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Introduction

A valuation on the set of all compact convex sets Kn ⊂ Rn is a real-valued
function µ that fulfills

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B)

µ(∅) = 0,

whenever A,B,A ∪ B ∈ Kn. A classic result is Hadwiger’s classification theo-
rem which classifies the intrinsic volumes µ0, . . . , µn as special valuations on Kn.
Here µ0 is the Euler characteristic χ. Furthermore, µk acts as the k-dimensional
Lebesgue measure on all sets of dimension less or equal to k. Besides their impor-
tance for various results in integral geometry, valuations can be seen as finitely
additive measures. Therefore, one can try to establish an integration theory
with respect to the intrinsic volumes, which is called Hadwiger integration. As
it turns out, there is no unique way to extend the Hadwiger integrals of sim-
ple functions to Hadwiger integrals of continuous functions. Moreover, these
integrals are valuations on functionals and a similar result to Hadwiger’s clas-
sification theorem can be achieved. Subsequently, various integral transforms
will be examined and applied to the setting of sensor networks. The integral
with respect to the Euler characteristic will be of utmost importance for this
purpose.

In Chapter 1 we will start with some definitions and basic results on valuations.
On this basis, the Euler characteristic and further on the intrinsic volumes are
introduced and examined. We proof Hadwiger’s classification theorem to high-
light the intrinsic volumes as a basis of the vector space of convex-continuous
rigid motion invariant valuations. The main reference for this chapter is the
book by Klain and Rota [16].

Chapter 2 introduces definable sets as a collection of subsets of Rn. Examples
include the semialgebraic and semilinear sets. This allows us to define the set of
definable functions Def(Rn) as real-valued functions with definable graph and
compact support. Furthermore, the corresponding integer-valued simple func-
tions are called constructible functions CF(Rn). Using a straightforward integral
of constructible functions with respect to the intrinsic volumes, we can interpret
these integrals as a special class of valuations on functionals, whereby we follow
[31]. Furthermore, we want to extend the integrals to continuous functions by
approximating them with step functions. However, it turns out that it makes a
difference if we approximate from below or from above. Hence, we obtain lower
and upper Hadwiger integrals and study their properties.

In order to state a classification theorem for valuations on Def(Rn) we need
corresponding topologies to distinguish between the lower and upper Hadwiger
integrals, which is done in Chapter 3. Therefore we introduce currents, which
are continuous linear functionals on differential forms. By assigning each defin-
able set a special current - the so-called conormal cycle - we obtain the lower
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INTRODUCTION

and upper flat metrics on definable functions. Consequently, we can proof a
result similar to Hadwiger’s classification theorem (cf. Theorem 3.16) which
was published in [5]. It states that any rigid motion invariant lower valuation ν
on Def(Rn) can be written as

ν(f) =

n∑
i=0

∫
Rn
ci(f) bdµic,

for all f ∈ Def(Rn) where the ci : R → R are continuous increasing functions
with ci(0) = 0.

Chapter 4 focuses on integral transforms, where we start with Fubini’s theorem
and Euler convolution. A duality transform on CF(Rn) then provides a de-
convolution. Moreover, we consider Radon, Bessel and Fourier transforms. Most
importantly, Schapira’s inversion formula [26] allows to invert Radon transforms
under certain conditions.

In Chapter 5 we follow a recent series of papers ([1], [2], [4] and [12]) to utilize
the integral transforms of Chapter 4 in the setting of sensor networks. Proper
Euler integrals then allow us to count and even localize targets. However, those
results use a continuous field of sensors but we can show that they also apply to
a sensor network based on a sufficiently dense and regular triangulation of the
target space.

A perspective to other applications of Hadwiger integration is given in Chapter
6.
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1 Valuations

This chapter introduces valuations, which are set functions and the understand-
ing of which is necessary for the rest of this thesis. We will start with the
definition and consider some important valuations before we go on to proof a
main classification theorem for valuations, Hadwiger’s theorem (Theorem 1.41).
The setup of this chapter mostly follows the book by Klain and Rota (see [16]).
Some of the proofs are left out - they can be found in the book. A short version
of the proof of Hadwiger’s theorem is also given in [15].

1.1 Basic results on valuations

Before we can define the class of set functions, known as valuations, we need
some basic results.

Definition 1.1 A relation ≤ on a set L is called a partial ordering if the fol-
lowing conditions are satisfied for all x, y, z ∈ L.

• x ≤ x. (reflexivity)
• From x ≤ y and y ≤ x follows that x = y. (antisymmetry)
• From x ≤ y and y ≤ z follows that x ≤ z. (transitivity)

The set L is then also called a partially ordered set.

Definition 1.2 A partially order set L is called a lattice if there exist a greatest
lower bound x ∧ y ∈ L and a least upper bound x ∨ y ∈ L for all x, y ∈ L.
Furthermore L is said to be a distributive lattice if the following additional
identities hold for all x, y, z ∈ L:

• x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

• x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Example 1.3 Let S be a set, and let L be a family of subsets of S closed under
finite unions and finite intersections. It can easily be seen, that L is a distributive
lattice. The partial ordering is then given by subset inclusion, the greatest lower
bound is realized by the intersection of sets and the least upper bound is the
union of sets.

Definition 1.4 (Valuation) We call a real-valued function µ on a lattice L
of sets, µ : L → R, a valuation if µ satisfies the following properties for all
A,B ∈ L:

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B) (1.1)

µ(∅) = 0. (1.2)

Example 1.5 Well known examples for valuations can be found in measure the-
ory, where L would be a σ-algebra over S and µ would be a measure. Besides
the restriction to non-negativity we have a difference in additivity: Measures
have to fulfill σ-additivity whereas valuations only have to be finitely additive.
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1 VALUATIONS 1.1 Basic results on valuations

This property is also reflected in the conditions on the set L: a σ-algebra has
to be closed under countable unions and intersections, while a lattice of sets
only has to be closed under finite numbers of operations. So in a certain sense,
valuations are generalizations of measures.

An instant basic result is the following.

Lemma 1.6 (Inclusion-exclusion principle) For a valuation µ on a lattice
L, n ∈ N and A1, A2, . . . , An ∈ L we get

µ(A1 ∪A2 ∪ · · · ∪An)

=
∑

1≤i≤n

µ(Ai)−
∑

1≤i<j≤n

µ(Ai ∩Aj) +
∑

1≤i<j<k≤n

µ(Ai ∩Aj ∩Ak)

− · · ·+ (−1)n−1µ(A1 ∩ · · · ∩An)

=

n∑
k=1

(−1)k+1

 ∑
1≤i1<···<ik≤n

µ(Ai1 ∩ · · · ∩Aik)


=

∑
∅6=I⊆{1,2,...,n}

(−1)|I|−1µ(∩i∈IAi),

(1.3)

where |I| denotes the cardinality of I.

Proof. Induction on n and use of the additive property (1.1). �

Definition 1.7 Let 1A denote the indicator function of a set A ⊂ Rn, that is

1A(x) =

{
1 if x ∈ A
0 if x /∈ A.

A function f : L → R is called L-simple if there exist Ai ∈ L and αi ∈ R for
each 1 ≤ i ≤ k such that

f =

k∑
i=1

αi1Ai .

Using basic properties of indicator functions we obtain the inclusion-exclusion
formula for indicators,

1A1∪A2∪···∪An =
∑

1≤i≤n

1Ai −
∑

1≤i<j≤n

1Ai∩Aj +
∑

1≤i<j<k≤n

1Ai∩Aj∩Ak

− · · ·+ (−1)n−1
1A1∩···∩An

=

n∑
k=1

(−1)k+1

 ∑
1≤i1<···<ik≤n

1Ai1∩···∩Aik


=

∑
∅6=I⊆{1,2,...,n}

(−1)|I|−1
1∩i∈IAi .

(1.4)
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1 VALUATIONS 1.1 Basic results on valuations

Definition 1.8 Let G be a subset of a lattice L that is closed under finite
intersections. We call G a generating set of L when every element of L can be
represented as a finite union of elements of G.

Example 1.9 Let Kn denote the set of all compact convex subsets of Rn, which is
closed under finite intersections. Furthermore, we call a finite union of compact
convex sets a polyconvex set and denote the collection of all polyconvex sets in
Rn by Polycon(n). Since the union and intersection of two polyconvex sets is
again polyconvex, we obtain that Polycon(n) is in fact a lattice. Obviously Kn
is a generating set of Polycon(n).

With the inclusion-exclusion formula for indicator functions (1.4) we get that
every L-simple function f can be written as

f =

r∑
i=1

βi1Bi

with Bi ∈ G and βi ∈ R.

Definition 1.10 Let G be a family of sets that is closed under finite intersec-
tions. We call a real-valued function µ on G, µ : G→ R, a valuation on G if µ
satisfies (1.1) and (1.2) for all A,B ∈ G such that A ∪B ∈ G.

Since the definition of a generating set G of a lattice L demands that every set
B ∈ L can be expressed as a finite union of sets in G, we can attempt to extend
a valuation defined on G to a valuation on L. Before we state a corresponding
result we need another definition.

Definition 1.11 Let µ be a valuation on a generating set G of a lattice L and
let f be an L-simple function with f =

∑k
i=1 αi1Ai with Ai ∈ G and αi ∈ R.

We define the integral of f with respect to µ as∫
f dµ :=

k∑
i=1

αiµ(Ai).

Since the representation of the form f =
∑k
i=1 αi1Ai does not have to be unique,

one has to check that the integral is well defined.

Theorem 1.12 (Groemer’s integral theorem) Let G be a generating set
for a lattice L, and let µ be a valuation on G. The following statements are
equivalent:

1. The valuation µ on G extends uniquely to a valuation on L.

2. The valuation µ satisfies the inclusion-exclusion identity on G, namely

µ(∪ni=1Bi) =
∑

∅6=I⊆{1,2,...,n}

(−1)|I|−1µ(∩i∈IBi), (1.5)

for all n ≥ 2 and whenever Bi ∈ G and ∪ni=1Bi ∈ G.
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1 VALUATIONS 1.1 Basic results on valuations

3. The valuation µ defines an integral on the vector space of linear combina-
tions of indicator functions of sets in L.

Proof sketch.
1. ⇒ 2.: Since µ extends uniquely to a valuation on L, the inclusion-exclusion
principle holds for all sets in L and therefore for all sets Bi ∈ G such that
∪ni=1Bi ∈ G.

3. ⇒ 1.: Since µ defines an integral on the space of L-simple functions, we can
define for A ∈ L

µ(A) =

∫
1A dµ.

Using the fact that
1A∪B = 1A + 1B − 1A∩B ,

as well as the linearity of the integral, we obtain a valuation on L.

2. ⇒ 3.: Suppose that there exist non-empty sets K1, . . . ,Km ∈ G and non-zero
real number α1, . . . , αm such that

m∑
i=1

αi1Ki ≡ 0.

Suppose, on the contrary, that the integral for this representation of the zero
function would give

m∑
i=1

αiµ(Ki) 6= 0.

Furthermore we set

L1 = K1, . . . , Lm = Km, Lm+1 = K1 ∩K2, . . . , Lp = K1 ∩K2 ∩ . . . ∩Km,

so that we get all possible intersections of the sets Ki. Since generating sets are
closed under intersections, we have that Li ∈ G for all i. Now we suppose that

p∑
i=q

αi1Li ≡ 0,

while
p∑
i=q

αiµ(Li) 6= 0,

for αq 6= 0. We chose q to be maximal so that this is possible. Using the
inclusion-exclusion principle, one can contradict the maximality of q. //

We want to find a convenient property of valuations on Kn to admit a unique
extension to a valuation on Polycon(n). We will find this property to be a
certain kind of continuity.

9



1 VALUATIONS 1.1 Basic results on valuations

εBn

L+ εBn

K

L

Figure 1: Example for K ⊆ L+ εBn.

Definition 1.13 For two sets A,B ⊆ Rn, the Hausdorff distance δ(A,B) is
defined by

δ(A,B) = max

(
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

)
,

where d(x,A) = infa∈A |x − a| denotes the distance from the point x ∈ Rn to
the set A.

The following lemma gives us a more intuitively accessible description of the
Hausdorff distance δ. A proof is given in [16], Chapter 4.

Lemma 1.14 Let K,L ⊆ Rn be compact sets. Then δ(K,L) ≤ ε iff
K ⊆ L+ εBn and L ⊆ K + εBn, where Bn denotes the n-dimensional unit ball.

Furthermore it is a well known fact that the Hausdorff distance defines a metric.

Theorem 1.15 The distance δ defines a metric - the so-called Hausdorff metric
- on the set of all compact subsets of Rn.

Using this metric we can define a notion of continuity for valuations on Kn.

Definition 1.16 We call a valuation µ convex-continuous or simply continuous
if

µ(Ak)
k→∞−−−−→ µ(A)

for all compact convex sets Ak, A such that Ak
k→∞−−−−→ A with respect to the

Hausdorff metric.

The following result shows that under certain conditions we can restrict our-
selves to valuations on the generating set Kn.

Theorem 1.17 (Groemer’s extension theorem) Every convex-continuous
valuation µ on Kn admits a unique extension to a valuation on Polycon(n).

10



1 VALUATIONS 1.2 Euler characteristic

Proof sketch. Using Groemer’s integral theorem (Theorem 1.12) it is sufficient
to show that every convex-continuous valuation µ defines an integral on the
space of linear combinations of indicator functions of sets in Polycon(n). This
can be done by induction on the dimension n.

Starting with n = 0 the statement is trivial. Now suppose that µ gives us
a well defined integral in dimension n − 1. For dimension n we assume the
contradiction of our statement. Suppose that there exist sets K1, . . . ,Km ∈ Kn
such that

m∑
i=1

αi1Ki ≡ 0.

On the other hand we suppose that the integral for this representation of the
zero function would give us

m∑
i=1

αiµ(Ki) = 1.

Furthermore, we assume that m is the smallest number greater than zero such
that this is possible. Using the induction hypothesis and the continuity of µ
we can bring this to a contradiction by intersecting the Ki with closed half-
spaces. //

1.2 Euler characteristic

The probably most important valuation is the so-called Euler characteristic
(sometimes also referred to as Euler-Poincaré characteristic). In this section
we will discuss some of the more convenient (and equivalent) definitions of the
Euler characteristic as well as some of its properties.

Definition 1.18 Let En denote the Euclidean group on Rn, that is the group
generated by all translations and orthogonal transformations. Furthermore, for
A ⊆ Rn and g ∈ En, we write

gA = g(A) = {g(a) : a ∈ A}.

We now call a valuation µ : Polycon(n) → R rigid motion invariant or simply
invariant if

µ(A) = µ(gA)

for all A ∈ Polycon(n) and all g ∈ En.

Definition 1.19 (Euler characteristic) The Euler characteristic is the
unique convex-continuous invariant valuation χ : Polycon(n)→ R such that

χ(K) = 1 (1.6)

for every non-empty compact convex set K ⊆ Rn.

11



1 VALUATIONS 1.2 Euler characteristic

This definition seems to be quite simple but at a first glance it is not clear that
there exists a (unique) valuation that fulfills (1.6).

Theorem 1.20 (The existence of the Euler characteristic)
There exists a unique convex-continuous invariant valuation χ defined on
Polycon(n) that is independent of the dimension n (normalized) and fulfills
(1.6).

Proof. We start by proofing the existence of valuations χn for each dimension
by induction on n. Using Groemer’s extension theorem (Theorem 1.17) it is
sufficient to show the existence of a proper valuation on Kn. Furthermore, by
Groemer’s integral theorem (Theorem 1.12) it suffices to show the existence
of a linear functional Ln on the Kn-simple functions, such that Ln(1K) = 1
whenever K is a non-empty compact convex set.

Starting with n = 1 we set

L1(f) :=
∑
x∈R

(f(x)− f(x+ 0)),

where f(x + 0) = lima→0+ f(x + a). Since simple functions only have finitely
many points of discontinuity, the sum above is finite. Now if K is a non-empty
compact convex set in R, K has to be an interval of the form [a, b]. For the
corresponding indicator function 1K we get

L1(1K) = 1K(b)− 1K(b+ 0) = 1.

This gives us the existence of the valuation χ1(K) := L1(1K), so that

L1(f) =

∫
f dχ1.

We now assume that the statement is true for n−1. For dimension n we choose
an orthogonal coordinate system x1, x2, . . . , xn. Moreover, for any real number
x, let Hx be the hyperplane parallel to the coordinate axes x2, . . . , xn passing
through the point (x, 0, . . . , 0). If f = f(x1, x2, . . . , xn) is a simple function we
define

fx(x2, . . . , xn) := f(x, x2, . . . , xn)

as a simple function in Hx. Using the induction hypothesis we assume that
Ln−1(fx) has been defined in Hx, since Hx is isomorphic to Rn−1. We set
F (x) = Ln−1(fx) and get a simple function in R. Using F we can define

Ln(f) := L1(F ).

