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A B S T R A C T

The purpose of this paper is to give a conditionally affirmative answer to the question posed in its title. The tool
that enables such an answer is a mechanically objective arc-length in the form of a representative displacement
of the structure. In this context, mechanical objectivity is defined as the independence of model parameters,
such as the chosen finite element or the discretization of the investigated structure in the framework of a
consistent mesh refinement. It guarantees, e.g., the mechanical objectivity of the transition from a stiffening
to a softening structure and vice versa. It is shown numerically that at this point some characteristic degrees
of freedom (d.o.f.) of the investigated structure are stiffening while others are softening. Hence, individual
d.o.f. are, in general, unsuitable for marking extreme values of the stiffness of structures. A global quantity,
alternative to the suggested stiffness in this work, is the extreme value of the determinant of the tangent
stiffness matrix. It is shown numerically that, in general, this value depends on arbitrary model parameters
and, therefore, does not have a physical meaning. An oblate rotational ellipsoidal shell, subjected to internal
pressure, serves as an example for buckling of a stiffening shell, contradicting the widespread misconception
of buckling being restricted to non-stiffening structures.
1. Introduction

If, at a particular load intensity of proportional loading, the stiffness
of a structure is increasing, it will be termed herein a stiffening structure.
This term, however, must not be confused with the one of stiffening of a
structure, expressing a modification of its design rather than a continu-
ous change of the mechanical state of a proportionally loaded structure.
In mechanics of materials, softening denotes, in a factually as well
as linguistically unambiguous manner, the antonym of hardening. In
structural mechanics, however, there seems to be no generally accepted
expression of the opposite of the term stiffening. This might be the
reason why this term was occasionally combined with the term harden-
ing/softening to stiffness hardening/softening (Kim and Song, 2016; Wang
et al., 2018). For convenience, the expressions hardening/softening of
structures were sometimes used as pseudo-synonyma of the linguisti-
cally more ponderous mechanical terms increasing/decreasing stiffness
of structures (Kanodia et al., 1977; Mang and Jia, 2013). In this work,
softening will be used as the antonym of stiffening. Whether or not
the terms stiffening/softening structures, in the aforementioned sense,
are mechanically unambiguous, depends on their definitions. Usually,
a proportionally loaded structure is termed stiffening (softening) at
a specific load level if d2𝜆∕d𝑞𝑖2 > 0 (< 0), assuming d𝜆∕d𝑞𝑖 > 0,
with d𝜆 > 0 and d𝑞𝑖 > 0. In the framework of the Finite Element
Method (FEM), 𝜆 is a dimensionless proportionality factor by which the
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vector of reference node forces, 𝐏̄, is multiplied; 𝑞𝑖 denotes a charac-
teristic degree of freedom (d.o.f.). The problem with these definitions
of proportionally loaded stiffening/softening structures is their local,
i.e. d.o.f.-related character. In general, a specific load level at which
d2𝜆∕d𝑞2𝑖 = 0 does not mean a transition from stiffening (softening) to
softening (stiffening) of the structure, because the point of inflection of
the 𝜆 − 𝑞𝑖 diagram is merely a local feature.

Therefore, the search for a mechanically objective criterion for
stiffening/softening structures must be directed to finding a global me-
chanical quantity which defines these terms unambiguously. Herein,
two quantities will be checked for their ability to mark, in a mechan-
ically objective manner, the transition from stiffening (softening) to
softening (stiffening). These quantities are (i) extreme values of the
normalized determinant of the tangent stiffness matrix 𝐊𝑇 and (ii)
points of inflection of a function 𝜉(𝜆), where 𝜉 represents a special form
of an arc length. In this context, mechanical objectivity means that the
load-level for which d(det𝐊𝑇 )∕d𝜆 = 0 and d2𝜆∕d𝜉2 = 0, is independent
of (i) the chosen finite element and (ii) the number of finite elements
in the framework of a consistent refinement of the mesh. The reason
for the restriction of the numerical investigation to the linear elastic
material domain is to show that extreme values of the stiffness of
proportionally loaded structures may even occur for constant material
stiffness. In other words, we want to avoid a possible confusion of
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the terms “stiffening structures” and “hardening materials”. However,
the methods, investigated in this work for their ability to determine
extreme values of the stiffness of proportionally loaded structures, are
not restricted to linear elasticity.

Apart from scientific curiosity it is deemed useful to know whether
or not the investigated structure is stiffening at least in a sufficiently
large initial range of the proportionality factor 𝜆. By this range of 𝜆 we
mean the prebuckling domain, assuming that a stability limit exists.
Stiffening, in the previously defined sense, precludes snap-through
of the perfect structure. However, it does not preclude bifurcation
buckling with a potentially dangerous postbuckling behavior. Although
we will touch on this topic at the end of the numerical investigation, the
focus of our work is on the terms stiffening/softening in the prebuckling
regime.

The remaining part of the paper consists of three sections. Sec-
tion 2 deals with the two aforementioned global quantities that will
be checked for their ability to mark the transition from a stiffening to a
softening structure and vice versa. Conversely, these quantities will also
be checked for maintaining their signs in case of no such transitions.
Section 3 is devoted to a comprehensive numerical investigation of
structures subjected to monotonically increasing quasi-static loads. In
the first two examples, linear elastic bars will be considered. The
reason for the restriction to such simple structures is to emphasize the
significance of the terms stiffening/softening structures in this work as
opposed to the meaning of hardening and softening of materials. The first
example is characterized by two stability limits, 𝜆𝑆+ > 0 and 𝜆𝑆− < 0.
Since 𝐊𝑇 is positive definite in the open interval (𝜆𝑆− , 𝜆𝑆+ ), det𝐊𝑇 > 0
in this interval. Consequently, det𝐊𝑇 (𝜆) must have a maximum value
located between 𝜆𝑆− and 𝜆𝑆+ . The characteristic features of the second
example are the absence of a stability limit, but the existence of a tran-
sition from softening to stiffening of the structure. This example is also
used for computation of the mean displacement of the bar, 𝑢𝑎𝑣𝑒, for a
particular load intensity. This quantity is related to the aforementioned
parameter 𝜉. The purpose of this analysis is the investigation of the rates
of convergence of 𝑢𝑎𝑣𝑒 for uniform as well as non-uniform meshes. The
third example deals with buckling of a stiffening structure of the form
of an oblate rotational ellipsoidal shell, subjected to internal pressure.
The 𝜆−𝑢𝑎𝑣𝑒 diagram is used to explain the initial postbuckling behavior
of the perfect structure. Section 4 contains the conclusions drawn from
this work.

