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Abstract

The complexity of biological systems makes physiological bioprocess control a challeng-
ing task. The establishment of physiological process control systems using model based
control is key in the development of advanced bioprocess control systems. Advanced
bioprocess control strategies, which aim at avoiding unwanted by-products rather then
removing them, are recommended by regulatory authorities such as the US Food and
Drugs Administration (FDA). In order to do so, models which are able to accurately
predict the behaviour of the cells during their cultivation are needed. However, de-
veloping such models is a difficult task, since the production of recombinant products
causes a lot of cellular stress for the used production hosts, which negatively effects the
performance of the cells, resulting in a decline in specific performance. The accurate
prediction of the growth and productivity of the cells is necessary in order to set up
and facilitate an optimal control strategy for each individual bioprocesses.

For this study two different mechanistic modelling approaches to model the per-
formance of Escherichia coli, which allow for model predictive control (MPC), are
compared to each other. Thereby, the quality of fit as well as the sensitivity and iden-
tifiability of the models is analysed. The first approach, modelled the performance
decay of the cells during the cultivation via the cumulative metabolised substrate, and
relied only on the gas rates as monitored states of the cultivation. For the second ap-
proach, additionally the cell size was monitored as characteristic for the physiological
state of the cells used during the process. Hereby, the specific product formation rate
of the cells was used to model the performance decay of the cells, instead of using the
consumed amount of sugar. The model for the second modelling approach, the cell
size model, was newly developed for this study. Both models were analysed and com-
pared towards each other in terms of model fit (using NMRSE values as well as their
standard deviation as quantitative measure and time-resolved as well as observed-vs-
predictied plots as qualitative measure) and model structure (using local sensitivity
analysis and structural identifiability analysis). With the newly developed model a
more accurate description of the system with lower NMRSE and standard deviation
of NMRSE values (< 11 % NMRSE instead of < 20 % and < 9 % StDev of NMRSE
instead of < 15 %) as well as the increased structural identifiability of its parameters
(all parameters at once instead of 2 sets of parameters) could be achieved.
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It could be shown that both used modelling approaches are giving a valid descrip-
tion of the system. Furthermore, by using the additional monitored state of the cell
size, the prediction accuracy and reproducibility could be enhanced. Hereby, more
accurate predictions by mechanistic models of industrial relevant bioprocesses, due to
an increased insight in cell physiological reactions, can be used to decrease the for-
mation of by-products, to more reliably reach the needed product quality as well as
to increase the overall space-time-yields of production plants. However, to apply the
newly developed cell size model for industrial bioprocesses, further testing of the model
with predictive control needs to be done, in order to compare its control capabilities
to commonly applied standard control strategies.
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1 Introduction

1.1 General Field of Study

Bioprocesses are a commonly used tool to produce complex biological compounds such
as proteins, hormones, antibodies or secondary metabolites like antibiotics, on an in-
dustrial scale for pharmaceutical usage. For their foreseen usage as pharmaceuticals,
those compounds need to meet the highest quality standards. Thereby, biotechnolog-
ical processes are characterised by a huge variety of intracellular interactions, many
of which are very complex and still not fully understud [1]. In order to achieve the
necessary product quality, the US Food and Drugs Administration (FDA) encourages
producers of pharmaceuticals to increase the knowledge of their processes through
monitoring and control instead of treating them as a black-box. Thereby, the FDA’s
Quality by Design (QbD) and Process Analytical Technology (PAT) initiatives [2, 3,
4, 5] aim at avoiding unwanted or harmful by-products during the bioprocesses it self,
by monitoring critical quality attributes (CQA) and controlling critical process param-
eters (CPP), rather than removing them later in additional clean-up unit-operations.
The goal the FDA hereby sets, is to achieve the necessary quality by designing the
manufacturing process in a way that ensures quality during the development phase of
the process.

1.1.1 Industrial Production of Bio-Pharmaceuticals
Commonly a discontinuous industrial cultivation process consists of one or more batch
process steps, in order to grow enough biomass out of frozen cell stocks for the pro-
duction of the desired product. This is followed by un-induced and induced fed-batch
process steps to further increase the biomass concentration and for the production
of the desired product under limiting conditions [6]. That allows a separate biomass
accumulation and product formation phase within a cultivation [7]. Thereby, the nu-
trient supply during the induction phase of the fed-batch is a powerful tuning factor
of the production [8]. The vast majority of products are not native to the used host
cells. Gene technology is used in order to facilitate the production in easier cultivatable
organisms. A variety of such established standard organisms include Escherichia coli,
Saccharomyces cerevisiae, Pichia pastoris as well as Chinese hamster ovary (CHO).
The production of such recombinant proteins causes a significant amount of cellular
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1.2. ESCHERICHIA COLI AS PRODUCTION HOST

stress, since the cells are forced to use resources, they normally would use for their
growth and metabolism, to produce the desired product in large quantities [9]. The
incurred amount of cellular stress thereby leads to a decline in cell performance during
the induction phase of a fed-batch cultivation [10] compared to similar non-producing
cultivations. Furthermore, the formation of non-producing sub-populations has been
reported for a variety of hosts [11, 12, 13], since the cells are trying to avoid stressful
conditions.

1.2 Escherichia coli as Production Host

For this study a well known E. coli BL21(DE3) strain, expressing green fluorescent
protein (GFP) was used. E. coli is a commonly used bacterial host for recombinant
production due to its rapid growth up to high cell densities and its high production of
recombinant products. The genome of E. coli is well known and a lot of strains and
cloning vectors for gene engineering are commercially available. One frequently used
expression system in E. coli is the pET based T7-Lac promoter system. It features a
strong induction of the recombinant target genes in the presence of lactose or Isopropyl-
β-D-thiogalactopyranosid (IPTG). Due to the high production of the recombinant
proteins an accumulation of those proteins into inclusion bodies (IB) often occurs due
the capacity folding machinery of E. coli being overwhelmed, instead of the formation
of the soluble correctly folded native form of the protein. Thereby, the formation of
such IB’s within E. coli causes further stress for the cells [14, 15]. The solubilisation
and refolding of such IB’s is often associated with a great loss in product [16]. However,
the formation of IB’s often leads to a greater overall product yield [17]. Furthermore,
IB’s often have a high purity of the desired product which greatly reduces the effort
needed to separate the target protein out of all soluble proteins of the cell [17]. The
strain used for this study is well known; it relies on the T7 expression system and has
already been used for a variety of previous studies, including:

i) the assessment of differences of induction between lactose and IPTG [18]
ii) the characterisation and quantification of the dependency of the specific lactose

uptake rate qSLac
on the specific glucose uptake rate qSGlu

for a binary sugar feed [19]
iii) the impact of glycerol as alternative carbon source on the induction [20]
iv) and the assessment of possibilities to tune the production of inclusion bodies

(IB) [17].

1.2.1 Effects of Metabolic Stress on E. coli
As already mentioned above, the production of recombinant proteins causes a signifi-
cant amount of cellular stress, since the cells are forced to use resources, they normally
would use for their growth and metabolism, to produce the desired product in large
quantities [9]. In E. coli however, cellular stress leads to physiological changes; the
growth of biomass is rather characterised by an increase in cell length instead of reg-
ular cell division [21, 22]. Hereby, an intermediate phase between normal cell growth
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1.3. GOALS OF THE MODELS USED FOR THIS STUDY

and cell death is reported [21]; standard cell growth up to a certain threshold, followed
by cell division and growth back to the threshold (normal cell growth), gets altered to
a viable but non-culturable (VNBC) state where cells inflate their size above normal
values without dividing (intermediate phase), before cell death and folowing membrane
disintegration occurs (lysis phase) [21]. In that intermediate phase, basic cell viability
like growth and the synthesis of proteins and metabolites is still present whereas more
complex biological functions like cell division is already hampered.

1.2.2 Possible Adaptations to cope with Metabolic Stress
Monitoring such physiological changes can provide additional insight and explanation
for the performance of the strain. The cell size can be easily monitored during the
bioprocess using flow cytometry (FCM) [23, 24]. Fluorescence activated cell sorting
(FACS) has been used to screen for strains which are less stressed by the production of
their respective target proteins [25, 26]. In order to do so, fusion proteins of the desired
product fused to a fluorescent marker protein are generated. Subsequently, sorting for
maximal fluorescence of single cells after a cultivation, is used to screen for cells with
higher than average production. However, a complete elimination of the stress caused
by producing conditions is not possible. Therefore, even for optimised strains an
accurate description of the effects of metabolic stress is necessary. Hereby, process
modelling can be used to find and predict the optimal conditions for the production
of the desired product with the given host cells.

1.3 Goals of the Models used for this Study

For this study two different approaches to mechanistically model the decline in specific
cellular performance (via qS or qP ) for E. coli should be compared. Additionally to the
fist modelling approach, an adapted version of the model described in [32], a second
model should be developed. Both models should thereby ultimately be usable for
model predictive process control with a minimal monitoring effort required.

Hereby, the models should only rely on:
i) strain specific constants, which can be measured (like the sugar uptake rates)
ii) the initial values of the states at the start of the bioprocess (like the initial biomass

in the reactor)
iii) the input values of the feed-rates for sugars, base and oxygen which they control
iv) as few as possible measured outputs (like the gas rates or the cell size) as feedback

of the current state of the bioprocess, in order to keep the monitoring effort low
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1.4. MODEL DEVELOPMENT

The newly developed model thereby should:
i) take the physiological state of the cells into account
ii) model the cellular metabolic stress via the specific product formation rate qP
iii) expand the monitoring strategy only by measuring the cell size with flow cytom-

etry, in order to not inflate the overall monitoring effort required
iv) deliver a comparable or better description of the process
v) deliver a comparable or better sensitivity and identifiability of the involved model

parameters

Thereby, a new model featuring the novel method of modelling the physiologic
changes via the specific production rate qP , combined with the monitoring of the phys-
iologic changes (the relative cell size CS in E. coli), should be compared to existing
approaches.

