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Kurzfassung

Das Finden von Beziehungen in großen Datensammlungen ist eine immer wiederkehrende
Aufgabe, welche jedoch durch ständig wachsende Datenmengen und deren Heterogenität
komplexer wird. Zur Visualisierung multivariater Daten gibt es mehrere Ansätze: (i)
Projektionstechniken nehmen eine Dimensionsreduktion vor, bevor die Datensätze darge-
stellt werden, wodurch sich Gruppierungen, basierend auf der Ähnlichkeit der Datensätze,
bilden; (ii) Überblickstechnicken, die ausgewählte Attribute darstellen, um Muster und
Verknüpfungen zu finden; (iii) tabellarische Visualisierungen, welche auch die einzelnen
Werte der Datensätze anzeigen und so ihre Analyse und detaillierte Exploration erlauben.

Doch während die Analyse einzelner Datensätze in Tabellen einfach ist, wird das Finden
von Ähnlichkeiten in der restlichen Datensammlung mühevoll. Auch bei Überblickstech-
nicken stößt man beim Vergleich großer Datenmengen schnell an Grenzen.

In der vorliegenden Arbeit wird ein Prozess zur Führung von Nutzerinnen und Nutzern
präsentiert, um sie bei der Datenexploration zu unterstützen. Ausgehend von einer
selektierten Teilmenge an Daten, werden Attribute vorgeschlagen, welche Ähnlichkeiten
zu jenen aufweisen.

Attribute oder Datensätze können ausgewählt und anhand mehrerer Ähnlichkeitsmaße
mit der gesamten Datensammlung verglichen werden . Ein selektiertes Attribut wird mit
allen weiteren Attributen verglichen. Datensätze werden allerdings mit sämtlichen Grup-
pierungen aller Attribute verglichen. Numerische Attribute werden so diskretisiert, dass
eine der resultierenden Gruppen möglichst hohe Ähnlichkeit aufweist. In hierarchischen
Attributen wird nach dem ähnlichsten Teilbaum gesucht.

Die vorgestellte Benutzerführung ist nicht nur unabhängig vom Datentyp, sondern auch
von der Domäne und der Visualisierung der Daten. Demonstriert wird dies durch die
Verwendung verschiedener Datensammlungen und der Integration des Prozesses in zwei
Visual Analytics (VA) Systeme. Medizinerinnen und Mediziner des Kepler Universitäts-
klinikums Linz verwenden diese VA Systeme zur Analyse vergangener Krebstherapien.
Sie wurden regelmäßig in die Entwicklung eingebunden um die Benutzerführung und
Darstellung der Ähnlichkeitsmaße zu verbessern.
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Abstract

Seeking relationships in multi-dimensional datasets is a common task, but can quickly
become tedious due to the heterogeneity and increasing size of the data. Its visualization
can be approached in a variety of ways: (i) projection techniques decrease the number of
dimensions to a fraction before visualizing items, creating clusters where similarities in
the high-level space may be derived; (ii) overview visualization techniques display selected
attributes and all of their items’ values to discover patterns and find relationships; (iii)
tabular techniques give an insight into the individual items and thus favor their detailed
analysis and exploration.

However, while the interactive selection of a data subset during exploration is most easily
done with tabular visualizations, finding relationships and patterns is not. Also, with
overview techniques the number of attribute combinations quickly outgrows reasonable
dimensions.

In this thesis, a data-driven touring process for Visual Analytics (VA) tools is presented
that guides users in discovering relationships for a data subset of their interest. Based on
the user’s selection, attributes that show some kind of similarity are presented.

The selection can be done on attribute and item level. While a selected attribute is
compared to all other attributes in the dataset, item sets are compared to the individual
categories of attributes. This comparison can be based on a number of similarity measures.
To cope with heterogeneity of data types, numerical attributes are discretized to achieve
maximum similarity. In hierarchical attributes, the most similar subtree is sought.

The touring process is also independent of the data domain and its visualization. This
independence is demonstrated by the use of three different datasets and the integration
of the touring process into two VA systems.

These extended systems were shown to medical experts of the Kepler University Hospital,
who will use them in the near future. Their feedback was incorporated to improve the
guidance process.
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CHAPTER 1
Introduction

Across a broad range of research areas, analysis and exploration of data is an everyday
task to discover connections, patterns, and gain insights. Healthcare, for example, has
always been an area where large amounts of data are recorded and used for treatment,
even more so through medical and technical advancements and the transition to Electronic
Health Records (EHRs). In cancer genomics, advances in high-throughput sequencing
continuously increase the amount of produced data [27; 96]. Genomic data takes a
highly relevant role in cancer. The Cancer Genome Atlas (TCGA) collected data for 33
cancerous disease types with over 11.000 cases in total [70]. For each case, clinical data
is stored together with biomolecular data, such as gene expression, methylation, or copy
number data, recorded using high-throughput sequencing [54].

This ever increasing amount of gathered data provides many opportunities such as drug
target identification and clinical decision support, improving patient care and reducing
costs [89]. However, the amount of data recorded outgrows the ability to process it and
time required for analysis increases.

The next section shortly describes the terms used for the different data elements. Subse-
quently the problem to be solved and the aim of this thesis are discussed. The method-
ological approach follows before the chapter is concluded by outlining the remainder of
this thesis.

1.1 Terms
In this thesis the following terms are used to refer to certain elements of data:

• A value is the fundamental form of data, representing a single number or string.

• An attribute is a list of values for a particular observation. All values of an
attribute share the same type and can be numerical, describing the observation
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1. Introduction

with continuous numbers, categorical, or hierarchical, like the diagnosis codes
discussed in the next section.

• An item is also a list of values, but across multiple observations. The values for
the different attributes thus describe an item.

• A dataset collects all values of all items for every attribute.

A dataset of music artists, for example, would contain attributes such as genre, number of
released records, and year of first live performance. In the dataset, artists are represented
by items and described by their individual values for the attributes.

1.2 Problem Statement

With the diversity of data types found in large datasets, specifically in healthcare where
data is coming from doctors, nurses, medical devices, external parties, and so forth,
date, text, boolean, and numerical values are recorded. Furthermore, the data can be
structured in categories and hierarchies. To insure interoperability between healthcare
providers, standardized formats for medical data have been established in the past.

Examples for this standards are Fast Healthcare Interoperability Resources (FHIR) [39] for
medical data exchange, Digital Imaging and Communications in Medicine (DICOM) [71]
specifically for imaging data, Systematized Nomenclature of Medicine – Clinical Terms
(SNOMED CT) [101] as a common clinical terminology, Logical Observation Identifiers
Names and Codes (LOINC) [90] for laboratory observations, or International Classification
of Diseases (ICD)1 [129] for disease classification and its enhancement, ICD for Oncology
(ICD-O) [128], particularly for topology and morphology classification of tumors that
both have a hierarchical structure. Despite standardization, the heterogeneity remains
and multi-attribute datasets with numerical, categorical, and hierarchical attributes need
to be analyzed.

To cope with data’s vast volume or inherent complexity, the analysis requires both,
computational power and human reasoning [11]. Visual Analytics (VA) tools provide
interfaces that combine these two to allow users to explore and reason from the data.

If data is explored with VA, users may already have hypotheses to test, about correlations
or patterns in the data, or want to see effects that different characteristics cause. There
might be additional attributes, which are not in the users’ mind, but show similarities
to the attributes they are using. However, comparing attributes to discover new links
and correlations quickly becomes tedious, as the possible combinations of two attributes
grow quadratically with their number. Equation 1.1 shows the formula of the binomial
coefficient for combinations of two out of n elements. As a consequence, only attributes

1Full official name is International Statistical Classification of Diseases and Related Health Problems.
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1.3. Aim of the Work

considered as promising by the expert are compared, while others are ignored.(
n

2

)
= n!

2!(n− 2)! = n(n− 1)
2 = n2 − n

2 (1.1)

If the data increases in size and complexity, analysis tools do as well as more attributes
and options become necessary [11; 44]. Inevitably, the analysis takes longer and training
may be needed.

1.3 Aim of the Work
VA tools can assist their users in analyzing complex data by offering some sort of guidance.
Be it the selection of appropriate VA methods or even infrastructure, structuring the
analysis into tasks, retrieval of attributes and subsets that are interesting, or suggestion
of an expert for a task [11].

This thesis focuses on data-driven guidance, although we will see that guidance in the
remaining domains may be desirable in the future. With vast numbers of attributes to
choose from, VA tools can direct users to the most promising ones and support them in
gaining further insights.

Following the model for guidance in VA proposed by Ceneda et al. [11], users often know
their target—to find some kind of relationship—but need some directing towards paths
that lead them to it. With inputs like the currently used data subset, similarity measures
can be calculated to suggest attributes, ranked by the resulting scores, to the users.

In this thesis we propose a data touring system that is independent of the data domain and
the VA tool applied. Data of different types, be it numerical, categorical, or hierarchical
data, are compared to find similar items inside the dataset and assist users in their
exploration and direct them towards potentially interesting relationships. In this way,
users are assisted in proceeding their analysis from the current state with the offered
directions.

1.4 Methodological Approach
Three heterogeneous multi-attribute datasets, featuring clinical, genetic, and pathological
data have been used to demonstrate data domain and data type generalization. The
first is a data collection about glioblastoma multiforme [110]—a brain tumor—and the
second about clear cell renal cell carcinoma [111], both from TCGA [72] and publicly
available. The third dataset is a confidential excerpt of the Kepler University Hospital’s
tumor database, which also features diagnosis and tumor descriptions in the hierarchical
ICD-10 and ICD-O standards mentioned above.

The touring system has been integrated into two VA tools, StratomeX [106] and Or-
dino [107] to demonstrate independence of the applied visualization-tool. StratomeX [106]

3



1. Introduction

displays attributes as columns of stacked blocks. Each block represents an item set and
is sized based on the number of items inside it. Blocks of adjacent columns that share
items are connect by ribbons. The width of each ribbon is proportional to the number of
items shared by the connected blocks. The resulting visualization thus results in parallel
sets [4; 52]. Blocks and ribbons can be selected to specify the input for the touring
system. Ordino [107] displays the data tabularly with an option to switch into overview
mode where patterns and distributions can be seen more clearly. The tabular approach
enables users to select individual items, giving them more freedom in specifying the input
data for the touring system.

The touring system augments these tools, enabling users to query for similar data.
Whether two data subsets are similar or not is assessed by various similarity measures
for different data types. If the items of numerical attributes behave similar can be seen
by their correlation, but they can also be considered similar if their mean, variance, or
distribution match. For sets of items, their number of shared items divided by the sets’
total number of unique items is a common similarity measure known as Jaccard index.

The touring process has first been integrated into StratomeX, using the Jaccard index
as similarity measure to compare a selected item set with the categories of categorical
attributes. The Jaccard index calculation was then extended to include hierarchical
attributes. Plain percentages of overlap with the given and compared data sets respectively
were added after gathering first feedback from users.

We also added the Pearson correlation coefficient (PCC) for comparison of numerical
attributes. To compare numerical data with item sets, and thus categories, a discretization
algorithm was integrated that bins a numerical attribute such that the resulting groups’
similarity is maximized. The implemented measures were selected as they are among the
most commonly used ones [13; 28; 66].

Integration in both VA tools involves solely selection of input, starting similarity tasks with
calls to a Representational State Transfer (REST) Application Programming Interface
(API) and displaying the resulting scores to the users. Hence, the proposed touring
process can be easily integrated into any desired data exploration tool.

This thesis work is part of the TourGuide project [105], a research platform to record and
analyze clinical data in order to improve patient care, covering data analysis itself, but
also the acquisition, handling, and data modeling. While the touring process introduced
in this thesis is independent of the data domain and type, qualitative feedback by medical
professionals from the Kepler University Hospital, the future users and partners in the
TourGuide project, was gathered. As they are first of all treating patients and using the
tool to improve and target care, simplicity was more important than feature richness in
the design considerations.
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1.5. Structure of the Work

1.5 Structure of the Work
The next chapter presents work related to this thesis. First, appropriate visualization
methods are discussed, followed by ways to guide users in VA tools. Section 2.3 presents
similarity measures for data comparison. The chapter is concluded with discretization
techniques for numerical attributes in Section 2.4.

The concept of the touring process is described in Chapter 3. We describe the overall
touring process, the used similarity measures, how numerical attributes will be binned,
how hierarchical items are compared, and concepts for the visual integration.

Chapter 4 explains the implementation of the touring process. It covers how the data is
compared and scored and which additional software packages are used to do so.

The integration of the touring process is described in Chapter 5. We describe StratomeX
and Ordino, how the user interface has been adapted, and how the touring process can
be used in the two tools.

The resulting touring process and its visual output are presented in Chapter 6, to-
gether with some performance measures. Responses from medical professionals and the
implications from their feedback are covered as well.

Finally, the thesis ends in Chapter 7 with a conclusion of our work and a discussion. The
chapter also provides thoughts on the possible future work.
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CHAPTER 2
Related Work

The guidance method introduced in this thesis is demonstrated on clinical and oncoge-
nomic data exploration. In Section 2.1 we discuss applications and methods to visualize
such multi-dimensional data. Related work regarding user guidance in VA is discussed
in Section 2.2. Section 2.3 presents similarity measures for numerical, categorical, and
hierarchical data. The chapter is concluded by methods to discretize numerical data (Sec-
tion 2.4).

2.1 Multi-Attribute Data Visualization

For the visualization of multi-attribute data a myriad of approaches exists, developed
and refined to support the exploration in different use-cases or with different data.

First, a couple of visualization techniques are discussed. Following Gratzl et al. [35]
and Ward et al. [122], we divide them into three groups: point-, line-, and region-based
visualizations (Sections 2.1.1 to 2.1.3).

These visualizations are adopted by several tools for multi-dimensional data exploration.
These tools are discussed in Sections 2.1.4 to 2.1.6, divided into overview techniques,
projection techniques, and tabular techniques [25].

Related work regarding the visualization of our used data is discussed as well. Section 2.1.7
presents genomic data visualizations and Section 2.1.8 tools to visualize and explore
clinical data.

2.1.1 Point-based Data Visualization

A widely used method for visualizing multi-attribute data and probably the best known
point-based visualization to compare two attributes is a scatter plot [14]. In a Cartesian
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2. Related Work

(a) Scatter plot matrix for pairwise com-
parison of four attributes.

(b) Hyperbox with pairwise comparison
of five attributes.

(c) Radar chart with four attributes.
(d) Time Wheel comparing multiple at-
tributes to horse power (hp).

(e) Parallel coordinates plot (PCP) with
four attribute comparisons.

(f) A many-to-many parallel coordi-
nates plot (PCP) with seven attributes.

Figure 2.1: Line- and point-based visualizations from Flexible Linked Axes (FLINA) [14].
They show attributes of a car dataset with weight (w), acceleration (ac), horse power
(hp), miles per gallon (mg), displacement (dp), cylinders (cy), model year (my), and
origin (or).8



2.1. Multi-Attribute Data Visualization

coordinate system each axis represents an attribute. The values of the item for each
attribute determine its position in the plot.

