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A B S T R A C T

In this work, the real-time optimal trajectory planning, together with a cascaded tracking controller, is
presented for a three-dimensional (3D) gantry crane in an environment with static obstacles and a dynamically
moving target considering dynamic constraints and control input limits. State-of-the-art trajectory optimization-
based approaches require long computation times and cannot quickly respond to changes in the target state.
The focus of this paper lies on a novel trajectory planning algorithm, which consists of two steps. First, an
offline trajectory planner is implemented to compute a time-optimal, collision-free, and dynamically feasible
trajectory database that connects all possible initial states of the gantry crane from a predefined starting
subspace to the target states in a target subspace. Second, based on linear constrained quadratic programming,
the online trajectory replanner makes use of this trajectory database to generate an optimal trajectory in
real time that accounts for all changes in the target state. Additionally, a trajectory tracking controller is
developed to take into account the dynamic constraints of the gantry crane and to compensate for possible
model inaccuracies, disturbances, and other non-modeled effects. Both simulation and experimental results are
presented to demonstrate the performance of the proposed trajectory (re)planning algorithm and the control
concept.
. Introduction

Gantry cranes are important robotic systems for automated trans-
ortation and manufacturing processes in a broad range of fields such
s the steel industry and the construction sector. Gantry cranes are
ostly used to move payloads from a starting point to a destination

n factories, warehouses, and ports. Typically, gantry crane systems
re controlled by an experienced operator. Due to challenging require-
ents, such as time-optimal operation, high positioning and tracking

ccuracy of the payload, and safety aspects, path planning strategies
nd control technologies for this type of systems have been thoroughly
tudied in the literature. A gantry crane constitutes a nonlinear and
nderactuated mechanical system. To achieve the goals of accurate
ositioning and minimal payload oscillations simultaneously, many
oncepts are based on a combined strategy in which an optimal tra-
ectory is carefully planned first offline, see, e.g., Chen et al. (2016)
nd Kolar et al. (2017), and then the tracking controller is designed to
ollow this optimal trajectory, see, e.g., Lobe et al. (2018) and Lu et al.
2021). Although these combined strategies have been successfully
pplied to real-world scenarios, the trajectory of the gantry crane is
ypically computed offline in an obstacle-free environment and the
ontrol input limits are neglected.
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In the literature, the differential flatness property, see, e.g., Fliess
et al. (1995) for the concept of flatness, of 2D and 3D gantry crane
models is often exploited, where all the system states and inputs can
be parameterized by the flat output and its time derivatives. By re-
placing the flat output with its desired trajectory, the parameterization
of the control input directly yields the feedforward control law, see,
e.g., Blajer and Kołodziejczyk (2007), Chen et al. (2019) and Kim et al.
(2021). In this context, the constraints of the system state and the
control input are often neglected due to the complex nonlinear mapping
function between the flat output and the system variables. Unlike
flatness-based trajectory planning, optimization-based methods can be
used to find a locally optimal trajectory given the dynamic constraints
of the system, see, e.g., Betts (1998) and Rao (2009). By discretizing the
state trajectory of the gantry crane, the full state of the system can be
limited to admissible ranges in the optimization problem, including the
sway angles and the angular velocities of the payload. Furthermore, an
obstacle avoidance strategy can be incorporated into the optimization-
based trajectory planning by an additional term in the cost function
or in form of additional constraints, see, e.g., Schulman et al. (2014)
and Zucker et al. (2013). Such concepts are successfully utilized in
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many applications (Iftikhar et al., 2019; Zhang et al., 2020). Here,
the advantage of optimization-based trajectory planning over flatness-
based methods becomes noticeable in terms of obstacle avoidance,
sway suppression, and compliance with state constraints and control
input limits. However, the computational time of optimization-based
trajectory planning is still too long for a real-time implementation
on a standard electronic control unit, see, e.g., Iftikhar et al. (2019)
and Zhang et al. (2020).

In scenarios with repetitive tasks, the optimization-based trajectory
planning can be solved in a computationally more efficient way. For
example, if the starting and/or target states are only changed slightly,
only the deviations from the previous trajectory need to be computed
instead of running the full optimization. For this reason, trajectory
replanning algorithms are developed using dynamic motion primitives
(DMPs) or Gaussian Mixture Models (GMMs), see, e.g., Ijspeert et al.
(2002) and Khansari-Zadeh and Billard (2011). However, the compu-
tation of GMMs and DMPs becomes inefficient in a high-dimensional
state space. For the considered lab-scale 3D gantry crane, the di-
mension of the state space is 10. Moreover, GMM- and DMP-based
approaches typically neglect the state constraints and control input lim-
itations. Therefore, these concepts are not suitable for the considered
application.

Together with the trajectory planning, the trajectory tracking con-
troller also plays an important role in a gantry crane system. In the
literature, the mathematical model of a gantry crane is often de-
composed into the slow pendulum subsystem and the fast subsystem
which contains the dynamics of the trolley and the hoist drum, see,
e.g., Kolar et al. (2017) and Lobe et al. (2018). Thus, the trajectory
tracking controller typically relies on a cascaded structure, in which
the outer loop of the cascaded trajectory tracking controller keeps the
unactuated angles of the hoist cable around the desired trajectory. The
inner control loop provides tracking of the desired payload trajectory,
see, e.g., Abdullahi et al. (2020), Kolar et al. (2017) and Lobe et al.
(2018). In these works, the system state and control input constraints
are not directly considered. Thus, there is room for improving the
cascaded controller design by using a control scheme that systemat-
ically accounts for these constraints. This feature of the controller is
particularly important for the system to navigate around obstacles and
for suppressing sway of the payload.

In our previous work (Vu et al., 2020), a two-stage fast motion
planning algorithm for a lab-scale 3D gantry crane was proposed for
the application of moving goods or materials from a predefined starting
position to a predefined target position in a static environment with
known obstacles. Note that the concept proposed in Vu et al. (2020)
was only validated in simulations. Moreover, the online replanning
in the second stage is only applicable to a static scenario where the
target position does not change during the operation of the gantry
crane. This paper significantly extends this previous work in three main
contributions:

• First, the fast trajectory planning algorithm not only considers
a stationary scenario, but is also able to systematically generate
trajectories when the target state changes during the movement
of the 3D gantry crane, i.e. the proposed concept is suitable for
moving targets. To achieve this goal, a new method for building
the offline trajectory database is proposed along with a fast search
algorithm. This allows a novel online replanner to quickly look up
the relevant offline trajectory in the database.

• Second, the online replanner of Vu et al. (2020) is reformulated
and a computationally very efficient sparse quadratic program-
ming solver is used. In this way, the online replanner is able to
generate a new trajectory, with an average computation time of
2.5ms on a PC and 15ms on the dSPACE MicroLabBox, respec-
tively. The validation of the proposed algorithm is performed
using both simulations and an experimental setup. A video of the
experimental results can be found at https://www.acin.tuwien.ac.

at/en/65ce/
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Fig. 1. Schematic of the lab-scale 3D gantry crane for 𝛼 = 𝛽 = 0.

• Third, a model predictive controller (MPC) is introduced in the
outer loop of the cascaded trajectory tracking controller, which is
able to accurately perform the tracking task while adhering to the
state and input constraints and suppressing sway in the payload.

In recent literature for automated cranes, e.g., Wang et al. (2019)
and Zhang et al. (2021), the trajectories for a 3D gantry crane are
calculated offline and tested in simulations. In contrast, the proposed
algorithm in this work generates collision-free trajectories online, and
is validated by experiments. Moreover, in comparison with the most
successful practical studies, e.g., Böck and Kugi (2013) and Sawodny
et al. (2002), the proposed combined method has the ability to generate
near time-optimal dynamically feasible trajectories online for scenar-
ios with obstacles and a moving target. To the best of the authors’
knowledge, the real-time control and experimental validation of a 3D
gantry crane in an environment with obstacles and a moving target
have not been demonstrated so far. In addition, both the fast trajectory
planning and the trajectory tracking controller systematically take into
account the system constraints and control input limits, which is also
experimentally validated.

Although the two-stage trajectory planning algorithm is widely used
in robotics, see, e.g., Chai et al. (2018) and Lembono et al. (2020),
the novel trajectory planning algorithm proposed in this paper enables
online trajectory replanning in a dynamically changing environment
with static obstacles and a moving target. This work is a proof of
concept in the form of a laboratory experiment for real-time trajectory
planning, where it is assumed that the required modules for scanning
the environment including obstacle detection and the tracking system
of the moving truck are available. One of the limitations of the proposed
trajectory (re)planning is that it works only within the predefined
starting and target subspaces. However, arbitrary subspaces can be
chosen according to application requirements. For example, in this
work, the starting subspace covers the entire workspace, while the
target subspace corresponds to the workspace of a moving truck in 2D.