1.4 Model Development

In recent years the progress in development of reliable and robust processes is fa-
cilitated by advances in measuring, monitoring, modelling and control of bioprocesses
(M3C) [27]. Hereby, the functional relationship between CPP and CQA needs to be in-
vestigated [3]. Mathematical models can be used to simulate model such relationships
in order to generate further knowledge about the interlinks between specific CPP’s to
CQA’s [28]. Furthermore, such mathematical models can be used as knowledge storing
systems [29]. However, currently there is a lack of accepted standardised work-flows to
set up the modelling work needed [28]. Luckily, good modelling practice (GMP) guide-
lines lay out three similar basic steps which are always needed for successful model
development [30]:

i) set-up of a modelling project
ii) set-up of a model
iii) analysis of the model

1.4.1 Modelling Project
The basis for every modelling project is a clear and precise definition of the gaols.
Thereby, efficient process models should be as simple as possible while being as accu-
rate as necessary [31]. Models can be used to generate new as well as solidify existing
knowledge, additionally, their application for facilitate process control is of high inter-
est to researchers [31, 32, 33, 34, 35, 36]. For an advanced modelling strategy, which
is needed to facilitate process control, a high amount of knowledge about the specific
process is needed. However, it than allows for a efficient reach of the specified CQA’s
as well as an overall increased space-time yield of the bioprocess [37]. In order to do so,
strain specific characteristics, such as the effects of the production, on the production
(like the decline in specific performance due to the stressful production of recombinant
proteins) need to be better understood, and the developed models, need to account
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1.4. MODEL DEVELOPMENT

for the decline in biomass growth and product formation during the induction phase.
This is necessary to avoid miss-estimations of the biomass which would cause for a
loss in control over the feeding strategy of the cultivation [38, 39], when the model is
employed for process control.

1.4.2 Model Set-up
Generally models can be classified as static or dynamic models [31]. Dynamic models
include differential equations which allow for a time or location dependant predic-
tion of model states. They provide a way to use the information generated by the
monitoring strategy with the knowledge about the specific bioprocess in a predictive
way. Static models, however, cannot provide time dependant predictions of the sys-
tem and rather represent correlations between sates. Thereby, different model types
exist; frequently they are classified as data-driven, hybrid or mechanistic models [31].
Data-driven models require a sizeable training data set to set up, and can only op-
erate with that dataset. Mechanistic models consist of mathematical equations with
physiological meaningful parameters [40]. Thereby, mechanistic models need a lower
amount of training-data to set up and validate, but require packing the correlations
and connections between the the states of the system into model equations. Hereby,
the set-up of models as well as the model analysis are iterative steps [41]. Recently
there is some effort to standardise and automatise the work-flow of setting up new
models, however, these approaches are still at an rather early stage [28, 42, 43, 44, 45].

1.4.3 Model Analysis
In order to perform the model analysis, first a parameter fit of the model parameter is
performed. Hereby, an optimization algorithm is employed to adapt the values of the
model parameters to yield an optimal result based on an specified optimisation criteria.
The normalised mean root square error (NMRSE) is often used as such an optimisation
criteria. Thereby, the optimization algorithm alters the values of the model parameters
to minimise the NMRSE values of the model states [31]. Afterwards sensitivity and
identifiability analysis are performed to analyse the model. Hereby, the sensitivity of
the model parameters is a prerequisite for their identifiability [46]. Not all parameters
may be sensitive at all phases during the course of an cultivation. However, it is
important that a parameter is sensitive, in at least one phase of the cultivation, in
order to be able to accurately fit the value of the parameter to the described system.
Insensitive parameters can occur when:

i) more than one parameter influences the system in a way, that a change of the
other parameters can compensate the change in the analysed parameter which makes
them not directly identifiable in general (for example qsmax and Ks)
ii) or the exact value of the parameter is not important for the predictive quality of

the model with the given model structure
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1.5. MODELLING OF METABOLIC STRESS

Determining whether it is possible to identify the model parameters with the given
model structure based on its equations, can be used to distinguish between the two
types. Insensitive parameters then either:

i) need different experimental conditions to be sensitive and as a result identifiable
ii) need to be taken from literature when the information about their value is already

known
iii) or can entirely be replaced by a structural change of the model, if they are

superficial for the model

In the end, only a model with only sensitive/identifiable parameters or known/published
parameters allows for a valid description of the system [47, 46]. Hence, if this cannot
be achieved either:

i) more experiments with different conditions need to be done
ii) or the structure of the model needs to be changed, until it can be achieved, since

otherwise no valid model can be derived

To determine the local sensitivity of the model parameters, their values are deviated
from the optimal value (calculated with the optimisation algorithm), and the response
in the optimisation criteria quantified (for example the change in NMRSE of the model
states). Furthermore, a ranking of the parameter importance can be performed to
analyse what the critical parameters for the model are [46]. Structural identifiability
looks at the collinearity of the model parameters. Too collinear parameters thereby
can not be identified at the same time, due to their correlation to each other. Hereby
a simple threshold is employed to classify the identifiability of the model parameters
[47].

1.5 Modelling of Metabolic Stress

As mentioned above, in commonly used industrial production hosts such as E. coli,
during cultivations, changes occur on a physiological level. Thereby, it is reported that
the physiological capabilities decrease during the cultivation, leading to a decrease
in physiological parameters [10]. In order to accurately describe the system, process
models need to take such changes into account. One described way to model physiologic
changes during the cultivation, uses the cumulative metabolised substrate (Smet,cum)
[48, 32]. Hereby, all metabolic stress causing factors, which lead to the physiological
decrease in performance, are summed up and simplified by the amount of energy
available to the cells (via the amount of substrate fed qS), which is used to perform
all cellular functions. This results in a highly simplified description of the system, but
has already shown its effectiveness in some cases [48, 32]. Additionally, also some work
on modelling the change of physiologic parameters such as the cell size, using kinetic
models based on the amount of substrate available to the cell, has been done [49].
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All those approaches rely on the amount of energy available to the cells, to abstract
and simplify the metabolic stress causing effects, instead of featuring a physiologically
more meaningful description of the system. Since the performance decay of the cells
occurs in cultivations producing the desired target recombinant proteins compared to
cultivations were no recombinant proteins are produced, the specific product formation
rate qP seems to be a valuable variable to model physiologic changes [9]. However,
no mechanistic models using the the specific product formation rate qP to model the
change of physiologic parameters, exist to the authors knowledge.

1.6 Model Set-up

Cumulative Substrate Model The cumulative substrate model is an version of the
model described in [32], featuring minor adoptions and simplifications mainly in the
description of the sugar metabolism of the cells. For this modelling approach the
cumulative metabolised substrate (Smet,cum) during the induction phase of the culti-
vation is used as a measure of the incurred cellular stress. Thereby, the cumulative
metabolised substrate (Smet,cum) is used as a negative feedback onto the biomass per
substrate yield (YX/S) [48] to account for the decline in specific performance [32].

This results in a simple method with the advantage that no additional separate
measurements have to be performed. However, it relies on the specific substrate con-
sumption rate (qS) to model the performance decline. Hereby, the causes of the cellular
stress which lead to the decay of performance are abstracted by the amount of sugar
consumed during stressful conditions. This simplification may not be very physiolog-
ically meaningful, since the sugar consumption itself is not the stress causing factor,
but it allows for a valid but basic description of the performance decay [48].

Cell Size Model The cell size model was newly developed for this study. To gen-
erate a more advanced modelling method, the cell size (CS) is monitored with flow
cytometry and used to characterise the physiological state of the E. coli cells [50, 51,
52]. Subsequently, that physiological state is used for modelling purposes [49]. Hereby,
the specific product formation rate (qP ) is used to model the cell size increase, which
serves as a negative feedback onto the biomass per substrate as well as the product
per biomass yield (YX/S and YP/X) to model the performance decline.

1.7 Workfolw of this Study

In the following chapters, the set-up of the two models including the model equations
and parameters is discussed in detail [Chapter 3.1]. As optimization criteria for the
model parameter fit the normalised mean root square error (NMRSE) of the model
states was used. Afterwards the fit of the models to the system is analysed, using the
NMRSE values as well as their standard deviation as quantitative measure, and time-
resolved as well as observed-vs-predictied plots as qualitative measure [Chapter 3.2].
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This is followed by the analysis of the model quality [Chapter 3.3]. As basis for the
comparison the model quality, the local sensitivity of the used parameters as well as the
structural identifiability of the models was used. Finally the performance of the two
models [Chapter 4.1], as well as their structure and real-time applicability [Chapter
4.1.2 - 4.1.3] plus their ability to describe the system [Chapter 4.2] are discussed and
compared.
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2 Materials and Methods

2.1 Experimental Plan

In order to show the validity of the model for a broad set of conditions, a two feed
system with glucose (main C-source) and lactose (C-source and inducer) where both
feeds were independently controlled, was chosen. A two level two factor full factorial
design of experiments (DoE) with a triplicate centre point [Factor 1: qSGlu

(Levels:
0.15; 0.35 g/g/h); Factor 2: qSLac

(Levels: 0.05; 0.1 g/g/h); 7 experiments total] was
used as experimental plan. The levels were chosen to lie under the specific maximal
lactose uptake rate [Figure 2.1].

2.2 Strain

Fed-batch cultivations performed for this study used an Escherichia coli BL21(DE3)
strain, expressing GFP as a fluorescent model protein under a T7-promoter. A pET21a+

vector with the gene for the GFP thereby provided the T7 induction system. Lactose
was used to induce the production of GFP under the T7-promotor.

