
D I P L O M A R B E I T

Simulating a Reinforcement Learning
Model for Application in Just-In-Time
Adaptive Intervention Recommender

Systems

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Technische Mathematik

ausgeführt am

Institut für Analysis und Scientific Computing

der Technischen Universität Wien

unter der Anleitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Felix Breitenecker

und

Univ.Lektor Dipl.-Ing. Dr.techn. Bernhard Hametner

durch

Katharina Brunner, BSc

Matrikelnummer: 01204726

Markomannenstraße 18/5

1220 Wien

Wien, 13. Dezember 2021

Datum Felix Breitenecker Katharina Brunner



Kurzfassung

Eine einheitliche Gesundheitsversorgung und offene Zugänge zu Gesundheitsdiensten für

alle Bevölkerungsschichten sind weltweit noch immer eine Utopie. In einigen Gebieten

dieser Welt übersteigt die Reichweite der Mobilfunknetze die der lokalen Gesundheits-

infrastruktur. Um diesem Problem zu begegnen, sind in den letzten Jahren Initiativen

zu “Digital Health“ entstanden, die mögliche Lösungen versprechen. Ein wichtiger, aber

komplexer Sektor im Bereich von Digital Health ist die Entwicklung von “Recommen-

der Systems“, also Empfehlungssystemen, bei denen es sich um Machine Learning-basierte

mehrkomponentige Anwendungen handelt, die künstliche Intelligenz nutzen, um Einzelper-

sonen personalisierte unterstützende Interventionen bereitzustellen, die auf Just-in-Time-

Interventionsbereitstellung und Adaptivität basieren.

Diese Arbeit befasst sich mit einem Machine Learning Algorithmus namens “Thompson

Sampling with Restricted Context“ (TSRC) und untersucht, ob er ein Anwärter für die En-

gine in einem adaptiven Just-in-Time-Empfehlungssystem ist. Zunächst wird ein Überblick

über die Struktur von medizinischen Empfehlungssystemen gegeben, der die Beschreibung

von Schlüsselelementen und eine Erörterung der aktuellen Anwendungen beinhaltet, die

mit diesem Konzept arbeiten.

Mathematisch kann das Problem von Empfehlungssystemen als kontextuelles mehrarmi-

ges Banditenproblem interpretiert werden. Die Standardalgorithmen, die dieses Problem

lösen, werden vorgestellt und ihre Vor- und Nachteile diskutiert, bevor argumentiert wird,

warum der Thompson-Sampling-Ansatz für diese Diplomarbeit gewählt wurde.

Anschließend wird Thompson Sampling als Paradigma des Machine Learning untersucht

und der TSRC-Algorithmus als Erweiterung der traditionellen Heuristik vorgestellt, der

aufgrund seiner Einschränkung von Kontextvariablen in Situationen nützlich sein kann, in

denen Kontextinformation fehlt, zum Beispiel im Falle eines technischen Ausfalls während

der Datenaufzeichnung.

Um die Leistung des TSRC-Algorithmus bei der Auswahl unterstützender Interventionen

zu analysieren, wird ein Reinforcement Learning Modell entworfen und in Matlab imple-

mentiert. Es umfasst das Modell eines Empfehlungssystems, virtuelle Klient*innen und die

Implementierung des TSRC-Algorithmus.

Anschließend werden Simulationen mit dem Modell des Empfehlungssystems und ver-



schiedenen Modell-Klient*innen durchgeführt, und die Reaktion des TSRC-Algorithmus

auf Sparsität von Kontext und den Fall fehlender Daten untersucht, die sich beide auf ein-

geschränkte Kontextvariablen beziehen. Alle Simulationsergebnisse deuten stark darauf hin,

dass der TSRC-Algorithmus ein Anwärter für adaptive Just-in-Time-Empfehlungssysteme

ist, und es wird ein Ausblick auf weiterführende Forschungsbereiche zu diesem Thema ge-

geben.



Abstract

Globally speaking, consistent healthcare and easy access to health services for all citizens

is still a utopian concept. In some areas of this world the coverage of mobile networks

surpasses the local health care infrastructure. In order to combat this issue, digital health

initiatives have emerged in recent years, promising possible solutions. An important but

complex sector in digital health is the development of treatment recommender systems,

which are machine learning driven multi-component applications that utilise artificial in-

telligence to deliver personalised supportive intervention to a client, based on just-in-time

intervention delivery, and adaptiveness.

This thesis looks at a machine learning algorithm called Thompson Sampling with Re-

stricted Context, or TSRC, and investigates whether it is a contender for the engine in a

just-in-time adaptive recommender system. First, an overview of the framework for med-

ical recommender systems is given, which includes a description of its key elements and a

discussion of the current applications working with this concept.

Mathematically, the problem faced by recommender systems can be interpreted as a

contextual multi-armed bandit problem. The standard algorithms solving this problem are

presented, and their advantages and disadvantages are discussed before arguing why the

Thompson Sampling approach is selected for this thesis.

Subsequently, Thompson Sampling is investigated as a machine learning paradigm, and

the TSRC algorithm is presented as an extension of the traditional heuristic, which, due to

its restricted context policy may be equipped to handle cases where contextual information

is missing, for example in the case of a technical failure to record data.

In order to analyse the TSRC algorithm’s performance in choosing supportive interven-

tions, a reinforcement learning-based model is designed and implemented in Matlab. It

includes a model recommender system together with virtual model clients, and the imple-

mentation of the TSRC algorithm.

Thereafter, simulations are performed with the model recommender system and differ-

ent clients, and the TSRC algorithm’s response to contextual feature sparsity and cases of

missing data, both relating to restricted context, are investigated. All simulation results

strongly suggest that the TSRC algorithm is a contender for just-in-time adaptive recom-

mender systems, and an outlook containing future research into the topic is provided.



Acknowledgement

≪ I’m the Greek economy of cashing intellectual cheques and I’m trying to

progress. ≫
The 1975 ∣ Loving Someone

First and foremost, I want to thank my supervisors Ao.Univ.Prof.i.R. Dipl.-Ing. Dr.techn.

Felix Breitenecker, who has paved the way for me to write my thesis as part of an intern-

ship, and Univ.Lektor Dipl.-Ing. Dr.techn. Bernhard Hametner, who has been patient and

kind in answering all my questions no matter how silly, and who has encouraged me in

working autonomously, shaping my ideas, and guiding this thesis.

Furthermore, I am grateful for receiving financial support from the Austrian Research

Promotion Agency (FFG) in form of the FEMtech internship at the Austrian Institute of

Technology (AIT), which has enabled me to work full-time for six months in a company

that is at the forefront of biomedical research, so that I could gather invaluable experience.

I cherish the support and encouragement I have received from my co-workers at AIT, fellow

interns and researchers alike, who have made me feel very welcome and who have always

had an open ear for my thesis-related troubles, and I am glad to have gotten to know them.

At last, I want to thank my family for being unquestioningly supportive and for offering

their home and garden as a refuge every so often. But most importantly, I want to thank my

partner for being my rock, never once yielding to the waves of perfectionism, impatience,

and despair that I let crash down upon him like Neptune his sea. He has been the most

patient rubber duck debugging buddy, the most encouraging thesis proofreader, my most

consistent supporter and number one fan. This thesis would not have been possible without

his help.



Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Diplomarbeit selbstständig und ohne

fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt

bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.

Wien, am 13. Dezember 2021

Katharina Brunner



Contents

1 Introduction 1

2 Just-in-Time Adaptive Interventions 4

2.1 Why Just-In-Time Adaptive Interventions? . . . . . . . . . . . . . . . . . . . . 4

2.2 Design and Concept of a Just-In-Time Adaptive Intervention . . . . . . . . . 5

2.2.1 Decision Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Tailoring Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Intervention Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.4 Decision Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.5 Proximal Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.6 Construction and Evaluation of a Just-in-Time Adaptive Intervention 11

2.3 Applications in Mobile Health . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 State-of-the-Art Mobile Health Applications . . . . . . . . . . . . . . . 17

2.3.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 The Contextual Multi-Armed Bandit Problem 25

3.1 The Multi-Armed Bandit Problem . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Regarding Context in a Multi-Armed Bandit . . . . . . . . . . . . . . . . . . . 29

3.3 The Contextual Multi-Armed Bandit Approach for Decision Rules in a Clin-

ical Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Contextual Multi-Armed Bandit Algorithms . . . . . . . . . . . . . . . . . . . 34

3.4.1 The e-Greedy Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.2 The Upper Confidence Bound Strategy . . . . . . . . . . . . . . . . . . 41

3.4.3 The Thompson Sampling Strategy . . . . . . . . . . . . . . . . . . . . . 48

i



Contents

3.5 Applications of Multi-Armed Bandits and Contextual Multi-Armed Bandits

in Mobile Health . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 A Choice of Thompson Sampling Algorithm 58

4.1 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Contextual Multi-Armed Bandits versus Markov Decision Processes . . . . . 60

4.3 Thompson Sampling as a Reinforcement Learning Algorithm . . . . . . . . . 62

4.4 Contextual Bandits with Restricted Context . . . . . . . . . . . . . . . . . . . 65

4.4.1 Handling Restricted Context in a Contextual Multi-Armed Bandit . 65

4.4.2 Combinatorial Bandits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Thompson Sampling with Restricted Context . . . . . . . . . . . . . . . . . . . 70

5 Methods of Implementation 76

5.1 The Model Just-In-Time Adaptive Intervention . . . . . . . . . . . . . . . . . 76

5.2 Modelling the Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 The Code Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 The Weather Generator Function weatherGenerator.m . . . . . . . . 85

5.3.2 The Function TSRC.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.3 The Monte Carlo Simulation Function monteCarloTSRC.m . . . . . . 88

6 Simulation 94

6.1 The Weather Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.1 Comparing Different Weather Scenarios for a Weather-Sensitive Client 95

6.1.2 Comparing a Weather-Sensitive Client to a Weather-Insensitive Client101

6.2 The Fitness Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.1 Comparing Different Fitness Levels . . . . . . . . . . . . . . . . . . . . 105

6.2.2 Comparing a Fitness-Sensitive Client to a Fitness-Insensitive Client . 109

6.3 The Availability Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.1 Comparing Different Levels of Availability . . . . . . . . . . . . . . . . 112

6.3.2 Comparing an Availability-Sensitive Client to an Availability-Insensitive

Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

ii



Contents

6.4 The Motivation Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4.1 Comparing Clients Motivated for Different Activities . . . . . . . . . . 119

6.4.2 Comparing Different Models for Motivation . . . . . . . . . . . . . . . 123

6.5 Investigating Feature Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.6 The Case of Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7 Conclusion and Outlook 145

List of Figures 149

List of Tables 152

List of Algorithms 154

Index 155

Bibliography 157

iii



1 Introduction

In 2020, the Seventy-third World Health Assembly endorsed the global strategy on dig-

ital health 2020 − 2025 proposed by the World Health Organization with the purpose to

strengthen health systems in its member states through the application of digital health

technologies for consumers, health professionals, health care providers, and industry to-

wards empowering patients and achieving the vision of health for all citizens. Digital health

is expected to revolutionise the public health sector on a global scale, providing healthcare

solutions even in the least-developed countries through the use of smart and connective

devices that process health data according to the principles of advanced computing, big

data analytics, artificial intelligence including machine learning, or robotics [88].

An emerging research domain within the digital health framework is the development of

personalised recommender systems, with the general aim to support the self-management of

chronic illnesses. Two principles of support provision are merged to optimise patient care:

just-in-time assistance, and adaptiveness. By employing machine learning techniques, the

recommender system identifies the best supportive intervention for the customer out of a

pool of possible options and delivers it at a time where the customer is most receptive to

it. This digital health practice can be accompanied by traditional forms of treatment, or it

may be used as a standalone treatment regime. Recommender systems of this kind already

exist, but most of them are still in the development phase. There are many aspects that

need improvement before such a system is applicable on a large scale, such as long-term

effect research, or health data encryption.

The research on this topic encompasses many scientific fields, including applied mathe-

matics. In order to save time and resources, modelling and simulation provide the oppor-

tunity to test just-in-time adaptive recommender systems in silico to investigate whether

a clinical trial is expedient in terms of efficiency and effectiveness of treatment. The effort

going into such simulations can be extensive.

Before the simulation environment can be implemented, an appropriate machine learning

algorithm must be settled on. Due to machine learning paradigms providing a variety of

possible learning structures all equally likely to be eligible for the job, the process of finding

the right algorithm can take time. Generally, machine learning algorithms are quite young,

with a few exceptions. For example, Thompson Sampling is a heuristic designed in 1933 by

1



1 Introduction

William R. Thompson [80]. It is widely applicable throughout machine learning problems

in its basic form, and recently developed extensions of the original algorithm are able to

solve advanced, more specific problems.

Mathematically, the problem posed by a just-in-time adaptive recommender system is

typically modelled as a multi-armed bandit problem that additionally regards context.

This problem originates from game theory and describes a player faced with several slot

machines, colloquially called one-armed bandits. The player’s task is to maximise their

winnings in the long run, forcing them to try out all the machines, while at the same

time playing the ones that yield the most profit in order to learn the expected reward for

each slot machine. This is called the exploration-exploitation trade-off, and it is of utmost

importance to choose an algorithm that deals with this trade-off in an efficient way.

If the multi-armed bandit problem also regards context, it means that additional informa-

tion is available to the player before deciding on a slot machine. “Context” in a just-in-time

adaptive recommender system is information about the circumstances surrounding a client.

Instead of only accessing the knowledge of whether or not an intervention suggestion was

accepted, the algorithm solving the problem may also consider supplementary information

about the client, which can be medical (i.e., the heart rate), or non-medical (i.e., the client’s

location). From this perspective, it is clear that the procurement of contextual information

as well as the processing of this data by the machine learning algorithm is a central topic

in recommender system development.

In order to simulate a response to the intervention suggestions from which the algorithm

can learn sequentially, clients must be modelled once an algorithm is selected. This re-

quires in-depth knowledge about the dynamics of the illness that the recommender system

is targeting, as well as expertise for interdisciplinary approaches such as behaviour models.

Human behaviour depends on a multitude of factors, and it lies in the hands of the devel-

opers to decipher which ones are most likely to influence the client’s progress concerning

their health predicament. The more realistic a client’s behaviour is portrayed, the higher

the informative value of the overall simulation will be.

This thesis roughly walks through the steps of just-in-time adaptive recommender system

development. Its main purpose is to investigate whether a specification of the Thompson

Sampling heuristic, the TSRC algorithm, is eligible to deliver supportive interventions

within a just-in-time adaptive recommender system.

For this purpose, a general introduction is given on the theoretical background of the

just-in-time adaptive intervention design in Chapter 2. It elaborates on the advantages of

recommender systems based on these principles, describes and defines key elements of the

intervention design, gives an overview of state-of-the-art recommender systems in digital

health, and sheds a light on the current challenges of developing functional applications.

2



1 Introduction

Chapter 3 is dedicated to the mathematical formulation of the multi-armed bandit prob-

lem and its extension that additionally regards contextual information, the contextual

multi-armed bandit problem. Several strategies for solving the bandit problem including

Thompson Sampling are presented, and their advantages and disadvantages are discussed.

Also, a summary of current applications of multi-armed bandit algorithms in the field of

digital health is provided in order to understand the present state of research on this topic.

The Thompson Sampling algorithm is introduced within the framework of machine learn-

ing in Chapter 4, and an extension limited to regarding only part of the contextual infor-

mation available, the TSRC algorithm, is explained in detail. The possible superiority of

the extended algorithm over the classical version is analysed, which centres around the

complications related to missing contextual data (e.g., due to technical failure).

In order to investigate whether the chosen algorithm is feasible for delivering interventions

in a just-in-time adaptive recommender system, several simulations are implemented and

run in Matlab with the help of a model recommender system, and model clients. The

implementation of these elements, as well as the TSRC algorithm, is found in Chapter 5,

where the intricacies of the model components are described in detail.

Subsequently, Chapter 6 contains the simulation setups, outcomes, and discussions for

different simulation scenarios in the hope that they provide viable results towards the

research question, including investigations on feature sparsity, and the algorithm’s reaction

to situations of missing data.

Chapter 7 contains a brief conclusion on the conducted simulations and underlines why

the chosen algorithm ought to be considered for use in a recommender system. Furthermore,

it provides an outlook on future work and related research.

3



2 Just-in-Time Adaptive Interventions

Just-in-time adaptive interventions (JITAIs) combine the principle of just-in-time (JIT)

support, which attempts to provide the right type of support at the right time [40], with

adaptive intervention, which is a dynamic form of individualization. The result is an

intervention design that aims to provide the right type and amount of support at the right

time by adapting to an individual’s changing state with regard to the individual’s current

situation and environment [58]. A common approach is to use mobile devices to enable

clients to access health interventions whenever and wherever they feel they need help [46].

This chapter gives a description of the JITAI concept and its components, and discusses

the application of such intervention designs in health services.

2.1 Why Just-In-Time Adaptive Interventions?

A just-in-time adaptive intervention is an intervention design that adapts the provision

of support (e.g., the type, timing, or intensity) over time to the changing conditions and

circumstances in which individuals may find themselves, henceforth known as context, with

the goal to deliver support contextually, and in the moment that a person needs it most

and is most likely to be receptive to receiving it [75]. The JITAI describes a conceptual

foundation which aims to guide researchers in putting its components into practice, in the

form of a functional application [31]. In order to provide JIT support flexibly in terms of

time and location, the dynamics of an individual’s context need to be monitored in real

time [47], which is possible due to rapid advances in mobile and sensing technologies [89].

The JITAI design is based on the idea that timing plays an important role in determining

whether providing support is beneficial to an individual [58]. Timing is defined as the

moment (a static reference point in time) at which a phenomenon or process starts or

finishes, or a moment at which data is recorded. The concept of timing in a JITAI is

generally event-based, so the question of when the right time is, is conditional rather than

defined by a time of day. These changes in conditions are expected to occur irregularly

[58], and cannot be predicted [6]. Consequently, timing onset and offset separates states

that reflect different conditions in which individuals may find themselves [64].

The JITAI concept also implies providing no support when the time is wrong and never

4



2 Just-in-Time Adaptive Interventions

providing the wrong type of support [62]. JITAIs therefore aim to eliminate any action

that absorbs resources but adds no value to the desired process, or even disrupts it [81].

Regarding this concept, a JITAI is constructed to identify vulnerable or opportune states

in a client. A state of vulnerability describes a period of sensitivity to adverse events, and

a state of opportunity depicts a period of susceptibility to positive behaviour change. The

emergence of those states is a dynamic process, influenced by stable and transient, internal

and external factors (with regard to the individual). The aim of the JITAI is thus to contain

the vulnerable state in an individual and return their condition from vulnerable to latent.

JITAIs are also motivated by the importance of capitalising on states of opportunity when

an individual is susceptible to positive behaviour change. Also, because JITAIs rely on the

capabilities of modern technology and wireless devices for monitoring clients, intervention

decisions are made much more rapidly than in standard adaptive interventions [58].

Note that the definition of a JITAI emphasises that the adaption in such an interven-

tion concept is employed by the intervention itself, rather than by the client, so decisions

concerning when and how to provide support are based on whether and how the client

has interacted with past intervention suggestions (i.e., the intervention protocol) [58]. This

approach is grounded on evidence suggesting that clients are often unable to recognise

when states of vulerability and/or opportunity emerge [30]. Therefore, the JITAI approach

distinguishes itself from participant-determined approaches that offer an array of available

resources, for the client to decide when and what kind of support to initiate [58].

Due to these characteristics, JITAIs find use mainly in health services and the medical

domain, see Section 2.3. In these areas, it is especially important that the support provided

copes with the rapidly changing states of a client, which is usually impossible to do with

an in-person or face-to-face approach, due to lack of time and resources. The development

of JITAI applications requires inter- and multidisciplinary efforts: clinicians, behavioural

scientists, engineers, statisticians, computer scientists, and human-computer interaction

specialists need to be involved in order to design feasible intervention concepts in this field

[58].

2.2 Design and Concept of a Just-In-Time Adaptive Intervention

The content of this section and its subsections is cited from Nahum-Shani et al. [58], unless

otherwise stated.

JITAIs are multi-component interventions, so it is important to clearly define the compo-

nents that comprise them, in order to attend to the utility of each component accordingly.

Investigating the effectiveness of each component and how well these work together is also

critical in the process of optimising a multi-component intervention, and will be discussed

5



2 Just-in-Time Adaptive Interventions

in Section 2.2.6 [22].

A pragmatic framework is provided by Nahum-Shani et al. in [57], which can be used

to organise existing and new evidence into a useful model for JITAI construction. The

framework aims to help developers think through key factors in order to inform the design

of JITAIs and guide further empirical work. A more explicit guide is the template-based

intervention design mechanism proposed by Gonul et al. [31], which enables the config-

uration of evidence-based JITAI components. It incorporates a rule definition language,

enabling developers to specify conditions for interventions based on current and former

contextual data. This approach allows experts from other domains to create JTIAIs within

an expandable software framework, aided by the terminology offered by Nahum-Shani et

al. A JITAI consists of 5 key elements:

❼ Decision points : Points in time at which an intervention decision is made, either

pre-defined or event-based.

❼ Tailoring variables: Information concerning the individual at a decision point (either

static or dynamic), which is used for individualisation (i.e., contextual data) [57].

❼ Intervention options : Array of possible actions which can be employed at a decision

point.

❼ Decision rules: Mechanism which inputs information in the form of tailoring variables

and outputs a decision [50].

❼ Proximal outcome: Short-term goals the intervention is intended to achieve.

The above variables are interconnected to form an intervention concept, see Figure 2.1.

Figure 2.1: Intervention concept for the JITAI design, after [58].

The long-term goals the intervention is trying to achieve are called distal outcomes. Cau-

tion is needed when both proximal and distal outcome are included in a model. Proximal

6



2 Just-in-Time Adaptive Interventions

outcomes are often mediators (i.e., critical factors in a causal pathway through which the

intervention options are designed to impact a distal outcome) [49], but they can also be

intermediate measures of the distal outcome. For example, if the goal of the JITAI is to

motivate a person to adopt and maintain a more active lifestyle, a proximal outcome can

be a certain step count reached per day (i.e., 10,000 steps, as recommended by the U.S.

Department of Health and Human Services, 2008), whereas the distal outcome may be

quantified by reaching the number of steps each day in a month or year. Thus, proximal

and distal outcome refer to the same goal, only on different timescales. In these cases, where

the proximal outcome directly corresponds with the distal outcome, the distal outcome can

be neglected as a goal since its inclusion merely adds a level of complexity.

Gonul et al. [31] argue that proximal and distal outcome are only additional elements and

do not belong to the classical definition of a JITAI, and Tewari and Murphy [79] include

the proximal outcome, but not the distal outcome, which is most consistent with other

literature on the subject. In this thesis, the distal outcome will be included, but cases will

be disregarded where, in practical application, reaching the proximal outcome can lead to

a diminishing effect on the distal outcome, for example due to intervention fatigue [67],

meaning the client’s willingness to follow the suggested interventions is waning, which can

be caused by a multitude of factors and is discussed in Sections 2.2.3 and 2.3.2.

The following sections explain the importance and role of the above design components

in more detail.

2.2.1 Decision Points

A decision point is a point in time at which an intervention decision is made (i.e., when

the decision rules decide on an intervention option). A decision point can occur:

❼ At a pre-specified time interval (e.g., every three minutes) [33]

❼ At specific times of day (e.g., daily at 9 a.m.) [44]

❼ Following random prompts [12]

When selecting decision points, the main consideration should be given to how frequently

meaningful changes in the tailoring variables are expected to occur. A change is deemed

meaningful if it carries implications for choosing an intervention option. Such changes

represent entries to, and exits from, vulnerable or opportune states. For example, if the

tailoring variable represents the distance d to a pre-defined risk location for the client, a

meaningful change in the tailoring variable occurs if the client’s distance d drops below a

certain threshold (i.e., a radius r around the risk location), or increases above it (either

d ≤ r or d > r). The first case marks an entry into a vulnerable state, which requires an

7



2 Just-in-Time Adaptive Interventions

intervention. This concept is realised in the mobile phone application A-CHESS, which

provides treatment for patients who leave alcohol-use disorder therapy, see Section 2.3.1

[33]. If a change in location is expected to occur every minute, then the frequency of

decision points might be one-minute intervals.

The choice of time interval between decision points has an enormous impact on the ability

of the JITAI to achieve its goals. States of opportunity might be missed if the timing of

the decision points is not synchronised to the frequency of changing conditions, and missed

opportunities can result in reduced intervention engagement, or intervention fatigue, see

Sections 2.2.3 and 2.3.2.

2.2.2 Tailoring Variables

A tailoring variable contains information concerning the individual that is used to decide

under what conditions to provide an intervention, and what intervention to provide. In

the example in Section 2.2.1, the tailoring variable is the individual’s distance d to a

risk location, or their current position (e.g., determined via GPS) [33]. JITAIs can be

designed to target more than one proximal outcome, and different tailoring variables may

be considered for different proximal outcomes.

JITAIs rely on tracking devices such as mobile phones, or wireless sensors, to collect pa-

tient data, which, due to rapid leaps in technological advancement, are becoming cheaper

and more accurate. The values of tailoring variables are obtained by either active assess-

ment , or passive assessment [86]. Active assessment is also called ecological momentary

assessment (EMA) and requires the client to self-report, which indicates direct engage-

ment with the JITAI [74]. Passive assessment means monitoring the client passively, with

minimal to no engagement on the client’s side. For this reason, passive assessment is

considered to be less biased than EMA, and developers are encouraged to choose passive

assessment over active assessment whenever possible. However, when sensors are used to

assess an individual’s condition, the measuring needs to be reliable, otherwise the decision

rule will perform little better than a random selection of intervention options, and if at

least one tailoring variable is invalid, the decision rule may even recommend an adverse

option, potentially causing the client harm. Due to the reliance on technology, missing

data can occur for various technical reasons (e.g., no power, no GPS signal). It is vital

for a functional JITAI to anticipate those situations, which the decision rules need to be

equipped to handle.

The selection of tailoring variables should be based on evidence, indicating that a par-

ticular variable is useful in aiding intervention decisions, which means that the variable

needs to be able to specify conditions marking opportune or vulnerable states, in which

8



2 Just-in-Time Adaptive Interventions

individuals can benefit from one intervention option over another. The proximal outcome

of a JITAI should also influence the selection process. In fact, it is often reasonable to use

the proximal outcome as a tailoring variable (i.e., to consider earlier success or failure of

proximal outcomes to decide on an intervention option). The class of algorithms serving as

decision rules, presented below, works with this feedback explicitly, see Chapters 3 and 4.

2.2.3 Intervention Options

Intervention options are an array of actions that may be employed at any given decision

point. They can include various types, sources, and amounts of support, or media delivering

the support, depending on the respective application. The choice of intervention options

included in a JITAI should be theoretically as well as empirically driven, and, due to the

construction of the class of algorithms working as decision rules, mainly target the proximal

outcomes, see Chapters 3 and 4.

As a secondary, but equally important target, intervention options should be designed

to manage intervention engagement , and cope with intervention fatigue. Intervention en-

gagement describes a state of motivational commitment in the client role (i.e., how strongly

a client is adhering to the provided support) [45], and intervention fatigue defines the state

of emotional weariness associated with intervention engagement (i.e., the client slowly dis-

engaging with the JITAI) [39]. Research in occupational health psychology [10] provides

a framework for separating design considerations that primarily concern engagement from

those that primarily concern fatigue: results suggest that engagement can be prompted by

efforts to fulfil basic psychological needs (e.g., autonomy or competence), while intervention

fatigue can be prevented by attending to the demands imposed on the client in terms of

time and effort.

Varying the form, presentation, and timing of content delivery is a viable strategy for

dealing with both intervention engagement and fatigue [54]. In addition, the inclusion of a

provide nothing intervention option is recommended, making it possible to not provide any

intervention at a decision point. This option should be incorporated to address situations

where providing support may lead to adverse effects on the outcome, intervention engage-

ment or fatigue, including situations where the client is unreceptive (e.g., at work, driving,

asleep), or when support is not required. Following the example from Section 2.2.1, an

array of intervention options when checking whether a client has entered a risk location

(i.e., check if d ≤ r) might be:

9



2 Just-in-Time Adaptive Interventions

intervention options =
⎛⎜⎜⎜⎜⎜⎝

send message to a trusted third party

provide alert asking whether the client wants to be there [33]
remind the client of their streak for not entering a risk location

provide nothing

⎞⎟⎟⎟⎟⎟⎠
2.2.4 Decision Rules

Decision rules are the crucial component of the intervention design. They map the tailoring

variables (i.e., context) to an intervention option (i.e., action) [79], while dynamically

learning whether and how well the suggested intervention has been accepted. The most

prominent approach is to use the contextual multi-armed bandit problem to model this

process, which is discussed at length in Chapter 3.

Theoretically, there is a decision rule for each decision point. Following the example from

Section 2.2.1, the decision rule at time t can be:

IF d ≤ r
intervention option = provide alert

ELSE IF d > r
intervention option = provide nothing

END

In practice (and especially in this thesis), the mechanism underlying the decision rules

is sufficiently adaptable to work at all decision points, and no specification is needed. The

decision rule at point t considers the values of the tailoring variables during the decision

process, in order to determine which intervention option to offer. In the example above,

the value for r specifies the condition (or threshold) under which an intervention option

should be offered.

Good decision rules are based on an accurate and comprehensive scientific model that

highlights experiences and context in which a client is likely to benefit from an intervention,

and whether to favour one intervention option compared to the others, in aid of the proximal

outcome. Similarly, it is vital to understand what constitutes vulnerable and/or opportune

states, the process by which these states emerge, and the possible interventions that can

be employed to address and capitalise on them. Additionally, the understanding of how

and why intervention engagement and fatigue fluctuate over time, how these fluctuations

impact the proximal or distal outcome, and which strategies can enhance engagement and

reduce fatigue, must have a prevalent influence on the decision rule design process.

10



2 Just-in-Time Adaptive Interventions

2.2.5 Proximal Outcome

Proximal outcomes are the imminent goals the intervention aims to achieve. They are

measured after the intervention is provided in order to check whether the intervention is

on track in reaching its goal. As mentioned above, identifying and clearly defining the

proximal outcomes helps developers select appropriate decision points, tailoring variables,

and intervention options, as well as formulating effective decision rules [49].

The relationship between proximal and distal outcomes is already discussed at the be-

ginning of Section 2.2. If distal outcome is taken into account there are multiple pathways

through which the intervention can impact the distal outcome [63], and intervention devel-

opers might select multiple proximal outcomes to be targeted by the JITAI. The example

from Section 2.2.1 can be used to illustrate a possible scenario: if the distal outcome is

to prevent alcohol consumption by the client, whose location is monitored regularly and

who has also just emerged from alcohol-use disorder therapy, proximal outcomes aiding the

distal outcome might be:

❼ Report regular check-ins with group therapy sessions

❼ Report regular check-ins with a personal coach

❼ Not entering any (or some) of the pre-defined risk locations each day (or week)

In this case, a risk location might constitute a place where alcohol consumption has

regularly occurred in the past, or is likely to occur.

To prevent poor adherence of JITAIs, developers are encouraged to additionally con-

sider proximal outcomes pertaining to intervention engagement and fatigue [41]. These

can be behavioural (i.e., accessing and using the intervention), cognitive (i.e., perceiving

the intervention as useful) or affective (i.e., trusting the intervention). When addressing

intervention engagement, it is necessary to specify the time horizon of the engagement re-

quired in order to achieve the outcome. Similarly, there are a number of proximal outcomes

reflecting intervention fatigue.

However, empirical evidence in the field of occupational health psychology suggests that

engagement and fatigue are two distinct, yet related concepts that share certain antecedents

and consequences [23], and JITAI developers are recommended to attend to both concepts

when selecting proximal outcomes, as well as intervention options.