Scatter plots suffer from the limitation that only two attributes can be compared, which
is circumvented by variations like hyperboxes [3] and scatter plot matrices [14]. Both
compare multiple pairs of attributes in scatter plots that are arranged next to each other.
Their composition can be seen in Figure 2.1. While a scatter plot matrix arranges the
individual plots equally in a grid (see Figure 2.1a), a Hyperbox “is a two-dimensional
projection of an N-dimensional box” [14]. As a result of this projection, each scatter
plot varies in orientation and skewness, leading to focused and peripheral plots (see
Figure 2.1b).

2.1.2 Line-based Data Visualization

Examples of line-based visualizations are radar charts, time wheels, and parallel coordinates
plots (PCPs). They have in common that the attributes are represented as axis on which
the items are mapped according to their actual numerical value for that attribute.
Categorical attributes have their categories evenly spread along the axis. Lines connect
the values of an item between axes. How the attributes’ axes are aligned and which ones
are connected differentiate the three methods.

In a radar chart, or a star plot, the attributes’ axes are aligned in a star pattern, and
the items’ values are connected between adjacent axes (compare Figure 2.1c). The time
wheel has an axis of reference in the center and further axes radially aligned around
it [116]. Lines connect the item values on the radial axes with the horizontal axis (see
Figure 2.1d).

In a PCP, the axes are aligned parallely and item values on adjacent axes are linked
similar to radar charts (see Figure 2.1e) [45]. A variant of PCPs is the many-to-many
relational PCP described by Lind et al. [58]. They propose axes configurations so that
the many-to-many PCP can show relationships between each of four or seven attributes
at once [58]. Arrangements for three, five, six, and eight attributes are shown by Claessen
and van Wijk [14]. An example with seven attributes is given in Figure 2.1f.

2.1.3 Region-based Data Visualization

Region-based approaches can represent values by bar lengths, size of pie slices, or area
variation. Pie charts can be used to inspect the distribution of an attribute’s items
into its categories. If the data is quantitative or an ordering can be inferred, an item’s
values for multiple attributes can be compared with various bar charts. Multi-bar charts
align all bars on a common baseline so that the users can clearly see differences between
individual attributes. Stacked-bar charts can be used to compare totals from multiple
attributes by aligning their bars, creating a single one (see Figure 2.2a) [104].

By varying the order or baseline of stacked-bar charts, comparison of individual at-
tribute values can be simplified. Ordering the attributes in a stacked-bar chart by their

9



2. Related Work

(a) Stacked-bar chart with the bars stacked
in order of the attributes. (b) Stacked-bar chart with a shifted baseline.

(c) Stacked-bar chart with the bars ordered
according to their length.

(d) Stacked-bar chart with a baseline for
every attribute.

Figure 2.2: Stacked-bar chart variations from LineUp [35] (also see Section 2.1.6).

individual length, contributions to the total length can easily be seen from the order
of attributes (see Figure 2.2c). Changing the baseline makes comparison of the total
sum more difficult, but helps users to compare the values of the attributes next to the
baseline [104]. Additionally, the baseline can be placed such that attributes with a
negative and positive association are separated and their stacked bars grow in opposite
directions (as in Figure 2.2b) [35]. Instead of a single baseline, each attribute can be
aligned on its own baseline (see Figure 2.2d). With all bars horizontally aligned, single
attribute values are compared easily.

Area charts, where the area between line and axis is colored, can be used in similar
ways to bar charts to display data over time. By overlaying multiple areas, they have a
common baseline and can be compared. By stacking areas on top of each other, one has
the same possibilities as with stacked-bar charts (compare Figure 2.2).

Stream graphs [7] are a variation of stacked area graphs that have a varying central
baseline (see Figure 2.3). Stream graphs work well if the displayed categories start and
end at different times and are useful to discover patterns and trends over time as in
Figure 2.3 [49; 92]. In contrast to area charts, stream graphs do not support negative
numbers and focus on the overall representation, rather than values on individual
points [40].
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2.1. Multi-Attribute Data Visualization

Figure 2.3: A stream graph showing inflation adjusted movie revenues between May 1994
an January 1995 [112]. The color indicates the overall success of a movie, while the shape
shows if it was an instant hit on the opening weekend and how long it could attract
viewers. The Lion King for example, was released in June 1994 and was an instant hit,
but also regained popularity towards the end of 1994.

2.1.4 Overview Visualization Techniques

Overview techniques incorporate the attributes in visualizations to see relationships and
distributions on a large scale of items (see Figure 2.4). Flexible Linked Axes (FLINA) [14]
is a generalization of axis-based techniques, as described in Sections 2.1.1 and 2.1.2, and
allows the users to create visualizations by drawing and linking axes on a canvas (see
Figure 2.1). All of the discussed point-based and line-based visualizations are supported
by FLINA. Multi-dimensional data and visualizations that are not axis-based, like pie
charts or stream graphs of Section 2.1.3, are not supported

ConnectedCharts [118] (see Figure 2.4a) enhances the idea of Claessen and van Wijk [14]
and removes the data and visualization restrictions discussed above. Thus, non-axis-
based visualizations like bar charts and additional two-dimensional charts are available.
ConnectedCharts also handles tabular datasets and supports data aggregation.

To link visualizations not only on an item level, but also between subsets or whole
datasets, Gratzl et al. further refined the approach and developed Domino [36]. Domino
excels in data exploration by the ability to define, visualize, and relate subsets of the
data (see Figure 2.4b) and also integrates FLINA [14] and ConnectedCharts [118] as
data visualization techniques.
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(a) ConnectedCharts [118] with tabular data connected to bar charts, parallel coordinates plots
(PCPs), and scatter plots.

(b) Domino [36] showing relations inside a musical dataset with a heatmap, a scatter plot, parallel
sets and parallel coordinate plots, and a bar chart.

Figure 2.4: Examples of overview visualization techniques.
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2.1.5 Projection Visualization Techniques

With projection techniques the dataset’s dimensionality can be reduced before the items
are visualized or by the visualization itself, e.g., with principal component analysis
(PCA) [1], Multidimensional Scaling (MDS) [59], or t-distributed stochastic neighbor
embedding (t-SNE) [61]. Figure 2.5 demonstrates these projection techniques with
Fisher’s Iris flower dataset [20]. The dataset was transformed using Scikit-learn [78],
a Python [88] library that offers the three projection techniques, and visualized with
Matplotlib [43], a Python plotting library.

High-dimensional data is translated to the projection space with typically two dimensions,
showing the data’s information in a planar layout. In this projection, the positioning of
individual items conveys information about their similarity to other items; with similar
items being closer and unrelated items being placed farther apart. Groupings of items
and patterns can easily be seen in these projections and studies have shown that they
outperform scatter plot matrices and three-dimensional visualizations [102]. A drawback,
due to the dimensionality reduction, is that the resulting plots have no meaningful axes,
which makes it difficult to translate similarities or differences in the projection space to
the actual attributes [102].

The technique developed by Stahnke et al. [102] use MDS for dimensionality reduction
and show the result in a two-dimensional scatter plot. By showing the error, introduced
by the projection, as halo around items, reliability can be determined during data
exploration. Items can be selected and grouped to be analyzed and compared to the
dataset. Analyzing items in the projection, the distribution of the original attributes’
values and their distribution in the projections are of interest. This can be seen with
density plots on the side and heatmaps as an overlay on the projection (see Figure 2.6).
This helps users to counter the above mentioned drawback of projection techniques. By
plotting attributes over the projection, it can be seen as a hybrid solution that also gives
an overview of the dataset.

ProxiLens [41] also uses a projection of high-dimensional data to a scatter plot for data
exploration and features a semantic lens, with which an area in the plot can be focused.
The item in the center of the lens serves as reference to calculate the distance in the
high-dimensional space to items adjacent in the projection. The lens moves so called
false neighbors, items which are close in the projection but not in the high-dimensional
space, to its border. The distance of true neighbors is visualized in the focused area by
color, which is getting brighter with proximity (see Figure 2.7).
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(a) Scatter plot matrix with the dataset’s attributes. The diagonal shows a histogram of
each species for every column. Setosa = navy, Versicolor = turquoise, Virginica = orange.

(b) Dataset projection with PCA.

(c) Dataset projection with MDS.

(d) Dataset projection with t-SNE.

Figure 2.5: Visualizations of Fisher’s Iris flower data set [20]. It contains 50 measurements of length and width for petal and
sepal leaves for each of the three species (Setosa, Versicolour, and Virginica).

14



2.1. Multi-Attribute Data Visualization

Figure 2.6: Probing Projections [102] visualization with a heatmap overlay showing the
value distribution of Educational attainment in the projection space.

Figure 2.7: ProxiLens [41] applied to a two-dimensional projection (using principal
component analysis (PCA)) of three-dimensional interlaced rings (Subfigure a). According
to the high-dimensional distances between the points, false neighbors from the second
ring are pushed towards the lens’ border and have a black background, while the points
of the true neighbors have a bright background (Subfigures b and c).
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Figure 2.8: LineUp [35] with two rankings of universities that differ in attribute weightings.
Changes in the ranking through the different weights are shown by slope graphs.

2.1.6 Tabular Visualization Techniques

If the items’ actual values are of interest, a tabular arrangement is the visualization of
choice. Widespread general applications like LibreOffice Calc [57] and Microsoft Excel [65]
use spreadsheets to display multi-attribute data. They support sorting, grouping, and
filtering and offer multiple chart options such as bar, pie, and bubble charts or scatter
plots, but do not target users who want to interactively explore the data. Encoding
values of items within the cells of a table is very limited in these tools and the direct
comparison of data is tedious.

LineUp [35] (see Figure 2.8) visualizes multi-attribute data in a table as well and can
encode numerical cell values with variations of bar charts, described above. Histograms
are displayed atop each attribute to get a quick overview. Users can combine and weight
attributes, merging their bars to a stacked-bar chart. This enables them to quickly create
rankings of items based on multiple attributes or understand a ranking’s composition.
To compare rankings, a separator is inserted between them. Slope graphs within the
separator connect identical items from both rankings.

Of course, tools may combine projection, overview, and tabular visualization techniques
to a hybrid solution that gives an overview, but also provides insight into the individual
item values.
Taggle [25] is a tabular technique that allows the analysis of each individual item’s values
and has the option to switch in an overview mode, where patterns and distributions can
be seen more clearly. Large multi-attribute datasets are displayed in a scalable table that
can be filtered and sorted. In the detail mode, numerical item values are represented by
bar charts (see Figure 2.9).

16



2.1.
M
ulti-A

ttribute
D
ata

V
isualization

Figure 2.9: Taggle [25] with football player data in detail mode. While players who shot with either the left or both feet are
aggregated, data for those who shoot with the right foot is displayed in detail. A box plot visualizes the aggregated items for
the attribute age, and a histogram summarizes the aggregated items of attribute height.
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Figure 2.10: Taggle [25] with football player data in overview mode. Items of players shooting with the right foot are shrunk
to a height of one pixel to fit into the available space.
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Just like LineUp, Taggle can combine and weight multiple columns to create a total
score, displayed as a stacked-bar chart. Categories of stratified columns are represented
by colors. Groups can be created by splitting numerical attributes by a threshold or via
categorical attributes. These groups can be aggregated to make space for the remaining
items, summarizing the values of the aggregated items in choosable visualizations, such
as bar charts, boxplots, or histograms (see Figures 2.9 and 2.10).
The overview mode tries to display as many items as possible by decreasing the items’
height down to one pixel until all fit into the visible area (see Figure 2.10). Already
aggregated groups of items keep their size, and selected items are displayed in full size
as well so users can still inspect the values of interesting items. If a height of one pixel
per item is not small enough to fit everything into the available space, scrollbars are
introduced, until either the item quantity is reduced by filtering, or a group of items is
aggregated. The data selection panel on the right hand side of Figures 2.9 and 2.10 is
used to add and remove attributes, sort, stratify, and filter them.

2.1.7 Multidimensional Genomic Data Visualization

High-throughput genome analysis technologies can generate large sets of genomic data.
Projects such as TCGA and the International Cancer Genome Consortium (ICGC)
catalog this data for a variety of tumor types [96; 110]. Researchers may use these
catalogs to gain further insights and to improve patient outcomes [110]. Visualizations
specifically for genomic data are discussed separately in this section.

Schroeder et al. [96] reviewed visualization methods and tools developed for multidimen-
sional genomic data and grouped them into in three different visualization approaches.
The first approach is to visualize genomic coordinates, like popular genome browsers such
as the Integrative Genomics Viewer (IGV) [113] or the University of California, Santa
Cruz (UCSC) Cancer Genomics Browser do [96]. Both visualize a tumor sample’s data
along genome coordinates, which is the most common approach (see Figure 2.11) [96].
Circos [53] is a tool whose approach is different as it displays data circularly (see Fig-
ure 2.12) [53; 96]. If used for genomic data, chromosomes are represented by circular
segments that form a ring [53]. In the segments genomic features of the chromosomes,
such as mutations or copy number variation, are shown in layers [53]. The individual
genes in these segments can be linked to highlight disease related genes or similar genome
subsets [53].

Another way to visualize genomic data are networks. Networks can represent relationships
and interactions among biologic structures. Genes and their encoded proteins build
nodes that can be shaped or colored to reflect genetic features. Cytoscape [99] is a tool
frequently used in bioinformatics, to analyze these interaction networks and identify
important features such as cancer drivers and drug targets (see Figure 2.13) [96; 99]. In
addition to the Java application, there is also a web version [60], a JavaScript library [24],
and the cBio Cancer Genomics Portal [12], which implements a Cytoscape adaptation
optimized for analysis of TCGA data [96].
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Figure 2.11: Integrative Genomics Viewer (IGV) application window. At the top, the chromosome ideogram and genomic
coordinates display the currently analyzed section. Data of Chromatin immunoprecipitation DNA-sequencing (ChIP-seq) and
Next-generation sequencing (NGS), two methods to acquire genomic data, is displayed in the center. The reference gene track
at the bottom shows the encoded genes.
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Figure 2.12: Circos [53] showing whole-genome copy number profiles of five tumor
samples (histograms A-E) for every chromosome (segments 1-22 and X). The outer ring
represents each chromosome with an ideogram. A segment’s arc length is determined
by the chromosome’s number of Base pairs (bp), ranging from about 46 million base
pairs (bp) (chromosome 21) to almost 250 million bp (chromosome 1). The copy number
histogram F of chromosome 6 is displayed in the center of the visualization. The line
G displays the average value of 250 probes. The color of the area between G and zero
shows whether the copy number is increased or decreased on average. H and I show the
maximum and minimum three-probe average, respectively.
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Figure 2.13: A gene-gene interaction network visualized with Cytoscape.js [24]. Interacting
genes are connected by edges. The number of edges corresponds to the interaction strength.
The edge’s color shows the interaction type. The node’s size is determined by its protein
score.
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Figure 2.14: An example of a heatmap in Gitools showing the deviation of genes (rows)
for various tissue samples (columns) from their respective mean expression level [29].
While values inside the 95 % confidence interval are gray, cells are colored from light to
dark orange and blue if the z-score goes towards plus and minus 10, respectively.