2.3 Cultivations

The experiments were conducted in a DASGIP parallel bioreactor system (Eppendorf
AG, Germany, working volume 2 L) and monitored with potentiometric pH sensors
(Hamilton, Switzerland), and optical DO probes (Hamilton, Switzerland). The ex-
hausted gas composition was analysed by a ZrO2 sensor for O2 and an infra-red sensor
for CO2 analysis (DASGIP module GA4, Eppendorf AG, Germany). The feeds and
base were supplied via peristaltic pumps (DASGIP module MP8, Eppendorf AG, Ger-
many). All experiments were performed with the full synthetic media described in
[53] at 35 ◦C and 1400 rmp stirrer speed (DASGIP module TC4SC4, Eppendorf AG,
Germany). The pH was kept constant at 7.2 with 12.5 % NH4OH and the dissolved
oxygen (DO) was kept over 30 % (DASGIP module PH4PO4, Eppendorf AG, Ger-
many) with a gas supply of 2 vvm via a L-sparger (DASGIP module MX4/4, Eppendorf
AG, Germany). A pre-culture in shake flasks (5 L, with 500 ml media [53]) was cul-

11



2.4. SET POINT CONTROL

Figure 2.1: The set points for the performed experiments under the maximal specific
lactose uptake rate qSLac

dependent on the specific glucose uptake rate
qSGlu

as proposed by [19].

tivated from frozen glycerol-stocks (-80 ◦C) overnight (16 h at 32 ◦C and 200 rmp).
10 % of the initial reactor liquid volume (100 ml of 1 L) was inoculated using the
grown pre-culture. To acquire a target biomass concentration of 25 g/L for the start
of the experiment, cells were grown on glucose as exclusive C-source, first in a batch
phase (22 g/L glucose) upon depletion of the C-source and afterwards in a fed-batch
(450 g/L glucose in Feed, qSGlu

of 0.25 g/g/h). After reaching the target biomass
the experiments were started by feeding glucose (450 g/L) and lactose (180 g/L). The
online-data was logged by the process management software of the reactors (DASware
control software, Eppendorf AG, Germany).

2.4 Set Point Control

The specific sugar uptake rates for the experiments were controlled by elemental bal-
ance control (EBC) [32] using the soft-sensor described in [54]. Both feeds as well as
the base were individually controlled and supplied from separate storage bottles. The
pH and temperature were regulated via a PID controller using the process manage-
ment software of the reactors (DASware control software, Eppendorf AG, Germany).
DO was kept over 30 % by increasing the oxygen content in the inflow air when nec-
essary starting from synthetic air without additional oxygen added (DASware control
software, Eppendorf AG, Germany).
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2.5. SAMPLES

2.5 Samples

Dry cell weight (DCW) was determined gravimetrically by centrifugation (4500 g, 10
min, 4 ◦C) of 5 mL cultivation broth and subsequent drying of the cell pellet for 72 h
at 105 ◦C. Cell-free samples of the cultivation broth were analysed for concentrations
of substrates and metabolites by HPLC (UlitMate3000, Thermo Scientific, USA) with
a Supelco gel C-610 H ion exchange column (Sigma-Aldrich, USA) and a refractive
index detector (Agilent Technologies, USA). A mobile phase of 0.1 % H2PO4 with a
flow rate of 0.5 mL/min at 30 ◦C was used. Cell size and GFP content were measured
photometrically with flow cytometry (Cube 8, Sysmex, Switzerland). The forward-
scatter can thereby be correlated to the cell size, however, it can also be influenced
by changes in cell morphology like inclusion body formation [14, 15] which makes it
a less reliable tool for our purposes. Thereby, the sideward-scatter can be correlated
to the granularity of the cells. Therefore, the cell size was additionally quantified
by staining all cells with a fluorescent dye that binds to the cell membrane, which is
thereby delivering a signal proportional to the cell size which is independent of the cell
morphology. For staining of the cells 2 µl of a 2 mM stock of RH414 (AnaSpec, USA)
in dimethyl sulfoxide stored at -20 ◦C were added to 1 mL of a 1:10000 dilution of the
cell brought in 0.9 % NaCl solution [19]. For the measurement of the GFP content, an
excitation wave-length of 488 nm and an emission wave-length of 509 nm were used
for the photometric measurement.

2.6 Data-Analysis

Evaluation of the data produced by flow cytometry (FCM) was done with CyFlow
(Sysmex, Switzerland). Principal component analysis performed in Matlab 2015b
(Mathworks, USA). Evaluation of the DoE data was done in MODDE 11 (Umetrics,
Sweden). Statistical evaluation of the data was done in SIMCA 13 (Umetrics, Swe-
den). The experimental data was reposited and exported into Python using Incyght
(Exputec, Austira).

2.7 Model-Analysis

The mechanistic models were programmed in Python. Model parameters were esti-
mated using an adapted version of the fmin downhill simplex optimisation algorithm
from the SciPy package as described in [55, 56] additionally considering for parameter
boundaries. For the analysis of the quality of fit of the models, the normalised root
mean square error, and its standard deviation between the different experiments was
calculated [Equation (2.1)].

NRMSE =

√∑
(ŷ−y)2

len(y)

max(y)−min(y)
(2.1)
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2.7. MODEL-ANALYSIS

Local sensitivity analysis and structural identifiability analysis was performed ac-
cording to [47] and [46] using Matlab 2015b (Mathworks, USA). Thereby, the local
sensitivity of the parameters was determined by the distortion of single parameters
(every 10 min for 1 % of the parameter value) and measuring the change in the model
outputs relative to no distortion. For ranking the parameter importance (δ), an un-
scaled version of the method described in [46] using Matlab 2015b (Mathworks, USA)
was used. It is important to mention, that the specific scaling method used can lead to
very different results; for example dividing by the state value for scaling [46] can lead
to strong overestimations of states with very low numeric values (<1). The benefits
of scaling the parameter importance (δ), by dividing through the state values, are
that the results can be interpreted without having the results effected by the numeric
values of the states (for states with values not too close to zero). For this study the
numeric values for Glu, Lac, CER and OUR are all very low. Therefore, an unscaled
parameter importance ranking is used for this study. Only the states X, P , Gal, IF ,
CER and OUR were used for the parameter importance ranking, since they are the
most important states for the model. The numeric values of Glu and Lac were below
the limit of quantification (LoQ) of the used HPLC method, therefore they were ex-
cluded for the parameter importance ranking. Structural identifiability analysis was
performed according to [47] and [46] using Matlab 2015b (Mathworks, USA). For the
structural identifiability analysis, a collinearity index (γ) threshold of 10 was applied
as suggested by [47]. Below that threshold parameters were classified as structural
identifiable, since two too collinear parameters are not identifiable at the same time,
due to their correlation to each other.
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3 Results

3.1 Mechanistic Models

The mechanistic models used for this study were based upon a basic mechanistic
model described in [32]. Both models share a common backbone describing the reactor
balances and the principle sugar uptake as well as the specific carbon and oxygen
metabolism capabilities of the used strain. The models only differ in the description
of the biomass growth and product formation according to the different modelling
approaches used for the performance decline of the cells which should be compared.
For the first modelling approach only the carbon evolution rate (CER) and the oxygen
uptake rate (OUR) are monitored. For the second approach additionally the cell size
(CS) is monitored to asses the physiological state of the cells, providing additional
information to the system, while not inflating the monitoring effort.

The differential equations for the concentrations of biomass (X), glucose (Glu),
lactose (Lac), galactose (Gal), product (P ) and volume (V ) were as follows:

dX

dt
= qX ·X − dil ·X (3.1)

dP

dt
= qP ·X − dil · P (3.2)

dGlu

dt
= −qSGlu

·X +
FGlu · cF,Glu

V
− dil ·Glu (3.3)

dLac

dt
= −qSLac

·X +
FLac · cF,Lac

V
− dil · Lac (3.4)

dGal

dt
= qSLac

· MWGal

MWLac
·X − dil ·Gal (3.5)

dV

dt
= Fin − Fout (3.6)

The uptake rates of the two substrates glucose (Glu) and lactose (Lac) were modelled
Monod-like. The disaccharide lactose consists of a glucose and a galactose monosac-
charide of which only glucose can be metabolised. Therefore, the total metaboliseable
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3.1. MECHANISTIC MODELS

substrate qSmet
needed to be calculated, in order to account for the additional glu-

cose that is available for the cells when they cleave the lactose disaccharide. The gas
rates (CER and OUR) were calculated stoichiometrically. Due to the limited range of
variation of qSGlu

and qSLac
used within the DoE, a more detailed description of the

dependency of qSLac
by qSGlu

, as proposed in [19], could be omitted.

qSGlu
= qSGlu,max

· Glu

Glu+KsGlu

(3.7)

qSLac
= qSLac,max

· Lac

Lac+KsLac

(3.8)

qSmet = qSGlu
+ qSLac

· MWGal

MWLac
(3.9)

CER = qsmet ·X · V · Glu

MWGlu
− qX ·X · V · X

MWX
·
YX/S,max

YX/S
(3.10)

OUR = −CER− qX ·X · V · YO2/X (3.11)

The equations for the specific growth and product formation rates (qX and qP ), as
well as the used feedback on the yields (YX/S and YP/X), differed between the two
compared approaches:

3.1.1 Cumulative Substrate Model
For the first mechanistic modelling approach of the decline in specific performance,
the cumulative metabolised substrate Smet,cum is used [32, 48] as an impact factor
for the negative feedback. Thereby, the specific metaboliseable sugar uptake rate
qSmet

is cumulated up during the induction phase of the bioprocess, which leads to
a constantly increasing impact factor for the negative feedback. Hence, the amount
of incurred stress due to the production of the target protein is estimated with the
amount of sugar that is taken up during producing conditions.

IF = Smet,cum (3.12)
dSmet,cum

dt
= qsmet (3.13)

The biomass per substrate yield YX/S is the target of the negative feedback, resulting
in an increased amount of g sugar needed per g biomass produced.

YX/S = −YX/S,crit ·
IF√

dYX/S
+ IF 2

+ YX/S,max (3.14)

qX = qSmet
· YX/S (3.15)
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3.1. MECHANISTIC MODELS

The product formation is modelled as simple growth associated production, since
the production occurs whilst the cells are growing. A constant yield for the amount of
product per substrate YP/X had to be assumed, since there is no monitoring strategy
for this approach which could asses changes over time of that yield. For doing so, a
product related state would need to be monitored.