2. Global quantities to be checked for their ability to identify
stiffening/softening structures

2.1. d(det 𝐊𝑇 )∕d𝜆

The historical background of this quantity is a paper on buckling of
a cylindrical pressure vessel with a torispherical head (Kanodia et al.,
1977; Mang and Jia, 2013), see Fig. 1(a). Obviously, such a structure
may buckle under external pressure. However, it may also buckle under
internal pressure which produces circumferential compressive stresses
in the toroidal knuckle of containers with shallow torispherical closures
(Adachi and Benicek, 1964; Galletly, 1982; Helnwein, 1996; Mang and
Jia, 2013). Fig. 1(b) shows a schematic det𝐊𝑇 ∕ det(𝐊𝑇 )0 − 𝜆 diagram,
in distorted scale, where (𝐊𝑇 )0 denotes the tangent stiffness matrix at
the onset of loading, see point A(0,1). This diagram has a maximum
value at point M, i.e. at a load level in the open interval between the
two stability limits 𝜆𝑆− and 𝜆𝑆+ .

This has prompted the authors of Kanodia et al. (1977) and Mang
and Jia (2013) to interpret the part 𝐴𝑀 of the det𝐊𝑇 ∕ det(𝐊𝑇 )0 − 𝜆
diagram, see Fig. 1(b), as an indicator of ‘‘the initial load-hardening
nature of the structure’’ if subjected to internal pressure. (Consistent
with this interpretation is the one of part 𝐴𝑆− of the det𝐊𝑇 ∕ det(𝐊𝑇 )0−𝜆
diagram in Fig. 1(b) as an indicator of a softening structure if subjected
to external pressure.) Based on the mechanical interpretation of part¯
2

𝐴𝑀 of the said diagram, it did not seem unreasonable to regard
point 𝑀 as marking the transition from a stiffening to a softening
structure. However, this is in conflict with a 𝜆− 𝑞𝑖 diagram in Kanodia
et al. (1977), where 𝑞𝑖 denotes a characteristic d.o.f. of the toroidal
knuckle. Fig. 2 contains a qualitative reproduction of Fig. 11 in Kanodia
et al. (1977). It shows a part of the primary and of the corresponding
secondary load–displacement path. The strictly positive curvatures of
the two curves in this diagram create the impression of continuous
stiffening of the structure, notwithstanding the problematic nature of
classifying a structure as stiffening at the considered load level on the
basis of a single degree of freedom. The authors of Mang and Jia (2013)
went even further in the conclusions of their work, stating that “the
physical meaning of a maximum of the determinant of the tangent
stiffness matrix in the prebuckling regime is the one of a minimum of
the percentage bending energy of the total strain energy”.

2.2. d2𝜆∕d𝜉2

In the framework of the FEM, the differential form of the equilib-
rium equations is given as

𝐊𝑇 ⋅ d𝐪 = d𝜆 𝐏̄ . (1)

Division of (1) by a differential of the arc-length 𝜉 yields

𝐊𝑇 ⋅
d𝐪
d𝜉

= d𝜆
d𝜉

𝐏̄ . (2)

𝜉 is a dimensionless quantity. For one-dimensional structures, it is
defined herein as

𝜉 =
𝑢ave
∫ d𝑠

, (3)

here

ave =
∫ ‖𝐮‖ d𝑠
∫ d𝑠

, (4)

with 𝐮 standing for the displacement vector; d𝑠 denotes the length of
he axis of an infinitesimal element of a structural member. Thus, 𝑢ave
epresents the mean displacement of the structure. (3) holds for a sys-
em with an infinite number of degrees of freedom. In FE analysis, the
ntegrals in (3) and (4) are to be replaced by sums of integrals stretching
ver the individual finite elements. Accordingly, in these integrals 𝐮
s to be understood as an element-related, i.e. a local quantity. It is
btained by means of interpolation between nodal displacements. For
wo-dimensional structures, d𝑠 in (4) is to be replaced by d𝐴, denoting
he area of an infinitesimal element of the midsurface of a structural
ember. ∫ d𝑠 in Eq. (3) should be replaced by

√

∫ d𝐴. The advantage
f the proposed arc-length 𝜉 over its standard form, commonly defined
s 𝜉∗ = ‖𝐪‖ (Helnwein and Mang, 1997; Mang et al., 2016; Mang,
017), is its independence of (i) the chosen type of finite element
displacement-based or hybrid), (ii) the number of node points, (iii)
he mode of mesh refinement, and (iv) the chosen unit of length, noting
hat 𝜉∗ = ‖𝐪‖ would not be independent of it if 𝐪 contained components

with different dimensions. Differentiation of (2) with respect to 𝜉 results
n
d𝐊𝑇
d𝜉

⋅
d𝐪
𝑑𝜉

+𝐊𝑇 ⋅
d2𝐪
d𝜉 2

= d2𝜆
d𝜉 2

𝐏̄ . (5)

In the prebuckling regime, the stiffness of elastic structures is positive.
Thus, for 𝜉 ≥ 0, with 𝜆 = 0 ⇔ 𝜉 = 0,

0 < sgn(𝜆) d𝜆
d𝜉

< ∞ ⇔ 0 <
d|𝜆|
d𝜉

< ∞ , (6)

with sgn denoting the sign function (Denman and Beavers, 1976;
Kenney and Laub, 1995).

Stiffening (softening) structures are characterized by

d2|𝜆|
> 0 (< 0) . (7)
d𝜉 2
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Fig. 1. Cylindrical pressure vessel with a torispherical head: (a) axial section of a part of the structure, taken from Mang and Jia (2013), (b) schematic det(𝐊𝑇 )∕ det(𝐊𝑇 )0 − 𝜆
diagram (𝜆𝑆− : stability limit for external pressure, 𝜆𝑆+ : stability limit for internal pressure), in distorted scale, based on Figs. 9 and 10 in Kanodia et al. (1977).
Fig. 2. Part 𝑂𝑆+ of a sketch of a 𝑝𝑖 −𝑤𝑇 diagram of a point of the toroidal knuckle,
continued by a stretch of the corresponding postbuckling path (𝑝𝑖 . . . internal pressure,
𝑤𝑇 . . . transverse displacement), based on Fig. 11 in Kanodia et al. (1977). For the
sake of better visualization, the distance of the secondary part from the primary path,
indicated in the detail of this figure, was enlarged.