The paper is organized as follows: In Section 2, the mathematical
model of the lab-scale 3D gantry crane of Lobe et al. (2018) is summa-
rized. In Section 3, the novel two-stage trajectory planning algorithm
is presented. Section 4 introduces the details of the cascaded control
concept including a model predictive controller (MPC). Simulations
and experiments are presented in Section 5. Finally, the last section
concludes this work.

2. Mathematical model

The CAD model of the lab-scale 3D gantry crane is illustrated in
Fig. 1. The gantry crane system consists of five degrees of freedom

https://www.acin.tuwien.ac.at/en/65ce/
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Fig. 2. The payload with the corresponding hosting cable angles 𝛼 and 𝛽.

𝐪T = [𝑠𝑥, 𝑠𝑦, 𝑠𝑧, 𝛼, 𝛽], where 𝑠𝑥, 𝑠𝑦 denote the position of the trolley on
the bridge in 𝑥-, 𝑦-direction and 𝑠𝑧 is the current hosting cable length.
The variables 𝛼 and 𝛽 refer to the angles of the hoisting cables in the
𝑧𝑦- and 𝑧𝑥-plane, respectively, see Fig. 2. Note that the system state 𝐪
is measured by five incremental encoders located at the three actuators
for 𝑠𝑥, 𝑠𝑦, and 𝑠𝑧, and at the lifting drum for the two sway angles 𝛼 and
𝛽. By assuming that the two hosting cables suspending the payload are
identical and always under tension, the lab-scale 3D gantry crane can
be modeled as a rigid-body system. Here, only the two sway angles 𝛼
and 𝛽 are considered as degrees of freedom and the twisting motion
of the payload is neglected. For more details on the mechanical design
parameters and the integrated equipment, the reader is referred to Lobe
et al. (2018).

Using the five generalized coordinates 𝐪, the state–space model of
the 3D gantry crane reads as

𝐳̇ = 𝐟 (𝐳,𝐮)

=
⎡

⎢

⎢

⎣

𝐪̇

𝐌−1(𝐪)
([

𝐮
𝟎

]

− 𝐂(𝐪, 𝐪̇)𝐪̇ − 𝐠(𝐪)
)

⎤

⎥

⎥

⎦

,
(1)

with 𝐳T = [𝐪T, 𝐪̇T]. The matrix 𝐌(𝐪) denotes the symmetric and
positive definite mass matrix, 𝐂(𝐪, 𝐪̇) includes Coriolis and centrifugal
terms, 𝐠(𝐪) are the forces associated with the potential energy, and
𝐮T = [𝑢1, 𝑢2, 𝑢3] ∈ R3 are the driving forces in the 𝑥-, 𝑦-, and 𝑧-axis,
respectively. A detailed derivation of the equations of motion (1) for
the 3D gantry crane is given in the Appendix A of this paper.

3. Two-step trajectory planning

In this section, the fast trajectory planning algorithm is presented,
which consists of an offline trajectory optimization to build up a trajec-
tory database, a fast search algorithm to search within this trajectory
database, and an online trajectory replanner.

3.1. Offline trajectory optimization

Note that only a brief introduction to the offline trajectory planner
is presented here. For more details, the reader is referred to our earlier
work (Vu et al., 2020). The general task of a gantry crane is to transport
the payload from a starting (initial) state 𝐳𝑆 to a target state 𝐳𝑇 in
a minimum time 𝑡𝐹 , while respecting the constraints on the state
variables and control inputs and avoiding collisions with obstacles.
To achieve these objectives, the trajectory of the 3D gantry crane is
discretized in time with 𝑁 + 1 grid points, the so called collocation
3

Fig. 3. Illustration of the obstacles in the working space and their coordinate frames.

points. By using trapezoidal direct collocation, see, e.g., Betts (2010)
and Kelly (2017), the system dynamics (1) are transcribed into the
nonlinear constraints (2b) and the nonlinear optimization problem for
offline trajectory planning is written as

min
𝝃

𝑡𝐹 + 1
2
ℎ
𝑁−1
∑

𝑘=1

𝑚
∑

𝑖=1
𝜑𝑖(𝐪𝑘) (2a)

s.t. 𝐳𝑘+1 − 𝐳𝑘 = 1
2
ℎ(𝐟𝑘 + 𝐟𝑘+1) (2b)

𝐳0 = 𝐳𝑆 , 𝐳𝑁 = 𝐳𝑇 (2c)

𝐳 ≤ 𝐳𝑘 ≤ 𝐳, 𝑘 = 0,… , 𝑁 (2d)

𝐮 ≤ 𝐮𝑘 ≤ 𝐮, 𝑘 = 0,… , 𝑁, (2e)

where (2a) is the objective function with the traversal time 𝑡𝐹 and the
time step ℎ = 𝑡𝐹 ∕𝑁 . Moreover, (2c) refers to the desired starting and
target state, and (2d), (2e) reflect the state and input constraints. In this
context, 𝐳, 𝐳, 𝐮, and 𝐳 denote the lower and upper bounds of the state
variables 𝐳T𝑘 = [𝐪T𝑘 , 𝐪̇

T
𝑘 ] and control input 𝐮𝑘, 𝑘 = 0,… , 𝑁 . Note that the

sway of the payload can be kept small by adjusting the admissible range
for 𝛼𝑘 and 𝛽𝑘 in (2d). The index 𝑘 in (2) refers to the discrete-time step
at 𝑡 = 𝑘ℎ. Henceforth 𝝃 denotes the optimization variables

𝝃T = [𝑡𝐹 , 𝐳T0 ,… , 𝐳T𝑁 ,𝐮T0 ,… ,𝐮T𝑁 ] ∈ R1+13(𝑁+1). (3)

The expression 𝜑𝑖(𝐪𝑘) in (2a) is an artificial potential function, which
is evaluated at the collocation points 𝐪𝑘, 𝑘 = 0,… , 𝑁 − 1, for avoiding
collisions with obstacles 𝑖 = 1,… , 𝑚, in the operating range of the
gantry crane.

To solve the optimization problem (2), the interior point method
(IPM) solver from the open source package Interior Point OPTimize
(IPOPT) (Wächter & Biegler, 2006) is used. To speed up the conver-
gence rate of the solver, the artificial potential functions 𝜑𝑖 in (2a)
are formulated in a convex and smooth way, see Section 3.2 for more
details. To further improve the computational speed, the automatic
differentiation (AD) method is applied to compute the analytical gra-
dient and the Hessian functions of the objective function (2a) and the
constraint function (2b).

3.2. Collision avoidance

A brief introduction of the artificial potential functions 𝜑𝑖, 𝑖 =
1,… , 𝑚 is given in the following, see also Vu et al. (2020). As illustrated
in Fig. 3, obstacles are considered to be bounded by boxes with the
parameter vector 𝐎𝑖

𝐩𝑖 = [𝑤𝑖, ℎ𝑖, 𝑑𝑖]T containing the width 𝑤𝑖, the height
ℎ , and the depth 𝑑 of the box along the 𝑥-, 𝑦-, and 𝑧-axis in the box
𝑖 𝑖
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frame {𝐎𝑖} of the 𝑖th box, 𝑖 = 1,… , 𝑚. Furthermore, the location of
the obstacles is known with the translation vector 𝐓𝑖 and the rotation
matrix 𝐑𝑖 at the box frame {𝐎𝑖} w.r.t. the inertial frame {𝐈}. The
osition of the center of mass (CoM) of the payload described in the
nertial frame is denoted by 𝐫 and is associated with a point 𝐪T =
𝑠𝑥, 𝑠𝑦, 𝑠𝑧, 𝛼, 𝛽] on the trajectory in the form

(𝐪) =
⎡

⎢

⎢

⎣

𝑠𝑥 + sin(𝛽) cos(𝛼)𝑠𝑧 − sin(𝛽)ℎ1
𝑠𝑦 − sin(𝛼)𝑠𝑧 − 𝑏1

cos(𝛽) cos(𝛼)𝑠𝑧 − cos(𝛽)ℎ1

⎤

⎥

⎥

⎦

, (4)

with the parameters ℎ1 and 𝑏1 depicted in Fig. 2. This CoM position can
be expressed in the 𝑖th box frame {𝐎𝑖} as

𝐎𝑖
𝐫 = 𝐑T

𝑖

(

𝐫 − 𝐓𝑖

)

. (5)

A point 𝐪 on the trajectory is considered as obstacle-free if and only if
the condition

𝑆̄𝑖(𝐪) = min(𝛥𝑝𝑖,𝑗 )𝑗=1,2,3 < 0 (6)

is satisfied, where 𝛥𝑝𝑖,𝑗 (𝐪) is the 𝑗th component of the vector

∆𝐩𝑖 =
(

𝐎𝑖
𝐫
)

◦
(

𝐎𝑖
𝐩𝑖 − 𝐎𝑖

𝐫
)