YP/X = constant (3.16)
qP = qX · YP/X (3.17)

3.1.2 Cell Size Model
For the second mechanistic modelling approach of the decline in specific performance,
the cell size (CS) is monitored with flow cytometry (FCM), in order to characterize
the physiological state of the cells. Hereby, the specific productivity of the cells qP
is used to model the cell size increase in order to generate a predictive model, since
the production of the target protein is the catalyst for the decline in performance
compared to non-producing cultivations [21]. The relative cell size increase during
the cultivation was used as impact factor, for the negative feedback of the stressful
production conditions on the performance of the cells.

IF = CS (3.18)
dCS

dt
=

qP · CS
YCS/P

(3.19)

Since the cell size increase is correlated to the incurred stress by the production [21,
22], the biomass per substrate yield YX/S and the product per biomass yield YP/X can
be target of the negative feedback. For this more advanced approach the biomass (X)
and the product (P ) are both part of the feedback loop and not only the biomass (X)
as in the first approach.

YX/S =
YX/S,max

IF
(3.20)

qX = qSmet
· YX/S (3.21)

YP/X =
YP/X,max

qSmet
· IF

(3.22)

qP = qX · YP/X (3.23)

3.1.3 Model Parameters
The fitted parameters as well as the parameters taken from literature are listed in
Table 3.1. Since the affects of the different calculation method of the specific per-
formance decay should be assessed for this study, the same values were used for the
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3.1. MECHANISTIC MODELS

Table 3.1: Model parameters

Parameter Unit Value Reference values

Shared Model
Backbone

MWX g/mol 26.54 (based on stoichiometry)
MWGlu g/mol 180.16 (based on stoichiometry)
MWGal g/mol 342.29 (based on stoichiometry)
CGlu C-mol/mol 6 (based on stoichiometry)
CX C-mol/mol 1 (based on stoichiometry)
qsGlu,max

g/g/h 0.88 0.88-1.06 [19]
qsLac,max

g/g/h 0.36 [32]
KsGlu

g/l 0.099 0.00005-0.099 [57]
KsLac

g/l 0.058 [32]
YX/S,max g/g 0.5 < 0.7 [48]
YO2/X mol/g 0.01 (based on stoichiometry)

Cumulative Substrate
Model

dYX/S
g2/g2 3.93 [32]

YX/S,max g/g 0.5 [32]
YX/S,crit g/g 0.3 [32]
YP/X counts/g 874 [32]

Cell Size
Model

YCS/P counts/counts 8481.92 -
YX/S,max (g·counts)/g 0.3474 -
YP/X,max (g·counts2)/(h·g2) 378.44 -
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3.2. MODEL FIT

shared parameters of the basic model. Therefore, differences in the model fit and
prediction quality of the two models can be discussed only in perspective of the calcu-
lation method, and independent of differences in the values of the shared parameters.
It should be mentioned, that some of the model specific parameters also occur in both
models but have an inherently different unit due to the different calculation of the ac-
tual yields, as can be seen in Table 3.1. Furthermore, it is worth mentioning that in the
cumulative substrate model some of the parameter values are assumed as physiologic
constants, which were not fitted (the YX/S,max and the YX/S,crit to be specific).

3.2 Model fit

Several methods are applied to analyse and compare the two different modelling ap-
proaches. First of all, the quality of fit of the simulated data to the experimental
data was analysed. Hereby, a simple plotting of the time-resolved values is an easy
accessible way of qualitatively assessing the performance of the model. Additionally,
the normalized root mean square error (NRMSE) can be calculated to quantitatively
asses the model performance and the standard deviation of those NRMSE values to
asses reproducibility. In the following, the time-resolved plots for a centre point of the
DoE are shown and discussed since,
i) the centre point of the DoE represents the medium conditions the model encoun-

ters within the DoE
ii) and the centre point is measured in a triplicate ensuring that the consistency of

the results can be evaluated.

The time-resolved plots are only practical for each experiment individually. However,
for a broad set of varying conditions for the experiments, like in a DoE for example, the
quality of fit will probably be influenced by the exact experiment which is examined.
Therefore, in a second step the prediction quality of the models should be analysed for
all DoE experiments, analysing the capability of the models to cope with the different
sets of conditions. For that, observed-vs.-predicted plots are employed as qualitative
assessment of the model fit and the NMRSE values and their standard deviation as
quantitative measure.

3.2.1 Basic Centre Point Fit
Cultivations are prone to high biological variations of cells. For this reason, testing the
reproducibility of the system is very important. The triplicate centre point of the DoE
offers a way, for the assessment of the reproducibility of the experiments in general, as
well as the used measurements and methods in particular. Furthermore, the models
involved need to be able to describe the system in an accurate way for all the replicates
equally. To check whether the used models can provide that, the NRMSE values of the
triplicate centre point specifically as well as the standard deviation of those NRMSE
values are analysed [Table 3.2]. For both models the standard deviation of the NRMSE
values is below 5 %, except for OUR where it is slightly above 5 %, which is extremely
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Table 3.2: NMRSE & standard deviation values of the triplicate centre point of the
DoE for both models in %

X P Gal CER OUR IF

Cumulative Substrate
Model

NRMSE (in %) 10.83 9.03 4.39 1.15 13.27 -

StDev of NRMSE 1.88 0.68 1.26 0.44 5.04 -

Cell Size
Model

NRMSE (in %) 5.88 9.60 4.39 1.15 13.71 15.60

StDev of NRMSE 2.45 2.11 1.26 0.44 5.44 3.80

good given the high biological variations of cells. However, for OUR the slightly higher
value can be explained by looking at the equation used to calculate it [Equation 3.11].
The calculated values for CER and X, which both come up with an error, are used
for the calculation of OUR. Hence, the error of the derived value will generally be
slightly larger.

The NMRSE values themselves are also quite promising. The prediction of Gal and
CER is excellent. NMRSE values of around 10 %, like for X and P are adequate
for biological systems. The values for OUR and CS are slightly higher, however, this
is due to the multiple other states which are used for their calculation. Comparing
the two different models to each other, the biomass X is much better represented in
the cell size model, displaying an improved biomass X description of that modelling
approach. For the product P , NRMSE values are comparable, however, the standard
deviation of the NMRSE values is slightly higher for the cell size model, probably due
to the slightly more complex calculation method used. The values for Gal, CER and
OUR are all very similar for both models since their calculation used the same model
backbone. The predicted impact factor IF values can only be compared to measured
values for the cell size model, illustrating the benefits of the expanded monitoring
strategy. In summary, the cell size model shows a comparable or better description of
the system as the cumulative substrate model, based on the quantitative assessment
with the NMRSE values.
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The following part discusses whether the qualitative description of the system (based
on the time-resolved plots) reassembles the results of the quantitative assessment (with
the NMRSE values), in depth for all the states of the model:

Biomass Both models represent the biomass growth of the experiments adequately.
However, differences in the behaviour of the description between the models are ob-
servable in the time-resolved plots [Figure 3.1]. The biggest difference in the behaviour
of the simulated experiments to the measurements is visible for the biomass X. The
decline in biomass growth for the cumulative substrate model is much stronger com-
pared to the cell size model, leading to a stronger curve of the simulated biomass. The
cumulative substrate model thereby seems to suffer from the way how the negative
feedback of the impact factor IF is implemented. As impact factor IF the cumulative
metabolised substrate is used, which leads to a steadily increasing negative feedback
over the course of the cultivation. The fit is better at the beginning and the end of the
cultivation due to the stronger curvature of simulated biomass. In contrast, the more
linear simulated biomass of the cell size model fits the measured data visibly better,
which is also supported by the lower NRMSE value of this model [Table 3.2]. Addi-
tionally, it should be mentioned that the measured biomass value at approximately 6
h is known to be an outlier.

The calculated values of the specific biomass growth rates qX are very similar for
both models [Figure 3.2]. However, the decrease in the specific rates during the culti-
vation is generally stronger for the cumulative substrate model. This is also the case
for the biomass per substrate yield YX/S , where additionally also stronger bending of
the simulated YX/S is observable. The minimum and maximum values of the YX/S are
determined by the parameters YX/S,max and YX/S,crit, whereas only an upper limit for
the YX/S is set in the cell size model. The resulting YX/S values are strikingly lower
for the cell size model at the beginning of the cultivation. For the cell size model the
difference in values of the YX/S is in general much smaller, thereby the the values of the
yield parameters os the cell size model were fitted whereas the cumulative substrate
model used values for YX/S,max and YX/S,crit are assumed to be physiologic constants
in this model.

Product The behaviours of the simulated product P values are similar to the ones of
the biomass. Although the NRMSE value for the cell size model is lower, the simulated
product accumulation of cumulative substrate model reassembles the behaviour of the
measured data points closer [Figure 3.3]. The measured data points show a stronger
decrease at the end of the experiment for the product than for the biomass. This leads
to an optically better resemblance of the product accumulation behaviour with the
stronger curved simulated product accumulation of the cumulative substrate model.
It could be assumed that the high NRMSE value is caused by the underestimation of P
at the end of the cultivation. This is probably due to the need to accurately describe
product accumulation for a variety of conditions within the DoE [Table 3.2]. The
lower NRMSE value for the cell size model is probably achieved by a more accurate
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(a) Biomass / Cumulative Substrate Model

(b) Biomass / Cell Size Model

Figure 3.1: Model fit comparison of measured to simulated biomass X, for a centre
point of the DoE with both models respectively. The simulated values are
represented by a solid line and the measurements by dots. The measured
biomass value at approximately 6 h is known to be an outlier.
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(a) qX / Cumulative Substrate Model (b) qX / Cell Size Model

(c) YX/S / Cumulative Substrate Model (d) YX/S / Cell Size Model

Figure 3.2: Comparison of the calculated values of qX and YX/S for both models, for
a centre point of the DoE. lots a) and b) show the calculated qX values
for both models respectively. Subplots c) and d) show the calculated YX/S

values for both models respectively.
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(a) Product / Cumulative Substrate Model

(b) Product / Cell Size Model

Figure 3.3: Model fit comparison of measured to simulated product P , for a centre
point of the DoE with both models respectively. The simulated values are
represented by a solid line and the measurements by dots.
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(a) qX / Cumulative Substrate Model (b) qX / Cell Size Model

(c) YP/X / Cumulative Substrate Model (d) YP/X / Cell Size Model

Figure 3.4: Comparison of the calculated values of qP and YP/X for both models, for a
centre point of the DoE. Subplots a) and b) show the calculated qP values
for both models respectively. Subplots c) and d) show the calculated YP/X

values for both models respectively.
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estimation of the amount of product rather than by accurately describe the behaviour
of the production.