Now for every compact convex set K, the function fx = (IK)x is the indicator
function of a slice of K by the hyperplane x1 = x. F is then the indicator
function of the projection of K onto the x1-coordinate axis (see Figure 2). It

12



1 VALUATIONS 1.2 Euler characteristic

K

F (x)
0

1

x1/x

x2/F (x)

Figure 2: F is the indicator function of the projection of K onto the x1-
coordinate axis.

easily follows that Ln(f) = L1(F ) = 1. This gives us a valuation χn with the
desired properties via

Ln(f) =

∫
f dχn.

To proof that the Euler characteristic is normalized, we assume that k ≤ j ≤ n
and K ⊆ V ⊆ Rn, where K is a polyconvex set of dimension k and V is a plane
of dimension j. We now have to show that χj(K) computed within V is equal
to χn(K) computed in Rn. Since we have a representation of K as

K = K1 ∪K2 ∪ · · · ∪Km,

with the Ki being compact convex sets, we obtain by the inclusion-exclusion
formula

µ(K) =
∑

∅6=I⊆{1,2,...,m}

(−1)|I|−1µ(∩i∈IKi),

for any valuation µ. Since both χj and χn have the property to attain the value
1 on all non-empty compact convex sets - particularly on the sets ∩i∈IKi - we
get that χj(K) = χn(K) = χ(K). �

Remark 1.21 The approach of using points of discontinuity and projections can
also be used to give an inductive definition of the Euler characteristic. An
example for that can be found in [13].

A first property of the Euler characteristic that can be seen using the inclusion-
exclusion formula, is the fact that χ is only integer-valued, in particular χ can
also become negative on certain sets.

Example 1.22 We consider an interval [a, b] ⊂ R which we can partition into

[a, b] = {a}∪̇(a, b)∪̇{b},

13



1 VALUATIONS 1.2 Euler characteristic

Figure 3: A graph with V = 6, E = 7, F = 3 and V − E + F = 2.

where ∪̇ indicates the union of disjoint sets. Using the additive property we get

χ([a, b]) = χ({a}) + χ((a, b)) + χ({b}).

Since [a, b], {a}, {b} are compact convex sets we obtain that χ((a, b)) = −1.

Example 1.23 Let A = {a1, . . . , ak} be a set of distinct points in Rn. Since
points are compact convex sets of dimension zero we get

χ(A) =

k∑
i=1

χ(ai) = k = #A.

Hence the Euler characteristic can be used to count points.

The first use of the Euler characteristic was for results on planar graphs and
polyhedra.

Definition 1.24 The Euler characteristic χ for a planar graph or the surface
of a polyhedra in three dimensions is defined as

χ = V − E + F,

where V denotes the number of vertices, E the number of edges, and F the
number of faces, including the exterior face in case of a planar graph.

For planar connected graphs and convex polyhedra we get the following result,
see also Figure 3.

Theorem 1.25 (Euler’s (polyhedron) formula)
The Euler characteristic of any planar connected graph or the surface of a convex
polyhedra is 2.

For more general sets one can calculate the Euler characteristic of its surface by
laying a map onto the object and thus finding a polygonization of the surface.

14



1 VALUATIONS 1.3 Intrinsic volumes

The torus for example has Euler characteristic 0. For more details see [10],
Chapter 6.

In general one can consider the distributive sublattice of Polycon(n) that is
generated by compact convex polytopes. For that we will recall some definitions
and give some new ones respectively.

Definition 1.26 A convex polytope is the intersection of a finite collection of
closed half-spaces. Moreover, we call a finite union of convex polytopes a poly-
tope. For a compact convex polytope P of dimension k in Rn, we consider the
k-dimensional plane V containing P . The relative interior of P , denoted by
relint(P ), is the interior of P relative to the topology of V . Now we can define
a system of faces F for a polytope P as a family with the following properties:

• The elements of F are convex polytopes.

•
⋃
Q∈F relint(Q) = P.

• For Q,R ∈ F with Q 6= R one has relint(Q) ∩ relint(R) = ∅.

A result which can also be used as a definition of the Euler characteristic is the
following.

Theorem 1.27 (The Euler-Schläfli-Poincaré formula)
Let F be a system of faces of a polytope P , and denote by fi the number of
elements of F of dimension i. Then

χ(P ) = f0 − f1 + f2 − · · ·

One of the most important properties of the Euler characteristic is the fact that
χ is a homotopy invariant. A significant consequence of this is that two sets
have the same Euler characteristic if they are homeomorphic.

1.3 Intrinsic volumes

We will now introduce a special class of valuations, the Euler characteristic
being one of them.

Let Mod(n) denote the set of all linear subspaces of Rn. Under the relation
of inclusion of linear subspaces Mod(n) is a partially ordered set. Furthermore
Mod(n) is a lattice since for every two subspaces x, y there exist the subspace
spanned by x and y, as well as the intersection of x and y.

Definition 1.28 We define the so-called Grassmannian Gr(n, k) as the set of
all elements of Mod(n) of dimension k.

Up to a common factor there exists a unique Haar measure νnk on Gr(n, k) that
is invariant under rotations and reflections of the orthogonal group O(n). We
choose this factor so that

νnk (Gr(n, k)) =

(
n

k

)
ωn

ωkωn−k
, (1.7)

15



1 VALUATIONS 1.3 Intrinsic volumes

where ωi denotes the volume of the unit ball Bn in Rn.
Next we consider the partially ordered set of all linear varieties in Rn, Aff(n),
that don’t necessarily have to pass through the origin in Rn. Note that the
minimal element in Mod(n) is the zero subspace {0} while the minimal element
of Aff(n) is the empty set ∅.

Definition 1.29 The affine Grassmannian Graff(n, k) is the set of all elements
of Aff(n) of dimension k.

Again we want to have an invariant measure on Graff(n, k). In this case the
measure λnk shall act invariant under the Euclidean group En. For that let
V ⊥ be the maximal linear subspace of Rn orthogonal to V ∈ Graff(n, k) that
contains the origin. Furthermore for a real-valued measurable function f on
Graff(n, k), let f̄ : Gr(n, k)× Rn → R be given by

f̄(V0, p) := f(V0 + p).

We can define λnk via∫
Graff(n,k)

f dλnk =

∫
Gr(n,k)

∫
V ⊥0

f̄(V0, p) dp dνnk (V0), (1.8)

where dp denotes the ordinary Lebesgue measure on V ⊥0
∼= Rn−k. The invari-

ance of dλnk then follows from the invariance of dp.

Definition 1.30 (Intrinsic volumes) We define the intrinsic volumes µni ,
0 ≤ i ≤ n on Kn as the valuations defined by

µnn−k(K) = λnk (Graff(K; k)), (1.9)

for all K ∈ Kn, where Graff(K; k) denotes the set of all V ∈ Graff(n, k) such
that K ∩ V 6= ∅.

It can be shown that this definition gives us indeed a family of continuous
valuations. Hence, by Groemer’s extension theorem (Theorem 1.17) µnn−k has a
unique extension to Polycon(n), which we will again denote by µnn−k. Since (1.9)
is only valid for compact convex sets we would like to have a representation,
valid for all sets in Polycon(n). Known as Hadwiger’s formula we get for all
A ∈ Polycon(n)

µnn−k(A) =

∫
Graff(n,k)

χ(A ∩ V ) dλnk (V ). (1.10)

For compact convex sets this gives us again (1.9). Hadwiger’s formula also
delivers us another justification why the intrinsic volumes are valuations, since
(1.1) and (1.2) directly follow from the fact that the Euler characteristic is a
valuation. Indeed, we could use (1.10) as a definition for µni . Moreover, since
the integral of the affine Grassmannian is invariant under rigid motions on Rn,
we obtain that intrinsic volumes are a collection of invariant valuations.
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1 VALUATIONS 1.3 Intrinsic volumes

It is also easy to see that

µn0 (A) =

∫
Graff(n,n)

χ(A ∩ V ) dλnn(V ) = χ(A ∩ Rn)λnn(Rn) = χ(A).

Furthermore, using (1.8) we obtain

µnn−k(A) =

∫
Gr(n,k)

∫
V ⊥0

χ(A ∩ (V0 + p)) dpdνnk (V0).

For k = 0 this gives us

µnn(A) =

∫
Gr(n,0)

∫
V ⊥0

χ(A ∩ (V0 + p)) dp dνn0 (V0)

= νn0 ({0})
∫
Rn
χ(A ∩ p) dp

=

∫
A

dp.

Hence, µnn is the Lebesgue measure on Rn. Besides that, we have

µnn−1(K) = 1
2S(K),

where S(K) denotes the surface area of K ∈ Kn.

Definition 1.31 We call a valuation µ on Polycon(n) homogeneous of degree
k > 0, if

µ(αK) = αkµ(K)

for all K ∈ Polycon(n) and all α ≥ 0.

We now refer to the orthogonal projection of a set K ⊂ Rn onto the subspace
V ⊥0 as K|V ⊥0 and get for α ≥ 0

λnk (Graff(αK; k)) =

∫
Graff(n,k)

1Graff(αK;k) dλnk

=

∫
Gr(n,k)

∫
V ⊥0

1Graff(αK;k)(V0 + p)︸ ︷︷ ︸
=1

αK|V⊥0
(p)

dp dνnk (V0)

=

∫
Gr(n,k)

voln−k(αK|V ⊥0 ) dνnk (V0)

= αn−k
∫

Gr(n,k)

voln−k(K|V ⊥0 ) dνnk (V0)

= αn−kλnk (Graff(K; k)),

whereas voln−k denotes the (n − k)-dimensional volume. Consequently, µni is
homogeneous of degree i.
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1 VALUATIONS 1.4 Hadwiger’s theorem

Definition 1.32 For a fixed Cartesian coordinate system in Rn we define an
orthogonal parallelotope P ⊂ Rn to be a set of the form

P = [a1, b1]× · · · × [an, bn],

with ai ≤ bi. In other words, a parallelotope is a rectilinear box. The dis-
tributive lattice that consists of finite unions and intersections of orthogonal
parallelotopes shall be denoted by Par(n).

To get a better understanding of the intrinsic volumes, one can consider them
on Par(n). We obtain that for each parallelotope P ∈ Par(n) with sides of
length x1, x2, . . . , xn

µnk (P ) =

n∑
1≤i1<···<ik≤n

xi1xi2 · · ·xin , (1.11)

for 1 ≤ k ≤ n. For details, see [16], Chapter 4.

Remark 1.33 If a parallelotope P has dimension k < n, then

µmi (P ) = µni (P ),

for all k ≤ m < n. Hence the intrinsic volumes seem to be independent of the
dimension of the ambient space. We will see that this is true in general in the
next section. Note that the key to this normalization lies in the specific choice
of the Haar measure νnk in (1.7). Other choices of the Haar measure on Mod(n)
lead to the so-called quermaßintegrale Wn,k, which are related to the intrinsic
volumes via

Wn,k(K) = ωk

(
n

k

)−1

µnn−k(K).

The most important difference is that the quermaßintegrale really depend on
the dimension of the ambient space. See also [20].

The following theorem demonstrates that like the Euler characteristic all intrin-
sic volumes are sensible to whether a set is open or not. A proof is given in [16],
Chapter 7.

Theorem 1.34 Let P be a compact convex polytope. Then

µnk (relint(P )) = (−1)dimP−kµnk (P ),

for 0 ≤ k ≤ n whereas dimP denotes the dimension of P .

1.4 Hadwiger’s theorem

The purpose of this section is the formulation and proof of a characterization
theorem for the intrinsic volumes.
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1 VALUATIONS 1.4 Hadwiger’s theorem

Definition 1.35 We say that the set of points {x0, . . . , xm} ⊂ Rn is affinely in-
dependent, if there doesn’t exist any (m−1)-dimensional affine subspace V ⊆ Rn
that contains those points. We define an m-dimensional simplex ∆ as the convex
hull of m+ 1 affinely independent points, that is

∆ =

{
x ∈ Rn : x =

m∑
i=0

aixi, ai ∈ [0, 1],

m∑
i=0

ai = 1

}
.

Furthermore, the convex hull of every subset of {x0, . . . , xm}, consisting of m
elements, is called a facet of ∆.

Definition 1.36 We call a valuation µ on Kn simple, if

µ(K) = 0,

for all K of dimension less than n.

With these definitions we can give a characterization for the volume.

Theorem 1.37 (The volume characterization theorem)
Let µ be a continuous translation invariant simple valuation on Kn. Then there
exists c ∈ R such that

µ(K) + µ(−K) = cµnn(K),

for all K ∈ Kn.

Proof sketch. For a continuous translation invariant simple valuation µ on Kn
consider

ν(K) := µ(K) + µ(−K)− 2µ([0, 1]n)µnn(K),

for all K ∈ Kn. If we can show, that ν(K) = 0 for all K ∈ Kn, we are finished.
This can be done by induction on n, where the one dimensional case follows from
the fact, that compact convex subsets of R are simply the closed line segments.

Next, the induction step starts with the case of K = [0, 1]n for which the
statement is obvious. This implies that the statement holds for all sets of the
type [0, 1/r]n with an integer r > 0. Now let K be a box of rational dimensions
with sides parallel to the coordinate axes. Since such boxes can be built up out
of cubes of the form [0, 1/r]n, the result holds for said boxes. The continuity of
ν then implies that the statement holds for every box of positive real dimension,
with sides parallel to the coordinate axes. Consequently, one can discuss the
case of a box with sides parallel to a different set of orthogonal axes, by cutting
the box into a finite number of pieces, translations of which form a box with
sides parallel to the original coordinate axes.

Next, define a valuation τ on Kn−1 via

τ(K) := ν(K × [0, 1]),

19



1 VALUATIONS 1.4 Hadwiger’s theorem

for all K ∈ Kn−1. By the induction hypothesis one has that τ ≡ 0. Using the
continuity of ν again, one can deduce that ν(K× [a, b]) = 0 for any convex body
K ⊆ Rn−1 and for all a, b ∈ R. By the preceding argument this holds for right
cylinders with a convex base of any orientation.

Consequently the case of K being a prism can be reduced to the case of right
cylinders by cutting and rearrangement. This can be utilized to show that
ν(P + v) = ν(P ) for all convex polytopes P and all line segments v. By in-
duction over finite Minkowski sums of line segments it follows that ν(Z) = 0
and ν(P + Z) = ν(P ) for all zonotopes (finite Minkowski sums of straight line
segments) Z and P as above. By continuity of ν, this implies that ν(Y ) = 0 and
ν(K+Y ) = ν(K) for all K ∈ Kn and all zonoids (sets that can be approximated
by zonotopes) Y .
Since for smooth symmetric convex sets K there exist zonoids Y1, Y2 such that
K+Y2 = Y1, the result holds for all smooth symmetric convex sets and further-
more by approximation and continuity for all centered convex bodies.

Next, let ∆ by an n-dimensional simplex with one vertex at the origin and
let v be the vector sum of the vertices of ∆. One can find a proper centered
parallelotope P and a centered set of points P∗ such that

P = ∆ ∪ P∗ ∪ (−∆ + v),

which leads to ν(∆) = −ν(−∆). Since ν(∆) = ν(−∆) and ν is translation
invariant, this gives ν(∆) = 0 for any simplex ∆.
Now any convex polytope P can be expressed as a finite union of simplices that
have pairwise intersections of dimension less than n. Additivity and simplicity
of ν yield that ν(P ) = 0 for any convex polytope P . Since convex polytopes
are dense in Kn, the continuity of ν finally implies that ν(K) = 0 for all K ∈
Kn. //

Proposition 1.38 (Sah) For each n-dimensional simplex ∆ there exist poly-
topes P1, . . . , Pm, where each of the Pi is symmetric under a reflection across
a hyperplane and where each of the intersections Pi ∩ Pj is at most (n − 1)-
dimensional, such that

∆ = P1 ∪ · · · ∪ Pm.

Proof. For the n-dimensional simplex ∆ let x0, . . . , xn be its vertices, and let
∆i be the facet of ∆ opposite to xi. Since each simplex has a unique in-
scribed sphere, let z be the center of that inscribed in ∆. By zi we denote
the foot point in ∆i of the perpendicular line from z to ∆i. We now set
Ai,j := conv{z, zi, zj ,∆i ∩ ∆j} for all i < j, where conv denotes the convex
hull, see also Figure 4. Consequently we get that

∆ =
⋃

0≤i<j≤n

Ai,j ,
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1 VALUATIONS 1.4 Hadwiger’s theorem
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Figure 4: Example of a 3-dimensional simplex with the polytope A2,3.

and as well that the intersections of the Ai,j are at most (n − 1)-dimensional.
Besides that, each of the polytopes Ai,j is also symmetric under the reflection
across the (n − 1)-dimensional hyperplane determined by z and ∆i ∩ ∆j . By
relabeling the Ai,j we get the desired result

∆ = P1 ∪ · · · ∪ Pm,

with m = 1
2n(n+ 1). �

Theorem 1.39 (The volume theorem) Let µ be a continuous rigid motion
invariant simple valuation on Kn or on Polycon(n). Then there exists c ∈ R
such that

µ(K) = cµnn(K)

for all K ∈ Kn or K ∈ Polycon(n) respectively.