Following from (5), the conditions for the transition from stiffening
(softening) to softening (stiffening) are obtained as

d2𝜆
d𝜉 2

= 0 ,
d𝐊𝑇
d𝜉

⋅
d𝐪
d𝜉

+𝐊𝑇 ⋅
d2𝐪
d𝜉 2

= 𝟎 . (8)

At 𝜆 = 0,

lim
ℎ↘0

d𝜆
d𝜉

(𝜆 = ℎ) = − lim
ℎ↗0

d𝜆
d𝜉

(𝜆 = ℎ) (9)

and

lim
ℎ↘0

d2𝜆
d𝜉 2

(𝜆 = ℎ) = lim
ℎ↗0

d2𝜆
d𝜉 2

(𝜆 = ℎ) = lim
ℎ→0

d2𝜆
d𝜉 2

(𝜆 = ℎ) , (10)

where limℎ↘ℎ𝑖 𝑓 (ℎ), limℎ↗ℎ𝑖 𝑓 (ℎ), and limℎ→ℎ𝑖 𝑓 (ℎ) denote the left-sided,
the right-sided, and the two-sided limit at ℎ = ℎ , respectively.
3

𝑖

Table 1
Details of the Abaqus elements B21 and B22 (Abaqus User Manual, 2020).

Designation Formulation # of nodes # of d.o.f.

Abaqus B21 2D, displ., Timoshenko 2/linear 6(= 2 ⋅ 3)
Abaqus B22 2D, displ., Timoshenko 3/quad. 9(= 3 ⋅ 3)

3. Numerical investigation

3.1. IPE 400 bar subjected to a centric axial force at its midpoint

3.1.1. Preliminaries
Fig. 3(a) shows the structure. The length of the bar is 2𝐿, with

𝐿 = 5m. Its cross-section is shown in Fig. 3(b). The area of the cross-
section, 𝐴, is equal to 8.0678 10−3 m2. Its second moment of inertia
about the 𝑦-axis, 𝐼𝑦, is equal to 2.18765 10−4 m4. The modulus of
elasticity, 𝐸, and Poisson’s ratio, 𝜈, are equal to 2.1 1011 N∕m2 and
0.3, respectively. At its two end points, the bar is simply supported.
Its midpoint can only move in the axial direction. At this point, the bar
is subjected to a centric axial force 𝑃 = 𝜆𝑃 , with 𝑃 = 6.6545 107 N as
the reference load. The load is applied quasi-statically.

The numerical investigation was carried out with the help of the
commercial software Abaqus (Abaqus User Manual, 2020), using SI
units, i.e. “m” and “kg∕s2”. Details of the Abaqus elements B21 and
B22, employed in the analysis, are given in Table 1.

3.1.2. Numerical results
Discretization error at the stability limits. For 𝑃 ≥ 0 (≤ 0), 𝜆 = 𝑃∕𝑃 ≥ 0 (≤
0). Thus, depending on the direction of 𝑃 , the stability limit 𝑃𝑆 = 𝜆𝑆 𝑃
is either a positive or a negative quantity. In other words, the structure
has two stability limits. At 𝜆 = 𝜆𝑆+ > 0, the upper span of the bar starts
buckling. At 𝜆 = 𝜆𝑆− = −𝜆𝑆+ < 0, the lower span of the bar starts
buckling. To check the discretization error of the bar at 𝜆𝑆+ and 𝜆𝑆− ,
respectively, the following linear eigenvalue problem, proposed by the
second author (Malendowski) in Kalliauer et al. (2021), was solved:
[

𝐊𝑇 − 𝜒𝑖 (𝐊𝑇 )0
]

⋅ 𝐫𝑖 = 𝟎, 𝑖 = 1, 2,… , 𝑁. (11)

In (11), 𝜒𝑖 and 𝐫𝑖 denote the 𝑖th eigenvalue and the corresponding
eigenvector, respectively, whereas 𝑁 stands for the number of d.o.f.
of the bar, subdivided into finite elements. An advantage of this linear
eigenvalue problem over the standard linear eigenvalue problem, with
the unit matrix instead of (𝐊𝐓)0 in (11), is its consistency regarding
units and the automatic normalization of (𝜒 ) ∶= 𝜒 (𝜆 = 0) to 1.
𝑖 0 𝑖



European Journal of Mechanics / A Solids 96 (2022) 104756J. Kalliauer and H.A. Mang

w

a
A
t
l
𝜆
m

B
S
−
B
e

Fig. 3. Bar subjected to a centric axial force at its midpoint: (a) structure, (b) cross-section.
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Fig. 4. Bar subjected to a centric axial force at its midpoint: 𝜒1 − 𝜆 diagram obtained
ith 256 Abaqus elements B22 of equal length in each one of the two spans.

The convergence study for determination of the discretization error
t the stability limits was performed with 2, 4, 8, 16, 32, 64, 128, and 256
baqus elements B22 of equal length in each one of the two spans of

he bar. For four elements in each span the discretization error was
ess than 0.4%, considering the deviation of the numerical result for
𝑆+ = −𝜆𝑆− , obtained with 256 elements, from the solutions with finer
eshes as negligibly small.

Fig. 4 shows the 𝜒1−𝜆 diagram obtained with 256 Abaqus elements
22 in each one of the two spans. It is symmetric with respect to 𝜆 = 0.
etting the reference load 𝑃 equal to |𝑃𝑆 | = 6.6545 107 N, yields 𝜆𝑆+ =
𝜆𝑆− = 1. The convergence study was repeated with Abaqus elements
21. The differences of the results obtained by the two different finite
lements are negligible.
4

m

et 𝐊𝐓∕max(det 𝐊𝐓) − 𝜆 diagrams. Premultiplication of (11) by (𝐊𝑇 )−10
ives

(𝐊𝑇 )−10 ⋅𝐊𝑇 − 𝜒𝑖 𝐈
]

⋅ 𝐫𝑖 = 𝟎, 𝑖 = 1, 2,… , 𝑁 , (12)

here 𝐈 denotes the unit matrix. Following from the characteristic
quation of the determinant of the coefficienct matrix in Eq. (12),

et
[

(𝐊𝑇 )−10 ⋅𝐊𝑇
]

=
𝑁
∏

𝑖=1
𝜒𝑖 , (13)

here, making use of the Cauchy–Binet formula,

et
[

(𝐊𝑇 )−10 ⋅𝐊𝑇
]

=
[

det(𝐊𝑇 )−10
]

⋅
[

det𝐊𝑇
]

, (14)

ee, e.g. Mehta (2004) and Forrester (2018). Thus,

et𝐊𝑇 =

𝑁
∏

𝑖=1
𝜒𝑖

det(𝐊𝑇 )−10
. (15)

pecialization of (15) for 𝜆 = 0, with

𝜒𝑖)0 ∶= 𝜒𝑖(𝜆 = 0) = 1, 𝑖 = 1, 2,… , 𝑁 , (16)

ollowing from specialization of (11) for 𝜆 = 0, gives (Bourbaki, 1998)

et(𝐊𝑇 )0 =
1

det(𝐊𝑇 )−10
. (17)

Substitution of (17) into (15) results in

det𝐊𝑇 = det(𝐊𝑇 )0
𝑁
∏

𝑖=1
𝜒𝑖 . (18)