2.2.6 Construction and Evaluation of a Just-in-Time Adaptive Intervention

The content of this subsection is cited from Nahum-Shani et al. [57], unless otherwise

stated. The framework by Nahum-Shani et al. suggests breaking down the construction of

a JITAI into three areas:

11



2 Just-in-Time Adaptive Interventions

(1) Defining the problem

(2) Defining the JIT in this context

(3) Formulating the adaption strategy

Defining the Problem

The problem definition includes specifying whom the intervention is aimed at, in terms

of identifying the target population and its key attributes (e.g., employed individuals are

generally unavailable for time-intensive interventions during work hours). Furthermore,

if included, the distal outcome of the JITAI should be decided upon, and the temporal

progression of key factors towards the outcome should be determined.

The term “temporal progression” refers to the way in which the intervention process

unfolds over time and what role each factor and effect plays. Depending on the problem,

this progression is generally not linear or straightforward. JITAI developers are advised to

identify different timescales, within which the process leading to either proximal or distal

outcome might unfold, and, subsequently, specify dynamics within each timescale, and how

factors and effects at different timescales are related.

Another aspect of defining the problem is selecting contenders for proximal outcomes.

With or without including a distal outcome in the JITAI concept, proximal outcomes must

be chosen depending on the goal, because the health-related target of a JITAI is observed

through different factors compared to targets regarding intervention engagement or fatigue.

Defining the JIT in This Context

Defining the JIT aspect of the intervention design means establishing which factors mark

states of vulnerability and opportunity, what possible intervention options can affect the

proximal outcomes (and can be delivered JIT), and which factors mark unreceptive states

to these interventions. For example, if a vulnerable or opportune state occurs at work, the

client is likely to be unreceptive, and, even if an intervention is offered JIT, there will be

no progress towards the proximal outcome.

Formulating the Adaption Strategy

When formulating the adaption strategy, a set of tailoring variables must be chosen based on

the decision of what information about the client is useful in selecting an intervention. The

tailoring variables should include factors that mark states of opportunity or vulnerability.

Furthermore, it should be clear which intervention option is likely to have the desired effect

on the proximal outcome for each level of the tailoring variable. For example, if activity

12



2 Just-in-Time Adaptive Interventions

suggestions are provided by the JITAI, and the weather is a tailoring variable, the client is

unlikely to accept a suggestion for an outdoor activity in case the weather is bad, making

it necessary for developers to draw a link between outdoor suggestions and good weather.

Finally, developers are required to create appropriate decision rules that link all the

information above in a systematic manner in order to operationalise effective adaptation.

Figure 2.2 gives a graphical representation of the pragmatic framework by Nahum-Shani

et al.

Figure 2.2: Summary of the pragmatic framework for developing JITAIs, from [57].

In order to optimise JITAIs, study designs and data analytic methods are needed to

understand causal effects of intervention options [58]. For example, Klasnja et al. [46]

present an experimental design, the micro-randomized trial (MRT), developed to support

the optimisation of JITAIs by enabling modelling of causal effects, and time-varying effect

moderation, for intervention components within a JITAI. Its invention is motivated by the

claim that researchers currently do not have the appropriate tools to gather evidence for

deciding how a JITAI should be adjusted to make it more effective. MRTs provide data on

how the effects of different intervention options change over the course of the intervention,

and how time-varying contextual and psychological factors moderate the observed changes

in intervention-component efficacy. Findings from MRTs can thus help determine decision

13



2 Just-in-Time Adaptive Interventions

rules for when and in what circumstances an intervention option should be delivered.

Micro-randomisation means randomly assigning an intervention option at each decision

point. For a multi-component intervention, multiple components can be randomised con-

currently, and a study lasting weeks or months may randomise each person hundreds or

thousands of times depending on the frequency at which intervention components are de-

livered. MRTs are well-suited for optimising JITAIs because the repeated randomisation

allows developers to assess how causal effects of different intervention components change

over the course of the study. Additionally, effect estimations can take advantage of the

inter-subject contrasts (i.e., individuals assigned to an intervention option compared to

others receiving different interventions), as well as intra-subject comparisons (i.e., an in-

dividual assigned to an intervention option compared to the same individual receiving

different interventions). These intra-subject comparisons enable MRTs to require far fewer

participants than traditional study designs.

Figure 2.3: Screenshot of the HeartSteps app in Google Play Store and App Store, accessed
on 2021 − 08 − 24.

In [46], Klasnja et al. give an example of a six-week MRT for an existing JITAI called

HeartSteps, which has been developed into a mobile phone app available for download in

the United States [38] and is discussed in more detail in Section 3.5. Originally tested

during a trial for improving the physical activity of individuals with blood pressure in the

stage 1 hypertension range (120−130 systolic), it delivers activity suggestions to encourage

walking while monitoring the client’s daily step count with a Fitbit tracker [52]. There

are two types of intervention options available: suggestions to go for a walk and sugges-

tions to stop being sedentary. To optimise the delivery of activity suggestions, an MRT is

conducted to evaluate the effects of these two intervention components, giving both types

a probability of 50% to be delivered. The proximal effects can then be estimated using

standard regression models.

14



2 Just-in-Time Adaptive Interventions

Potential research questions for the MRT about the main effects of suggestions are:

❼ By how much, on average, does providing an activity suggestion increase the step

count over the next 60 minutes relative to no activity suggestion?

❼ By how much, on average, does providing an activity suggestion change the step

count for the remaining part of the same day, or the next day?

❼ How does the number of availability-appropriate activity suggestions delivered in a

day impact the daily self-report of user burden?

MRTs still have several limitations. They are only applicable for the testing of push

interventions (i.e., interventions such as reminders or prompts to interact with the JTIAI,

that are delivered to clients based on a set of decision rules). Also, MRTs are most ap-

propriate for the testing of intervention components for which proximal outcomes can be

defined in a principled way (i.e., components for which theory specifies the outcome directly

impacted by the components). Furthermore, MRTs are not suited to testing interventions

for very rare events, due to the lack of available data, which diminishes the reliability of

the MRT.

The next section introduces the field of mobile health, the methods already in use, as

well as challenges for future development.

2.3 Applications in Mobile Health

Section 2.1 argues that, due to the nature of their construction, JITAIs find use mainly in

health services. Thanks to rapid advancements in technology, and especially since mobile

devices are widespread amongst the population, the aim to develop digital support for the

self-management of illnesses has gained popularity, and studies have shown the benefits of

such applications in the medical domain [36].

The public health practice supported by mobile devices such as mobile phones, patient

monitoring devices, and other wireless devices, is defined as mobile health (mHealth) by the

Global Observatory for eHealth, a service of the World Health Organization (WHO), who

first conducted a survey on mHealth to determine its status in the WHO member states in

2011 [89]. In this survey, mHealth is described as involving the use and capitalisation on a

mobile phone’s core utility of voice and short messaging service, as well as more complex

functionalities and applications including general packet radio service, mobile telecommu-

nications (such as 3G and 4G systems), global positioning systems (GPS), and Bluetooth

technology.

15



2 Just-in-Time Adaptive Interventions

The report claims that, even in 2011, the penetration of mobile phone networks in many

low- and middle-income countries surpasses other infrastructures like paved roads, electric-

ity, and fixed internet deployment, suggesting that, by transforming the way health services

are managed and delivered, more people will have access to illness-management, profiting

from advanced personalisation and citizen-focused public health and medical care.

Figure 2.4: Summary of the mHealth initiatives reported to the WHO in its member states
in 2011, from [89].

The most frequently reported types of mHealth initiatives were found to be health call

centres or health care telephone help lines, and the least frequently reported initiatives

were surveillance and decision support systems. Figure 2.4 shows the reported mHealth

initiatives in 2011, when mHealth was first recognised by the WHO. Since 2011, much

advancement has taken place in these fields, especially in health recommender systems, see

Section 2.3.1.

The relevance of mHealth seems evident: health systems worldwide are under increasing

pressure to perform under multiple health challenges, chronic staff shortages, and limited

budgets [89]. mHealth inventions promise cost-effectiveness, and the reduction of other

barriers to treatment, such as the availability of therapists or stigma (especially in the

field of mental health) [58]. Also, the current face-to-face approach to medical treatment is

collecting data at the time the client visits a clinician’s office, and reviewing self-reported

data about the client’s state prior to the appointment through an error-prone mechanism of

recalling past events. In mHealth systems, data collection through mobile devices can im-

16



2 Just-in-Time Adaptive Interventions

prove the regularity (and thus quality) of recorded data, and, in case of passive assessment,

is also less intrusive for the client [67].

An example follows to illustrate how mHealth can benefit the public health sector: car-

diovascular diseases (CVDs) are the leading cause of death globally. In 2019, an estimated

17.9 million people died from CVDs, representing 32% of global deaths, and out of the 17

million premature deaths (under the age of 70) due to chronic diseases, 38% were caused

by CVDs. It is important to detect CVDs as early as possible, in order for treatment

to yield the best possible results. However, most CVDs can be prevented by addressing

behavioural risk factors, such as tobacco use, unhealthy diet, obesity, physical inactivity,

and harmful use of alcohol [87]. Section 2.3.1 introduces mHealth interventions working

with the JITAI concept. Some target sedentary behaviour (e.g., providing physical activity

suggestions), others addiction (e.g., tobacco, alcohol). Instead of, or in addition to, regular

appointments with domain experts (i.e., doctors, dieticians, therapists), these applications

can help eliminate CVD risk factors while continuously monitoring the client and adjusting

the required support according to the client’s needs.

The following section gives an overview of current state-of-the-art mHealth applications,

designed as JITAIs.

2.3.1 State-of-the-Art Mobile Health Applications

Nahum-Shani et al. [58] provide several examples of JITAIs in the field of mHealth, sum-

marising studies in different medical domains. A systematic review of JITAIs to pro-

mote physical activity is given by Hardeman et al. [36], who analyse 19 papers reporting

14 unique JITAIs for data about feasibility, acceptability, engagement, effectiveness, and

health-economic outcomes. This section examines some of the JITAIs presented in either

one or both of those papers, in order to give the reader an idea of current state-of-the-art

research of JITAIs in mHealth. Table 2.1 gives an overview of the applications, including

short descriptions.

A-CHESS

A-CHESS is a mobile phone application designed to improve continuing care for alcohol use

disorders (AUDs) by offering emotional and instrumental support at any time and place

[34]. A-CHESS is an acronym, standing for Alcohol-Comprehensive Health Enhancement

Support System. The theoretical basis of A-CHESS is self-determination theory, which

implies that meeting three needs contributes to an individual’s functioning: being perceived

as competent, feeling related to others, and feeling internally motivated (and not coerced

in one’s actions) [71]. The app makes it possible for the client to share steps of the recovery

17



2 Just-in-Time Adaptive Interventions

Name of Application Description

A-CHESS Mobile phone application to support patients leaving residen-
tial alcohol use disorder (AUD) therapy [33].

FOCUS Mobile phone application offering behavioural intervention by
providing illness management support for schizophrenia pa-
tients [13].

MyBehavior Mobile phone application that tracks a client’s physical activ-
ity and location, detecting walking, running, driving, or being
sedentary [67].

SitCoach Mobile phone application for office workers that delivers mes-
sages encouraging activity [82].

Table 2.1: Overview and short description of applications using the JITAI design.

process with their counsellor, including reporting a potential relapse, or sharing the result of

a weekly digital assessment. The app also provides discussion groups, web links to external

sources helping with recovery, an option to ask an expert, and a panic button which notifies

a person of trust if needed. The JIT aspect is realised by accessing the GPS tracker on

the smartphone, in order to monitor the client’s location regularly, and give alerts in case

the client approaches a pre-defined high-risk location where alcohol consumption is likely

to take place.

Figure 2.5: Screenshot of the A-CHESS smartphone app in the App Store, accessed on
2021-10-08.

In 2010 and 2011, clients leaving residential care for AUDs received treatment as usual,

plus a smartphone with the A-CHESS application for a 12-month randomised trial. Results

18



2 Just-in-Time Adaptive Interventions

showed a significant decrease in risky drinking days compared to clients in the control group,

and higher chances of reporting abstinence in the previous 30 days, especially during the

last four months of the study, indicating a bright future for mHealth support in addiction

recovery [33]. Figure 2.5 shows the preview of the A-CHESS app in the App Store.

FOCUS

FOCUS is a mobile phone application developed to support individuals with schizophrenia

in their illness management [13]. The approach engages patients as active agents in their

own treatment; they are encouraged to self-monitor their clinical status, avoid high-risk

stressors, stay on track with their medications, and use coping strategies when problems

associated with their condition emerge [56]. Due to lack of resources, and low-quality in-

dividual treatment, illness management support is rarely available in traditional clinical

settings and FOCUS aims to provide an intervention delivery model that increases acces-

sibility, while also providing high-quality illness management strategies for schizophrenia

patients.

The FOCUS system consists of several applications that deploy adapted psychosocial

intervention techniques, targeting five domains: medication adherence, mood regulation,

sleep, social functioning, and coping with persistent hallucinations. The intention behind

the intervention framework is that clients may select the areas they would like to focus on

from a menu, which could be filled with additional content and treatment targets easily, such

as diabetes management or smoking cessation. Once FOCUS is activated on a smartphone,

clients are prompted daily to engage with the system via a notification, requesting a check-

in. Agreeing launches a brief self-assessment on the status of the client in the target domain.

If the system detects difficulties, it encourages the client to engage in self-management

strategies directly linked to the problem they endorse.

Figure 2.6: Staged development of the FOCUS mobile phone application, after [13].

19



2 Just-in-Time Adaptive Interventions

After thorough research regarding needs assessment, and subsequent intervention devel-

opment, a study with twelve participants was conducted in 2013, in order to assess whether

the intervention design and user interface were easy to use and appealing to the clients.

All participants felt confident they would be able to use the system, and the majority was

satisfied with how easy it was to use, leading the development team to state that FO-

CUS is ready for testing in real-world conditions [13]. Figure 2.6 illustrates the stages of

development for FOCUS presented by the team of developers.

MyBehavior

MyBehavior is a mobile phone application that utilises phone sensor data to design unique

recommendations for an individual, and subsequently finds activity suggestions that max-

imise chances of daily calorie burns in clients. It tracks a client’s physical activity and

location every minute, and issues suggestions once each morning. The detected activi-

ties include walking, running, driving, and being stationary. MyBehavior then analyses

the location tagged activity data to find patterns that are representative of the client’s

behaviour.

Figure 2.7: Screenshot of activity and food suggestion user interface in MyBehavior, from
[66].

20



2 Just-in-Time Adaptive Interventions

Specifically, MyBehavior creates three kinds of individualised suggestions. For stationary

behaviour, it pinpoints the location where the client is likely to be stationary and suggests

small walking breaks every hour. For walking behaviour, the app locates the different places

the client usually walks in and suggests continuing to walk in those locations. For other

behaviours (e.g., yoga class, gym exercise), the app encourages the client to keep up the

good work [66]. Additionally, MyBehavior allows clients to self-report exercise and food

intake. In order to minimise user burden, the food logging works with a crowd-sourcing

database. Figure 2.7 shows screenshots of food and activity suggestions in the MyBehavior

app.

After two iterations of improvement, a 14-week study with 16 participants was conducted

in 2015 to test whether the app had improved in efficacy, and to assess whether the app

can enable change in clients beyond the initial novelty period. During a baseline phase of

three weeks, data was logged but no suggestions were provided. For two to four subsequent

weeks (depending on the client), participants were subjected to control conditions, where

suggestions were generated randomly and data on intervention adherence was recorded.

After the control phase, participants received MyBehavior suggestions for seven to nine

weeks.

Results showed that participants reported higher actionability and relatedness, which

researchers believe to be linked to the app’s prioritisation of low effort suggestions, also

translating into increased walking behaviour, exercise, and decreased calorie intake. In

general, a significant improvement of physical activity beyond the initial novelty period

could be observed [66].

SitCoach

SitCoach is the result of a quest to create effective persuasive mobile applications aimed

at reducing sedentary behaviour, in particular to nudge office workers from their seats.

SitCoach monitors physical activity and sedentary behaviour and provides persuasive mes-

sages JIT, suggesting active breaks.

After a configured number of inactive minutes, detected by the built-in accelerometer

in a smartphone, SitCoach reminds clients to take a break by prompting a persuasive

notification. Clients can set their own goals in terms of maximum number of consecutive

sitting minutes and number of active minutes per day. The recorded data is stored for each

user, and the daily value of active minutes is shared with peer users in order to motivate

others through social comparison. Figure 2.8 shows the main screen of SitCoach.

To assess usability and user acceptance, a study was conducted in 8 office workers, who

reported the application to be a helpful tool in reducing sedentary behaviour, although it

21



2 Just-in-Time Adaptive Interventions

Figure 2.8: Main screen of the SitCoach application, from [82].

was perceived as being not very appealing. However, most reported to have little awareness

of the risks of prolonged sitting, and considered their ability to take breaks to be highly

dependent on external factors. A larger 6-week follow-up experiment with 86 participants

was administered in 2013, where data collection was moved from the phone to a computer

software detecting mouse and keyboard activity. Results showed that JIT notifications can

significantly reduce computer activity, and thus sedentary behaviour [82].

The next section highlights current challenges in the development of JITAI applications.

2.3.2 Challenges

The JITAI concept promises cost-efficient widespread illness management, and broad access

to health services. But in spite of the progress already made, see Section 2.3.1, there are

challenges to overcome regarding the development process.

Section 2.2.6 discusses aspects that should be considered during the construction (and

evaluation) phases of a JITAI, and several challenges are already addressed there, for ex-

ample the limitations of micro-randomized trials. The concept of temporal progression [57]

(i.e., identifying different timescales within which the intervention process might unfold) in

particular can be useful to organise existing evidence of causal links between factors influ-

encing the dynamics of the respective health condition, and identify directions for further

research [58].

22



2 Just-in-Time Adaptive Interventions

As discussed in Section 2.2, the development of an efficacious JITAI should be guided

by a scientific model that integrates evidence concerning both the dynamics of the health

condition, and adherence and retention to JIT interventions. However, most existing theo-

retical and empirical perspectives are not dynamic. They treat the mechanisms underlying

these phenomena as relatively stable, only allowing them to vary as a function of baseline

variables (e.g., age, biological sex) [69]. Even when existing theories acknowledge the dy-

namics behind these mechanisms, they often do not explain how and to what extent they

change over time and what support should be offered to address them accordingly.

For example, although existing theories acknowledge that emotional distress changes

over time (i.e., is dynamic) and thus needs to be monitored regularly, current theories and

models do not specify how rapidly such changes are likely to occur [73]. Even though

various interventions targeting distress exist, the implementation in a JIT format would

benefit from being informed by dynamic theories of intervention engagement or fatigue to

guide the timing, type, and amount of support provided.

Figure 2.9: A simplified illustration of Fogg’s behavior model, after [26].

However, dynamic and comprehensive models of these mechanisms are rare and incom-

plete [58]. The systematic review of JITAIs to promote physical activity by Hardeman et

al. [36] report that only five out of 14 investigated studies of JITAIs claimed a theoretical

basis. Still, behaviour theories play a colossal role in the creation of JITAIs. A popular

choice is Fogg’s behavior model [26], which is included in the mobile phone application

MyBehavior [66], amongst others [24, 68]. It is based on the idea that three elements must

be present at the same time for a behaviour to occur: sufficient motivation, ability, and

23



2 Just-in-Time Adaptive Interventions

prompt (i.e., being triggered to perform the behaviour) [27], and when a certain behaviour

does not occur, at least one of these elements is missing. Figure 2.9 illustrates a simplified

version of Fogg’s behavior model. After analysing the state-of-the-art methods for creating

JITAIs, Nahum-Shani et al. [58] postulate that more attention should be given to inter-

disciplinary approaches that facilitate the appropriate inclusion of behaviour theory into

JITAI development.

Hardeman et al. [36] state that, based on their review of JITAIs to promote physi-

cal activity, many facets of JITAI development are in need of improvement, including the

demand for incorporating behavioural psychology models. For example, there is no scien-

tifically agreed-upon definition of the JITAI concept, which makes research and comparison

with existing intervention designs difficult.

Theory suggests that JITAIs are superior to adaptive intervention designs in situations

where JIT support can be beneficial, but the potential of JITAIs can only be fully realised

when intervention suggestions are actually delivered JIT. Hardeman et al. only found one

study assessing this, during which 43% of interventions were reported not to be JIT [53].

Also, there is mixed evidence in terms of effectiveness and lack of evidence in cost-

effectiveness amongst the studies that have been conducted recently, suggesting that JITAIs

need to be further evaluated by real-world and clinical representatives concerning uptake,

reach, and impact on health inequalities, before deciding whether to adopt them in health

settings.

24



3 The Contextual Multi-Armed Bandit

Problem

The contextual multi-armed bandit (CMAB) problem can be found under several names in

literature. It is also known as the bandit problem with side-information [50], bandit problem

with side observation [85], associative reinforcement learning [42], reinforcement learning

with immediate reward [1], associative bandit problem [76], bandit problem with covariates

[72], or originally, bandit problem with a concomitant variable [91].

The term contextual bandit problem was invented in 2007 by Langford and Zhang [48],

and it became widely accepted because it is descriptive yet short [79]. It describes a

sequential decision making problem where, at each time point, a learning algorithm chooses

an action (e.g., treatment), based on the context or side information at that point, and

receives a reward that reflects the quality of the action under the current context [50].

CMAB problems provide a natural model for developing mHealth interventions: optimising

mHealth intervention delivery is the act of learning an intervention option that will result

in the best proximal outcome under given circumstances, which is the same as solving the

CMAB problem [67].

This chapter discusses the CMAB problem as a subcategory of multi-armed bandit

(MAB) problems, and explains why solving a CMAB problem is equivalent to just-in-

time adaptive intervention delivery. Subsequently, different algorithms are introduced that

potentially solve the problem. Then, an overview of current applications and future per-

spectives of MABs and CMABs in mHealth is given.

3.1 The Multi-Armed Bandit Problem

The MAB problem is described by Tewari and Murphy [79] as perhaps the simplest model

of a sequential decision making problem where one wishes to maximise the cumulative sum

of rewards received over some time horizon. Also, MAB algorithms present the simplest

way of realising reinforcement learning (RL) [15], see Section 4.3. An application working

with MABs dynamically learns and influences user behaviour by suggesting actions that

maximise the chances of achieving a pre-defined goal [66].

25



3 The Contextual Multi-Armed Bandit Problem

The classical MAB problem has its origins in game theory [83], where a player is faced

with k slot machines (so-called one-armed bandits) [8]. Each round, the player chooses

one of the k arms, and receives a reward that is random while the distribution behind it is

unknown to the player 1. The goal of the player is to maximise the total reward received over

a period of time. In order to achieve this goal, in each iteration, the player has to balance

between trying different bandits to determine the rewards they yield and playing the arms

that have previously yielded large rewards, because when an arm is pulled, and the player

is rewarded, the potential rewards of other arms are not observed [48]. Thus, it corresponds

to balancing the need to acquire more knowledge about the current environment (i.e., the

reward distributions of each of the k possible choices), and the need to optimise rewards

based on current knowledge [70].

Figure 3.1: Visualisation of the Bernoulli MAB problem, after [70].

This dilemma is called the exploration-exploitation trade-off , and it is this problem that

MAB algorithms are addressing, each algorithm in its own way. Easy examples illustrating

the trade-off in non-mathematical settings are: restaurant selection (going to a favourite

restaurant versus trying an unknown one), oil drilling (drilling at the best known location

versus trying a new site), or clinical trials (using the best known treatment versus trying a

new, experimental one) [70].

Generally, during exploration, the goal is to form unbiased samples by randomly pulling

arms to improve the accuracy of learning. During exploitation, the learning algorithm

suggests the best hypothesis learned from the samples formed in the exploration phase,

and the arm given by the best hypothesis is pulled, because the goal is to maximise the

1This setup describes a stochastic bandit. The CMAB framework permits semi-stochastic bandits and fully
adversarial bandits, which describe bandits whose rewards or contexts, or both, are chosen arbitrarily,
not adhering to a probability distribution [79], see Section 3.2. However, in this thesis, bandits are
assumed to have stochastic rewards.

26



3 The Contextual Multi-Armed Bandit Problem

immediate reward [48]. This means that neither a purely exploring nor a purely exploiting

algorithm works best [51], which is illustrated in an example in Section 3.4.1. There are

several ways in which MAB algorithms handle the exploration-exploitation trade-off, and

examples are discussed in Section 3.4. Figure 3.1 illustrates the classical MAB problem.

If the number of arms k is known, the MAB problem is called the k-armed bandit problem.

Also, pulling the arm of the i-th bandit is equal to pulling the i-th arm of a bandit with

k arms (assuming 1 ≤ i ≤ k holds). In each iteration, an agent (former player) is faced

with the same k possible choices (i.e., k arms on a bandit), each leading to a separate

random reward with unknown distribution [70]. Li et al. [51] describe the k-armed bandit

problem as a subcategory of CMAB problems in which the set of arms remains unchanged

and contains k arms for all t, and the context is assumed to be the same for all t. Since

both the set of arms and contexts are constant at every trial, they make no difference to

the bandit algorithm, and this type of bandit is referred to as context-free.

Figure 3.2: Pulling the arm of the i-th bandit is equal to pulling the i-th arm of a k-armed
bandit.

This definition will not be adopted. Even though this interpretation is perfectly feasible,

CMABs will be seen as a subcategory of MABs, and not vice versa, which seems to be the

prevalent view [16]. MAB problems are generally (or for easier handling) defined with a

fixed set of k arms at each iteration, and are thus referred to as k-armed bandits [70]. Also,

when additionally including contextual information into the MAB framework (see Section

3.2), the context is assumed to change at each iteration point.

The following framework is used to mathematically describe MABs, for use in further

evaluation. It is cited from Li et al. [51], but repeated in a similar manner in other papers

on the subject [2, 5, 14, 48, 50, 79].

Let A be the set of k arms of the bandit available to the agent at each iteration point:

A ∶= {A1, . . . ,Ak}
The reward for choosing arm at = Ai ≙ i, i ∈ {1, . . . , k}, at point t is denoted by rt,at ∈ R+0

27



3 The Contextual Multi-Armed Bandit Problem

or, for easier handling, by rt, and its (unknown) distribution by Ri. The cumulative reward

until iteration T , or total T-trial reward RWT is defined as

RWT ∶= T∑
t=1 rt.

MAB algorithms work towards finding the unknown distribution Ri for each arm. Usu-

ally, a fixed distribution underlying the process is assumed, and the MAB algorithm

searches for the unknown parameters describing this distribution [79]. Thus, in practice,

MAB algorithms use the expected reward µt for arm at = i at trial t [2]:
µt ∶= E [rt]

Similarly, the optimal expected T-trial reward µ∗T is defined as

µ∗T ∶= E [ T∑
t=1 rt,a∗t ] ,

where a∗t denotes the arm with maximum expected reward at trial t, and the subscript

“T ” for µ∗ may be omitted in case the time horizon is not relevant. The goal of a MAB

algorithm is to maximise the expected reward µt. Analogously, the algorithm can choose

to minimise the expected T-trial regret

νT ∶= E [ T∑
t=1 rt,a∗t ] −E [

T∑
t=1 rt,at] =

T∑
t=1 νt,

where νt is the expected regret at trial t [70]:

νt = E [rt,a∗t ] −E [rt,at]
The (value of the) T-trial regret defined as

RGT = T∑
t=1 rt,a∗t −

T∑
t=1 rt,at ,

which describes the (expected) difference in reward between choosing the optimal arm

a∗t (i.e., the reward that could have accumulated with prior knowledge of the problem)

and arm at (i.e., the reward actually accumulated by the MAB algorithm) [79]. MAB

algorithms can work with either reward or regret, and the choice is generally linked to the

preferred method of analysis to determine the computational effort of the algorithm. After

stating which element has been chosen, instead of specifying RWT , µ
∗
T or RGT , νT the

28



3 The Contextual Multi-Armed Bandit Problem

regarded quantity will be denoted by RT .

Algorithm 1: Multi-Armed Bandit Algorithm

Input: arms A = {1, . . . , k}, reward distributions Ri

1 for t = 1,2, . . . do
2 choose arm at ∈ A
3 receive reward rt ∼ Ri(t)
4 improve arm-selection strategy with new observation (at, rt)
5 end

Algorithm 1 shows the concept of the MAB framework in an abstract way for an open

time horizon [16, 51, 79]. Note that the subscript “i(t)” for the reward distribution Ri(t)
implies that at each t, a different arm may be chosen, and thus the index i is dependent on

the time point. In-depth information on different bandit algorithms is given in Section 3.4.

The most straightforward approach is to consider the Bernoulli k-armed bandit problem.

It is a special case of the k-armed bandit problem, where all k reward distributions are

Bernoulli distributions. The reward ri the agent receives when choosing action i is

ri = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 with probability pi

0 with probability 1 − pi , pi ∈ (0,1) ,
and parameters pi, i ∈ {1, . . . , k} are unknown to the agent [70]. By pulling an arm, the

agent can either succeed (ri = 1) with probability pi, or fail (ri = 0) with probability 1 − pi.
In some practical applications, the MAB problem can be simplified by assuming a Bernoulli

distribution instead of a more advanced one, which reduces the cumulative reward RT from

an explicit value to the number of successes after T iterations [2]:

RT = T∑
t=1 rt =

T∑
t=1{success at t}

Several MAB approaches presented below are illustrated using the Bernoulli setting,

see Section 3.4. The following section expands the classical MAB framework to include

contextual information, which will be regarded as the standard setting in this thesis.

3.2 Regarding Context in a Multi-Armed Bandit

An example for utilising the MAB framework is, as already mentioned in Section 3.1, the

exploration-exploitation trade-off problem of choosing a restaurant to go to for dinner, if

the choice is between a well-known and liked (maybe favourite) restaurant, and a new one

29



3 The Contextual Multi-Armed Bandit Problem

that has never been visited before. An agent deciding on a restaurant can pick either, based

on similar choices made in the past; however, there are factors that can aid the decision,

and may in reality substantially influence it, like geographic location, internet reviews from

other customers, the weather, the kind of food being served, etc. Considering this side

information can support the agent in making an informed decision, and, contrary to having

to purely rely on past experiences in choosing a restaurant, may improve the likelihood of

selecting the optimal scenario significantly.

Another possible field of application for MABs is matching recommended news articles

to a user’s personal interests on the internet. A large number of articles is available, to

be displayed to visitors on a website, and the goal is to maximise the click-through rate

that is generated when users click on news articles. A MAB algorithm employed to pick

the articles may go through a substantial trial-and-error phase during exploration trying

to match a visitor’s news content to their individual preferences, but considering the vast

amount of available articles, the enormous number of different visitors, and (possibly)

sparse frequency of visits per individual, this strategy does not seem profitable. In order

to increase the likelihood of a visitor clicking on an article, the implemented algorithm

may take contextual information about the visitor into account (e.g., age group, biological

sex, geographical location), which, together with accessing pooled information from visitors

with similar context, increases the probability of displaying an article that is relevant to

the visitor [51].

These simple examples emphasise how settings without any contextual information rarely

occur [48]. Considering additional information will facilitate the decision process for the

agent: for example, if the agent has to choose a sporting activity, and is able to take the

current weather conditions into account, it is capable of disregarding outdoor activities in

case the weather is bad, thus increasing the chance to recommend activities suited not just

to the client, but their context.

CMABs are first described by Woodroofe in 1979 [91], according to Rabbi et al. [67],

where the context variable is referred to as a concomitant variable. The problem is originally

formulated in a clinical trial setting, where two available treatments represent the arms of

a bandit: a standard treatment, whose statistical characteristics are known, and a new

treatment, whose characteristics are unknown [91]. Contrary to the MAB approach, before

making a decision, the agent sees a feature vector representing the context. The agent uses

this feature vector along with the feature vectors and arms played in the past, to choose

the arm to play in the current round. Over time, the agent’s aim is to gather enough

information about how the feature vectors and rewards relate to each other, so that it is

possible to predict, with some certainty, which arm is likely to give the best reward by

regarding the current feature vector [4, 16, 48].

30



3 The Contextual Multi-Armed Bandit Problem

The CMAB problem has many fields of application [15] and is often more suitable than

the MAB problem [48], see Section 3.5. Its framework is an extension of the MAB frame-

work to include a context vector.