The calculated values of the specific product formation rates qP are similar for both
models [Figure 3.4]. Again the decrease in the specific rates during the cultivation
is generally stronger for the cumulative substrate model. The values of qP in the
cumulative substrate model are higher at the beginning of the cultivation and lower
at the end of the cultivation then the values of the cell size model. The product
per biomass yield YP/X for the cumulative substrate model had to be assumed as a
constant, due to the lack of a suitable monitoring strategy for the product. However,
the YP/X of the cell size model is also remarkably constant during the cultivation.
Since the NMRSE values for both models for X and for P are good, a constant YP/X

seems to be a valid assumption for this specific process. The value of the YP/X is
higher for the cell size model though.

Sugars and Gas Rates For the uptake of the substrates, glucose Glu and lactose Lac,
the measured sugar values were below the limit of quantification (LoQ) for the used
HPLC method, therefore no comparison to measured values can be done. The simu-
lated values of glucose Glu and lactose Lac are also consistently close to zero for the
whole simulation. However, at the beginning of the cultivation there is always a short
period of time needed until the simulated values stabilise. Fortunately the production
of galactose Gal is directly connected to the consumption of lactose via stoichiometry,
which makes an assessment of the accuracy of the lactose uptake possible by looking
at the galactose accumulation [Figure 3.5]. Furthermore, the production of CO2 mea-
sured as the carbon evolution rate CER as well as the oxygen demand required to
produce CO2 by metabolising the sugars, measured as the oxygen uptake rate OUR,
can be used to indirectly verify the accuracy of the total sugar consumption. Since
the lactose consumption can independently verified with the galactose production, the
CER can be used to verify the glucose uptake in case of an accurate Gal description.
Both models represent the galactose Gal accumulation excellently [Table 3.2]. In ad-
dition, the CER is also represented excellent. However, for the OUR the measured
values are sightly overestimated (meaning more oxygen is consumed in the simulation
than for measured values, leading to even lower values in the plot since the expected
uptake is greater) [Figure 3.6].

Impact Factor Regarding the impact factor IF , only for the cell size model a com-
parison to measurements is possible. The NMRSE value of the relative cell size CS
is acceptable, though a slightly less linear description of the relative cell size increase
would reassemble the behaviour of the measured data points slightly more optimal
[Table 3.2; Figure 3.7].
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(a) Galactose / Cumulative Substrate Model

(b) Galactose / Cell Size Model

Figure 3.5: Model fit comparison of the Gal accumulation, with both models for a
centre point of the DoE. The simulated values are represented by a solid
line and the measurements by dots.
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(a) OUR / Cumulative Substrate Model (b) OUR / Cell Size Model

(c) CER / Cumulative Substrate Model (d) CER / Cell Size Model

Figure 3.6: Model fit comparison for the OUR and CER estimation, with both models
for a centre point of the DoE. The simulated values are represented by a
solid line and the measurements by dots. Subplots a) and b) show the
calculated OUR values for both models respectively. Subplots c) and d)
show the calculated CER values for both models respectively.
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(a) Impact Factor / Cumulative Substrate Model

(b) Impact Factor / Cell Size Model

Figure 3.7: Model fit comparison of measured to simulated impact factor IF , for a cen-
tre point of the DoE. The cumulative substrate or the cell size respectively
are thereby used as impact factor for the models to describe the incurred
cellular stress. Note that no comparison to measured values can be done
due to the lack of a monitoring strategy for the incurred cellular stress for
the cumulative substrate model. The simulated values are represented by
a solid line and the measurements by dots.
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Table 3.3: NMRSE & standard deviation values of the whole DoE in %

X P Gal CER OUR IF

Cumulative Substrate
Model

NRMSE (in %) 19.72 14.79 7.65 1.36 14.63 -

StDev of NRMSE 14.12 5.53 5.73 0.97 7.25 -

Cell Size
Model

NRMSE (in %) 10.78 10.31 7.64 1.36 15.08 15.04

StDev of NRMSE 8.22 2.88 5.73 0.97 7.97 4.70

3.2.2 Full DoE Model Fit
To asses the capabilities of the models to describe the system accurately for a variety
of conditions, the NMRSE values for the whole DoE can be used. In order to do
so, all experiments were taken into account for calculating the NMRSE values and
their standard deviation, instead of only the experiments of the triplicate centre point
[Table 3.3]. For the cumulative substrate model the description of biomass X and
product P is adequate. However, an increase in the standard deviation of the NMRSE
values compared to the values for the triplicate centre point can be observed due to the
increased variety of conditions. The description of Gal, CER and OUR is comparable
to the values of the centre point, showing no loss of prediction quality for the expanded
set of conditions. For the cell size model significantly lower NMRSE values for the
biomass X and product P are obtained. Furthermore, the standard deviation of those
NMRSE values is also significantly lower, showing the increased capabilities of the cell
size model to cope with the varying set of conditions. Additionally, the impact factor
IF (the relative cell size CS) also shows comparable values to the centre point. Hence,
its prediction quality is unaffected by the broader set of conditions. In summary, the
cell size model shows an increased ability to deliver an accurate description of a broader
set of conditions than the cumulative substrate model does.

Biomass Plotting the observed state values against the predict ones (x = y line)
can provide further insight into the prediction quality of the models [Figure 3.8]. For
the biomass X, at medium cell densities the biomass gets over-estimated for both
models, however, this effect is stronger for the cumulative substrate model. Contrary,
there is an under-estimation for high cell densities which is especially strong for the
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(a) Biomass / Cumulative Substrate Model

(b) Biomass / Cell Size Model

Figure 3.8: The observed values plotted against the predicted values of the biomass X,
represented dots in the plots, for all performed samples of all experiments
for both models respectively. The predicted values are on the y-axis and
the observed values on the x-axis. The x = y line resembles a perfect
prediction of the observed values, represented as dotted line in the plots.
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cumulative substrate model. This is explaining the significantly better NMRSE values
for the biomass X of the cell size model. However, it can be seen that there is no
single especially high set of miss-estimations for the biomass X at all cell densities.
This shows that both models can facilitate a valid description of the system for the
entire set of conditions.

Product For the product P , the data-points are significantly more scattered for the
cumulative substrate model than for the cell size model [Figure 3.9]. This shows that
the predicted values do not fit the observed values well, for all product concentrations.
Except for very high product P concentrations, for the cell size model, the observed
values closely reassemble the measured ones. However, at a certain level of product
concentration the fit significantly worsens but still being comparable to the cumulative
substrate model.

Sugars and Gas Rates Since the measured values of glucose Glu and lactose Lac
were below the limit of quantification of the used HPLC method, no observed-vs.-
predicted plots can be made. For the galactose Gal no significant differences between
the models can be observed, since it is mainly calculated via the shared backbone
[Figure 3.10]. However, it is not skewed towards over- or under-estimation, showing
that no systematic miss-description of the system is present. The gas rates OUR and
CER are on-line measurements; a data point is available every 30 s during the whole
cultivation. Thereby, both are calculated via the shared model backbone leading to
similar results for the two models [Figure 3.11]. At the very beginning of the experi-
ments, the OUR and CER values needed a few minutes to stabilise (as can be seen in
the observed-vs.-predicted plots as a peak in the signal at very low CER values and
very high OUR values respectively), after that the measurement gave reliable results.
The oxygen uptake rate OUR is systematically underestimated for all experiments, in
both models. Hereby, the prediction qualities decreases over the course of the culti-
vation (lower OUR values are reached in later phases of the cultivation with higher
biomass concentrations). That might be caused by the multiple other estimated states
used for the prediction of the OUR and the changes in oxygen supply made during the
cultivation by the process control software. Thereby, the oxygen supply is adapted in
order to keep the dissolved oxygen (DO) in the cultivation media over 30 % to assure
no oxygen limitation of the cells. That constant adaptation may cause the systematic
under-estimation, since the models do not take it into account. As for the carbon
evolution rate CER a similar but mirrored (since one is an uptake rate whereas the
other is an emission rate) behaviour is observable. This is unsurprising, due to the
strong interconnection between the oxygen demand and carbon dioxide formation.

Impact Factor For the impact factor IF only for the cell size model a observed-
vs.-predicted plot can be generated, due to its expanded monitoring strategy. The
cumulative metabolised sugar can only be calculated, but not monitored with the
monitoring strategy used for the cumulative substrate model. For the relative cell size
CS it can be observed that with increased cell size the fit slightly worsens [Figure 3.12].
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3.2. MODEL FIT

(a) Product / Cumulative Substrate Model

(b) Product / Cell Size Model

Figure 3.9: The observed values plotted against the predicted values of the product P ,
represented by dots in the plots, for all performed samples of all experi-
ments for both models respectively The predicted values are on the y-axis
and the observed values on the x-axis. The x = y line resembles a perfect
prediction of the observed values, represented as dotted line in the plots.
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3.2. MODEL FIT

(a) Galactose / Cumulative Substrate Model

(b) Galactose / Cell Size Model

Figure 3.10: The observed values plotted against the predicted values of the galactose
Gal, represented by dots in the plots, for all performed samples of all
experiments for both models respectively The predicted values are on the
y-axis and the observed values on the x-axis. The x = y line resembles
a perfect prediction of the observed values, represented as dotted line in
the plots.
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3.2. MODEL FIT

(a) OUR / Cumulative Substrate Model (b) OUR / Cell Size Model

(c) CER / Cumulative Substrate Model (d) CER / Cell Size Model

Figure 3.11: The observed values plotted against the predicted values of OUR and
CER, represented by dots in the plots, for all performed samples of all
experiments for both models respectively The predicted values are on the
y-axis and the observed values on the x-axis. The x = y line resembles a
perfect prediction of the observed values, represented as dotted line in the
plots. Subplots a) and b) show the oxygen uptake rate OUR values for
both models respectively. Subplots c) and d) show the carbon evolution
rate CER values for both models respectively.
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3.2. MODEL FIT

Figure 3.12: The observed values plotted against the predicted values of the impact
factor IF (the relative cell size CS), represented by dots in the plots,
for all performed samples of all experiments for both models respectively
The predicted values are on the y-axis and the observed values on the x-
axis. The x = y line resembles a perfect prediction of the observed values,
represented as dotted line in the plots.
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However, it is not skewed towards over- or under-estimation, showing that the decrease
in fit is solely due to biological deviations and not due to a systematic miss-description
of the system.