Fig. 5 shows det𝐊𝑇 ∕max(det𝐊𝑇 ) − 𝜆 diagrams, obtained with 8, 32,
nd 128 finite elements of equal length in each one of the two spans
f the bar. Since the discretizations of the two spans of the bar are
dentical, the curves in Fig. 5 are symmetric with respect to 𝜆 = 0.
hus, noting that det𝐊𝑇 > 0 in the prebuckling region,
ax(det𝐊𝑇 ) = det(𝐊𝑇 )0 . (19)
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he web version of this article.)

ollowing from (18) and (19),

det𝐊𝑇
max(det𝐊𝑇 )

=
𝑁
∏

𝑖=1
𝜒𝑖 . (20)

With the exception of 𝜆 = 0, 𝜆 = 𝜆𝑆+ and 𝜆 = 𝜆𝑆− = −𝜆𝑆+ , ∏𝑁
𝑖=1 𝜒𝑖(𝜆)

depends on 𝑁 . Hence, with the exception of these three values of 𝜆,
det𝐊𝑇 ∕max(det𝐊𝑇 ) depends on 𝑁 . Fig. 5 shows that, for an arbitrary
alue of 𝜆, this ratio decreases with increasing 𝑁 . It is concluded
hat, for the chosen special discretizations of the bar, the position of
ax(det𝐊𝑇 ) is mesh-independent.

Alternatively, the lower span of the beam was subdivided into twice
s many finite elements of equal length as the upper span. Fig. 6(b)–(c)
how consistent refinements of the coarsest discretization of the bar,
llustrated in Fig. 6(a). Division of (18) by max(det𝐊𝑇 ) gives

det𝐊𝑇
max(det𝐊𝑇 )

=
det(𝐊𝑇 )0

max(det𝐊𝑇 )

𝑁
∏

𝑖=1
𝜒𝑖 . (21)

Fig. 7 shows det𝐊𝑇 ∕max(det𝐊𝑇 ) − 𝜆 diagrams obtained with the
hree discretizations of the bar, shown in Fig. 6. According to Fig. 7,
or 𝜆 = 0, where
𝑁

𝑖=1
(𝜒𝑖)0 = 1 , (22)

det(𝐊𝑇 )0
max(det𝐊𝑇 )

< 1 . (23)

Hence, in contrast to the situation illustrated in Fig. 5, det(𝐊𝑇 )0
is not the maximum value of det𝐊𝑇 in the prebuckling region. Fig. 7
shows that the value of 𝜆 at which det𝐊𝑇 becomes a maximum value
depends on 𝑁 . In particular, it elucidates that, for the chosen refine-
ment of the mesh, the values of 𝜆 at which det𝐊𝑇 becomes a maximum
are increasing with growing values of 𝑁 . Following from Fig. 7,

d(det𝐊𝑇 )
d𝜆

|

|

|

|𝜆=0
= det(𝐊𝑇 )0

𝑁
∑

𝑖=1

⎛

⎜

⎜

⎜

⎝

d𝜒𝑖
d𝜆

𝑁
∏

𝑗=1
𝑗≠𝑖

𝜒𝑗

⎞

⎟

⎟

⎟

⎠

|

|

|

|

|

|

|

|𝜆=0

= det(𝐊𝑇 )0
𝑁
∑

𝑖=1

d𝜒𝑖
d𝜆

|

|

|

|

|

|𝜆=0

> 0 , (24)

resulting in
𝑁
∑ d𝜒𝑖

d𝜆

|

|

|

|

> 0 . (25)
5

𝑖=1 |

|𝜆=0
t

The finer discretization of the lower span of the bar is responsible for
the asymmetry of the curves shown in Fig. 7. (Mirror images of the
discretizations of the bar, shown in Fig. 6, with respect to 𝑥 = 𝐿,
result in mirror images of the curves, shown in Fig. 7, with respect
to 𝜆 = 0.) The strong mesh-dependence of the value of 𝜆 for which
d(det𝐊𝑇 )∕d𝜆 = 0 proves that this value has no physical meaning. In
general, it has nothing to do with the position of an extreme value of
the stiffness of the structure.

d|𝑃 |∕d𝑢ave−𝜆 diagram. d|𝑃 |∕d𝑢ave represents the stiffness of the bar. Its
etermination requires knowledge of 𝑢ave(𝜆). Fig. 8 shows the 𝑢ave − 𝜆

diagram of the investigated bar. It was obtained with 256 Abaqus ele-
ments B22. Convergence studies with these elements and with Abaqus
elements B21 have shown that 𝑢ave, defined in (4) as the mean displace-
ment, is an objective arc-length.

For the given example, the stiffness is always positive:

d|𝑃 |
d𝑢ave

=

d|𝑃 |
d𝜉

d𝑢ave
d𝜉

=

d|𝑃 |
d|𝜆|

d|𝜆|
d𝜉

d𝑢ave
d𝜉

> 0 . (26)

Substitution of
d𝑃
d𝜆

=
d|𝑃 |
d|𝜆|

= 𝑃 (27)

and of
d𝑢𝑎𝑣𝑒
d𝜉

= ∫ d𝑠 , (28)

ollowing from (3), into (27) yields
d|𝑃 |
d𝑢ave

= 𝑃
∫ d𝑠

d|𝜆|
d𝜉

> 0 ⇒
d|𝜆|
d𝜉

> 0 . (29)

ig. 9 shows the stiffness of the bar as a function of 𝜆.
Derivation of the stiffness of the bar with respect to |𝜆| gives

d
d|𝜆|

(

d|𝑃 |
d𝑢ave

)

= 𝑃
∫ d𝑠

d
d|𝜆|

(

d|𝜆|
d𝜉

)

= 𝑃
∫ d𝑠

d
d𝜉

(

d|𝜆|
d𝜉

)

d𝜉
d|𝜆|

= 𝑃
∫ d𝑠

d2|𝜆|
d𝜉 2

d|𝜆|
d𝜉

≥ 0

⇒
d2|𝜆|
d𝜉 2

≥ 0 , (30)

with the equality sign holding for 𝜆 = 0. Thus, the bar is stiffening for
all 𝜆 ≠ 0. Because of symmetry of the diagrams in Figs. 8 and 9 with
respect to 𝜆 = 0, the second equation in (8) disintegrates into

d𝐊𝑇
d𝜉

(𝜆 = 0) ⋅
d𝐪
d𝜉

(𝜆 = 0) = 𝟎 , d2𝐪
d𝜉 2

(𝜆 = 0) = 𝟎 . (31)

In contrast to the minimum of d|𝑃 |∕d𝑢ave at 𝜆 = 0, the det𝐊𝑇 ∕max
det𝐊𝑇 ) − 𝜆 diagrams in Fig. 5, which are also symmetric with respect
o 𝜆 = 0, have a maximum at 𝜆 = 0, incorrectly insinuating a
aximum of the stiffness of a seemingly softening structure for all
≠ 0. Accordingly, point 𝑀 in Fig. 1(b) has nothing to do with a
aximum of the stiffness of the torispherical pressure vessel head, see

ig. 1(a), subjected to internal pressure. In fact, the stiffness of the
tructure remains increasing also at the stability limit 𝑆+, see Fig. 2.
ence, extreme values of det(𝐾𝑇 ) have no physical meaning.