Let A be the set of k arms available at time t, rt the reward for choosing arm at = i,

and µt the expected reward obtained at t. Depending on the implementation, RT is either

the expected T-trial reward or regret. Any contextual information at time t is stored in a

d-dimensional vector xt ∈ Rd. As already mentioned in Section 3.1, the context (or feature)

vector is the same for all arms Ai ≙ i, i ∈ {1, . . . , k} at time t, but it will change for different

t [51]. During a trial at t, before selecting an arm, the agent observes the feature vector xt.

This vector can be assumed to either be random (i.e., drawn from a distribution, stochastic

bandit), or adversarial (i.e., assumed to be chosen arbitrarily by an adversary or generated

by nature, semi-stochastic or semi-adversarial bandit). The terms “semi-stochastic” and

“semi-adversarial” emphasise that, even though the context is arbitrary, the reward is

assumed to be random with an underlying probability distribution [79].

Algorithm 2: Contextual Multi-Armed Bandit Algorithm

Input: arms A = {1, . . . , k}, reward distributions Ri

1 for t = 1,2, . . . do

2 observe context xt ∈ Rd

3 choose arm at ∈ A
4 receive reward rt ∼ Ri(t)
5 improve arm-selection strategy with new observation (xt, at, rt)
6 end

Algorithm 2 illustrates the concept of the CMAB framework [51]. As a summary of

this section, formal definitions for both the CMAB problem and the CMAB algorithm

are offered, introduced by Langford and Zhang [48], see Definitions 3.1 and 3.2. These

definitions emphasise the difference between the CMAB problem and a CMAB algorithm.

However, Langford and Zhang [48] assume a stochastic bandit, whereas this thesis focusses

on the semi-stochastic bandit setting, and, as such, the definitions have been adapted

accordingly.

Definition 3.1 (Contextual Bandit Problem). In a contextual multi-armed bandit problem,

there is a set of arms {1, . . . , k}, a context vector xt ∈ Rd, arbitrarily chosen, and distri-

butions Ri from which the reward ri for each arm i ∈ {1, . . . , k} is drawn. The problem is

a repeated game: on each round t, a sample (ri, . . . , rk) is drawn from (R1, . . . ,Rk), the
context xt is announced, and then precisely for one arm at ∈ {1, . . . , k} chosen by the player,

its reward rt is revealed.

31



3 The Contextual Multi-Armed Bandit Problem

Definition 3.2 (Contextual Bandit Algorithm). A contextual bandits algorithm deter-

mines an arm at ∈ {1, . . . , k} to pull at each time step t, based on the previous observation

sequences (x1, a1, r1) . . . (xt−1, at−1, rt−1), and the current context xt.

From now on, the CMAB framework will be regarded as the standard setting of solving

exploration-exploitation trade-off problems, and Section 3.3 explains why it is a feasible

approach for implementing decision rules in JITAI applications for mHealth and the clinical

setting.

3.3 The Contextual Multi-Armed Bandit Approach for Decision

Rules in a Clinical Setting

As mentioned in the introduction to Chapter 3, CMAB problems provide a natural model

for developing mHealth interventions. This can be attributed to the JITAI design favoured

for applications in mHealth introduced in Section 2.2. It is presented as a many-faceted

solution for problems in mHealth in Section 2.3, due to it being easily translatable into

CMAB problem components [31, 67], as explained below.

Section 3.2 introduces four main elements in a CMAB algorithm:

❼ Points in time, denoting trials t = 1,2, . . .
❼ k arms A = {A1, . . .Ak} ≙ {1, . . . , k}
❼ d-dimensional contexts (or feature vectors) xt ∈ Rd for each trial t

❼ Respective rewards rt ∼ Ri(t) at each trial t for chosen arm i

Algorithm 2 shows how these elements interact in a CMAB setting. Depending on

the chosen method of implementation, see Section 3.4, exploration and exploitation are

balanced in order to maximise the cumulative expected reward (or minimise the cumulative

expected regret). In a similar manner, the five components needed in an JITAI design are

defined in Section 2.2 [58]:

❼ Decision points

❼ Tailoring variables

❼ Intervention options

❼ Decision rules

❼ Proximal outcome

32



3 The Contextual Multi-Armed Bandit Problem

Figure 2.1 illustrates how these components interact, and Sections 2.2.1 - 2.2.5 give

detailed explanations as well as providing discussions on their application. At each decision

point the decision rules find an intervention option, based on the current values of all, or

some, tailoring variables, in order to facilitate the proximal outcome.

There are already similarities in the formulation of both concepts, and the JITAI frame-

work can easily be translated into a CMAB problem: decision points denote the points in

time at which a trial takes place, tailoring variables represent any contextual information

in the form of a feature vector, and the possible intervention options serve as the arms of a

bandit. Furthermore, reaching the proximal outcome is equal to maximising the cumulative

reward, or, in case of a Bernoulli bandit, succeeding at a trial [31, 58, 67].

Figure 3.3: Visual representation of the analogy between the elements of the CMAB ap-
proach and the components of the JITAI design.

Figure 3.3 illustrates the merging of these concepts graphically. Only the decision rules

do not have an immediate analogy. However, Section 2.2.4 states that decision rules are a

mechanism that decides on an intervention option based on the tailoring variables, making it

immanently clear that decision rules are represented by the CMAB algorithm [58]. Keeping

in mind this translation, it follows that solving a CMAB problem is equivalent to optimising

intervention delivery, which is the act of learning the intervention option that will result in

the best proximal outcome under given circumstances [67]. Figure 3.4 shows the updated

JITAI concept from Figure 2.1 with respect to CMAB design.

Figure 3.4: JITAI concept from Figure 2.1 adapted for the use of a CMAB algorithm.

33



3 The Contextual Multi-Armed Bandit Problem

Recent interest in contextual bandits has been driven to a large extent by personalisation

problems arising on the internet, see the example in Section 3.2. With the emergence of

mHealth, Tewari and Murphy [79] state that many ideas, developed to show personalised

news articles or advertisements to visitors on websites, will be found useful in personalising

mHealth interventions for clients in a particular context.

It is already common practice to use CMAB algorithms for researching personalised

adaptive interventions in mHealth, see Section 3.5. The simplest case is presented by only

considering two possible intervention options: whether to intervene, or not. Note that this

scenario requires a provide nothing option, see Section 2.2.3. For example, in an adaptive

intervention targeting physical activity, these options can be whether or not to send a

notification, encouraging exercise. Once an intervention option has been chosen, a reward

is collected, indicating to what degree the proximal outcome was accomplished, such as,

the number of steps walked in a day, or whether the recommended number of steps for that

day was achieved (in case of a Bernoulli bandit) [79].

Section 3.4 gives an overview of CMAB algorithms, where their differences, advantages,

and disadvantages are being discussed.

3.4 Contextual Multi-Armed Bandit Algorithms

This section presents three general strategies for CMAB algorithms. For simplicity, the

strategies are illustrated as solutions to the MAB problem in a Bernoulli bandit environ-

ment, with the option of being extended into a CMAB framework. Note that a comparison

of strategies only holds for a specific problem; strategies are almost impossible to compare

in general, and only their advantages and disadvantages can be discussed. The content

of this section and any subsequent subsections is cited from Rocca and Rocca [70], unless

otherwise stated.

It is a truth universally acknowledged that the selection of an algorithm depends on the

specific problem it is supposed to solve, and the CMAB approach is no exception. This

section aims to help the reader understand the choice of algorithm presented in Section

4.5, in light of the model problem, with whom the reader gets acquainted in Chapter 5.

First, the problem is formulated as a k-armed Bernoulli bandit problem. Subsequently, the

approaches are put forward and illustrated by examples, and their individual characteristics

are discussed.

Section 3.1 has briefly introduced the k-armed CMAB problem with Bernoulli bandits,

where the k reward distributions R1, . . . ,Rk for choosing arms {A1, . . . ,Ak} ≙ {1, . . . , k}
are assumed to be Bernoulli distributions Ri = Bernoulli(pi). In this case, the reward ri

34



3 The Contextual Multi-Armed Bandit Problem

the agent receives when choosing action i is

ri = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 with probability pi

0 with probability 1 − pi , pi ∈ (0,1) ,
which can be interpreted as succeeding with probability pi, and failing with probability

1−pi at a trial. However, the value of the success probability pi is not known to the agent.

Let at denote the choice of arm at trial t, then rt,at = rt denotes the reward received for

choosing at. In case of a Bernoulli bandit, the expected reward of chosen action at at time

t is the success probability for the arm:

µt = E [rt] = pat
Subsequently, the expected reward for the best arm is maxi(pi). It follows that the

expected regret νt (i.e., the difference in the expected rewards between the optimal arm,

and the chosen arm, see Section 3.1) at time t, and the expected T-trial regret νT are

νt =max
i
(pi) − pat ,

νT = T∑
t=1 νt = T ⋅max

i
(pi) − T∑

t=1pat .
In practice, two obstacles make the problem difficult to solve: the values of pi, i ∈{1, . . . , k}, are unknown, and the expected regret cannot be computed. However, these

variables are of interest in a simulation environment, where the exact values of pi, i ∈{1, . . . , k}, are known, even though they are assumed not to be, to assess the quality of a

strategy. During each iteration, a low regret νt indicates that the chosen arm is close to

the optimum, whereas a high value of νt indicates that the chosen arm is far from optimal.

Strategy Concept

e-Greedy Pick the arm assumed to be optimal with probability 1 − e,
explore a random arm with probability e

Upper Confidence Bound Pick the action with the highest upper confidence limit (i.e.,
estimate of the reward)

Thompson Sampling Pick an action randomly according to their probability to be
the best (i.e., yield the highest expected reward)

Table 3.1: Strategies used in CMAB algorithms with short descriptions.

A good strategy distinguishes itself by rapidly decreasing the regret to zero, suggesting

that the best option is identified quickly, and subsequently exploited. On the other hand,

35



3 The Contextual Multi-Armed Bandit Problem

in a poor strategy, the values of regret decrease slowly and/or do not reach zero, implying

that the best option is either identified after a long time, not identified at all, or not well

exploited. Figure 3.5 shows a sketch of possible regret curves for different strategies.

Figure 3.5: Regret curves for different strategies, schematically sketched after [70].

The following sections introduce different strategies to cope with the MAB (and CMAB)

problem. A general overview is given in Table 3.1.

3.4.1 The e-Greedy Strategy

The e-greedy strategy, also known as the ϵ-greedy strategy [51, 79], is an extension of the

greedy strategy, which will be discussed first. Following a greedy strategy means making

the decision that seems to be the best with regard to the current knowledge in each iteration

step, implying that the approach only exploits without exploring. As mentioned in Section

3.1, a purely exploiting algorithm will not deliver the desired output, because if the current

knowledge is not accurate enough, the algorithm might get stuck choosing one or several

suboptimal arms without any chance to discover better options.

This dilemma can be illustrated using a Bernoulli bandit with three armsA = {A1,A2,A3}
and (known) success probabilities

p1 = 0.3, p2 = 0.7, p3 = 0.8.
Assume that the prior knowledge of the values of pi, i ∈ {1,2,3} (i.e., the assumed

values of pi before making any observation)2 is set to 0.5. Let eti be the estimated success

2This situation corresponds to a warm start or offline learning format.

36



3 The Contextual Multi-Armed Bandit Problem

probability for each arm at time t, then it holds that

e01 = 0.5, e02 = 0.5, e03 = 0.5.
Since a Bernoulli bandit is considered, these estimates also correspond to the estimates

of the expected reward for each arm. Assuming a greedy strategy, at t = 1, the agent

chooses the arm with the highest expected reward estimate. Since all estimates have equal

value, the agent picks an arm at random, for example A2, and, if the trial is successful, the

observed reward is 1. Using this knowledge, the estimate of A2 is updated accordingly3:

e11 = e01 = 0.5, e12 = 1

2
(0.5 + 1) = 0.75, e13 = e03 = 0.5

The estimates are now no longer equal and, based on the new values, at t = 2, the agent

will choose A2 again. The problem is immanently clear: if, during successive iterations,

the estimate of the expected reward for A2 never falls below 0.5, A3 will never be chosen,

and the optimal choice will never have been explored. This scenario is likely, since the true

value of p2 is set to 0.7. If all initial estimates e0i are set to 0.1, the same observation can be

made when the agent chooses A1 at t = 1. Figure 3.6 illustrates the start of three possible

simulation outcomes with initial estimates e0i all equally set to 0.5. The agent correctly

identifies the best arm quickly in the first simulation run, whereas it can potentially get

stuck on a suboptimal arm during the other two simulations, due to lack of exploration.

Figure 3.6: Example of greedy strategy simulations in a three-armed bandit with initial
estimates set to 0.5 and true values (0.3,0.7,0.8), after [70].

Algorithm 3 shows a formal representation of the greedy strategy for a bandit with k

arms, but it does not include any methodology to obtain the initial reward estimates e0i ,

3In the context of Bernoulli bandits, using the the average over all observed rewards is sensible due to the
nature of the Bernoulli distribution.

37



3 The Contextual Multi-Armed Bandit Problem

which in practice need to be determined either through data, or theory. For example, if the

CMAB algorithm is employed to match news articles, or advertisements, on a website to a

user’s preferences, an initial selection can be curated by considering the content consump-

tion of other users with similar online profiles, capitalising on the assumption that factors

like gender, or geographic location, that substantially influence topics of interest [51].

Algorithm 3: Greedy Strategy

Input: arms A = {1, . . . , k}, initial estimates ei
1 for t = 1,2, . . . do
2 observe St ∶= {l ∣ l = argmaxi ei}
3 if ∣∣St∣∣ = 1 then
4 choose arm at = j = argmaxi ei
5 else
6 choose random arm at = j ∈ St

7 end
8 receive reward rt ∼ R(ej)
9 update ej

10 end

The e-greedy algorithm is a simple way of incorporating exploration into a decision

making process guided by a greedy strategy. At each iteration point, either the currently

optimal arm is chosen with probability 1−e (exploitation), or a random arm is picked with

probability e (exploration). The parameter e ∈ [0,1] is called the exploration parameter,

and it balances the exploration-exploitation trade-off: low values of e indicate a low degree

of exploration, and e = 0 describes a purely exploiting (greedy) strategy. Similarly, e = 1
indicates a purely exploring, or random strategy.

The e-greedy strategy can be explained using the three-armed Bernoulli bandit example

above. With the exploration parameter e set to 0.1, in 10% of iterations, the agent will

pick a random arm (any arm, which can also be the currently best one). The issue of

potentially missing the optimal arm (in an infinite time horizon) in the greedy strategy

is thus addressed. However, a new problem arises: even after the agent has identified the

optimal arm, the algorithm continues exploring, and may return to selecting worse choices.

The cost of this ever-lasting exploration can be expressed by the expected regret when

randomly picking an action, and is computed as follows:

1

3
(νp1 + νp2 + νp3) = 1

3
(ν0.3 + ν0.7 + ν0.8) = 1

3
((0.8 − 0.3) + (0.8 − 0.7) + (0.8 − 0.8)) = 0.2

Here, the subscript of the regret at time t does not denote the iteration point, but the

success probability of the respective bandit. After the optimal arm has been identified, the

38



3 The Contextual Multi-Armed Bandit Problem

algorithm produces zero regret with 90% probability, and 0.2 regret with 10% probability.

So the average regret can decrease towards 0.1×0.2 = 0.02, but will not go lower. Algorithm

4 formalises the e-greedy strategy [79]. Similar to Algorithm 3, the initial exploration phase

is missing, and, without loss of generality, the case of identical probability estimates is

omitted. Figure 3.7 compares the greedy strategy with the e-greedy strategy in terms of

average regret along iterations for the three-armed Bernoulli bandit example and different

values of e.

Algorithm 4: e-Greedy Strategy

Input: arms A = {1, . . . , k}, initial estimates ei, exploration parameter e
1 for t = 1,2, . . . do
2 set Ot = argmaxi ei
3 set Et = randomly selected arm from A
4 with probability (1 − e) choose arm at = j = Ot, else choose arm at = j = Et

5 receive reward rt ∼ R(ej)
6 update ej
7 end

To summarise, the greedy strategy’s long term regret is related to the risk of missing

the optimal arm forever, and the e-greedy strategy’s long term regret is related to the

inefficiency of exploring forever. Ideally, the algorithm should stop exploring when the

agent is certain that the optimal arm has been identified.

Figure 3.7: Comparison between greedy and e-greedy strategy for the three-armed Bernoulli
bandit and different values of e, from [70].

39



3 The Contextual Multi-Armed Bandit Problem

A possible solution is an e-greedy strategy with decaying exploration parameter e. The

three-armed Bernoulli bandit example illustrates that a high value for e is useful at the

beginning of the process, because it allows to find the optimal arm quickly, but implies a

high long-term average regret, which can be an issue depending on the problem at hand.

A low value of e takes longer to identify the optimal arm, but has lower long-term average

regret. Thus, a decaying e-greedy algorithm starts with a given value for e and progressively

reduces it during iterations at a rate that mirrors the increasing certainty that the agent has

found the best option, and exploring less and less as time goes on. However, the optimal

decay schedule is difficult to define and varies with the problem. Also, this approach

is only relevant for problems that are guaranteed to have their long-term average regret

decrease towards zero. Figure 3.8 illustrates the decaying e-greedy strategy for different

decay schedules and compares them to the non-decaying situation for exploration parameter

e = 0.2.

Figure 3.8: Decaying e-greedy strategy for different decay schedules, from [70].

Another drawback of the e-greedy strategy is the random nature of the exploration.

During an exploration step all arms can be chosen with equal possibility, regardless of any

past reward observations, so arms that are already proven to give low rewards with high

certainty are just as likely to be chosen as arms with high uncertainty, which could still lead

to higher rewards. The strategies introduced in Sections 3.4.2 and 3.4.3 resolve uncertainty

in a smarter way, by focusing the exploration on the most relevant arms that could still

prove to be optimal. Both of those strategies deal with uncertainty in an explicit way.

Optimistic initialisation is one of the implicit approaches. The idea is to start with the

most optimistic initial reward estimates, in order to ensure that at least a minimal amount

40



3 The Contextual Multi-Armed Bandit Problem

of exploration will be performed on each arm. In light of the three-armed Bernoulli bandit,

this means:

e01 = 1, e02 = 1, e03 = 1
Here, all arms are initially assumed to be optimal, and exploration is required in order

to identify the suboptimal arms.

The advantage of the e-greedy strategy lies in its adaptability and simplicity. For exam-

ple, Li et al. [51] use different versions of the e-greedy algorithm to compare the impact

of applying various CMAB algorithms on user behaviour for recommending news articles

on websites, amongst them are a segmented e-greedy algorithm, an e-greedy algorithm

with a warm start, and a disjoint e-greedy algorithm. Another algorithm working with

a greedy strategy is the epoch-greedy algorithm, which separates its iterations in epochs,

and during each epoch, a single exploration step is performed at the beginning. Once the

arm selection strategy has been updated, an exploitation phase follows, and the scenario

is repeated in each epoch [48]. The e-greedy strategy can also be implemented implicitly:

instead of fixing a value for the exploration parameter e, certain iteration steps can be

fixed as exploration rounds prior to starting the algorithm and, in each iteration, the agent

decides whether to exploit or explore by checking if the current t is an element of a set Texp
of pre-defined exploration steps. This method is formalised in the linear response bandit

algorithm provided by Tewari and Murphy [79], based on the work of Goldenshluger and

Zeevi [29].

3.4.2 The Upper Confidence Bound Strategy

The upper confidence bound (UCB) strategy differs from the e-greedy strategy in a sig-

nificant way. The e-greedy strategy introduced in Section 3.4.1 does not require explicit

modelling, or quantifying, of knowledge uncertainty. The knowledge at time t is modelled

by a point estimate, which does not reflect the uncertainty about this value. Another

approach is to explicitly model the uncertainty, for example with confidence intervals or

probability distributions, which encompasses both the current knowledge (i.e., the mean)

and the related uncertainty (i.e., the variance of the distribution, or size of the confidence

interval) to guide the exploration process. The UCB strategy and the strategy introduced

in Section 3.4.3 rely on this concept in different ways.

The idea of the UCB strategy is to substitute the probability estimates eti of the expected

reward µt (calculated as an average, see Section 3.4.1) by an upper confidence bound

for each arm. This behaviour is described as “optimism in front of uncertainty”: the

uncertainty about the expected reward of an arm is expressed as a confidence interval, and

the optimal arm is chosen “optimistically”, assuming the upper bounds of these intervals to

41



3 The Contextual Multi-Armed Bandit Problem

be the true expected rewards. The width of a confidence interval reflects the uncertainty of

the agent’s knowledge about the respective arm [7], and the agent keeps exploring arms that

have not yet been proven to yield low rewards instead of arms that produce low rewards

with high certainty.

The upper confidence limit of the expected reward can be high for two reasons: either

the confidence interval is narrow with high certainty (i.e., the mean is large), thus the

upper confidence limit is large and the arm is a good choice, or the confidence interval

is wide (i.e., the variance is large), thus having a high upper limit, which indicates much

uncertainty about the value of the expected reward [67]. Algorithm 5 formalises this idea

for a k-armed bandit. Note that the superscript “t” for the distributions refers to their

current parameters in step t. These parameters do not change during each time step, but

are only updated in case arm i is chosen. For example, if arm j is chosen for the first time

at t = 3, it holds that R0
j = R1

j = R2
j ≠ R3

j .

Algorithm 5: Upper Confidence Bound Strategy

Input: arms A = {1, . . . , k}, initial expected reward distributions R0
i

1 for t = 1,2, . . . do
2 for i = 1, . . . , k do
3 observe upper confidence limit ui for Ai

4 end
5 choose arm at = j = argmaxi ui
6 receive reward rt ∼ Rt

j(t)
7 update expected reward distribution Rt

j(t)
8 end

The UCB strategy implicitly trades off between exploration and exploitation: the agent

chooses the arm with the highest upper confidence limit. If the expected reward of that arm

has a narrow confidence interval, the observed reward is expected to be sufficiently high

and the agent has performed an exploitation step. However, if the expected reward has a

wide confidence interval and the observed reward is low, the confidence interval becomes

narrower and the upper confidence limit drops, so the agent has performed an exploration

step and eliminated a possible optimal choice. Informally speaking: if an arm is chosen

whose expected reward has a large mean, it is an exploitation step, and if an arm is chosen

whose expected reward has large variance, it is an exploration step [7]. Figure 3.9 gives a

graphical representation of exploration and exploitation in this context.

The UCB strategy can be illustrated using the three-armed Bernoulli bandit example

from Section 3.4.1. At time t, assume that the uncertainty about the expected reward of

42



3 The Contextual Multi-Armed Bandit Problem

(a) The effect of exploration on a wide con-
fidence interval.

(b) The effect of exploitation on a narrow
confidence interval.

Figure 3.9: Visual representation of exploration and exploitation in a UCB strategy.

each arm Ai ∈ A is modelled by a beta distribution Beta(αi, βi) ≙ Rt
i. Subsequently, the

upper confidence limit for the confidence interval of 80% can be computed for all arms,

which stands for the optimistic guess of the true expected reward µt. The agent then chooses

the arm with the highest upper confidence limit, for example A2, a reward is observed, and

the probability distribution Rt
2 (i.e., the parameters αi, βi of the Bernoulli distribution)

describing the uncertainty about the expected reward is updated before starting a new

iteration. The concept is graphically illustrated by Figure 3.10.

Figure 3.10: Density functions and upper confidence bounds for the three-armed Bernoulli
bandit example at 80%, after [70].

There are different ways to derive upper confidence bounds. For example, if the rewards

for actions are bounded, the Hoeffding inequality is a viable tool, because it provides a

bound on the probability that a sum of bounded independent random variables derivates

from its expected value by more than a certain amount. A more general approach equipped

43



3 The Contextual Multi-Armed Bandit Problem

to deal with unbounded variables is to model the uncertainty about the expected reward

with a probability distribution that is progressively updated using the Bayes theorem.

The Bayes theorem lies at the heart of Bayesian statistics. Mathematically, it gives an

alternate approach to calculate the conditional probability of two events A and B: let

P(A,B) denote the joint probability, that is the probability for A and B to occur, and

let P(A ∣B) denote the conditional probability for A, given B. Note that the conditional

probability is generally not symmetrical: P(A ∣B) ≠ P(B ∣A). The conditional probability

for A, given B, can be calculated using the joint probability:

P(A ∣B) = P(A,B)
P(B)

However, P(A ∣B) can also be calculated using the reverse conditional probability P(B ∣A):
P(A ∣B) = P(B ∣A) P(A)

P(B) (3.1)

Analogously, the formula for the other conditional probability is:

P(B ∣A) = P(A ∣B) P(B)
P(A)

These formulae are useful in cases when the joint probability is difficult to calculate, or the

reverse conditional probability is easily available [17]. Equation 3.1 is called either Bayesian

rule or Bayes theorem, named after Thomas Bayes, who is credited with discovering the

formula, and whose work was posthumously published in 1763 by a friend [11].

In short, the Bayes theorem gives a formula for calculating the conditional probability

without the use of joint probabilities. The terms in Equation 3.1 can be interpreted in a

particular way: generally, P(A) is referred to as the prior probability (short: prior). It gives

the probability of A before observing B. P(A ∣B) is called the posterior probability (short:

posterior) and describes the probability of A after observing B. The reverse conditional

probability P(B ∣A) is referred to as the likelihood function, or likelihood. It gives the

probability of B after observing A, and P(B) is called evidence. Equation 3.1 can thus be

restated:

Posterior = Likelihood ×Prior
Evidence

The Bayes theorem finds use in many statistical testing scenarios [17]. A simple, yet

topical example illustrates how the Bayesian framework can be applied to such a case,

before explaining why it is suitable for the UCB strategy.

During the COVID-19 pandemic, the general population has come to learn that med-

44



3 The Contextual Multi-Armed Bandit Problem

ical tests and diagnostics are not 100% accurate. Depending on the procedure behind a

COVID-19 test (PCR, antigen) there is a probability that, for example, a patient is infected

with COVID-19, but the test is unable to detect it.4 The Bayes theorem determines the

probability of this scenario: the posterior P(infected ∣ test negative) represents the proba-

bility of the investigated outcome, given by the likelihood P(test negative ∣ infected) of the
test being negative if the patient is infected, times the prior probability of the patient being

infected, over the probability of the COVID-19 test to be negative:

P(infected ∣ test negative) = P(test negative ∣ infected) P(infected)
P(test negative) (3.2)

A similar setup is useful for the UCB strategy. For any chosen arm at, let ϵ denote the

true expected reward of the arm (in contrast to the estimated reward et). The independent

rewards observed so far are denoted by r1, r2, . . . , rt−1, and the prior at time t describing the

distribution of ϵ under these observations is represented by P(ϵ ∣ r1, . . . , rt−1). The Bayes

theorem expresses the probability distribution of ϵ with respect to the previous rewards

including rt:

Theorem 3.1 (Bayes Theorem).

P (ϵ ∣ r1, . . . , rt) = P (r1, . . . , rt ∣ ϵ)P (ϵ ∣ r1, . . . , rt−1)
P (r1, . . . , rt)

Note that, compared to Equation 3.1 (or 3.2), the probability for event B is a joint

probability containing all previously received rewards. Note also that the posterior in step

t becomes the prior for step t + 1.
A Bayesian framework can be used to initialise and update probability distributions,

and the UCB strategy relies on these distributions to guide the exploration. At each

iteration t, the current distributions for all arms (i.e., the posteriors computed from the

priors and rewards already observed) are used to compute upper confidence limits. The

agent then chooses the arm at with the highest limit and receives a new reward rt for this

choice. Subsequently, the probability distribution relating to at is updated using the Bayes

theorem. Figure 3.11 illustrates a single Bayesian update with a beta distribution prior

and a Bernoulli observation in light of the formal definition of the Bayes theorem above.

Similar to the example of the greedy strategy in Figure 3.6, an example of ten steps

of Bayesian updates for one arm (Bernoulli observations) and a beta prior can be seen in

Figure 3.12 with assumed initial parameters α = 1, β = 1, initial Bernoulli reward estimate

e0 = 0.5, and true Bernoulli parameter p = 0.7.
4This corresponds to a “false negative” scenario. A “false positive” scenario is also possible.

45



3 The Contextual Multi-Armed Bandit Problem

Figure 3.11: Bayesian update rule for beta distribution prior and Bernoulli observation,
assuming success, after [70].

An important distinction must be made regarding the probability distributions manipu-

lated by the algorithm: in Section 3.4.1, the Bernoulli distribution models the randomness

of the reward. In the UCB strategy, the probability distributions model the agent’s uncer-

tainty about the expected rewards (i.e., the value of the Bernoulli distribution parameter),

and not the randomness of the rewards themselves. These distributions are expected to

narrow with time if data is stationary (i.e., no new arms emerge), regardless of the fact

that the true reward distributions can have large variance.

Despite the simple theoretical idea, several practical difficulties lie in both the Bayesian

update and the upper confidence limit computation. Depending on the problem and the

assumptions that are made, the Bayesian update can either be straightforward, for ex-

ample in case of conjugate prior and likelihood (see below), or almost intractable due to

complex computations for the denominator in the Bayesian theorem. Furthermore, once

the posterior distribution is obtained it may not be easy to compute the upper confidence

limit. An option is to sample from the distribution and estimate the upper bound using

the generated samples.

The Bayesian update rule in a UCB strategy for the three-armed Bernoulli bandit looks as

follows: for each arm Ai, the prior knowledge about its expected reward (i.e., the estimate

for pi) is represented by a beta distribution Beta(αi, βi). In short, the prior is defined over

the interval [0,1], depends on two parameters αi, βi, and can be seen as the distribution

for an unknown success probability, when a given number of successes and failures have

been observed [16]. In fact, during each iteration step the distribution is updated as

46



3 The Contextual Multi-Armed Bandit Problem

(a) Possible parameter values and observed re-
wards.

(b) Evolution of the beta distribution consid-
ering Bayesian updates.

Figure 3.12: Example of 10 iterations of Bayesian updates assuming beta priors, posteriors,
and Bernoulli observations.

Beta(Si(t), Fi(t)), with Si(t) and Fi(t) denoting the cumulative successes and failures of

arm Ai up until t, respectively [16]: the conjugacy property of the beta distribution states

that when updating this prior with an observation which follows a Bernoulli distribution,

the result is a new beta distribution whose parameters have been updated according to:

(αi, βi) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
(αi + 1, βi) for rt = 1(αi, βi + 1) for rt = 0

By initiating the parameters at t = 0 as αi = 1 and βi = 1, the beta distribution turns

into the uniform distribution on [0,1], thus making each value for pi equally likely in the

beginning [16]. In each subsequent iteration the agent chooses an arm based on the UCB

strategy (and breaking ties randomly), the reward is observed, and the beta distribution

parameters of the chosen arm are updated based on the reward.

In the appropriate setting, the UCB strategy is a powerful tool for implementing MAB

and CMAB algorithms. A popular choice is the LinUCB algorithm, first described by Li

et al. in [51]. Assuming a linear model for the expected reward (and neither Bernoulli

nor beta distributions), a confidence interval can be computed efficiently in closed form.

In case of a disjoint model, where parameters are not shared between different arms, the

expected reward of arm Ai is a linear combination of the context vector and some unknown

coefficient vector, whose values are determined either by ridge regression or least-squares

estimation. The upper confidence limit is then given by a straightforward formula before

updating the necessary auxiliary variables [67]. However, there are no known regret bounds

for LinUCB yet [79], making any theoretical analysis difficult. The algorithm SupLinUCB

47



3 The Contextual Multi-Armed Bandit Problem

Figure 3.13: UCB strategy for different upper confidence limits, from [70].

is provided by Chu et al. [21], which calls the original BaseLinUCB as a subroutine and has

a known regret bound. It is based on the work of Auer [7], who introduces the algorithms

LinRel and SupLinRel (including regret bounds), which also use the UCB strategy.

