: class discovery and class prediction by gene
expression monitoring. Science, 286(5439):531–537, Oct. 1999.

T. Granlund et al. GMP: the GNU multiple precision arithmetic library. https:
//gmplib.org, 1993–2017.

B. D. W. Group. Biomarkers and surrogate endpoints: Preferred definitions and con-
ceptual framework. Clinical Pharmacology and Therapeutics, 69(3):89–95, 2001. ISSN
1532-6535. doi: 10.1067/mcp.2001.113989. URL http://dx.doi.org/10.1067/
mcp.2001.113989.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. J. Mach.
Learn. Res., 3:1157–1182, Mar. 2003. ISSN 1532-4435. URL http://dl.acm.org/
citation.cfm?id=944919.944968.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer
Series in Statistics. Springer, New York, NY, USA, 2001.

G. A. Heap, G. Trynka, R. C. Jansen, M. Bruinenberg, M. A. Swertz, L. C. Dinesen,
K. A. Hunt, C. Wijmenga, L. Franke, et al. Complex nature of snp genotype effects on
gene expression in primary human leucocytes. BMC Medical Genomics, 2(1):1, 2009.

J. Hernández-Orallo, P. Flach, and C. Ferri. A unified view of performance metrics:
Translating threshold choice into expected classification loss. J. Mach. Learn. Res., 13
(1):2813–2869, Oct. 2012. ISSN 1532-4435. URL http://dl.acm.org/citation.
cfm?id=2503308.2503332.

J. Holland. The Royal Road for Genetic Algorithms: Fitness Landscapes and GA
Performance. MIT Press, Cambridge, MA, 1992.

J. Hsu. Multiple Comparisons: Theory and Methods. Guilford School Practitioner.
Taylor & Francis, Adingdon, UK, 1996. ISBN 9780412982811. URL https://books.
google.at/books?id=8AK8PUbw3lsC.

J. M. Hyman. Accurate monotonicity preserving cubic interpolation. SIAM Journal on
Scientific and Statistical Computing, 4(4):645–654, 1983.

140

http://dx.doi.org/10.1007/978-3-642-04898-2_56
http://dx.doi.org/10.1214/aop/1024404523
https://gmplib.org
https://gmplib.org
http://dx.doi.org/10.1067/mcp.2001.113989
http://dx.doi.org/10.1067/mcp.2001.113989
http://dl.acm.org/citation.cfm?id=944919.944968
http://dl.acm.org/citation.cfm?id=944919.944968
http://dl.acm.org/citation.cfm?id=2503308.2503332
http://dl.acm.org/citation.cfm?id=2503308.2503332
https://books.google.at/books?id=8AK8PUbw3lsC
https://books.google.at/books?id=8AK8PUbw3lsC

J. Jaeger, R. Sengupta, and W. Ruzzo. Improved gene selection for classification of
microarrays., pages 53–64. 2003.

J. Kittler. Feature set search algorithms. Pattern recognition and signal processing, 1978.
URL http://ci.nii.ac.jp/naid/80014031027/en/.

T. A. Knijnenburg, L. F. A. Wessels, M. J. T. Reinders, and I. Shmulevich. Fewer
permutations, more accurate p-values. Bioinformatics, 25(12):i161–i168, June 2009.
ISSN 1367-4803. doi: 10.1093/bioinformatics/btp211. URL http://dx.doi.org/
10.1093/bioinformatics/btp211.

R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence,
97(1):273–324, 1997. ISSN 0004-3702. doi: http://dx.doi.org/10.1016/S0004-3702(97)
00043-X. URL http://www.sciencedirect.com/science/article/pii/
S000437029700043X.

I. Levner. Feature selection and nearest centroid classification for protein mass
spectrometry. BMC Bioinformatics, 6(1):68, Mar 2005. ISSN 1471-2105. doi:
10.1186/1471-2105-6-68. URL https://doi.org/10.1186/1471-2105-6-68.

T. J. MacDonald, K. M. Brown, B. LaFleur, K. Peterson, C. Lawlor, Y. Chen, R. J. Packer,
P. Cogen, and D. A. Stephan. Expression profiling of medulloblastoma: PDGFRA
and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nature
Genetics, 29(2):143–152, 2001.