The cBio Cancer Genomics Portal also offers a viewer called OncoPrint to depict genomic
data with heatmaps [12]. A heatmap visualizes the data of a matrix by representing values
with colors in a grid and has turned out as an intuitive and effective way to visualize
biological data [79]. In oncogenomics this usually means that each row represents a
genomic entity, such as a gene, and each column represents a sample or vice versa (see
Figure 2.14) [56; 96]. Gitools and StratomeX are two more representants of this visual-
ization technique [96]. The second tool is also used for an exemplary implementation
of the thesis’ guidance method, which is why Gitools and StratomeX are now discussed
more thoroughly.

Gitools [79] has interactive heatmaps (compare Figure 2.14) in which users analyze and
browse the loaded data. It offers enrichment analysis, a so called Oncodrive method,
correlation calculation, analysis of overlap, and result combination [79]. With enrichment
analysis, over-represented (or under-represented) biological characteristics of the gene
subsets from the heatmap can be found [67; 108; 114]. Oncodrive finds rows in the
analyzed data matrix that are significantly different from others with the idea to identify
genes that are altered in tumorous data samples [79]. The correlation calculation can
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be used to compare a column or row with the rest of the matrix [79]. Overlap analysis
shows matching true elements in binary rows and columns [79]. To combine the resulting
significance values of several tests on different datasets, a combined test of significance
is created with the weighted Z-method [79]. Browsing the heatmap, users are also able
to search, filter, and cluster it, to move rows and columns and customize the heatmaps
appearance (by changing colors, sizes, and labels, for example) [79].

In contrast to Gitools, where users operate inside a heatmap, StratomeX ’s [56] approach
focuses on the comparison of multiple attributes and finding relationships between
them [56; 96]. Genomic data is visualized with heatmaps. Users can add multiple
heatmaps with genomic data, as well as categorical and numerical attributes, which can
be used to include clinical data in the analysis [56]. All displayed attributes are connected
by ribbons that reflect the number of shared items in their width (see Figure 2.15) [56].
Former a Java application, as reviewed by Schroeder et al. [96], StratomeX transitioned
to a web application [37]. The web version is also used to demonstrate the integration of
the proposed touring process (compare Chapter 3 and 5).

Ordino [107] is a web-based tool to display data in a table, with the features already
discussed for Taggle in Section 2.1, and does therefore not fit into the categorization by
Schroeder et al. [96] used above. Ordino is the second application in which we integrate
our touring process (see Figure 5.2). Users can rank, filter, and explore attributes in the
table and select an item subset for further analysis in detail views. Two-dimensional data
can be visualized with heatmaps inside a column. The item’s values from the matrix are
shown as a bar of varying color. In detail views, additional information on the selected
item subset is displayed. This can be done with an additional table, external resources
(e.g., Ensembl [131]) or specialized visualizations, e.g., OncoPrint, already mentioned
above for the cBio Cancer Genomics Portal. Additionally, users can save their current
analysis state for later continuation, as basis for future analysis or for sharing with
colleagues.
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Figure 2.15: StratomeX [55; 106] with three heatmap columns. The ribbons’ width represent the number of shared items in
the categories. While the items are almost identically stratified in the first two columns, the third one shows little similarity.
The subsets 1 and 4 of Stratification 1 merge together into the subset 1 of Stratification 2.
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2.1.8 Clinical Data Exploration Tools

Data with medical information is different to datasets with other content by legal, ethical,
and social aspects, by the various existing standards, its myriad of sources (transcripts,
laboratory values, imaging data, etc.) and the resulting heterogeneity [51]. An Electronic
Health Record (EHR) collects this data, from different sources in different standards,
over time and can be shared among care providers [123].

Visualizations for clinical data and EHRs have to represent more categorical data as the
tools for genomic data discussed above. Additionally, clinical data and EHRs data is
typically recorded over a period of time.

From an EHR, the history of a patient with information on symptoms, diagnosis, and
treatments is at hand and needs to be presented efficiently [8]. Health-data visualization-
tools can be used to get an overview of a single patient’s history, for clinical research, or
national studies on population health [100]. In either way, the goal is to gain insights
from the clinical data. The visualizations can support decision-making and can reveal
patterns in the history of one or multiple patients [8; 89].

To overview a patient’s recent past, vital sign records or flow sheets are the traditional
paper-based visualization. It is usually a spreadsheet, where the attributes are listed as
rows, and its values are recorded over time along the columns. Vital sign records only
contain the key attributes of a patient, such as temperature, blood pressure, and pulse,
and depict trends and anomalies. Systolic and diastolic blood pressure is often visualized
by a graph [93]. Based on the development of the physiological data, intervention needs
or treatment effects can be identified [123].

Ordóñez et al. [77] use the Multivariate Time Series Amalgam (MTSA) visualization for
clinical and physiological data, which is used in Intensive Care Units (ICUs), alternatively
to the just described vital sign records. The visualization uses a radar chart (as discussed
in Section 2.1) to display multiple attributes over time. The age of a data point is
visualized by color, getting darker the more recent an observation is [77].

The TimeLine by CompuGroup Medical (CGM) is another electronic version of such
a vital sign record. It shows vital parameters, appointments, medication, and further
information and users can add and edit data directly from the visualization [132].

For exploration of a whole EHR, LifeLines [86; 87] is one of the most mature visualizations
and was extended to the applications LifeLines2 [121] and LifeFlow [127], which will
be discussed below. To provide an overview of patient records, LifeLines lists events
vertically along the horizontal time axis. The events are represented by line segments,
normal and abnormal data is color coded. With the compact layout of line segments,
many attributes can be visualized simultaneously [93; 123]. Through the alignment on
the time axis, one can infer temporal relationships of events [51].

To compare patients and reveal inter-patient patterns, the analysis of sets of patients
must be possible. LifeLines2 [121], which evolved from the single-patient visualization
LifeLines [87], can visualize multiple patient records. It also uses a horizontal time axis
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Figure 2.16: LifeFlow combined with LifeLines2 [127]. The center view with LifeFlow
shows events of each patient by aligning colored blocks vertically. The color’s meaning
can be seen in the legend at the bottom left corner. The selected patients are displayed
with LifeLines2, in the area in the right third of the image.

on which the events, now from multiple patients, are aligned vertically. LifeLines2 also
offers an alignment feature, with which users can align patient records by a specific event
to compare their precedent and subsequent events. In histograms, so called temporal
summaries, distributions of certain event types, are shown. They can be used in a
comparison mode to analyze multiple patient groups [93].

LifeFlow [127], also a development that originates from LifeLines [87], gives users a
high-level overview of trends and patterns in millions of patient records [123]. LifeFlow
can integrate LifeLines2 as shown Figure 2.16. This allows the exploration of a large
number of EHRs as well as the analysis of EHRs from the selected subset [127].

Visualization of Time-Oriented Records (VISITORS) [50] has also evolved from a preceding
patient record visualization, in this case from a work by Shahar et al. [97; 98]. VISITORS
enhances the previous work to visualize data from multiple patient records [123]. From
the raw data, higher level abstractions can be visualized to ease perception. It also
adds an extensive query interface to search for specific attribute values, ranges, and
combinations or to set temporal constraints [93].

Visualizations that plot patients as data points in a Cartesian coordinate system based
on their similarity are Dynamic Icons (DICON) [42], TimeRider [91], and Gravi++ [33],
for example [93; 123]. By measuring the distances between patients in multiple attributes,
similar patients are clustered in Gravi++. TimeRider uses two attributes as axes to
create a scatter plot and can vary an item’s icon by size, color, and shape depending
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Figure 2.17: Characteristics of guidance in visual analytics by the knowledge gap, the
input and output to bridge it, and the degree with which it is overcome [11].

on additional attributes [93]. DICON allows the users to search patients similar to a
reference and forms clusters for further exploration [93; 123].

Zillner et al. [133] propose a semantic visualization of clinical data from multiple patients.
With the help of semantics, classification of patients can be improved that in turn
supports finding similar patients. With the Semantic Facet Browser, users can browse
the data and find similar patients based on selected attributes.

2.2 User Guidance in Visual Analytics
The techniques discussed in the sections above are applied to analyze complex and large
data structures. The sheer number of available attributes and the manifold options that
are offered for data analysis can overwhelm users. As the purpose of Visual Analytics
(VA) tools is to support the exploration with computing power, methods to guide the
user are a helpful addition so that the analysis goal can be reached.

Ceneda et al. [11] define guidance “as a dynamic, iterative, and forward-oriented process
that aims to help users in carrying out analytical work using VA methods” [11]. In their
work, they extended Wijk’s model of visualization [124] with components for the guidance
process itself and the inputs and outputs of the guidance process (see Figure 3.2).

Following that model, the main aspects to characterize guidance are: (i) the knowledge
gap that stops further exploration, (ii) the inputs and outputs, and (iii) the degree by
which users are guided by the VA tool [11]. Figure 2.17 shows these aspects and their
possible expressions. The knowledge gap can be divided by the type, i.e., whether users
do not know the target of their current analysis, or they do not know the path to reach
that target. Why guidance is needed, can also be split by the domain, i.e., whether a
user does not know which infrastructure or VA methods she should use, which tasks are
needed for successful analysis, which data or parts of data to use or whether someone
else should perform the analysis or can support the user. An input from which the
guidance process is started can of course come from the data, from the domain in which
the analysis is done, or can be based on current visualization images. Users can also
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provide inputs to the guidance process, e.g., by giving information about their knowledge,
or by the actions the users have made previously. The input can also come from the
user, or the users’ knowledge derived from feedback by the user, or can be the historical
actions of a user.

The output of the guidance process is the answer that narrows the knowledge gap and
enables the user to continue the analysis task. This answer can be presented by different
means, depending on the degree of guidance. Guidance can merely provide orientation
while the users pursue their target. The users can also be directed towards promising
paths to their target. With prescribing, the highest degree of guidance, the process takes
control of the VA tool and actively continues the analysis automatically.

Shneiderman et al. [100] also highlight guidance in visualizations as a part of healthcare
improvement. They suggest to query an EHR database for similar cases to retrieve
information on the treatment and outcome and to identify the treating colleagues.

From the tools that were already discussed in this chapter, LineUp [35] helps users to
find an unknown target from a dataset through ranking (compare Figure 2.8). While
histograms in the column headers give orientation, the ranking of all items by the selected
attribute—with the highest ranked items atop—directs users to the most interesting
items in the dataset.

As the tabular structure and handling is similar to LineUp, both points also apply for
Taggle [25] and Ordino [107]. In addition, to the histograms in the attributes’ headers,
they also show attribute distributions in the data selection panel. With the summaries
of aggregated groups and by switching to the overview mode, further functionalities for
orientation are available. LineUp, Taggle, and Ordino operate in the data domain, and
use the currently analyzed data as input. Further guidance is added to Ordino with the
touring process presented in this thesis.

Streit et al. [106] extended StratomeX [56] with a wizard to define queries to score each
stratification. As the wizard has predefined steps and chooses the appropriate queries
based on what the user wants to do, this is an example for prescribing actions. The
resulting scores on the other hand direct users to attributes that are of interest. This
may be the most similar guidance approach to the touring process proposed in this
thesis. Already an important feature of the initial StratomeX implementation are the
ribbons that reflect the number of shared items in their width and help users to keep the
orientation. Besides the data itself, the guidance process utilizes domain knowledge by
adjusting the queries based on what the users wants to do.

Domino [36], discussed in Section 2.1.4, is an example for guidance in the VA domain. If
users want to add add visualization elements, Domino assists them by showing placeholders
and live previews.

Stahnke et al. [102] use a technique similar to Scented Widgets [126] with small visual-
izations at controls to guide the user. While Scented Widgets use history as input and
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show other users’ activities next to the control to assist novice users [11], Stahnke et al.
visualize a preview of a control’s effect inside it.

2.3 Similarity Measures
Determining the similarity between two sets of data is a key part to suggest to users with
which attributes a further analysis is most promising. In the following, various measures
to calculate similarity or distance are presented, split by the type of attribute they are
based on.

Given a measure A that outputs the data’s relationship as distance DistA in the range
[0, X], it can be converted to a similarity measure SimA by subtracting the calculated
distance from the maximum distance as in Equation 2.1.

SimA = X −DistA (2.1)

2.3.1 Numerical Similarity Measures

The following section discusses similarity measures for numerical attributes. We will use
X and Y to represent numerical attributes, and x and y to represent individual values of
these attributes.

If an attribute’s values are a function of another attribute, they are usually not independent
and correlation can serve as a measure of similarity. Correlation measures the strength
and direction of the association of two attributes and can take values between −1 and
+1, with ±1 as perfect linear relationship. A correlation of zero indicates no linear
relationship. The absolute value of a correlation function can therefore used as a measure
of similarity: Sim(X,Y ) = |Corr(X,Y )|. Table 2.1 shows general rules for interpreting
correlation coefficients.

The Pearson correlation coefficient (PCC) can be used if the compared attributes are
normally distributed and have a linear relationship. However, the PCC is highly affected
by extreme values and inconclusive as soon as one attribute is not normally distributed [69].
Still, for normal distributed data, the PCC is the most frequently used coefficient [13].

CorrPearson(X,Y ) = cov(X,Y )
σX · σY

(2.2)

Equation 2.2 shows that the PCC is calculated by dividing the covariance of the attributes
to be compared by the product of the respective standard deviations.

The Spearman’s rank correlation coefficient (SRCC) of attributes X and Y is defined
as the PCC of their ranked representations Xr and Yr (see Equation 2.3) [13; 48]. This
means that the SRCC does not use the individual values of measurement pairs, but
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Correlation Coefficient Interpretation
[0, 0.3) Negligible correlation

[0.3, 0.5) Minor correlation
[0.5, 0,7) Medium correlation
[0.7, 0.9) Major correlation
[0.9, 1.0] Very high correlation

Table 2.1: Interpreting correlation coefficients [69].

assigns ranks to the values of each attribute and uses pairs of these ranks for comparison.
By using the ranked representations, the SRCC can be used in cases where the PCC is
not appropriate, e.g., if one of the attributes is skewed or ordinal, and the SRCC is also
not affected by extreme values such as the PCC [69]. Thereby, the SRCC can also be
used for non-normally distributed data and the relationship between attributes can be
non-linear (but still monotonic).

CorrSpearman(Xr, Yr) = corrPearson(Xr, Yr) = cov(Xr, Yr)
σXr · σYr

(2.3)

The Kendall rank correlation coefficient (KRCC) is even less sensitive to outliers and
interpretation is simpler, as the confidence intervals are more reliable and interpretable [13;
73]. Like the SRCC, the KRCC does not use the attributes’ values, but the values’
ranks. Equation 2.4 shows the KRCC’s definition. Given a pair of value ranks, the
following pairs can either be concordant (ordered in the same way) or discordant (ordered
differently) [13; 30]. The total number of concordant and discordant pairs are subtracted
in the numerator, i.e., a high value in the numerator means that most pairs are concordant
and the two attribute rankings are consistent. To normalize the KRCC into a range
between −1 and +1, the difference of concordant and discordant pairs is divided by the
total number of possible rank pairings. For two attributes, X and Y , where each contains
n values, the total number of possible combinations is n(n− 1)/2.