3.4.3 The Thompson Sampling Strategy

Contrary to the e-greedy strategy in Section 3.4.1, the UCB strategy in Section 3.4.2 relies

on a probabilistic representation of knowledge to guide the exploration process, and in each

iteration the agent chooses the arm with the highest upper confidence limit. The Thomp-

son Sampling (TS) strategy approaches exploration in a similar way: it also works with

knowledge uncertainty; however, in the TS strategy, the agent chooses an arm randomly

according to its probability to be the best. Thompson Sampling, also known as Bayesian

posterior sampling [16], dates back to Thompson [80] in 1933, making it one of the old-

est heuristics for MAB problems. It is also a family member of randomised probability

matching algorithms [4].

In essence, TS works with the Bayesian framework introduced in Section 3.4.2: The TS

algorithm maintains priors on the Bernoulli means ei for each arm. Due to the conjugacy

property (see Section 3.4.2), the beta distribution is the most convenient choice of priors

for Bernoulli rewards. The probability density function of the beta distribution Beta(α,β)

is

f(x;α,β) = Γ (α + β)
Γ (α)Γ (β)xα−1(1 − x)β−1,

48



3 The Contextual Multi-Armed Bandit Problem

Figure 3.14: Probability density function and mean of the beta distribution, for different
values of α, β.

and its mean is α/(α+β). It is apparent from those formulae that the higher the values

for α and β are, the tighter the concentration of the density function around the mean

becomes [2]. Figure 3.14 shows the probability density function and the mean of the beta

distribution for different values of α, β.

Instead of computing a confidence interval, the selection of an arm is defined by each

arm’s probability to be the best (i.e., to have the highest expected reward). Computing

this probability for all arms can be difficult; however, it suffices to draw a random variable

from the posterior distribution of each arm, and the arm with the largest sample value is

chosen by the agent [16, 18]. This process is strictly equivalent to directly sampling an arm

according to its probability to have the highest expected reward, so these probabilities do

not have to be computed explicitly, making TS an efficient strategy in terms of exploration

(i.e., actions with high probabilities to be optimal are chosen frequently) and exploitation

(i.e., actions with little chance to be optimal are rarely chosen).

In case of Bernoulli bandits, the TS algorithm initially assumes prior distributions

Beta(αi, βi) for each arm with initial parameters αi, βi. A practical approach is to set

αi = βi = 1, which yields the uniform distribution on the unit interval, so all values of [0,1]
are equally likely to be the estimated success probability ei for Bernoulli(ei). At time

t, random samples ei are drawn from Beta(αi + Si, βi + Fi), where Si and Fi denote the

cumulative successes and failures until t, respectively. The agent then chooses the arm with

largest sample value, observes the reward, and subsequently updates Si, or Fi, according to

the outcome of the trial. Algorithm 6 formalises the TS strategy for the k-armed Bernoulli

bandit with a beta prior [18], thus solving the example problem from Sections 3.4.1 and

49



3 The Contextual Multi-Armed Bandit Problem

Algorithm 6: Thompson Sampling Strategy

Input: arms A = {1, . . . , k}, initial prior parameters αi, βi, auxiliaries Si = Fi = 0
1 for t = 1,2, . . . do
2 for i = 1, . . . , k do
3 Draw ei according to Beta(αi + Si, βi + Fi)
4 end
5 choose arm at = j = argmaxi ei
6 receive reward rt ∼Bernoulli(ej)
7 if rt = 1 then
8 Sj = Sj + 1
9 else

10 Fj = Fj + 1
11 end

12 end

3.4.2: assuming a three-armed Bernoulli bandit, the uncertainty about the unknown values

of success probabilities pi are modelled with the beta distribution, which is updated in each

iteration with Bernoulli observations using the Bayes theorem. In each time step, random

samples θi are drawn from the beta distributions, serving as estimates for the values of

pi, i ∈ {1,2,3} (in the Bernoulli case, the pi’s are equal to the expected rewards). The agent

then chooses the arm with the highest sample value, observes the reward, and updates the

beta distribution parameters of the chosen arm.

Figure 3.15 shows two possible sampling outcomes for fixed beta distribution parameter

values α1, β1, α2, β2, α3, β3. In sampling 1, the highest sampling value is provided by the

beta distribution of A3, but its probability to be drawn is low, considering its density

function. Sampling 2 results in the agent picking A2 over A3, because the sample value

is higher, even though its probability to be drawn is lower and the sample value for A3 is

more likely to be the correct estimate for p3.

Chapelle and Li [18] show TS to be competitive with, or better than, other methods such

as UCB algorithms during an empirical evaluation of the TS strategy, proving that TS is

more robust against delayed, or batched, feedback in applications for display advertising

and news article recommendation modelled by a CMAB problem. In a thorough comparison

of TS with the best known versions of UCB algorithms, Kaufmann et al. [43] show that

TS has the lowest regret in the long run. However, the theoretical understanding of TS is

still limited. For the basic version of the MAB problem (i.e., omitting context), significant

progress was made [2, 3, 43], resulting in optimal regret bounds on the expected regret.

However, the CMAB problem does not seem easily amenable to the techniques used so

far for analysing TS for the MAB problem. Still, Agrawal and Goyal [4] provide the first

50



3 The Contextual Multi-Armed Bandit Problem

Figure 3.15: Illustration of the Thompson Sampling approach in a three-armed Bernoulli
bandit, after [70].

theoretical guarantees for a TS algorithm equipped to solve the CMAB problem, which

only hold under assumptions not easily met in a realistic setting.

With regard to incorporating a d-dimensional context vector x(t) ∈ Rd into the algorithm,

the contextual bandit setting with linear payoff functions is a commonly used approach

[4, 16, 79]. The expected reward is assumed to be a linear function of the context:

µt = E [ri(t) ∣ x(t)] = γTi x(t)
The weight vector γi associated with Ai is unknown and to be determined by the TS algo-

rithm. Instead of assuming a Bernoulli distribution, the algorithm draws its d-dimensional

samples γ̃i from multivariate Gauss distributions N(γ̂i(t), σi(t)) with mean γ̂i(t) and vari-

ance σi(t) computed from x(t):
σi(t) = v2Bi(t)
Bi(t) = Id + t−1∑

τ=1x(τ)x(τ)T
v = R√24

ϵ
d ln

1

δ

51



3 The Contextual Multi-Armed Bandit Problem

with fixed parameters R > 0, ϵ, δ ∈ (0,1], and γ̂i = B(t)−1 (∑t−1
τ=1 x(τ)r(τ)T ) [16].

The arm maximising the expected reward x(t)T γ̃i is chosen, its reward r(t) is observed,
and the distribution parameters are updated [16].

Algorithm 7 illustrates TS for the CMAB problem [4, 16]. I denotes the unit matrix,

and 0 the zero vector of dimension d (the dimension of the context vector x(t)). Note that,
in application, the reward is not generated by a distribution, but observed based on the

activity of the client. However, a distribution behind the reward is assumed, making the

bandit problem semi-adversarial or semi-stochastic due to the hypothesis that the context

vector in each time step t is not generated randomly, but adversarially. Even though the

conjugate prior for a likelihood given by the multivariate Gauss distribution is again a

multivariate Gauss distribution [4], Bernoulli rewards r(t) ∈ {0,1} may be assumed, which

translates into the outcome (i.e., success or failure) of a trial.

Algorithm 7: Thompson Sampling for the CMAB Problem

Input: arms A = {1, . . . , k}, initial parameters Bi = I, γ̂i = gi = 0, auxiliary v
1 for t = 1,2, . . . do
2 observe context x(t)
3 for i = 1, . . . , k do
4 sample γ̃i from N(γ̂i, v

2B−1i )
5 end

6 choose arm j(t) = argmaxi x(t)T γ̃i
7 receive reward r(t)
8 if rt = 1 then

9 Bj = Bj + x(t)x(t)T
10 gj = gj + x(t)r(t)
11 γ̂j = B−1j gj
12 end

13 end

The TS approach holds potential for modification into more sophisticated algorithms,

catering to different environmental circumstances. A situation that can occur easily when

working with recorded data is restricted context, for example due to technical failure. A

first step has been taken by Bouneffouf et al. [16], introducing the Thompson Sampling

with restricted context (TSRC) algorithm that exclusively uses restricted context (i.e., a

sparse context vector with a fixed number n < d or percentage of available contextual data

to be regarded), see Section 4.5. The same paper also provides a modified TSRC algorithm

called Window TSRC (WTSRC) for a non-stationary environment, where the distribution

determining the sparse vector can change over time, so instead of converging to a fixed set of

restricted context, the agent keeps looking for the optimal set. Another possible extension

52



3 The Contextual Multi-Armed Bandit Problem

is provided by Chapelle and Li [18], called optimistic Thompson Sampling, where, similar

to the optimistic approach of the UCB strategy, the modified score of the expected reward

is never smaller than the mean [55].

TS presents a very effective heuristic for addressing the exploration-exploitation trade-

off, which has been proven by extensive experimental evaluation from Chapelle and Li [18].

In its simplest form (i.e., with Bernoulli prior and beta likelihood) it does not have any

parameters to tune. TS is easy to implement, and since it is a randomised algorithm, it is

robust towards delayed feedback [43]. However, contrary to the UCB strategy, further work

has to be done in terms of theoretical analysis, including high probability regret bounds for

the MAB problem, and regret bounds for the CMAB problem [4]. Regret bounds make it

possible to rudimentarily compare algorithms and strategies independent from the problem,

and depend at least on the time horizon T of the simulation, the dimension d of the context

vector (in case context is regarded), and the probability δ ∈ (0,1) with which the regret

bound holds.

In Conclusion

If the knowledge about the reward generating process can be captured by a set of ran-

dom variables, then the UCB strategy provides a useful tool to deal with the exploration-

exploitation trade-off. The estimated means of the random variables reflect the current

knowledge of the algorithm in a condensed form, guiding further exploitation, and the

widths of the confidence bounds reflect the uncertainty of the algorithm’s knowledge, thus

guiding further exploration [7]. Since there is no need to explicitly compute probabilities,

TS is equipped to deal with a user-interfaced application better than the UCB approach.

The e-greedy strategy is similarly ill-equipped to model CMAB problems in a real-life

setting. Contrary to both the UCB and the TS approach, the algorithms of the e-greedy

strategy solve fully stochastic bandit problems, where the context vectors and reward values

are sampled from an underlying distribution, which is further from the realistic setting than

semi-stochastic algorithms [79]. Also, compared to the uncertainty-based methods, the e-

greedy strategy is less dynamic in its handling of the exploration-exploitation trade-off.

It is for these reasons that the TS strategy is adopted as the algorithm solving the

CMAB problem in this thesis. Chapter 4 classifies the TS approach in light of sequential

decision making and reinforcement learning, providing the theoretical background to the

implementation of a TS algorithm for a model problem and the subsequent simulation in

Chapters 5 and 6. To motivate the model problem and introduce the reader to progress

already made, Section 3.5 gives an overview of instances where MAB and CMAB algorithms

have already been implemented into mHealth applications.

53



3 The Contextual Multi-Armed Bandit Problem

3.5 Applications of Multi-Armed Bandits and Contextual

Multi-Armed Bandits in Mobile Health

Section 3.3 illustrates how the CMAB problem setting is a practical tool for implementing

AI designs in mHealth interventions. In the past decade significant progress has been made

in creating functional applications that work in a MAB or CMAB setting [28, 52, 61, 66,

92, 93], adapting to a client’s intervention preferences in real time. This section provides a

short overview of several reinforcement learning (RL) mobile health studies, in which RL

methods are applied in an AI setting. RL is formally introduced and discussed at length

in Section 4.3. In the meantime, RL methods may be viewed as methods similar to the

CMAB setting, where learning is achieved by feedback only. Note that the examples mostly

differ from those in Section 2.3, where AI and JITAI concepts in mHealth are discussed,

because in spite of the natural translation between the adaptive intervention design and

the CMAB approach, AI in mHealth can be achieved in different ways.

Chapter 3 repeatedly mentions the dilemma of the exploration-exploitation trade-off

and how it can be solved by MAB (and CMAB) algorithms. Balancing this trade-off is a

fundamental aspect of RL, and Liao et al. [52] provide a list of challenges that need to be

addressed before RL can be usefully deployed to adapt and optimise mHealth interventions:

(C1) The RL algorithm must adjust for longer term effects of current actions.

Due to the construction of the MAB problem, interventions are programmed to have

a positive effect on the immediate reward, implying that maximising the reward at

each decision point will lead to the maximal cumulative reward. This way, it is likely

that the intervention design will produce negative impact on the future rewards due

to engagement fatigue on the client’s side (for example, interventions are offered too

frequently, making the program a burden). An algorithm working in an mHealth

recommender system should thus be equipped to take this process into account.

(C2) The RL algorithm should learn quickly and accommodate noisy data.

Depending on the implementation, most RL algorithms require the agent to inter-

act many times with the environment before performing well. This is impractical in

mHealth applications, as users can disengage quickly. Also, because mHealth inter-

ventions are provided in uncontrolled, in situ, complex environments, both context

information as well as reward can be noisy. High noise settings typically require more

interactions with the environment to identify optimal choices, implying a trade-off

between bias and variance. This needs to be meticulously considered when designing

an RL algorithm.

54



3 The Contextual Multi-Armed Bandit Problem

(C3) The RL algorithm should accommodate some model mis-specifications and non-sta-

tionarity.

Due to the complexity of the context space and unobserved aspects of the current

context (like engagement fatigue), the mapping from context to reward is likely to

exhibit non-stationarity over long periods of time, which makes it necessary to address

this aspect during the design process of the RL algorithm.

(C4) The RL algorithm should select actions so that after the study is over, secondary data

analyses are feasible.

This is particularly important in case of experimental trials involving clinical popu-

lations, allowing multiple stakeholders to analyse the resulting data in a variety of

ways.

Four instances of MAB and CMAB approaches in mHealth are presented in the remainder

of this section. Table 3.2 gives a short overview before providing a more in-depth discussion.

Note that implemented algorithms do not simply follow either of the three strategies in

Section 3.4, but combine different aspects and approaches, made necessary by dealing

with, amongst others, the challenges listed above.

Application Description

CalFit Fitness app on the iOS platform that suggests a daily step goal calculated
by the Behaviour Analytics Algorithm, an RL algorithm from a pre-
existing weight loss model [93]

HeartSteps Mobile phone app that tracks the physical activity of clients with stage
1 hypertension blood pressure during a 90-day clinical trial via a CMAB
algorithm that uses TS [52]

MyBehavior Smartphone app that delivers personalised interventions for promoting
physical activity and dietary health as a JITAI, via a MAB algorithm
[66]

PopTherapy Mobile phone app that helps clients cope with stress and depression-
related symptoms, based on Cognitive Behavioural Theory technology,
via a CMAB algorithm [61]

Table 3.2: Short description of MAB- and CMAB-based applications in mHealth.

For PopTherapy, Paredes et al. [61] employ a CMAB algorithm combined with a UCB

approach to select an intervention amongst ten types of stress management strategies when

the participant requests an intervention in the mobile app, with the goal of maximising

stress reduction.

In MyBehavior [66], the MAB algorithm EXP3 is used to select interventions. EXP3

stands for “exponential-weight algorithm for exploration and exploitation” and is first de-

55



3 The Contextual Multi-Armed Bandit Problem

scribed by Auer et al. [9]. It is equipped to deal with fully adversarial bandits because it

does not assume any distribution behind the reward-generating scheme whatsoever, mak-

ing the algorithm a strong contender for the mHealth setting. An extension of the MyBe-

haviour app is currently being developed, called MyPersonalCoach, which uses the CMAB

approach, including context in the previous MyBehaviour setting. Notifications will be sent

to a client’s smartwatch just-in-time, encouraging habit building [65].

The app CalFit [93] works with an RL system that uses the client’s historical daily step

count data at the end of each week and estimates a dynamical system for the daily step

count, using it to infer the optimal daily step goals for the next seven days, with the goal

of maximising the the minimal number of step counts taken in the next week.

These three applications only work with data collected during an initiation phase, but

additional data (e.g., from pilot studies) is not regarded when looking for an initial esti-

mation. With regard to challenge C2, the use of pooled data from previous clients can

improve the learning process, especially at the beginning of the intervention regime. Fur-

thermore, the RL algorithms of PopTherapy and CalFit require knowledge of the correct

model for the reward function, which can be assumed to be fuzzy due to the dimension and

complexity of the context space, and potential non-stationarity mentioned in challenge C3.

Also, both algorithms base their arm selection process deterministically on history [52].

(a) Home tab in CalFit
[93].

(b) Dashboard in
HeartSteps [38].

(c) Activity sugges-
tions in MyBehav-
ior [66].

(d) Subjective stress
assessment in
PopTherapy [61].

Figure 3.16: Screenshots of different user interfaces in the mobile phone apps discussed in
Section 3.5.

Amongst these three apps, only the algorithm used in CalFit attempts to optimise reward

over a time period longer than the immediate time step. There is a bias-variance trade-off

56



3 The Contextual Multi-Armed Bandit Problem

when deciding how far into the future the RL algorithm should attempt to maximise its

reward. Only focussing on optimising the immediate reward might lead to offering too

many interventions (see challenge C1), since treatment tends to have a positive effect on

the immediate reward, and a negative effect on future rewards, leading to overall poor

performance akin to bias. However, action selection probabilities close to 0 or 1 cause high

variance in batch data analysis that uses importance weights, complicating challenge C4

[52].

The design of HeartSteps [52] stands out in comparison to the other algorithms in its

elaborateness because the designers of the algorithm address each challenge C1-C4 sepa-

rately. Having created and tested HeartSteps version 1 during a prior clinical trial, several

issues were adjusted, for example a dosage variable was introduced in order to weigh differ-

ent contexts, thus improving future rewards and meeting challenge C1. It can be concluded

that the mobile phone app HeartSteps is currently considered state of the art in adaptive

mHealth recommender systems technology. Nevertheless, future work has been proposed:

the treatment strategy is not fully personalised (i.e., separately learned for each client),

and more sophisticated measures of intervention engagement and fatigue can be used to

approximate the effect of delayed reward, while also responding more rapidly in order to

prevent premature disengagement from the recommender system.

57



4 A Choice of Thompson Sampling

Algorithm

This chapter re-introduces Thompson sampling as a reinforcement learning algorithm as

a solution to sequential decision making problems. The concept of restricted context in

the CMAB problem is discussed, which is part of the model problem in Chapter 5, and

subsequently, the TS algorithm used for the implementation and simulation of the model

problem is presented.

4.1 Markov Decision Processes

The content in this section is cited from Van Otterlo and Wiering [83], if not otherwise

stated.

There are several classes of algorithms available for solving the problem of sequential

decision making. Generally, such problems are formulated as Markov decision processes

(MDPs), which describe systems where the environment is represented by a set of states,

and actions can be performed to control those states. The goal is to regulate the system

in such a way that some pre-defined performance criterion is maximised. Van Otterlo

and Wiering state that MDPs have become the de facto standard for learning sequential

decision making, like in the CMAB problem.

Formally, the MDP framework consists of four elements:

❼ States

❼ Actions

❼ Transition between states

❼ A reward function

The states represent the basis of the environment of an MDP, and the number of states

(i.e., the cardinality of the set of states S) is generally considered to be finite. A state is

a unique characterisation of all relevant information concerning the circumstances of the

problem to be modelled. For example, the location of an element within a pre-defined

58



4 A Choice of Thompson Sampling Algorithm

space can be represented by two or three dimensions in a state vector. The set of actions

A is also assumed to be finite, and actions are called upon to control the system in all its

possible states (i.e., to move from one location to the other).

By applying action a ∈ A in state s ∈ S, the system transitions from s to a new state s′ ∈ S,
based on a probability distribution over the set of possible transitions. The probability of

switching to state s′ after performing action a in state s is defined by the transition function

T :

T ∶ S ×A × S → [0,1]
The transition function T is a probability distribution over all the possible next states:

for fixed (a, s) ∈ (A,S) it must hold that

∑
s′∈S T (s, a, s′) = 1,

as well as T (s, a, s′) ≥ 0 and T (s, a, s′) ≤ 1 for all a ∈ A, s, s′ ∈ S. The reward function

specifies rewards for performing actions, and is generally defined as

R ∶ S ×A→ R.

In an MDP, the reward function implicitly specifies the goal of the learning process and

gives directions as to which way the system ought to be controlled. Putting all four elements

together results in the formal definition of an MDP, see Definition 4.1.

Definition 4.1. A Markov decision process is a tuple (S,A,T,R) in which S is a finite set

of states, A a finite set of actions, T a transition function defined as T ∶ S ×A×S → [0,1],
and R a reward function defined as R ∶ S ×A→ R.

Note that this definition can be altered and extended within the MDP framework, which

is exceedingly flexible. For example, the reward function can also be defined as R ∶ S → R
or R ∶ S ×A × S → R.

In order to solve an MDP problem, key aspects of the solution process need to be defined

depending on the chosen method. Solving an MDP implies finding the optimal action

selection process, which is roughly described by three components: a policy , an optimality

criterion, and a value function.

Given an MDP (S,A,T,R), a policy π is a function that outputs an action a ∈ A for

each state s ∈ S:
π ∶ S → A

The policy represents the decision-making entity (i.e., the agent): from an initial state s0,

the policy π suggests an action a0 = π(s0) which is subsequently performed. A transition

59



4 A Choice of Thompson Sampling Algorithm

into state s1 is made based on the transition function T (i.e., with probability T (s0, a0, s1)),
and a reward r0 = R(s0, a0) is received. In a learning setting, the policy then updates the

parameters upon which the action decision is based before choosing another action in s1.

Figure 4.1 gives a graphical representation of this process. It demonstrates how the policy

controls the environment modelled as an MDP.

Figure 4.1: Illustration of the direct (solid line) and indirect (dashed line) influences on the
transition into a new state via a policy.

The decisions made through the policy are based on the optimality criterion. In general,

the quantification of optimality is related to gathering reward, like in the CMAB setting,

see Chapter 3. The link between optimality criteria and policies is provided by the value

function. It represents an estimation of how good it is to perform a certain action in state

s ∈ S, and the notion of “how good” is expressed in terms of the optimality criterion.

Despite obvious similarities to the CMAB setting, the next section clarifies why CMABs

differ from MDPs, while also justifying the use of typical MDP solution methods for the

CMAB problem.

4.2 Contextual Multi-Armed Bandits versus Markov Decision

Processes

Despite the MDP framework being extensive, it does not directly cater to the CMAB con-

cept, because it relies on deterministic reward functions and transition functions between

states. By adjusting formal definitions, the CMAB problem can be interpreted as an MDP:

the states in the MDP play the role of context vectors in the CMAB problem, actions cor-

respond to the arms of the bandit, and the performance criterion to be maximised is the

immediate reward.

However, some controversy remains. For example, in an MDP setting the algorithm

learns values of states, or state-action combinations, while the CMAB algorithm estimates

the values of actions1 [77]. Furthermore, the term “Markov” or “Markovian” defines a

distinct property, see Definition 4.2.

1The value of an action in the CMAB setting refers to the expected value of the reward for performing an
action, i.e. pulling an arm.

60



4 A Choice of Thompson Sampling Algorithm

Definition 4.2. A system being controlled is called Markovian if the result of an action

does not depend on the previous actions and visited states (history), but only on the current

state:

P(st+1 ∣ st, at, st−1, at−1, . . . ) = P(st+1 ∣ st, at)
Definition 4.2 implies that the CMAB problem introduced in Chapter 3 is strictly speak-

ing not Markovian, because the probability distribution for each arm is updated once the

arm has been chosen, and thus depends implicitly on the history of that arm. Literature

on this subject [77, 83] does not elaborate on whether the CMAB framework should be

considered Markovian. Still, Sutton and Barto [77] introduce the bandit setting before

moving on to the general approach of MDPs. Note that the Bayes theorem (Theorem 3.1),

on which the TS algorithm is built, explicitly depends on former values for the reward, and

thus on history, calling for a non-Markovian environment. Nevertheless, there are lines of

research that employ TS to solve MDP problems [32, 60].

The MDP concept can be adapted into more generalised approaches: Hallak et al. [35]

introduce contextual Markov decision processes, where stationary context impacts the deci-

sion making process. For example, the temporal behaviour of blood sugar levels in diabetes

patients is partially influenced by their age and biological sex. These context variables do

not change within each measurement, and can be handled accordingly within the contex-

tual MDP framework. Another extension of the Markov concept in MDPs is to consider

j-Markov models, or Markov models of the j-th order [20], where the probability distribu-

tion of arm a at t depends on the past j instances of arm choices. However, the bandit

framework requires the variable j to be dynamic and differ between arms. In cases where

the context variables may vary from measurement to measurement, Hallak et al. [35] state

that the standard approach is to incorporate them into the state space, thus creating a

larger MDP, and furthermore that the contextual MDP concept is closely related to the

CMAB framework, still implying a distinction between the two.

This thesis adopts the viewpoint that the CMAB framework is closely related to, and

slightly overlaps with, the MDP framework, and the class of algorithms chosen to solve the

CMAB problem can also solve specific MDP problems. Figure 4.2 visualises this relation-

ship. In any case, the CMAB framework requires learning-based solution methods. The

learning paradigm has an important advantage over direct programming (e.g., for robot

control) or search and planning methods (e.g., the chess program Deep Blue): it allows for

a model-free approach, relieving the designer of the system from the burden of having to

make all decisions in the design phase, as the system can cope with uncertainty, dynamic

environments, and goals specified in terms of reward measures. The problem is solved

for every state, in contrast to merely planning transitions from one state to another, and

optimal actions can be determined by interacting with the environment.

61



4 A Choice of Thompson Sampling Algorithm

4.3 Thompson Sampling as a Reinforcement Learning Algorithm

Reinforcement learning refers to a general class of algorithms in the field of machine learn-

ing that allows an agent to learn how to behave in an environment where the only feedback

is a reward signal, and the goal of the agent is to perform actions that maximise this re-

ward signal in the long run (instead of trying to finding hidden structures). Therefore,

RL is distinguished from the other two machine learning paradigms, supervised learning

(i.e., learning from a training set of labelled examples provided by a knowledgable exter-

nal supervisor), and unsupervised learning (i.e., finding structures hidden in collections of

unlabelled data), because it uniquely deals with the exploration-exploitation trade-off, as

the issue of balancing exploration and exploitation generally does not arise in supervised

or unsupervised learning [77].

Figure 4.2: Graphical representation of the relationship between CMABs and MDPs, and
the different learning paradigms solving them.

In RL, the concept of a plan2 is extended to the notion of a policy, which maps each

state to its optimal action based on some measure of optimality. RL algorithms can obtain

an optimal policy when models of the environment are not available, adding a focus on

approximation and incomplete information to a sequential decision making problem. The

absence of a model generates the need to sample from the environment in order to gather

statistical knowledge about the unknown model. Historically, RL is part of a decades-long

trend within artificial intelligence and machine learning towards greater integration with

mathematical domains like statistics and optimisation. Of all forms of machine learning,

RL is the closest thing to “natural learning” performed by animals and humans, and many

2In terms of artificial intelligence planning, a plan describes a series of actions from a starting state to a
goal state.

62



4 A Choice of Thompson Sampling Algorithm

of the core algorithms of RL were originally inspired by biological learning systems [77].

The main elements of an RL system are the agent and the environment. Figure 4.3

shows how the interaction between these two entities can take place. The distinction

between the agent and the environment is generally based on control: everything the agent

cannot control is considered part of the environment [77]. At each time instance, the agent

chooses an action based on its current state, and the perceptions the agent receives from

the environment are a new state and the reward signal.

environment You are in state 65. You have 4 possible actions.
agent I take action 2.
environment You have received a reward of 7 units. You are now in state 15. You have

2 possible actions.
agent I take action 1.
environment You have received a reward of −4 units. You are now in state 65. You

have 4 possible actions.
agent I take action 2.
environment You have received a reward of 5 units. You are now in state 44. You have

5 possible actions.⋯ ⋯
Figure 4.3: Example of an interaction between agent and environment from an RL perspec-

tive, after [83].

Many of the above aspects, like sampling from the environment and receiving a reward

signal, already identify TS as an RL algorithm. For a more detailed classification, observe

the four sub-elements of RL algorithms (beyond the agent and the environment), according

to Sutton and Barto [77]:

❼ A policy, which defines the learning agent’s way of behaving at a given time.

❼ A reward signal, which defines the goal in an RL problem (i.e., what is optimal in an

immediate sense).

❼ A value function, which indicates what is optimal in the long run.

❼ (Optionally) a model for the environment.

Note that TS does not require a model for the environment, and neither does it aim to

learn one. It is possible to use RL algorithms in model-based settings, but this approach

corresponds to planning and not decision making via a policy. In case of CMABs, learning

an environment is nonsensical because the context is adversarial, which means that no

pattern, or function, or distribution is assumed behind its generation, thus no parameter

63



4 A Choice of Thompson Sampling Algorithm

values can be learned. Instead, the chosen actions are rewarded, rather than entries into

certain states.

The value function depicts the long-term desirability of actions, contrary to rewards,

which determine the immediate intrinsic desirability of actions. In this sense, rewards are

primary, whereas values, as predictions of reward, are secondary. Generally, the aim is

to find actions that promise high values, not high rewards, because these actions obtain

the greatest amount of reward in the long run. It is more difficult to determine values

than to determine rewards, since rewards are obtained directly from the environment, and

values must be estimated (and repeatedly re-estimated) from the sequence of observations

an agent makes over time [77]. In the TS algorithm for the CMAB problem, see Algorithm

7, the value function is the function for the expected reward for arm i:

E (ri(t) ∣ x(t)) = γ̃iTx(t)
Here, γ̃i is a coefficient vector drawn from the estimated distribution for i. The reward

signal is the feedback immediately received after performing an action, which TS assumes

to be either 0 or 1:

r(t) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if action is successful

0 if action failed

To understand the policy in Algorithm 7, observe an overview of the steps taken during

each iteration t:

1. Observe context x(t)
2. Sample γ̃i from the distribution for i, for all arms

3. Choose arm j maximising γ̃i
Tx(t)

4. Receive reward r(t)
5. (If necessary) update distribution parameters

The policy is represented by Steps 2, 3 and, if performed, 5. These steps define how to

execute the arm selection and how the selection strategy is kept up-to-date. Policies are

often described as a mapping from states (i.e., context) to actions. Due to the adversarial

nature of context, a more constructive approach is to view the policy as the decision-making

rules for the agent, which work based on the feedback from actions after observing a context

vector.

Now that the TS algorithm is characterised within the RL paradigm, the description of,

or reference to, certain RL aspects can be made in the appropriate terms.

64



4 A Choice of Thompson Sampling Algorithm

The following section discusses the challenges of restricted context in CMABs, and in-

troduces the mathematical framework to handle the restricted context situation in CMAB

algorithms.

4.4 Contextual Bandits with Restricted Context

The contextual bandit with restricted context (CBRC) describes a formulation of the CMAB

model, where only a limited number of features (i.e., context elements) can be observed by

the agent at each iteration: instead of accessing x(t) ∈ Rd, the agent sees a sparse vector

xn(t) ∈ Rd of assignments to only n ≤ d features. The CBRC framework is motivated by

different problems arising in clinical trials, or JITAI recommender systems, with regard

to collecting incomplete data [16]. This section aims to explain why restricted context

ought to be a consideration in CMAB-based JITAI applications, and how to incorporate

restricted context into the CMAB setting.

4.4.1 Handling Restricted Context in a Contextual Multi-Armed Bandit

In sequential decision making, the learning algorithm must choose amongst several actions

at each time point. In the CMAB setting, those actions are associated with feature in-

formation, or context, and the reward feedback is limited to the chosen option [16]. For

example, in clinical trials, the context is represented by a patient’s medical record (e.g.,

health condition, family history, etc.), the actions correspond to the treatment options that

are being compared, and the reward represents the outcome of the proposed treatment (e.g.,

success or failure) [84], see Figure 4.4.

Figure 4.4: A clinical trial conceptualised as a CMAB algorithm, compare Figure 3.4.