R. Miller. Simultaneous Statistical Inference. Springer Series in Statistics. Springer-
Verlag, Heidelberg, Deutschland, 1981. ISBN 9780387905488. URL https://books.
google.at/books?id=kPQhL9rofgYC.

M. Mura, M. Anraku, Z. Yun, K. McRae, M. Liu, T. K. Waddell, L. G. Singer, J. T.
Granton, S. Keshavjee, and M. de Perrot. Gene expression profiling in the lungs of
patients with pulmonary hypertension associated with pulmonary fibrosis. CHEST
Journal, 141(3):661–673, 2012.

J. Neyman. Sur un teorema concernente le cosidette statistiche sufficienti. Ist. Ital. Att.,
6:320–334, 1935.

H. Peng, F. Long, and C. Ding. Feature selection based on mutual information: criteria
on fa max-dependency, max-relevance, and min-redundancy. IEEE Transactions on
Pattern Analysis and Machine Intelligence, pages 1226–1238, 2005.

I. Pigeot. Basic concepts of multiple tests — a survey. Statistical Papers, 41(1):3–36,
Jan 2000. ISSN 1613-9798. doi: 10.1007/BF02925674. URL https://doi.org/10.
1007/BF02925674.

F. Provost and T. Fawcett. Robust classification for imprecise environments. Machine
Learning 42 (3), pages 203–231, 2001.

141

http://ci.nii.ac.jp/naid/80014031027/en/
http://dx.doi.org/10.1093/bioinformatics/btp211
http://dx.doi.org/10.1093/bioinformatics/btp211
http://www.sciencedirect.com/science/article/pii/S000437029700043X
http://www.sciencedirect.com/science/article/pii/S000437029700043X
https://doi.org/10.1186/1471-2105-6-68
https://books.google.at/books?id=kPQhL9rofgYC
https://books.google.at/books?id=kPQhL9rofgYC
https://doi.org/10.1007/BF02925674
https://doi.org/10.1007/BF02925674

F. J. Provost, T. Fawcett, and R. Kohavi. The case against accuracy estima-
tion for comparing induction algorithms. In Proceedings of the Fifteenth Interna-
tional Conference on Machine Learning, ICML ’98, pages 445–453, San Francisco,
CA, USA, 1998. Morgan Kaufmann Publishers Inc. ISBN 1-55860-556-8. URL
http://dl.acm.org/citation.cfm?id=645527.657469.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2015. URL https://www.R-project.
org/.

J. J. Schlesselman and P. D. Stolley. Case-Control Studies : Design, Conduct, Analysis.
Oxford University Press, Oxford, UK, 1982.

G. K. Smyth et al. Linear models and empirical bayes methods for assessing differential
expression in microarray experiments. Stat Appl Genet Mol Biol, 3(1):3, 2004.

Student. The probable error of a mean. Biometrika, 6(1):1–25, 1908.

Y. Su, T. Murali, V. Pavlovic, M. Schaffer, and S. Kasif. Rankgene: identification
of diagnostic genes based on expression data. Bioinformatics, 19(12):1578–1579,
2003. doi: 10.1093/bioinformatics/btg179. URL +http://dx.doi.org/10.1093/
bioinformatics/btg179.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), 58(1):267–288, 1996. ISSN 00359246.
URL http://www.jstor.org/stable/2346178.

S. Tsukamoto, T. Ishikawa, S. Iida, M. Ishiguro, K. Mogushi, H. Mizushima, H. Uetake,
H. Tanaka, and K. Sugihara. Clinical significance of osteoprotegerin expression in
human colorectal cancer. Clinical Cancer Research, 17(8):2444–2450, 2011.

J. Tukey. The problem of multiple comparisons, volume In The Collected Works of John
W. Tukey VIII. Multiple Comparisons. Chapman and Hall, New York, 1953.

S. Viaene and G. Dedene. Cost-sensitive learning and decision making revisited. European
Journal of Operational Research 166, 166:212–220, 2005.

B. L. Welch. The generalization of student’s problem when several different population
variances are involved. Biometrika 34 (1–2), 34(1/2):28–35, 1947.