CorrKendall(X,Y ) = |concordant_pairs| − |discordant_pairs|
n(n− 1)/2 (2.4)

According to Chok [13], the PCC is still superior to the SRCC and the KRCC if the
distribution is moderately non-normal as its disadvantages stem mostly from the sensitivity
to outliers. The SRCC and the KRCC may also be used for ordinal attributes [69]. The
KRCC is also superior to the SRCC if many values are equal and thus share the same
rank, as the KRCC uses the order of pairs rather than the ranks [13].

Alternatively to correlation, there are also similarity scores for numerical data, such
as Gower ’ similarity coefficient. As it is also applicable for categorical data, Gower’s
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similarity score is discussed in the next section.
The Minkowski distance is a general method to calculate the distance between two points
and among the most commonly used measures for numerical data [2; 5]. Equation 2.5
shows how to calculate the Minkowski distance of two Attributes X and Y .

DistMinkowski (X,Y ) =
(

n∑
i=1
|xi − yi|λ

)1/λ

(2.5)

Variables xi and yi represent the values of the two attributes and are subtracted. Variable
λ specifies the order of the Minkowski distance. For orders of one and two, the Minkowski
distance corresponds to the Manhattan and Euclidean distance, respectively [5].

2.3.2 Categorical Similarity Measures

Similarity and dissimilarity measures to assess distances between items for clustering are
discussed and compared frequently, as in the work of Vijaymeena and Kavitha [119], Bo-
riah et al. [5], dos Santos and Zárate [18], Alamuri et al. [2], and Šulc and Řezanková [134].
They discuss measures where the categories of the items are compared.

As the touring process, proposed in this thesis, suggests attributes that show similarity
to a given item subset, only a selection of methods is discussed in the following. To
cluster categorical data based on similarities, probabilistic measures such as the Goodall,
Smirnov, and Anderberg similarity coefficients, information theoretic measures like the
Lin, Burnaby, and Gambryan similarity coefficients, or frequency based measures as the
(Inverse) Occurrence Frequency, and the Eskin similarity coefficient, are some of the
available methods [2; 5].

For the following measures, sets of items are represented by A and B and single items
by a and b. The number of attributes is n. Items of a categorical attribute have the
category, to which the item belongs, as value. The val function returns the value of an
item in a given attribute, e.g., val(k, a) returns the value of item a in the k-th attribute.

The Szymkiewicz-Simpson or Overlap coefficient is a highly used measure due to its
simplicity [6; 119; 134]. As can be seen in Equation 2.6, it is defined as the size of the
intersection divided by the size of the smaller set.

SimOverlap(A,B) = |A ∩B|
min(|A|, |B|) (2.6)

Hence, if one of the sets is a subset of the other, the Overlap coefficient is one. With the
Overlap Metric, Stanfill and Waltz [103] use a similar measure, but for dissimilarity.

The Jaccard index or similarity coefficient is one of the most common similarity measures
and goes back to 1912 [46; 66]. It is related to the Overlap coefficient, but normalizes
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the number of intersecting items by the size of the union.

SimJaccard(A,B) = |A ∩B|
|A ∪B|

(2.7)

As the Jaccard index neglects true negative (TN) matches—values not present in both
sets—Equation 2.7 can also be written as in Equation 2.8, with TP for true positive, FP
for false positive, and FN for false negative matches.

SimJaccard = TP

TP + FP + FN
(2.8)

Another similarity measures is the Sørensen–Dice coefficient [125]. It is defined in
Equation 2.9 and with respect to Jaccard’s index, the enumerator is doubled, while the
denominator is larger by |A ∩ B| [109]. The Sørensen–Dice coefficient together with
Jaccard’s index are the most common indices [66].

SimDice(A,B) = 2 · |A ∩B|
|A|+ |B| or via matches as: 2 · TP

2 · TP + FP + FN
(2.9)

A measure that includes the true negative matches is the Rand index (see Equation 2.10).
Motivated by the comparison of classifications, similar classified item pairs (TP and
TN matches) are counted [120]. If the assignment of an attribute X’s items into several
categories is treated as a clustering, the Rand index can be used to calculate the similarity
between the categorical attribute X and another categorical attribute Y . The Rand
index can also be used on sets, as item sets are just subsets of the data (with potentially
fewer categories or clusters). Item pairs that are in the same category in X and Y
respectively are true positive matches, items pairs that are in different categories in
both attributes count as true negative match. Item pairs that are either in the same
category in X, but in different categories in Y or vice versa are false negative matches
or false positive matches, respectively. The number of true negative matches can be
high for large datasets, so that the Rand index may cause problems of comprehension
as the true negative matches boost the similarity if comparing attributes or large item sets.

SimRand(X,Y ) = SimRand(A,B) = TP + TN

TP + TN + FP + FN
(2.10)

Gower ’s similarity coefficient compares two items a and b as defined in Equation 2.11.
The Gower similarity coefficient can be used to compare items by multiple attributes and
is not only applicable on categorical data, but also for continuous numerical, or binary
data [18]. The similarity of two items for the k-th attribute is calculated by sk(a, b) and
wk denotes the weight of this similarity. The function of sk(a, b) varies, depending on
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the attribute’s type (see Table 2.2 and Equations 2.12-2.13). The weight wk is zero if the
comparison is invalid, otherwise one. Comparisons are invalid if an item has no defined
value for the attribute or, in the case of binary data, if both items are false.

SimGower(a, b) =

n∑
k=1

wk · sk(a, b)
n∑
k=1

wk

(2.11)

Table 2.2 shows the values of sk and wk for comparison of binary data. As true negative
matches are not weighted, Gower’s similarity score is identical to the Jaccard index for
binary attributes.

val(k, a) true true false false

val(k, b) true false true false

sk 1 0 0 0
wk 1 1 1 0

Table 2.2: Gower’s similarity coefficient only counts items as similar if both are true.
Comparisons where both values are false are ignored and do not contribute to the total
weight of Equation 2.11.

Equation 2.12 defines the similarity score sk between numerical attributes. The absolute
difference between the values of a and b is divided by the range of values rk for the k-th
attribute .

sk(a, b) = 1− |val(k, a)− val(k, b)|
rk

(2.12)

For categorical attributes, sk is one or zero, depending on whether the items’ categories
match (see Equation 2.13).

sk(a, b) =
{

1 if val(k, a) = val(k, b)
0 otherwise

(2.13)

2.3.3 Hierarchical Similarity Measures

While numerical and categorical attributes are the majority in the used datasets, the
dataset of the Kepler University Hospital also contains hierarchical attributes in form of
ICD-10 and ICD-O codes. Hierarchies can be treated as trees of categories and categorical
attributes as a hierarchy with only one level. However, the similarity measures discussed
for categorical attributes are not appropriate for hierarchies, as they do not consider the
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distance between two categories in the tree. This is important for the ICD attributes, as
only codes of leaf nodes or parents of leaf nodes are used in practice.

The following measures determine the similarity between two categories inside an hi-
erarchical attribute. Single items are represented by a and b, while sets of items are
represented by A and B. Items of a hierarchical attribute have a category as value, like
items of categorical attributes. Variables X and Y represent two arbitrary categories of
a hierarchical attribute and root its root node. The function p(X,Y ) returns the number
of edges on the shortest path between X and Y . This minimum number of edges that
separate two categories can be used as a simple distance metric: dEdges = p(X,Y ) [28].
The function anc(X,Y ) returns the nearest common ancestor of X and Y . The depth
function returns the depth of a node in the tree (compare Figure 2.18).

As categories close to the root usually represent higher differences than categories in
deeper levels of the hierarchy tree, Wu and Palmer [130] defined a similarity score that
takes the depth of the categories into account:

sWu(X,Y ) = 2 · depth(anc(X,Y ))
p(X, anc(X,Y )) + p(Y, anc(X,Y )) + 2 · depth(anc(X,Y )) (2.14)

The number of edges between the categories’ common ancestor and the root node is
determined in the numerator by depth(anc(X,Y )). The denominator sums up the number
of edges between the common ancestor and X, Y , and root, respectively. As a result,
sibling nodes become more and more similar ,the deeper they are in the tree (compare
Figure 2.18 and Table 2.3).

Girardi et al. [28] measure the distance in hierarchies by comparing the number of
edges that separates categories, the depth of the categories in the hierarchy, and items
with multiple categories in a hierarchy. The distance between two items X and Y in
the hierarchical attribute is defined in Equation 2.15 (also compare Figure 2.18 and
Table 2.3).

d(X,Y ) = p(X,Y )
depth(X) + depth(Y ) (2.15)

The items’ distances are calculated for each item in the respective set to every item in
the other set, and are weighted by the size of the sets:

DistGirardi(A,B) = 1
|A ∪B|

 ∑
x∈A\B

1
|B|

∑
y∈B

d(val(a), val(b)) +
∑

b∈B\A

1
|A|

∑
x∈A

d(val(b), val(a))


(2.16)

Instead of the distance from Equation 2.15, the similarity measure by Wu and Palmer [130]
sWu(X,Y ) can also be used in Equation 2.16. As Equation 2.17 shows, d(X,Y ) is just a
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transformation of sWu(X,Y ) using the Equation 2.1 from the beginning of this section.
The number of edges along the shortest path between two nodes can also be calculated
with depth differences, e.g.: p(X,Y ) = depth(X) − depth(anc(X,Y )) + depth(Y ) −
depth(anc(X,Y )). The relationship between the two measures can also be seen in
Table 2.3.

d(X,Y ) = p(X,Y )
depth(X) + depth(Y )

d(X,Y ) = depth(X) + depth(Y )− 2 · depth(anc(X,Y ))
depth(X) + depth(Y )

d(X,Y ) = 1− 2 · depth(anc(X,Y ))
depth(X) + depth(Y )

1− sWu(X,Y ) = 1− 2 · depth(anc(X,Y ))
p(X, anc(X,Y )) + p(Y, anc(X,Y )) + 2 · depth(anc(X,Y ))

1− sWu(X,Y ) = 1− 2 · depth(anc(X,Y ))
depth(X) + depth(Y )− 2 · depth(anc(X,Y )) + 2 · depth(anc(X,Y ))

1− sWu(X,Y ) = 1− 2 · depth(anc(X,Y ))
depth(X) + depth(Y ) = d(X,Y )

(2.17)

Figure 2.18: Example of a tree with 10
nodes. The nodes circled in red are com-
pared in Table 2.3.

Measure Score
sWu(A,B) 0.5
d(A,B) 0.5

sWu(G,H) 0.75
d(G,H) 0.25

sWu(F, I) 4
7

d(F, I) 3
7

Table 2.3: The nodes of the tree in Fig-
ure 2.18 are comapred by the similar-
ity and distance measures of Wu and
Palmer [130], and Girardi et al. [28], re-
spectively.
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2.4 Discretization of Numerical Attributes

In Section 2.3, we have presented various similarity measures. All of these similarity
measures have in common, that they only compare attributes or items of the same
type. Discretization methods split a numerical attribute into a number of bins, which
transforms the numerical attribute into a categorical one. Through the categorization,
numerical and categorical attributes can be compared with the similarity measures of
Section 2.3.2. The discretization of numerical attributes is a common preprocessing task
for machine learning and data mining and helps to homogenize a dataset of categorical
and numerical attributes. Maslove et al. [62] evaluated unsupervised and supervised
discretization strategies specifically for clinical datasets.

Unsupervised strategies split a numerical attribute into k bins, no matter how large the
difference is in the other attributes [19]. The number of bins is chosen beforehand and is
selected by the user or the program, e.g., three bins for low, medium, and high, or based
on some function like:

k = max(1, 2 · log(l)) (2.18)

with l being the number of distinct values in the numerical attribute [19].

As the name suggests equal (interval) width discretization splits the numerical attribute
into k equally sized bins. Equal frequency discretization similarly puts an equal number
of values into each of the k bins. The third evaluated unsupervised method is k-means
clustering, which tries to create bins of values by minimizing the distance between the
values in these bins. As the output of k-means clustering is dependent on the chosen
starting conditions it is a common approach to repeat the clustering multiple times and
use the median bin thresholds [62].

Supervised strategies on the other hand use additional information to assign items into
bins [19]. Minimum Description Length (MDL) [94] is an unsupervised technique that
tries to extract the maximum amount of information while avoiding over-fitting and
thus defines k by itself [94; 95]. The numerical attribute is split at points where the
entropy gain is highest [64]. The ChiMerge algorithm starts with putting each item into
an own bin [62]. Adjacent bins are then merged if their items’ class labels are similar [62].
Supervised methods can also use predefined reference ranges to split the data into a
given number of bins [62]. As the reference ranges need to be gathered beforehand, this
method is not applicable to the general touring process proposed in this thesis.

The above discretization methods are static, meaning that they consider the discretization
of one attribute to be independent from the discretization of the other attributes [26]. In
contrast, dynamic discretization takes into account the dependencies to other numerical
attributes [26]. Gama et al. [26] propose such a dynamic method that treats the possible
discretizations of an attribute as a hierarchy. At the top of the hierarchy, all values
are in one bin, and at the bottom of the hierarchy, every value is in an own bin. For
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the discretization of multiple numerical attributes, all generated hierarchies are used to
determine the number of bins for each attribute.
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CHAPTER 3
Touring Process Concept

Finding relationships in large datasets can quickly become tedious, as the number of
combinations of two attributes from a dataset grows rapidly (compare Equation 1.1).
To find relationships in underrated attributes or causes for a present item subset, this
chapter describes the design and concept of the touring process proposed by this thesis.

The data used by the developed touring process is composed of attributes. Attributes
may be tabularly or hierarchically structured with numerical, textual, or categorical
values. The touring process should determine the similarity between sets of items as
well as attributes. Users can start the touring process for either, attributes or items, to
receive guidance for further analysis. The second input, besides the scope, on which the
similarity is calculated, is the similarity measure that will be used by the touring process.

The goal is to have a touring process that:

1. compares data independently of the data type, so that the similarity method does
not limit the number of compared attributes.

2. is independent of the data domain.

3. is independent of any VA tool, but also easy to integrate in any desired VA tool.

4. has no impact on the analysis, i.e., users should neither have to stop their work
until the touring process has finished, nor should the similarity score computation
affect the user’s system.

5. is simple to use, to keep the first hurdle of using the touring process low.

We focus on guiding users during the analysis of subsets of the data, i.e., item sets selected
by the user. For attribute comparisons, all items must have similar characteristics in
both attributes to score high. For item set comparisons however, only the compared data
subsets need to be similar to result in a high similarity score.
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Figure 3.1: Schematic representation of the touring process. After selecting an item set
or attribute, scores are calculated. For comparison of item sets, numerical attributes
are discretized and hierarchical attributes are converted to categorical attributes. The
resulting scores are presented to the user and can be used to continue the analysis.
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3.1 Touring Approach
At the starting point of the touring process, users have already loaded one or more
attributes of their choice for analysis (top right in Figure 3.1). This could be the metastasis
and lymph node stage, two categorical attributes, the patients’ age, a numerical attribute,
and diagnosis, a hierarchical attribute as the ICD-10 disease classification system is
structured hierarchically. From this data in view, a selection on item or attribute level is
made (Steps 1a/1b in Figure 3.1) and a similarity measure gets chosen. The selected
data subset and the measure are then used to start the comparison task.