.2. IPE400 bar subjected to an eccentric compressive force

.2.1. Preliminaries
Fig. 10 shows the undeformed structure. The length of the IPE 400

ar, 𝐿, is equal to 5 m. The bar is simply supported at its two ends.
ts cross-section is shown in Fig. 3(b). The values of 𝐴, 𝐸, and 𝜈 were
iven in the beginning of Section 3.1.1. The second moment of inertia,
𝑧, of the cross-section, is equal to 1.3198 10−5 m4. Fig. 3(b) shows
he deformed structure. It is quasi-statically loaded by an eccentric
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Fig. 6. Discretization of the bar shown in Fig. 3 with Abaqus elements B22: (a) 4 finite elements in the upper span and 8 in the lower span, (b) 16 and 32 elements, and (c) 64
and 128 elements.
Fig. 7. det𝐊𝑇 ∕max(det𝐊𝑇 ) − 𝜆 diagrams obtained with Abaqus elements B22 for the
three discretizations shown in Fig. 6: (a) 4 and 8 elements (solid blue curve) (b) 16 and
32 elements (dotted red curve), (c) 64 and 128 elements (dash-dotted yellow curve)
and, additionally, for 256 and 512 elements (dotted purple curve). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

compressive force 𝑃 = 𝜆𝑃 , where 𝑃 denotes the reference load, chosen

s 1.1 106 N, and 𝜆 stands for a dimensionless proportionality factor. The

alue of the eccentricity 𝑒 of the load was chosen as 0.5m. 𝑣 denotes the

isplacement of the axis of the bar in the direction of the coordinate 𝑦.

The differential equation for the displacement curve of the

ar is given as (Mang and Hofstetter, 2018; Pichler and Aminbaghai,
6

Fig. 8. 𝑢𝑎𝑣𝑒 − 𝜆 diagram of the bar shown in Fig. 3.

2020):
d2𝑣
d𝑥 2

[

1 +
(

d𝑣
d𝑥

)2
]3∕2

+ 𝛼2 𝑣 = −𝛼2 𝑒 , (32)

where

𝛼2 = 𝜆𝑃
𝐸𝐼𝑧

. (33)

Since (32) has no analytical solution, the problem was solved by the
FEM. The numerical investigation was again carried out with the help
of the commercial software Abaqus (Abaqus User Manual, 2020), using
SI units, i.e. “m” and “kg∕s2”. Details of the Abaqus elements B31,
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Fig. 9. d|𝑃 |∕d𝑢𝑎𝑣𝑒 − 𝜆 diagram for the bar shown in Fig. 3.

Fig. 10. Bar subjected to an eccentric compressive force, adapted from Mang and
Hofstetter (2018): (a) undeformed structure, (b) deformed structure.
Table 2
Details of the Abaqus elements B31, B31OS, B32, B32OS, and B33 (Abaqus User
Manual, 2020; Kalliauer et al., 2021), the hybrid Elements, ending with “H”, are
identical to the disp.-elements, except they do have additionally 3 d.o.f. for the two-
noded linear elements and 6 addionally d.o.f. for the three noded and the cubic
elements.

Designation Formulation # of nodes # of d.o.f.

Abaqus B31 3D, displ., Timoshenko 2/linear 12(= 2 ⋅ 6)
Abaqus B31OS 3D, displ., Timoshenko, open section 2/linear 14(= 2 ⋅ 7)
Abaqus B32 3D, displ., Timoshenko 3/quad. 18(= 3 ⋅ 6)
Abaqus B32OS 3D, displ., Timoshenko, open section 3/quad. 21(= 3 ⋅ 7)
Abaqus B33 3D, displ., Bernoulli 2/cubic 12 + 6

B31OS, B32, B32OS, and B33 (Abaqus User Manual, 2020), employed

in the analysis, are given in Table 2.

In order to check the mesh-dependence of the results, the bar was

discretized with (a) five and (b) ten finite elements.
7

d

3.2.2. Numerical results
𝜒1 − 𝜆 diagrams and det 𝐊𝑇 ∕det (𝐊𝑇 )0 − 𝜆 diagrams. Fig. 11(a) and
(b) show 𝜒1 − 𝜆 diagrams obtained with 5 and 10 finite elements,
respectively.

A comparison of corresponding curves in Fig. 11(a) and (b) indicates
the insensitivity of the function 𝜒1(𝜆) to the two discretizations of the
bar. It is seen, however, that the eigenvalue curves obtained with the
Euler–Bernoulli element deviate significantly from the ones obtained
with the three Timoshenko elements. The rings on these curves mark
minimum values of 𝜒1. They satisfy the condition

𝐫1 ⋅
d𝐊𝑇
d𝜆

⋅ 𝐫1 = 0 , (34)

s follows from derivation of (11) with respect to 𝜆 (Mang and Jia,
013; Mang et al., 2016; Aminbaghai and Mang, 2012). Fig. 11 shows
hat the function 𝜒1(𝜆) has no zero position inside the considered
ange of 𝜆. This differs from the stability limit, 𝜆 = 1, obtained by
eans of second-order-theory, i.e. by omitting the term (d𝑣∕d𝑥)2 in the
enominator of (32).

Fig. 12(a) and (b) show the det𝐊𝑇 ∕ det(𝐊𝑇 )0 − 𝜆 diagrams obtained
ith 5 and 10 elements, respectively.