3.3 Parameter Sensitivity and Identifiability

The local sensitivity and structural identifiability are important criteria for model
analysis. Sensitivity is thereby the basis for identifiability. In the following chapters
the relative parameter importance ranking as well as the local sensitivity matrix of all
outputs of the model is analysed for both models. Additionally, the specific local sensi-
tivity time-course of the non-backbone parameters is analysed in detail, separately for
all the outputs of the models individually. Furthermore, the structural identifiability
of all parameters is calculated in order to asses, whether the local sensitivity of the
parameters is sufficient to identify the parameters with the given model structure.

3.3.1 Cumulative Substrate Model
Local Sensitivity For the cumulative substrate model the parameters used in the
model backbone for the sugar metabolism are generally less important than the pa-
rameters used for the biomass growth and product formation [Figure 3.13]. Since
the numeric values of the product P are much higher compared to all the other used
states, the relative importance of the YP/X may be a bit overestimated in the param-
eter importance ranking (as discussed in Chapter 2.7). As for the sensitivity matrix,
unsurprisingly the parameters used for the sugar metabolism show high sensitiveness
for the model outputs which describe the sugar uptake of the strain. Apart form that,
the results are relatively straight forward. The individual sensitivity of the qSGlu,max

on the YX/S is the highest over all, since glucose is the main energy source for the
cells, since everything else is dependent on the energy the cells have available. The
parameters for the lactose uptake show a strong sensitivity for the Gal state, since they
are directly linked by stoichiometry. The highest sensitivity of the parameter YP/X is
for the specific product formation rate qP and the product P itself. For the biomass
X associated parameters (YX/S,max, YX/S,crit and dYX/S

), the highest sensitivity can
be observed for the biomass growth rate qX , the biomass per substrate yield YX/S and
the biomass X itself . Additionally, a correlation in sensitivity between the biomass
X and product P associated parameters can be observed.

The detailed specific local sensitivity time-course of the model specific non-backbone
parameters of the cumulative substrate model, shows the change in sensitivity of the
parameters for the model outputs individually [Figure 3.14]. Unsurprisingly, the pa-
rameters YX/S,max and YX/S,crit show the highest sensitivity for the biomass X. Ad-
ditionally, the parameter YX/S,max shows a high sensitivity for gas rates OUR and
CER. The parameter dYX/S

shows a lower sensitivity for all the outputs than the
other two biomass associated parameters. For the product P the parameters YX/S,max

and YX/S,cirt are also very sensitive, surprisingly even more than the parameter YP/X .
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3.3. PARAMETER SENSITIVITY AND IDENTIFIABILITY

(a) Relative Parameter Importance Ranking / Cumulative Substrate Model

(b) Sensitvity Matrix (5h after induction) / Cumulative Substrate Model

Figure 3.13: Parameter importance ranking for the states X, P , Gal, IF , CER and
OUR as well as the local sensitivity matrix in the middle of the induction
phase (5h after induction) for the cumulative substrate model.
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Figure 3.14: Specific local sensitivity time-coures of the 4 non-backbone parameters of
the cumulative substrate model.
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Table 3.4: Structural identifiability of the non-backbone parameter sets of the cumu-
lative substrate model

Parameter Set Number of Parameters Determinant Measure Collinearity Index (γ)

A

YX/S,max 3 3.6073 5.6244
YX/S,crit

YP/X

B

dYX/S
3 0.14198 9.7658

YX/S,max

YP/X

This additionally supports the assumption that the importance of the parameter YP/X

is overestimated in the relative parameter importance ranking. For the impact fac-
tor IF and the galactose Gal none of the parameters have an especially high impact,
since for the cumulative substrate model these states are mainly calculated with the
backbone.

Structural Identifiability For the structural identifiability a threshold for the collinear-
ity index (γ) of below 10 is applied according to [47]. The determinant measure can
be calculated as measure for the amount of information obtainable by identification
of that parameter set. The parameter sets are sorted first by the biggest number of
parameters identifiable at the same time, and second by the highest determinant mea-
sure which are still below the collinearity threshold. Only the parameter sets with
the highest determinant measure with previously unidentifiable parameters are shown.
Sets with a lower determinant measure containing only parameters that can be identi-
fied in sets with a higher determinant measure are not shown. Furthermore, only the
model specific non-backbone parameters are analysed. The structural identifiability
of the cumulative substrate model shows that only three out of four parameters are
structurally identifiable at the same time [Table 3.4]. Unfortunately, it is not possible
to identify all four non-backbone parameters at the same time whilst being under the
collinearity index (γ) threshold of 10.
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Table 3.5: Structural identifiability of the non-backbone paramter sets of the cell size
model

Parameter Set Number of Parameters Determinant Measure Collinearity Index (γ)

A

YX/S,max 3 0.17699 9.273
YCS/P

YP/X

3.3.2 Cell Size Model
Local Sensitivity For the cell size model, the parameters used in the model backbone
for the sugar metabolism again are generally less important than the parameters used
for the biomass growth and product formation [Figure 3.15]. Of the three parameters
used additionally to the backbone parameters, two (YX/S,max and YP/X,max) have a
very high relative importance. The third parameter, the cell size per product formation
yield YCS/P , is the least important parameter in this ranking. That may be due to
the small numeric value of the relative cell size CS combined with the small change in
its value during the cultivation, leading to an underestimation in the unscaled relative
parameter importance ranking. The high sensitivity of the of the parameter YCS/P

in the sensitivity matrix supports the assumption of underestimation in the relative
parameter importance ranking. Furthermore, the parameters YX/S,max and YP/X,max

have a high sensitivity for many model outputs, since they are interlinked to each
other in the equations 3.21-3.23. The sensitivity matrix for the backbone parameters
involved in the sugar metabolism give comparable results for both models.

The detailed specific local sensitivity time-course of the non-backbone parameters of
the cell size model, shows the change of the sensitivity of the parameters for the model
outputs individually [Figure 3.16]. Out of the three non-backbone parameters of the
cell size model, only the parameter YX/S,max is sensitive for the biomass and only the
parameter YP/X,max is sensitive for the product. The YP/X,max and the YCS/P have
inverse sensitivities for the impact factor IF . Additionally, the parameter YX/S,max is
also sensitive for the OUR.
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(a) Relative Parameter Importance Ranking / Cell Size Model

(b) Sensitvity Matrix (5h after induction) / Cell Size Model

Figure 3.15: Parameter importance ranking for the states X, P , Gal, IF , CER and
OUR as well as the local sensitivity matrix in the middle of the induction
phase (5h after induction) for the cell size model.
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Figure 3.16: Specific local sensitivity time-coures of the 3 non-backbone parameters of
the cell size model.
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Structural Identifiability Concerning the structural identifiability, it is possible to
identify all 3 non-backbone parameters at the same time while being below the collinear-
ity threshold of 10 [47] for the cell size model [Table 3.5]. Additionally, the cell size
model only needs three model specific non-backbone parameters for the description of
the system whereas the cumulative substrate model relies on four [Table 3.1]. This
allows for a greatly improved identifiability of the cell size model compared to the
cumulative substrate model.
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4 Discussion

For this study, a new model featuring the novel method of modelling the physiologic
changes via the specific production rate qP , combined with the monitoring of the
physiologic changes (the relative cell size CS in E. coli), was compared to an existing
approach of modelling the metabolic stress via the substrate consumption qS . By
using the specific production rate qP instead of the specific substrate uptake rate
qS to model the metabolic stress, stress caused by the production of recombinant
proteins [9] is getting explicitly accounted for. Furthermore, motoring the physiologic
changes of the cells (the increase in relative cell size CS in E. coli), provides the ability
to validate the predictions of the model, about the incurred metabolic stress, on-line
during the cultivations. This offers a increased ability to refit model parameters during
the cultivation, and thereby recalibrate the model during the process.

In the following, the physiological background of both models is discussed and com-
pared. Furthermore, the performance of the models as well as their real-time applica-
bility is assessed.

4.1 Evaluation of Model Performance

4.1.1 Quality of Fit
The quality of fit of the model was analysed by the normalised root mean square
error (NRMSE). For the triplicate centre point, a significantly better description of
the biomass growth could be derived with the cell size model, while the description of
the other states gave comparable results. However, both models were describing the
system very well (< 11 % NMRSE). The standard deviation of the NMRSE values of
the triplicate centre point shows an extremely good reproducibility of the description
of the system (< 3 % standard deviation of NMRSE). For all the DoE experiments,
the NMRSE values for both models increases due to the broader set of conditions
the models have to describe accurately. Hereby, the NMRSE values of the biomass
X and product P are significantly lower for the cell size model, while the description
of the other states gave comparable results. The cell size model shows an impressive
capability to describe the system for a broad set of conditions simultaneously (< 11
% NMRSE). The description of the system by the cumulative substrate model is still

45
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acceptable (< 20 % NMRSE) but cannot match the predictive qualities of the cell
size model (< 9 % standard deviation of NMRSE compared to < 15 %). Overall the
NMRSE and StDev values of the cell size model are lower compared to the cumulative
substrate model. Thereby the accuracy of the description of the system is sufficient
enough to be used for process control. For the cumulative substrate model, however,
only the description of the triplicate centre point is accurate enough to consider it for
process control. This shows that only the cell size model is able to describe the system
accurately enough to facilitate process control for a broader set of conditions.