For attribute-wise similarity calculation the PCC is implemented to compare numerical
attributes (see Section 3.3.1). The server will iterate through all available attributes and
calculate the correlation coefficient for every numerical one (middle section of Figure 3.1).
For each attribute, for which a similarity score is calculated, the attribute’s name together
with the score is returned (bottom section of Figure 3.1).

For item-wise similarity, the Jaccard index or two variants of proportions can be calcu-
lated (see Section 3.3.2). The server will again iterate through all available attributes (cen-
ter of Figure 3.1). From those attributes that are already categorical, the chosen similarity
score is computed for each category. Hierarchical attributes are treated as a collection of
categorical attributes. Numerical attributes are binned so that the resulting similarity
score is maximized (see Section 3.3.3). For each attribute, the category with the highest
similarity score and that category’s name is returned. If the attribute was categorized to
compute a similarity score, the thresholds of the bins are returned as well.

After the similarity scores have been returned by the task, the client may query the
results and present them to the user (Step 2 in Figure 3.1). The user can use the scores
to include attributes of high similarity in the visualizations and proceed with the the
analysis (Step 3 in Figure 3.1) .

3.2 Guidance Model
Looking at the model of guided VA [11] in Figure 3.2, data (D) is transformed with
visualizations and analytic means (V) into images (I), based on some specification (S).
While the data component represents the complete dataset, the specification limits
the attributes that are part of the image and defines their representation to the user.
The images are perceived by the user, causing a knowledge change (dK/dt). With her
knowledge the data is explored by varying the specifications. This can be the addition or
removal of attributes, filtering of items or the change of visualizations.

The user’s knowledge (K) and the data (D) serve as inputs for our touring process. From
her current knowledge, the user has defined a data subset on which guidance is requested.
The whole dataset is used for comparison with that subset.

The touring process (G) uses the inputs to provide promising attributes, which the user
may or may not use to change the specification (dS/dt). Guidance may be extended by
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Figure 3.2: Van Wijk’s model of visualization extended by guidance components [11].
Components of van Wijk’s original model [124] are gray, while guidance components
introduced by Ceneda et al. [11] are blue. Functions are represented by circles and
transform artifacts, shown as squares.

Type Domain Input Output Degree
Target Known
Path Unknown Data Data

User knowledge
Similar data
represented by scores Directing

Table 3.1: Guidance characteristics of the proposed touring process.

selecting the appropriate similarity measure based on the data.

Taking the characteristics of guidance (see Figure 2.17) in VA defined by Ceneda et al. [11],
the touring process is described in Table 3.1. The target is to identify a subset of items
with similar characteristics or to find characteristics that explain the origin of a subset.
The touring process presents to the user attributeswith similarity scores so that she can
add them into the VA tool and continue the exploration. By changing the input data,
the user can ask for further guidance and thus gradually narrow her knowledge gap.

To make the guidance unobtrusive, the integration only consists of buttons to start the
touring process and the addition of similarity scores to their respective attributes (see
Section 3.4).
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3.3 Similarity Measures

The touring process recommends attributes based on the similarity to a user selected
data subset. Section 2.3 already discussed various similarity measures from the literature.
In this section, we present two additional measures for item sets and describe how the
similarity measures are applied in the touring process. Altogether, four similarity measures
have been implemented as part of this thesis. Three measures for comparison of item
sets and one for the comparison of attributes. The measures described in Section 3.3.1,
compare the given attribute to all other attributes applicable for that measure. The data-
type-independent comparison was not used for the comparison of attributes. In contrast
to items, attributes have clearly assigned data types. As a consequence, attributes would
have to be converted, based on the type of the input attribute, which is not feasible (e.g.,
categorical to numerical).

By one of the measures described in Section 3.3.2, a given item set is compared to
each category of categorical attributes. An item set can consist of just a single item or
even all items in the dataset. Additionally, the item set similarity measure is used to
split numerical attributes such that one of the resulting categories shows the maximum
attainable score (see Section 3.3.3). In hierarchical attributes, the hierarchy is converted
into categorical attributes (see Section 3.3.4), which are then compared individually.

3.3.1 Attribute Similarity Measures

The touring process uses attribute similarity measures to find attributes similar to a
user-selected one. The measures compare the distribution of each attribute’s items with
the one given by the user. Between categorical attributes, similarity measures can check
whether the items are distributed similarly into the categories of each attribute. Between
numerical attributes, the correlation can be used to determine the similarity. We have
implemented the Pearson correlation coefficient (PCC) for comparison of attributes as
described below.

Pearson Correlation Coefficient

The Pearson correlation coefficient (PCC) [69] represents the linear relationship between
two numerical attributes X and Y . The coefficient is denoted as ρ if computed for
populations, as in the attribute case. The formula can be seen in Equation 3.1. The
covariance of the attributes to be compared is divided by their respective standard
deviations.

CorrPearson(X,Y ) = ρ(X,Y ) = cov(X,Y )
σX · σY

(3.1)

The coefficient takes values between −1 and +1. A correlation coefficient of zero indicates
that there is no linear relationship. Values of −1 and +1 indicate a perfect negative or

43



3. Touring Process Concept

positive linear relationship, respectively. As the PCC only works on numerical attributes,
attributes of other types are skipped for similarity computation.

Due to the sensitivity of the PCC to outliers, item pairs with missing values are omitted
as the conversion to any number would have distorted the resulting score. Additionally,
in the available dataset the usual case is that if one attribute is not recorded for an item,
the others are missing as well. It follows that for an attribute whose items have no data,
the PCC can not be determined and no similarity score will be reported.

Despite the disadvantages discussed in Section 2.3, PCC was chosen as it is most frequently
used [13], also utilized in medical fields [79], and superior over SRCC and KRCC in
moderately non-normal distributions [13].

The coefficient is denoted as r for a sample statistic, i.e., if the PCC is calculated for
a subset of the items. This could be an additional method to compare a selection of
items (see Chapter 7).

3.3.2 Item Set Similarity Measures

The similarity measures in this section take a set of items A as input and compare this
set to the items of every category in every attribute. The items in these categories serve
as second item set B for similarity calculation. Both item sets can be of any size.

Together with the item set the user can specify the similarity measure to be used. Though
there is a similarity score computed for each of the attribute’s categories, only the value
of the best scoring category will be returned, together with its name.

The comparison to all attributes supports users in finding categories where the selected
item set is very prominent. For a group of patients that showed similarities in treatment,
the comparison against all attributes can be used to find causes for their similar response
characteristic.

As this approach requires categorized attributes, numerical ones are categorized on-the-fly
so that the resulting categories’ score is maximized (see Section 3.3.3). Hierarchical
attributes are treated as a collection of categorical attributes (see Section 3.3.4).

The Jaccard index was implemented as first similarity measure and is discussed in the
next section. Additionally two versions of proportions can be calculated. All three ignore
true negative (TN) matches in item sets, thus items that are part of the respective
attributes but not of the compared item sets. This can clearly be seen in Figure 3.3.

Jaccard Index

The Jaccard index [46] is a measure to calculate the similarity of two sets. It is defined
as the size of the intersection, divided by the size of the union of the item sets (compare
Equation 3.2 and Figure 3.3a). Consequently it has a range of 0 % (no common items in
the sets) to 100 % (the sets share all items).
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(a) Visual representation of Jaccard index calculation. The number of items present in both sets
is divided by the number of total items, which is 400 for the upper category, but 500 for the lower
category.

(b) Visual representation of the Shared/Se-
lected proportion. The number of shared items
is divided by the number of items in the user-
selected set (400).

(c) Visual representation of the Shared/Com-
pared proportion. The number of shared items
is divided by the number of items in the com-
pared set (250 for each category).

Figure 3.3: Visual representation of the implemented methods to calculate similarity
between two sets of items. On the left side is a attribute with two categories, of which
one has 400 items. This category is also the selected item set (red border). On the
right is an attribute with two categories, each containing 250 items. Different colors are
assigned to the categories. While the upper category of the right attribute shares all
250 items with the selected set, the lower category only shares 150 items. The similarity
scores between the selected items and the two categories are shown for each method.
True negative (TN) matches, i.e., items that are not part of the compared sets, e.g., the
green category, are ignored by all three similarity measures.

45



3. Touring Process Concept

SimJaccard(A,B) = |A ∩B|
|A ∪B|

(3.2)

The Jaccard index is a commonly used method to compare two sets as the number of
identical items is normalized by the total number of items in both sets [28]. Thus, the
selection of the user has to fit the comparison set very well to achieve a high similarity
score.

Proportions

As the Jaccard index is based on the union of the item sets, but the user triggers the
similarity calculation only with one of them, simple proportions have been added for easy
understanding of relationships. The advantage of these simple methods is that a large
item set, be it the selected or the one to be compared to, is not penalized like with the
Jaccard index. Rather than the Jaccard index, these two methods are more related to
the Overlap coefficient, discussed in Section 2.3, where the size of the sets’ intersection is
divided by size of the smaller set.

The first method is named Shared/Selected and simply shows how many of the items
in the comparison set are also in the item set selected by the user (compare Equation 3.3
and Figure 3.3b).

SimSS(A,B) = |A ∩B|
|A|

(3.3)

If the user selected 400 items, of which 150 are in the comparison set together with
100 others, it will score 150

400 = 37.5 %. The advantage of this simple approach is that
users can easily see if a large portion of the chosen items are part of another category.
The disadvantage of this method is of course that small selections easily achieve high
similarity scores. The fewer items are selected, the more likely it is that these items fall
into the same categories in other attributes, most notably if those other attributes have
few categories.

Shared/Compared is the second method and works vice versa by calculating the
percentage of the user-selected items that are also part of the second item set (compare
Equation 3.4 and Figure 3.3c).

SimSC(A,B) = |A ∩B|
|B|

(3.4)

If the user selects 80 items, of which 50 are in the comparison set together with 10 others,
it will score 50

60 = 83.33 %. The advantage of this simple approach is that users can easily
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see if subsets of the chosen items are a large portion of another category, even if the
selected set is much larger then the compared set. The approach also causes that the
items of small categories of other attributes may quickly be part of the selected set and
score very high.

3.3.3 Discretization of Numerical Attributes

The similarity measures described above compare subsets of items. As numerical attributes
have no categories—although there can be categorized attributes with numerical values—
calculation of similarity scores would not be possible. Therefore the numerical data has
to be split in bins, to use the resulting categories in the similarity measures already
discussed in Section 3.3.2. In this manner, the numerical attributes integrate seamlessly
into the touring process and can easily be compared to the categorical attributes.

If a numerical attribute is compared to an item set a, the touring process tries to
categorize it by finding the best value to split the attribute into two bins. Items that
have no value for that attribute are treated as a separate set and are excluded from
the following operations. To find the categorization, the values of the attribute are first
sorted in ascending order. Next, for each distinct value in the numerical attribute a set
of items with values less or equal and a set of values greater or equal is formed. Each
of these sets is compared to a. The highest scoring set determines the value by which
the attribute is split into two disjoint sets. With the set of items with no value, the
attribute consists of three sets after discretization which will serve as categories. As
the discretization is dependent on the given item set, this is a supervised discretization
method (compare Section 2.4).

An example of the discretization of the numerical attribute Age is shown in Figure 3.4.
Figure 3.4a shows the categorical attribute Sex, whose categories female and male have
their items’ Age values shown in histograms. Figure 3.4b shows the Jaccard indices
for sets below and above a certain age. If compared with the male category, items of
age ≤ 64 form a set which is between the mean of the two Sex categories (compare
Figure 3.4a). As the female category has a higher mean, the set with items over a specific
value scores higher (compare Figure 3.4b). It can be seen that the curves that do not
reach the maximum similarity score are simply rising towards the proportion of the sets
total item number (here 100:80, compare Figure 3.4b). The MATLAB [63] script used
for the binning in Figure 3.4 is provided in Listing A.1.

If there are significantly more items of the numerical attribute in the compared category
than in other categories of the categorical attribute, the highest Jaccard index may be
achieved by creating a set ranging from the minimum to the maximum value. Another
discretization approach would be to maximize entropy, as discussed in Section 2.4, and
calculate similarity afterwards.

The only requirement of this discretization method is that the items of the attribute have
to be sortable. As the values of the numerical attributes are only used for sorting, this
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(a) Histogram of the Age attribute. If compared to the category Female, the numerical attribute
is split into a set of age ≤ 59 and a set of age > 59, indicated by a light green background. If
compared to the male category, sets of age ≤ 64 (indicated by a light blue background.) and
age > 64 are created.

(b) The curves shows the Jaccard indices of the sets Age ≤ x and Age ≥ x with the categories of
the attribute Sex. The green line indicates comparison with the female category. It reaches the
maximum of 0.592 at age 60. The blue line shows comparison with male items and reaches a
maximum of 0.533 at age 64.

Figure 3.4: The numerical attribute Age is compared with the categorical attribute Sex.
100 of the items in Sex are normally distributed in the female category with µ = 66 and
σ = 8. In the male category 80 items are normally distributed with µ = 60 and σ = 5.48
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approach is not limited to numerical attributes, but can also be applied to attributes of
other types.

3.3.4 Similarity with Hierarchical Attributes

A hierarchical attribute is a special form of a categorical attribute as each category may
contain further subcategories. Due to the nested categories, hierarchical attributes form
a tree. Items are leaf nodes and define the finest level of categories implicitly by their
value (compare Figure 3.5a). An example of such a hierarchy is the ICD-10 disease
classification system.

For item set similarity scoring, the tree is converted to multiple categorical attributes.
An additional category containing the items in the rest of the tree can be added as well.
For each internal node that has items in its subtree, a categorical attribute is created that
has one category for each child node (compare Figure 3.5). In this way, the similarity
measures for categorical attributes can be used to compare a item set with subtrees of a
hierarchical attribute.

The attribute’s name serves as root node. Each node contains a list of child nodes as
well as a flag to indicate whether item nodes of the tree that are not part of the subtree
should form an additional category. A label for the resulting categorical attribute is also
defined for each node. Details on how this is configured are discussed in Section 4.2.2.

3.4 Visual Integration

Based on the guidance model in Section 3.2, the visual integration of the touring process
requires the following three components:

• A way to select a data subset and similarity measure as inputs.

• A control to start the touring process for this subset.

• Visualization of the resulting scores for each attribute.

The user guidance should extend the VA system in an unobtrusive and adaptive way,
preferably using user interface elements and interactions that are already part of the
system [11]. The introduction of additional views, methods of data selection or alike
might otherwise have the opposite of the intended effect.

Users need to be able to select a data subset as input that will be compared to the whole
dataset by the touring process. The data subset may either be an attribute or a set of
items. Using a dataset that contains n items, the number of selected items can be in the
range of [1, n], though selections of items that are part of a category, or a combination of
categories, will be the normal case.
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(a) A hierarchy with seven items represented as tree. The root node and its three child nodes
will each be turned into a categorical attribute (see below). The hexagonal nodes represent the
individual items of the hierarchical attribute. The item’s value, which is also its subcategory, is
shown inside the nodes.