F. Wilcoxon. Individual Comparisons by Ranking Methods. Biometrics Bulletin, 1(6):
80–83, Dec. 1945. ISSN 00994987. doi: 10.2307/3001968. URL http://dx.doi.
org/10.2307/3001968.

A. Williams. Loopless generation of multiset permutations using a constant number
of variables by prefix shifts. In Proceedings of the Twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’09, pages 987–996, Philadelphia, PA, USA,
2009. Society for Industrial and Applied Mathematics. URL http://dl.acm.org/
citation.cfm?id=1496770.1496877.

142

http://dl.acm.org/citation.cfm?id=645527.657469
https://www.R-project.org/
https://www.R-project.org/
+ http://dx.doi.org/10.1093/bioinformatics/btg179
+ http://dx.doi.org/10.1093/bioinformatics/btg179
http://www.jstor.org/stable/2346178
http://dx.doi.org/10.2307/3001968
http://dx.doi.org/10.2307/3001968
http://dl.acm.org/citation.cfm?id=1496770.1496877
http://dl.acm.org/citation.cfm?id=1496770.1496877

B. Wu, T. Abbott, D. Fishman, W. McMurray, G. Mor, K. Stone, D. Ward,
K. Williams, and H. Zhao. Comparison of statistical methods for classification of
ovarian cancer using mass spectrometry data. Bioinformatics, 19(13):1636–1643,
2003. doi: 10.1093/bioinformatics/btg210. URL +http://dx.doi.org/10.1093/
bioinformatics/btg210.

H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320,
2005. ISSN 1467-9868. doi: 10.1111/j.1467-9868.2005.00503.x. URL http://dx.
doi.org/10.1111/j.1467-9868.2005.00503.x.

143

+ http://dx.doi.org/10.1093/bioinformatics/btg210
+ http://dx.doi.org/10.1093/bioinformatics/btg210
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x

Curriculum Vitae

Personal
Name: Fabian Schroeder

Date of birth: November 5th, 1983
Place of birth: Vienna, Austria

Nationality: Austrian
Children: Sophia (05/2014), Valerie (10/2015), Moritz (07/2017)

Education
since 11/2014 Ph.D. in Statistics, Vienna University of Technology, Austria
2009 – 2012 M.Sc. in Statistcs, Vienna University of Technology, Austria
2006 – 2009 B.Sc. in Statistics and Mathematics for Economics,

Vienna University of Technology, Austria
2003 – 2009 M.Sc. in Economics, University of Vienna
1993 – 2001 Gymnasium BGXIX, Vienna, Austria

Working Experience
since 01/2018 Project Assistant, Vienna University of Technology

11/2013 – 12/2017 Ph.D. Student, Austrian Institute of Technology, Vienna
03/2012 – 12/2012 Intern, Austrian Institute of Technology, Vienna
05/2003 – 06/2012 Research and Personal Assistant to Prof. John Naisbitt

Megatrends Ltd., Vienna
02/2002 – 05/2003 Gedenkdiener, CJVMA, Montreal and Yad Vashem, Jerusalem

145

	Abstract
	Kurzfassung
	Foreword
	Contents
	Introduction
	Model Selection and Filtering
	Location Tests
	Multiple Testing
	Outline

	Preliminaries
	EBC: Expected Prediction Error of the Bayes Classifier
	Sample Estimate of EBC
	Derivation of the Null Distribution

	ETC: Expected Prediction Error of the Threshold Classifier
	Sample Estimate of ETC
	Properties of ETC"0362ETC
	Derivation of the Null Distribution

	EIC: Expected Prediction Error of the Interval Classifier
	Sample Estimate of EIC
	Properties of EIC"0362EIC
	Derivation of the Null Distribution

	Simulation Studies
	Simulation Study A : Power
	Simulation Study B : Power
	Simulation Study C : Robustness to Outliers
	Simulation Study D : Robustness to Skewness
	Simulation Study E : Model Selection
	Supplementary Figures

	Real Data Studies
	Description of Data Sets
	Results

	Conclusions
	Appendix
	Derivation of Equation (2.6) from the Expected Prediction Error
	Implementation of EBC"0362EBC
	Implementation of ETC"0362ETC
	Implementation of EIC"0362EIC

	List of Figures
	List of Tables
	Bibliography
	Curriculum Vitae