The rings on the curves in Fig. 12 mark minimum values of det𝐊𝑇 . It
s seen that the curves depend on both the chosen finite element and the
umber of finite elements. According to Table 2, the four elements used
n the numerical investigation of the present example have different
umbers of d.o.f. . Consequently, the number of eigenvalues, 𝑁 , will
ary even if the number of finite elements remains unchanged. Hence,

det𝐊𝑇
det(𝐊𝑇 )0

=
𝑁
∏

𝑖=1
𝜒𝑖 (35)

s not a mechanically objective quantity in the previously defined sense.
onsequently, the positions of the extreme values of this quantity are
echanically meaningless, as was shown already in the first example.
lthough the initial decrease of det𝐊𝑇 ∕ det(𝐊𝑇 )0, see Fig. 12, correlates
ith the initial decrease of the stiffness of the bar, i.e. with its initial

oftening, the different positions of the first minimum values of this
uantity and the existence of further extreme values of det𝐊𝑇 ∕ det(𝐊𝑇 )0
orroborate their mechanical irrelevance.

oad–displacement diagrams. Fig. 13(a) shows the 𝑣max − 𝜆 diagram,
here 𝑣max denotes the largest transverse displacement of the bar. This

urve has a point of inflection at 𝜆 ≈ 0.68. Fig. 13(b) shows the 𝑢max −𝜆
iagram, where 𝑢max stands for the largest axial displacement of the
ar. This curve has a point of inflection at 𝜆 ≈ 0.93. (The dependence
f the functions 𝑣max(𝜆) and 𝑢max(𝜆) on the chosen finite element and on
he number of finite elements considered in the numerical investigation
s negligibly small, resulting in overlapping curves.) Because of

(𝑣max)
|

|

|

d2𝑣max
d𝜆 2

=0
≠ 𝜆(𝑢max)

|

|

|

d2𝑢max
d𝜆 2

=0
, (36)

the points of inflection of the two curves are merely local quantities,
related to displacements of individual points.

Fig. 14(a) shows the 𝑢ave − 𝜆 diagram of the bar. The curve has a
point of inflection at 𝜆 ≈ 0.891. It is seen that

𝜆(𝑣max)
|

|

|

d2𝑣max
d𝜆 2

=0
< 𝜆(𝑢ave)

|

|

|

d2𝑢ave
d𝜆 2

=0
< 𝜆(𝑢max)

|

|

|

d2𝑢max
d𝜆 2

=0
. (37)

In contrast to the two aforementioned local quantities,
𝜆(𝑢ave)|| d2𝑢ave

d𝜆 2
=0

is a global quantity. It marks, in a mechanically ob-

ective manner, the transition from the initially softening structure to
stiffening structure.

Another possible global mechanical quantity is the variation of the
ork 𝑊 done by the load. An infinitesimal increment of 𝑊 is given as:

𝑊 = 𝑃 d𝑠 , (38)
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Fig. 11. Bar subjected to an eccentric compressive force: 𝜒1 − 𝜆 diagrams obtained with (a) 5 and (b) 10 Abaqus elements B33 (solid blue curves), B31OS (dashed red curves),
B32 (dash-dotted yellow curves), and B32OS (dotted purple curves). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 12. Bar subjected to an eccentric compressive force: det𝐊𝑇 ∕ det(𝐊𝑇 )0 − 𝜆 diagrams obtained with (a) 5 and (b) 10 Abaqus elements B33 (solid blue curves), B31OS (dashed
red curves), B32 (dash-dotted yellow curves), and B32OS (dotted purple curves). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 13. Bar subjected to an eccentric compressive force: (a) 𝑣max − 𝜆 diagram, (b) 𝑢max − 𝜆 diagram.
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Fig. 14. Bar subjected to an eccentric compressive force: (a) 𝑢ave − 𝜆 diagram, (b) 𝑠 − 𝜆 diagram.
Fig. 15. Bar subjected to an eccentric compressive force: (a) d𝑊 ∕d𝑃 − 𝜆 diagram, (b) d𝑠∕d𝜆 − 𝜆 diagram.
here d𝑠 denotes an infinitesimal increment of the movement of the
oint of loading. Thus,
d𝑊
d𝑃

= d𝑊
d𝑠

⋅
d𝑠
d𝑃

= 𝑃 d𝑠
d𝑃

= 𝜆𝑃 d𝑠
𝑃 d𝜆

= 𝜆 d𝑠
d𝜆

(39)

with 𝑠 as the difference of the movements of the two points of loading.
Fig. 14(b) shows the 𝑠− 𝜆 diagram of the bar. The curve has a point of
inflection at 𝜆 ≈ 0.878.

Fig. 15(a) shows the d𝑊 ∕d𝑃−𝜆-diagram with a point of inflection at
𝜆 ≈ 0.65. Fig. 15(b) illustrates the d𝑠∕d𝜆− 𝜆 diagram, with a maximum
at 𝜆 ≈ 0.87.

.2.3. Rates of convergence of 𝑢𝑎𝑣𝑒 for uniform and non-uniform meshes
The bar shown in Fig. 10 was used to study the rates of convergence

f 𝑢𝑎𝑣𝑒 for uniform as well as non-uniform meshes of finite elements.
he investigation was carried out for 𝜆 = 1 ⇒ 𝑃 = 𝑃 = 1.1 103 N.

The rate of convergence of 𝑢𝑎𝑣𝑒 was tested at the stability limit
ccording to second-order theory (𝜆 = 1 ⇔ 𝑃 = 𝑃 = 1.1 106 N), where
̄ denotes the buckling load according to this theory which disregards
he term (d𝑣∕d𝑥)2 in the denominator of (32) (Kurrer, 2016). (Second-
rder theory is restricted to moderately large displacements.) Abaqus,
hich was used for the numerical investigation, however accounts for

his term, which allows load intensities 𝑃 larger than 𝑃 . Fig. 16 shows
he undeformed and the deformed bar. For a bar discretized with at
east 20 elements, independent of the chosen element, the value of the
ransverse displacement in the middle of the beam, 𝑣𝑚𝑎𝑥, is equal to
.552 m.
9

Fig. 16. Bar subjected to an eccentric compressive force 𝑃 = 𝑃 = 1.1 𝑡106 N:
Undeformed and deformed configuration.
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Fig. 17. Relative error of 𝑢𝑎𝑣𝑒, computed with elements B31OSH (blue: uniform mesh, yellow: non-uniform mesh) and B32OSH (red: uniform mesh, purple: non-uniform mesh),
respectively, shown on (a) a double-logarithmic and (b) a semi-logarithmic scale. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
Fig. 18. Relative error of 𝑢𝑎𝑣𝑒,𝐵31 and of the Abaqus-result for 𝑢𝑎𝑣𝑒, computed with elements B31OSH (blue: uniform mesh, yellow: non-uniform mesh) and B32OSH (red: uniform
esh, purple: non-uniform mesh), respectively, shown on (a) a double-logarithmic and (b) a semi-logarithmic scale. (For interpretation of the references to color in this figure

egend, the reader is referred to the web version of this article.)
−
The number of elements for uniform meshes is ranging from 5 to
048. For non-uniform meshes, the upper half of the bar, shown in red
olor, is discretized with 64 elements of equal length. The number of
lements of equal length in the lower half of the bar, shown in blue
olor, is ranging from 5 to 2048. Details of the Abaqus elements in the
umerical investigation are given in Table 2.

For all elements, the rates of convergence of 𝑢𝑎𝑣𝑒 are quadratic.
hus, dividing each element of a uniform mesh into two equally long
lements, the previous numerical error is divided by a factor of 4 ±
.002. Because of the small scatter of this factor of less than 1‰,
he numerical error can be predicted to three significant digits before
tarting the calculation.