The time-resolved plots show a qualitatively better description of the behaviour of
the measurements for the biomass X by the cell size model. However, the description
of the cumulative substrate model gives a closer match for the product P . Those dif-
ferences occur due to the different curve behaviours obtained by the different equations
used for the biomass growth and product formation in both models [Equations (3.15)
- (3.17) and (3.22) - (3.23) respectively]. The description of galactose Gal and the gas
rates (OUR and CER) are very similar due to being mainly calculated via the shared
identical backbone. The fitted values of the biomass per substrate yield YX/S of the
cell size model, povide a better description of the system than the fixed values of the
cumulative substrate model, which assumes this values a physiological constants. The
product by biomass yield YP/X surprisingly is equally linear for both models. However,
the cell size model does not require a constant YP/X , offering the possibility to also
accurately describe systems where a time varying nature of the YP/X is reported [58].

The observed-vs.-predicted plots offer a way to asses systematic missestimations of
the system by the models. For the biomass X the cumulative substrate model sys-
tematically underestimates the low biomass concentrations at the beginning of the
experiments slightly, and systematically overestimates the highest biomass concentra-
tions at the end of the cultivations. For the cell size model no such effect is observable,
further underscoring the strength of accuracy of the biomass prediction by the cell size
model. For the other states the results of the observed-vs.-predicted plots are com-
parable. The only state where a systematic missestimation is observable is the OUR.
In this case the systematic overestimation increases during the experiment, probably
caused by the changes made in oxygen input into the reactors by the process control
software in order to keep the dissolved oxygen (DO) above 30 % to ensure no oxygen
limitation of the cells. Not having any significant missestimations of the system is
required for the model to be considered for process control.

4.1.2 Quality of Model Structure
The ranking of the parameter importance (δ) generally shows that the backbone pa-
rameters for the sugar metabolism are of less importance for the models than the
non-backbone biomass- and product-related parameters. Due to the use of an un-
scaled parameter importance ranking, the importance of the product related param-
eters might be a bit overestimated (due to their very high numeric values) while the
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cell size related parameters might be underestimated underestimated (due to their very
low numeric values). The sensitivity matrix shows a high sensitivity of the glucose re-
lated parameters, due to glucose being the main energy source of the cells, while the
lactose related parameters are of less importance. The non-backbone parameters show
a high sensitivity for biomass X and product P in both models. The identifiability
analysis shows that for the cell size model all model specific non-backbone parameters
can be identified at once within the given collinearity index (γ) threshold. Therefore,
a improved structural identifiability, due to the different model structure of the cell
size model, can be achieved compared to the cumulative substrate model, were two pa-
rameters cannot be structurally identifiable with the given model structure in a single
experiment.

4.1.3 Real-Time Applicability
Cumulative Substrate Model The cumulative substrate model only describes the
system accurately enough to be applied in real-time for process control for the triplicate
centre point. The main advantage of this method regarding its real-time applicability is
the low amount of measurements (OUR and CER only), the model needs as feedback
of the current state of the process. Both of these measurements are simple on-line
measurements without any manual labour needed. Furthermore, OUR and CER
are very commonly monitored process parameters were most bioreactors already are
suitably equipped to monitor them [37, 61, 54, 8, 12]. Apart form that, only some strain
specific parameters and the amount of sugar fed to the reactor are needed. The broad
availability of the needed monitoring infrastructure makes a simple incorporation into
new as well as existing bioprocesses possible. Additionally, only a few equations are
needed to added to existing mechanistic models, in order to implement the cumulative
substrate approach to model the strain performance decay, in existing mechanistic
models [36, 35, 34, 33].

However, this method has it’s physiological drawbacks (regarding problems of accu-
rately describing biologically more complex metabolic stress causing factors). Never-
theless, due to its simplicity, the need of no hardware and only few equation changes,
this method provides work in-intensive and easy to implement way of describing the
performance decay, as a first step. If it is not able to provide the desired accuracy of
the description of the performance decay of the cells, more specific methods can still
be applied without much work being lost.

Cell Size Model The accuracy of the description of the cell size model is sufficient to
be used for process control in real-time for the entire DoE. The performance decline
of the strain is calculated using the specific product formation rate qP instead of the
specific substrate uptake rate qS . Additionally, to OUR and CER, the cell size CS is
measured with flow cytometry. By using the relative cell size to determine the phys-
iologic state of the cells, automatised on-line flow cytometry devices can provide the
possibility to quantitatively and qualitatively asses the biomass within the bioreactor
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in a single measurement without manual labour required [23, 24]. Hereby, additional
valuable information about the current state of the bioprocess can be generated with-
out additional manual labour required during the process.

This method allows for a much more psychophysically meaningful description of the
performance decay, but a much deeper integration of the additionally needed equations
into the existing set of equations is necessary. The expansion of this method for more
special cases (like inclusion body formation or toxic products for example) is possible,
though requries more experiments and modelling work to set up. Furthermore, the
ability to asses the physiologic state of the cells offers greater possibilities for the
prediction of the behaviour of the cells. However, these benefits are tied to the ability
to monitor the physiologic state of the cells via their cell size, which may only work
for E. coli [21, 22]. Nevertheless, even without the ability to monitor the physiologic
state of the cells, the approach to model the performance decay via the actual product
formation and not via the sugar uptake, can be valuable. An accurate description
of the product formation qP is a prerequisite though, however, that is a commonly
expected feature for mechanistic models for bioprocesses anyway.

4.2 Comparison of the two Models

4.2.1 Cumulative Substrate Model
The first modelling approach is based upon the assumption that all stress causing
factors during the production of recombinant proteins, that lead to the performance
decay, can be described solely by the amount of sugar fed during producing conditions.
The thereby employed physiological background is, that the fed sugar is the primary
(and almost exclusive) source of energy for the cells. Naturally, the cells need that
energy for all cell functions, from cell growth to the production of the recombinant
protein. Yields, such as the biomass per substrate yield YX/S , are then used to break
down, how much energy is used for what [58, 32]. Thereby, the amount of energy
used for metabolic stress causing pathways, such as the production of the recombinant
protein, is circumscribed by the total available energy to the cells [48]. That approach
is valid given a constant product per substrate yield YP/S (or as in this case YX/P ),
to be able to correlate the amount of sugar fed to the amount of metabolic stress
incurred (each gram of sugar stands for a certain amount of metabolic stress caused in
cells under producing conditions). Here the specific amount of sugar metabolised per
gram of cells qSmet

is used to quantify the amount of energy available for the cells, and
thereby how much metabolic stress the cells are exposed to. Since the performance
decay is a result of the load of metabolic stress over time, qSmet is cumulated up during
the production of the recombinant protein (Smet,cum) to model the performance decay
fo the cells [48]. The metabolic stress then causes an increase in energy (sugar) needed
for the production of new cells (as stressed cells need more energy to grow and divide
into new cells), described with a decrease in YX/S [10].
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The simplification of the factors causing the metabolic stress by the amount of sugar
(energy) consumed provides several benefits and drawbacks. First of all, the biggest
benefit of that method is its simplification of the problem; not all stress causing factors
need to be exactly known and quantifiable, since all the effects are summed up by
the energy that was utilised during producing conditions [10]. This is leading to a
high transferability of this method between different processes, strains and organisms,
since only a low amount of knowledge is needed, due to the very broad nature of the
description.

However, the biggest drawbacks of that method also are caused by its simplifica-
tion of the problem; the substitution of all stress causing factors by the amount of
sugar consumed lacks in depth of the physiological description of the system. The per-
formance decay of the cells under producing conditions, compared to non-producing
cultivations, arises due to the production of the recombinant proteins, and not di-
rectly from the sugar uptake [9]. The substitution of all stress causing factors by the
amount of sugar consumed, is only valid as long as a constant product per substrate
yield YP/S is given (however, a decrease in performance is also commonly observable
in the production and not only the growth of the cells [58, 9, 10]). As mentioned
above, for this method each gram of sugar stands for a certain amount of metabolic
stress its consumption causes in cells under producing conditions. Hereby, ’producing
conditions’ suggest that the conditions for the cells are always the same during the
whole production phase of the recombinant proteins. However, as the performance
decay shows, there are physiological changes over the course of the cultivation [11, 12,
13, 21, 22]. Furthermore, other factors may also vary the amount of stress incurred by
the cells per gram of sugar.

First of all, the feed rate (among other factors) has an direct impact on the growth
and productivity of the cells (independent of the total amount fed) [59, 60, 58]. Also
the production of inclusion bodies causes additional stress for the cells [14, 15, 17]. IB
production in cells occurs for example when:

i) the cells are unable to fold the protein correctly
ii) the protein folding machinery of the cells gets overwhelmed (due to the strong

artificial withdrawal of cell resources towards the production of the recombinant pro-
tein)
iii) or when the concentration of the product is surpassing its solubility in the cells.

For the last case, sugar consumed before and after the solubility of the product
is exceeded, will not result in an equal amount of metabolic stress incurred by the
cells. Another example, would be products, which have a certain toxicity towards the
cells; lower concentrations are probably less harmful for the cells than higher ones,
resulting in a higher amount of metabolic stress during their production, when their
concentration is already greater.
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In summary, the principal methodology applied may be very simple and therefore
easy transferable to other processes, strains and organisms, but the method itself has
several strong limitations [Table 4.1]. Furthermore, it’s predictive power suffers from
broad set of different process conditions, since they are not explicitly accounted for
in the equations. It works well as long as time changing effects, as well as the effects
caused be changed process conditions within the used design space on which the model
is applied to, are minimal and can be neglected. Still, this method is used for various
processes in literature [32, 48].

4.2.2 Cell Size Model
For the second approach, the cell size is measured as parameter to characterise the
physiological state of the cells. For E. coli it is reported that high metabolic stress
leads physiologic changes related to cell growth & division [21]. Hereby, an increase
of the average cell size, cells have when they undergo cell division is reported [21].
Since this effect is attributed to metabolic stress [21], the cell size can be used to
monitor the incurred metabolic stress, providing a way to qualitatively and not only
quantitatively characterise the biomass. Here, the specific product formation rate qP
is used to predict the amount of metabolic stress the cells incur, since the production of
recombinant proteins is causing a lot of stress for the cells [9]. Thereby, the predicted
relative cell size increase CS, calculated with qP , can be verified by monitoring the
actual cell size with flow cytometry [23, 24].