Proof. Since by Groemer’s extension theorem (Theorem 1.17) a continuous val-
uation is well defined on Polycon(n) iff it is well defined on Kn, we will restrict
ourselves to the latter.
We start by using the volume characterization theorem (Theorem 1.37) and
obtain the existence of a c̃ ∈ R such that

µ(K) + µ(−K) = c̃µnn(K),

for all K ∈ Kn. So especially for an arbitrary simplex ∆ ⊂ Rn we have

µ(∆) + µ(−∆) = c̃µnn(∆).

We distinguish between the following cases.
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1 VALUATIONS 1.4 Hadwiger’s theorem

• n is even: In this case ∆ and −∆ only differ by a rotation. Using the
rotation invariance of µ we get that µ(∆) = µ(−∆) and further

µ(∆) = (c̃/2)µnn(∆).

• n is odd: By Proposition 1.38 there exist polytopes P1, . . . , Pm, where each
of the Pi is symmetric under a reflection across a hyperplane and where
each of the intersections Pi ∩Pj is at most (n− 1)-dimensional, such that

∆ = P1 ∪ · · · ∪ Pm.

Since n − 1 is even, it follows that each Pi differs from −Pi by a corre-
sponding rigid motion, i.e. a rotation followed by a translation. Again by
the invariance of µ we get that µ(−Pi) = µ(Pi). Using that µ is simple
and therefore vanishes on the (n − 1)-dimensional intersections of the Pi
we get as in the even case

µ(−∆) =

m∑
i=1

µ(−Pi) =

m∑
i=1

µ(Pi) = µ(∆) = (c̃/2)µnn(∆).

Now set c = c̃/2 and consider an arbitrary convex polytope P in Rn. Since
every convex polytope can be expressed as a finite union of simplices,

P = ∆1 ∪ · · · ∪∆k,

such that the intersections ∆i ∩ ∆j have dimensions less than n for all i 6= j,
we get by using the simplicity of µ

µ(P ) =

k∑
i=1

µ(∆i) =

k∑
i=1

cµnn(∆i) = cµnn(P ).

Considering the fact that the set of all convex polytopes is dense in Kn and
using the continuity of µ, it follows that

µ(K) = cµnn(K),

for all K ∈ Kn. �

Before we go on and proof Hadwiger’s theorem (Theorem 1.41), we will justify
the naming of the intrinsic volumes.

Theorem 1.40 (The universal normalization theorem)
The intrinsic volumes µ0, µ1, . . . , µn on Polycon(n) are normalized indepen-
dently of the dimension n.

Proof. We have to show that for n > k, µnk restricts to µlk for all k ≤ l ≤ n.
The statement is obvious for k = 0, since µn0 = χ. Now we suppose that µn−1

k

restricts to µlk for all k ≤ l ≤ n − 1. We have to show that µnk restricts to µlk
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1 VALUATIONS 1.4 Hadwiger’s theorem

as well. For that we will first prove that µnk restricts to µkk. Since this is only
sufficient for k = n − 1, we have to go further and show that if µnk restricts to
µlk for some k ≤ l < n− 1, then µnk restricts to µl+1

k as well. Induction on l and
n then gives us the statement.

We start to show that µnk restricts to µkk. The valuation µnk vanishes in di-
mension less than k, therefore the restriction of µnk to a hyperplane in Rn is
a continuous invariant simple valuation on Polycon(k). Thus, by the volume
theorem (Theorem 1.39) we get that µnk (K) = cµkk(K) for all K ∈ Polycon(k),
with a c ∈ R. Since µnk = µkk on the set of all parallelotopes in Par(k), see (1.11),
we have that c = 1 and µnk = µkk on Polycon(k).

Finally, we have to show that µnk restricts to µl+1
k if µnk already restricts to µlk

for some k ≤ l < n− 1. We denote by ν the restriction of µnk to Polycon(l+ 1).
By our assumption, ν restricts to µlk on Polycon(l) and furthermore µl+1

k re-

stricts to µlk on Polycon(l) by our induction hypothesis. Consequently, ν−µl+1
k

vanishes on Polycon(l), which gives us that ν − µl+1
k is a continuous invariant

simple valuation on Polycon(l + 1). Again, by the volume theorem (Theorem
1.39) we get that ν − µl+1

k = cµl+1
l+1 on Polycon(l + 1) for a c ∈ R. Since we

know that ν − µl+1
k vanishes on the set of all parallelotopes in Par(l + 1), we

have c = 0 and furthermore ν = µl+1
k , which gives us the statement. �

Considering the last statement, we will simplify the notation µnk to µk, since the
ambient space does not make any difference.

We will now conclude the characterization of invariant valuations on Polycon(n)
with the following important theorem.

Theorem 1.41 (Hadwiger’s characterization theorem)
The set of all convex-continuous rigid motion invariant valuations defined on
Polycon(n) is an (n + 1)-dimensional vector space and the intrinsic volumes
µ0, µ1, . . . , µn form a basis for this space.

Proof. We will proof the theorem by induction on the dimension n. For n = 0
we have to consider a zero dimensional space which only consists of a single
point. Obviously, any valuation that does not vanish on that point, i.e. the
Euler characteristic χ = µ0, forms a basis for the 1-dimensional vector space of
continuous invariant valuations.
We now assume that the theorem holds for dimension n− 1 and go on to proof
the statement for dimension n. For that we consider an arbitrary valuation µ
that satisfies the hypothesis of the theorem. We restrict µ to polyconvex sets in
Rn−1 and obtain from the induction hypothesis the existence of c0, . . . , cn−1 ∈ R
such that

µ(A) =

n−1∑
i=0

ciµi(A),
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1 VALUATIONS 1.4 Hadwiger’s theorem

for all polyconvex sets A of dimension n− 1. Thereby the valuation

µ−
n−1∑
i=0

ciµi

is a continuous rigid motion invariant simple valuation on Polycon(n). By the
volume theorem (Theorem 1.39) we get the existence of cn ∈ R such that

µ−
n−1∑
i=0

ciµi = cnµn.

Consequently

µ =

n∑
i=0

ciµi.

�

Remark 1.42 In the previous proof we have shown, that Hadwiger’s theorem
follows from the volume theorem (Theorem 1.39). It can be shown that the
reverse implication holds as well. A proof can be found in [15].

Corollary 1.43 If µ is a convex-continuous rigid motion invariant valuation
defined on the polyconvex sets in Rn and homogeneous of degree k, for some
0 ≤ k ≤ n, then there exists c ∈ R such that

µ(K) = cµk(K)

for all K ∈ Polycon(n).

Remark 1.44 We consider the characteristic description of the intrinsic volumes,
given in Hadwiger’s theorem, and try to find corresponding measures on Rn with
the Borel σ-algebra. Clearly, the corresponding property to convex-continuity
would be Borel regularity. If we furthermore ask for translation-invariance and
admittance of finite values on compact sets - which the intrinsic volumes fulfill
on Kn - we would get the Haar measure on (Rn,+). Up to a unique factor,
this is the Lebesgue measure. In fact, the translation-invariance alone would be
enough to characterize the multiples of the Lebesgue measure.
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2 Hadwiger Integration

We now want to extend valuations as linear functionals on families of sets to
linear functionals on functions on sets. Whilst the valuations introduced in
the first chapter are classical geometric objects we will now consider a much
younger field in mathematics. We will thereby extend the approach we have
used to define the integral with respect to a valuation µ in Definition 1.11.
Again, the integrals that come from the intrinsic volumes will play a vital role.
Furthermore, in a recent work (see [5]) by Baryshnikov, Ghrist and Wright a
classification theorem, similar to Hadwiger’s theorem, was established.

2.1 Valuations on definable functions

Instead of the lattice Polycon(n) we will now consider valuations on a different
family of sets. For that we need the concept of an o-minimal structure as defined
in [29], Chapter 1.

Definition 2.1 We define a structure on R as a sequence S = (Sn)n∈N such
that for each n ≥ 0 we have the following:

• Sn is a Boolean algebra of subsets of Rn, i.e. ∅ ∈ Sn and Sn is closed
under unions and complements.

• For each A ∈ Sn the sets R×A and A× R belong to Sn+1.

• {(x1, x2, . . . , xn) ∈ Rn : x1 = x2 = · · · = xn} ∈ Sn.

• For each A ∈ Sn the set π(A) belongs to Sn−1, whereas π : Rn → Rn−1 is
the projection map on the first n− 1 coordinates.

Following this, we define an o-minimal structure on (R, <) as a structure S on
R such that

• {(x, y) ∈ R2, x < y} ∈ S2,

• the sets in S1 are exactly the finite unions of open (possibly unbounded)
intervals and points.

Example 2.2 An example for an o-minimal structure, given by van den Dries in
[29], Chapter 2, are the semilinear sets. For that we consider affine functions
on Rn, which are functions f : Rn → R of the form

f(x1, . . . , xn) = λ1x1 + · · ·+ λnxn + a,

with λi, a ∈ R fixed. Following this, we consider the basic semilinear sets in Rn

{x ∈ Rn : f1(x) = · · · = fk(x) = 0, g1(x) > 0, . . . , gl(x) > 0},

with the fi and gj being affine functions on Rn. The semilinear sets on Rn are
now simply the finite unions of the basic semilinear sets in Rn.
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Example 2.3 Denote by R[x1, . . . , xn] the ring of real polynomial functions on
Rn. A set is called a semialgebraic set if it is a finite union of sets of the form

{x ∈ Rn : f1(x) = · · · = fk(x) = 0, g1(x) > 0, . . . , gl(x) > 0},

with fi, gj ∈ R[x1, . . . , xn]. For n = 1 these are just the finite unions of intervals
and points. Note that each semilinear set is a semialgebraic set since the affine
functions on Rn are the elements of R[x1, . . . , xn] with degree less or equal to
1. The Tarski-Seidenberg theorem states that the projection of a semialgebraic
set A ⊆ Rn onto Rk ⊂ Rn with k < n is again semialgebraic. Furthermore,
the closure, interior, and convex hull of a semialgebraic set are semialgebraic.
This shows that they are an example for an o-minimal structure. See also [29],
Chapter 3.

Further well-known examples are the semianalytic (described by analytic func-
tions) and subanalytic sets (locally projections of relatively compact semiana-
lytic sets).

Definition 2.4 For the remainder of this work we fix an o-minimal structure
S. Elements of Sn are called definable sets. A definable map is then a map
f : Rn → Rm the graph of which is a definable subset of Rn+m. Furthermore,
we define a definable function as a definable map f : X → R with X ⊂ Rn
compact. The set of all definable functions is denoted by Def(Rn).

We now extend the Euler characteristic and the intrinsic volumes to definable
sets. The o-minimal Euler characteristic χ is then defined as the valuation χ
that fulfills

χ(σ) = (−1)k, (2.1)

for any open k-dimensional simplex σ. One can show that every definable set
is definably homeomorphic to a disjoint union of open simplices. Therefore, by
(2.1) the Euler characteristic is defined on S. Furthermore the intrinsic volumes
µi for definable sets K ∈ Sn are now defined using Hadwiger’s formula, that is

µn−k(K) =

∫
Graff(n,k)

χ(K ∩ V ) dλnk (V ). (2.2)

Many of the results on valuations that we introduced in the last chapter are still
valid for valuations on definable sets. Most important, Hadwiger’s theorem still
holds for valuations that are defined on definable sets. See also [31], Chapter 2.

Definition 2.5 A real-valued function ν : Def(Rn) → R is called valuation on
Def(Rn), if the following properties hold for all f, g ∈ Def(Rn):

ν(f ∨ g) + ν(f ∧ g) = ν(f) + ν(g), (2.3)

ν(0) = 0 (2.4)

where 0 denotes the zero function and ∨ and ∧ denote the pointwise maximum
and minimum of f and g, respectively.
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2 HADWIGER INTEGRATION 2.1 Valuations on definable functions

These conditions are clearly similar to the properties a valuation on a lattice
of sets has to satisfy. Note, that (2.4) together with the additivity of ν implies
that a valuation on Def(Rn) is independent of the support of a function.

Proposition 2.6 A function ν : Def(Rn)→ R is a valuation on Def(Rn) iff

ν(f) = ν(f · 1A) + ν(f · 1Ac), (2.5)

for all f ∈ Def(Rn) and all definable sets A ⊂ Rn.

For the following proof and the rest of this work we will use the notation of
excursion sets, e.g. {f ≥ s} := {x ∈ Rn|f(x) ≥ s}, for a function f : Rn → R
and s ∈ R.

Proof.
=⇒: If ν is a valuation on Def(Rn), we have for any definable function
f ∈ Def(Rn) and any definable set A ⊂ Rn

ν(f · 1A) + ν(f · 1Ac) = ν(f · 1A ∨ f · 1Ac) + ν(f · 1A ∧ f · 1Ac)
= ν(f · 1{f≥0}) + ν(f · 1{f≤0}) = ν(f ∨ 0) + ν(f ∧ 0)

= ν(f) + ν(0) = ν(f).

⇐=: Suppose that ν satisfies (2.5). To get equation (2.4) consider for any
definable set A ⊂ Rn

ν(0) = ν(0 · 1A) + ν(0 · 1Ac) = ν(0) + ν(0).

Therefore, ν(0) = 0.
Now take any two functions f, g ∈ Def(Rn) and consider A = {f ≥ g}, which is
a definable subset of Rn, since f and g are definable. Using (2.5) we get

ν(f) + ν(g) = ν(f · 1A) + ν(f · 1Ac) + ν(g · 1A) + ν(g · 1Ac)
= ν((f ∨ g) · 1A) + ν((f ∧ g) · 1Ac) + ν((f ∧ g) · 1A) + ν((f ∨ g) · 1Ac)

= ν(f ∨ g) + ν(f ∧ g).

�

Induction on (2.5) gives us that

ν(f) =

m∑
i=1

ν(f · 1Ai),

for any valuation ν on Def(Rn) and any finite partition of Rn into definable sets
{Ai}mi=1.
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2.2 Hadwiger integral of a constructible function

Similar to defining the integral of simple functions (Definition 1.11) we will
introduce the Hadwiger integral of “Sn-simple functions”.

Definition 2.7 A constructible function f : X ⊆ Rn → Z is an integer-valued
function with definable level sets, that is

f =
∑
i≥0

ci1Ai ,

with ci ∈ Z and Ai ∈ Sn. Moreover, the set of all constructible functions with
compact support shall be denoted by CF(Rn).

The domain of a constructible function f has a locally finite triangulation which
means that f is constant on each simplex of the triangulation. This implies that
constructible functions with compact support also have bounded range.

Definition 2.8 Let f : X → Z be a constructible function where the domain
X is a compact subset of Rn. Consequently, there exist disjoint definable sets
Ai ⊂ Rn and constants ci ∈ Z such that f =

∑
i≥0 ci1Ai . The Hadwiger integral

of f with respect to the intrinsic volume µk is then defined as∫
X

f dµk =

∫
X

∑
i≥0

ci1Ai dµk :=
∑
i≥0

ciµk(Ai).

The case k = 0 is also known as Euler integral. For k = n we obtain the
Lebesgue integral.

Lemma 2.9 For any constructible function f : X → Z one has∫
X

f dµk =

∞∑
s=−∞

sµk{f = s} (2.6)

=

∞∑
s=0

µk{f > s} − µk{f < −s}. (2.7)

Proof. For any constructible function f the following equations hold

f =

∞∑
s=−∞

s1{f=s} =

∞∑
s=0

s(1{f≥s} − 1{f>s}) +

0∑
s=−∞

s(1{f≤s} − 1{f<s}) =

∞∑
s=0

s(1{f>s−1}−1{f>s})− s(1{f<−s+1}−1{f<−s}) =

∞∑
s=0

1{f>s}−1{f<−s}.

�

In order to give a first result towards a classification theorem for valuations on
definable functions we consider valuations on CF(Rn) ⊂ Def(Rn), which are
restrictions of valuations on Def(Rn) to CF(Rn).
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2 HADWIGER INTEGRATION 2.2 Hadwiger integral of a constructible function

Definition 2.10 A real-valued function ν : CF(Rn) → R is called a valuation
on CF(Rn)if (2.3) and (2.4) hold for all f, g ∈ CF(Rn).

Definition 2.11 A valuation ν on Def(Rn) is rigid motion invariant if

ν(f) = ν(f ◦ φ),

for any f ∈ Def(Rn) and any Euclidean motion φ on Rn. The definition of a
rigid motion invariant valuation on CF(Rn) is analogous.

Lemma 2.12 Let ν be a rigid motion invariant valuation on CF(Rn) that sat-
isfies

ν(1Kk)
k→∞−−−−→ ν(1K),

for all compact convex sets Kk,K in Sn such that Kk
k→∞−−−−→ K with respect to

the Hausdorff metric. Then there exist coefficient functions ci : R → R with
ci(0) = 0 such that

ν(f) =

n∑
i=0

∫
Rn
ci(f) dµi,

for all f ∈ CF(Rn).