. (7)

The operator ◦ in (7) refers to the element-wise product. The artificial
potential function helps to pull the trajectory out of the obstacles and
has nearly no effect on the searching direction in the free space. Hence,
the artificial potential function is defined as:

̄ 𝑖(𝐪) = max(𝛾𝑖𝑆̄𝑖(𝐪), 0), (8)

where 𝛾𝑖 > 0, 𝑖 = 1,… , 𝑚, is a user-defined scaling parameter. In order
to render the potential function (8) with (6) sufficiently smooth, the
LogSumExp function is employed, see, e.g., An et al. (2016) and Nielsen
and Sun (2016), resulting in

𝑆𝑖(𝐪) =
1
𝜂1

log
( 3
∑

𝑗=1
e𝜂1𝛥𝑝𝑖,𝑗

)

(9a)

𝑖(𝐪) =
1
𝜂2

log
(

1 + e𝜂2𝛾𝑖𝑆𝑖(𝐪)
)

, (9b)

ith the so-called softness coefficients 𝜂1 < 0 and 𝜂2 > 0. In order to
reate a safety margin around the obstacles, the margin 𝜹 = [𝛿𝑥, 𝛿𝑦, 𝛿𝑧]T

s added in the form 𝐩𝑖 = [𝑤𝑖 + 𝛿𝑥∕2, ℎ𝑖 + 𝛿𝑦∕2, 𝑑𝑖 + 𝛿𝑧∕2]T and 𝐓𝑖 is
eplaced by 𝐓𝑖 − 𝜹∕2. Finally, the artificial potential functions 𝜑𝑖 of
ll obstacles 𝑖 = 1,… , 𝑚 are combined by simply forming the sum
𝑚
𝑖=1 𝜑𝑖. Note that the proposed obstacle avoidance does not directly

onsider the collision with the ropes. However, in the optimization
roblem (2), the two sway angles 𝛼 and 𝛽 are restricted to a small range
f ±0.05 rad (≈ ±3◦) and a margin is introduced to enlarge the real
bstacles. These measures reduce the risk of rope collisions with the
bstacles. For further details on this formulation, the reader is referred
o our previous work (Vu et al., 2020).

.3. Trajectory database

Although the offline trajectory planner in the previous subsection is
ble to compute the optimal trajectory very quickly, with an average
ime of 50ms for one trajectory with the desired convergence tolerance
f 10−8, this computation time is still not sufficient for the considered
eal-time application. A gantry crane often performs repetitive tasks,
hich means that many similar trajectories have to be tracked during a
ork shift. Therefore, it suggests itself to reuse the previous trajectories

n the form of an offline trajectory database. Since (2) only leads to
ocally optimal solutions and the obstacle potential function is repre-
ented as a soft constraint in the objective function (2a), the solution of
2) might be trapped in a local minimum and may violate the obstacle
onstraint. In this case, (2a) is recomputed with a different random

nitial guess. In this way, we succeed that all trajectories in the offline

4

Fig. 4. Illustration of the two subspaces 𝑆 and 𝑇 . (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

database are collision-free and dynamically feasible. Note that the aver-
age computation time of 50ms for one trajectory in the offline database
consisting of 104 optimal trajectories includes the violation checking
and recomputation. Without loss of generality, the starting subspace 𝑆
is assumed to cover the entire workspace, while the target subspace 𝑇
covers the workspace of a moving target, in our case a moving truck
on the ground which is represented by a plane parallel to the bottom
of 𝑆 , as shown in Fig. 4. For each subspace, a grid with equal spacing
is chosen. Then, the offline trajectory planner is used to plan offline
trajectories from each of the 𝑛𝑆 grid points of the starting subspace
𝑆 (starting state 𝐳T𝑆 = [𝐪T𝑆 , 𝟎] in (2c)) to each of the 𝑛𝑇 grid points
in the target subspace 𝑇 (target state 𝐳T𝑇 = [𝐪T𝑇 , 𝟎] in (2c)), in total
𝑛𝑆𝑛𝑇 trajectories. The forward kinematics (4) computes the position of
the center of mass 𝐫(𝐪) of the payload based on the five degrees of
freedom 𝐪. In addition, each trajectory in the database is represented
by two labels containing the position 𝐫𝑆 = 𝐫(𝐪𝑆 ) in the Cartesian space
of the starting state 𝐳𝑆 and the position 𝐫𝑇 = 𝐫(𝐪𝑇 ) in the Cartesian
space of the target state 𝐳𝑇 . In order to efficiently search for the nearest
trajectory, an offline database is constructed using the two labels for
each trajectory according to the 𝑘-d tree algorithm (Bentley, 1975),
which is a well-known space partitioning data structure for partitioning
and organizing points. The search complexity of this algorithm for 𝑁
labels in the database is (log𝑁) compared to (𝑁) for an unprocessed
database, see, e.g., Pinkham et al. (2020).

The offline database structure is shown in Fig. 5, where the labels
in 𝑇 are denoted by

𝒳𝑇 = {𝐫1𝑇 , 𝐫
2
𝑇 ,… , 𝐫𝑛𝑇𝑇 }

and the labels in 𝑆 by

𝒳𝑆 = {𝐫1𝑆 , 𝐫
2
𝑆 ,… , 𝐫𝑛𝑆𝑆 }.

The third layer of the offline database contains the time-optimal offline
trajectories 𝜩 𝑖 = [𝝃∗𝑖𝑗 ] ∈ R[1+13(𝑁+1)]×𝑛𝑆 with 𝑖 = 1,… , 𝑛𝑇 and 𝑗 =
1,… , 𝑛𝑆 connecting the Cartesian positions 𝐫𝑖𝑆 and 𝐫𝑗𝑇 . The details of
the search algorithm are presented in the next subsection.

3.4. Online trajectory replanner

The online trajectory replanner computes the optimal trajectory
according to the following procedure. After receiving the command
to start the motion from the starting state 𝐳̄𝑆 to the target state 𝐳̄𝑇 ,
the online trajectory replanner first searches the trajectory database to
find the closest trajectory. Later in this subsection, we will thoroughly
explain what we exactly mean with the term closest. For this, we will
specify the metrics used for measuring distances. Then, linear con-

strained quadratic programming is applied to minimize the deviation
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Fig. 5. Offline database structure.

Algorithm 1 Retrieving offline trajectory in database
1: function FastRetrievingOfflineTrajectory
2: 𝐫̂𝑇 , 𝐳̂𝑇 ← TargetStatePrediction(𝐫curr𝑇 , 𝐯curr𝑇 , 𝑇𝑠,2)
3: 𝐫̂𝑆 , 𝐳̂𝑆 ← StartingStatePrediction(𝐳curr𝑆 , 𝑇𝑠,2)
4: 𝑖 ← knnsearch(𝒳𝑇 , 𝐫̂𝑇 )
5: if IsTargetStationary(𝐫̂𝑇 , 𝐫̂

prev
𝑇 ) then

6: if IsTheFirstSearch then
7: 𝑗 ← knnsearch(𝒳𝑆 , 𝐫̂𝑆 )
8: 𝝃∗ = 𝝃∗𝑖𝑗
9: end if

10: else
11: (𝝃∗𝑖𝑗 , 𝑙) = knnsearch(𝜩 𝑖, 𝐳̂𝑆 )
12: 𝝃∗ = TrajectoryRefinement(𝝃∗𝑖𝑗 , 𝑙)
13: end if
14: end function

from the offline trajectory while satisfying the dynamic constraints of
the 3D gantry crane. To achieve fast trajectory replanning in real time,
a computationally efficient algorithm for the search task is summarized
in Algorithm 1 and presented next.

In the first step of Algorithm 1, the target position and the target
state are predicted for one sampling time 𝑇𝑠,2 of the trajectory replanner
denoted by 𝐫̂𝑇 and 𝐳̂𝑇 , based on the current target position 𝐫curr𝑇 and
elocity 𝐯curr𝑇 . For this prediction, it is assumed that the target velocity
curr
𝑇 remains constant for the sampling time 𝑇𝑠,2. Similarly, in line 3
f Algorithm 1, the predicted starting position 𝐫̂𝑆 and the predicted
tate 𝐳̂𝑆 are estimated using the current starting state 𝐳curr𝑆 measured
y encoders. Once the predicted target state 𝐫̂𝑇 is obtained, the search
lgorithm 𝑘 nearest neighbor (𝑘-nn) (Soleymani & Morgera, 1987) is
mployed to find the index 𝑖 of the offline target state 𝐫𝑖𝑇 , 𝑖 = 1,… , 𝑛𝑇 ,

in 𝑇 that is closest in the sense of the smallest Euclidean distance
‖𝐫̂𝑇 −𝐫𝑖𝑇 ‖2 to the predicted target position 𝐫̂𝑇 , see line 4 of Algorithm 1.
By comparing the predicted state 𝐫̂𝑇 with the previous predicted state
̂ prev𝑇 , the search algorithm can detect whether the target is moving or
tationary. At this point, the search algorithm distinguishes between
wo cases:

• If the target state is stationary and the trajectory replanning
algorithm was not executed before, the 𝑘-nn search is applied to
find the index 𝑗 of the closest starting position to 𝐫̂𝑆 , see line 7 in
Algorithm 1 and Fig. 5. Using the two indexes 𝑖, 𝑗 of the label in
𝑆 and 𝑇 , respectively, the closest trajectory 𝝃∗𝑖𝑗 is directly taken
from the database.