Clinical trials are a convenient example for illustrating the CMAB setting, because their

purpose is to find balance in the exploration-exploitation trade-off (e.g., between a new

treatment method and a known one) [16]. Note that, upon introducing context to the

bandit setting, Woodroofe [91] motivates his extension of the classical MAB model by

65



4 A Choice of Thompson Sampling Algorithm

referring to clinical trials. However, an analysis of clinical trials by Tekin et al. [78] shows

that a doctor can only ask a patient a limited number of questions before deciding on a drug

prescription, suggesting that the choice of treatment is generally based on the most relevant

aspects of a patient’s medical history, and thus relies on restricted contextual information.

Restricted context can also occur undeliberately as a result of faulty measurement. Upon

introducing the fundamental principles of tailoring variables as a component in a JITAI,

Section 2.2.2 states that the measuring of data needs to be reliable in order to accurately

recommend interventions, otherwise the decision rules will perform little better than ran-

domly selecting actions, or worse, an adverse option may be recommended, potentially

causing the client harm. Section 2.2.2 further states that an application based on the

JITAI concept must anticipate such situations and be equipped to handle them [58].

Nahum-Shani et al. [58] recommend that developers should anticipate and plan the

functioning of the decision rules in case measurements on tailoring variables are missing, and

note that missing data can occur for various technical reasons, including data corruption

(e.g., loss of data due to problems in data storage), device detection failures (e.g., no GPS

signal) and human error (e.g., incorrect use of measurement device). Another cause can

be poor engagement on the client’s side, in which case indicators of missing data may be

employed as tailoring variables that reflect intervention fatigue, see Section 2.2.3.

Nonetheless, in order for a JITAI application to be functional as a recommender system,

the decision rules must cover situations of missing data, which means that the CMAB

algorithm, acting as decision rules, must include a mechanism to recommend appropriate

interventions despite the lack of data.

Generally, due to construction, CMAB algorithms (see Section 3.4) cannot compensate

for missing contextual data. The algorithms are designed to choose an action, thereby

recommending an intervention, and not to check whether the delivered data is feasible.

Furthermore, the problem of missing data is related to the quantification of contextual

information. For example, if weather conditions are regarded as context in a CMAB-

based JITAI, the simplest way of distinguishing “good” weather from “bad” weather is to

assign binary values, whatever the definitions of good and bad may be. The component

xweather(t) ∈ R of the context vector x(t) ∈ Rd at time t is [67]:

xweather(t) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if weather = bad
1 if weather = good

The question arises of what value to assign xweather(t) in case of missing data, because

any CMAB algorithm cannot make a decision if xweather = NaN . Here, the application

must detect the missing data, and decide how to deal with the component outside of the

66



4 A Choice of Thompson Sampling Algorithm

CMAB algorithm. Another option is to assign

xweather(t) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0 if weather = not recorded

1 if weather = bad
2 if weather = good ,

which removes the binary character from a binary situation. Furthermore, the numer-

ical value of 0 defines a new setting, in which the contextual component for weather is

nondescript.

The CBRC setting introduced by Bouneffouf et al. in 2017 [16] indicates that the re-

search into more applicable CMAB algorithms, and possible extensions, is currently in a

promising state. It enables the algorithm to disregard components of the context vector

when observing the full vector is either too expensive or impossible. Also, the agent can

only request to observe a limited number of features from the vector. However, the upper

bound (or budget) on the feature subset is fixed for all iterations, but within the budget,

the player can choose any feature subset of the given size. The problem is to select the

best feature subset so that the overall reward is maximised, which involves exploring the

feature space as well as the arm space [16]. For example, if the context vector x(t) ∈ R10 is

10-dimensional, and the CBRC budget is set to 4, then only 4 features can be observed at

each iteration. The feature vector at t, x4(t) ∈ R10, is a sparse vector with a maximum of

four components unequal to zero.

Bouneffouf et al. also propose an algorithm for solving CBRC problems, and the strategy

is displayed in Algorithm 8. First, the best subset of features is selected, the values of the

chosen elements are observed, and subsequently, the decision-making task is performed

based on the selection of the subset of features. The task of selecting a subset of features is

modelled as a combinatorial bandit , which is described in Section 4.4.2, while the subsequent

arm-selection bandit is based on the TS algorithm presented by Agrawal and Goyal [2].

Therefore, the algorithm is called Thompson sampling with restricted context (TSRC), and

is discussed at length in Section 4.5.

4.4.2 Combinatorial Bandits

The framework for combinatorial bandits is first described by Chen et al. in 2013 [19],

motivated by the fact that, in many real-world applications, the bandit problem has a

combinatorial nature, where observed rewards correspond to a function of multiple arms

instead of only one [25].

An example for the combinatorial bandit setting is an online advertising scenario, where a

website contains a set of webpages and has a set of users visiting the website. An advertiser

67



4 A Choice of Thompson Sampling Algorithm

Algorithm 8: Contextual Bandit with Restricted Context Strategy

Input: arms A = {1, . . . , k}, set C = {1, . . . , d} of feature indices, budget n
1 for t = 1,2, . . . do
2 choose subset Cn ⊆ C of features
3 observe values xn(t) of features Cn

4 choose arm a(t) = i ∈ A
5 receive reward r(t) ∼ Ri(t)
6 improve arm-selection strategy with new observation (xn(t), a(t), r(t))
7 end

places an ad on a subset of selected webpages because due to monetary constraints, only

n webpages can be selected. Each user visits a certain number of webpages, and on each

visited webpage has a click-through probability of clicking the ad on that page; however,

these probabilities are unknown to the advertiser. The advertiser repeatedly select sets of

n webpages to advertise on, observes the click-through data, and learns the click-through

probabilities, thus maximising the number of users clicking on the ad.

In a combinatorial bandit, at each iteration, a set of arms (called a super arm) is played

together, and the outcomes of all arms in the super arm are revealed. In the advertising

example above, the super arm is represented by the selection of n webpages to advertise

on. Note that the framework allows an arbitrary combination of arms into super arms. It

is possible to treat every super arm as an arm within the classical MAB framework, and

to solve the combinatorial problem with classical MAB methods. However, the number of

super arms may be exponential to the problem size due to combinatorial explosion, and

after one super arm is played, information regarding the outcomes of underlying arms is

observed, which may be shared by other arms [19].

Eeach arm i ∈ {1, . . . , k} is associated with a corresponding variable yi(t) ∈ R that indi-

cates the reward obtained when choosing arm i at time t. A constrained set of arm subsets

S ⊆ P (k), where P (k) is the power set of k, is associated with a set of variables {rM(t)}M∈S
for all t ≥ 1. The variable rM(t) ∈ R indicates the reward associated with selecting a subset

of arms (i.e., the super arm) M ∈ S, at time t, where

rM(t) = h(yi(t), i ∈M)
for some reward function h(⋅). Thus, in the combinatorial bandit setting, the agent

sequentially selects super arms M from S and observes rewards rM(t) corresponding to the

played subsets. The simplest approach for computing rM(t) is to consider the sum of the

68



4 A Choice of Thompson Sampling Algorithm

individual rewards of the arms in M :

rM(t) = h(yi(t), i ∈M) = ∑
i∈M yi(t)

The objective of the combinatorial bandit is to maximise the (joint) reward over time

[16]. A TS-based algorithm for combinatorial bandits is provided by Durand and Gagné

[25], which is designed to solve combinatorial optimisation problems, like online feature

selection, and is depicted in Algorithm 9. Here, each arm i is associated with two additional

parameters, ci(t) and si(t), whose values vary with time. The number of times i has been

selected (i.e., i ∈ M(t)) until T is denoted by ci(T ). The cumulative reward associated

with arm i until T is

si(T ) = T∑
t=11[i∈M(t)] rM(t)(t),

Algorithm 9: Thompson Sampling for Combinatorial Bandits

Input: arms A = {1, . . . , k}, initial parameter values αi, βi ∀i ∈ A, S ⊆ P (k)
Initialise: ci(0) = 0, si(0) = 0 ∀i ∈ A

1 for t = 1,2, . . . do
2 foreach i ∈ A do
3 αi(t) = αi + si(t − 1)
4 βi(t) = βi + ci(t − 1) − si(t − 1)
5 sample θi ∼Beta(αi(t), βi(t))
6 end
7 choose M(t) = argmaxM∈S∑i∈M θi
8 observe rM(t)
9 update ci(t) = ci(t − 1) + 1 for i ∈M

10 if rM(t) = 1 then
11 update si(t) = si(t − 1) + 1 for i ∈M
12 end

13 end

describing the number of successes achieved over all iterations where arm i was selected.

The beta prior thus gives an estimate of the success probability for each arm,

θi ∼Beta(αi, βi),
αi(t) = αi + si(t − 1),
βi(t) = βi + ci(t − 1) − si(t − 1),

with αi and βi denoting the initial beta distribution parameters. Due to construction,

the prior is updated to a beta posterior at the end of each time step, providing the prior

69



4 A Choice of Thompson Sampling Algorithm

for the subsequent step. Note that combinatorial feature selection has no need to take

into account contextual information, as it is itself the context for the arm-selection bandit,

and its aim is to identify the features with the highest probability to result in a successful

outcome when the agent decides on an arm.

The next section introduces TSRC, the TS algorithm solving the CBRC problem pro-

posed by Bouneffouf et al. [16], which combines the feature selection via a combinatorial

bandit with the arm selection via TS.

4.5 Thompson Sampling with Restricted Context

The content of this section is cited from Bouneffouf et al. [16], unless otherwise stated.

In the CBRC setting, like in the CMAB setting, the environment of the bandit is de-

scribed by a set of features. However, the agent can only choose a limited-size subset

of that contextual information to observe, and thus needs to explore the feature space

simultaneously to exploring the arms space in order to find the best feature subset.

The TSRC algorithm is unique in its existence as it is currently the first and only ap-

proach addressing the problem of restricted context in the CMAB setting within the bandit

algorithm itself. As stated in Section 4.4.1, restricted context may be dealt with outside the

bandit environment, for example in a JITAI application acting as a recommender system.

However, the combination of a combinatorial bandit for feature selection and a contextual

bandit for arm selection offers a solution to CBRC problems without the need for addi-

tional mechanisms. Note that both bandit settings work with TS, namely the conjugate

beta prior and Bernoulli likelihood combination, and the multivariate Gauss prior and

posterior respectively.

The TSRC algorithm is displayed in Algorithm 10. Let x(t) ∈ Rd denote the values of

the feature vector for features (C1, . . . , Cd) at time t, and let C = {1, . . . , d} be the set of

their indices. Additionally, let xn(t) denote a vector of only n ≤ d features, representing a

projection of x(t) onto the indices provided by a subset Cnof C with ∣Cn∣ = n. Formally,

the set of all such vectors is denoted by

RCn ∶= {xn(t) ∈ Rn ∣ xn(t) is a projection onto indices from Cn} .
Furthermore, consider a set of compound-function policies

Qn = ⋃
Cn⊆C {q ∶ Rd →A ∣ q(x) = πCn(f(x))} ,

70



4 A Choice of Thompson Sampling Algorithm

Algorithm 10: Thompson Sampling with Restricted Context

Input: arms A = {1, . . . , k}, feature indices C = {1, . . . , d}, budget n, constant v
Initialise: ∀i ∈ A: Bi = In, γ̂i = gi = 0n, ∀j ∈ C: S0

j = F 0
j = 1, cj = sj = 0

1 for t = 1,2, . . . , T do
2 foreach j ∈ C do
3 Sj = S0

j + sj
4 Fj = F 0

j + cj − sj
5 Sample θj ∼Beta(Sj , Fj)
6 end
7 Select Cn(t) = argmaxCn⊆C ∑Cn θj
8 Obtain features xn(t) ∈ Rn

9 foreach i ∈ A do
10 Sample γ̃i ∼N(γ̂i, v2B−1i )
11 end

12 Select m(t) = argmaxi∈A xn(t)T γ̃i
13 Observe rm(t)
14 if rm(t) = 1 then

15 Bm = Bm + xn(t)xn(t)T
16 gm = gm + xn(t)rm(t)
17 γ̂m = B−1m gm
18 ∀j ∈ Cn: sj = sj + 1
19 end
20 ∀j ∈ Cn: cj = cj + 1
21 end

where πCn describes the projection of x(t) from Rd onto RCn ,

πCn ∶ Rd → RCn ,

and the function f maps the restricted context vector to an action:

f ∶ RCn →A
Figure 4.5 shows the policy composition. The TSRC algorithm assumes that the rewards

for chosen actions are binary, ri(t) ∈ {0,1}. The objective of the bandit algorithm is to

learn a hypothesis q over T iterations, maximising the total reward.

The TSRC algorithm requires arms and the feature index set as inputs. The budget

n needs to be fixed, and a constant v is defined that influences the multivariate Gauss

distribution prior, its purpose is discussed later in this section. During the initiation phase,

the matrices Bi and the means γ̂i are set to unit matrices and 0 respectively. Auxiliary

71



4 A Choice of Thompson Sampling Algorithm

Figure 4.5: Composition of a policy q in case of restricted context.

variables gi, which aid the update of the means γ̂i, are also set to 0 for each arm. For

each feature, the initial beta distribution parameters are set to 1, which leads to a uniform

distribution in the initial likelihoods of any feature Cj to be chosen.

Let cj be the number of times the j-th feature has been selected, and sj denote the cumu-

lative reward (i.e. the successes) associated with feature Cj . At each iteration, the values

of the beta distribution parameters Sj and Fj are updated to represent the cumulative

reward (i.e., the current total number of successes sj) and failures (i.e., cj −sj) respectively,
see Steps 3 and 4 of Algorithm 10. Subsequently, the success probability θj is sampled from

the corresponding beta distribution for each feature Cj in Step 5. In Step 7, the subset

Cn is selected, which maximises the sum of those parameters. Note that no combinatorial

search is required for this step. Since the individual rewards θj are non-negative, the set

Cn of arms with the n highest individual rewards can be chosen.

Now that the best feature subset Cn is chosen, the algorithm switches to the CMAB

setting. First, the restricted feature vector xn(t) is observed before sampling γ̃i from the

multivariate Gauss distribution N(γ̂i, v2B−1i ), where
γ̂i = Bi(t)−1 (t−1∑

τ=1xn(τ)rm(t)) ,
Bi(t) = In + t−1∑

τ=1xn(τ)xn(τ)T .
Here, rm(t) denotes the reward for choosing arm m(t), which is either 1 or 0. The

expected reward is assumed to be a linear function of the restricted context,

E [ri(t) ∣ xn(t)] = xn(t)T γ̃i,
and the arm m(t) that maximises the expected reward is selected, see Step 12. Then, the

relevant parameters are updated. Note that cj is updated every time feature Cj is chosen,

but sj is only updated if the reward rm(t) yields success.

72



4 A Choice of Thompson Sampling Algorithm

The additional factor v parametrises the algorithm:

v ∶= R√24

ϵ
n ln(1

δ
),

with ϵ ∈ (0,1), δ ∈ (0,1), and R ≥ 0. These parameters stem from assumptions made to

obtain a regret bound of

O
⎛⎝n
√

T 1+ϵ ln(K)
ϵ

(ln(T ) ln(1
δ
))⎞⎠ ,

given by Agrawal and Goyal [4], who prove a high probability regret bound for their

TS algorithm for the CMAB problem with linear pay-off functions and multivariate Gauss

prior, thereby providing the first theoretical guarantees for the contextual version of TS.

Note that the TSRC algorithm assumes a stationary environment, that is, the probability

distributions are considered fixed, and the objective is to identify a subset of features

allowing for the optimal context-to-arm mapping.

During empirical evaluation, the performance of the TSRC algorithm is examined and

compared to other methods, which are listed in Table 4.1, in terms of accuracy in classifying

instances of large datasets. When context is limited, the TSRC algorithm shows superior

performance compared to other algorithmic solutions for restricted context (i.e., Random-

EI and Random-fix). In fact, the obtained mean error rates suggests that using a fixed

randomly selected feature subset (i.e., Random-fix, 49.01%) may be a better strategy than

not considering context at all (i.e., MAB, 57.98%), and that disregarding context may be

a better approach than randomly changing the choice of the feature at each iteration (i.e.,

Random-EI, 61.18%) [16].

Name Description

MAB The algorithm is the standard TS approach to the non-contextual MAB
setting, see Algorithm 6

Fullfeatures The algorithm depicts the TS algorithm for the CMAB setting with the
full set of features, see Algorithm 7

Random-EI The algorithm selects a random subset of features of specified size n at
each iteration (thus “EI”) and invokes TS for CMABs

Random-fix The algorithm invokes TS for CMABs on a random subset of n features,
but the subset is selected once, prior to seeing any data samples, and
remains fixed

Table 4.1: List and short descriptions of algorithms tested against TSRC, from [16].

The closer the budget n is to the full feature setting, the better the performance of the

73



4 A Choice of Thompson Sampling Algorithm

TSRC algorithm is compared to the full feature TS algorithm. Note that, at 25% sparsity

(i.e., when selecting 75% of available features each round), the TSRC algorithm has been

found to perform almost as well as the Fullfeatures algorithm, which implies that, at this

sparsity level, the TSRC algorithm is able to select an optimal feature subset.

An example illustrates how the feature selection process influences the arm selection

bandit algorithm. Let there be three possible features {C1, C2, C3} to select, so C = {1,2,3},
and let n = 2 (i.e., two out of three features are chosen each round). Thus, at time t, C2(t)
may be

C2(t) = {1,2} , or C2(t) = {1,3} , or C2(t) = {2,3} .
Let i be a fixed arm, and Bi(0) = I2. Step 15 of Algorithm 10 shows the update for

Bi(t):
Bi(t) = Bi(t − 1) + x2(t)x2(t)T

During each step, the chosen subset of features x2(t) influences the matrix update, which

in turn influences the parameters for the multivariate Gauss distribution, see Steps 15 to

17. Depending on the choice of features, x2(t)x2(t)T can take three shapes:

x2(t)x2(t)T = ⎛⎝Ci(t)Ci(t) Ci(t)Cj(t)
Cj(t)Ci(t) Cj(t)Cj(t)⎞⎠ , i, j ∈ {1,2} ∨ {1,3} ∨ {2,3} .

If, for example, at time t, C2(t) = {1,2} and at time t + 1, C2(t + 1) = {2,3}, the update

for Bi(t + 1) is:
Bi(t + 1) = Bi(t − 1) + ⎛⎝C1(t)C1(t) C1(t)C2(t)

C2(t)C1(t) C2(t)C2(t)⎞⎠ + ⎛⎝C2(t)C2(t) C2(t)C3(t)
C3(t)C2(t) C3(t)C3(t)⎞⎠

This shifting of context elements within the update matrix introduces a fuzziness that

is not observed for the TS algorithm with the full feature set, see Algorithm 7, where the

context elements have their fixed place in x(t)x(t)T :
x(t)x(t)T = ⎛⎜⎜⎜⎝

C1(t)C1(t) C1(t)C2(t) C1(t)C3(t)
C2(t)C1(t) C2(t)C2(t) C2(t)C3(t)
C3(t)C1(t) C3(t)C2(t) C3(t)C3(t)

⎞⎟⎟⎟⎠
In contrast, x2(t)x2(t)T is more variable, depending on the choice of feature subset:

x2(t)x2(t)T = ⎛⎝C1(t)C1(t) ∨ C2(t)C2(t) ∗∗ C2(t)C2(t) ∨ C3(t)C3(t)⎞⎠

74



4 A Choice of Thompson Sampling Algorithm

If the pool of features is extended by one (i.e., C = {C1, C2, C3, C4}), but the budget is

kept at n = 2, the options for elements in matrix x2(t)x2(t)T also expand:

x2(t)x2(t)T = ⎛⎝Ci(t)Ci(t) Ci(t)Cj(t)
Cj(t)Ci(t) Cj(t)Cj(t)⎞⎠ , i, j ∈ {1,2}∨{1,3}∨{1,4}∨{2,3}∨{2,4}∨{3,4}

In case of d = 3 and n = 2, the level of sparsity is at 33%, whereas d = 4 and n = 2

denotes 50% sparsity and indicates more fuzziness in the matrix update, which influences

the covariance matrix and the mean for the multivariate Gauss distribution in Step 10.

It can be deduced that this fuzziness is responsible for Random-EI performing generally

worse in the empirical study by Bouneffouf et al. [16] compared to both Random-fix and

TSRC in cases of restricted context.

75



5 Methods of Implementation

This chapter describes in detail the structure of a simple model JITAI, the strategy for

modelling different client responses, and the implementation of the TSRC algorithm (Al-

gorithm 10) as a decision rule for the model JITAI.

First, the model JITAI is introduced, and its components are identified according to

the definitions in Chapter 2. After explaining the construction of the model clients, the

implementation of the TSRC algorithm and its peripheral files inMatlab is outlined, which

includes implementation trees as a graphical representation of the code’s architecture.

The implementation of the code is executed in Matlab, version R2020b, with a license

for academic use issued by Technische Universität Wien, on a PC running 64-bit Windows

10 Enterprise. Matlab has proven to be a reliable program that offers practical solutions

for constructing easy-to-use scripts, and has many plot options available in order to present

a variety of simulation results in a comprehensive manner.

5.1 The Model Just-In-Time Adaptive Intervention

To investigate whether the TSRC algorithm is feasible as a decision rule within the JI-

TAI setting, a model JITAI must be constructed with which to perform the simulation

experiments. The design of such a model ought to be affected by the limitations of the

consecutive simulation and its results. This means that the JITAI components must be

chosen with regard to what the simulation results can be expected to display clearly. For

example, if an intervention option is feasible in a real-life setting, but the simulation is

not assumed to portray explicitly either merits or disadvantages of choosing that option, it

ought to be omitted during the design process. Thus, each component of the model JITAI

has been chosen with the aim to obtain distinct simulation results, which are expected to

be interpretable in a straight-forward way.

The general aim of the model JITAI is to support habit building in the activity domain,

sharing a resemblance with the existing JITAI applications HeartSteps and MyBehavior,

see Section 3.5. However, neither of those applications are equipped to deal with missing

data within their decision rules, even though HeartSteps is designed to include the delayed

effect of treatment, which is modelled as an MDP [52]. Note that this thesis does not claim

76



5 Methods of Implementation

any validity of the JITAI design towards potential benefits to a health issue. It merely

aims to aid the understanding of the underlying processes when employing the TSRC

algorithm as a decision rule, and presents possible solutions to general issues concerning

JITAI construction and policy implementation.

The assumed setup is as follows. The client is equipped with a mobile fitness tracker

(ideally, a smart watch) and the JITAI app on a smartphone. The model JITAI provides

an activity suggestion once per day, and the fitness tracker reports whether or not the

client has adhered to the suggestion to the JITAI. A possible reason for employing the

model JITAI can be habit building towards a more active lifestyle for clients who are at

risk of, or recovering from, cardiovascular disease, which might include overweight, obesity,

or diseases related to these issues [90].

The model JITAI considers four tailoring variables, or features, for decision making: the

weather, the client’s availability, their motivation, and their fitness level. Each of these are

quantifiable in a real-life setting: weather data, paired with the client’s location, is available

to the JITAI over the internet. The client’s availability may be measured by registering

the screen time of their smartphone, and their fitness level can be assessed in different

ways, either via the body-mass index (BMI), or by surveying the resting heart rate with

the mobile fitness tracker. The client’s motivation requires active assessment, for example,

via a notification on the smartphone that asks the client to indicate their willingness for

physical activity on a sliding scale.

Figure 5.1: Sliding scale for assessing a client’s motivation, and normalisation of the value.

As a result of the peculiarity of disregarding a certain number of features in the TSRC

algorithm, see Section 4.5, the tailoring variables must be normalised, and without loss

of generality their values lie in the unit interval [0,1]. Due to the different natures of

the features, normalising presents an obstacle in a real-life setting, but solutions can be

found. For example, the weather can be normalised within the frame of the past 365 days

with regard to the temperature and precipitation forecast of the day, see Section 5.3, and

the motivation value, to which the client fixes the slider each morning, can be assumed

77



5 Methods of Implementation

to be a number between 0 and 1, see Figure 5.1. Also, within each feature, 1 indicates

“good”, whereas 0 indicates “bad”. For example, the greater the value for availability, the

more free time the client has to spend on physical activity. Note that the weather feature

does not simply equal the measured maximum temperature, but a combination of what

makes weather data interpretable as “good” for outdoor activities. Rain or snow, as well

as extreme heat or cold, are seen as unpractical, and a combination of different kinds of

weather data needs to be considered in order to pass judgement. Also note that the fitness

level of a client is not assumed to be static, but to vary slightly within a certain interval

corresponding to the daily physical constitution of the client, for example due to fatigue or

exhaustion.

There are six intervention options available to the JITAI, which have the potential to

respond uniquely to the values of the tailoring variables:

❼ Low intensity indoor training

❼ Low intensity outdoor training

❼ Medium intensity indoor training

❼ Medium intensity outdoor training

❼ High intensity indoor training

❼ High intensity outdoor training

Figure 5.2: Possible influence pattern on the intervention options. Darker areas represent
high probabilities of activity acceptance when feature values are high.

The differentiation between indoor and outdoor training appeals to the weather feature.

The levels of training intensity directly relate to a client’s fitness and their availability, but

78



5 Methods of Implementation

in reverse proportionality, which is preceded by the assumption that low intensity training

takes longer (i.e., taking a walk), compared to high intensity training, which requires a

higher level of fitness, but is more concise regarding time. The motivation feature may

indicate greater motivation for certain activities compared to others depending on the

client, or can be modelled in a more complex way, for example, by depending on the

weather. Figure 5.2 illustrates these general assumptions.

At each decision point, a fixed number n < 4 of tailoring variables is considered by the

TSRC algorithm acting as decision rules. In the JITAI context, successfully performing the

suggested activity is the proximal outcome, whereas a distal outcome may be to improve

the fitness level, or lower the resting heart rate. Table 5.1 provides an overview of the

model JITAI’s elements, and Figure 5.3 illustrates how the model JITAI is working along

a timeline.

JITAI Elements Description

Decision points Once per day, in the morning (e.g., at 7 a.m.)

Tailoring variables Weather, fitness, availability, motivation

Intervention options Low intensity indoor/outdoor, medium intensity indoor/outdoor,
high intensity indoor/outdoor

Decision rules TSRC algorithm (Algorithm 10)

Proximal outcome Achieving the daily activity goal (i.e., performing the suggested
activity)

Distal outcome Improving the individual fitness, or lowering the BMI, or lowering
the resting heart rate

Table 5.1: Summary of the JITAI elements of the model JITAI.

Note that there are many other aspects in a working JITAI that have been omitted

for simplicity’s sake that require consideration in a real-life setting. For example, the

individual working schedules of clients ought to be taken into consideration, so the period

of time when they are unreceptive to the chosen intervention option varies from client to

client. A working JITAI must address this issue, possibly by letting the client choose the

point in time at which the daily suggestion is presented in order to maximise convenience,

and thus effectiveness of suggestion delivery. Furthermore, intervention engagement and

fatigue are not considered by the model JITAI, and are subsequently disregarded when

modelling the client.

The next section explains how clients are modelled, and how their responses are varied

in different simulations.

79



5 Methods of Implementation

Figure 5.3: The model JITAI working along a timeline of 24h observation periods, showing
both cases of detecting and not detecting the suggested activity.

5.2 Modelling the Client

To verify whether the TSRC algorithm delivers the expected results, each of the four fea-

tures is regarded separately, because in a real-life setting each client is disposed individually

towards the features and their connections to the intervention options. By isolating single

features, the response of the TSRC algorithm can be analysed with the least amount of

noise. This means modelling a client whose attitude towards the activity suggestions de-

pends only on the value of that feature. For example, when isolating the weather feature,

a client is modelled who only considers the weather data in terms of deciding whether or

not to accept the intervention option.

Different clients are created by implementing them as particular classes in Matlab,

because the class setting, which consists of properties and methods that can be called upon

in functions and plots, has proven to be most convenient. All client classes share the same

properties, which are listed Table 5.2. The classes also share the same methods, that is,

each class has three methods whose names are identical between classes, and on which the

TSRC algorithm calls during calculations. However, the definitions of these methods differ,

resulting in different client responses.

The first method client.initiation(T) is identical between clients and initiates a

client’s empty properties f ,m,a,r, as zero vectors, and the default weather value for all

T days as 0.5. Note that T gives the number of days the simulation will go through (i.e.,

the simulation horizon). The initiation method is necessary because the properties in the

classdef file cannot access variables from the workspace, namely T , so the simulation

horizon cannot be altered dynamically. By using an initiation method, T can be given to

the method as an input, and the size of the relevant properties can change for different

simulation horizons.

During each iteration t ≤ T of the TSRC algorithm, the client’s feature data is generated

80



5 Methods of Implementation

Properties Description

f Vector of length T , which holds the fitness level of the client on each day.
Default value: empty

m Vector of length T , which holds the client’s motivation on each day. De-
fault value: empty

a Vector of length T , which holds the client’s availability on each day. De-
fault value: empty

w Vector of length T , which holds the normalised weather data on each day.
Default value: empty

r Vector of length T , which holds the client’s response to the chosen action
suggestion of the day, either 0 or 1. Default value: empty

avWE Base value for availability during the weekend. Default value: 0.5

varWE Maximum interval for varying availability during the weekend. Default
value: 0.5

avWD Base value for availability on weekdays. Default value: 0.5

varWD Maximum interval for varying availability on weekdays. Default value:
0.5

avF Base value for fitness. Default value: 0.5

varF Maximum interval for varying fitness. Default value: 0.5

avM Base value for motivation. Default value: 0.5

varM Maximum interval for varying motivation. Default value: 0.5

f∗ Threshold that must be exceeded for fitness value to improve. Default
value: 0.5

Table 5.2: Properties and their descriptions of the Matlab classes for all clients.

for that day, filling (or overwriting) ft, mt, at, and wt, and saving the client’s response

to the suggested activity in rt. For this, the TSRC algorithm calls on the class method

client.singleStepClientDataGenerator(t), which generates the feature values and de-

livers them to the algorithm. In the case of the motivation feature, a number within the

interval (avM − varM , avM + varM) is created via the following method:

mt = avM ± z ⋅ varM ,

where z is a random number between 0 and 1, generated by the Matlab function rand()

which samples from the uniform distribution between 0 and 1, and the sign is determined

randomly. If the generated value for mt exits the unit interval it is corrected to the nearest

interval border:

mt > 1 ⇒ mt = 1,
mt < 0 ⇒ mt = 0

81



5 Methods of Implementation

Note that, when investigating different motivation patterns, this formula may be varied

between clients. The same calculation and, if necessary, correction is done for the client’s

availability at. However, the client data generator distinguishes between weekdays and

weekends. If mod (t,7) = 6 or mod (t,7) = 0 (i.e., if it is assumed to be Saturday or

Sunday), at is computed using the weekend base value and interval border:

at = avWE ± z ⋅ varWE

On weekdays, at is calculated using the weekday availability parameters:

at = avWD ± z ⋅ varWD

Again, z is given by the function rand() and the sign is chosen randomly.

The client’s fitness ft is generated using the same pattern as the motivation feature,

including an additional aspect. Under the assumption that regular exercise improves the

client’s fitness level, a fitness threshold value f∗ is used to depict the client’s personal fitness

improvement: if the client has exceeded their personal fitness threshold over the past week

(i.e., if the client has accepted the offered interventions, thus exercising more than f∗
times during the previous week), the baseline fitness avF improves by 5% on the following

Monday, and the maximum interval for varying the fitness value declines by 5%. Note that

a decline in the client’s fitness is not considered in the model, but the implementation can

be made analogously by considering a “laziness threshold”, where the base fitness level

declines and the variation interval increases by a certain percentage if the client has not

exercised often enough during the previous week.

Also note that feasible weather data is not generated by a class method, but via a

separate function weatherGenerator.m, see Section 5.3, because the weather depends on

the client implicitly, through their location. The weather generation function is run by the

script after the client has been initialised, and the resulting vector of length T overwrites

the default weather data from the initiation method before running the TSRC algorithm.