(b) Examples of categorical attributes formed from the hierarchy above. On the left side is the
categorical attribute created from the root node, with a category for every child node. In the
middle is the categorical attribute of node A. The items in this subtree fall into two categories
(A1 and A2 ). The categorical attribute on the right also contains the subtree of node A, but
includes an additional category Others for items that are not part of the subtree. This category
is significantly larger, as there are more items in the remainder of the tree than in the subtree of
node A.

Figure 3.5: A hierarchical attribute represented by a tree is converted into multiple
categorical attributes. Colors are assigned to the categories to highlight the transformation
from the tree in a) to the attributes in b).
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An appropriate similarity measure for the selected data is the second input needed by
the touring process. The measure may be chosen by the VA tool, depending on the data,
e.g., correlation for numerical attributes.
After selecting the data, for which guidance is needed, and a similarity measure the
touring process gets started manually or automatically. Users are visually informed of
the touring process’ start and its current state.

Completion of the server-side data comparison is visualized by this information and the
similarity scores that are presented for each attribute. In tools where attributes can
dynamically be included in the analysis, the scores are best presented directly where
attributes are added. Ranking the attributes by their similarity scores can be used to
further guide users to those that are most relevant for the current analysis.

Representation of the similarity scores is suggested by bars (see Figure 3.1). The
visualization by region is independent of the measure’s value range. Users do not have to
know the range of a score themselves and see differences at a glance. Knowledge of the
exact scores can still be required and should be displayed on demand. For item sets, the
attribute’s category that achieved the displayed score shall be visible as well.

Users may start the touring process multiple times, differing in the selected data subset
or similarity measure. The subset for which guidance was requested and the utilized
similarity measure has to be shown if displaying multiple results.

A real world usage example for the touring process would be to find reasons why patients
had no chemotherapy, even though their clinical parameters suggest the treatment. To do
so, the user selects all items (patients) that either have lymph nodes metastasis or have a
positive HER2 status1, but did not receive a chemotherapy. In addition to the subset, the
user has to choose a similarity measure. As she wants to find categories that differentiate
the selected items, the presence of additional items in the compared categories should
be penalized. Therefore, she will use the Jaccard index for the comparison of item
sets in this example. With the items set and similarity measure specified, the touring
process will start the comparison with all attributes. A common contraindication to
a chemotherapy is the age of patient, so a we expect the touring process to discretize
the numerical attribute Age such that the resulting categorical attribute has patients of
high age in one category. Patients with multiple comorbidities are also often excluded
from a chemotherapy treatment due to the side effects. The touring process should help
the user to find additional contraindications that led to the treatment not being carried
out. Similar examples, their results and visual representation of the similarity scores are
shown in Chapter 6.

Users have to keep in mind though that repetitive queries for similar attributes may
return significant results by chance, as the more comparisons are made, the more likely

1Human epidermal growth factor receptor 2 (HER2) is a protein, that controls breast cell growth. An
amplified HER2 production thus leads to uncontrolled cell growth. The HER2 status indicates whether
the process plays a role in the cancer.
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it is that some difference is found. Due to this multiple testing problem, the relationship
of attributes reported as similar has to be validated.
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CHAPTER 4
Implementation of the Touring

Process

The implementation of the touring process is split into two parts: it starts on the client-
side, with a selection set by the user and their query for guidance. The main processing
then happens on the server-side, where the available data is iterated, compared, and even
categorized. The resulting similarity scores are reported back to the client-side which
presents them to the user.

Both parts of the implementation are based on the Caleydo’s Phovea Platform. The
platform uses Python [88] for server-side implementations and Typescript [117] on the
client-side, usually web applications running in the users’ browsers.

4.1 Caleydo Phovea Platform

Caleydo is a data visualization project with focus on biomolecular data. The Caleydo
platform is a framework on which the initial Java implementation of StratomeX, described
in Chapter 2, was built. The Phovea platform is the web-based successor of the Caleydo
platform. It is also intended for visual analysis, with a client-server architecture and
focus on biomedical applications. For both client- and server-side, the platform provides
support to quickly start interacting with the available data. As a web-based platform,
Phovea was initially referred to as Caleydo Web [37; 38] before a recent name change [34].

The Phovea server [85] and server-side components are written in Python, while client-side
components are written in Typescript, a typed superset of JavaScript that compiles to
plain JavaScript understood by browsers.

The Phovea platform includes a plugin mechanism to enhance its functionality and defines
classes for matrices, tabular and categorical data. Plugins may add support for datasets
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that are stored in Hierarchical Data Format (HDF) [80], a Mongo[81] or Structured Query
Language (SQL) [82] database, or add services like a task queue [83] (see Figure 4.1).
Technically, web applications such as StratomeX and Ordino are plugins as well. The
Caleydo website [9] lists further applications.

The HDF plugin is used to read TCGA KIRC [111] and GBM [110] data from an HDF5
file. Both contain clinical and genomic data with categorical and numerical attributes.
As the data is directly read from the file, there is no separate database process as in
Figure 4.1.
The Kepler University Hospital’s tumor dataset is stored in a SQL database, but accessed
via a REST API. The dataset contains clinical and genomic data, in categorical and
numerical, but also hierarchical form.
Phovea’s processing queue plugin is used for the server-side task to calculate the similarity,
discussed in detail in the next section.

The Phovea platform also provides ID management and mapping. Each element in
the data is assigned an additional unique integer, which will be used as ID within the
Phovea platform. These IDs may be mapped to translate between annotation systems.
As numbers they are also easily compared and sets of IDs can be expressed by ranges.
These unique numerical IDs are also used for item selections.

4.2 Server-Side Similarity Scoring
The server-side is implemented in Python, a common programming language among
data scientists. The Phovea plugin phovea_processing_queue utilizes Celery [10] to
add background task processing and deferred execution functionality (see Figure 4.1).
Celery can execute tasks immediately or on schedule and supports asynchronous and
synchronous execution. One or more workers can be defined to handle the tasks. For the
touring process, asynchronous tasks are started immediately on demand.

For this thesis, we created the new Phovea plugin phovea_processing_similarity (see
Figure 4.1). It extends Phovea’s task queue plugin with similarity measures for attributes
and sets of items. The plugin is publicly available on GitHub [84].

Figure 4.1 gives an architectural overview of the touring process components. We have
executed each process in an own Docker [16] container for better reproducibility. The
Phovea server and the Celery container use the Docker Debian image defined in the
Phovea server repository [85]. The Kepler University Hospital’s data is stored in a SQL
database, therefore we used the MariaDB [17] Docker image.
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Sim
ilarity

Scoring

StratomeX
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Database
Plugin

Processing
Queue Plugin

Similarity
Plugin

API

Database

Celery

/api/processing

/api/similarity

/api/datasets
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Figure 4.1: Architectural overview of the touring process. On the server-side, the Phovea server, the database, and Celery
run in their own process. The picture uses a generic database and database plugin, as we have used SQL and HDF data
in the touring process. The similarity plugin extends the processing queue plugin with similarity measures, calculated in
separate tasks with Celery. Celery loads all attributes from the Phovea server for comparison. The client-side web application
only calls the API of the Phovea Server.
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Similarity Measure Scope Identifier
Jaccard index Item sets jaccard
Shared/Selected Item sets shared-selected
Shared/Compared Item sets shared-compared
Pearson correlation coefficient Attributes pearson

Table 4.1: Identifiers of the implemented similarity measures.

4.2.1 API

When the Phovea server adds the plugin, it registers a namespace similarity in which the
plugin can define its own routes. These routes can be used to listen for HTTP requests
on certain URLs. The Phovea server uses the Flask [21] framework to create this API.
The plugin defines two routes to start the calculation with the implemented similarity
measures. One for similarity measures between sets of items that takes the desired
similarity measure and the items’ IDs as parameters, and one for similarity measures
between attributes that takes the attribute’s ID as well as the desired similarity measure
as parameter. The differentiation between attributes and item sets allows the touring
process to use one similarity measure for both types.

The route for similarity measures between item sets is defined as <server-address>:
<port>/api/similarity/group/<method>?range=<selection>, with similar-
ity being the namespace of the plugin and method an identifier for one of the measures
described in Section 3.3.1. The identifiers can be seen in Table 4.1. The IDs of the items
to be compared are passed by a range parameter. The selection handling of the Phovea
platform takes care of translating the passed ID ranges to a full list of the individual
IDs. An example would be: http://localhost:9000/api/similarity/group/
jaccard/?range=(350:357,1072:1082,1084,1202,1553) which passes a total
of 22 IDs.

The similarity measures between attributes take the selected attribute’s name as parame-
ter. It is defined as <server-address>:<port>/api/similarity/attribute/
<method>/<attribute_id> with method being an identifier for attribute similarity
measures (see Table 4.1 and Section 3.3.1) and the attribute id to identify and retrieve
the attribute from the dataset. To calculate the Pearson correlation coefficients for the
attribute Days to Death in the TCGA KIRC dataset the task could be started with: http:
//localhost:9000/api/similarity/attribute/pearson/tcgaKircClinical_
patient.daystodeath.

With these parameters the asynchronous Celery tasks, in which the data is processed and
scores are calculated, are created. As mentioned above, the tasks run asynchronously and
start immediately. Celery creates an ID for every task upon creation. With this ID the
results can be retrieved from <server-address>:<port>/api/processing/res/
<ID>. Furthermore an event stream displays the status of all tasks. The event stream’s
route is <server-address>:<port>/api/processing/stream. The routes to
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query the results and status differ from those of the similarity measures, as they are
defined in the phovea_processing_queue plugin.

4.2.2 Similarity Measures

The similarity measures discussed in Section 3.3 are each implemented in an own class.
All similarity measures classes derive from the common abstract base class ASimilari-
tyMeasure shown in Listing 4.1.

Listing 4.1: Definition of class ASimilarityMeasure.
class ASimilarityMeasure(object):

__metaclass__ = abc.ABCMeta

@abc.abstractmethod
def __call__(self, set_a, set_b):
pass

@staticmethod
@abc.abstractmethod
def is_more_similar(measure_a, measure_b):
return measure_a > measure_b

@staticmethod
@abc.abstractmethod
def matches(name):
return False

At runtime, all subclasses of ASimilarityMeasure are retrieved. Each subclass is compared
to the declared similarity measure parameter with the matches function In this way, it
is sufficient to implement a new subclass, to add a similarity measure to the plugin and
use it via the API.

The is_more_similar function prefers higher scores by default, but can be overridden
to support either distance measures or negative values as in the case of PCC, where the
absolute values are compared.

Item Set Similarity

Similarity measures between sets of items, treat the given item IDs as first set. For every
attribute, each categories’ item IDs are compared to this given ID set. For the following
example, let’s assume there is a fictional dataset of cities in Austria that contains the
categorical attributes State and Is state capital?, with nine and two (yes/no) categories
respectively. The user selected item set U is first compared to each of the categories in
attribute State, and then to the two categories of attribute Is state capital?. The more
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items of a category have the same ID as the items from U, the higher is the similarity
score of this category.

The data structures of Phovea can export their data as NumPy [76] arrays. NumPy is
a Python library that adds support for large arrays and matrices to the language and
offers a wide range of functions for them.

For categorical attributes, the values of the exported NumPy array are the categories
of the individual items, and an item’s ID can be deduced by its index in the array. When
iterating over all attributes, the indices of each category’s items are retrieved. With
NumPy’s set operations for one-dimensional arrays, intersect1d [74] and union1d [75],
and the arrays’ sizes, the scores of Section 3.3.2 are calculated.
Hierarchical attributes that are split into categorical ones (see Section 4.2.2) are
treated equally.

The result of the similarity task is stored in a Python dictionary and contains the highest
scoring category’s name of each attribute together with its score and, if it is a numerical
attribute, the threshold to categorize it. When the dictionary is returned over the REST
API it is converted to JavaScript Object Notation (JSON) with Flask [22].

After all categorical and hierarchical attributes have been processed, the numerical
attributes are handled. The NumPy array of a numerical attribute contains the
numerical values of the items. As the attribute’s values will be split into groups below
and above a certain threshold, the values need to be sorted in ascending order. The
change of order would prevent the deduction of an item’s ID, so a two-dimensional matrix
with the item IDs in the first column and the items’ values in the second column is
formed. The matrix is then ordered by the numerical values in the second column. Two
additional empty columns, which will contain the similarity scores, are added afterwards.
One column for the similarity score between the given IDs and the IDs with values less
or equal the respective value in column two, and one column for the score between the
given IDs and the IDs of values greater or equal the value in column two. After each
distinct numerical value in the matrix’s second column is used to form and score these
two groups, the maximum score is retrieved. The corresponding numerical value will be
used to split the attribute’s values in two groups. For reasons of consistency, the value
the attribute will always be split to form a category with values less or equal, and a
category with values greater than the threshold. This means that if the highest similarity
score is reached by a group greater or equal a certain value, the next lower value in the
dataset will be returned. The threshold is returned inside an array to support future
discretization methods that create more bins.

Attribute Similarity

For similarity measures between attributes, the values in the given attribute are compared
with the values in every other attribute. Attributes whose type is invalid for the
comparison are excluded, e.g., categorical attributes are excluded from the comparisons
with the Pearson correlation coefficients. An attribute’s values are retrieved as one-
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dimensional NumPy array just as described above. For every attribute that is compared
by the similarity measure, its value array and that of the given attribute are input to the
similarity measure.

With Scipy [47], a library for scientific computing that builds on NumPy, the PCC of the
two arrays is calculated. Measurement pairs, where one of the attributes has no value,
are omitted from the Pearson correlation coefficient calculation due to PCCs sensitivity
to outliers and data distribution. The score of each attribute is stored in a Python
dictionary together with the attribute’s ID and is converted to JSON as well.

Splitting of Hierarchical Attributes

As already described in Section 3.3.4, hierarchical attributes are split into categorical
attributes. Each subtree of the hierarchical attribute becomes a categorical attribute,
with one category for each child node and an additional optional category for items in
the remainder of the whole tree.

The tree’s structure is defined in a JSON configuration file underneath the hierarchies
key. Listing 4.2 shows the basic structure. A configuration excerpt for the ICD-O
Morphology ontology can be seen in Listing A.2.

For each hierarchy that should be converted into multiple categorical attributes, the
hierarchical attribute’s name is included in the configuration and serves as key for an object
that further describes the tree’s structure (Hierarchical_Attribute in Listing 4.2).
This object has the same structure for the tree’s root and any child nodes. It contains a
label that is used if that node is turned into a category. It may contain a list of child
nodes (children) that will also become categorical attributes and a flag that determines
whether to add another category for items in the rest of the tree (includeOthers). If
includeOthers is not defined, the value of the nearest parent node is used. The default
is false. The JSON object further contains an array of subcategories that are the
tree’s leaf nodes (startWith). These will not become categorical attributes (compare
Figure 3.5).

Listing 4.2: JSON Configuration for hierarchical attribute categorization.
"hierarchies": {

"Hierarchical_Attribute": {
"includeOthers": true/false
"children": {

"ChildNode1": {
"includeOthers": true/false,
"label": "Label for categorical attribute",
"startWith": []

},
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"ChildNode2": {
"includeOthers": true/false,
"label": "Label for categorical attribute",
"startWith": []

}
}

}
}
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CHAPTER 5
Integration of the Touring

Process

We demonstrate the touring process in Ordino and StratomeX, two web applications that
are plugins of the Phovea Platform. The client-side additions in these two applications
were implemented in Typescript and make use of the tools provided by the Caleydo
Phovea Platform.