Proof. We start with multiples of characteristic functions and consider νr(A) :=
ν(r ·1A) for any r ∈ Z, which gives us a valuation on Sn. Since convex definable
sets are dense among convex sets in Rn we can apply Hadwiger’s theorem to
get the existence of constants ci,r that only depend on ν, such that

ν(r · 1A) = νr(A) =

n∑
i=0

ci,rµi(A). (2.8)

Next, we consider a constructible function

f =

m∑
j=1

rj1Aj

for some integer constants r1 < r2 < · · · < rm and disjoint definable subsets
A1, . . . , Am of Rn. Using the additivity of ν, we obtain

ν(f) =

m∑
j=1

ν(rj1Aj ) =

m∑
j=1

n∑
i=0

ci,rjµi(Aj). (2.9)

Now let Bj =
⋃
i≥j Ai = {f ≥ rj} = {f > rj−1}. Equation (2.9) can then be

rewritten as

ν(f) =

m∑
j=1

n∑
i=0

(ci,rj − ci,rj−1
)µi(Bj),

with ci,r0 = 0. This means, that a valuation of a constructible function can
be expressed as a sum of finite differences of valuations of its excursion sets.
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2 HADWIGER INTEGRATION 2.3 Extending the integral

Changing the order of summation and setting ci(f) :=
∑m
j=1(ci,rj − ci,rj−1)1Bj ,

we obtain

ν(f) =

n∑
i=0

∫
Rn
ci(f) dµi.

�

Remark 2.13 It is easy to see that the last result also holds for functions of the
form f =

∑m
i=1 ri1Ai with ri ∈ R and definable sets Ai ⊂ Rn.

2.3 Extending the integral

In one of the first works on Euler integration [30], Viro thought of the Euler
characteristic as a finitely-additive measure (see also Example 1.5). Whilst
one can see the similarities in defining an integral like in measure theory, the
lack of σ-additivity and positivity are an issue when it comes to defining an
integral for continuous functions. Without positivity for example one does not
get monotonicity, e.g. χ({0}) = 1 but χ((−1, 1)) = −1. Also, due to the lack
of σ-additivity one cannot try to solve this by seeing χ as a signed measure.
For example for a signed measure ν on R with the Borel σ-algebra, the Hahn
decomposition theorem states, that there exist two measurable sets P and N ,
such that

1. P ∪N = R and P ∩N = ∅,

2. for each Borel set A ⊆ P one has ν(A) ≥ 0,

3. for each Borel set A ⊆ N one has ν(A) ≤ 0.

Since χ({x}) = 1 for every x ∈ R, the positive set P of χ has to be R. But then
χ would not admit any negative values.

Another issue occurs when we consider Lebesgue’s decomposition theorem. Ap-
plied to the Lebesgue measure and another σ-finite signed measure ν on R1 it
states that there exist two σ-finite signed measures ν0 and ν1 such that:

1. ν0 is absolutely continuous with respect to the Lebesgue measure,

2. ν1 is singular,

3. ν = ν0 + ν1.

Furthermore, if ν is locally finite, the function x 7→
∫ x
a

dν only has finitely many
points of discontinuity on every bounded set. These points ask for special atten-
tion when one integrates with respect to ν. However, if we tried to consider the
Euler characteristic instead of ν, every point would be a point of discontinuity.
Especially, by the rigid motion invariance of the intrinsic volumes, one point
of discontinuity implies discontinuity everywhere. Recall that µn is a simple
valuation, which means that it vanishes on sets of dimension less than n. The
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2 HADWIGER INTEGRATION 2.3 Extending the integral

intrinsic volumes µi, on the other hand, are not simple for i < n. This causes
problems when one tries to approximate a continuous function with lower and
upper step functions. See also Lemma 2.16 and Example 2.20.

Definition 2.14 (Hadwiger Integral) We define the lower Hadwiger integrals
of a definable function f ∈ Def(Rn) with support X ⊂ Rn as∫

X

f bdµkc := lim
m→∞

1

m

∫
X

bmfc dµk. (2.10)

Similar the upper Hadwiger integrals are defined as∫
X

f ddµke := lim
m→∞

1

m

∫
X

dmfe dµk. (2.11)

Note that initially it is not clear if these limits even exist. The following the-
orem will give us equivalent expressions of the Hadwiger integrals and thereby
existence of the limits.

Theorem 2.15 For f ∈ Def(Rn) with support X ⊂ Rn we get the following
equivalent expressions of the lower Hadwiger integrals∫

X

f bdµkc =

∫ ∞
0

(µk{f ≥ s} − µk{f < −s}) ds excursion sets (2.12)

=

∫
Graff(n,n−k)

∫
X∩V

f bdχc dλnn−k(V ). slices (2.13)

Similarly we get for the upper Hadwiger integrals∫
X

f ddµke =

∫ ∞
0

(µk{f > s} − µk{f ≤ −s}) ds excursion sets (2.14)

=

∫
Graff(n,n−k)

∫
X∩V

f ddχe dλnn−k(V ). slices (2.15)

Proof. We will show the results only for the lower Hadwiger integrals since
the proofs for the corresponding identities for the upper Hadwiger integrals are
analogous.
For the first equation we consider that for m > 0

bmfc =

∞∑
i=−∞

i1{bmfc=i} =

∞∑
i=1

i1{bmfc=i} −
∞∑
i=1

i1{bmfc=−i}

=

∞∑
i=1

1{mf≥i} −
∞∑
i=0

1{mf<−i} = −1{f<0} +

∞∑
i=1

1{mf≥i} − 1{mf<−i}.

(2.16)

Now we set T = sup(|f |) and furthermore N = mT . Considering the fact
that |µk{f < 0}| <∞ and using the definition of the lower Hadwiger integrals
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2 HADWIGER INTEGRATION 2.3 Extending the integral

together with (2.16) we have∫
X

f bdµkc = lim
m→∞

1

m

∫
X

bmfc dµk

= lim
m→∞

1

m

(
−µk{f < 0}+

∞∑
i=1

µk{mf ≥ i} − µk{mf < −i}

)

= lim
N→∞

T

N

N∑
i=1

µk

{
f ≥ iT

N

}
− µk

{
f < − iT

N

}

=

∫ T

0

µk{f ≥ s} − µk{f < −s} ds,

which shows (2.12).

To prove (2.13), we use Hadwiger’s formula (2.2) to obtain∫ ∞
0

µk{f ≥ s} − µk{f < −s} ds

=

∫ ∞
0

∫
Graff(n,n−k)

χ({f ≥ s} ∩ V )− χ({f < −s} ∩ V ) dλnn−k(V ) ds.

We now want to apply Fubini’s theorem. First, we note that the excur-
sion sets {f ≥ s} and {f < −s} are definable, which implies that they
have finite Euler characteristic and thus the integrand is finite. Since f
has compact support X ⊂ Rn, the inner integral is over the bounded set
Graff(X;n− k) ⊂ Graff(n, n− k). Also the outer integral is over the bounded
set (0, T ) ⊂ R. Thereby we can change the order of integration and the integral
becomes∫

Graff(n,n−k)

∫ ∞
0

χ({f ≥ s} ∩ V )− χ({f < −s} ∩ V ) dsdλnn−k(V )

=

∫
Graff(n,n−k)

∫
X∩V

h bdχc dλnn−k(V ),

which concludes the proof. �

We now have multiple ways to think of the Hadwiger integrals. The definitions
of the lower and upper integrals use limits of step functions, see also Figure 5.
This makes clear, that both integrals with respect to µn are in fact n-dimensional
Lebesgue integrals. Furthermore, a illustrations of excursion sets and slices are
given in Figure 6.

A direct consequence of the definition of the Hadwiger integrals is the following.

Lemma 2.16 The Hadwiger integrals∫
X

· bdµkc : Def(Rn)→ R
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x

f(x)
1
m bmf(x)c

0

1
m

x

f(x)
1
m dmf(x)e

0

1
m

Figure 5: The lower and upper Hadwiger integrals are by definition limits of
integrals of step functions.

x

f(x)

s

−s

{f ≥ s}

{f < −s}

x

y

h(x, y)

Figure 6: Illustration of excursion sets for a function f : R→ R, as well as slices
of h by planes perpendicular to the domain, for h : R2 → R.

and ∫
X

· ddµke : Def(Rn)→ R

are not homomorphisms for dimX > 0 and k < n.

Proof. We have to show that the equality∫
X

f + g bdµkc =

∫
X

f bdµkc+

∫
X

g bdµkc,

for f, g ∈ Def(Rn) does not hold in general. This is simply due to the fact
that limm→∞bm · (f + g)c differs from limm→∞(bmfc + bmgc) only on a set
of Lebesgue measure zero but not necessarily “µk-measure” zero. The same
argumentation applies to ddµke. �

Remark 2.17 Note, that the integrals are homomorphisms for µn, since the Had-
wiger integrals with respect to µn are Lebesgue integrals.

Example 2.18 Consider the functions f(x) = x and g(x) = −x on [0, 1] ⊂ R.
Using the excursion set representation (2.12) we have∫

[0,1]

f bdχc =

∫ ∞
0

χ{f ≥ s} − χ{f < −s} ds =

∫ 1

0

χ([s, 1]) ds = 1
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x

1
m
bmf(x)c

1
m
bmg(x)c

f(x), g(x)

0

1
m

f(x)

g(x)

1
m
bmf(x)c

1
m
bmg(x)c

x

1
m

(bmf(x)c + bmg(x)c)

f(x), g(x)

0

− 1
m

f(x)

g(x)

1
m

(bmf(x)c + bmg(x)c)

Figure 7: The sum of the lower Euler integrals of f and g does not vanish.

∫
[0,1]

g bdχc =

∫ ∞
0

χ{g ≥ s} − χ{g < −s} ds = −
∫ 1

0

χ((s, 1]) ds = 0

However, ∫
[0,1]

f + g bdχc =

∫
[0,1]

0 bdχc = 0.

This is also easy to see using the definition of the lower Euler integral:

1
m bmf(x)c =

m−1∑
i=0

i
m1[i·m,(i+1)·m) + 1{1}

1
m bmg(x)c = 0 · 1{0} −

m−1∑
i=0

i+1
m 1(i·m,(i+1)·m]

Addition gives

1
m (bmf(x)c+ bmg(x)c) = − 1

m

m−1∑
i=0

1(i·m,(i+1)·m)

and consequently

∫
[0,1]

f bdχc+

∫
[0,1]

g bdχc = lim
m→∞

− 1
m

m−1∑
i=0

χ((i ·m, (i+ 1) ·m))

= lim
m→∞

− 1
m ·m · (−1) = 1.

See also Figure 7.

Another immediate consequence of Theorem 2.15 is the following Corollary,
which gives us a certain kind of duality between the lower and upper Hadwiger
integrals.

34
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x

y

f(x, y)

0

1

Figure 8: The function f : [0, 1]2 → R, f(x, y) = min(x, y).

Corollary 2.19 For f ∈ Def(Rn) the following equation holds:∫
X

f bdµkc = −
∫
X

−f ddµke.

Proof. Using equations (2.12) and (2.14) we get∫
X

f bdµkc =

∫ ∞
0

µk{f ≥ s} − µk{f < −s} ds

=

∫ ∞
0

µk{−f ≤ −s} − µk{−f > s} ds = −
∫
X

−f ddµke.

�

The following example, given by Wright in [31], shows that the lower and upper
Hadwiger integrals with respect to µk are not equal in general.

Example 2.20 We consider the function f : [0, 1]n → R, f(x1, . . . , xn) =
min(x1, . . . , xn). For s ∈ [0, 1], we have

{f ≥ s} = [s, 1]n.

In other words, the excursion set equals an n-dimensional cube with side lengths
1−s. Using the formula for orthogonal parallelotopes, equation (1.11), we obtain

µn−1{f ≥ s} = µn−1([s, 1]n) = n(1− s)n−1.

Next, we consider the strict excursion set {f > s}, which is also an n-dimension
cube with side lengths 1−s, but open along half of its (n−1)-dimensional faces.
This means, that we have to subtract half of the 2n faces.

µn−1{f > s} = µn−1([s, 1]n)−nµn−1((s, 1)n−1) = n(1−s)n−1−n(1−s)n−1 = 0.
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2 HADWIGER INTEGRATION 2.3 Extending the integral

Furthermore the sets {f < −s} and {f ≤ −s} are empty. Thereby, we get∫
[0,1]n

f bdµn−1c =

∫ ∞
0

µn−1{f ≥ s} − µn−1{f < −s} ds

=

∫ ∞
0

n(1− s)n−1 − 0 ds = 1.

On the other hand∫
[0,1]n

f ddµn−1e =

∫ ∞
0

µn−1{f > s} − µn−1{f ≤ −s} ds

=

∫ ∞
0

0− 0 ds = 0.

The difference between the upper and lower Hadwiger integrals does not always
have to be that extreme. In fact, for the example above it is crucial that the
canonical extension of f to Rn, that is f ≡ 0 outside of [0, 1]n, is not continuous.
In particular, if f is a continuous function, then the lower and upper Hadwiger
integrals differ at most by a minus sign.

Theorem 2.21 For every continuous definable function f with compact l-
dimensional support X,∫

X

f bdµkc = (−1)l+k
∫
X

f ddµke.

Proof. The cell decomposition theorem (see [29], Chapter 3) allows us to parti-
tion X into finitely many cells, with f being either constant or affine on each
cell. E.g. the cells for n = 1 are points and open intervals, the cells in R2 are
points, intervals on vertical lines {a} × R, the graphs of continuous definable
functions defined on intervals, as well as the “open spaces” between the graphs
of each two smooth functions g, h with g < h, as depicted in Figure 9. Now for
a continuous function, the cases

relint{f ≥ s} 6= {f > s} and relint{f ≥ −s} 6= {f < −s}

can only occur if f is constant, f ≡ s, on a cell C ⊂ X of positive l-dimensional
Lebesgue measure. Since there are only finitely many cells, such that f is
constant on them, we have that

relint{f ≥ s} = {f > s} and relint{f ≥ −s} = {f < −s},

for almost all s ∈ [0,∞). Using a definable version of Theorem 1.34, which can
be found in [31], we obtain that

µk{f ≥ s} = (−1)l+kµk{f > s} and µk{f < −s} = (−1)l+kµk{f ≤ −s},
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2 HADWIGER INTEGRATION 2.3 Extending the integral

x

g(x)

h(x)

g(x)

h(x)

C

(g, h)C

Figure 9: The “open space” (g, h)C between two smooth functions g, h defined
on a cell C ⊂ R with g < h is a possible cell in R2.

for almost all s ∈ [0,∞). Using the excursion set representation of the lower
and upper Hadwiger integrals, this gives us∫

X

f bdµkc =

∫ ∞
0

µk{f ≥ s} − µk{f < −s} ds

= (−1)l+k
∫ ∞

0

µk{f > s} − µk{f ≤ −s} ds = (−1)l+k
∫
X

f ddµke.

�

We conclude this chapter, by showing that the lower and upper Hadwiger inte-
grals are valuations on Def(Rn).

Theorem 2.22 For f, g ∈ Def(Rn), one has∫
Rn
f ∨ g bdµkc+

∫
Rn
f ∧ g bdµkc =

∫
Rn
f bdµkc+

∫
Rn
g bdµkc,

and similarly for the upper Hadwiger integrals.

Proof. Since f and g are definable, their graphs are definable sets, which implies
that also the sets {f ≥ g} and {f < g} are definable. Obviously, these two sets
give us a partition of Rn. We now rewrite∫

Rn
f ∨ g bdµkc =

∫
{f≥g}

f bdµkc+

∫
{f<g}

g bdµkc,

and similarly ∫
Rn
f ∧ g bdµkc =

∫
{f≥g}

g bdµkc+

∫
{f<g}

f bdµkc.

Addition of the equations and recombining the integrals on the right side gives
the desired result. �
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Before we can state a classification theorem for valuations on Def(Rn) we need
corresponding topologies to distinguish between the lower and upper Hadwiger
integrals. Therefore we will introduce currents.

3.1 Currents

First we will recall some definitions and give new ones respectively. A differential
form of degree k or differential k-form on a smooth manifold U ⊆ Rn is a smooth
section of the kth exterior power of the cotangent bundle of U . That is, ω is a
k-form on U if it defines an alternating multilinear map

ωp : TpU × · · · × TpU︸ ︷︷ ︸
k times

→ R,

for every point p ∈ U , whereas TpU denotes the tangent space to U at p. For
example a smooth real-valued function on U would be a 0-form. The space
of compactly-supported differential k-forms on U ⊆ Rn shall be denoted by
Ωkc (U). Now, for every k-form ω on U and every point p ∈ U , ωp can be
seen as an element of the kth exterior power of the cotangent bundle of U at
p, ωp ∈

∧k
(T ∗pU), which lets us define the wedge product of a k-form and an

l-form
∧ : Ωkc (U)× Ωlc(U)→ Ωk+l

c (U), (ω, η) 7→ ω ∧ η,

where ω ∧ η is defined pointwise via

(ω ∧ η)p = ωp ∧ ηp.

The wedge product is graded commutative:

ω ∧ η = (−1)k·lη ∧ ω,

for a k-form ω and an l-form η.

Furthermore, there exists a unique R-linear map

d : Ωkc (U)→ Ωk+1
c (U),

known as exterior derivative which satisfies the following properties:

• If f is a smooth function (a 0-form), then df is the differential of f .