The third class method client.clientResponseGenerator(t,k) is also accessed by the

TSRC algorithm, and it generates the client’s response to the intervention options in step

t. Here, the feature data is combined into a formula for each intervention option, resulting

again in a value between 0 and 1. These formulae differ between clients, and reflect their

predisposition towards the activity suggestions. For example, when isolating the weather

feature, the response of a client who prefers outdoor activities when the weather is good,

is 1 −wt for indoor activities (i.e., the worse the weather, the greater the willingness to

train indoors), and wt for outdoor activities (i.e., the better the weather, the greater the

willingness to train outdoors).

82



5 Methods of Implementation

The resulting values, depicted by lI(t), lO(t), for low intensity training indoors and out-

doors, respectively, mI(t), mO(t), for medium intensity training, and hI(t), hO(t), for high
intensity training, provide the success probabilities for six separate Bernoulli distributions,

one for each intervention option. The client response generator then draws from these

distributions and returns a six-dimensional vector x(t) = (x1(t), . . . , x6(t)),
xi(t) = 0 ∨ xi(t) = 1 ∀ i ∈ {1, . . . ,6},

whose entries correspond to the success or failure of the random draw for each activity.

For the isolated weather feature, this equals a response vector x(t),
x1(t) ∼Bernoulli(lI(t)), lI(t) = 1 −wt,

x2(t) ∼Bernoulli(lO(t)), lO(t) =wt,

x3(t) ∼Bernoulli(mI(t)), mI(t) = 1 −wt,

x4(t) ∼Bernoulli(mO(t)), mO(t) =wt,

x5(t) ∼Bernoulli(hI(t)), hI(t) = 1 −wt,

x6(t) ∼Bernoulli(hO(t)), hO(t) =wt.

Drawing from a Bernoulli distribution naturally imitates the behaviour of the client con-

cerning daily activity suggestions. The formulae corresponding to the intervention options

are designed in such a way that higher values correspond to greater eagerness for perform-

ing the action, but even if the values are sufficiently high, the client might still not exercise

because of their daily constitution (e.g., having a headache), or short-term plan changes,

or simply forgetting.

Figure 5.4: Implementation tree illustrating the Matlab class properties (blue) and meth-
ods (purple) for clients.

83



5 Methods of Implementation

Class Names Description

clientAvailability1 Availability-sensitive client who decides based on the values of
at, preferring low and medium intensity training when avail-
ability is high, and high intensity training when availability is
low

clientAvailability2 Availability-insensitive client who decides based on ft, mt, wt

clientFitness1 Fitness-sensitive client who decides based on ft, preferring low
intensity training when fitness is low, and medium and high
intensity training when fitness is high

clientFintess2 Fitness-insensitive client who decides based on at, mt, wt

clientMotivation1 Motivation-sensitive client who decides based on mt, and
whose motivation is higher for three of the interventions

clientMotivation2 Motivation-sensitive client who decides based on mt, and
whose motivation is higher for the three other interventions,
complementary to clientMotivation1

clientMotivation3 Motivation-sensitive client who is motivated for the same three
interventions as clientMotivation1, but whose motivation
depends linearly, but non-continuously on the weather, i.e.,
mt is higher when wt is high, and lower when wt is low

clientMotivation4 Motivation-sensitive client who is motivated for the same three
interventions as clientMotivation3, but whose motivation
depends linearly, but non-continuously on the weather

clientWeather1 Weather-sensitive client who decides based on wt, preferring
outdoor training when the weather is good, and indoor training
when the weather is bad

clientWeather2 Weather-insensitive client who decides based on at, ft, mt

Table 5.3: List of all client Matlab classes used in simulations.

The composition of specific clients is explained with different simulation setups in Chap-

ter 6. Table 5.3 displays the names of the client classes used in simulation, and a short

description of their specification, and Figure 5.4 gives the implementation tree of the client

classes. The next section explains the architecture of the Matlab code, and elaborates on

the secondary files necessary for simulating the use of the model JITAI by a client.

5.3 The Code Architecture

The Matlab code is targeted at providing viable simulation results. In terms of isolating

singular features, each simulation setup is depicted in its own Matlab script, which is

divided into sections that can be run with different setups in order to progress through the

84



5 Methods of Implementation

simulation. All scripts share several functions, such as the implementation of the TSRC

algorithm, as well as the weather generator and plotting functions; they follow the same

structure which is depicted below.

The first section is comprised of the initiation phase. Here, the simulation horizon T ,

the number of intervention options k, the number of features d, and the budget for the

restricted context n are defined. Since performing Monte Carlo simulations is necessary

due to the simulation setup, the number of Monte Carlo simulation runs s is fixed, as well

as v,

v = R√24

ϵ
n ln(1

δ
),

for ϵ, δ ∈ (0,1), and R ≥ 0. Note that v is part of the covariance matrix in the multivariate

Gauss distribution in Algorithm 10, see Section 4.5. The parameter α is also defined, which

determines the size of the confidence interval for the resulting averaged values of the Monte

Carlo simulation.

The second section contains the setup for a single simulation run with a generated client,

to which the TSRC algorithm is then applied. The client is initialised by assigning it

a client class, and the initiation method is used to preallocate the empty properties as

vectors sized according to the simulation horizon. If needed, the weather generator function

weatherGenerator.m subsequently generates a T -dimensional array of weather data, which

overwrites the initiated default data for client.weather. The client’s properties are then

displayed in the command window.

5.3.1 The Weather Generator Function weatherGenerator.m

The weather generator function generates different weather scenarios for the simulation

scripts, and requires the simulation horizon T and a weather scenario specification as

inputs. There are four available options, one of which must be specified as a string in the

function header: good sets wt to 0.9 for all t ≤ T , indicating T days of excellent weather,

bad sets wt to 0.1 for T days of dreadful weather, yearSine simulates changing weather

conditions over the period of a year with the help of a sine function, and year2009 provides

normalised weather data from 2009 for a maximum of T = 365 days.

The weather data given by the sine function follows the idea that weather (for outdoor

sporting activities) is best in spring and autumn, and, due to excessive heat or cold, worst

in summer and winter. Therefore, the absolute value of a sine function that stretches its

period length over 365 days imitates these conditions in an idealised way, see Figure 5.5.

The normalised weather data from 2009 is sourced from Nemec et al. [59], who ho-

mogenised weather data from Austrian weather stations per diem between 1948 and 2009,

85



5 Methods of Implementation

Figure 5.5: Illustration of the idealised weather data for one year via the sine function.

in order to analyse the resulting data sets in the light of climate change signals, and who

have made their homogenised data freely available for academic research purposes.

The daily values for maximum temperature, minimum temperature, and precipitation,

recorded by the weather station at Salzburg airport throughout 2009, are read into the

workspace via the function weatherNormalisation2009.m from text files, and three arrays

of length T are created, tmax, tmin, and p, which contain the data values. Each vector is

then normalised within itself to obtain tNmax, t
N
min, and pN , for example:

pNt = pt −min{pt ∣ t ∈ τ}
max{pt ∣ t ∈ τ} −min{pt ∣ t ∈ τ} ∀ t ∈ τ = {1, . . . , T}

A comprehensive normalised weather vector w is then obtained by taking the average of

tNmax, t
N
min, and pN , each day,

wt = tNmaxt
+ tNmint

+ pNt
3

∀ t ∈ τ = {1, . . . , T},
since empirical research has proven that the average of the normalised vectors best rep-

resents the different weather conditions throughout the year.

Note that taking the additive inverse of the precipitation values (i.e., 1− pNt ) is more co-

herent from a model perspective, because less precipitation generally implies better weather

conditions. However, due to the nature of the normalisation formula, the shape of the data

curve is barely altered when changing pNt to 1−pNt in the equation above. The data points

are mainly pushed higher, which is expected to yield less explicit simulation outcomes.

Note also that the data extraction can be altered to extract data from any other weather

86



5 Methods of Implementation

Figure 5.6: Illustration of the normalised weather data for 2009.

station, or any other year, by adjusting the detection markers and text files in the weather

normalisation function. Figure 5.6 shows the normalised weather data for 2009. The re-

sulting data does not mirror the general form of the idealised year, but shows that the

weather conditions for outdoor activities are better in summer, and worse in winter.

Figure 5.7: Implementation tree of weatherGenerator.m, showing the functions (yellow)
and text files (brown) involved.

Figure 5.7 shows the implementation tree of the weather generator function, including

the source files from which the normalised weather data from 2009 is taken.

5.3.2 The Function TSRC.m

After the weather data is generated and saved to the weather feature in the client’s prop-

erties, the TSRC algorithm is run once with the provided data in order to test whether the

simulation setup is functional.

87



5 Methods of Implementation

The algorithm is implemented as function TSRC.m and follows the steps specified in

Algorithm 10. The client object is needed as input, as well as T , the number of intervention

options k, the number of features d, the feature budget n, and the value v. The option of

passing a seed value to the function is available in order to obtain reproducible simulation

results, but if no seed is needed, an empty array should be given as input parameter instead.

The function is also equipped for simulations with missing data (i.e., imitating the case

when feature data cannot be accessed by the JITAI, for example due to technical failure).

In that case, the attribute missing needs to be specified in the function handle, and the

probability of missing data q must be passed to the function as a value between 0 and 1.

For simulations during which data is assumed to be available for all features and all days,

the attribute default is used, and the probability must be an empty array, q = [].
Note that the TSRC algorithm not only accesses a client’s properties, but the meth-

ods for generating the client’s feature data, client.singleStepClientDataGenerator(t),

and their response to activity suggestions, client.clientResponseGenerator(t,k). The

interaction between the JITAI policy and the environment (i.e., the modelled client) occurs

through these methods. In a real-life setting, the feature data is obtained by measurements,

and the client response is reported instead of generated.

The function TSRC.m outputs an array of length T , which holds the chosen activity

recommended by the JITAI for each day. Furthermore, it returns an array of size T × 2
that records the features whose data is missing. The array has non-zero entries only if the

attribute missing is chosen, and thus can be neglected in the default setting. The algorithm

also gives an array of size T × d back to the workspace, which holds the cumulative count

of all features in terms of how often they have been selected during the simulation, as well

as the client whose properties may have been altered by the algorithm.

After the TSRC algorithm has finished calculating, four plots are generated, including

a double plot, which are implemented as functions and called upon in the script in order

to portray the simulation results. Table 5.4 shows their function names, and a short

description of what they display.

5.3.3 The Monte Carlo Simulation Function monteCarloTSRC.m

Since the TSRC algorithm is dependent on random numbers drawn from probability distri-

butions, a single run of the algorithm function is not guaranteed to yield viable results due

to the uncertainties involved in the calculation process. Thus, it is necessary to perform

a Monte Carlo (MC) simulation, during which the TSRC algorithm is run several times

under the same conditions (i.e., with the same client), and then to consider the average

results in order to deduce valid statements. The third section of the script contains the

88



5 Methods of Implementation

Plot Function Description

clientResponsePlot.m Illustration of which activity is chosen at each
decision point, and whether the client has ac-
cepted, or declined

armFrequencyPlot.m Display of the number of times each activity is
chosen after T simulation days, and how often
it has been accepted, or declined

cumulativeArmFrequencyPlot.m Double plot to give a cumulative representa-
tion of when each activity was selected, and
whether the selected activity was accepted

cumulativeFeatureSelectionPlot.m Cumulative representation of the feature selec-
tion in temporal progression

Table 5.4: List of plots generated after a single run of TSRC.m.

function monteCarloTSRC.m, which executes the MC simulation of the TSRC algorithm

over a pre-defined number of runs s.

Determining the number of runs in a MC simulation is directly related to the accuracy

of the result in terms of a confidence interval. Following the central limit theorem which

states that, for a large number s of random variables, assumed to be independent and

identically distributed with finite variance σ2 and mean µ,

lim
N→∞

√
N(Xs − µ)

σ
∼N(0,1),

where Xs is the sample mean of those random variables. This means that the percentiles

of the Gauss distribution can be used to construct a confidence interval, which can be

expected to be accurate enough if the sample size is sufficiently large.

Let α be in [0,1], and Φ1−α
2
the respective (1 − α

2 )-percentile of the Gauss distribution.

The difference between the sample meanXs and the actual mean µ of the sample population

can be estimated via α:

P (−Φ1−α
2
≤ √s(Xs − µ)

σ
≤ Φ1−α

2
) ≈ 1 − α

⇔ P (Xs −Φ1−α
2

σ√
s
≤ µ ≤ Xs +Φ1−α

2

σ√
s
) ≈ 1 − α

Furthermore, the unknown variance σ2 can be approximated by the sample variance Ss,

and the 100(1 − α)% confidence interval for the value of µ is thus given by [37]

[Xs −Φ1−α
2

√
Ss√
s

, Xs +Φ1−α
2

√
Ss√
s
] .

89



5 Methods of Implementation

In terms of the MC simulation, the confidence interval is displayed in the plots which

depict both the average activity choices and feature selection numbers, making it possible

to deduce a grade of accuracy for the displayed results.

Since the MC simulation function calls on TSRC.m it requires the same input parameters,

and, additionally, the number of simulation runs s. Again, a seed value can be passed to

the function for reproducibility, and, in case of missing data, the correct attribute needs

to be set and the probability q must again be passed to the function. Note that the seed

value is appointed within the MC function, but outside of the TSRC function, which is run

without a seed. This way, the s simulation runs yield varying results, but the variety of

results, and thus their average is reproduced when calling monteCarloTSRC.m again with

an identical seed value. An array of size s × T that holds the daily activity choices per

run, and a three-dimensional array of size T × d × s holding the cumulative feature choice

matrices are returned to the script as output. Figure 5.8 displays the implementation tree

of the MC function, including all functions, classes, properties, and methods that are called

during a MC simulation.

Figure 5.8: Implementation tree of monteCarloTSRC.m, showing the functions, client prop-
erties, and methods called during a MC simulation.

Note that a there is another distinction in terms of conclusiveness between the MC

simulation results and the results of one TSRC simulation run. For example, whether some

activity suggestions are chosen more frequently than others may be displayed conclusively

by either setting, but a representation of which arm was offered at t ≤ T , and how the client

responded, cannot be averaged comprehensively. Under these circumstances, a singular

simulation run may yield informative results that are not covered by the MC simulation.

90



5 Methods of Implementation

Plot Function Description

armMonteCarloPlot.m Average number of activity choices after T trials, and
the borders of the 100(1 − α)% confidence intervals, as
well as the average number of activity acceptances after
T trials, and the borders of the 100(1−α)% confidence
intervals

featureMonteCarloPlot.m Average of the number of times each feature was se-
lected after T trials, and the borders of the 100(1−α)%
confidence intervals

Table 5.5: List of plots generated after a MC simulation with TSRC.m.

After the MC simulation is completed, two plots are generated via functions within the

script, see Table 5.5. The MC simulation setting can be used to compare results between

various client setups, sparsity levels, and instances of missing data.

In terms of isolating a feature the initial approach is to compare a feature-sensitive

client to a feature-insensitive client. The feature-sensitive client is designed in such a way

that it bases the decision about accepting an activity suggestion solely on the value of

the isolated feature, see the example of the weather-sensitive client in Section 5.2. The

corresponding feature-insensitive client balances the decision equally between the other

three features. For example, the response vector x(t) = (x1(t), . . . , x6(t)) generated by

client.clientResponseGenerator(t,k) for the weather-insensitive client is

x1(t) ∼Bernoulli(lI(t)), lI(t) = ft +mt + (1 − at)
3

,

x2(t) ∼Bernoulli(lO(t)), lO(t) = ft +mt + (1 − at)
3

,

x3(t) ∼Bernoulli(mI(t)), mI(t) = ft +mt + (1 − at)
3

,

x4(t) ∼Bernoulli(mO(t)), mO(t) = ft +mt + (1 − at)
3

,

x5(t) ∼Bernoulli(hI(t)), hI(t) = ft +mt + (1 − at)
3

,

x6(t) ∼Bernoulli(hO(t)), hO(t) = ft +mt + (1 − at)
3

.

Note that the general assumption is that a is inversely proportional to the fitness level,

see Section 5.1.

When considering different levels of sparsity, there are five options for d = 4 depicted

in Table 5.6. Note that n = 3 is considered the standard setting for all simulation runs

unrelated to sparsity investigation. Furthermore, due to the preallocation of variables that

91



5 Methods of Implementation

require the value of n, TSRC.m cannot work with a sparsity of 100%. However, results can

be compared for 0 < n ≤ d.
n Sparsity Comments

0 100% Simulation with TSRC.m not possible due to allocation problem, equals
the case of a multi-armed bandit without context

1 75% Simulation with TSRC.m possible

2 50% Simulation with TSRC.m possible

3 25% Simulation with TSRC.m possible

4 0% Simulation with TSRC.m possible, equals the classical TS algorithm with
full features, see Algorithm 7

Table 5.6: Sparsity levels for the TSRC algorithm.

In the light of restricted context, or missing data, an analysis of how much sparsity still

yields results similar to the full-featured case is necessary in order to argue for the restricted

context setting as a decision rule in JITAI recommender systems.

The MC simulation also allows the analysis of simulation results of feature-sensitive

clients in the missing data setting, compared to the same client in the default setting. In this

case, the attribute missing must be specified in the function handle of monteCarloTSRC.m,

which calls upon the TSRC algorithm with the same attribute, and q ∈ [0,1] must be

specified as well. If missing data is regarded, the algorithm performs a side step after

sampling

θj ∼Beta(Sj , Fj), j ∈ {1, . . . , d}
in the combinatorial bandit setting (that determines which n feature values are observed

by the contextual bandit), see Algorithm 10. In each iteration, missing data may occur with

probability q, which is modelled by the function missingDataGenerator.m that generates

a random number via rand(), and compares it to q:

y = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if rand() < q
0 else

If y = 1, one of the d features is randomly chosen to exhibit the lack of data, for example

feature i ∈ {1, . . . , d}, and the drawn value of θi is overwritten:

θi = 0

92



5 Methods of Implementation

This way, feature i is guaranteed not to be selected for observation in that iteration,

because the TSRC algorithm picks the features with the n largest values. However, in this

implementation, the respective feature value it is neither deleted nor altered in any other

way, but remains intact.

93



6 Simulation

This chapter describes the setup and results of various simulation runs with the model

JITAI from Section 5.1, where the applicability of the TSRC algorithm as a decision rule

within the JITAI framework is investigated with the use of model clients from Table 5.3.

First, simulations for the isolated features are examined, ordered in terms of increasing

complexity in implementation efforts, see Sections 6.1, 6.2, 6.3, and 6.4. Then, comprehen-

sive simulation results are observed across all features in order to investigate varying levels

of sparsity, see Scenario 6.5, and the case of missing data, see Scenario 6.6. The different

simulation scenarios are enclosed in separate sections, and, within each section, the setup

for the simulation, the simulation results, and the discussion on the outcome, are regarded

individually.

6.1 The Weather Feature

The weather feature is chosen as the starting point, because the client classes used for the

weather feature simulations are simplest regarding construction, compared to any other

client class from Table 5.3.

Two classes exist for the weather feature, clientWeather1 which defines a weather-

sensitive client (i.e., a client that is susceptible only to the weather feature, and none of

the others), and clientWeather2 which is the complementary, or antagonistic, weather-

insensitive client (i.e., a client that is susceptible to all features but the weather). In

both cases, the default values for all but one client property are kept after employing the

initiation method: only the weather property is set to one of the four weather scenarios

given by weatherGenerator.m, see Section 5.3.1.

Note that the weather is the only feature not explicitly dependent on the client, because

the client’s behaviour, or interaction with the model JITAI, is assumed to have no influence

over the weather, so the values for wt are known for all t ≤ T before the simulation begins.

This implies that the client does not change location for the duration of the simulation, or

that the change in the client’s location is already factored into the simulation. For easier

handling, the former is assumed.

94



6 Simulation

6.1.1 Comparing Different Weather Scenarios for a Weather-Sensitive Client

In order to compare different weather scenarios, clientWeather1 is used in a single simu-

lation run, and subsequently for a MC simulation for each weather type.

Simulation Setup

The general parameters for the simulation, as explained in Section 5.3, are listed in Table

6.1. Note that, after fixing the values for R, ϵ, and δ, v is calculated by the formula given

in Section 4.5. Also note that these parameter values are unchanged during all simulations

of the isolated features, namely Scenarios 6.1.2, 6.2.1, 6.2.2, 6.3.1, 6.3.2, 6.4.2, and 6.4.1.

T = 365 n = 3 R = 0.1, δ = 0.8, ϵ = 0.9
k = 6 s = 200 v ≈ 0.4225
d = 4 α = 0.05

Table 6.1: Simulation parameters for Scenario 6.1.1.

clientWeather1 is initiated with standard parameters according to the initiation method

client.initiation(T), and only the weather data varies between simulation runs. Table

6.2 shows the default values of the client properties from Table 5.3 after the initiation

method, but before overwriting the weather data with the output of the weather generator

function.

f = 0 ∈ RT r = 0 ∈ RT varWD = 0.5 avM = 0.5
m = 0 ∈ RT avWE = 0.5 avF = 0.5 varM = 0.5
a = 0 ∈ RT varWE = 0.5 varF = 0.5 f∗ = 4
w = (0.5, . . . ,0.5) ∈ RT avWD = 0.5

Table 6.2: Class property values for clientWeather1 in Scenario 6.1.1.

The weather sensitivity of the client manifests in the their response to the activity sug-

gestions. Thus, it is defined within the method client.clientResponseGenerator(T,k),

where the expected probability for accepting the activity suggestion for indoor training is

given by

lI(t) =mI(t) = hI(t) = 1 −wt,

and the expected probability for accepting outdoor training activities is given by

lO(t) =mO(t) = hO(t) =wt.

95



6 Simulation

Weather
Description

Function Feature Values
Scenario Attribute Seed Values

Good weather T days of great weather condi-
tions in terms of outdoor activ-
ities

good w = (0.9, . . . ,0.9) ∈ RT

seeds: (157, 8)

Bad weather T days of awful weather condi-
tions in terms of outdoor activ-
ities

bad w = (0.1, . . . ,0.1) ∈ RT

seeds: (616, 51054)

Ideal weather T days of slowly changing
weather conditions simulated by∣ sin(x)∣ over a period of 365
days, see Figure 5.5

yearSine wt = ∣ sin( 2πt365)∣
seeds: (72253, 45689)

2009 weather Normalised weather data from
2009, provided by Nemec et al.
[59]

year2009 see Figure 5.6

seeds: (1169, 42)

Table 6.3: Weather feature values and seeds (single run, MC) for clientWeather1 in Sce-
nario 6.1.1.

Table 6.3 provides a description of the different weather scenarios being investigated,

and includes the seed values for each simulation, so that the results can be reproduced.

Results

Single runs of the TSRC algorithm with the weather-sensitive client show a clear affinity

towards agreeing to outdoor activities for the good weather setting, and also display a

similar inclination for indoor activities in the bad weather setting, see Figure 6.1. For

example, in Figure 6.1b, the client’s preference for indoor activities manifests distinctly:

during the first 50 days, outdoor activities are repeatedly suggested to the client and

subsequently declined, whereas indoor activities are mostly accepted.

good lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion 17 ± 2 100 ± 3 20 ± 2 105 ± 3 18 ± 2 104 ± 3
activity acceptance 2 ± 2 91 ± 3 2 ± 2 95 ± 3 2 ± 2 94 ± 3

Table 6.4: MC simulation results for good weather and clientWeather1.

The same tendency can be seen in the MC simulation for both scenarios, where, during

the year of good weather, the client prefers outdoor activities on average, and, as a conse-

quence, outdoor activities are suggested more regularly. For 200 runs, the rounded mean

96



6 Simulation

values and 95% confidence intervals (CIs) of how often an activity has been chosen and

accepted are displayed in Table 6.4. Note that the variables from the client class definition

are used to represent the activities.

(a) Activity selection and acceptance, good weather scenario.

(b) Activity selection and acceptance, bad weather scenario.

Figure 6.1: Client response for single runs of TSRC.m and clientWeather1.

During the year of bad weather, the algorithm adjusts accordingly throughout the MC

simulation and suggests indoor activities more frequently since these are favoured on aver-

age. The rounded means and CIs of the MC simulation are shown in Table 6.5.

bad lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion 107 ± 4 16 ± 2 104 ± 4 14 ± 2 110 ± 4 15 ± 2
activity acceptance 96 ± 4 2 ± 2 94 ± 4 1 ± 2 99 ± 4 1 ± 2

Table 6.5: MC simulation results for bad weather and clientWeather1.

The more realistic seasonal weather scenarios, namely the ideal weather and the weather

from 2009, yield less specific results about activity suggestions when considering only one

simulation run. Generally, the MC simulation is more significant. However, the regularity

of the seasonal change can be seen when looking at the cumulative number of activity

97



6 Simulation

suggestions and acceptances of a single simulation run in the ideal weather setting, see

Figure 6.2.

Figure 6.2: Client response to activity suggestions over time, ideal weather setting.

The left plot shows the cumulative activity selection (i.e., how often the TSRC algorithm

chooses the respective activities) over time, with high intensity indoor and outdoor training

being the most recommended activities. The client’s response to the activity suggestions,

which is depicted on the right, shows that the client reacts in waves to different suggestions.

For example, the high intensity indoor activity is accepted frequently during the first 60

days, then it is declined between days 60 and 160, before acceptance surges again until

around day 210. It is further rejected until around day 339, and, before the year finishes,

it is being accepted again by the client. Note that, by comparing both plots, it can be

seen that the TSRC algorithm recommends the activity during the stagnant phases of the

acceptance plot, but the client mostly declines.

(a) Ideal weather scenario. (b) 2009 weather scenario.

Figure 6.3: MC simulation results for clientWeather1 after 365 days for ideal and 2009
weather.

98



6 Simulation

The shape of this curve is mirrored loosely by the low intensity indoor training, and

the outdoor activities exhibit the same behaviour, only they climb in acceptance when the

indoor activities are stagnant, showing that the changing seasonality is registered by the

TSRC algorithm which in turn reacts to it promptly.

year2009 lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion 93 ± 5 28 ± 3 99 ± 5 28 ± 3 93 ± 5 26 ± 3
activity acceptance 56 ± 5 11 ± 3 60 ± 5 11 ± 3 56 ± 5 10 ± 3

Table 6.6: MC simulation results for 2009 weather and clientWeather1.

Such explicit comparisons between activity suggestions cannot be derived from a MC

simulation. In fact, the MC simulation outcome, as depicted in Figure 6.3a, for the ideal

year is slightly biased towards outdoor activities when viewing the respective numbers of

activity acceptances. This is because the number of times an activity is suggested, or

accepted, is counted after the simulation is complete, and not cumulatively over time, so

the seasonality cannot be displayed explicitly.

yearSine lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion 67 ± 5 52 ± 5 67 ± 5 51 ± 5 68 ± 5 60 ± 5
activity acceptance 26 ± 5 34 ± 5 25 ± 5 34 ± 5 26 ± 5 40 ± 5

Table 6.7: MC simulation results for ideal weather and clientWeather1.

The rounded means and CIs of the ideal weather scenario, and the 2009 weather scenario,

are portrayed in Tables 6.6, and 6.7. Furthermore, there is no obvious bias concerning the

preference of certain features during the contextual bandit search in any weather scenario.

Table 6.8 shows the rounded means and CIs of the feature selection after 200 runs, for each

weather scenario specifically.

Features good bad yearSine year2009

Weather 252 ± 15 280 ± 12 279 ± 10 275 ± 10
Fitness 273 ± 13 279 ± 23 273 ± 10 274 ± 10
Availability 285 ± 12 272 ± 13 273 ± 9 267 ± 11
Motivation 286 ± 11 264 ± 14 270 ± 10 279 ± 9

Table 6.8: Rounded means and CIs of feature selection for all weather scenarios and
clientWeather1.

99



6 Simulation

Discussion

The simulation results indicate that the TSRC algorithm correctly interprets the weather-

sensitive client’s preferences during simulation runs with consistent weather conditions (i.e.,

for good and bad weather). With changing seasonality, the client can be observed to behave

according to their pre-defined inclinations, see Figure 6.2, preferring indoor activities when

the weather is bad, and outdoor activities when the weather is good. However, the TSRC

algorithm does not react fast enough to learn these preferences in a seasonal setting, which

is illustrated by the difference in numbers between activity selections and acceptances in

both seasonal weather scenarios, see Tables 6.6 and 6.7.

In the ideal weather scenario, the TSRC algorithm seems to grossly misjudge the client’s

attitude towards indoor activities. The ideal weather data is symmetrical and its mean

value over 365 days is approximately 0.63, which correctly results in a slight favour for

outdoor activities on the client’s side, see Figure 6.3a. An explanation for the overly

frequent recommendations of indoor activities may be that the TSRC algorithm builds up

a bias towards phases of bad weather, which is represented in the weather data at the

beginning of the simulation, see Figure 5.5.

This phenomenon is not as prominent in the 2009 weather scenario, which also starts with

weather data indicating bad weather, see Figure 5.6. Figure 6.3b shows a clear preference

for indoor activities in activity suggestions and acceptances, which draws attention to the

weather data values obtained by the weather generator function. The minimum of w is

given by

wmin = 0.0272
on day 354 of the year, which is the 20th of December in a non-leap year, so it almost

coincides with the day of the winter solstice. The maximum of w is

wmax = 0.8186
on the 170th day of the year, namely the 19th of June, around the time of the summer

solstice. However, the average of w is approximately 0.39, indicating that the weather

conditions for outdoor training are generally not agreeable throughout the year, so even if

the bias towards bad weather is affecting the activity selection, it does not cause unrealistic

or openly skewed results.

Future work may investigate whether the phenomenon observed for the ideal weather

scenario occurs due to a bias formed by the TSRC algorithm, and if so, how much it

influences the activity selection process. For example, it is possible to generate a weather

scenario with good weather in the beginning (i.e., for the first three months) and bad

100



6 Simulation

weather throughout the rest of the year, in order to examine these simulation results.

The response of the TSRC algorithm to seasonality requires further examination in gen-

eral. Since Scenario 6.1.1 shows a good performance of the TSRC algorithm as a decision

rule throughout consistent weather conditions, its behaviour during seasonal changes may

be investigated by generating weather data that either progressively improves, or declines,

and by considering the MC simulation results.

6.1.2 Comparing a Weather-Sensitive Client to a Weather-Insensitive Client

The results of the single simulation run and the MC simulation for the weather-sensitive

client from Scenario 6.1.1 are compared to a client from the complementary, weather-

insensitive client class clientWeather2.

Simulation Setup

The simulation setup for client clientWeather2 is mostly congruent with the simulation

setup for the weather-sensitive client in Scenario 6.1.1. The general simulation parameters

are identical, as are the class property values for weatherClient2, so they can be found in

Tables 6.1, and 6.2.

The weather data for the weather-insensitive client varies between simulation runs as

well. Each weather scenario will be run with clientWeather2. The only difference to

the weather-sensitive client lies in method client.clientResponseGenerator(t,k). The

weather-sensitive client relies on all features but the weather, so the probability for accept-

ing any activity is given by:

lI(t) = lO(t) =mI(t) =mO(t) = hI(t) = hO(t) = ft +mt + (1 − at)
3

Note that these three features are weighted equally. The seeds for the simulation runs

are also identical to those of Scenario 6.1.1 in order to make the results as comparable as

possible.

Results

Contrary to the weather-sensitive client, the weather-insensitive client does not show pref-

erence for any particular activity. Since the daily weather conditions are not regarded by

the client when making a decision about the activity suggestion, and all suggestions are

weighted equally, this outcome is expected.

Figure 6.4 shows the results of the MC simulations for good and bad weather, respectively.

Contrary to the weather-sensitive case, it is not apparent which scenario is depicted, based

101



6 Simulation

(a) Good weather scenario. (b) Bad weather scenario.

Figure 6.4: MC simulation results for clientWeather2 after 365 days for good and bad
weather.

on the graphs alone. Table 6.9 displays the rounded means and CIs for the good weather

scenario, and Table 6.10 shows the same for the bad weather scenario. The rounded means

are almost equally distributed between different activities, and the CIs are slightly larger

compared to the weather-sensitive cases, see Tables 6.4, and 6.5.