• If the target moves, the 𝑘-nn search must be executed in the tra-
jectory set 𝜩 𝑖 (line 11 of Algorithm 1). In this case, the predicted
starting point is normally not a stationary point, but 𝐳̂T𝑆 = [𝐪̂T𝑆 , ̇̂𝐪

T
𝑆 ],

with ̇̂𝐪𝑆 ≠ 𝟎. Thus, the closest starting state in the trajectory
database is obtained from the trajectory set 𝜩 𝑖 by choosing those
trajectory 𝝃∗ , 𝑗 = 1,… , 𝑛 , which has a collocation point (𝐳∗ )T =
𝑖𝑗 𝑆 𝑖𝑗,𝑙

5

[(𝐪∗𝑖𝑗,𝑙)
T, (𝐪̇∗𝑖𝑗,𝑙)

T], see (3), that is closest to 𝐳̂𝑆 in the weighted
Euclidean distance metric

‖𝐪∗𝑖𝑗,𝑙 − 𝐪̂𝑆‖2 + ‖diag(𝜌𝑛, 𝑛 = 1,… , 5)(𝐪̇∗𝑖𝑗,𝑙 − ̇̂𝐪𝑆 )‖2,

with the user-defined weighting parameter 𝜌𝑛 > 0, 𝑛 = 1,… , 5.
Since the range of the system state 𝐪 ≤ 𝐪 ≤ 𝐪 and of the system
state velocity 𝐪̇ ≤ 𝐪 ≤ 𝐪̇ are different, 𝜌𝑛 is chosen to normalize
the velocity error with respect to the state error in the form

𝜌𝑛 =
𝑞𝑛 − 𝑞𝑛

𝑞̇𝑛 − 𝑞̇𝑛
, 𝑛 = 1,… , 5. Note that the sway angles 𝛼, 𝛽 and

the angular velocities 𝛼̇, 𝛽̇ are also considered in this case, since
the algorithm considers the whole state 𝐳̂𝑆 . There are two return
variables 𝑗 and 𝑙 of the 𝑘-nn search in line 11 of Algorithm 1,
where 𝑗 is the index of the retrieved trajectory 𝝃∗𝑖𝑗 in 𝜩 𝑖 and 𝑙 is
the index of the closest state 𝐳∗𝑙 of this offline trajectory 𝝃∗𝑖𝑗 . At
this point, the closest trajectory from the offline database reads
as

(𝝃∗)T = [ 𝑙
𝑁

𝑡∗𝐹 , (𝐳
∗
𝑙 )

T,… , (𝐳∗𝑁 )T, (𝐮∗𝑙 )
T,… , (𝐮∗𝑁 )T]. (10)

Note that only a segment of the whole offline trajectory 𝝃∗𝑖𝑗 is used
in (10) and therefore the number of grid points of (𝝃∗) is reduced
to 𝑁 − 𝑙 + 1. Since the number of (𝑁 + 1) grid points is fixed
during the computation of the online trajectory replanner, an
interpolation scheme has to be employed in line 12 of Algorithm
1. Between two adjacent collocation points 𝑘 and 𝑘 + 1, with 𝑘 =
𝑙,… , 𝑁−1, the input 𝐮∗(𝑡) and the state 𝐳∗(𝑡) for 𝑡 = [𝑘ℎ∗, (𝑘+1)ℎ∗],
are interpolated as linear and quadratic splines, respectively, i.e.,

𝐳∗(𝑡) ≈ 𝐳∗𝑘 + (𝑡 − 𝑘ℎ∗)𝐟∗𝑘 +
(𝑡 − 𝑘ℎ∗)2

2ℎ∗
(𝐟∗𝑘+1 − 𝐟∗𝑘 ), (11a)

𝐮∗(𝑡) ≈ 𝐮∗𝑘 +
𝑡 − 𝑘ℎ∗

ℎ∗
(𝐮∗𝑘+1 − 𝐮∗𝑘), (11b)

for 𝑘 = 𝑙,… , 𝑁 − 1, with ℎ∗ = 𝑡∗𝐹 ∕𝑁 .

For brevity, the same notation as in (3) is used after the refinement of
the closest trajectory (10). To this end, the trajectory is expressed as

(𝝃∗)T = [𝑡∗𝐹 , (𝐳
∗
0)

T,… , (𝐳∗𝑁 )T, (𝐮∗0)
T,… , (𝐮∗𝑁 )T]. (12)

ecalling the system dynamics condition (2b) for the closest offline
rajectory, the relation

∗
𝑘+1 = 𝐳∗𝑘 +

𝑡∗𝐹
2𝑁

(𝐟∗𝑘 + 𝐟∗𝑘+1) (13)

olds.
In the following, the online trajectory replanner is explained in

etail. Assuming that the number of grid points in the starting and
arget subspace is sufficiently dense, only small deviations

𝝃T = [𝛿𝑡𝐹 , (𝛿𝐳0)T, ...., (𝛿𝐳𝑁 )T, (𝛿𝐮0)T,… , (𝛿𝐮𝑁 )T]

eed to be taken into account to compute the new trajectory connecting
he predicted starting state 𝐳̂𝑆 with the predicted target state 𝐳̂𝑇 . The
irst-order linearization of the discrete-time system dynamics (2b) w.r.t.
he closest database trajectory 𝝃∗ reads as

𝑘+1 = 𝐳𝑘 +
𝑡∗𝐹 + 𝛿𝑡𝐹

2𝑁

(

𝐟∗𝑘 + 𝜞 𝐳
𝑘𝛿𝐳𝑘 + 𝜞 𝐮

𝑘𝛿𝐮𝑘

+ 𝐟∗𝑘+1 + 𝜞 𝐳
𝑘+1𝛿𝐳𝑘+1 + 𝜞 𝐮

𝑘+1𝛿𝐮𝑘+1
)

,
(14)

ith 𝛿𝐳𝑘 = 𝐳𝑘 − 𝐳∗𝑘, 𝛿𝐮𝑘 = 𝐮𝑘 − 𝐮∗𝑘, 𝛿𝑡𝐹 = 𝑡𝐹 − 𝑡∗𝐹 , and

𝐳
𝑘 = 𝜕𝐟

𝜕𝐳
|

|

|𝐳∗𝑘 ,𝐮
∗
𝑘
, 𝜞 𝐮

𝑘 = 𝜕𝐟
𝜕𝐮

|

|

|𝐳∗𝑘 ,𝐮
∗
𝑘

or 𝑘 = 0,… , 𝑁 − 1. Note that the state deviations at 𝑘 = 0 and 𝑘 = 𝑁
are fixed by

𝛿𝐳0 = 𝐳̂𝑆 − 𝐳∗0 (15a)

𝛿𝐳 = 𝐳̂ − 𝐳∗ (15b)
𝑁 𝑇 𝑁
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due to the predicted starting and target state 𝐳̂𝑆 and 𝐳̂𝑇 . Subtract-
ng (13) from (14) and neglecting the terms containing a product of
eviation variables, the constraint function reduces to

𝐳𝑘+1 = 𝛿𝐳𝑘 +
𝑡∗𝐹
2𝑁

(

𝜞 𝐳
𝑘𝛿𝐳𝑘 + 𝜞 𝐮

𝑘𝛿𝐮𝑘 + 𝜞 𝐳
𝑘+1𝛿𝐳𝑘+1

+ 𝜞 𝐮
𝑘+1𝛿𝐮𝑘+1

)

+
𝛿𝑡𝐹
𝑡∗𝐹

(𝐳∗𝑘+1 − 𝐳∗𝑘).
(16)

In a more compact form, (16) is rewritten as

𝐂𝑘+1𝐱𝑘+1 = 𝐀𝑘𝐱𝑘, (17)

where

𝐂𝑘+1 =

[

𝐈 − ℎ∗

2
𝜞 𝐳

𝑘+1 −ℎ∗

2
𝜞 𝐮

𝑘+1 0
𝟎 𝟎 1

]