By using the specific product formation rate qP instead of the sugar uptake qS during
producing conditions, the stress caused by the production of recombinant products is
explicitly accounted for. The increased depth of the description comes with its own
benefits and drawbacks. First of all, the YP/S (or as in this case the YP/X) does not
need to be constant, which is commonly more realistic for E. coli cultivations [58, 9,
10]. Furthermore, because the specific product formation rate qP itself is taken to
quantify the amount of incurred metabolic stress, differences in production conditions
are accounted for with this method, since qP is influenced by the exact conditions used
[18, 20, 17]. As a result, significantly less limitations on the size of the desired design
space need to be made in order to keep the method valid. Furthermore, it offers the
possibility to incorporate different producing conditions into the used design space, to
specifically analyse their effects on the metabolic stress levels of the cells, which may
be of high interest to researchers.

Additionally, when using qP instead of qS , product concentration dependent effects
(regarding IB formation and toxic products for example) can also be accounted for,
by adaptations of the current model, when needed. However, the method relies on
the product formation being the main (the only changing) source of metabolic stress.
Metabolic stress caused for example by the formation of by-products or due to high
cell densities, are not specifically accounted for. In the current method they need to
be treated as constant or neglectable and would require additional work to implement.
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Table 4.1: Model comparison

Cumulative Substrate Model Cell Size Model

Feedback Variable qS qP

Description of Simple Unspecific Detailed Product
the System Description Related Descpription

Monitorable Metabolic No Yes
Stress State

Adaptability to Limited High
Special Cases

Transferability to High Limited
Different Organisms

Centre Point Fit < 11 % NMRSE < 10 % NMRSE
< 2 % StDev of NMRSE < 3 % StDev of NMRSE

Full DoE Fit < 20 % NMRSE < 11 % NMRSE
< 15 % StDev of NMRSE < 9 % StDev of NMRSE

Parameter 2 Sets of All Parameters
Identifiability 3 Parameters at Once

Transferring the methodology to different organisms would be more complicated than
for the cumulative substrate method; it is based on the cell size increase as physiologic
reaction to the incurred metabolic stress of E. coli cells [21], which will not be the case
for all commonly used production host. The cell size state per se could be replaced by
a generic metabolic stress state [9], but the benefit of being a able to monitor that state
would be lost. Monitoring the stress reactions of different organisms may be difficult,
cost and/or effort intensive or simply impossible with available methods depending on
the organism used [21, 23, 50, 60].
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Summed up, the used methodology provides a more physiological depth, with the
possibility of further expansion of the model for more specific cases [14, 15, 17] [Table
4.1]. Additionally, it provides the ability to monitor and analyse different producing
conditions in regards to metabolic stress. However the transfer to different organisms
apart from E. coli could be very difficult and dependent on a good monitorable param-
eter for the physiological state of the cells [21, 23, 50, 60]. In literature mainly kinetic
models that model the changes of the cell physiology [49, 13] are used. However, those
models also rely on the specific substrate uptake rate qS to model the physiologic
changes. Additionally, also kinetic models modelling the impact of the production of
recombinant proteins on the cell growth are published [9]. However, there is a lack of
mechanistic models combing the production of recombinant proteins with the physio-
logic changes of the cells, and the monitoring opportunities that come with them, to
facilitate process control.

4.2.3 Differences Compared to Literature
The decrease in metabolic performance during cultivations is commonly reported [48,
32, 10, 9, 38, 60, 58]. Thereby the optimal performance of the cells is reported to
be decreased by the formation of by-products such as acetate [59, 62], but also the
production of recombinant proteins itself [9, 60, 58]. In order to address the perfor-
mance decay some work has been done to track the maximal culture capacity and the
change of physiologic parameters, such as qS , over the course of the cultivation [48,
10, 38, 63]. Furthermore, the impact on the yields, such as the biomass per substrate
yield YX/S , has been assessed in detail [32, 58, 59, 38, 64]. Hereby, the cumulative
metabolised substrate Smet,cum is a regularly used variable to model metabolic stress
[48, 32]. Kinetic models using the specific substrate uptake rate qS in order to model
the physiologic changes are published [49, 13]. Furthermore, kinetic models that model
the impact of the production of recombinant proteins on the cell growth are reported
[9].

However, there is a lack of mechanistic models using the specific product formation
rate qP to model physiologic changes caused by the production of recombinant proteins.
None of the mentioned models combine the modelling of the impact of the production
of recombinant proteins with the modelling of the physiologic changes of the cells, as
the cell size model does. The novelty of this work thereby is, the combination of these
modelling goals (impact of the production of recombinant proteins, physiologic changes
of the cells) with a suitable monitoring strategy (exhaust gas rates, flow cytometry),
which can provide new possibilities for model predictive control (MPC).
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5 Conclusion

The goal of this contribution was to develop and compare different methodological
approaches to mechanistically model the performance decay of Escherichia coli cells
during cultivations. The two compared approaches were:

i) The cumulative substrate model: a simple, easy to implement method, with
needs only a minimal monitoring effort; abstracting the metabolic stress incurred by
the utilised energy during producing conditions via the respective sugar consumption
qSmet

ii) The cell size model: a more detailed method, with a sightly expanded monitor-
ing strategy; using the product formation rate qP to model the incurred amount of
metabolic stress by the cells, due to the production of recombinant proteins, instead
of an abstracted value

5.1 Model Development

The adapted version of the model described in [32], as well as the newly developed
model both only relied on:
i) strain specific constants, which can be measured (like the sugar uptake rates)
ii) the initial values of the states at the start of the bioprocess (like the initial biomass

in the reactor)
iii) the input values of the feed-rates for sugars, base and oxygen which they control
iv) as few as possible measured outputs (like the gas rates or the cell size) as feedback

of the current state of the bioprocess, in order to keep the monitoring effort low

The newly developed model could achieve:
i) to take the physiological state of the cells into account
ii) to model the cellular metabolic stress via the specific product formation rate qP
iii) to expand the monitoring strategy only by measuring the cell size with flow

cytometry to not inflate the overall monitoring effort
iv) a better description of the process with lower NMRSE and StDev values
v) a better sensitivity and identifiability of the involved model parameters
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5.2. MODEL COMPARISON

5.2 Model Comparison

5.2.1 Quality of Fit
The cumulative substrate model is able to derive a valid description the system, de-
spite its simplifications, as shown in [48] and this study. Thereby, the simplicity of this
method leads to a high transferability of the method to other processes, strains and
organisms. However, its limitations regarding changing physiologic and process condi-
tions, are restricting the size of the design space it can accurately describe. This could
be observed in this study, by a stronger increase in NMRSE values as well as their
standard deviation when looking at the entire DoE instead of just the centre point.
Furthermore, due to its assumptions that each gram of sugar corresponds to a certain
amount of incurred metabolic stress, it might fail in metabolically more complex cases.

With the cell size model it could be successfully shown that previously reported
changes in the physiology of E. coli [23, 22], which can be attributed to metabolic
stress [21], can be used for process control with mechanistic models. The approach
to predict the incurred metabolic stress via the product formation rate qP , instead of
the sugar uptake rate qS , led to an increased capability of the model to accurately
describe the system for broader design spaces. Additionally, it provides the ability to
asses process conditions in regards to metabolic stress specifically, and the possibility
for an expansion/adoption to cope with physiologically more complex cases.

5.2.2 Model Structure
With local sensitivity and structural identifiability analysis it could be proven, that for
both approaches, valid models can be generated with the respective monitoring strat-
egy used. A reduction in parameters for the description of biomass growth and product
formation (from 4 in the cumulative substrate model to 3 in the cell size model) could
be achieved. Thereby, the structure of the cell size model, and the local sensitivity of its
parameters, made the simultaneous structural identifiability of all the model-specific
non-backbone parameters possible. By the expansion of the monitoring strategy for
the cell size model, the physiologic state of the cells, could be added as qualitative
parameter of the biomass instead of just being able to quantify it. Published automa-
tised on-line flow cytometry devices [24], could thereby monitor the quantity and the
physiologic state of the biomass, without manual labour within a single measurement.
Combined with modelling approaches, powerful tools or bioprocess control for E. coli
can be derived using this new methodology.
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5.3. SUMMARY AND OUTLOOK

5.3 Summary and Outlook

It can be concluded that the cell size model is superior to the cumulative substrate
model for E. coli, with the trade-off of a single additional state that needs to be
monitored, due to:

i) the more accurate description of the system with lower NMRSE and standard
deviation of NMRSE values for a broad set of conditions (< 11 % NMRSE instead of
< 20 % and < 9 % StDev of NMRSE instead of < 15 % for the full DoE fit)
ii) the increased structural identifiability of its parameters (all parameters are struc-

turally identifiable at once instead of only in 2 sets)

The trade-off of having an additional monitored state is more than worth while, since
additionally, the measurement of the physiological state of the cells used, and thereby
the decline in specific performance, offers additional insight and new possibilities for
model development and process control. However, the simplicity and transferability of
the cumulative substrate method and the low amount of effort needed to implement
it into existing models, makes it ideal as first try in modelling the performance decay
in mechanistic models.

More accurate predictions by mechanistic models of industrial relevant bioprocesses,
due to an increased insight in cell physiological reactions, can be used to decrease the
formation of by-products, to more reliably reach the needed product quality as well
as to increase the overall space-time-yields of production plants. Furthermore, the
provided methods for process control as well as the increased amount of knowledge
generateable with then, can help implementing the regulatory authorities initiatives
such as PAT and QbD into industrial bioprocesses. Nervertheless, there is still a lot of
work to do, to apply mechanistic models which take the physiologic state of the cells
into account, like the cell size model, for bioprocess control. Hereby, the developed
cell size model needs to be tested with model predictive control, in order to compare
its control capabilities to commonly applied standard control strategies.
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