Almost identical results are obtained when running the seasonal weather scenarios, see

Tables 6.11 and 6.12, confirming again that, as long as the weather is not regarded, there

will be no weather-related bias formed by the TSRC algorithm.

good lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion 60 ± 5 58 ± 5 64 ± 5 62 ± 5 63 ± 5 59 ± 5
activity acceptance 34 ± 5 33 ± 5 37 ± 5 35 ± 5 36 ± 5 34 ± 5

Table 6.9: MC simulation results for good weather and clientWeather2.

Note that, in all scenarios but 2009, the number of days on which the activity suggestion

is accepted is lower compared to the weather-sensitive client. The scenario for 2009 yields

only 204 acceptances in the weather-sensitive case, and 206 in the weather-insensitive case.

bad lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion 62 ± 6 62 ± 6 58 ± 6 63 ± 6 57 ± 6 63 ± 6
activity acceptance 35 ± 6 36 ± 6 33 ± 6 36 ± 6 33 ± 6 36 ± 6

Table 6.10: MC simulation results for bad weather and clientWeather2.

In the bad weather scenario, out of 365 days, the client has only accepted the intervention

102



6 Simulation

209 times on average, see Table 6.10, compared to 293 times for the weather-sensitive client,

see Table 6.5. In fact, the average number of acceptances is between 206 and 210 for all

four weather scenarios, so 56 − 57% of suggestions are accepted by the client.

year2009 lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion 63 ± 5 64 ± 6 59 ± 5 61 ± 6 63 ± 6 55 ± 5
activity acceptance 36 ± 5 36 ± 6 33 ± 5 35 ± 6 35 ± 6 31 ± 5

Table 6.11: MC simulation results for 2009 weather and clientWeather2.

yearSine lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion 62 ± 5 61 ± 5 59 ± 5 66 ± 5 60 ± 5 57 ± 5
activity acceptance 36 ± 5 35 ± 5 34 ± 5 38 ± 5 34 ± 5 33 ± 5

Table 6.12: MC simulation results for ideal weather and clientWeather2.

The number of times each feature is chosen during the combinatorial bandit is displayed

as rounded means and CIs in Table 6.13. Similar to the weather-sensitive case, there is

no clear preference obvious in the choosing of features, and the widths of the CIs are also

comparable to the results from Scenario 6.1.1.

Features good bad yearSine year2009

Weather 285 ± 9 278 ± 10 267 ± 11 274 ± 11
Fitness 275 ± 11 271 ± 11 279 ± 10 274 ± 11
Availability 270 ± 11 274 ± 11 278 ± 10 274 ± 11
Motivation 265 ± 11 272 ± 11 270 ± 10 273 ± 11

Table 6.13: Rounded means and CIs of feature selection for all weather scenarios and
clientWeather2.

Discussion

The complementary weather-insensitive client is used to create counter-evidence for the

dynamics of the TSRC algorithm regarding the weather feature. Scenario 6.1.1 shows

that, when isolating the weather feature, the TSRC algorithm correctly identifies a client’s

activity preferences. Scenario 6.1.2 proves that the TSRC algorithm does not prioritise

activities associated with the weather when the weather feature is not regarded, see Figure

103



6 Simulation

6.4. Since the other three features are of equal importance to the client, and the client

response is identical between activities, no preference for any activity is expected.

The simulation results deliver exactly this; regardless of the chosen weather scenario, all

activities are recommended almost equally often, and the weather-insensitive client accepts

them in the same manner, without singling out any distinct favourites.

The percentage of activity acceptances throughout all weather scenarios is comprehen-

sible when looking at the methods of the client class clientWeather2. The default values

for the simulation parameters that are responsible for client data generation in method

client.singleStepClientDataGenerator(t) are set to 0.5, and the success probability

in client.clientResponseGenerator(t,k) is the average of all features values except the

weather. This means that the probability of the client accepting a suggestion is, on average,

around 50%. However, during simulation, the client’s fitness may improve, slightly raising

the average fitness value avF and diminishing the varying interval varF , which accounts

for raising the success probability of accepting a suggestion to 56 − 57% for all activities,

just slightly above the 50% mark.

It can be concluded that the the weather should be considered in a JITAI recommender

system that targets exercise, because it is conceivable that the weather is an important

factor for clients when deciding whether or not to perform the suggested activity. Further-

more, the TSRC algorithm has been proven to correctly distinguish between different client

preferences regarding the weather feature in isolation.

6.2 The Fitness Feature

When isolating the fitness feature, the aim is to investigate the TSRC algorithm’s response

to clients who only consider their own fitness level when deciding whether or not to accept

an exercise suggestion. Subsequently, such clients are compared to antagonistic clients,

who consider all features but the fitness feature when making a decision.

Again, two classes exist for simulation. The fitness-sensitive class clientFitness1 is

identical to the weather-sensitive client class in all but one regard: instead of depend-

ing only on the weather feature, the probability for accepting an activity suggestion de-

pends only on the client’s fitness level. The complementary fitness-independent client class

clientFitness2 is similar to the weather-insensitive client class, because its success prob-

ability for accepting a suggestion depends on all features but the fitness level.

Note that, in order to avoid weather-related bias, the default weather value of 0.5 for

each day is not overwritten with a weather scenario from the weather generator function,

resulting in a year of mediocre weather.

104



6 Simulation

6.2.1 Comparing Different Fitness Levels

The client class clientFitness1 is used for single simulation runs and MC simulations for

clients with different fitness levels.

Simulation Setup

The general simulation parameter values are unchanged, and can be found in Table 6.1.

Scenario 6.2.1 examines the response of the TSRC algorithm to a fit client, compared to

an unfit client. In both cases, the client is initiated with standard parameters according to

method client.initiation(T). Then, the base fitness value avF , and the varying fitness

interval width varF , are overwritten in the workspace. Table 6.14 shows the property values

for the fit client before a simulation run.

f = 0 ∈ RT r = 0 ∈ RT varWD = 0.5 avM = 0.5
m = 0 ∈ RT avWE = 0.5 avF = 0.9 varM = 0.5
a = 0 ∈ RT varWE = 0.5 varF = 0.8 f∗ = 3
w = (0.5, . . . ,0.5) ∈ RT avWD = 0.5

Table 6.14: Class property values for fit clientFitness1 in Scenario 6.2.1.

Note that the fitness level of a client is influenced by two factors: the values avF and

varF , which are responsible for generating the fitness value ft, and the weekly fitness

improvement threshold f∗, which indicates how easily the client’s fitness improves. When

creating a fit client, avF is assumed to be close to 1, and the threshold f∗ is assumed to

be low in order to increase avF quicker.

f = 0 ∈ RT r = 0 ∈ RT varWD = 0.5 avM = 0.5
m = 0 ∈ RT avWE = 0.5 avF = 0.3 varM = 0.5
a = 0 ∈ RT varWE = 0.5 varF = 0.3 f∗ = 6
w = (0.5, . . . ,0.5) ∈ RT avWD = 0.5

Table 6.15: Class property values for unfit clientFitness1 in Scenario 6.2.1.

Table 6.15 shows the property values of the unfit client. Note that the fitness improve-

ment threshold is raised as well. Note further that f∗ > 7 cause the values for avF and

varF to be stagnant, since, due to the frequency of the decision point, exercising more than

seven times per week is not possible.

The fitness of a client is assumed to be directly proportional to the intensity of the

exercise. Since there are three intensity levels in the pool of activity suggestions, the

105



6 Simulation

method client.clientResponseGenerator(t,k) is constructed in a way that low fitness

values encourage low intensity exercise,

lI(t) = lO(t) = 1 − ft,
and high fitness values animate medium and high intensity training:

mI(t) =mO(t) = hI(t) = hO(t) = ft
These formulae are fixed regardless of the client’s fitness. Table 6.16 gives the seed values

for the single simulation runs and the MC simulations. Note that the same seed is used for

both the fit, and the unfit client.

fit & unfit Single run MC simulation

Seed 6030 89

Table 6.16: Seed values for clientFitness1 in Scenario 6.2.1.

Results

Single runs of the TSRC algorithm show a clear tendency towards fitness-appropriate ac-

tivities in both the fit and the unfit client, see Figure 6.5

Within the first 50 days, the fit client refuses low and high intensity training, see Figure

6.5a, the first because of their higher fitness level, and the second because their fitness level

is not yet high enough. However, after day 57, the medium and high intensity suggestions

are always accepted, and the low intensity training is refused if it is at all suggested.

The unfit client is not able to improve their fitness level enough in order to be comfortable

with medium or high intensity training, see Figure 6.5b. In fact, during this single run,

the client’s base fitness value avF is still at 0.3, along with its varying interval width varF .

Note that the medium intensity activities are recommended to the unfit client within the

first 50 days, but rarely after this point, and they are always rejected.

fit lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion 14 ± 2 15 ± 2 84 ± 4 83 ± 4 86 ± 4 83 ± 4
activity acceptance 1 ± 2 1 ± 2 82 ± 4 81 ± 4 84 ± 4 82 ± 4

Table 6.17: MC simulation results for fit clientFitness1.

106



6 Simulation

(a) Activity selection and acceptance, fit client.

(b) Activity selection and acceptance, unfit client.

Figure 6.5: Client response for single runs of TSRC.m and clientFitness1.

The same trend can be seen in the MC simulation results. Table 6.17 shows the rounded

means and CIs for the fit client, and Figure 6.6a gives the respective graphical representa-

tion. Due to the high fitness level of the client, the medium and high intensity activities

are on average almost always accepted, whereas the low intensity training is suggested a

few times, but barely accepted.

(a) Fit client. (b) Unfit client.

Figure 6.6: MC simulation results for fit and unfit clientFitness1 after 365 days.

107



6 Simulation

The TSRC algorithm identifies the opposite behaviour for the unfit client. The low

intensity training options are accepted most often. However, since the unfit client is only

prone to accept two options, the amount of acceptances for unsuitable exercise suggestions

is higher compared to the fit client. Table 6.18 displays the rounded means and CIs for the

unfit client, and Figure 6.6b shows the MC simulation results.

unfit lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion 101 ± 6 100 ± 6 41 ± 5 36 ± 5 44 ± 5 43 ± 5
activity acceptance 70 ± 6 70 ± 6 13 ± 5 11 ± 5 13 ± 5 14 ± 5

Table 6.18: MC simulation results for unfit clientFitness1.

There is no clear preference for any feature during the feature selection process through-

out the MC simulations for either client setting. However, a slight decrease in popularity

can be noted in the motivation feature for the fit client, and both motivation and availability

for the unfit client.

Features fit unfit

Weather 276 ± 15 282 ± 11
Fitness 277 ± 16 280 ± 11
Availability 274 ± 16 267 ± 13
Motivation 267 ± 16 266 ± 12

Table 6.19: Rounded means and CIs of feature selection for fit and unfit clientFitness1.

Discussion

As expected, the TSRC algorithm correctly identifies the preferred activities in terms of

a client’s fitness level. Different investigations into the dynamics of the TSRC algorithm’s

response can follow, for example by considering a client who starts out with a low fitness

level and improves continuously, or a client who starts with a high fitness level and whose

fitness declines by not exercising enough. In that case, a “laziness threshold” needs to be

included in the client class, and if the client exercises less than the threshold requires, their

fitness level drops by a certain percentage.

Note that the 50-day mark observed in Figure 6.5a is apparent in a single simulation run

for the second time. When isolating the weather feature, the single run for the bad weather

scenario exhibits a similar “breaking-in period”, see Figure 6.1b.

108



6 Simulation

(a) Low intensity exercise. (b) Medium intensity exercise. (c) High intensity exercise.

Figure 6.7: Success probabilities for three exercise intensity levels, for modelling the re-
sponse of clientFitness1.

The method client.clientResponseGenerator(t,k) could be enhanced so that the

medium intensity training is preferred by clients with a medium fitness level: instead of

just using ft, the formulae for mI(t) and mO(t) change to:

mI(t) =mO(t) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
2ft if ft ≤ 0.5
2(1 − ft) if ft > 0.5

The success probabilities for the different training intensities are displayed in Figure 6.7.

Some test runs with this modified version of clientFitness1 promise similarly accurate,

if not less explicit, simulation results, indicating that the TSRC algorithm can correctly

interpret the three-level model, but the lines between the activity levels become more

blurred. The formulae in client.clientResponseGenerator(t,k) do not have to be

linear, either. Non-linear formulae that determine the success probabilities of activity

suggestions also ought to be investigated.

6.2.2 Comparing a Fitness-Sensitive Client to a Fitness-Insensitive Client

The fitness levels of the fit and unfit clients from Scenario 6.2.1 are applied to the fitness-

insensitive client class clientFitness2 in order to compare the results to the outcome of

Scenario 6.2.1.

Simulation Setup

The simulation parameters and class property values are depicted in Tables 6.1, 6.14, and

6.15. The only difference to Scenario 6.2.1 is that the formulae for the success probabilities

in the client response method client.clientResponseGenerator(t,k) are independent

109



6 Simulation

of the fitness feature:

lI(t) =mI(t) = hI(t) = (1 −wt) +mt + (1 − at)
3

lO(t) =mO(t) = hO(t) = wt +mt + (1 − at)
3

The seed values for the simulations are unchanged as well, and can be seen in Table 6.16.

Results

The results of the MC simulation for the fit client are depicted in Table 6.20 and Figure 6.8a.

There is no obvious preference for any of the exercise suggestions. Instead, the number of

times each activity is suggested is divided evenly between the intervention options, with

each activity being on average suggested every six trials.

fit lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion 63 ± 5 62 ± 5 59 ± 5 60 ± 5 57 ± 5 63 ± 4
activity acceptance 32 ± 5 31 ± 5 29 ± 5 30 ± 5 29 ± 5 32 ± 5

Table 6.20: MC simulation results for fit clientFitness2.

The number of acceptances is also divided equally between activities, and each activity

is accepted approximately every second time it is suggested. On average, the acceptance

rate is 183 out of 365 trials, so just over 50%.

(a) Fit client. (b) Unfit client.

Figure 6.8: MC simulation results for fit and unfit clientFitness2 after 365 days.

The MC simulation results for the unfit client are displayed in Table 6.21 and Figure

6.8b. Similar to the fitness-insensitive client with higher fitness level, no bias in the activity

110



6 Simulation

suggestions and acceptances towards the fitness feature is apparent. However, there is a

dip in activity suggestions and acceptances for the high intensity indoor training.

unfit lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion 65 ± 6 62 ± 6 58 ± 6 59 ± 6 54 ± 6 66 ± 6
activity acceptance 33 ± 6 32 ± 6 29 ± 6 30 ± 6 27 ± 6 33 ± 6

Table 6.21: MC simulation results for unfit clientFitness2.

The number of activity selections resides around one sixth of all trials for each activity,

and every second suggestion is accepted on average. This gives a mean acceptance rate of

just over 50%, which equals 184 acceptances in 365 trials.

Features fit unfit

Weather 274 ± 9 279 ± 10
Fitness 275 ± 10 280 ± 10
Availability 268 ± 11 268 ± 11
Motivation 278 ± 9 268 ± 11

Table 6.22: Rounded means and CIs of feature selection for fit and unfit clientFitness2.

Again, there is no obvious feature preference in both MC simulations. For the fit client,

availability is chosen least often, and for the unfit client, motivation and availability are

chosen 11 and 12 times less than the weather and fitness features, which is around half the

width of the respective CIs.

Discussion

In direct comparison, the TSRC algorithm performs as expected, not forming any bias

towards the fitness feature when it is not regarded by the client, and this observation is

made regardless of the pre-defined fitness level, underlining the TSRC algorithm’s validity

as decision rules in a JITAI in a similar way to Scenario 6.1.2. The outcome of equally

distributed suggestions and acceptances throughout all activities is expected and shows

complementary behaviour to the explicit preferences of the fitness-sensitive client exhibited

in Scenario 6.2.1.

Also, as discussed in Scenario 6.1.2, the average percentage of overall acceptances re-

sides around 50%, indicating that the TSRC algorithm correctly interprets the (evenly

distributed) preferences of the fitness-insensitive client, whose property values are at 0.5

111



6 Simulation

for all properties except the fitness-related base value and varying interval, avF and varF ,

which are not regarded.

Note that, even though the weather influences the success probability for outdoor ac-

tivities via wt and the success probability for indoor activities via 1 − wt, there is no

weather-related bias because the values wt are initialised at 0.5 for all t during the initia-

tion method.

6.3 The Availability Feature

When isolating the availability feature, the interest lies in seeing whether the TSRC algo-

rithm can correctly identify the preferences of an individual who is more available compared

to one who is rarely available. The assumption is that lower intensity training is more time

consuming (i.e., taking a walk) in contrast to higher intensity training (i.e., 15-minute car-

dio workout). When disregarding all other features, these circumstances should be evident

in the simulation outcome.

Again, two client classes exist for simulation purposes. The availability-sensitive class

clientAvailability1 only regards a client’s availability when making a decision, while

the availability-insensitive class clientAvailability2 considers all features except the

client’s availability. First, different levels of availability are compared for the availability-

sensitive client class in Scenario 6.3.2, and the results are examined in contrast to the

availability-insensitive client in Scenario 6.3.1.

6.3.1 Comparing Different Levels of Availability

The availability-sensitive client class clientAvailability1 is used for simulation in order

to compare a client with high availability to a client with low availability.

Simulation Setup

The general simulation parameters are unchanged, see Table 6.1. The properties for an

available client of the availability-sensitive client class clientAvailability1 are displayed

in Table 6.23. Note that, after the property initiation method client.initiation(T), the

properties responsible for weekend and weekday availability, avWE , varWE , avWD, varWD,

are overwritten with values representing high availability.

The property values for the unavailable client are shown in Table 6.26. Note that, for

both the available and unavailable client, the weather is kept at the default value of 0.5 for

all t. The method client.clientResponseGenerator(t,k) defines the client’s focus on

the availability values. Here, the idea of considering three levels of availability, diametrically

112



6 Simulation

f = 0 ∈ RT r = 0 ∈ RT varWD = 0.6 avM = 0.5
m = 0 ∈ RT avWE = 0.9 avF = 0.5 varM = 0.5
a = 0 ∈ RT varWE = 1 varF = 0.5 f∗ = 4
w = (0.5, . . . ,0.5) ∈ RT avWD = 0.8
Table 6.23: Class property values for available clientAvailability1 in Scenario 6.3.1.

f = 0 ∈ RT r = 0 ∈ RT varWD = 0.6 avM = 0.5
m = 0 ∈ RT avWE = 0.3 avF = 0.5 varM = 0.5
a = 0 ∈ RT varWE = 0.4 varF = 0.5 f∗ = 4
w = (0.5, . . . ,0.5) ∈ RT avWD = 0.1

Table 6.24: Class property values for unavailable clientAvailability1 in Scenario 6.3.1.

opposed to the levels of exercise intensity, is implemented, as suggested in the discussion

of Scenario 6.2.2. In practice, this means:

lI(t) = lO(t) = at,

hI(t) = hO(t) = (1 − at),
mI(t) =mO(t) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩

2at if at ≤ 0.5
2(1 − at) if at > 0.5

Similar to Figure 6.7, Figure 6.9 gives the success probabilities of the client response

generator method for clientAvailability1. The higher the client’s availability is, the

more likely they are to accept low intensity exercise. The less available a client is, the more

likely they are to accept high intensity activity suggestions. The probability for accepting

medium intensity exercises is highest when being moderately available.

The seed values for this scenario, as well as the complementary Scenario 6.3.2, are given

in Table 6.25.

available & unavailable Single run MC simulation

Seed 34216 2542

Table 6.25: Seed values for clientAvailability1 in Scenario 6.3.1.

Results

Single runs for client clientAvailability1 already show that the available client clearly

prefers to accept low intensity training, see Figure 6.10a. Even though high intensity

113



6 Simulation

(a) Low intensity exercise. (b) Medium intensity exercise. (c) High intensity exercise.

Figure 6.9: Success probabilities for three exercise intensity levels, for modelling the re-
sponse of clientAvailability1.

training is recommended more than medium intensity training, it is accepted infrequently.

(a) Available client. (b) Unavailable client.

Figure 6.10: Total number of suggestions and acceptances for available and unavailable
clientAvailability1 after 365 days.

A single run in the unavailable client setting shows a stepwise increase in the number

of activity acceptances from low intensity training to high intensity training, see Figure

6.10b. Even though medium intensity outdoor training is recommended most often at 107

suggestions, it is only accepted 37 times.

The same stepwise increase in exercise acceptances can be seen as a result of the MC

simulation for the unavailable client, depicted in Table 6.26 and Figure 6.11b. On aver-

age, high intensity activities are accepted most frequently, followed by medium intensity

activities, and both low intensity exercises are suggested and accepted least often.

In the MC simulation, the available client exhibits the same stepwise pattern as the

114



6 Simulation

unavailable lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion 26 ± 4 28 ± 4 52 ± 5 49 ± 5 105 ± 5 105 ± 5
activity acceptance 7 ± 4 6 ± 4 21 ± 5 20 ± 5 81 ± 5 82 ± 5

Table 6.26: MC simulation results for unavailable clientAvailability1.

available lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion 102 ± 4 100 ± 5 47 ± 5 44 ± 5 37 ± 4 34 ± 4
activity acceptance 75 ± 4 73 ± 5 16 ± 5 15 ± 5 10 ± 4 10 ± 4

Table 6.27: MC simulation results for available clientAvailability1.

unavailable client, see Table 6.27 and Figure 6.11a. Contrary to the unavailable client,

the available client receives mainly low intensity training suggestions, which are frequently

accepted. Medium and high intensity exercises are suggested less often, and are even less

frequently accepted.

(a) Available client. (b) Unavailable client.

Figure 6.11: MC simulation results for available and unavailable clientAvailability1

after 365 days.

Concerning feature selection during the combinatorial bandit, there is no clear favourite

in either availability scenario during the MC simulation. However, the weather feature is

slightly less popular during the simulation with the available client, and both weather and

fitness are regarded less often for the unavailable client.

115



6 Simulation

Features available unavailable

Weather 258 ± 13 267 ± 13
Fitness 278 ± 11 259 ± 14
Availability 281 ± 11 292 ± 10
Motivation 277 ± 11 277 ± 12

Table 6.28: Rounded means and CIs of feature selection for available and unavailable
clientAvailability1.

Discussion

The TSRC algorithm is seen to correctly and distinctly identify the preferences of an

availability-sensitive client, even when considering three levels of availability, which is

graphically illustrated in Figure 6.11. There is an apparent favouritism for the respec-

tive suitable training intensity in both MC simulations. The acceptance rate is around

74% and 73% for the available client and both low indoor and outdoor intensity training,

and around 77% and 78% for the unavailable client and both high intensity indoor and

outdoor training. In contrast, the acceptance rates for medium and low intensity training

are below 41% for the unavailable client. For the available client, the acceptance rates for

medium and high intensity training even lie below 34%.

Further investigation can be conducted into a more dynamic availability model for the

client, which may include more sophisticated, potentially non-linear formulae in the client

response generator. For example, the availability of a client could vary within a year cycle,

or include random phases of non-availability to imitate vacation time, in order to explore

the TSRC algorithm’s response to such rapid changes.

6.3.2 Comparing an Availability-Sensitive Client to an Availability-Insensitive

Client

The availability-insensitive client class clientAvailability2 is used to compare clients of

high and low availability to the simulation outcome of Scenario 6.3.1.

Simulation Setup

The parameter values of the simulation are unchanged and can be found in Table 6.1.

Furthermore, the property values of the available and unavailable client are unchanged, see

Tables 6.23 and 6.24.

The difference to class clientAvailability1 lies in the definition of the client response

method, where the formulae for determining the success probability of accepting an activity

116



6 Simulation

suggestion are:

lI(t) =mI(t) = hI(t) = ft +mt + (1 −wt)
3

lO(t) =mO(t) = hO(t) = ft +mt +wt

3

The seed values for the simulation runs are displayed in Table 6.25, as they are unaltered.

Results

The MC simulation results for the availability-insensitive client of high availability are

displayed in Table 6.29 and Figure 6.12a, which show almost equal numbers in both activity

suggestions and acceptances throughout all activities.

available lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion 60 ± 5 61 ± 5 61 ± 5 62 ± 5 60 ± 5 61 ± 5
activity acceptance 34 ± 5 35 ± 5 34 ± 5 36 ± 5 35 ± 5 35 ± 5

Table 6.29: MC simulation results for available clientAvailability2.

The amount of exercise suggestions range between 60 and 62 on average, whereas ac-

tivities are accepted between 34 and 36 times out of 365 trials, which is slightly less than

10%.

(a) Available client. (b) Unavailable client.

Figure 6.12: MC simulation results for available and unavailable clientAvailability2

after 365 days.

The MC simulation for the availability-insensitive client of low availability shows a slight

bias towards outdoor activities, with indoor activities being recommended only around 48%

117



6 Simulation

of 365 simulation days on average. The average number of acceptances for each activity

lies between 31 and 35 for indoor exercise, and between 34 and 37 for outdoor exercise.

unavailable lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion 54 ± 6 64 ± 6 61 ± 6 67 ± 6 60 ± 5 60 ± 6
activity acceptance 31 ± 6 37 ± 6 35 ± 6 38 ± 6 34 ± 5 34 ± 6

Table 6.30: MC simulation results for unavailable clientAvailability2.

There is no distinct preference in the feature selection for both MC simulations. The

motivation feature is least often selected during simulations with the available client, and

both availability and motivation are least frequently chosen in the unavailable client setting.

Features available unavailable

Weather 273 ± 11 276 ± 11
Fitness 278 ± 10 284 ± 9
Availability 275 ± 11 268 ± 12
Motivation 269 ± 11 267 ± 11

Table 6.31: Rounded means and CIs of feature selection for available and unavailable
clientAvailability2.

Discussion

As anticipated, the TSRC algorithm does not form a bias towards exercise intensity, which

is linked in reverse proportionality to a client’s availability. However, a bias is found in the

number of activity suggestions towards indoor activities for the unavailable client. Its origin

may be explained during further investigation into the dynamics of the TSRC algorithm.

Since the weather feature is set to wt = 0.5 for all t, a preference for indoor activities is

not expected, because the weather component for the success probability is

1 −wt = 0.5,
compared to the weather component for outdoor activities:

wt = 0.5
When changing the indoor weather component to wt, the bias still exists, which is

expected, since the bias is not found in the available client setting, which uses the inverse

118



6 Simulation

proportionality of weather data for success probability calculation of indoor activities.

The bias thus cannot be explained by investigating the weather feature alone. The most

likely cause is coincidence: the raised numbers for outdoor activities, especially in the low

and medium intensity range, may only correlate, instead of being determined by a com-

mon cause. Simulations with different seed values show similar preference patterns for the

unavailable client setting, where two or three activities are marginally more popular in rec-

ommendations and acceptances without having an exercise intensity or weather component

in common.

6.4 The Motivation Feature

Isolating the motivation feature results in the most complex client class definitions out

of all features. It is not modelled as a rigid factor that strictly adheres to a consistent

formula throughout all activity suggestions, but should be seen as a dynamic influence on

the success probability formulae. Now that the TSRC algorithm has proven to perform

sufficiently well regarding simple relationships between features and activities, it is worth

investigating more intricate feature models.

In the modelling context, the motivation feature leaves the most room for different mod-

els. A client’s motivation may be assumed to be consistently high or low only for certain

activities, and inconsistent for others, or the activity suggestions may depend linearly or

non-linearly on the client’s motivation. All of these circumstances represent realistic sce-

narios which are worth examining.

One of many possible models is adopted to explore the motivation feature. In Scenario

6.4.1, two client classes, clientMotivation1 and clientMotivation2, are used to inves-

tigate the TSRC algorithm’s response to clients who are highly motivated for three out of

six activities implemented in a conservative way. Scenario 6.4.2 explores a model exten-

sion with the help of two additional clients, clientMotivation3 and clientMotivation4,

where the feature value mt depends on the weather value wt.

6.4.1 Comparing Clients Motivated for Different Activities

The client classes clientMotivation1 and clientMotivation2 are used in single simu-

lation runs and MC simulations, to see how the TSRC algorithm reacts when the client

response generator pushes for certain activities.

119



6 Simulation

Simulation Setup

The general simulation parameters are found in Table 6.1. The difference between both

clients lies in the method client.clientResponseGenerator(t,k), where the success

probabilities of all activities are weighted, indicating the clients’ preferences regardless of

pre-defined activity attributes.

f = 0 ∈ RT r = 0 ∈ RT varWD = 0.5 avM = 0.7
m = 0 ∈ RT avWE = 0.5 avF = 0.5 varM = 0.8
a = 0 ∈ RT varWE = 0.5 varF = 0.5 f∗ = 4
w = (0.5, . . . ,0.5) ∈ RT avWD = 0.5

Table 6.32: Class property values for clientMotivation1 and clientMotivation2 in Sce-
nario 6.4.1.

The class property values for both clients are thus identical, and are found in Table 6.32.

They only deviate from the default setup by setting the baseline motivation value avM to

0.7, and the varying interval varM to 0.8. This way, the effect of heightened motivation

ought to be magnified. Client clientMotivation1 is most motivated for high intensity

indoor training, followed by medium intensity outdoor training, and low intensity indoor

training. After these, the other activities are seen as equally desirable, but the higher the

motivation, the less likely it is that these are accepted. The success probabilities for activity

acceptance are given by:

hI(t) = mt + 3
4

, mO(t) = mt + 2
3

, lI(t) = mt + 1
2

,

lO(t) =mI(t) = hO(t) = 1 −mt

Client clientMotivation2 is modelled complementarily: low intensity outdoor training

is most popular, followed by medium intensity indoor training, and high intensity indoor

training. The client response generator method calculates the success probabilities for

accepting the exercise suggestion thusly:

lO(t) = mt + 3
4

, mI(t) = mt + 2
3

, hO(t) = mt + 1
2

,

lI(t) =mO(t) = hI(t) = 1 −mt

Note that “high motivation” should not be interpreted as an absolute. That is, in

Scenarios 6.4.1 and 6.4.2, mt → 1 does not indicate excessive motivation for any activity,

but instead being more motivated for favoured activities. Conversely, mt → 0 yields greater

motivation for the less desirable training suggestions.

120



6 Simulation

The seed for the MC simulation for both client classes is 23.

Results

Single runs of the TSRC algorithm show a tendency to display the respective favourites of

both client classes, see Figure 6.13. For client clientMotivation1, Figure 6.13a shows the

contrast between the most popular activity, medium intensity outdoor training, and one of

the least favourite activities, medium intensity indoor training. Even though both exercises

are recommended 85 and 88 times respectively, the more desired activity is accepted in

around 93% of cases, whereas medium intensity indoor training is only taken up around

45% of the time. Although no such discrepancy is shown in the results for the single run

and clientMotivation2, the client’s degree of preference is replicated exactly in both

suggestions and acceptances. Note that, in this instance, low intensity indoor training is

never recommended to the client.

(a) Client clientMotivation1, seed: 69. (b) Client clientMotivation2, seed: 81132.

Figure 6.13: Total number of suggestions and acceptances for clientMotivation1 and
clientMotivation2 after 365 days.

The MC simulation results for clientMotivation1 mirror the client’s preferences per-

fectly. As seen in Table 6.33 and Figure 6.14a, the acceptance numbers for all three preferred

activities are high, whereas the discrepancy between suggestions and acceptances is larger.

clientMotivation1 lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion 81 ± 5 36 ± 4 34 ± 4 88 ± 5 92 ± 5 34 ± 4
activity acceptance 66 ± 5 14 ± 4 14 ± 4 78 ± 5 83 ± 5 13 ± 4

Table 6.33: MC simulation results for clientMotivation1.

121



6 Simulation

For example, high intensity outdoor training is accepted in only 38% of cases on average,

whereas the uptake of high intensity indoor training averages around 90%.

clientMotivation2 lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion 31 ± 4 90 ± 5 87 ± 5 34 ± 4 35 ± 4 89 ± 5
activity acceptance 12 ± 4 81 ± 5 76 ± 5 13 ± 4 14 ± 4 73 ± 5

Table 6.34: MC simulation results for clientMotivation2.