• d ◦ d = 0.

• d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη where ω is a p-form, which means that
d is a so-called antiderivation.
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3 CLASS. OF VALUATIONS ON FUNCTIONALS 3.1 Currents

Example 3.1 Let x1, . . . , xn be a coordinate system on U ⊆ Rn. These coordi-
nates can be understood as functions

xi : Rn → R, p = (p1, . . . , pn) 7→ xi(p) = pi.

The differential forms dx1, . . . , dxn then form a basis of the 1-forms on U , that
is every 1-form ω on U has a unique representation

ω = f1 dx1 + · · ·+ fn dxn

with fi : U → R. For example when considering the integral of a real-valued
function f on an interval [a, b], ∫ b

a

f(x) dx,

the expression f(x) dx is a 1-form.

As mentioned in the example above we can integrate over differential forms.
For example if U ⊆ Rn is an n-dimensional smooth manifold with a coordinate
system x1, . . . , xn and ω ∈ Ωkc (U) has a representation

ω = f(x1, . . . , xn) dx1 ∧ · · · ∧ dxn

then ∫
U

ω =

∫
U

f(x1, . . . , xn) dx1 · · · dxn.

Definition 3.2 We denote the dual space of Ωkc (U) by Ωk(U). The elements
of Ωk(U) are called k-dimensional currents on U . This means, that the k-
dimensional currents on U are the continuous linear functionals on Ωkc (U). Fur-
thermore, the boundary of a current T ∈ Ωk(U) is the current ∂T ∈ Ωk−1(U)
defined by

(∂T )(ω) := T ( dω),

for all ω ∈ Ωk−1
c (U). Currents with zero boundary are referred to as cycles.

The mass M(T ) of a current T ∈ Ωk(U) is defined by

M(T ) := sup{T (ω) | ω ∈ Ωkc (U), sup ‖ωx‖ ≤ 1 ∀x ∈ U},

where ‖ωx‖ := sup{|ωx(z)| : z is a simple unit k-vector}. Conclusively, we
define the flat norm |T |[ of T ∈ Ωk(U) as

|T |[ := inf{M(R) + M(S) | T = R+ ∂S, R ∈ Ωk(U), S ∈ Ωk−1(U)}.

An important type of currents is associated with submanifolds of Rn and repre-
sentable by integration. LetM denote a C1 orientedm-dimensional submanifold

39



3 CLASS. OF VALUATIONS ON FUNCTIONALS 3.1 Currents

R ∈ Ω1(Rn) S ∈ Ω2(Rn) T = R+ ∂S ∈ Ω1(Rn)

Figure 10: The 1-current T is decomposed as the sum of a 1-current R and the
boundary of a 2-current S.

of Rn. Furthermore, let ω ∈ Ωkc (U) with M ⊆ U and consider the restriction of
ω to M . An m-dimensional current is then defined by

[[M ]](ω) =

∫
M

ω.

The mass of a current associated with an m-dimensional submanifold is simply
its m-dimensional volume. This also gives us a more graphic way to think about
the flat norm of a current as quantifying the minimal-mass decomposition of a
k-current T into a k-current R and the boundary of a (k + 1)-current S, which
is illustrated in Figure 10. In this case the sum of the length of R and the area
of S is minimized. For further details on currents see [18], Chapter 7.

Every definable set is associated with a particular current, known as the conor-
mal cycle. The conormal cycle of a compact definable set A ⊆ Rn+1 shall be
denoted by CA and is an n-current on Rn+1 × Sn, where Sn ⊂ Rn+1 denotes
the unit n-sphere. The long and technical definition, which is not of particular
importance for this work, can be found in [23]. For example, if M is a subman-
ifold of Rn, then the conormal cycle CM can be identified with the current of
integration defined by the total space of the conormal bundle of the embedding
M ↪→ Rn (see [24]). The conormal cycle of an interval [a, b] ⊂ R ⊂ R2 can be
seen in Figure 11.

Since the construction of the conormal cycle is based on the use of morphisms,
we have an additive property:

CA∪B + CA∩B = CA + CB , (3.1)

for definable sets A and B.

In order to represent the intrinsic volumes with the help of conormal cycles, we
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x

ρ

−π

π

a

b

C[a,b]

Figure 11: The conormal cycle C[a,b] of the interval [a, b].

will introduce special differential forms.
Let x1, . . . , xn+1 be the standard orthonormal basis in Rn+1, and ρ1, . . . , ρn
an orthonormal frame for Sn. We define the following differential n-form on
Rn+1 × Sn using the wedge product:

V(t) = ( dx1 + tdρ1) ∧ · · · ∧ ( dxn + tdρn).

For t = 0 this is the volume form on Rn. Moreover, V(t) is invariant under rigid
motions of Rn+1, extended to Rn+1 × Sn. For details see [22], Chapter 19.

Definition 3.3 For 0 ≤ k ≤ n, let Wn,k denote the coefficient of tn−k in V(t).
The form Wn,k is called the kth Lipschitz-Killing curvature form of degree n.

Example 3.4 The Lipschitz-Killing curvature forms of degree 2 on R3 × S2 are
given by

W2,0 = dρ1 ∧ dρ2

W2,1 = dρ1 ∧ dx2 + dx1 ∧ dρ2

W2,2 = dx1 ∧ dx2.

Theorem 3.5 For each definable set A ⊆ Rn, the integral∫
CA
Wn,k (3.2)

is, up to a constant multiple, the intrinsic volume µk(A).

Proof. Since the conormal cycles are additive, expression (3.2) is a valuation on
the set of definable subsets of Rn. Furthermore, the Lipschitz-Killing curvature
forms are Euclidean-invariant, which implies that this valuation is rigid motion
invariant. Since the conormal cycles are also convex continuous, we obtain that
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3 CLASS. OF VALUATIONS ON FUNCTIONALS 3.2 Continuity

the integral is convex continuous. Moreover, by the definition of the Lipschitz-
Killing curvature forms, µ(A) :=

∫
CA
Wn,k is homogeneous of degree k. Hence,

by Corollary 1.43, the integral is µk(A), up to a constant multiple. �

Remark 3.6 Note that for A ⊂ Rn the current CA is actually of degree n − 1,
whilst the Lipschitz-Killing curvature form Wn,k is of degree n. In order to
establish compatibility we have to consider A as a subset of Rn+1.

Example 3.7 Consider the space of invariant 1-forms on R2×S1 which is spanned
by the two forms W1,0 = dρ and W1,1 = dx. The intrinsic volumes of the
interval [a, b] can be computed by the following integrals (see also Figure 11):

µ0([a, b]) =

∫
C[a,b]

1

2π
dρ = 1

µ1([a, b]) =

∫
C[a,b]

dx = b− a.

Recall that the integrals over the Lipschitz-Killing curvature forms give us the
intrinsic volumes only up to a constant multiple. Therefore we have to use a
normalization such as 1

2π .

3.2 Continuity

We start by introducing a metric on the definable subsets of Rn.

Definition 3.8 For definable subsets A,B ⊆ Rn we define the flat metric as
follows:

d(A,B) = |CA −CB |[. (3.3)

The topology on the definable subsets induced by this metric is called the flat
topology.

To get a better understanding of the flat topology, one can think of it as a
generalization of the Hausdorff topology on convex sets. This means, a sequence
of convex sets converges in the Hausdorff topology iff it converges in the flat
topology. The same is not true for non-convex sets. For details see [11], Section
3.

Theorem 3.9 The intrinsic volumes µ0, . . . , µn are continuous with respect to
the flat topology.

Proof. Let K,J ⊆ Rn be bounded definable sets, ε > 0 and let B be a ball in
Rn containing a common neighborhood of K and J . Now for any T ∈ Ωn(B)
and ω ∈ Ωnc (B) we have

|T (ω)| ≤ |T |[ max

{
sup
x∈B
‖ωx‖, sup

x∈B
‖dωx‖

}
. (3.4)
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3 CLASS. OF VALUATIONS ON FUNCTIONALS 3.2 Continuity

Using T = CK −CJ and ω =Wn,k, equation (3.4) becomes

|µk(K)− µk(J)| =
∣∣∣∣∫

CK
Wn,k −

∫
CJ
Wn,k

∣∣∣∣ =

∣∣∣∣∫
CK−CJ

Wn,k

∣∣∣∣
≤ |CK −CJ |[ max

{
sup
x∈B
‖(Wn,k)x‖, sup

x∈B
‖( dWn,k)x‖

}
. (3.5)

Since Wn,k and dWn,k are bounded on B, we can set

δ := ε ·
(

max

{
sup
x∈B
‖(Wn,k)x‖, sup

x∈B
‖( dWn,k)x‖

})−1

,

and obtain
|µk(K)− µk(J)| < ε

for all definable sets K,J ⊆ Rn such that d(K,J) = |CK −CJ |[ < δ. �

We now want to define a metric on Def(Rn). One would expect from this metric
that any open set containing r · 1a also contains (r + ε) · 1A for small enough
ε. Furthermore, if definable sets A and B are close in the flat topology, then
ν(r · 1A) and ν(r · 1B) should be close for any continuous valuation ν.

Definition 3.10 The lower and upper flat metrics on definable functions, de-
noted by d[ and d[, respectively, are defined as

d[(f, g) =

∫ ∞
−∞

∣∣∣C{f≥s} −C{g≥s}
∣∣∣
[

(3.6)

d[(f, g) =

∫ ∞
−∞

∣∣∣C{f>s} −C{g>s}
∣∣∣
[

(3.7)

for all f, g ∈ Def(Rn). The topologies induced by these metric are called the
lower and upper flat topologies on definable functions.

Remark 3.11 Since functions in Def(Rn) are bounded it suffices to integrate in
(3.6) and (3.7) between the minimum and maximum of f and g.

These metrics indeed extend the flat metric on definable sets. For two definable
sets A,B ⊂ Rn let f = 1A and g = 1B to obtain

d[(f, g) = d[(f, g) =

∫ 1

0

|CA −CB |[ ds = d(A,B).

Theorem 3.12 The lower flat topology on definable functions differs from the
corresponding upper flat topology.

Proof. To prove the statement it is sufficient to find a sequence of functions
that converge to a different limit in the lower and upper flat topologies. For
that we consider a linear function f : R → R on a closed interval, as depicted
in Figure 12(a). E.g. f(x) = (l · x+ d) · 1[a,b](x) for some suitable real numbers
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x

f(x)

s

x

gm(x)

1
m

s

f

gm

(a) A definable function f : R→ R and a lower step function gm = 1
m
bmfc.

{f ≥ s}

{gm ≥ s}

{f ≥ s} − {gm ≥ s}

R

S1

−π

C{f≥s}−{gm≥s}

(b) Excursion sets of f and gm and the corresponding conormal cycle of their difference.

{f > s}

{gm > s}

{f > s} − {gm > s}

R

S1

−π

π

C{f>s}−{gm>s}

(c) Strict excursion sets of f and gm and the corresponding conormal cycle of their difference.

Figure 12: The series gm converges to f in the lower flat topology but not in
the upper flat topology.

l, d, a, b. For m > 0, let gm = 1
mbmfc, which is the lower step function of f

with step size 1
m . For 0 < s < P := maxx∈R f(x) the difference of the upper

excursion sets {f ≥ s} and {gm ≥ s} is a half-open interval the length of which
is bounded by a multiple of 1

m and decreases to zero as m→∞. The flat norm

of the corresponding conormal cycle C{f≥s}−{gm≥s} is bounded by a constant
multiple of the “area of the current”, see also Figure 12(b). Since the area is
bounded by a multiple of the length of the half-open interval described above
we have ∣∣∣C{f≥s}−{gm≥s}∣∣∣

[
≤ c 1

m
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3 CLASS. OF VALUATIONS ON FUNCTIONALS 3.3 Hadwiger’s theorem

for some c > 0. This implies that gm converges to f in the lower flat topology:

lim
m→∞

d[(f, gm) = lim
m→∞

∫ ∞
−∞

∣∣∣C{f≥s}−{gm≥s}∣∣∣
[

ds ≤ lim
m→∞

∫ P

0

c 1
m ds = 0.

On the other hand, the sequence gm does not converge to f in the upper flat
topology. To see that, we have to consider the difference of the strict excursion
sets {f > s} and {gm > s} which is an open interval for 0 < s < P . The

flat norm of the corresponding conormal cycle C{f>s}−{gm>s} is bounded from
below by the length of S1 (Figure 12(c)). Therefore, we do not have convergence
in the upper flat topology.

Similarly, the sequence hm = 1
mdmfe converges to f in the upper flat topology,

but not in the lower flat topology. �

Definition 3.13 A valuation ν : Def(Rn) → R is said to be a lower valuation
if ν is continuous in the lower flat topology. Likewise, ν is said to be an upper
valuation if ν is continuous in the upper flat topology.

Theorem 3.14 The lower and upper Hadwiger integrals are lower and upper
valuations, respectively.

Proof. Let f, g ∈ Def(Rn), supported on compact X ⊂ Rn. Considering equa-
tion (3.5) in the proof of Theorem 3.9 we have for the lower Hadwiger integrals:∣∣∣∣∫ f bdµkc −

∫
g bdµkc

∣∣∣∣ =

∣∣∣∣∫ ∞
0

(µk{f ≥ s} − µk{g ≥ s}) ds

∣∣∣∣
≤
∫ ∞

0

|C{f≥s} −C{g ≥ s}|[ ·max{sup
x∈X
‖(Wn,k)x‖, sup

x∈X
‖( dWn,k)x‖} ds

= d[(f, g) ·max{sup
x∈X
‖(Wn,k)x‖, sup

x∈X
‖( dWn,k)x‖}.

Since (Wn,k)x and ( dWn,k)x are bounded for x ∈ X, one has that the lower
Hadwiger integrals of f and g are close if the functions are close in the lower
flat topology. The proof for the upper Hadwiger integrals is analogous. �

3.3 Hadwiger’s theorem for functionals

Equipped with proper topologies on Def(Rn) and corresponding types of conti-
nuity for valuations on definable functions, we can go on to extend Lemma 2.12
to valuations on Def(Rn).

Proposition 3.15 For any continuous, strictly decreasing function c : R → R
one has

lim
m→∞

∫
Rn
c

(
1

m
dmfe

)
dµk = lim

m→∞

∫
Rn

1

m
bmc(f)c dµk,

for every f ∈ Def(Rn).
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Proof. Rewriting of the integral of c composed with the upper step functions of
f gives us ∫

Rn
c

(
1

m
dmfe

)
dµk =

∑
i∈Z

c( im ) · µk{ i−1
m < f ≤ i

m}.

Since c is strictly decreasing there exists a corresponding inverse function c−1.
Furthermore, let U denote a neighborhood of the range of f to define the discrete
set

S = {c−1( im )|i ∈ Z} ∩ U .

This allows us to rewrite the integral of the lower step functions of c(f) as
follows:∫

Rn

1

m
bmc(f)c dµk =

∑
i∈Z

i
m · µk{

i
m ≤ c(f) < i+1

m }

=
∑
s∈S

c(s) · µk{c(s) ≤ c(f) < c(s− εs)} =
∑
s∈S

c(s) · µk{s− εs < f ≤ s},

with proper εs > 0. By continuity of c, εs → 0 as m→∞ and consequently the
limits of the integrals are equal:

lim
m→∞

∑
i∈Z

c( im ) · µk{ i−1
m < f ≤ i

m} = lim
εs→0

∑
s∈S

c(s)µk{s− εs < f ≤ s}.

�

The last result implies that if c : R → R is decreasing, then the valuation
ν : Def(Rn)→ R

ν(f) =

∫
Rn
c(f) bdµkc

is not continuous in the lower flat topology but in the upper flat topology. A
similar implication follows for upper Hadwiger integrals. Furthermore, if c is
increasing on some interval and decreasing on another, then ν is not contin-
uous in either the lower or the upper flat topology. The same follows for the
corresponding upper Hadwiger integrals.

Theorem 3.16 (Baryshnikov, Ghrist, Wright)
For any rigid motion invariant lower valuation ν on Def(Rn) there exist con-
tinuous increasing functions ci : R→ R with ci(0) = 0, such that

ν(f) =

n∑
i=0

∫
Rn
ci(f) bdµic,

for all f ∈ Def(Rn). Similarly, any upper valuation ν on Def(Rn) can be written
as a linear combination of upper Hadwiger integrals.
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Proof. Consider a lower valuation ν : Def(Rn) → R and a definable function
f ∈ Def(Rn). Like in the definition of the lower Hadwiger integrals we approxi-
mate f by lower step functions

fm = 1
mbmfc

for m > 0. Using the lower flat topology on Def(Rn) we have

lim
m→∞

fm = f.

By Hadwiger’s theorem for constructible functions, Lemma 2.12, we have that
ν is a linear combination of Hadwiger integrals on each of these step functions.
That is

ν(fm) =

n∑
i=0

∫
Rn
ci(fm) dµi,

for some coefficient functions ci : R → R with ci(0) = 0, depending only on
ν and not on m. Since we are considering constructible functions we can also
write this as

ν(fm) =

n∑
i=0

∫
Rn
ci(fm) bdµic.