,

𝐀𝑘 =
⎡

⎢

⎢

⎣

𝐈 + ℎ∗

2
𝜞 𝐳

𝑘
ℎ∗

2
𝜞 𝐮

𝑘

𝐳∗𝑘+1 − 𝐳∗𝑘
𝑡∗𝐹

𝟎 𝟎 1

⎤

⎥

⎥

⎦

,

𝐱𝑘 =
⎡

⎢

⎢

⎣

𝛿𝐳𝑘
𝛿𝐮𝑘
𝛿𝑡𝐹 ,𝑘

⎤

⎥

⎥

⎦

,

nd ℎ∗ =
𝑡∗𝐹
𝑁

. For simplicity, only one variable for the final time
𝑡𝐹 in (14) was introduced instead of 𝛿𝑡𝐹 ,𝑘, 𝑘 = 0,… , 𝑁 − 1. Thus,
𝑡𝐹 ,𝑘+1 = 𝛿𝑡𝐹 ,𝑘 was used in (17). The deviation vector 𝝃𝑘 is obtained
s the solution of a linear constrained quadratic program (LCQP) of
he form

min
𝐱𝑘

1
2

𝑁−1
∑

𝑘=1
𝐱T𝑘𝐐𝑘𝐱𝑘 (18a)

s.t. 𝐂𝑘+1𝐱𝑘+1 = 𝐀𝑘𝐱𝑘, 𝑘 = 0,… , 𝑁 − 1 (18b)

𝐱𝑘 ≤ 𝐱𝑘 ≤ 𝐱𝑘, 𝑘 = 0,… , 𝑁 (18c)

ith (15) and the positive definite weighting matrix

𝑘 = diag(𝐐𝐳𝑘 ,𝐐𝐮𝑘 , 𝑄𝑡𝐹 ). (19)

ith the choice of 𝑄𝑡𝐹 > 0 and the submatrices 𝐐𝐳𝑘 and 𝐐𝐮𝑘 , the
deviation of the online trajectory from the selected database trajectory
(12) can be specifically weighted in the objective function (18a) w.r.t.
the traversal time 𝑡𝐹 , the state 𝐳𝑘, and the control input 𝐮𝑘, respectively.
The inequality condition (18c) corresponds to (2d) and (2e), where

𝐱𝑘T = [𝐳𝑘T − (𝐳∗𝑘)
T,𝐮𝑘T − (𝐮∗𝑘)

T, 𝛿𝑡𝐹 ],

𝐱𝑘
T = [𝐳𝑘

T − (𝐳∗𝑘)
T,𝐮𝑘

T − (𝐮∗𝑘)
T, 𝛿𝑡𝐹 ],

for 𝑘 = 1,… , 𝑁 − 1, and 𝛿𝑡𝐹 and 𝛿𝑡𝐹 is a sufficiently large upper and
lower bound for 𝛿𝑡𝐹 , respectively. Note that the equality constraints in
(15) must be taken into account by

𝐱0T = [𝛿𝐳T0 , 𝛿𝐮
T
0 , 𝛿𝑡𝐹 ], 𝐱0

T = [𝛿𝐳T0 , 𝛿𝐮
T
0 , 𝛿𝑡𝐹 ],

𝐱𝑁T = [𝛿𝐳T𝑁 , 𝛿𝐮T𝑁 , 𝛿𝑡𝐹 ], 𝐱𝑁
T = [𝛿𝐳T𝑁 , 𝛿𝐮T𝑁 , 𝛿𝑡𝐹 ].

It is important to keep 𝛿𝐪𝑘 of 𝛿𝐳T𝑘 = [𝛿𝐪𝑘, 𝛿𝐪̇𝑘] close to zero if the
corresponding collocation points 𝐪∗𝑘 on the selected database trajectory
are already close to one of the obstacles. Therefore, the submatrix
𝐐𝐪𝑘 of the weighting matrix 𝐐𝐳𝑘 = diag(𝐐𝐪𝑘 ,𝐐𝐪̇𝑘 ) in (19) is adjusted
depending on the distance of the corresponding payload position 𝐫(𝐪∗𝑘)
to an obstacle. Note that instead of calculating the exact distance, the
artificial potential functions 𝜑𝑖(𝐪), 𝑖 = 1,… , 𝑚, according to (9), see
also (2), serve as a basis to indirectly consider the obstacles in (18a).
In particular, the Hessian of the artificial potential function is used to
adjust the weighting matrix 𝐐𝐪𝑘 in the form

𝐐𝐪𝑘 = 𝐐𝐪 + 𝜆
𝜕2
(

∑𝑚
𝑖=1 𝜑𝑖,𝑘(𝐪𝑘)

)

𝜕𝐪2
|

|

|

|

, (20)

𝑘 |𝐪∗𝑘

o

6

Fig. 6. Block diagram of the control structure. The yellow blocks are processed with
the fast sampling time 𝑇𝑠,1 while the red block is computed with the slower sampling
ime 𝑇𝑠,2, see also Fig. 11. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

Table 1
Monte Carlo simulations with 104 test cases for two scenarios.

Stationary target Moving target

Number of simulation fails 0 6
Number of failed collision checks 230 251
Success rate 97.70% 97.43%
Average computing time 2ms 2.5ms

with the constant matrix 𝐐𝐪 > 0 and the tuning parameter 𝜆 > 0.
Clearly, the closer a collocation point 𝐪∗𝑘 of the database trajectory is
to an obstacle, the larger is the corresponding entry in the weighting
matrix 𝐐𝐪𝑘 . This in turn makes the deviation of the online trajectory,
which is a solution of (18), from the database trajectory in terms of 𝛿𝐪𝑘
at the considered point 𝐪∗𝑘 small. This adaption of the weighting matrix
𝐐𝐪𝑘 , see (20), is introduced to ensure that also the online replanned
rajectory is collision-free. Finally, the optimal trajectory of the online
rajectory replanner 𝝃∗,𝑜𝑛𝑙 reads as
∗,𝑜𝑛𝑙 = 𝝃∗ + 𝛿𝝃∗, (21)

here 𝛿𝝃∗ results from the solution of (18) in the form

𝛿𝝃∗)T = [𝛿𝑡∗𝐹 , (𝛿𝐳
∗
0)

T,… , (𝛿𝐳∗𝑁 )T, (𝛿𝐮∗0)
T,… , (𝛿𝐮∗𝑁 )T].

ince the LCQP (18) only leads to locally optimal solutions, it may
et stuck in a local minimum that violates the obstacle constraint.
hus, if the solution of (18) gets stuck in a local minimum, (18) is
eprocessed with a different nearest offline trajectory resulting from
he solution of the 𝑘-neighbor search in Algorithm 1. This heuristic
odification is used in the experiment as a safety measure to protect

he laboratory equipment. In the Monte Carlo simulation results, see
able 1 in Section 5, this is not included to show the performance of
he proposed algorithm without any heuristic modification.

. Control design

The control structure of the 3D gantry crane consists of the online
rajectory replanner, the trajectory tracking controller, and a friction
ompensation. The overall control structure is depicted in Fig. 6. To
tabilize the payload around a given trajectory, a combination of a feed-
orward and a feedback controller, also denoted as trajectory tracking
ontroller, is introduced. The control output of the online trajectory
eplanner is used as feedforward part, while the feedback controller has
cascaded structure consisting of the outer model predictive control

MPC) and the inner velocity controller. The details of the friction
ompensation are discussed in Lobe et al. (2018) and the velocity
ontroller is a decoupled standard PI controller. In this section, we focus

n the model predictive controller.
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As a first step, in order to reduce the complexity of the system
dynamics and further increase the computational speed, the state 𝐪 is
divided into the state of the actuated subsystem 𝐪𝐴 = [𝑠𝑥, 𝑠𝑦, 𝑠𝑧]T and
the unactuated subsystem 𝐪𝑈 = [𝛼, 𝛽]T. Therefore, the system dynamics
(1) is expressed as
[

𝐌𝐴 𝐌𝐴𝑈
𝐌T

𝐴𝑈 𝐌𝑈

] [

𝐪̈𝐴
𝐪̈𝑈

]

+
[

𝐂𝐴 𝐂𝐴𝑈
𝐂𝑈𝐴 𝐂𝑈

] [

𝐪̇𝐴
𝐪̇𝑈

]

+
[

𝐠𝐴
𝐠𝑈

]

=
[

𝐮
𝟎

]

. (22)

The acceleration of the unactuated angles 𝐪̈𝑈 and the control input 𝐮
are calculated from (22), which yields

𝐪̈𝑈 = 𝐌−1
𝑈 (−𝐌T

𝐴𝑈 𝐪̈𝐴 − 𝐂𝑈𝐴𝐪̇𝐴 − 𝐂𝑈 𝐪̇𝑈 − 𝐠𝑈 ), (23a)

𝐮 = 𝐌𝐴𝐪̈𝐴 +𝐌𝐴𝑈 𝐪̈𝑈 + 𝐂𝐴𝐪̇𝐴 + 𝐂𝐴𝑈 𝐪̇𝑈 + 𝐠𝐴. (23b)