To start the touring process, users either select items or attributes and specify a similarity
method. As already described in Section 4.1, every item has a numerical ID. While a
selected attribute is passed to the backend by its ID, item selections are represented
by ID ranges. The similarity method is specified by a string keyword, e.g., jaccard or
pearson for the respective scores (see Table 4.1). This information is then passed to the
server-side component discussed in Chapter 4. The start of the touring process over the
REST API returns a Promise [68], which is fulfilled upon task completion.

While the similarity scores are calculated, users can continue their analysis and are
informed of the ongoing server-side processing. When the server-side processing is done
the results are retrieved automatically, by the Promise, and visualized.

The attributes are shown together with their own or their categories’ similarity score.
The user can then continue the analysis by adding new attributes or a change of selection
for another touring iteration.

While the touring process offers to start from item and attribute selections, only the
implementation in Ordino provides both options. In the StratomeX implementation users
can only start the touring process with an item set as input.
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5.1 StratomeX
StratomeX was reimplemented as part of the Caleydo Phovea Platform by Gratzl et al. [37]
and has its user interface split in the following three parts: the main area where the
data is displayed, a data browser, and a provenance graph (compare Figure 5.1). The
provenance graph is part of Capture, Label, Understand, Explain (CLUE) [38], which
records a user’s actions during exploration and can be used to share and present findings
together with their derivation. The data browser is a LineUp [35] table in which each
attribute is displayed as a row and columns relate to properties of the attributes. With
a plus symbol on the left, attributes can be added to the main view for analysis (see
Figure 5.1).

The attributes in the main view are displayed as columns, built by individual bricks that
relate to the attribute’s categories. Categories of adjacent attributes that share subsets
of items are connected by ribbons. The ribbons width is proportional to the number of
items in the shared item subset and the total number of items in the category (compare
Figures 5.1 and 2.15).

The first step of the touring process is done in the main area by selecting a set of items.
This can either be done by clicking on an attribute’s category or on a ribbon that connects
categories. With the selection of ribbons, the user is able to start the touring process
from a subset of a category’s items.

After the items are selected, the user chooses the similarity measure to be used from a
drop-down menu shown by the Calc Similarity button in the data browser (bottom left
in Figure 5.1). By selecting the similarity measure the server-side task is started and
two new columns are added to the data browsers. These columns are initially empty
and indicate the pending data with spinning wheels and the text Loading.... While the
server-side task is running, users can continue the analysis, change selections or the
similarity measure, and start further tasks, which will add additional columns every time.

As soon as the server-side task has finished, the results are loaded in the corresponding
columns of the data browser. The first column displays the score of the highest scoring
category as a bar and the exact numerical value if users place their mouse over the table
cell. In the second column the attribute’s category that achieved this score is printed.
In this way, interesting attributes and categories can be identified and included in the
analysis while attributes that score high in an irrelevant category can be seen at a glance.
Subsequent calculations will add additional columns in the data browser.

The table’s rows are also sorted in descending order by the score to quickly see the most
similar attributes and their highest scoring categories.
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Figure 5.1: The StratomeX user interface is split in three parts: the main area a) where the data is displayed, a data browser
b), and a provenance graph c). The data browser’s table displays a + symbol to add the attribute to the analysis, if the
mouse is placed over a row. The data browser also contains the button to start the touring process Calc similarity... in the
bottom left corner.
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5.2 Ordino
Ordino’s approach is to provide users with the option to analyze the data on item
level, i.e., in detail mode, and on attribute level, with the overview mode (compare
Section 2.1.7). The data is shown in tabular form, where each column corresponds to an
attribute and the rows to the items (see Figure 5.2). Each table cell contains the value
of an item for the specific attribute.

Groups of items, e.g., categories, can be aggregated. In overview mode, items are
decreased down to a minimum size of 1 px. Selected items are displayed in their full
height (see Figure 5.2). Selections of items can be made by brushing in overview and
detail mode. In detail mode, the user can also select items by clicking on a row or via
checkboxes. The items in aggregated groups can also be selected at once.

Additional attributes can be added from a searchable drop-down menu. Right above this
drop-down menu, a button to start the touring process is added adjacent to existing ones
for data export, zooming, and saving the current list of items (see Figure 5.3). As these
buttons have no label text but only use icons, an align-left button has been chosen as
it resembles the similarity score bars that will be the result of the touring process (see
Figure 5.3a). If a selection exists, the button above the drop-down menu can be clicked
to start the server-side process with the Jaccard index as similarity measure. While a
server-side task for similarity calculation is active, this icon will change to a spinning
wheel (see Figure 5.3b). Both icons are part of the Font Awesome [23] icon set.

Attribute’s can not be selected per se in Ordino. To start the touring process with
an attribute rather than an item set, a button Find similar... has been added to the
list of actions in the attributes’ header (see Figure 5.4). As currently only the PCC is
implemented as attribute-based similarity score (see Section 3.3.1), the button is added
to numerical columns. By clicking the button, the similarity measure and the attribute’s
name is sent to the backend and the task is started. The button, which is used to start the
task for item selections, will change to a spinning wheel to indicate the work by the new
task, as this is the only constantly visible guidance component. While the server-side task
is running, users can continue the analysis, change selection or the similarity measure,
and start further tasks, just like in StratomeX.

When the task is finished, the button will change from the animated spinning wheel back
to the default icon (see Figure 5.3). The similarity scores are shown as bars beneath each
attribute in the drop-down menu (compare Figure 6.4). Bars have been used because
their length can be compared quicker than the similarity score as text. They have a light
green background that indicates their maximum size. If hovering over an attribute, the
attribute’s category that achieved this score and its exact value are shown.

Ordino provides the feature to group the values of numerical attributes into categories.
Therefore, numerical attributes added after an item set similarity score was calculated
are automatically stratified according to the thresholds determined by the server-side
similarity scoring described in Section 3.3.3.
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Figure 5.2: Ordino in overview mode with TCGA data for six tumor types. In addition to the column headers, the side bar
on the right shows information on the attributes. The items are stratified by tumor type and items of tumors in bladder,
cervix, colon, esophagous, and liver, are collapsed into a group representation. Because Ordino is in the overview mode, the
items with kidney renal papillary cell carcinoma are represented by only a few pixels. The five oldest patient with a kidney
tumor are selected and displayed in full height. The rightmost bar contains a list of detail views.
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(a) Left-align icon which resembles the bars of
the similarity scores.

(b) Spinning wheel to indicate ongoing compu-
tation of similarity scores.

Figure 5.3: Button to start the touring process and display its current state.

Due to Ordino’s different data browser, the result of only one touring process can be
shown at a time. This will always be the one that has finished last, which means that
additionally started touring processes will overwrite the results of previous ones in the
drop-down menu.

Based on the similarity scores beneath each attribute and the tooltips, users can continue
their analysis by choosing an attribute, or, due to the results not reflecting the user’s
hypothesis, by varying input data and restarting the touring process.
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5.2. Ordino

Figure 5.4: While the three main options of an attribute,i.e., sort, stratify, and remove,
are always visible, additional actions are displayed via the more options button (...). The
Find similar... button to start the touring process for an attribute was added to the
menu. It uses the same icon as the button to start item set touring in Figure 5.3a.
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CHAPTER 6
Results and Feedback

In the following section, the computational and visual results of the touring process are
shown, followed by the feedback of future users and its implications.

6.1 Results

The touring process can compare attributes and item sets, for which we have implemented
the most common similarity measure respectively—the Pearson correlation coefficient
(PCC) and the Jaccard index. As seen in Chapter 2, state-of-the-art similarity measures
compare data of the same type, or simply item set sizes. Item set comparisons are
independent of the data type, but only categorical attributes can be used directly. We
have resolved this restriction by discretizing numerical attributes and converting the
subtrees of hierarchical attributes into separate categorical attributes. The touring
process can therefore compare a given item set with every attribute from a dataset and
return the most similar categories.

The touring process has been tested on a dataset of the Kepler University Hospital and
two datasets of The Cancer Genome Atlas (TCGA), for glioblastoma multiforme [110]
and clear cell renal cell carcinoma [111]. All three contain numerous categorical and
numerical attributes. The dataset of the Kepler University Hospital also contains
hierarchical attributes in the form of ICD-10 and ICD-O codes.

The touring process has been implemented in the two systems StratomeX and Ordino.
Both are augmented with controls to trigger the touring and visualizations for the resulting
similarity scores. Google’s Chrome Browser [32] has been used during development to
control correct representation and to test functionality. The implementations differ in
terms of input selection and output representation. While with StratomeX, users can
select item sets by clicking on categories or ribbons, selection of individual items is
possible in Ordino, as well as starting the touring from numerical columns. In StratomeX,

69



6. Results and Feedback

users can choose the similarity measure to be used with a drop-down menu. In Ordino,
the similarity measure is chosen automatically, with the PCC for numerical attributes,
and the Jaccard index for items sets.

In StratomeX the touring process’ output is added as additional column for an attribute
in the data browser. One column is added with the score of the attribute’s highest scoring
category and one column with this category’s name. The data browser uses LineUp [35]
to display the data. By triggering the touring multiple times, multiple columns are added
and due to LineUp’s feature to combine attributes, similarity scores can be combined by
the user to create new ones. In Ordino, the output is shown in the filterable drop-down
menu used to add attributes. The similarity scores are presented by bars beneath each
attribute. The exact values are shown as tooltip, if the user hovers the mouse cursor over
an attribute.

6.1.1 Server-Side Performance

The computationally heavy work is executed server-side and in the following some
performance measures are presented. As the selected input, be it an item set or an
attribute, is compared with each available attribute, the performance of the similarity
computation is directly dependent on the dataset’s size and the data retrieval performance.

As the TCGA datasets are retrieved significantly faster than the data from the Kepler
University Hospital’s tumor dataset, despite having much more attributes, the TCGA
KIRC dataset [111] is used for the following performance measurement. The dataset
contains 35 010 attributes, of which 35 002 are categorical and four are numerical. The
remaining four attributes are matrices that have been converted into multiple categorical
attributes by clustering. The 35 002 categorical attributes have 177 532 categories in
total.

From the attribute M Stage, which indicates whether patients have metastases, the
category m1 (patients with metastases) was selected in StratomeX and the touring
process started by selecting the Jaccard index. In average, computation of the Jaccard
index for category m1 with all 177 532 categories, plus the discretization of numerical
attributes, took 15.4 seconds, with 15.02 seconds for the fastest, and 16.06 for the slowest
of 20 runs. The durations are taken from Celery’s log messages, which report the needed
time upon task completion. The task ran inside a Debian [15] Docker [16] container. The
task queries the data from the Phovea Server, which is also running in a Debian Docker
container. The measures were taken on the author’s personal laptop with eight gigabytes
of memory and an Intel i5-3210M with a base frequency of 2.5 gigahertz. Instruction to
setup the Docker environment are available on Github [83; 85].

6.1.2 StratomeX

After the scores of Section 6.1.1 are computed, the attributes in the data browser are
automatically sorted in descending order by similarity score, guiding users to the most
similar ones. Figure 6.1 shows the attributes M Stage and Stage, which indicates the
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severeness of a cancerous disease, and the similarity scores. The Jaccard index for the
group m1 of M Stage is of course 100 % and thus highest. With 93.8 %, the second
highest score comes from the Stage 4 category of the Stage attribute. As a tumor that
generated one or more metastases is considered worst in nearly all cases, this relationship
is also medically plausible. With StratomeX’s ribbons, it can be seen that these two
categories share nearly all items (see Figure 6.1).

Only some of the items (two) of category m1 are classified as Stage 3, about as few items
from categorym0 in category stage 4 (three items). In total, both categories share 75 items
but contain 80 distinct items, resulting in the Jaccard index of SimJaccard(m1, Stage4) =
75
80 = 0.938 (compare Equation 2.7).

The dataset of the Kepler University Hospital is used to show the touring process for
hierarchical attributes. Two columns from the ICD-O hierarchy are shown in Figure 6.2.
The highlighted part of the ribbons are patients that received chemotherapy and have a
tumor grading of three. This item set was used to calculate similarity scores with the
Shared/Selected measure. The results can be seen in Figure 6.3.
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Figure 6.1: StratomeX with the attribute Stage M on the left and the highest scoring attribute Stage on the right. The
similarity scores for the category m1 can be seen in the data browser. The column headers shows the selected similarity
measure (Jaccard) and the category (m1). The highlighted ribbon connects the two similar categories.
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6.1. Results

Figure 6.2: StratomeX with two columns of the hierarchical attribute ICD-O Morphologie.
The first column represents the tree’s root, while the second column contains all items
of the subtree with epithelial neoplasms (ICD-O Morphology codes 801–804). The
hierarchical structure can be seen by the ribbons that connect one category of the first
column with the categories of the second column.

Figure 6.3: Shared/Selected Similarity scores for patients that received chemotherapy
and have a tumor grading of three. The numerical values of the similarity scores are
only shown for the select row (attribute ICD-O Morphologie 856-857 ) and the row first
row, as the mouse cursor is placed over this row. From the hierarchical attribute ICD-O
Morphologie, two subtrees have a category with a similarity of 100 % (ICD-O Morphologie
814-838 and 801-804). The categorical attribute ICD-O Morphologie that represents the
root level of the hierarchy has a similarity of 66.7 % and is ranked eleventh..
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Figure 6.4: Similarity scores for six attributes in Ordino’s drop-down menu for data
selection. The actual score is visualized by a green bar on light green background to
show the highest possible score in comparison. If the users hovers over an attribute with
the mouse, a tooltip will appear showing the exact score and the category for which this
score was calculated. The group 3a of attribute N Stage (German: N Stadium) scored
highest with a similarity score of 91.94 %.

6.1.3 Ordino

As mentioned above, items can be selected individually in Ordino. This can be done by
simple clicks, brushing, or by selecting a group of items after aggregation. After selection,
the touring process can be started and the results are shown in the filterable drop-down
menu (see Figure 6.4).

The Kepler University Hospital’s tumor dataset is used to display the results in Ordino.
This dataset also contains stages of the cancer’s spread into the surrounding tissues
(Stage T) and lymph nodes (Stage N), similar to the M Stage from the TCGA KIRC
dataset in the presented StratomeX result.

As selection of more than one category is possible in Ordino, we do so in the following
example and select the most severe cases with N Stage of three or more, thus patients
who have affected mammary and axilla lymph nodes [115]. These are three categories,
namely N3a with 57 items, N3b with one item and N3c with four items. In Ordino, the
Jaccard index is used as similarity measure for item sets. Due to the unequal distribution,
one can foresee that the selected items will score a high similarity with the category N3a.
With SimJaccard((N3a ∪N3b ∪N3c), N3a) = 57

62 = 0.9194.

Figure 6.4 shows some of the available attributes in the drop-down. The attribute N

74



6.1. Results

Figure 6.5: Similarity score for the 38 items with a body weight between 101 kg and 131
kg. The numerical attribute body weight (German Gewicht Patient) was categorized
into a group of items with body weight less or equal 100 kg and a category with more
than 100 kg. The latter achieved a Jaccard index of 82.61 %.