Fig. 17 refers to the relative error of 𝑢𝑎𝑣𝑒, computed with elements
31OSH and B32OSH, for uniform as well as non-uniform meshes. The
eference value to which the absolute error of 𝑢𝑎𝑣𝑒 is related will be
ntroduced later.

At first, the results obtained with uniform meshes will be inter-
reted. The finest B32OSH-mesh consists of 2048 elements. It re-
ulted in 𝑢𝑎𝑣𝑒,𝐵32−2048 = 1.275 869 613 045m. The predicted error based
10

n the trend in previous calculations with B32OSH, is equal to
0.000 000 012 135m. Consideration of this error yields 𝑢𝑎𝑣𝑒,𝐵32 =
1.275 869 625 18m.

The finest B31OSH-mesh also consists of 2048 elements. It resulted
in 𝑢𝑎𝑣𝑒,𝐵31−2048 = 1.275 868 783m. The predicted error, based on the
trend of previous calculations with B31OSH, is equal to −0.000 000 172
m. Consideration of this error yields 𝑢𝑎𝑣𝑒,𝐵31 = 1.275 868 955m. Choos-
ing this value as a reference value would result in a straight blue line
in Fig. 17(a).

Since both meshes result in quadratic convergence (i.e. both have
the same slope in Fig. 17(a)), the mesh with the smaller numerical error
(i.e. the lower one of the two parallel lines in Fig. 17(a)) was chosen as
the reference value, i.e. 𝑢𝑎𝑣𝑒,𝑟𝑒𝑓 = 𝑢𝑎𝑣𝑒,𝐵32, resulting in the straight red
line in Fig. 17(a). The relative numerical difference, between 𝑢𝑎𝑣𝑒,𝐵31
and 𝑢𝑎𝑣𝑒,𝐵32 is 5.2 10−7. Because of this difference, the red curve in
Fig. 17(a) is straight, which is not the case with the red curve in
Fig. 18(a). Conversely, the blue curve in Fig. 18(a) is straight, which is
not the case with the blue curve in Fig. 17(a). In Fig. 17, 𝑢𝑎𝑣𝑒,𝐵32 is the
reference value, whereas in Fig. 17 it is 𝑢𝑎𝑣𝑒,𝐵31.

The value of the numerical error of 𝑢𝑎𝑣𝑒, related to this reference

value, is shown in Fig. 17. The difference between the result obtained
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Fig. 19. Oblate rotational ellipsoidal shell subjected to internal pressure: (a) isometric view of the structure, (b) cross-section of the 𝑥–𝑦-plane, boundary conditions: (𝛼) : no
translation in the 𝑦-direction, (𝛽) : no translation in the 𝑧-direction, (𝛾) : no translation in the 𝑥-direction, (𝛿) : no rotations around the 𝑦-axis.
with the finest mesh, consisting of 2048 B32OSH-elements, and the
reference value, divided by 𝑢𝑎𝑣𝑒, is 9.5 10−9. It represents the right end
of the red line in Fig. 17. The corresponding value, computed with the
finest B31OSH-mesh, i.e. the one at the right end of the blue line, is
larger, namely 6.6 10−7. For the meshes with B31, B31H, B31OS and
B32, B32H, B32OS elements, the same results were obtained as for the
B31OSH-meshes and the B32OSH-meshes.

In the following, the results obtained with non-uniform meshes
will be interpreted. The yellow and the purple curve in Fig. 17(a)
refer to results for the relative numerical error of 𝑢𝑎𝑣𝑒, obtained with
different non-uniform B31OSH-meshes and B32OSH-meshes, respec-
tively, of the previously described form. In case of the B31OSH-meshes,
the sign of the numerical error changes at around 200 elements.
For the B32OSH-meshes, such a change occurs between 80 and 100
elements. Fig. 17(b) elucidates that these sign changes represent tran-
sitions from underestimating to overestimating 𝑢𝑎𝑣𝑒. The yellow and the
purple curve in Fig. 17 have a relative numerical error of 4 10−6 and
3 10−6, respectively, for the finest discretization of the lower half of
the bar, consisting of 2048 elements, while the discretization of the
upper half has been kept constant with 64 elements. This proves that
𝑢𝑎𝑣𝑒 converges also for local mesh-refinements of non-uniform meshes.
However it is usually the coarsest subregion of the mesh that defines
the order of the numerical error of a characteristic mechanical quantity.
Consistent mesh-refinements of non-uniform meshes would converge to
a much smaller numerical error.

A relative numerical error of less than 1%, which is the upper limit
in Fig. 17(a), is generally insignificant. It was used in this subsection
merely to demonstrate the rates of convergence of 𝑢𝑎𝑣𝑒 for different
meshes.

3.3. Buckling of a stiffening structure of the form of an oblate rotational
ellipsoidal shell subjected to internal pressure

3.3.1. Preliminaries
Fig. 19(a) contains an isometric view of the structure. Fig. 19(b)

shows the cross-section in the 𝑥–𝑦 plane. The radius of the equator is
200 cm and the distance between the poles is 40 cm. The thickness of the
11
Table 3
Details of the Abaqus elements S3 and S4 (Abaqus User Manual, 2020).

Designation Formulation # of nodes # of d.o.f.

Abaqus S3 3D, displ. 3/linear 18 (= 3 ⋅ 6)
Abaqus S4R 3D, displ., reduced

integration, hourglass control
4/linear 24 (= 4 ⋅ 6)

shell is 0.5 cm. The modulus of elasticity, 𝐸, and Poisson’s ratio, 𝜈, are
equal to 2.1 1011 kN∕m2 and 0.3, respectively. The reference pressure
is chosen as 103 N∕m2. Fig. 19(b) also contains information about the
boundary conditions. Point A is prevented from moving in the vertical
direction. Points B and C are prevented from moving horizontally.
Moreover, the shell is prevented from rotating around the 𝑦-axis. These
boundary conditions would result in a statically determinate model if
one half of the structure was considered. However, in the analysis the
whole structure was taken into account. Hence, the model is statically
indeterminate to the first degree.

The problem was solved by the FEM. The numerical investiga-
tion was again carried out with the help of the commercial software
Abaqus (Abaqus User Manual, 2020). Details of the Abaqus elements
S3 and S4R, employed in the analysis, are given in Table 3.

The mesh consists of 42 675 elements.

3.4. Numerical results

The red curve in Fig. 20(a) shows the prebuckling branch of the
𝜆−𝑢𝑎𝑣𝑒 diagram of the perfect structure subjected to internal pressure. It
stretches from the start of loading to the stability limit, denoted as 𝑆. A
characteristic feature of this curve is its positive curvature. It shows that
the shell is stiffening. However, this does not prevent it from buckling.