Using Proposition 3.15 and considering the fact that we are approximating f
with lower step functions in the lower flat topology, the ci must be continuous
increasing functions.
Since ν is a lower valuation and fm converges to f in the lower flat topology we
have

ν
(

lim
m→∞

fm

)
= ν(f) = lim

m→∞
ν(fm) =

n∑
i=0

lim
m→∞

∫
Rn
ci(fm) bdµic. (3.8)

Since the lower Hadwiger integrals are continuous with respect to the lower flat
topology and the ci are continuous this becomes

ν(f) =

n∑
i=0

∫
Rn
ci

(
lim
m→∞

fm

)
bdµic =

n∑
i=0

∫
Rn
ci(f) bdµic,

which concludes the proof for lower valuations. The proof for upper valuations
is analogous. �

Corollary 3.17 If ν : Def(Rn) → R is an rigid motion invariant valuation,
both lower- and upper-continuous, then

ν(f) =

∫
Rn
c(f) dL

for some continuous function c : R → R and with dL = bdµnc = ddµne
denoting the Lebesgue measure.
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Proof. By Theorem 3.16 there exist there exist real-valued continuous functions
ci, ci with ci(0) = ci(0) = 0 such that

ν(f) =

n∑
i=0

∫
Rn
ci(f) bdµic =

n∑
i=0

∫
Rn
ci(f) ddµie,

for every f ∈ Def(Rn).
We want to show that ci = ci for all i = 0, 1, . . . , n. We start with i = 0 and
consider any point x ∈ R and let f = r · 1{x} for arbitrary r ∈ R. Since only
the Euler characteristic contributes to ν(f) we get c0(r) = c0(r) for any r ∈ R
and consequently c0 = c0.

Now assume that we have shown that ci = ci for all i = 0, 1, . . . , k with k < n.
Let A be an orthogonal parallelotope of dimension k + 1 and evaluate ν on
f = r ·1A. Since the intrinsic volumes µk+2, . . . , µn vanish on sets of dimension
k + 1, we have

k+1∑
i=0

ci(r)µi(A) =

k+1∑
i=0

ci(r)µi(A).

Using the hypothesis it follows that ck+1 = ck+1. By induction on k, we have
ci = ci for all i = 0, 1, . . . , n.

Knowing that the lower and upper Hadwiger integrals with respect to µi are
not the same on Def(Rn) for i = 0, . . . , n − 1 we have that ci = ci ≡ 0 for
i = 0, . . . , n− 1. Since bdµnc = ddµne = dµn = dL we have

ν(f) =

∫
Rn
c(f) dL

for some continuous function c : R→ R. �

Remark 3.18 In contrast to Hadwiger’s characterization theorem for valuations
on Polycon(n) Theorem 3.16 gives a dual generalization to classify lower and
upper valuations. The question arises if there is a topology on Def(Rn) such
that any rigid motion invariant valuation ν that is continuous with respect to
said topology can be written as

ν(f) =

n∑
i=0

(∫
Rn
ci(f) bdµic+

∫
Rn
ci(f) ddµie

)
,

for some continuous functions ci, ci : R→ R. Wright points out that this cannot
be achieved with the union of the lower and upper flat topologies since the set
of continuous valuations on Def(Rn) would be enlarged by too much [31].
Another approach would be to examine valuations on continuous definable func-
tions. By Theorem 2.21 the lower and upper Hadwiger integrals of a continuous
function differ at most by a minus sign. This yields that when considering only
continuous definable functions that the Hadwiger integrals are both lower and
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upper valuations at the same time. However, since constructible functions are
not continuous one cannot apply Lemma 2.12. Therefore, it would be possi-
ble that Hadwiger integration alone does not give all continuous valuations.
A potential solution could be a result similar to Groemer’s extension theorem
that states that any rigid motion invariant continuous valuation on continuous
definable functions admits a unique extension on Def(Rn) together with some
regularity condition as in Lemma 2.12.
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4 Integral Transforms

In this chapter some of the most common integral transforms for Hadwiger
and especially Euler integrals are examined. Fubini’s theorem as presented
here was probably first considered by Viro in [30]. Pioneering on Convolu-
tion, Duality and Radon transform was done by Schapira in [25] and [26]. The
Hadwiger-Bessel and Hadwiger-Fourier transforms were introduced by Wright
in [31] whereas many results for the transforms with respect to the Euler charac-
teristic were already given by Ghrist and Robinson in [12]. Direct applications
for most transforms can be found in the next chapter.

4.1 Fubini’s theorem

Using a sheaf theoretic perspective we are able to obtain new insight in integra-
tion with respect to the Euler characteristic. Briefly, a sheaf is a tool to assign
some algebraic object to open sets of a topological space, respecting the oper-
ations of restriction and gluing. An canonical example for a sheaf on a space
X is C(X), the space of continuous real-valued functions on X. This is a sheaf
since the restriction of a continuous function is continuous and two continuous
functions on subsets that agree on the intersection of their domains extend to
a continuous function on the union.

Another example of a sheaf over X would be the space of constructible functions
CF(X) which allows another interpretation of Euler integration. See [2], [4] and
[25].

Definition 4.1 For two spaces X,Y let F : X → Y be a definable map. The
pushforward of F is the induced homomorphism F∗ : CF(X)→ CF(Y ) defined
via

F∗f(y) =

∫
F−1(y)

f dχ,

for all f ∈ CF(X) and y ∈ Y .

The pullback of F is the mapping F ∗ : CF(Y )→ CF(X) given by

F ∗g(x) = g(F (x)),

for all g ∈ CF(Y ).

Since F is definable and f has compact support the integral of f on F−1(y)
in the definition of the pushforward exists for every y ∈ Y . Furthermore, the
pushforward and the pullback are functorial, which means, roughly speaking,
that things commute as expected. This is expressed in the Projection formula

F∗(f · F ∗g)(y) = F∗f(y) · g(y), (4.1)

as well as Fubini’s theorem.
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Theorem 4.2 (Fubini’s theorem) For a definable map F : X → Y and
f ∈ CF(X) one has ∫

X

f dχ =

∫
Y

F∗f dχ.

Proof. Consider the trivial map X → {pt} which only attains the single value
pt. Since CF({pt}) ∼= Z, the pushforward of the trivial map is a homomorphism
CF(X)→ Z which is in fact the integral with respect to the Euler characteristic.
By functoriality of the pushforward the following diagram commutes for any
definable map F : X → Y :

CF(X)

∫
X

dχ
//

F∗ $$

Z

CF(Y )

∫
Y

dχ

<<

�

Remark 4.3 Another argumentation for Fubini’s theorem given by Viro in [30]
relies on the fact that

χ(X × Y ) = χ(X) · χ(Y )

for two spaces X and Y .

4.2 Convolution

The definition of a convolution operator with respect to the Euler characteristic
is straightforward.

Definition 4.4 For two constructible functions f, g ∈ CF(Rn) the Euler con-
volution is defined as

(f ∗ g)(x) =

∫
Rn
f(y)g(x− y) dχ(y).

For the characteristic functions of compact convex sets A,B ∈ Kn, there is a
close relationship between the Euler convolution and the Minkowski sum:

(1A ∗ 1B) = 1A+B (4.2)

Equation (4.2) might not hold if one of the sets is not compact, as the example
of a half-open interval and the unit ball in R2 shows, which is depicted in Figure
13. Similarly, one can show that (4.2) does not hold in general if the sets are not
convex. For example, take a discrete set consisting of two points with distance d
and a closed ball with radius r > d

2 . The resulting function is not a characteristic
function at all, since it attains the value 2. See also Figure 14.
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K
1K ∗ 1B2

K +B2

Figure 13: The convolution of the characteristic functions of a half-open line seg-
ment K and the unit ball B2 is not the characteristic function of the Minkowski
sum K +B2.

x1 x2

d r > d
2

Figure 14: The convolution of the characteristic functions of a discrete set K =
{x1, x2} and a ball, the radius of which is large enough, is not a characteristic
function at all.

Another direct consequence of Equation (4.2) is the following lemma, where we
use the notation

f∗k = f ∗ · · · ∗ f︸ ︷︷ ︸
k times

,

for f ∈ CF(Rn) and k ∈ N. Moreover, let Bn(x, r) denote the n-dimensional
open ball of radius r > 0 centered x.

Lemma 4.5 Let J,O ∈ Kn. Suppose that both J and O contain the ball Bn(0, r)
for some r > 0. Then (1∗kJ ∗ 1∗kO )(x) = 1 for x ∈ Bn(0, 2kr) and k ∈ N.

Remark 4.6 Bröcker calls the convolution with respect to χ Euler multiplica-
tion. He then shows, that the constructible functions together with the usual
addition and the Euler multiplication form a commutative ring with unit, the
unit obviously being 1{0} [7].

4.3 Duality

With the help of an integral transform, defined by Schapira in [25], one can find
inverse elements for Euler multiplication.

Definition 4.7 For h ∈ CF(Rn), define the dual of h as the function given by

Dh(x) = lim
ε→0+

∫
Rn
h · 1Bn(x,ε) dχ,
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for all x ∈ Rn.

Let πRk denote the projection from Rn to Rk. Observe that πRk(Bn(x, ε)) =
Bk(πRk(x), ε), which has Euler characteristic (−1)k. Therefore, we have
D1A(x) = (−1)k for all x in the interior of a k-dimensional definable set A,
since the integral becomes limε→0+ χ(A ∩Bn(x, ε)) = χ(Bn(x, ε0)) = (−1)k for
some ε0 > 0. It is also easy to see that D1A(x) = 0 if x is in the interior of the
complement of A. The interesting cases occur for x ∈ ∂A. For a k-dimensional
definable closed set K ⊂ Rn with non-empty interior, one has

D(1K) = (−1)k1relint(K).

Similarly, for a k-dimensional definable open set O ⊂ Rn, one has

D(1O) = (−1)k1cl(O),

where cl denotes the closure of sets. Now it is also easy to see, that duality is
an involution,

DDh = h,

for all h ∈ CF(Rn). Furthermore, the following lemma provides a de-convolution
(cf. [4] and [25]).

Lemma 4.8 Let A be a bounded convex relative open or a bounded convex closed
subset of Rn with relint(A) 6= ∅. Then,

1A ∗ D1−A = 1{0}.

Proof. Let k be the dimension of A. Considering that 1−A(x) = 1A(−x) and
f ∗ g = g ∗ f , one has

(1A ∗ D1−A)(x) = (−1)k
∫
Rn

1cl(A)(y − x) · 1relint(A)(y) dχ(y)

= (−1)k · χ(cl(A+ x) ∩ relint(A)). (4.3)

For x with cl(A+x)∩relint(A) = ∅ the expression above vanishes. Furthermore,
for x = 0 (4.3) computes to

(−1)kχ(relint(A)).

Since relint(A) is homeomorphic to an open k-dimensional ball this gives

(1A ∗ D1−A)(0) = (−1)k(−1)k = 1.

The case remains, where x 6= 0 and cl(A+ x) ∩ relint(A) 6= ∅. In this case

cl(A+ x) ∩ relint(A) = B∪̇C,

where B is homeomorphic to relint(A) and C is an open subset of ∂A. Therefore,
χ(B) = −χ(C) and (1A ∗ D1−A)(x) = 0. �
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4.4 Radon transform

In order to establish a generalization of the duality on constructible functions, we
consider two spaces W and X together with the projections πW : W ×X →W
and πX : W ×X → X.

Definition 4.9 Let S ⊂ W × X be a locally closed definable set. The Radon
transform as a map RS : CF(W )→ CF(X) is then defined as

RSh = (πX)∗((π
∗
Wh) · 1S),

for all h ∈ CF(W ). This means that for any x ∈ X the Radon transformRSh(x)
gives the integral of h over a set in W that corresponds to x via S.

Example 4.10 Let ∆ = {(x, x) : x ∈ Rn} ⊂ Rn×Rn. Using the definition of the
Radon transform we have

R∆h(x) =

∫
π−1
Rn (x)

h(πRn)·1∆ dχ =

∫
∆∩π−1

Rn (x)

h(πRn) dχ =

∫
{x}

hdχ = h(x),

for all h ∈ CF(Rn). In contrast to that consider

RRn×Rnh(x) =

∫
Rn×Rn∩π−1

Rn (x)

h(πRn) dχ =

∫
Rn
hdχ,

which does not depend on x ∈ Rn anymore.

Example 4.11 Let S ⊂ Rn×Rn be a sufficiently small open tubular neighborhood
of the diagonal ∆. The Radon transform gives

RSh(x) =

∫
S∩π−1

Rn (x)

h(πRn) dχ.

Since S ∩ π−1
Rn (x) is a small n-dimensional open ball in Rn × Rn, this becomes

Dh(x). Another way to see this, is to use the Projection formula (4.1). Hence,
the Radon transform is in a certain sense a generalization of duality on con-
structible functions.

Schapira provided an inversion formula for the Radon transform in [26]. For
this, consider S ⊂W ×X. We denote the vertical fibers of S as

Sw = πX(π−1
W (w) ∩ S), w ∈W.

Similarly, the horizontal fibers are defined as

Sx = πW (π−1
X (x) ∩ S), x ∈ X.

Theorem 4.12 (Schapira’s inversion formula) Assume that S ⊂ W × X
and S′ ⊂ X ×W fulfill the following conditions:
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4 INTEGRAL TRANSFORMS 4.4 Radon transform

• χ(Sw ∩ S′w) = µ for all w ∈W

• χ(Sw ∩ S′w′) = λ for all w′ 6= w ∈W .

Then,

RS′RSh = (µ− λ)h+ λ

(∫
W

hdχ

)
1W ,

for all h ∈ CF(W ).

Proof. Let
S ×X S′ := {(s, s′) ∈ S × S′ | πX(s) = πX(s′)}.

Furthermore, let t and t′ be the projections from S×XS′ to S and S′ respectively,
r the projection from S×X S′ to W ×W , f , f ′, g, g′ the restrictions of πW and
πX to S and S′ respectively, and q1 and q2 the projections from X ×X to the
first and second component respectively. This is represented in the following
diagram:

S ×X S′

t

vv

t′

((

r

��
S

f ��

g

((

W ×W
q1

zz

q2

$$

S′

f ′~~

g′

uu
W X W

We have

RS′RSh(w) = RS′
(∫

π−1
X (·)

h(πW (s)) · 1S(s) dχ(s)

)
(w)

= RS′
(∫

g−1(·)
h(f(s)) dχ(s)

)
(w)

=

∫
(f ′)−1(w)

∫
g−1(g′(s′))

h(f(s)) dχ(s) dχ(s′)

=

∫
(f ′)−1(w)

∫
(t′)−1(s′)

h(f(t(s, s′))) dχ(s, s′) dχ(s′)

=

∫
(f ′◦t′)−1(w)

h(f ◦ t(s, s′)) dχ(s, s′)

=

∫
(q2◦r)−1(w)

h(q1 ◦ r(s, s′)) dχ(s, s′)

=

∫
q−1
2 (w)

∫
r−1(w,w′)

h(q1(r(s, s′))) dχ(s, s′) dχ(w,w′)

=

∫
q−1
2 (w)

r∗(1S×XS′ · r∗(h(q1)))(w,w′) dχ(w,w′)
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4 INTEGRAL TRANSFORMS 4.5 Bessel transform

Using the Projection formula (4.1), we obtain∫
q−1
2 (w)

(∫
r−1(w,w′)

1S×XS′ dχ

)
h(q1(w,w′)) dχ(w,w′).

By the hypothesis∫
r−1(w,w′)

1S×XS′ dχ = (µ− λ)1∆(w,w′) + λ1W×W (w,w′),

whereas ∆ denotes the diagonal in W ×W . Therefore,

RS′RSh(w) = (µ− λ)

∫
q−1
2 (w)

1∆(w,w′) · h(q1(w,w′)) dχ(w,w′)

+ λ

∫
q−1
2 (w)

1W×W (w,w′) · h(q1(w,w′)) dχ(w,w′)

= (µ− λ)

∫
{w}

hdχ+ λ

∫
q1(q−1

2 (w))

hdχ

= (µ− λ)h(w) + λ

(∫
W

hdχ

)
1W (w)

�

4.5 Bessel transform

The Bessel transform utilizes sets consisting of points equidistant from a fixed
point, e.g. in the usual Euclidean norm these sets are concentric spheres. As we
will see in the next chapter, the use of different norms can also be useful. Hence,
we fix an arbitrary norm ‖ ·‖ on Rn. Furthermore, let Sr(x) = {y | ‖y−x‖ = r}
denote the sphere of radius r centered at x in the chosen norm.

Definition 4.13 For 0 ≤ k ≤ n − 1 the lower and upper Hadwiger-Bessel
transforms of h ∈ Def(Rn) with respect to µk are defined as:

Bkh(x) =

∫ ∞
0

∫
Sr(x)

h bdµkc dr,

Bkh(x) =

∫ ∞
0

∫
Sr(x)

h ddµke dr,

for all x ∈ Rn.