It is worth noting that the acceleration of the actuated state 𝐪̈𝐴 acts
directly on the unactuated subsystem. Thus, considering 𝐮𝐴 = 𝐪̈𝐴 as a
new control input to the system, the state–space representation of (1)
reads as

d
dt

⎡

⎢

⎢

⎢

⎢

⎣

𝐪𝐴
𝐪𝑈
𝐪̇𝐴
𝐪̇𝑈

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐪̇𝐴
𝐪̇𝑈
𝐮𝐴

𝐌−1
𝑈 (−𝐌T

𝐴𝑈𝐮𝐴 − 𝐂𝑈𝐴𝐪̇𝐴 − 𝐂𝑈 𝐪̇𝑈 − 𝐠𝑈 )

⎤

⎥

⎥

⎥

⎥

⎦

. (24)

In a more compact form, (24) is rewritten as

d
dt
𝐳 = 𝐟 (𝐳,𝐮𝐴). (25)

he system (25) is linearized around the desired trajectory (𝐳𝑑 ,𝐮𝑑𝐴) =
𝐳∗ + 𝛿𝐳, 𝐪̈𝑑𝐴), with

𝐳𝑑 )T = [(𝐪𝑑𝐴)
T, (𝐪𝑑𝑈 )

T, (𝐪̇𝑑𝐴)
T, (𝐪̇𝑑𝑈 )

T]

nd 𝛿𝐳 is the solution of the LCQP (18). By approximating the sys-
em dynamics (24) around (𝐳𝑑 ,𝐮𝑑𝐴), the discrete time-varying system
ynamics is expressed as

𝐳𝑘+1 = 𝜱𝑘𝛥𝐳𝑘 +𝜴𝑘𝛥𝐮𝐴,𝑘 , (26)

ith

𝐳𝑘 = 𝐳𝑘 − 𝐳𝑑𝑘 𝛥𝐮𝐴𝑘 = 𝐮𝐴,𝑘 − 𝐮𝑑𝐴,𝑘
𝜱𝑘 = 𝐈10 + 𝑇𝑠,1𝐀𝑘 𝜴𝑘 = 𝑇𝑠,1𝐁𝑘

𝐀𝑘 = 𝜕𝐟
𝜕𝐳

|

|

|𝐳𝑑𝑘 ,𝐮
𝑑
𝐴,𝑘

𝐁𝑘 = 𝜕𝐟
𝜕𝐮𝐴

|

|

|𝐳𝑑𝑘 ,𝐮
𝑑
𝐴,𝑘

,

(27)

and the sampling time 𝑇𝑠,1. The model predictive control is applied
t the time instant 𝑡𝑘 to control the error system (26) by solving the
ollowing optimization problem w.r.t. 𝛥𝐮T𝐴 = [𝛥𝐮T𝐴,𝑘,… , 𝛥𝐮T𝐴,𝑘+𝑁𝑚

] over
a finite horizon of 𝑁𝑚 + 1 steps

min
𝛥𝐮𝐴

𝑁𝑚
∑

𝑗=0
(𝛥𝐳T𝑘+𝑗𝐐𝑚𝛥𝐳𝑘+𝑗 + 𝛥𝐮T𝐴,𝑘+𝑗𝐑𝑚𝛥𝐮𝐴,𝑘+𝑗 )

+ 𝛥𝐳T𝑘+𝑁𝑚+1
𝐐𝑓𝛥𝐳𝑘+𝑁𝑚+1 (28a)

s.t. 𝛥𝐳𝑘+𝑗+1 = 𝜱𝑘𝛥𝐳𝑘+𝑗 +𝜴𝑘𝛥𝐮𝐴,𝑘+𝑗 , (28b)

𝛥𝐳 ≤ 𝛥𝐳𝑘+𝑗 ≤ 𝛥𝐳, 𝑗 = 0,… , 𝑁𝑚, (28c)

here 𝐐𝑚, 𝐑𝑚, and 𝐐𝑓 are positive definite weighting matrices and
𝐳 = 𝐳 − 𝐳𝑑 and 𝛥𝐳 = 𝐳 − 𝐳𝑑 is the lower and upper bound of the

state variables, respectively. The first element of the solution 𝛥𝐮𝐴 from
28), i.e. 𝛥𝐮𝐴,𝑘 is then used as control input for the inner velocity
ontroller. Since the model predictive control is able to specifically
onstrain the full state 𝐳𝑘, including the sway angles 𝛼𝑘 and 𝛽𝑘, the
se of model predictive control is advantageous for the performance of
he closed-loop system.
7

Fig. 7. Collision-free trajectories in the stationary target scenario: closest trajectory
from the offline database, online replanned trajectory, and simulated trajectory using
the trajectory tracking controller. The circle and the cross symbol constitute the starting
and the target point, respectively. (a) Trajectories in 3D space, (b) Trajectories in the
𝑥𝑦-plane. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

5. Simulation and experimental results

In this section, simulation and experimental results are presented
for two different scenarios. In the first scenario, the 3D gantry crane
follows the trajectory from the online replanner connecting two points,
with the states 𝐳𝑆 and 𝐳𝑇 , in 𝑆 and 𝑇 , respectively, and the target
is not changing during the motion of the crane. The second scenario
concerns the case when the target can move freely within 𝑇 . There-
fore, the online replanner must actively update the trajectory according
to the new position of the moving target and its current speed. To
prove the efficiency of the proposed combined method of fast trajectory
optimization and trajectory tracking control, this paper assumes that
the map containing all obstacles is known, i.e. the obstacles are static.
This assumption is justified for many practical scenarios.

5.1. Simulation results

The offline trajectory optimization and the offline database are
both developed in Matlab/Simulink 2020b on a computer with 3.8 GHz
Intel Core i7 and 32 GB RAM. The open-source package Interior Point
OPTimize (IPOPT) was employed to solve the nonlinear optimization
problem (2), see, e.g., Wächter and Biegler (2006). In IPOPT, the
multifrontal linear solver (MA57) was used to increase the compu-
tational speed. The analytical gradients of the cost function and the
constraint functions are computed using CasADi, see, e.g., Andersson
et al. (2019). In addition, the numerical Hessian is evaluated using the
BFGS approximation method, see, e.g., Liu and Nocedal (1989).
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Fig. 8. The collision-free offline path and the online paths resulting from the online
eplanner for a moving target. (a) Trajectories in 3D space, (b) Trajectories in the
𝑦-plane. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)

Fig. 9. Time evolution of the states and control inputs for the stationary target scenario
n Fig. 7. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)
8

Each time-optimal obstacle-free trajectory in the offline database is
discretized with 26 grid points, resulting in 339 optimization variables.
ince the solution of the direct collocation optimization is interpolated
etween two neighboring grid points, the accuracy of the resulting
rajectory depends on the number of grid points. However, there is
trade-off between the number of grid points and the computational

peed. Because the workspace is approximately a cuboid of size 2m
1m × 0.55m, the average traversal time from the initial location to

he most distant target location is approximately 9 s. Thus, the solution
ccuracy of direct collocation optimization with 26 grid points turns

out to be sufficient for this application. Furthermore, considering the
memory requirements for the offline database in the dSPACE Micro-
LabBox of the real experiment, up to 12.000 trajectories can be stored
in flash memory with 339 variables of type double per trajectory. For
a large scene, such as a factory or a port, the number of required grid
points, but also the required accuracy, scales accordingly. However, the
computational power can be increased depending on the requirements.
In this paper, we present a proof of concept from a theoretical and an
experimental point of view on a lab-scale 3D gantry crane.

In addition, the sparsity of the matrices is exploited to reduce mem-
ory consumption. The starting and target points lie in the subspaces
𝑆 (cuboid of size 1.8m × 0.8m × 0.55m) and 𝑇 (plane of size 1m ×
0.8m), shown as gray box and yellow plane in Fig. 4, respectively. Based
on the offline trajectory planning algorithm, a database of collision-
free trajectories is calculated connecting each grid point in 𝑆 with
each grid point in 𝑇 . Even for coarse grids in the offline database,
the online trajectory replanner shows a high success rate, i.e. provides
feasible trajectories, in the Monte Carlo simulation, see Vu et al. (2020).
In this work, a fixed number of grid points 𝑛𝑆 = 12 × 8 × 3 and 𝑛𝑇 =
10 × 6 was chosen for 𝑆 and 𝑇 , respectively. This results in a total
of 11.520 near time-optimal collision-free offline trajectories in the
database after removing the invalid trajectories having its starting or
target state inside an obstacle. Note that the average computation time
for a single trajectory in the database is approximately 50ms. The user-
defined weighting parameters diag(𝜌𝑛, 𝑛 = 1,… , 5) = diag(4, 2.5, 3.5, 2, 2)
are used in the 𝑘-nearest neighbor search in Algorithm 1.