Stage occurs twice, once for the latest assessment and once for the original classification
of lymph nodes. By the bar’s width, an almost maximal score can be seen for both
attributes. The score of the attribute N Stage, 91.94 %, is shown as tooltip, together
with the category 3a. With Jaccard indices below 0.2, all other attributes showed no
significant similarity.

To demonstrate the numerical splitting for similarity calculation (see Section 3.3.3), all
38 items with a body weight value between 101 kg and 131 kg are selected and the
touring process is started. Like before, the Jaccard index is used as similarity measure
and therefore determines the resulting threshold. In Figure 6.5 the resulting scores are
shown and attribute body weight (German: Gewicht) shows a Jaccard index of 0.8261, if
the attribute is split at a body weight value of 100 kg. As there are 38 items with weight
between 101 kg and 131 kg and eight items with a weight higher than 131 kg, the Jaccard
index can be checked with: SimJaccard(weight = [101, 131], weight = [101,∞)) = 38

46 =
0.8261. With Jaccard indices below 10 %, none of the dataset’s other categories showed
any significant similarity.

The third feature implemented in Ordino is the search for similar attributes. With
the PCC a comparison method for numerical attributes was implemented. Therefore
numerical attributes have the additional button Find similar... in their header (see
Figure 5.4). The attribute’s header also displays the distribution of the attribute’s values.
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Figure 6.6: Scatter plot with the two attributes body weight and body height. Four
outliers, which most probably have erroneously exchanged weight and height, are not
included for a better representation of the majority of the values. A least-squares line is
superimposed in red.

The attribute body weight is used again to demonstrate the similarity scores. As only
numerical attributes are compared, only those yield a similarity score. From the Kepler
University Hospital’s dataset, the attribute body height scored highest with a PCC of
0.6826, indicating a medium to major correlation (compare Table 2.1 and Figure 6.6).
The PCCs of the other attributes are below ±0.06, i.e., show no correlation.

6.2 Feedback

During the development of the touring process, the achieved progress was reported to
clinicians of the Kepler University Hospital on a regular basis. Their feedback was gladly
accepted, integrated, and presented at later meetings. The changes that resulted from
this agile development are presented in this section.

Apart from the minor visual adaptions, users were interested in the touring process right
away. Finding potential causes for irregular attribute combinations, such as cases that
would normally receive endocrine therapy, but had none, or whether adipose patients are
over-represented in categories of other attributes (as in the example above), are some of
the potential use cases.

76



6.2. Feedback

(a) The initial similarity score bars next to the
attribute names. The bars take up one third of
the horizontal space in the drop-down menu.

(b) The reworked bars below the attributes’
names. They are slightly indented and have
a light background to show their maximum
length.

Figure 6.7: Bars for similarity scores before and after user feedback.

6.2.1 Feedback to StratomeX Integration

During the initial integration in StratomeX, only one column containing the similarity
score was added to the data browser. To quickly judge the relevance of a high scoring
attribute, the second column to display the category was added.

Additionally, the two proportion scores Shared/Selected and Shared/Compared were
introduced for an intuitive comparison with the selected item set (also see Section 3.3.2).

6.2.2 Feedback to Ordino Integration

As Ordino does not show the attributes, which can be added into the view, in the
main interface like StratomeX, an alternative visualization of the ongoing server-side
computation was necessary. As a result the touring process button is animated while
similarity scores are calculated.

Another change concerned the bars in the search box that represent the similarity score.
These were originally right aligned in the drop-down to save space, but the users could
not determine how high a score could be, and the difference between bars was harder to
see due to their small width.

In Figure 6.7 one can see the original and reworked versions. We added a light background
to the bars to show their potential maximum. The bars are also slightly indented to
indicate where they belong (like subitems in lists). A small vertical mark at the beginning
of the bars serves as visual support to estimate and compare low similarity scores.
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CHAPTER 7
Conclusion and Discussion

Healthcare and numerous other research fields face an ever increasing amount of data.
Through the ongoing digitization, more data is available. Scientific advances discover new
attributes that need to be recorded to improve patient care. Improvements in existing
techniques finally enhance the resolution or extend the set of collected data.

While the collected amount and the ability to store data have increased rapidly, the
means to process this data did not [31]. The idea of VA is to combine an automated
analysis with analysis by humans. While humans can quickly identify relationships and
patterns in a visualization, the computational power surpasses them in the calculation
and comparison of defined measures across whole datasets. Given that researchers are
experts in the domain of the data, they have hypotheses to test and need assistance while
using the VA tool to do so.

This thesis has described a universal process to find attributes of interest for the users
to continue their exploration. Similar attributes can be queried based on item sets or
attributes and various different similarity measures. The similarity measures for item
sets also use attributes that have no inherent categorization of their values, as well as
hierarchical attributes with nested categories.

The touring process uses a client-server architecture. The data subset for which guidance
is needed and the similarity measure are selected on the client-side. The server-side
retrieves the whole dataset and starts to compare it with the given subset.

Starting from an item set, it is compared to each category of a categorical attribute.
Numerical attributes are categorized to achieve maximal similarity and hierarchical
attributes are traversed in order to find the most similar subtree of every parent node.
Therefore the prominence of items with certain characteristics that are assumed to be
relevant, can be checked across all attributes to prove hypotheses or find potentially
interesting relationships.
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7. Conclusion and Discussion

If the touring process is started with an attribute as input, that attribute is also compared
to every other attribute in the dataset. The Pearson correlation coefficient has been
implemented to compare numerical attributes. The resulting similarity scores give insights
on possible dependencies, without the need to visually compare all attributes.

While the server-side is processing, the users are informed of the ongoing computation
until the results can be retrieved. The similarity scores are presented as bars alongside
their respective attributes. The user can utilize this information to pick an attribute
with high similarity for further analysis, or vary the selected data subset based on the
reported relationships.

The presented touring process is independent of the exploratory visualization technique
used, which was demonstrated by the integration in the two tools StratomeX and Ordino.
Furthermore, the data domain is irrelevant to the touring process, which is demonstrated
by the usage of two TCGA datasets as well as the dataset provided by the Kepler
University Hospital. Processing flat numerical and categorical as well as hierarchical
data, it is also generalized for different data types.

7.1 Discussion
A touring process that compares a multi-attribute dataset and reports similarity measures
to the users was implemented in the VA tools StratomeX and Ordino. Similar categories
and attributes can be found for item sets and attributes respectively. As both tools are
web applications and thus share a client-server architecture, the user only selects the
input and receives the output on the client, while the computationally heavy work is
done server-side. As a side effect, this also favors the connection to the database and
does not impact the client-side system requirements.

The described solution is generalized for data types and domains and independent of the
employed visual analysis tool. While the implemented similarity measures are among
the most commonly used ones, knowledge of the data types and domain can be used to
select, add, or configure similarity measures and optimize the guidance. By providing
guidance not only in the data domain, but also in the domain of VA methods, the hurdle
of choosing from more methods and configurations could be overcome by assisting users
in selecting a similarity measure.

As this thesis’ idea originated from an ongoing project with the Kepler University Hospital
to visualize data of patients with mamma carcinoma, the main target of the touring
process are the hospital’s medical professionals. Advancements during development were
presented to them to obtain and integrate feedback.

Data exploration, quick, intuitive tests of hypotheses, and the retrieval of attributes to
which a data subset shows relationships, are the main tasks. As the usage of a VA tool
is at best only a facet in the daily routine, simplicity is more important than feature
richness. That is why the implementation in Ordino uses predefined similarity measures
for the two types of input data.

80



7.2. Future Work

The touring process we present in this thesis tries to find attributes that have relationship
to a given data subset. Instead of attributes, the touring process can also try to find
items with similar characteristics to a given item set. If the data of new patients is
continuously integrated, the touring process could support clinicians in their treatment
decisions by finding similar old cases to reason about new ones.

Gower’s similarity coefficient, discussed in Section 2.3.2, would be an appropriate similarity
measure to find similar items. However, through the sort, stratify, and filter operations
in Ordino, adjacent items already show high similarity.

In contrast to the guided StratomeX [106] discussed in Section 2.2, the presented touring
process is detached from the visualization and its data scope and can therefore be used
by any VA tool. It also supports hierarchical attributes and can discretize numerical
attributes into groups to compare them to a given item set.

7.2 Future Work
Besides the guidance to relevant attributes from the user’s input, a guidance towards
similar items would be worth striving for. Selecting a set of reference items to find similar
ones in the data may be used for the above mentioned reasoning by similarity. In the
case of patients, a new patient’s condition could be compared to the original condition of
past cases to find promising treatments. Similarity measures for clustering items such as
Gower’s, discussed in Section 2.3, can be used to compare items by multiple attributes.
Many more measures to cluster items can be found in the literature [2; 5; 18; 119; 134].

As StratomeX and Ordino both display all stored items at any time, similar items cannot
simply be added to the reference one. Appropriate means to communicate the similarity
of items to users are needed. One simple solution would be to create a new attribute
that contains the similarity score for each item, either as a numerical value or divided
into multiple categories.

Following this thought, more similarity measures can be added. The PCC can be
calculated only on the selected set of items to see whether a subset correlates with other
attributes. Similarity measures to compare categorical attributes as a whole are still
absent and a measure that handles numerical as well as categorical attributes would be
desirable. Knowledge of the data domain can be used as an input to tailor similarity
measures at the cost of general applicability.

Enhancement of numerical attribute discretization is also a potential candidate for further
refinements. Instead of creating two groups for values above and below a threshold,
the most similar value window could be retrieved from an attribute. Ordino already
offers partitioning of numerical attributes by multiple thresholds and the server-side
discretization already returns the threshold inside an array. Methods described in
Section 2.4 also create multiple bins, e.g., by simply moving an equal amount of items
into each bin (equal frequency discretization) or by splitting at points where the entropy
gain is highest (MDL).
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7. Conclusion and Discussion

The guidance to similar items, additional similarity measures, and the specification of a
discretization method add further complexity to the guidance process, contrary to its
purpose. If the proposed enhancements are integrated, the scope of the touring process
should also be extended. By giving guidance on the domain of VA methods, the touring
process can also support users specifying the inputs appropriately.
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APPENDIX A
Appendix

Listing A.1: MATLAB Code to create a random numerical attribute Age and split it
into groups where the similarity is highest. Creation of the individual plots is omitted
for the sake of clarity, but the resulting groups are printed

1 % get two normal distributions to create attribute 'Age'
2 fem = floor(normrnd(66,8,1,100)); % 100 items of cat 'female'
3 male = floor(normrnd(58,5,1,80)); % 80 items of cat 'male'
4
5 % count each age. shortens array to the respective maximal age
6 % first element is age 1, last element is max(fem) / max(male)
7 binnedFem = accumarray(fem(:),1);
8 binnedMale = accumarray(male(:),1);
9

10 %lowest/highest age of female and male
11 first = min(min(fem),min(male))-1;
12 last = max(max(fem), max(male))+1;
13
14 % make array lengths equal by padding with zeros
15 binnedFem(length(binnedFem)+1:last) = 0;
16 binnedMale(length(binnedMale)+1:last) = 0;
17
18 % remove leading zeros (indexes below minimal age)
19 binnedFem = binnedFem(first:last);
20 binnedMale = binnedMale(first:last);
21
22 % aggregated histograms (for age >= x)
23 aggHistFem = cumsum(binnedFem); % sum up
24 aggHistMale = cumsum(binnedMale);
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25
26 % aggregated histograms (for age <= x)
27 % reverse vectors to sum up from end to start
28 aggHistFem_rev = cumsum(flipud(binnedFem));
29 aggHistMale_rev = cumsum(flipud(binnedMale));
30
31 x = first:last; % x axis
32
33 femJaccards = aggHistFem./(max(aggHistFem)+aggHistMale);
34 femJaccards_rev = flipud(aggHistFem_rev./(max(aggHistFem_rev)+

aggHistMale_rev)); %reverse back to first:last ordering
35 [femJaccard, femSplitIndex] = max(femJaccards);
36 [femJaccard_rev, femSplitIndex_rev] = max(femJaccards_rev);
37 if (femJaccard >= femJaccard_rev)
38 femJaccard = femJaccard;
39 femStart = first; % from first
40 femSplit = x(femSplitIndex); % to split
41 else
42 femJaccard = femJaccard_rev;
43 femStart = last; % from last
44 femSplit = x(femSplitIndex_rev); %to split
45 end
46
47 maleJaccards = aggHistMale./(max(aggHistMale)+aggHistFem);
48 maleJaccards_rev = flipud(aggHistMale_rev./(max(aggHistMale_rev

)+aggHistFem_rev)); %reverse back to first:last ordering
49 [maleJaccard, maleSplitIndex] = max(maleJaccards);
50 [maleJaccard_rev, maleSplitIndex_rev] = max(maleJaccards_rev);
51 if (maleJaccard >= maleJaccard_rev)
52 maleJaccard = maleJaccard;
53 maleStart = first; % from first
54 maleSplit = x(maleSplitIndex); %to split
55 else
56 maleJaccard = maleJaccard_rev;
57 maleStart = last; % from last
58 maleSplit = x(maleSplitIndex_rev); %to split
59 end
60
61 disp(sprintf('Female: Jaccard Score of %f with region from %d

to %d.', femJaccard, femStart, femSplit))
62 disp(sprintf('Male: Jaccard Score of %f with region from %d to

%d.', maleJaccard, maleStart, maleSplit))
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Listing A.2: An excerpt of the configuration for the ICD-O Morphology (German version)
to convert it into categorical attributes.
"hierarchies": {

"ICD-O Morphologie": {
"includeOthers": true,
"children": {
"800-800": {

"includeOthers": false,
"label": "Neoplasien o.n.A.",
"startWith": ["800"]

},
"801-804": {

"includeOthers": false,
"label": "Epitheliale Neoplasien o.n.A.",
"startWith": ["801", "802", "803", "804"]

},
"805-808": {

"includeOthers": true,
"label": "Plattenepithelneoplasien",
"startWith": ["805", "806", "807", "808"]

},
...
"959-972": {

"label": "Hodgkin- und Non-Hodgkin-Lymphome",
"startWith": ["959", "960", "961", "962", "963",

"964", "965", "966", "967", "968", "969", "970",
"971", "972"],

"children": {
"959-959": {

"label": "Maligne Lymphome, o.n.A. oder diffus",
"startWith": ["959"]

},
"965-966": {

"label": "Hodgkin-Lymphome",
"startWith": ["965", "966"]

},
"967-972": {

"label": "Non-Hodgkin-Lymphome",
"startWith": ["967", "968", "969", "970", "971",

"972"],
"children": {

"967-969": {
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"label": "Reifzellige B-Zell-Lymphome",
"startWith": ["967", "968", "969"]

},
"970-971": {
"label": "Reifzellige T- und NK-Zell-Lymphome",

"startWith": ["970", "971"]

},
"972-972": {
"label": "Lymphoblastische Lymphome der

Vorläuferzellen",
"startWith": ["972"]

}
}

}
}

},
...

}
}

}
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