Since elements of Def(Rn) have compact support, these expressions are well
defined. As we will heavily use the Bessel transform of constructible functions
with respect to the Euler characteristic, we will use the notation

Bh(x) =

∫ ∞
0

∫
Sr(x)

hdχdr,
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4 INTEGRAL TRANSFORMS 4.5 Bessel transform

for h ∈ CF(Rn), which is also called Euler-Bessel transform.

For a better understanding consider h = 1A for a definable set A ⊂ Rn. The
inner integral of the Hadwiger-Bessel transform with respect to µk at x ∈ Rn
then gives µk(A ∩ Sr(x)) and the outer integral varies the radii of the spheres
Sr.

Definition 4.14 A set A ⊆ Rn is said to be star-convex with respect to x ∈ A
if the line segment from x to y is in A for all y ∈ A.

Example 4.15 For any non-empty convex set A the line segment from x to y is
in A for all x, y ∈ A. Therefore, every non-empty convex set A is star-convex
with respect to any x ∈ A. However, star-convex sets do not have to be convex
in general.

For x ∈ Rn we denote the distance-to-x function by dx, that is

dx(y) := ‖y − x‖,

for all y ∈ Rn.

Lemma 4.16 Let A ⊂ Rn be a compact n-dimensional submanifold with bound-
ary that is star-convex with respect to some x ∈ A. Then,

B1A(x) =

∫
∂A

dx bdχc.

Proof. By the definition of the Euler-Bessel transform

B1A(x) =

∫ ∞
0

∫
Sr(x)

1A dχdr =

∫ ∞
0

χ(A ∩ Sr(x)) dr.

Since A is n-dimensional and star-convex with respect to x ∈ A, A ∩ Sr(x) is
homeomorphic to ∂A ∩ {dx ≥ r}. Using the excursion set representation of the
Hadwiger integrals, Equation (2.12), this gives

B1A(x) =

∫ ∞
0

χ(∂A ∩ {dx ≥ r}) dr =

∫
∂A

dx bdχc.

�

Remark 4.17 The last result corresponds to Stokes’ Theorem because the inte-
gral of the distance over ∂A equals the integral of the “derivative” of distance
over A.

For general x ∈ Rn and sets that are not necessarily star-convex one has to
break up the boundary into positively and negatively oriented pieces.
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x x

A

C−x C+
x

Figure 15: Example for the cones C−x and C+
x in R2.

Theorem 4.18 Let A ⊂ Rn be a compact n-dimensional submanifold with
boundary. For x ∈ Rn decompose ∂A into ∂A = ∂+

x A ∪ ∂−x A, where ∂−x A de-
notes the subsets of ∂A on which the outward-pointing halfspaces contain x and
∂+
x A stands for the corresponding subsets of ∂A on which the outward-pointing

halfspaces do not contain x. Then,

B1A(x) =

∫
∂+
x A

dx bdχc −
∫
∂−x A

dx ddχe.

Proof. Assume that ∂+
x A and ∂−x A are connected. Then, A can be written as

the closure of the difference of the cone at x over ∂+
x A, denoted by C+

x , and
the cone at x over ∂−x A, denoted by C−x , which is represented in Figure 15.
We show the result for this simplified setting, since the case of multiple cones
then follows by induction. The important property of the cones is that they
are star-convex with respect to x. Hence, they admit a similar analysis as in
Lemma 4.16. Using the additive property of the Euler characteristic and its
invariance under homeomorphisms one has

χ(A ∩ Sr(x)) = χ(cl(C+
x − C−x ) ∩ Sr(x))

= χ(∂C+
x ∩ {dx ≥ r})− χ(∂C−x ∩ {dx > r}).

Integration of both sides with respect to dr and application of the excursion
set representations for both the lower and upper Hadwiger integrals, Equations
(2.12) and (2.14), gives

B1A(x) =

∫
∂C+

x

dx bdχc −
∫
∂C−x

dx ddχe.

By a Morse theoretic interpretation of the Euler integral (see Theorem 4 in [3])
only the critical points of dx contribute to the integrals above. The only critical
point of dx in ∂C+

x −∂+
x A and ∂C−x −∂−x A is x itself. Since dx(x) = 0, this point

does not contribute to the integral. Therefore, one can restrict the integrals to
∂+
x A and ∂−x A respectively. �

Corollary 4.19 For n even and A ⊂ Rn a compact n-dimensional submanifold
with boundary,

B1A(x) =

∫
∂A

dx bdχc.
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4 INTEGRAL TRANSFORMS 4.6 Fourier transform

Proof. Since A is n-dimensional and n is even, the dimension of ∂−x A is (n− 1)
which is odd. Therefore, by Theorem 2.21,

−
∫
∂−x A

dx ddχe =

∫
∂−x A

dx bdχc.

The result now follows from Theorem 4.18. �

Remark 4.20 Lemma 4.16, Theorem 4.18 and Corollary 4.19 also hold for more
general submanifolds, in particular submanifolds with corners. See [12].

4.6 Fourier transform

Similar to the Hadwiger-Bessel transforms one can define Fourier transforms
using integrals with respect to the intrinsic volumes. Like the Hadwiger-Bessel
transforms these Fourier transforms are not purely topological except for the
Euler case. Furthermore, there is a relation between Hadwiger-Bessel and
Hadwiger-Fourier transforms. In order to give a definition, denote by (Rn)∗

the dual space of Rn and let ξ be a covector in (Rn)∗\{0}. For s ∈ R the
(n − 1)-dimensional hyperplane orthogonal to ξ at distance (s/‖ξ‖) from the
origin is then given by ξ−1(s).

Definition 4.21 For 0 ≤ k ≤ n − 1 the lower and upper Hadwiger-Fourier
transforms of h ∈ Def(Rn) with respect to µk in the direction of ξ ∈ (Rn)∗\{0}
are defined as:

Fkh(ξ) =

∫ ∞
−∞

∫
ξ−1(s)

h bdµkc ds,

Fkh(ξ) =

∫ ∞
−∞

∫
ξ−1(s)

h ddµke ds.

In other words, we integrate h over all possible (n−1)-dimensional hyperplanes
orthogonal to ξ with respect to µk. Analogical to the Euler-Bessel transform
we use the notation

Fh(ξ) =

∫ ∞
−∞

∫
ξ−1(s)

hdχds,

for h ∈ CF(Rn), which is also called Euler-Fourier transform.

As the following example shows, the Hadwiger-Fourier transforms with respect
to µk of the characteristic function of a set A give a directed notion of the
(k + 1)-dimensional volume of A.

Example 4.22 Let A ∈ Kn. The Euler characteristic of any nonempty (n − 1)-
dimensional slice of A is 1, since the slices are also compact convex sets. In
other words, for ξ ∈ (Rn)∗\{0} and s ∈ R the integral

∫
ξ−1(s)

1A dχ is either 1

or 0, depending on ξ and s. Therefore, for ‖ξ‖ = 1 the Euler-Fourier transform
F1A(ξ) equals the length of the projection of A onto the ξ axis.
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4 INTEGRAL TRANSFORMS 4.6 Fourier transform

Moreover, if one considers the Hadwiger-Fourier transform with respect to µn−1,
the inner integral gives the (n−1)-dimensional volume of the slices of A. Hence,

Fn−11A(ξ) = Fn−1
1A(ξ) = voln(A). (4.4)

In fact, (4.4) holds for any definable subset of Rn.

Obviously, the difference between the Hadwiger-Fourier and Hadwiger-Bessel
transforms is that the former integrates a function over (n − 1)-dimensional
hyperplanes while the latter integrates over spheres. Since functions in Def(Rn)
have compact support, their intersections with the concentric spheres (with
respect to the Euclidean norm) of the Hadwiger-Bessel transforms converge
to intersections with parallel hyperplanes as the radii of the spheres increase
towards infinity. This gives for 0 ≤ k ≤ n − 1, h ∈ Def(Rn) and x ∈ Rn\{0}
with dual covector x∗ ∈ (Rn)∗\{0} the following identities:

lim
λ→∞

Bkh(λx) = Fkh
(

x∗

‖x∗‖

)
,

lim
λ→∞

Bkh(λx) = Fkh
(

x∗

‖x∗‖

)
.

Using this relation between the Hadwiger-Fourier and Hadwiger-Bessel trans-
forms one can proof the following theorem, which resembles Theorem 4.18 and
Corollary 4.19.

Theorem 4.23 Let A ⊂ Rn be a compact n-dimensional submanifold with
boundary. For ξ ∈ (Rn)∗\{0} decompose ∂A into ∂A = ∂+

ξ A ∪ ∂
−
ξ A, where

∂−ξ A denotes the subsets of ∂A on which ξ points into A and ∂+
x A stands for

the corresponding subsets of ∂A on which ξ points out of A. Then,

F1A(ξ) =

∫
∂+
ξ A

ξ bdχc −
∫
∂−ξ A

ξ ddχe.

For n even, this becomes

F1A(ξ) =

∫
∂A

ξ bdχc.
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5 Sensor Networks

One of many applications of Hadwiger integration - especially integration with
respect to the Euler characteristic - can be found in sensor networks. In a recent
series of papers ([1], [2], [4] and [12]) Baryshnikov and Ghrist together with
other contributors gave some results that we want to discuss in this chapter.
However, we will only regard mathematical issues and mostly neglect other
concerns such as power consumption, sensing complexity, sensor size, sensor
range, communication bandwidth, and others.

5.1 Simple enumeration

We begin with a simplified setting where we have a field of infinitesimally small
sensors in R2, which means that there is one sensor for each x ∈ R2. Fur-
thermore, there is a finite set of (fixed) targets {Oi}mi=1 ⊂ R2 that we want to
observe. Each sensor x ∈ R2 only gives us a quantized count h(x) ∈ N that
represents the number of targets “nearby”. For the start, we assume that this
means that each target Oi is detected on all sensors within Euclidean distance
R of Oi. Let Ui denote the support set on which Oi is detected to obtain

h =

m∑
i=1

1Ui

and furthermore∫
R2

h(x) dx =

∫
R2

m∑
i=1

1Ui dx =

m∑
i=1

∫
R2

1Ui dx =

m∑
i=1

R2π = R2πm.

Hence, the total number of targets can be computed via

m = #{Oi} =
1

R2π

∫
R2

h(x) dx.

It is easy to see that this method can be applied to arbitrary dimensions and
more general target supports, as long as all targets have supports with identical
Lebesgue measure. Furthermore, one can discretize the domain to sample h on
a finite set, e.g. an appropriate grid.

One of the problems with this method is, that it relies on the assumption that
every target has the same support on which it is detected. In a realistic setting
the sensors use optical, acoustic, infrared or other methods for detection. Es-
pecially when one has different kinds of targets this leads to different kinds of
support sets. For example, when counting the number of vehicles in an area one
would expect a difference between the support set of a SUV and the support set
of a bicycle. It turns out that Euler integration is a useful tool for this purpose.
For that, let W denote the target space which models the domain in which the
targets Oi lie. In the setting above we used W = R2. Furthermore, the collec-
tion of sensors is parametrized in a sensor space X ⊂ W . E.g. the targets are
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5 SENSOR NETWORKS 5.1 Simple enumeration

Figure 16: The same height function h arises from different numbers of annuli.

in a 3-dimensional room and the sensors are located along a 2-dimensional wall,
so W = R3 and X ∼= R2. In this setting each target Oi is detected on its target
support which we assume to be a definable set

Ui = {x ∈ X | the sensor at x detects Oi}.

Again, each sensor x ∈ X only senses the number of targets in range which gives
us a constructible height function

h(x) := #{i | x ∈ Ui}.

If we furthermore assume that all targets have the same nonzero Euler char-
acteristic, e.g. the target supports are compact convex sets, the problem of
counting the total number of targets can be solved easily.

Theorem 5.1 Let h : X → N be the counting function for a collection of defin-
able target supports {Ui}mi=1 ⊂ X that satisfy χ(Ui) = N 6= 0 for all i = 1, . . . ,m.
Then

m =
1

N

∫
X

hdχ.

Proof. Integration of h with respect to χ gives∫
X

hdχ =

∫
X

m∑
i=1

1Ui dχ =

m∑
i=1

∫
X

1Ui dχ =

m∑
i=1

χ(Ui) = Nm.

�

Remark 5.2 The assumption χ(Ui) 6= 0 seems to be necessary as no solution is
possible in general for target supports Ui with χ(Ui) = 0. See Figure 16 for an
example where the same height function is given by different numbers of targets.
The problem is that the annuli have Euler characteristic zero.
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5 SENSOR NETWORKS 5.2 From fields to networks

Remark 5.3 Using equation (2.7) the computation of the Euler integral of the
height function is relatively easy since h only attains values greater or equal to
zero: ∫

hdχ =

∞∑
s=0

χ{h > s} − χ{h < −s} =

∞∑
s=0

χ{h > s}.

Furthermore, if h is the sum of indicator functions over compact sets the excur-
sion sets of h are compact for all s.

5.2 From fields to networks

Theorem 5.1 depends on having a field of sensors. Of course, any realistic
implementation can only provide a discrete collection of sensors, also called
sensor network with nodes (sensors) N . The question is, if there is a result
similar to Theorem 5.1 that works in the setting of a sensor network. One
could try to parametrize the sensor space X as a discrete set based on N .
However, Baryshnikov and Ghrist point out that this method fails, since the
target supports will be likewise discrete and of unknown and non-uniform Euler
characteristic [2].

Another approach is to model the sensor space X as a simplicial approximation
of the target space W , using N as vertices. Therefore, we must assume that
enough structure aboutN is known in order to find a suiting simplicial structure.
Furthermore, instead of the height function h we consider the piecewise-linear
(PL) interpolation hPL of h based on the values of h at N .

Theorem 5.4 Let h : Rn → N be an upper semi-continuous constructible func-
tion such that every upper excursion set of h is the closure of its interior in
Rn,

{h ≥ s} = cl(int({h ≥ s})).

Then, for a sufficiently dense and regular triangulation of Rn, the piecewise-
linear interpolation hPL of h over the vertex set of the triangulation satisfies∫

Rn
bhPLc dχ =

∫
Rn
hdχ.

Proof. Let σ be a simplex of a sufficiently dense and regular triangulation and
∆ = cl(σ) its closure, such that for the restriction of h to ∆, h|∆, one has

• maxh|∆ is attained at some vertex of ∆,

• all upper excursion sets of h|∆ are contractible.

Then ∫
∆

hdχ = max
∆

h =

∫
∆

bhPLc dχ.

By additivity of
∫

dχ this extends to Rn, which completes the proof. �
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5 SENSOR NETWORKS 5.3 Further enumeration problems

Remark 5.5 Since the integral with respect to the Euler characteristic is purely
topological, it is not necessary to know the coordinates of the nodes N in order
to evaluate

∫
RnbhPLc dχ. However, if not enough geometry is associated to N ,

it might be impossible to determine hPL based on its values on N .

Using a different extension of the integral with respect to the Euler characteristic
for continuous functions, Baryshnikov and Ghrist show that the integral of hPL
itself is equal to the integral of h under suitable conditions [1]. Moreover, they
discuss problems that can occur with various target supports and samplings of
the space. Additionally, a numerical analysis in R2 is provided by Krupa in [19].

5.3 Further enumeration problems

Moving targets. We now assume that each of the targets {Oi}mi=1 is moving
along a continuous path Oi(t) with target support Ui(t) in the domain W ⊂ Rn
during the time span [t0, t1]. Furthermore, we assume that each sensor detects
targets that are within its range. Every time the number of targets within the
proximity range of a sensor increases the sensor’s internal counter increments.
This is represented by a height function

h(x) := #{(t, i) |t ∈ [t0, t1], x ∈ Ui(t+ ε) and x /∈ Ui(t− ε) for ε→ 0+},

whereas we set Ui(t) = ∅ for t < t0 and Ui(t) = Ui(t1) for t > t1. With the help
of Fubini’s theorem (Theorem 4.2) one can solve the problem to compute the
number of targets solely from h.

Theorem 5.6 Under the assumptions above, the number of targets can be com-
puted from the height function h via

m =

∫
W

hdχ.

Proof. We consider the sensor space X = W × R as the product of the target
space W with the time. Furthermore let F : X → W denote the projection on
W . The target supports in X are the traces

Ui,X :=
⋃

t∈[t0,t1]

Ui(t)× {t}.

Since the targets move on continuous paths, these are contractible sets with
Euler characteristic 1. Now let g : X → N with g =

∑m
i=1 1Ui,X be the cor-

responding height function in X. By Theorem 5.1 and Fubini’s theorem the
number of targets computes as

m =

∫
X

g dχ =

∫
W

F∗g dχ,

with (F∗g)(w) =
∫
F−1(w)

g dχ. Each of the intersections F−1(w)∩Ui,X is a finite

number of compact intervals, with every interval representing a time when w
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t

Figure 17: The trace of a target that moves in circles with sufficiently large
radius becomes an annulus with Euler characteristic zero.

“enters” Ui(t). This shows that h = F∗g and furthermore

m =

∫
X

g dχ =

∫
W

hdχ.