To illustrate the overall concept consisting of the offline trajectory
database, the online trajectory replanner and the underlying trajectory
tracking controller, two example cases are shown in Figs. 7 and 8:

• Fig. 7 shows the results of the stationary target scenario where
the offline trajectory (dashed blue line) is deformed to the online
trajectory (dashed green line) according to a given pair of starting
and target positions (green circle and cross symbols). The dashed
red path illustrates the simulated trajectory of the trajectory
tracking controller, which is perfectly tracked with respect to the
trajectory generated by the online trajectory replanner. The time
evolution of the corresponding states 𝑠̇𝑥, 𝑠̇𝑦, 𝑠̇𝑧, 𝛼 and 𝛽 as well as
the three control inputs 𝑢1, 𝑢2 and 𝑢3 are depicted in Fig. 9. The
green lines refer to the online trajectories, which deviate from the
offline trajectory (blue dashed line). The simulated trajectory (red
dashed line) shows a good tracking performance of the system.
Also, the state and input constraints according to (18c), depicted
as black dashed lines, are well respected.

• Fig. 8 shows the performance of the online replanner in the case
of a moving target. The first solution of the online trajectory
replanner (i.e. the green path) leads the gantry crane to the left
side of the green obstacle. Later, the online replanner generates
completely different trajectories moving around the right side of
the green obstacle (i.e. multiple blue lines). Analogous to Fig. 9,
the simulation results of the moving target scenario are depicted
in Fig. 10. The four colored square symbols and the corresponding
colored dashed lines represent the offline trajectories that are
taken from the offline database. Note that the blue dashed line is
the first closest trajectory, while the other three colored dashed
lines illustrate offline trajectories in the database at selected time
instances, which are chosen by the online replanner during the
movement of the 3D gantry crane.
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Fig. 10. Simulations of the states and control inputs for the moving target scenario in Fig. 8. The four colored squares and the corresponding dashed lines illustrate the offline
trajectories which are utilized by the online replanner at selected time instances. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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It should be noted that small violations of the constraints are pos-
sible between two adjacent collocation points. The simulation results
clearly show that the proposed concept is able to significantly replan
the offline trajectory while adhering to the constraints and achieving
near time-optimal execution. It can be nicely seen that the 3D gantry
crane is driven in one of the limits for most of the time, which shows
that the admissible range of the system is fully exploited.

Monte Carlo simulations were performed for both scenarios to
investigate the versatility and robustness of the proposed approach. In
the Monte Carlo simulation of the stationary target scenario, 104 trajec-
tories were planned and simulated using pairs of randomly uniformly
distributed starting and target states from the two subspaces 𝑆 and
𝑇 , respectively. In the moving target scenario, the following procedure
as repeated 104 times. First, a collision-free trajectory for the moving

arget was generated, where the target moves from a random location
to a random location B within the target subspace 𝑇 . Second, a

andom starting state was chosen in the starting subspace 𝑆 . Third,
the scenario including the online trajectory replanner and the trajectory
tracking controller was simulated. All simulations were run in Simulink
rapid accelerator mode. After each simulation, two result flags, i.e. the
simulation fail flag and the collision check flag, were collected. The
simulation fail flag corresponds to an unexpected numerical error dur-
ing the simulation, i.e., an infeasible trajectory. The collision check flag
indicates that the online trajectory collides with obstacles. The statistics
of the flags are shown in Table 1. The average computation time of the
online replanner is 2ms for the stationary and 2.5ms for the moving
target scenario, respectively. Since the online replanner must actively
find the closest trajectory in the third layer of the database for moving
targets, a longer computation time was expected. It should be noted
that not all trajectories are collision-free, since the obstacles for the
online trajectory replanner are only approximated by the Hessian of
the artificial potential functions. This is reflected in the success rate

in Table 1. The simulation only fails in the moving target scenario s

9

when the online replanner is unable to generate a feasible trajectory
corresponding to the moving target.

5.2. Experimental setup

The experimental setup shown in Fig. 11 consists of the 3D lab-
scale gantry crane equipped with five incremental encoders and a
dSPACE MicroLabBox. The online trajectory replanner and controller
are implemented in Matlab/Simulink and are compiled and deployed
n the dual-core real-time processor of the dSPACE MicroLabBox. The
nline trajectory replanner runs on core 2 with the sampling time 𝑇𝑠,2 =
5ms, while all other tasks such as the state measurement, friction
ompensation, and the cascaded controller are sampled with the faster
ampling time 𝑇𝑠,1 = 1ms and run on core 1. In addition, a six-camera
ptiTrack system is connected to dSPACE via Ethernet and is used to
stimate the position of a remote-controlled moving truck (target) in
he workspace.

.3. Experimental results

In the experiment of the moving target scenario, a truck following
he colored path at a random speed is used as the moving target.

ithout loss of generality, the position of the truck is measured using
he OptiTrack system. For a real application in a larger or more complex
nvironment, there are many ways to determine the position of a
oving truck, e.g., using GPS or vision-based object tracking. The
roposed online trajectory replanner and trajectory tracking controller
re implemented on a dSPACE MicroLabBox real-time system with the
ampling times of 𝑇𝑠,1 = 1ms and 𝑇𝑠,2 = 15ms on the cores 1 and 2,
espectively. To solve the LCQP (18) in the online trajectory replanner
ith box constraints, the CVXgen package, see, e.g., Mattingley and
oyd (2012), is used to generate optimized C code. Note that the time

∗
tep ℎ = (𝑡𝐹 + 𝛿𝑡𝐹 )∕𝑁 of the online trajectory is much larger than the
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Fig. 11. System overview of the 3D laboratory gantry crane.
(

p

Fig. 12. Measurements of the system state and control inputs in the stationary target
scenario. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

sampling time 𝑇𝑠,1 of the controller. Therefore, the desired trajectory is
interpolated before it is fed to the controller.

Similar to the previous subsection, experimental results are demon-
strated for a stationary and a moving target scenario shown in Figs. 12
and 13, respectively.

• Fig. 12 depicts the experimental results of the stationary target
scenario containing the measurements of the system states 𝑠̇𝑥, 𝑠̇𝑦,
𝑠̇𝑧, 𝛼 and 𝛽 and the control inputs 𝑢1, 𝑢2 and 𝑢3. The measured sig-
nals and the desired trajectories are depicted as dashed red lines
and solid green lines, respectively. All measured signals satisfy the
state and input constraints (black dashed lines) given by (18c). In
addition, the online trajectories (solid green lines) of the system
states slightly deviate from the closest offline trajectories (dashed
blue lines). Note that the traversal time of the online trajectory
differs from the offline trajectory due to 𝛿𝑡𝐹 in the LCQP (18).

• In a similar way as in Fig. 12, the experimental results of the
moving target scenario are shown in Fig. 13. The four colored
10
square symbols and the corresponding dashed lines represent the
offline trajectories obtained by the search algorithm from the
offline database. Note that online trajectory generation is indeed
sufficient in satisfying the system state and input constraints at
the collocation points. However, since an interpolation scheme is
applied between two adjacent collocation points of the desired
trajectory, small violations of the system state constraints may
occur between the collocation points. Snapshots of the gantry
crane and target truck motions are presented in Fig. 14. At the
turning point (green circle in Fig. 14), the gantry crane has not
come to a stop, but follows the motion of the moving truck
smoothly. This turnaround point is approximately at the time 𝑡 =
7 s where the system state velocities 𝑠̇𝑥, 𝑠̇𝑦 and 𝑠̇𝑧 cross the zero
line, see Fig. 13.

Note that in Figs. 12 and 13, although the gantry crane is traveling up to
its full speed, i.e., the velocities 𝑠̇𝑥, 𝑠̇𝑦, and 𝑠̇𝑧 reach the respective limits,
the sway angles 𝛼 and 𝛽 remain within a small range of [−0.05, 0.05] rad
≈ ±3◦).

Overall, the trajectory tracking controller exhibits a good tracking
erformance, while the deviations of the pendulum angles 𝛼 and 𝛽

from the desired trajectory are clearly visible in both scenarios. These
deviations can be attributed to model uncertainties and backlash caused
by the measurement mechanism of the lab-scale 3D gantry crane.
Moreover, a video of the discussed scenarios shown in Figs. 12 and 13
is available at https://www.acin.tuwien.ac.at/en/65ce/

6. Conclusions

In this paper, we considered the lab-scale experiment of a 3D gantry
crane with the task to pick up a payload at an arbitrary position and
then deposit it on a moving truck in a workspace with static obstacles.
The time from picking up the payload to its deposition should be kept
as small as possible and at the same time collisions with obstacles must
be avoided and the system state and control input constraints must be
respected. Although there are many studies on trajectory planning and
control of 3D gantry cranes in the literature, the considered scenario
cannot be solved with state-of-the-art concepts.