At first sight, Fig. 20(a) might be misleading. It gives the impression
that point 𝐼 is the stability limit and that the initial part of the postbuck-
ling branch, i.e. the blue curve, signals stable equilibrium. Fig. 20(b)
clarifies the situation. It explains that point 𝐼 represents the snap-back
point at the end of the unstable initial part of the post-buckling branch,
shown as a dotted green curve. It starts at the true stability limit,
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Fig. 20. Oblate rotational ellipsoidal shell: (a) prebuckling branch and initial part of the postbuckling branch of the perfect shell, (b) detail of (a). The green dotted curve in
(a) has an offset of one linewidth to avoid overlapping with the red curve. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 21. Oblate rotational ellipsoidal shell subjected to internal pressure: (a) top view
of the buckling mode, (b) front view of the buckling mode.

𝑆. Hence, a stiffening structure is no safeguard against a potentially
dangerous post-buckling behavior. An argument for relating 𝜆 to the
global quantity 𝑢𝑎𝑣𝑒 rather than to a particular degree of freedom is the
global character of loss of stability of the structure.

Fig. 21(a) shows a top view of the buckling mode of the shell.
The number of buckling waves in the circumferential direction is 30.
Fig. 21(b) shows a front view of the buckling mode of the structure.

4. Conclusions

• It was shown that d(det𝐊𝑇 )∕d𝜆 = 0 is not objective and therefore
does not mark an extreme value of the stiffness of a loaded
12
structure. Hence, it has nothing to do with the transition of a
proportionally loaded stiffening structure to a softening structure
or vice versa.

• The reason for the mechanical irrelevance of the sign of d(det𝐊𝑇 )∕
d𝜆 is the dependence of det𝐊𝑇 on the product of the eigen-
values of a linear eigenvalue problem with 𝐊𝑇 as one of the
two coefficient matrices. The number of these eigenvalues, 𝑁 , is
equal to the number of d.o.f. of the FE model of the structure.
Thus, it depends on both the number of d.o.f. of the chosen
finite element and the number of finite elements. Hence, apart
from det𝐊𝑇 = 0, det𝐊𝑇 and, consequently, d(det𝐊𝑇 )∕d𝜆 are no
mechanically objective quantities.

• To underscore the argument concerning the mechanical irrele-
vance of d(det𝐊𝑇 )∕d𝜆 = 0 as a quantity that signals the transition
from stiffening (softening) to softening (stiffening), the maximum
values of the det𝐊𝑇 ∕ det(𝐊𝑇 )0 - 𝜆 diagrams in Figs. 5 and 7 were
shown to correspond to a strictly stiffening structure. Irrespective
of the direction of the applied load, the stiffness of the structure
is increasing, albeit very little, with growing load intensity.

• The decrease of det𝐊𝑇 (𝜆) before reaching the stability limit
seems, at first glance, to support the widespread misconception
that buckling of structures is necessarily preceded by a decrease
of their stiffnesses.

• An oblate rotational ellipsoidal shell, subjected to internal pres-
sure, was used as an example for buckling of a stiffening shell. It
was illustrated that a stiffening structure is no safeguard against
a potentially dangerous post-buckling behavior.

• It was shown that the conventional definition of stiffening (soft-
ening) structures at a specific load level as d2𝜆∕(d𝑞𝑖)2 > 0 (< 0),
where 𝑞𝑖 denotes a characteristic d.o.f., is lacking mechanical
objectivity. This was done by means of a mechanically objective
dimensionless arc-length 𝜉. In particular, it was demonstrated that
the value of 𝜆, for which d2𝜆∕d𝜉2 = 0, marking the transition from
an initially softening to a stiffening bar subjected to eccentric
compression, correlates, on the one hand, with d2𝜆∕d𝑞2𝑖 > 0 and,
on the other hand, with d2𝜆∕d𝑞2𝑗 < 0, where both 𝑞𝑖 and 𝑞𝑗 denote
a characteristic d.o.f. .

Based on these conclusions, the answer to the question posed in the
title of this paper is conditionally affirmative. For the mechanically
objective arc-length 𝜉, defined in this work, d2𝜆∕(d𝜉)2 > 0 (< 0),
assuming d𝜆∕d𝜉 > 0, with 𝜆 > 0, 𝜉 > 0, are mechanically unambiguous
definitions of stiffening and softening structures.
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ppendix. List of symbols

Variable Unit Explanation
𝑒 [m] Eccentricity of the normal force
𝐪 [m; rad] Vector of nodal degrees of freedom in

the framework of the FEM, introduced
in (1)

𝐪𝑖,𝐪𝑗 [m; rad] Vectors of nodal degrees of freedom of
points 𝑖 and 𝑗 in the framework of the
FEM

𝐫𝑖 [m; rad] 𝑖th orthonormal eigenvector of the
eigenvalue-problem (11)

𝑠 [m] Axial coordinate, introduced in Eq. (3)
𝐮 [m] Displacement vector of an arbitrary

point
𝑢ave [m] Average displacement, defined in (4)
𝑢ave,B31 [m] Average displacement, derived with

linear Timoshenko-elements
𝑢ave,B32 [m] Average displacement, derived with

quadratic Timoshenko-elements
𝑢 [m] Displacement component in the

𝑥-direction
𝑣 [m] Displacement component in the

𝑦-direction
𝑤 [m] Displacement component in the

𝑧-direction
𝐴 [m2] Area of the cross-section of a bar
𝐸 [N∕m2] Modulus of elasticity
𝐈 [1] Identity matrix, introduced in (12)
𝐼𝑦 [m4] Relevant principal second moment of

area, around the strong axis, of the
cross-section of a bar
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𝐼𝑦 [m4] Relevant principal second moment of
area, around the weak axis, of the
cross-section of a bar

𝐊𝑇

[

N
m ; N m

rad ;N
]

Tangent stiffness matrix, introduced in
(11)

(𝐊𝑇 )0
[

N
m ; N m

rad ;N
]

Tangent stiffness matrix at the onset of
proportional loading, introduced in
(11)

𝐿 [m] Length of a bar
𝑁 [1] Number of active degrees of freedom

in the FEM-simulations, introduced in
(11)

𝑃 [N] Node force, defined in (26).
𝑃 [N] Reference node force, defined in (27).
𝐏̄ [N;N m] Vector of reference work-equivalent

node forces, introduced in (1) as
𝐏̄ = 𝐏∕𝜆.

𝜆 [1] Proportionality factor of the load
intensity

𝜆𝑆 [1] Value of 𝜆 at the stability limit
𝜉 [m] Arc length of the FEM-displacements,

defined in (3)
𝜒𝑖 [1] 𝑖th eigenvalue in (11)
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