�

Remark 5.7 Note that the trace of each target Oi, represented by the union
of the temporal supports

⋃
t∈[t0,t1] Ui(t), can be a non-contractible set. For

example if an object is moving in circles with sufficiently large radius the trace
becomes an annulus with Euler characteristic zero. However, the corresponding
union in the sensor space X is contractible, which is a crucial property. See also
Figure 17.

Beam sensors. In this setting we consider fixed targets {Oi}mi=1 in a Euclidean
target space in Rn but sensors with some degree of freedom. Again, there is a
sensor node for each x ∈ Rn but the targets are sensed via a round k-dimensional
ball in Rn, centered at x. In the case k = 1 this would be a classical “beam”.
Each target Oi is associated with a certain region of brightness, represented by
some convex neighborhood Ui of Oi. The sensors perform “sweeps” of their
k-ball beams, meaning that they sense over all different possible k-balls. At
each sensing, the number of intensity regions Ui within the k-ball are counted.

In this setting the sensor field is parametrized over the Grassmannian bundle
Grk(Rn) = Rn × Gr(n, k). The internal counters of the sensors then give a
height function h : Grk(Rn)→ N.

Theorem 5.8 In the setting above with the additional assumption that if n is
even then so is k, the number of targets can be computed from the height function
h via

m =
bn−k2 c!b

k
2 c!

bn2 c!

∫
Grk(Rn)

hdχ.
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5 SENSOR NETWORKS 5.3 Further enumeration problems

Proof. For given target supports Ui in Rn one has to figure out the corresponding
target supports Ũi in Grk(Rn). For that, fix an i ∈ {1, . . . ,m} and a k-plane in
Gr(n, k). The nodes in Rn that can sense Ui with their k-balls in the given k-
plane form a star-convex set with respect to the centroid of Ui. Since star-convex
sets are contractible, the target support Ũi is homeomorphic to Gr(n, k). By
Theorem 5.1 the result follows from the Euler characteristic of Gr(n, k) which
is

χ(Gr(n, k)) =


0 if n is even and k is odd(bn2 c
bk2 c

)
else.

�

Sweeping sensors. Again we consider fixed targets {Oi}mi=1 in a Euclidean
target space in Rn. Each sensor in the sensor space X ⊂ Rn returns a piecewise-
constant function hx : Sn−1 → N that indicates how many targets can be seen
in a certain direction. In this setting a sensor at location x ∈ X “looking” in
direction v ∈ T 1

xRn ∼= Sn−1 scans a compact cone at x centered on v, whereas
T 1
xRn denotes the unit tangent sphere at x. For each x and v the shape of the

scanning cone is the same. This gives a collection of functions h = {hx | x ∈ X}.

Theorem 5.9 Let Φn be the operator that “fixes” all removable points of dis-
continuity of a function. Then, the number of targets in the setting above is
equal to

m =

∫
X

Φn

(∫
T 1
xRn

hx dχ

)
dχ(x). (5.1)

Proof. We will show that the target supports Ũi ⊂ T 1Rn are contractible and

that Φn

(∫
T 1
xRn

hx dχ
)

returns the correct number of targets within a certain

range of x. The result then follows from Theorem 5.1.

Consider a point x ∈ X\{Oi}mi=1. Since the scanning cone is convex, the angu-
lar support for each target Oi in reach is a convex subset of T 1

xRn with Euler
characteristic 1. Therefore,

∫
T 1
xRn

hx dχ returns the correct number of targets

visible from x. However, if x coincides with a target Oi, then the target is visible
during the entire sweep and the target support in T 1

xRn is the entire (n − 1)-
sphere, which contributes an error of 1 − (−1)n in the integral. The operator
Φn now wipes out such defects, since they only occur when the coordinates of
a sensor and a target coincide.

For the outer integral, choose a target Oi and fix a pair x ∈ Ui, whereas Ui de-
notes the spatial part of Ũi. This means that there is a bearing vector v ∈ T 1

xRn
such that Oi lies in the cone at x centered on v. Since all cones have the same
shape, independent of x and v, this implies that y ∈ Ui for all y on the line
segment from x to Oi. Hence, the spatial target support is star-convex. This
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implies that each target exactly counts 1 in the outer integral in (5.1), which
concludes the proof. �

Remark 5.10 For very thin and short scanning cones one can argue that it rarely
happens that more than one target is in a cone. Thus, χ(h−1

x (1)) would give the
correct number of targets within a certain range of the sensor and the problem
can be solved with the help of Theorem 5.1.

Remark 5.11 In a realistic setting with a sensor network instead of a sensor field
it is not possible in general to determine removable points of discontinuity of
the inner integral in (5.1). However, the case that a sensor coincides with the
target should rarely happen. E.g. if the sensors are placed on the ceiling of a
room and swipe in a circle, a target would have to be directly under the sensor
to produce an erroneous count in the integral.

5.4 Target localization

It is possible to utilize various integral transforms in order to localize targets.
However, each of the methods presented in this section involves certain restric-
tions.

Bessel transform. Consider a setting of fixed targets {Oi}mi=1, a field of sensors
X and a corresponding counting function h ∈ CF(X) similar to the assumptions
of Theorem 5.1. However, assume for the beginning that all target supports Ui
are round balls of arbitrary size. With the help of the Euler-Bessel transform
one can reveal the exact locations of the targets.

Proposition 5.12 Let A be a compact ball of radius R centered at p ∈ R2n.
The Euler-Bessel transform (with respect to the Euclidean norm) B1A is a non-
decreasing function in the distance to p, having a unique zero point at p.

Proof. By Corollary 4.19 one has

B1A(x) =

∫
∂A

dx bdχc,

which computes to
B1A(x) = max

∂A
dx −min

∂A
dx.

For x /∈ A this expression is always diam(A) = 2R. For x ∈ A this is monotone
in the distance to p and only admits zero if x equals p. �

Remark 5.13 One could think that a result similar to Proposition 5.12 also works
for balls in odd dimension by using Theorem 4.18. However, the Euler-Bessel
transform of a ball in R2n+1 is constant and gives no further information on a
target’s location. See also [12].
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5 SENSOR NETWORKS 5.4 Target localization

By Proposition 5.12 the minima of the Euler-Bessel transform can reveal target
locations. However, if the target supports overlap it can happen that interfer-
ences do not allow to identify unique minima or even create ghost minima. In
such cases it can be helpful to determine the number of targets, using the height
function h ∈ CF(X) and further the integral

∫
X
hdχ. The actual number of

targets provides a clue as to how many of the deepest local minima should be
interrogated.

Further use of this technique suggests to change the norm in the Euler-Bessel
transform in order to revel target supports of different shapes. For example the
unit sphere in R2 with respect to ‖ · ‖∞ has the shape of a rectangle. Using
different norms in the Euler-Bessel transform also contrasts the situation when
interferences and ghost minima occur. Sometimes however, no single norm is
optimal for the situation, especially if there are multiple targets. In such cases,
SVA, Spatially Variant Apodization, a technique that is used in radar process-
ing, seems to be useful. For that, consider a parametrized family of norms ‖·‖α,
α ∈ A. The SVA Euler-Bessel transform as proposed by Ghrist and Robinson
in [12] is then defined as

BSV Ah(x) = inf
α∈A

∫ ∞
0

∫
Sr,α(x)

hdχdr,

for h ∈ CF(Rn), x ∈ Rn and Sr,α(x) denoting the sphere of radius r centered at
x with respect to ‖ · ‖α. E.g. the family of norms could describe a cyclic family
of rotated ‖ · ‖∞ norms in order to identify multiple targets with rectangular
supports and various orientation.

Subsequently, Wright suggests in [31] that other Hadwiger-Bessel transforms
could offer information about size and shape of the targets.

Radon transform. For a variety of settings, Schapira’s inversion formula
(Theorem 4.12) can be used to localize targets. For that, consider a target
space W and a sensor space X. Define the sensor relation S as follows:

S := {(w, x) ∈W ×X | the sensor at x can sense a target at w}.

The vertical fibers Sw, w ∈ W then represent the target supports, that is for
each w the set of sensors in X that can sense a target at w. The horizontal
fibers Sx, x ∈ X are the sensor supports - the set of all targets in W that can be
sensed by the sensor at x. Note, that this implies that the target supports do
not depend on the targets themselves but on their locations. Moreover, consider
a finite set of targets T ⊂ W . When each sensor counts the targets in sight,
the resulting height function h equals the Radon transform RS1T . Therefore, if
one can find a proper set S′ ⊂ X×W such that the conditions of Theorem 4.12
are met and λ 6= µ, the inverse Radon transform RS′h = RS′RS1T is equal
to a multiple of 1T plus a multiple of 1W . This reveals the exact shape of T
and therefore the location of the targets. In contrast to Proposition 5.12, this
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w

w′

Figure 18: The intersection Sw ∩ S′w′ 6=w is homeomorphic to a closed disk and
therefore has Euler characteristic 1.

method also works in odd-dimensional spaces. However, it can be difficult to
find proper settings that satisfy the necessary conditions.

Example 5.14 Let X = W = Rn and let each sensor at x ∈ Rn detect targets
within a closed ball about x. Each horizontal fiber Sw, w ∈ Rn is then a closed
ball about w. Furthermore, let each S′w be the closure of the complement of Sw
in Rn. This means, that the inverse sensor relation S′ assigns the sensors with
the targets out-of-range. For each w the set Sw ∩S′w is homeomorphic to Sn−1.
For w′ 6= w the set Sw ∩ S′w′ is homeomorphic to a closed ball, as depicted in
Figure 18 for R2. Therefore, χ(Sw∩S′w) = 1 and χ(Sw ∩ S′w′ 6=w) = χ(Sn−1) 6= 1,
which allows reconstruction of T from h by Theorem 4.12.

Example 5.15 Let W be the open unit disc in Rn and let ∂W = Sn−1 be filled
with sensors. Each of the sensors sweeps a ray over W and counts the number
of targets that intersect the beam. Each bearing of a ray at a point p ∈ ∂W
lies in the open hemisphere of the unit tangent sphere T 1

pW . Since this open
hemisphere projects to the open unit disc in Tp∂W , the sensor space X is
homeomorphic to the tangent bundle of ∂W , TSn−1. Any target w ∈ W can
be detected by any sensor in ∂X under a unique angle. Therefore, the tar-
get supports Sw of the sensor relation S are spheres with Euler characteristic
1 + (−1)n−1. Furthermore, for two different targets w 6= w′ ∈ W , there are
only two sensors with certain bearing angles in Sw ∩ Sw′ . These sensors can be
found in the intersection of ∂W with the straight line that connects w with w′.
Hence, if

S′ := {(x,w) ∈ X ×W | (w, x) ∈ S},

one has χ(Sw∩S′w) = 1+(−1)n−1 and χ(Sw∩Sw′ 6=w) = 2. For n even, Theorem
4.12 implies that the inverse Radon transform is well defined. However, for n
odd, Schapira’s inversion formula doesn’t seem to be helpful. In fact, for odd-
dimensional scenarios an inverse Radon transform might be impossible. E.g.
for n = 1 you cannot localize a target along an open interval only from sensor
readings at the two boundary points.
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Duality. Duality allows to count and even localize annular target supports.
This can be especially useful in even-dimensional spaces since even-dimensional
annuli have Euler characteristic zero and one cannot apply Theorem 5.1.
However, all target supports must have the same shape. E.g. the targets are
beacons that can only be detected when the sensor is close but not too close to
the target. For the shape of the target supports let I ⊂ O ⊂ Rn be convex sets
containing 0, such that I is open, O is closed and compact, and the closure of
I is contained in the interior of O. The target supports shall have the shape of
the annular region A := O\I. For a finite set of targets T , the height function
returned by the sensor field is then given by h = 1A ∗ 1T . Now consider for
N ∈ N,

ΨN := −D1−I ∗
N−1∑
k=0

(1O ∗ D1−I)∗k.

By the definition of A, one has 1A = 1O − 1I . Furthermore, by Lemma 4.8

1I ∗ D1−I = 1{0}.

This gives

1A ∗ΨN = −1A ∗ D1−I ∗
N−1∑
k=0

(1O ∗ D1−I)∗k

= (1I − 1O) ∗ D1−I ∗
N−1∑
k=0

(1O ∗ D1−I)∗k

= (1{0} − 1O ∗ D1−I) ∗
N−1∑
k=0

(1O ∗ D1−I)∗k

=

N−1∑
k=0

(1O ∗ D1−I)∗k − (1O ∗ D1−I)∗(k+1)

= 1{0} − (1O ∗ D1−I)∗N .

For J = cl(−I), one has D1−I = (−1)n1J . Therefore,

1A ∗ΨN = 1{0} − (−1)Nn(1O ∗ 1J)∗N .

Lemma 4.5 implies that for sufficiently large N (1O ∗1J)∗N is equal to 1 on any
fixed compact set K. In particular, if h is supported on K, one obtains

(h ∗ΨN )(x) = (1T ∗ 1A ∗ΨN )(x) = 1T (x)− (−1)Nnχ(T ),

for all x ∈ K. This allows to count and localize the targets. Note, that this does
not solve the problem depicted in Figure 16, since one must know the shape of
the annulus A in order to construct ΨN .
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6 Further Applications

Apart from the usefulness of Euler integration in the theory of sensor networks
there are several other applications of Hadwiger integration.

Image processing. Automated processing and analysis of images from a va-
riety of sources is a central task in computer science. The intrinsic volumes
seem to be a helpful tool in order to highlight features of images. In [27] bi-
nary images (black and white pixels) are analyzed with intrinsic volumes, e.g.
in order to obtain the length of a fibrous structure in a computer tomography
image. Wright points out that this corresponds to computing Hadwiger inte-
grals of characteristic functions and suggests to extend the theory to grayscale
images and thus constructible functions [31]. Furthermore, convolution of those
functions with an appropriate kernel could be used to smooth out certain types
of noises so that a continuous function is obtained. Moreover, since a color
pixel can be described by its red, green and blue intensities, one could study
color images and employ Hadwiger integration for functions with values in R3.
Further research on how to compute intrinsic volumes from image data can be
found in [17], [21] and more recently [28].

Poincaré series. In algebraic geometry the Poincaré series of a so-called
multi-index filtration, a certain family {J(v)}, v ∈ Zr≥0, can be defined as

P (t) =
∑
v∈Zr≥0

 ∑
I⊂{1,2,...,r}

(−1)|I|dim(J(v + 1I)/J(v + 1))

 r∏
i=1

tvii ,

for all t = (t1, . . . , tr) ∈ Zr, where 1 denotes the element (1, . . . , 1) ∈ Zr and 1I
the element of {0, 1}r the ith component of which is equal to 1 if i ∈ I. In [9]
and subsequently [14] a generalization of the integral with respect to the Eu-
ler characteristic is introduced that allows integration over infinite-dimensional
spaces of arcs and functions - motivic integration. This enables computation of
the Poincaré series of a multi-index filtration via

P (t) =

∫
POV,0

r∏
i=1

tvii dχ,

whereas POV,0 is a proper space with values in the Abelian group Z[[t1, . . . , tr]] of
power series in variables t1, . . . , tr with integer coefficients. Further applications
of this extended integral include computation of monodromy zeta-functions and
generating series of classes of some moduli spaces.

Gaussian random fields. A random field is a stochastic process, that can
be thought of as a function on a topological space whose value at any point
is a random variable in Rk. A Gaussian random field yields some additional
regularity and is therefore completely determined by its mean and covariance
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functions. For example one can model the measured temperature T at a po-
sition p in a room M ⊂ R3. Since measurement always involves some error,
one can write T (p) = u(p) + f(p), where u is the actual temperature and f
represents the error that occurs with the measurement. Since this error can be
thought of as a Gaussian random variable, the function f can be understood as
a Gaussian random field. Bobrowksi and Strom Borman give a simple closed
form expression of the expected Euler integral of a Gaussian random field which
can be used for a quantitative description of the persistent homology of the field
[6]. Wright gives a formula for general Hadwiger integrals and points out that
this information can be helpful in order to explain the contribution of noise in
certain situations [32].

Morse theory. Morse theory is used to analyze the topology of a manifold M
by studying differentiable functions on that manifold. Since integration with
respect to the Euler characteristic is purely topological, there is a natural con-
nection to between Euler integrals and Morse theory. For that, let C denote
the set of critical points of a continuous and definable function h on a definable
space X. For p ∈ C define the co-index of p as

I∗(p) = lim
ε′�ε→0+

χ(Bε(p) ∩ {h > h(p)− ε′}),

whereas Bε(p) denotes the closed ball in X of radious ε centered at p. Then,∫
X

h bdχc =

∫
C
hI∗ dχ.

Thus, bdχc is concentrated on the critical points of a function. Furthermore, a
Morse function is a smooth real-valued function on M that has no degenerate
critical points, which are critical points where the Hessian is singular. Suppose
now that h is a Morse function on a closed n-manifold M where every critical
point p ∈ C is assigned a Morse index ι(p), the number of negative eigenvalues
of the Hessian at p. Then,∫

M

h bdχc =
∑
p∈C

(−1)n−ι(p)h(p).

This interpretation results in simple computation of Euler integrals and conse-
quent theorems. See [3] and [8].
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