Therefore, a novel two-step trajectory planning algorithm, con-
sisting of an offline trajectory optimization and an online trajectory
replanner, in combination with an MPC (model predictive control)-
based trajectory tracking controller is proposed in this paper. The
offline trajectory optimization is used to generate a collision-free and
dynamically feasible trajectory database. The computation time for
an offline trajectory in the database is about 50ms on average on a
standard PC, which is too long for real-time planning in the moving-
truck scenario. The idea of the online trajectory planner is to minimize
the deviation from a suitable reference trajectory, which is selected
according to a specifically designed strategy from the database, by
solving a linear constrained quadratic program. This is computationally

https://www.acin.tuwien.ac.at/en/65ce/
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Fig. 13. Measurements of states and control inputs over traversal time for the moving target scenario in Fig. 14. The four colored squares and the corresponding dashed lines
llustrate the offline trajectories taken by the online replanner at selected time instances. (For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)
Fig. 14. Illustration of the experimental execution of the online trajectory replanning
or a moving target. The collision-free online path is shown as dashed yellow line. The
yan dashed line is the path of the moving truck. The dot and cross symbols represent
he starting and target positions, respectively. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)

ery efficient because it yields a feasible trajectory within an average
omputation time of 2.5ms on a standard PC and is thus 25 times

faster than the offline trajectory optimization. The online trajectory
then serves as a reference input for an MPC-based tracking controller.
Here an MPC was employed to be able to systematically account for
state and control input constraints. Simulation studies and experimental
results demonstrate the feasibility of the proposed approach.
11
This work was intended to give a proof of concept in form of a
laboratory experiment for real-time trajectory planning in a dynam-
ically changing environment (static obstacles, moving truck) for the
autonomous loading of trucks. Clearly, in order to reduce the complex-
ity of the lab-scale experiment, we resorted to an OptiTrack system for
detecting the truck position. For real applications in a larger or more
complex environment, we have to use other methods, as for instance
GPS and/or vision-based obstacle detection and tracking methods.
Currently, we are extending the algorithm for dynamically changing
obstacles and in a mid-term perspective we plan to combine the real-
time trajectory planning with environment detection and vision-based
object tracking.
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Appendix A

In this section, a detailed derivation of the equations of motion (1)
for the 3D gantry crane is presented. The potential energy of the gantry
crane in terms of the generalized coordinates 𝐪 reads as

𝑉 = 𝑚 𝑔(ℎ + cos(𝛼) cos(𝛽)𝑠 − cos(𝛽)ℎ ), (29)
𝑧 2 𝑧 1
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with the mass of the payload 𝑚𝑧, see Figs. 1 and 2. The kinetic energy
f the system is given by

= 1
2
𝑚𝑧𝐫̇T𝐫̇ +

1
2
(𝑚𝑥 + 𝑚𝑦)𝑠̇2𝑥 +

1
2
𝑚𝑦𝑠̇

2
𝑦 +

∑

𝑖

𝐽𝑖𝑠̇2𝑖
𝑅2
𝑖

, (30)

here 𝐫(𝐪) is the position of the center of mass (CoM) of the payload
n the inertial frame from (4), 𝑚𝑥 is the mass of the bridge, 𝑚𝑦 denotes
he mass of the trolley and hoisting drum, 𝐽𝑖 is the moment of inertia
f the axis 𝑖 ∈ {𝑥, 𝑦, 𝑧}, and 𝑅𝑖 is the radius of the associated sprocket
heels. The equations of motion of the 3D gantry crane are derived by
sing the Euler–Lagrange equations with the Lagrangian 𝐿 = 𝑇 − 𝑉 ,
eading to (1). With the expressions

𝑋 = 𝑚𝑥 + 𝑚𝑦 + 𝑚𝑧 +
𝐽𝑥
𝑅2
𝑥

𝑚𝑌 = 𝑚𝑦 + 𝑚𝑧 +
𝐽𝑦
𝑅2
𝑦

𝑚𝑍 = 𝑚𝑧 +
𝐽𝑧
𝑅2
𝑧
,

the entries of the system matrices

𝐌(𝐪) =
⎡

⎢

⎢

⎣

𝑀11 ⋯ 𝑀15
⋮ ⋱ ⋮

𝑀51 ⋯ 𝑀55

⎤

⎥

⎥

⎦

, 𝐂(𝐪, 𝐪̇) =
⎡

⎢

⎢

⎣

𝐶11 ⋯ 𝐶15
⋮ ⋱ ⋮
𝐶51 ⋯ 𝐶55

⎤

⎥

⎥

⎦

,

𝐠(𝐪) =
⎡

⎢

⎢

⎣

𝑔1
⋮
𝑔5

⎤

⎥

⎥

⎦

follow as

𝑀11 = 𝑚𝑋

𝑀13 = cos(𝛼) sin(𝛽)𝑚𝑧

𝑀14 = − sin(𝛼) sin(𝛽)𝑠𝑧
𝑀15 = 𝑚𝑧 cos(𝛽)(𝑠𝑧 cos(𝛼) − ℎ1)

𝑀22 = 𝑚𝑌

𝑀23 = −𝑚𝑧 sin(𝛼)

𝑀24 = −𝑚𝑧𝑠𝑧 cos(𝛼)

𝑀31 = 𝑚𝑧 cos(𝛼) sin(𝛽)

𝑀32 = −𝑚𝑧 sin(𝛼)

𝑀33 = 𝑚𝑍

𝑀41 = −𝑚𝑧𝑠𝑧 sin(𝛼) sin(𝛽)

𝑀42 = −𝑚𝑧𝑠𝑧 cos(𝛼)

𝑀44 = 𝑚𝑧𝑠
2
𝑧

𝑀51 = 𝑚𝑧 cos(𝛽)(𝑠𝑧 cos(𝛼) − ℎ1)

𝑀55 = −𝑚𝑧(−𝑠𝑧 cos(𝛼) + ℎ1)2

𝑀12 = 𝑀21 = 𝑀25 = 𝑀34 = 𝑀35 = 0

𝑀43 = 𝑀45 = 𝑀52 = 𝑀53 = 𝑀54 = 0,

𝐶13 = −𝑚𝑧(cos(𝛼) cos(𝛽)𝛽̇ − sin(𝛼) sin(𝛽)𝛼̇)

𝐶14 = −𝑚𝑧(sin(𝛼)(sin(𝛽)𝑣𝑧 + 𝛽̇ cos(𝛽)𝑠𝑧)

+ sin(𝛽) cos(𝛼)𝛼̇𝑠𝑧)

𝐶15 = 𝑚𝑧((− cos(𝛼) sin(𝛽)𝛽̇ − sin(𝛼) cos(𝛽)𝛼̇)𝑠𝑧
+ cos(𝛼) cos(𝛽)𝑣𝑧 + 𝛽̇ sin(𝛽)ℎ1)

𝐶23 = −cos(𝛼)𝑚𝑧𝛼̇

𝐶24 = 𝑚𝑧(− cos(𝛼)𝑣𝑧 + sin(𝛼)𝛼̇𝑠𝑧)

𝐶34 = −𝑚𝑧𝛼̇𝑠𝑧
𝐶35 = 𝛽̇ cos(𝛼)𝑚𝑧(− cos(𝛼)𝑠𝑧 + ℎ1)

𝐶43 = 𝑚𝑧𝑠𝑧𝛼̇

𝐶 = 𝑚 𝑠 𝑣
44 𝑧 𝑧 𝑧

12
𝐶45 = 𝑚𝑧𝛽̇ sin(𝛼)(cos(𝛼)𝑠2𝑧 − ℎ1𝑠𝑧)

𝐶53 = 𝑚𝑧𝛽̇ cos(𝛼)(cos(𝛼)𝑠𝑧 − ℎ1)

𝐶54 = −𝑚𝑧𝛽̇ sin(𝛼)(cos(𝛼)𝑠2𝑧 − ℎ1𝑠𝑧)

𝐶55 = 𝑚𝑧(− cos(𝛼) sin(𝛼)𝛼̇𝑠2𝑧
+ (− cos(𝛼)2𝑣𝑧 + sin(𝛼)𝛼̇ℎ1)𝑠𝑧 − cos(𝛼)ℎ1𝑣𝑧)

𝐶11 = 𝐶12 = 𝐶21 = 𝐶22 = 𝐶25 = 0

𝐶31 = 𝐶32 = 𝐶33 = 𝐶41 = 𝐶42 = 𝐶51 = 𝐶52 = 0,

𝑔1 = 𝑔2 = 0

𝑔3 = 𝑚𝑧 cos(𝛼) cos(𝛽)𝑔

𝑔4 = −𝑚𝑧𝑔 sin(𝛼) cos(𝛽)𝑠𝑧
𝑔5 = 𝑚𝑧𝑔(− cos(𝛼) sin(𝛽)𝑠𝑧 + sin(𝛽)ℎ1).

ppendix B. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.conengprac.2022.105255.
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