(a) Client clientMotivation1 (b) Client clientMotivation2.

Figure 6.14: MC simulation results for clientMotivation1 and clientMotivation2 after
365 days.

The response of the TSRC algorithm to clientMotivation2 is depicted in Table 6.34

and Figure 6.14b, and shows the same result for the complementary setup. Low intensity

outdoor training has an average acceptance rate of 90%. In contrast, medium intensity

outdoor training is accepted only in 38% of cases.

Features clientMotivation1 clientMotivation2

Weather 274 ± 11 260 ± 12
Fitness 270 ± 12 280 ± 10
Availability 271 ± 12 269 ± 12
Motivation 280 ± 12 287 ± 10

Table 6.35: Rounded means and CIs of feature selection for clientMotivation1 and
clientMotivation2.

There is no bias towards any particular feature during the combinatorial bandit search for

clientMotivation1. A preference is obvious for clientMotivation2, where fitness and

motivation are, on average, chosen more often than availability and the weather feature.

122



6 Simulation

Discussion

The TSRC algorithm performs equally well for the more dynamic motivation model, cor-

rectly identifying the favourite activities for both client classes. Further investigation into

more complex models is possible, especially with regard to more realistic setups, in which

behavioural models could be implemented.

The complexity of the motivational model depends on the choice of features, including

the amount that can be regarded d, and on the feature budget n, with which the TSRC algo-

rithm works. If the motivation feature expresses the client’s disposition towards performing

the suggested activity, then other features should be chosen in a way that accommodates a

motivational model (i.e., if the model for motivation requires a value representing the daily

weather conditions, the weather should be included as a tailoring variable in the JITAI).

6.4.2 Comparing Different Models for Motivation

The client classes clientMotivation3 and clientMotivation4, for which the daily values

for motivation depend on the daily weather values, are used for simulation in the different

weather scenarios depicted in Scenario 6.1.1, and the results are compared to the simulation

outcome in Scenario 6.4.1.

Simulation Setup

The general simulation parameters are displayed in Table 6.1. Furthermore, the values for

the properties of the client classes are identical to those of Scenario 6.4.1, which are given

in Table 6.32.

Client clientMotivation3 is motivated for the same three activities as client

clientMotivation1. Thus, the class method client.clientResponseGenerator(t,k)

in clientMotivation3 is equal to the one in clientMotivation1:

hI(t) = mt + 3
4

, mO(t) = mt + 2
3

, lI(t) = mt + 1
2

,

lO(t) =mI(t) = hO(t) = 1 −mt

The same holds for clientMotivation4 and its antetype clientMotivation2, so the

formulae in the client response generator are:

lO(t) = mt + 3
4

, mI(t) = mt + 2
3

, hO(t) = mt + 1
2

,

lI(t) =mO(t) = hI(t) = 1 −mt

The difference to the client classes of Scenario 6.4.1 lies in the data generator method

123



6 Simulation

client.singleStepClientDataGenerator(t). Since the motivation is assumed to be de-

pendent on the weather, the daily values for motivation are not generated via the formula

that uses avM and varM , see Section 5.2. Instead, mt is the output of a function of wt:

IF wt ≤ 0.3
mt = wt

2

ELSE IF wt ∈ (0.3,0.7)
mt =wt

ELSE IF wt ≥ 0.7
mt = wt + 1

2

END

Figure 6.15 shows the resulting values of mt for the 2009 weather scenario. The damp-

ening of low values and the amplification of high values are displayed distinctly. Note that

the generation of mt is identical between clientMotivation3 and clientMotivation4,

as these classes only differ in their activity preferences.

Figure 6.15: Motivation values as a function of the weather, 2009 weather scenario.

The seed values for the simulation results are given in Table 6.36.

good bad yearSine year2009

Seeds 9667 50037 4 564

Table 6.36: Seed values for the MC simulations for different weather scnearios and both
clientMotivation3 and clientMotivation4.

124



6 Simulation

Results

The MC simulation results for the good weather scenario show large numbers in activity

selection as well as acceptances of the preferred activities for both clients, see Tables 6.37,

6.38, and Figure 6.16. The less desired activities are on average selected ten times less

often, and barely accepted.

clientMotivation3

& good

lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion 103 ± 3 18 ± 2 16 ± 1 103 ± 3 110 ± 3 16 ± 1
activity acceptance 100 ± 3 1 ± 2 1 ± 1 101 ± 3 108 ± 3 1 ± 1

Table 6.37: MC simulation results for clientMotivation3 and good weather.

The high acceptance rate for favoured activities is expected, since the good weather

scenario gives wt = 0.9 constantly, so mt = 0.95 for all t. As a consequence, the top

three activities have success probabilities of 0.9875, 0.9833, and 0.975 for all t and both

client classes. On the other hand, the less desired activities are accepted with a success

probability of 0.05 for all trials.

clientMotivation4

& good

lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion 17 ± 2 105 ± 3 105 ± 3 16 ± 1 16 ± 1 106 ± 3
activity acceptance 1 ± 2 104 ± 3 103 ± 3 1 ± 1 1 ± 1 103 ± 3

Table 6.38: MC simulation results for clientMotivation4 and good weather.

(a) clientMotivation3, good weather. (b) clientMotivation4, good weather.

Figure 6.16: MC simulation results for clientMotivation3 and clientMotivation4, and
good weather after 365 days.

There are noticeable variations in the number of times each feature is chosen during the

125



6 Simulation

combinatorial bandit search. For clientMotivation3, the availability feature is selected

least often on average, and the CI cannot compensate for this deficiency, see Table 6.39.

The most frequently selected feature is even more distinct for clientMotivation4: the

weather feature is chosen almost 300 times out of 365 trials, whereas fitness, availability,

and motivation are chosen less than 270 times on average.

Features clientMotivation3 clientMotivation4

Weather 278 ± 13 296 ± 10
Fitness 283 ± 12 263 ± 14
Availability 261 ± 14 269 ± 13
Motivation 274 ± 13 268 ± 14

Table 6.39: Rounded means and CIs of feature selection for clientMotivation3 and
clientMotivation4, good weather scenario.

The preferred activities are not identified for the bad weather scenario in either client,

see Tables 6.40 and 6.41. Instead, less desirable activities are chosen the most often: the

number of recommendations for less popular activities is on average increased by a factor of

4, and the amount of activity selections for the preferred activities is diminished by around

60%.

clientMotivation3

& bad

lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion 32 ± 4 73 ± 6 76 ± 6 54 ± 6 52 ± 6 78 ± 6
activity acceptance 17 ± 4 70 ± 6 72 ± 6 37 ± 6 40 ± 6 74 ± 6

Table 6.40: MC simulation results for clientMotivation3 and bad weather.

clientMotivation4

& bad

lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion 77 ± 6 53 ± 5 46 ± 5 76 ± 6 78 ± 6 34 ± 4
activity acceptance 73 ± 6 41 ± 5 32 ± 5 72 ± 6 74 ± 6 18 ± 4

Table 6.41: MC simulation results for clientMotivation4 and bad weather.

This is due to the weather value wt staying constantly at 0.1 throughout the simulation

year, which yields a constant motivation value of mt = 0.05. The success probability of any

non-favoured activity is thus fixed at 0.95 for all t, and the top three preferred activities have

success probabilities of 0.7625, 0.6833, and 0.525. This deterioration in activity acceptance

is reflected in the MC simulation outcomes depicted in Figure 6.17.

126



6 Simulation

(a) clientMotivation3, bad weather. (b) clientMotivation4, bad weather.

Figure 6.17: MC simulation results for clientMotivation3 and clientMotivation4, and
bad weather after 365 days.

For both clients, the third most popular activity is accepted the least often on aver-

age (i.e., low intensity indoor training for clientMotivation3 and high intensity outdoor

training for clientMotivation4). These activities are suggested in only 10% of cases, and

the acceptance rate of slightly more than 50% mirrors the success probability of 0.525.

The average numbers for feature selection in the combinatorial bandit are divided some-

what evenly for clientMotivation3, ranging within 13 instances. A similar outcome is

seen for clientMotivation4, where the average numbers for each feature range within 12

trials, see Table 6.42.

Features clientMotivation3 clientMotivation4

Weather 279 ± 10 269 ± 12
Fitness 266 ± 12 272 ± 11
Availability 273 ± 12 274 ± 11
Motivation 276 ± 10 281 ± 10

Table 6.42: Rounded means and CIs of feature selection for clientMotivation3 and
clientMotivation4, bad weather scenario.

The MC simulation results for the ideal year setting are displayed in Tables 6.43, 6.44,

and Figure 6.18. For both clients, the preferred activities are identified in correct order of

favouritism. This can be attributed to the fact that even though the weather data exhibits

non-stationary seasonal behaviour, when generating mt, only weather values below 0.3 are

decreased according to the formula. For all wt ≥ 0.3, it holds that mt ≥ wt, which in turn

boosts the success probabilities of the favoured activities.

The less desirable activities are still suggested a considerable amount of times, but the

average acceptance rate lies between 37% and 40% for each activity and either client. Note

127



6 Simulation

clientMotivation3

& yearSine

lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion 72 ± 5 46 ± 5 48 ± 5 75 ± 5 80 ± 5 43 ± 5
activity acceptance 60 ± 5 17 ± 5 18 ± 5 66 ± 5 74 ± 5 17 ± 5

Table 6.43: MC simulation results for clientMotivation3 and ideal weather.

that only 71 out of 365 weather values wt range below the 0.3 mark in the ideal weather

scenario, implying that the success probability for a less desirable arm exceeds 0.85 in

around 20% of trials.

clientMotivation4

& yearSine

lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion 46 ± 5 85 ± 5 77 ± 5 46 ± 4 45 ± 5 67 ± 5
activity acceptance 17 ± 5 77 ± 5 68 ± 5 17 ± 4 17 ± 5 55 ± 5

Table 6.44: MC simulation results for clientMotivation4 and ideal weather.

In contrast, wt ≥ 0.7 holds in 186 trials, which raises the success probability of the most

desirable arm for either client over 92% in around 51% of cases. Subsequently, the average

acceptance rates for the top three activities are 93%, 88%, and 83% for clientMotivation3

and 91%, 88%, and 82% for clientMotivation4.

(a) clientMotivation3, ideal weather. (b) clientMotivation4, ideal weather.

Figure 6.18: MC simulation results for clientMotivation3 and clientMotivation4, and
ideal weather after 365 days.

Concerning the average numbers of feature selection for the ideal weather scenario, there

is a clear outlier for clientMotivation3. Availability is chosen on average 15 times

less often than the next frequent feature. On the other hand, the feature selection for

clientMotivation4 is evenly distributed between features, where the average amount of

128



6 Simulation

times any feature is chosen ranges within 10 trials.

Features clientMotivation3 clientMotivation4

Weather 277 ± 10 279 ± 9
Fitness 276 ± 9 269 ± 10
Availability 261 ± 11 276 ± 9
Motivation 281 ± 9 271 ± 10

Table 6.45: Rounded means and CIs of feature selection for clientMotivation3 and
clientMotivation4, ideal weather scenario.

The MC simulation results for the 2009 weather setting are displayed in Tables 6.46,

6.47, and Figure 6.19. Since the 2009 weather data is taken from recorded measurements,

the outcome of this MC simulation can be assumed to deliver the most accurate results in

terms of identifying preferred activities.

clientMotivation3

& year2009

lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion 43 ± 5 69 ± 6 68 ± 6 54 ± 5 66 ± 5 64 ± 6
activity acceptance 30 ± 5 45 ± 6 44 ± 6 42 ± 5 56 ± 5 42 ± 6

Table 6.46: MC simulation results for clientMotivation3 and 2009 weather.

For clientMotivation3, the top activity (i.e., high intensity indoor training) is accepted

the most often on average, at 56 trials. However, the second and third most accepted

activities are low intensity outdoor and medium intensity indoor training, both of which

are not preferred by the client. Also, the top activity is only the third most recommended

suggestion (66 times), after both low (69 times), and medium (68 times) intensity training.

However, these averages of activity suggestions still range within the CIs of one another, so

that a definite outcome cannot be obtained with 200 MC simulation runs. Investigations

into MC simulations with more runs indicate that the top activity is still not the most

recommended suggestion.

clientMotivation4

& year2009

lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion 68 ± 6 62 ± 6 57 ± 5 65 ± 6 68 ± 5 45 ± 5
activity acceptance 44 ± 6 52 ± 6 45 ± 5 42 ± 6 44 ± 5 31 ± 5

Table 6.47: MC simulation results for clientMotivation4 and 2009 weather.

Also note that the activity suggestion with the least number of acceptances is the third

129



6 Simulation

most favoured activity of both clientMotivation3 and clientMotivation4.

The behaviour of clientMotivation4 is similar to that of clientMotivation3. The

top activity, low intensity outdoor training, is accepted most often, at 52 trials on average.

It is also only the third most suggested activity (62 times) after the less desirable choices

low and high intensity indoor training, holding both at 68 suggestions on average, and

medium outdoor training, which is suggested 65 times.

(a) clientMotivation3, 2009 weather. (b) clientMotivation4, 2009 weather.

Figure 6.19: MC simulation results for clientMotivation3 and clientMotivation4, and
2009 weather after 365 days.

Figure 6.15 gives a possible explanation as to why the preferred activities are not dis-

tinctly identified. Out of 365 data points, wt < 0.3 holds in 116 cases. Furthermore, wt > 0.7
only holds in six instances. This means that on 243 days, which is around 67% of trials,

the value for motivation is directly taken from the weather data, mt =wt. Due to the large

amount of low values for mt, the success probability is high for the all desirable activities

and either client. In fact, on 267 days the success probability for less popular activities lies

above 50%.

Features clientMotivation3 clientMotivation4

Weather 274 ± 9 266 ± 11
Fitness 268 ± 10 276 ± 9
Availability 275 ± 9 285 ± 8
Motivation 278 ± 9 268 ± 11

Table 6.48: Rounded means and CIs of feature selection for clientMotivation3 and
clientMotivation4, 2009 weather scenario.

Table 6.48 shows the average feature selection numbers for the ideal weather scenario.

There is no apparent bias towards the motivation feature, and the feature selection is

divided fairly evenly between the features for both clients.

130



6 Simulation

Discussion

During MC simulations with two differently motivated clients, whose motivation is modelled

as a function of the weather, it can be observed that the bias towards the favoured activities

is apparent, regardless of the weather scenario. However, by looking at a variety of weather

conditions, it is clear that a client’s favourite activities are not identified in the same way

as in Section 6.4.1.

The weather data plays an important part in assessing which activities a client is most

likely to accept (i.e., which activities a client is most motivated for). In the bad weather

setting, this means that the client actually prefers the less desirable activities over the

top three ones, due to the formulae calculating the success probabilities within the client

response generator method. On the other hand, the good weather setting amplifies the

results from Scenario 6.4.1.

It can be concluded that this model for motivation is a feasible approach towards more

complex relationships between different features. However, additional research into more

intricate formulae for any feature should be conducted. Yet the issue of modelling a more

realistic client is strictly removed from the implementation of the TSRC algorithm, which is

proven over and over again to be sufficiently adaptive to different client classes, underlining

its applicability as a possible algorithm for decision rules in a JITAI recommender system.

6.5 Investigating Feature Sparsity

Investigations into feature sparsity levels are necessary due to the aspect of restricted

context in the TSRC algorithm. It means answering the question of how many features

need to be regarded so that the simulation outcome yields results sufficiently close to the

full-featured TS algorithm.

In all previous simulation scenarios 25% sparsity is considered, so three out of four

features are selected to be regarded by the contextual bandit at each trial, see Sections

6.1, 6.2, 6.3, and 6.4. Fixing a level of sparsity for simulations with the TSRC algorithm

is a prerequisite for testing the functionality of the algorithm, and the choice of n = 3 is

influenced by the results presented by Bouneffouf et al. [16], who show that the performance

of the TSRC algorithm at 25% sparsity is almost equal to the full-featured TS algorithm

when classifying data sets.

This scenario looks into the sparsity levels not yet investigated in previous simulations,

namely n = 1 (75% sparsity), n = 2 (50% sparsity), and n = 4 (0% sparsity, full-featured).

One representative setting per isolated feature is selected and the MC simulation results

are compared to the earlier outcomes at 25% sparsity.

131



6 Simulation

Note that the implementation of the algorithm does not permit n = 0, or 100% sparsity

(i.e., a context-free bandit algorithm), see Section 5.3.3. Note further that feature sparsity

is also relevant when considering cases of missing data. Ideally, the error introduced by

restricted context (instead of using all features) should compensate for the problems caused

by a potential lack of feature data, see Scenario 6.6.

Simulation Setup

The general simulation parameters are depicted in Table 6.49. For feasible comparisons

with simulation results from previous scenarios, the general simulation parameters remain

mostly unchanged. Only the feature budget n and the algorithm parameter v vary, since

their values adjust according to the sparsity level.

T = 365 s = 200
k = 6 α = 0.05
d = 4 R = 0.1, δ = 0.8, ϵ = 0.9

Table 6.49: Simulation parameters for Scenario 6.5.

In order to investigate different levels of sparsity, the feature budget n must vary between

runs. Subsequently, the value for v, which depends explicitly on n, also changes. Table

6.50 shows the values for v in each sparsity setting, with parameters R, δ, ϵ, given in Table

6.49.

Sparsity Level Feature Budget Value for v

0% Sparsity n = 4 v ≈ 0.4879
25% Sparsity n = 3 v ≈ 0.4225
50% Sparsity n = 2 v ≈ 0.3450
75% Sparsity n = 1 v ≈ 0.2439

Table 6.50: Different sparsity levels and values for v in all client settings.

Table 6.51 lists the representative settings for each isolated feature as well as the MC

simulation seeds, and provides links to the scenarios for details about the client classes,

the exact property values of the respective clients, and the implementation of the client

response generator method.

Note that any of the other client settings from previous scenarios may be used for anal-

ogous comparisons of feature sparsity levels.

132



6 Simulation

Feature Representative Setting Seed Simulation Setup

Weather clientWeather1, good weather 8 Scenario 6.1.1

Fitness fit clientFitness1 89 Scenario 6.2.1

Availability available clientAvailability1 2542 Scenario 6.3.1

Motivation clientMotivation1 23 Scenario 6.4.1

Table 6.51: Representative settings for sparsity investigation.

Results

The results of the MC simulations for the full-featured TS algorithm and all simulation

settings are displayed in Figure 6.20. In all four settings, the client’s preferred activities

are identified distinctly, and the CIs are visibly narrower for both activity suggestions and

acceptances compared to the 25% sparsity setting.

(a) Weather. (b) Fitness.

(c) Availability. (d) Motivation.

Figure 6.20: MC simulation results for 0% sparsity (i.e., full-featured TS), and all client
settings.

When regarding the weather feature, the widths of the CIs for the favoured activities

range between 5 − 6% of the average number of suggestions, and between 6 − 7% of the

133



6 Simulation

average number of acceptances, which is identical to those of the 25% sparsity simulations

in Scenario 6.1.1.

A slightly larger margin is observed for the fitness feature: the CI widths of the preferred

activities lie within 7 − 8% of the average number of suggestions and acceptances in the

full-featured setting, but within 9 − 10% at 25% sparsity, see Scenario 6.2.1.

The small increase in CI width is also apparent for the availability feature, where the

full-featured TS algorithm produces CIs in the range of around 8% of the average number

of suggestions, and around 11% of the average number of acceptances. In contrast, the

simulation results of Scenario 6.3.1 show CI widths of 8 − 10% of the average number of

activity suggestions, and 11 − 14% of the average number of activity acceptances.

The motivation feature simulation depicts a similar outcome. The CI widths for activity

acceptances of the preferred activities are around 9% of the average number of suggestions,

whereas for acceptances, the CI widths lie within 10−11% of the average. However, the 25%

sparsity setting yields CI widths of 11 − 12% of the average for suggestions, and 11 − 15%
of the average for acceptances.

clientWeather1 & good lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion, n = 4 19 ± 2 102 ± 3 21 ± 2 98 ± 3 20 ± 2 105 ± 3
activity acceptance, n = 4 2 ± 2 92 ± 3 2 ± 2 88 ± 3 2 ± 2 94 ± 3
activity suggestion, n = 3 17 ± 2 100 ± 3 20 ± 2 105 ± 3 18 ± 2 104 ± 3
activity acceptance, n = 3 2 ± 2 91 ± 3 2 ± 2 95 ± 3 2 ± 2 94 ± 3
activity suggestion, n = 2 14 ± 2 110 ± 4 13 ± 2 110 ± 4 17 ± 2 102 ± 5
activity acceptance, n = 2 1 ± 2 99 ± 4 1 ± 2 99 ± 4 2 ± 2 91 ± 5
activity suggestion, n = 1 12 ± 4 108 ± 9 11 ± 3 113 ± 8 8 ± 3 113 ± 8
activity acceptance, n = 1 1 ± 4 97 ± 9 1 ± 3 102 ± 8 1 ± 3 101 ± 8

Table 6.52: MC simulation results for clientWeather1, good weather, and different spar-
sity levels.

The outcome of the MC simulations for the weather feature in all sparsities is displayed

in Table 6.52. On all sparsity levels, the preferred activities (i.e., outdoor training) are

correctly identified. However, at 75% sparsity, the width of the CIs for the preferred

activities almost triples in size compared to the full-featured version.

A similar observation is made when looking at Figure 6.21, which displays the feature

selection for the weather feature at 50%, and 75%, sparsity. The widths of the CIs for

features in the 50% sparsity setting range between 15 − 17% of the average number of

feature selections. In the case of 75% sparsity, the widths range from 24 − 27% of the

134



6 Simulation

(a) 50% sparsity. (b) 75% sparsity.

Figure 6.21: Overall feature selection for different sparsity levels, clientWeather1, and
good weather.

average number of selections. In comparison, the fluctuations for the selection numbers in

Scenario 6.1.1 lie between 7 − 12% of the average values.

Table 6.53 shows the rounded means and CIs for the feature selection on all sparsity

levels for client clientWeather1 and the good weather setting.

clientWeather1 & good Weather Fitness Availability Motivation

0% Sparsity (n = 4) 365 ± 0 365 ± 0 365 ± 0 365 ± 0
25% Sparsity (n = 3) 252 ± 15 273 ± 13 285 ± 12 286 ± 11
50% Sparsity (n = 2) 180 ± 15 176 ± 14 194 ± 15 179 ± 15
75% Sparsity (n = 1) 97 ± 12 91 ± 12 89 ± 12 88 ± 11

Table 6.53: Rounded means and CIs of feature selection for clientWeather1, good weather,
and different sparsity levels.

The MC simulation results for the fitness feature are displayed in Table 6.54. In general,

the outcome for the preferred activities (i.e., medium and high intensity training) is the

same as for the weather feature. The correct features are identified even at low sparsity

levels, and the widths of the CIs for the preferred activities grow in proportion to increased

sparsity: at 75% sparsity, the width of the CIs are over three times the size of the CIs

obtained by the full-featured TS algorithm.

Figure 6.22 shows the means and CIs for the feature selection of clientFitness1 in the

fit property setting. At 75% sparsity, there is a distinct drop in the number of choices for

the weather feature previously unseen in lower sparsity levels for the same setup. Also, the

widths of the CIs more than triple compared to the “default” case of 25% sparsity: from

widths within 11 − 12% of the average number of feature selections, they rise to 32 − 37%.

The rounded means and CIs of the feature selection on all sparsity levels for fit client

135



6 Simulation

clientFitness1 lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion, n = 4 14 ± 1 15 ± 2 83 ± 3 84 ± 3 85 ± 3 84 ± 3
activity acceptance, n = 4 1 ± 1 1 ± 2 81 ± 3 82 ± 3 83 ± 3 84 ± 3
activity suggestion, n = 3 14 ± 2 15 ± 2 84 ± 4 83 ± 4 86 ± 4 83 ± 4
activity acceptance, n = 3 1 ± 2 1 ± 2 82 ± 4 81 ± 4 84 ± 4 82 ± 4
activity suggestion, n = 2 13 ± 3 11 ± 2 82 ± 5 85 ± 5 84 ± 6 90 ± 6
activity acceptance, n = 2 1 ± 3 1 ± 2 80 ± 5 83 ± 5 82 ± 6 88 ± 6
activity suggestion, n = 1 14 ± 6 12 ± 5 86 ± 10 80 ± 10 86 ± 10 86 ± 10
activity acceptance, n = 1 1 ± 6 1 ± 5 84 ± 10 78 ± 10 84 ± 10 84 ± 10
Table 6.54: MC simulation results for fit clientFitness1 and different sparsity levels.

(a) 50% sparsity. (b) 75% sparsity.

Figure 6.22: Overall feature selection for fit clientFitness1 and different sparsity levels.

clientFitness1 are given in Table 6.55.

Table 6.56 displays the rounded means and CIs for the activity suggestions and accep-

tances of clientAvailability1 in the available property setting. Again, the triple increase

in CI width is observed compared to the results of the full-featured TS algorithm for the

client’s preferred activities (i.e., low intensity indoor and outdoor training), similar to the

simulations for both the weather and fitness feature.

However, the same trend does not wholly apply to the feature selection. Table 6.57 gives

the rounded means and CIs of the average feature selection for clientAvailability1 in

the available property setting for different sparsity levels.

Whereas the width of the CI for the weather feature increases from around 10% of the

average number of feature selections for n = 3 to only around 19% for n = 1, the CI width

of the availability feature covers around 8% of the average number of feature selections for

n = 3, but almost triples to around 21% for n = 1.
136



6 Simulation

clientFitness1 Weather Fitness Availability Motivation

0% Sparsity (n = 4) 365 ± 0 365 ± 0 365 ± 0 365 ± 0
25% Sparsity (n = 3) 276 ± 15 277 ± 16 274 ± 16 267 ± 16
50% Sparsity (n = 2) 185 ± 18 188 ± 18 171 ± 18 186 ± 19
75% Sparsity (n = 1) 81 ± 15 89 ± 16 97 ± 16 99 ± 16

Table 6.55: Rounded means and CIs of feature selection for different sparsity levels and fit
clientFitness1.

clientAvailability1 lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion, n = 4 101 ± 4 99 ± 4 46 ± 4 44 ± 4 37 ± 3 37 ± 4
activity acceptance, n = 4 73 ± 4 73 ± 4 16 ± 4 15 ± 4 11 ± 3 11 ± 4
activity suggestion, n = 3 102 ± 4 100 ± 5 47 ± 5 44 ± 5 37 ± 4 34 ± 4
activity acceptance, n = 3 75 ± 4 73 ± 5 16 ± 5 15 ± 5 10 ± 4 10 ± 4
activity suggestion, n = 2 92 ± 7 106 ± 7 47 ± 7 47 ± 6 39 ± 6 35 ± 6
activity acceptance, n = 2 66 ± 7 76 ± 7 16 ± 7 16 ± 6 11 ± 6 10 ± 6
activity suggestion, n = 1 103±12 93 ± 11 44 ± 10 51 ± 11 42 ± 10 32 ± 8
activity acceptance, n = 1 74 ± 12 68 ± 11 15 ± 10 17 ± 11 12 ± 10 9 ± 8

Table 6.56: MC simulation results for available clientAvailability1 and different spar-
sity levels.

clientAvailability1 Weather Fitness Availability Motivation

0% Sparsity (n = 4) 365 ± 0 365 ± 0 365 ± 0 365 ± 0
25% Sparsity (n = 3) 258 ± 13 278 ± 11 281 ± 11 277 ± 11
50% Sparsity (n = 2) 177 ± 13 191 ± 13 179 ± 13 183 ± 13
75% Sparsity (n = 1) 96 ± 9 93 ± 9 90 ± 9 86 ± 9

Table 6.57: Rounded means and CIs of feature selection for different sparsity levels and
available clientAvailability1.

Figure 6.23 shows the MC simulation results for available clientAvailability1 at

50%, and 75%, sparsity. There is a distinct trend towards the weather feature as the

most frequently selected feature at 75% sparsity, compared to 50% sparsity where the most

prominent feature is the client’s fitness.

The MC simulation results for the isolated motivation feature are displayed in Table

6.58, which shows the rounded means and CIs for activity suggestions and acceptances for

137



6 Simulation

(a) 50% sparsity. (b) 75% sparsity.

Figure 6.23: Overall feature selection for available clientAvailability1 and different
sparsity levels.

clientMotivation1. In contrast to the previous three cases, the CI width increases only

by a factor of around 2.4 in the client’s preferred activity suggestions and acceptances (i.e.,

low intensity indoor training, medium intensity outdoor training, and high intensity indoor

training) at 75% sparsity compared to the full-featured setting.

clientMotivation1 lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion, n = 4 88 ± 4 35 ± 3 35 ± 3 88 ± 4 86 ± 4 32 ± 3
activity acceptance, n = 4 72 ± 4 14 ± 3 14 ± 3 78 ± 4 78 ± 4 12 ± 3
activity suggestion, n = 3 81 ± 5 36 ± 4 34 ± 4 88 ± 5 92 ± 5 34 ± 4
activity acceptance, n = 3 66 ± 5 14 ± 4 14 ± 4 78 ± 5 78 ± 5 13 ± 4
activity suggestion, n = 2 82 ± 6 30 ± 5 34 ± 5 93 ± 7 90 ± 6 37 ± 5
activity acceptance, n = 2 66 ± 6 11 ± 5 13 ± 5 82 ± 7 82 ± 6 14 ± 5
activity suggestion, n = 1 85 ± 10 31 ± 9 32 ± 8 90 ± 10 95 ± 10 32 ± 8
activity acceptance, n = 1 68 ± 10 12 ± 9 12 ± 8 79 ± 10 86 ± 10 12 ± 8
Table 6.58: MC simulation results for clientMotivation1 and different sparsity levels.

Table 6.59 depicts the MC simulation results in terms of feature selection for client

clientMotivation1. At CI widths between 20 − 25% for n = 1, the isolated motivation

feature setting displays the second largest increase in CI width (after the weather setting)

for the feature selection in the combinatorial bandit.

The feature selection numbers for clientMotivation1 at 50%, and 75%, sparsity are

displayed in Figure 6.24a. Note that for 75% sparsity, the motivation feature is chosen

significantly less often than the other three features, on average only 80 times. In contrast,

138



6 Simulation

clientMotivation1 Weather Fitness Availability Motivation

0% Sparsity (n = 4) 365 ± 0 365 ± 0 365 ± 0 365 ± 0
25% Sparsity (n = 3) 274 ± 11 270 ± 12 271 ± 12 280 ± 12
50% Sparsity (n = 2) 176 ± 13 179 ± 13 180 ± 13 194 ± 14
75% Sparsity (n = 1) 95 ± 10 90 ± 10 99 ± 10 80 ± 10

Table 6.59: Rounded means and CIs of feature selection for different sparsity levels and
clientMotivation1.

it is the most regarded feature for 50% sparsity at 194 selections out of 365 trials.

(a) 50% sparsity. (b) 75% sparsity.

Figure 6.24: Overall feature selection for clientMotivation1 and different sparsity levels.

Discussion

The MC simulations at n = 4 prove that the results of Bouneffouf et al. [16] concerning

the high accuracy of the 25% sparsity setting are accurate, even when applying the TSRC

algorithm as decision rules in a JITAI recommender system. Throughout all simulation

settings, there is a noticeable difference between simulation outcomes of the full-featured TS

algorithm and the restricted context setting at 25% sparsity; however, the margin is small

enough to consider the restricted context setting at n = 3 to be equal to the full-featured

TS algorithm. Such small deviations from the full-featured simulation results displayed in

Figure 6.20 may be worth accepting in exchange for a mechanism that can potentially solve

the problem of missing data.

It can be concluded that all levels of feature sparsity produce roughly the same result

in all four simulation settings, correctly identifying the different clients’ preferred activities

when only regarding one feature. However, the CIs for both activities and features grow

wider as the sparsity level increases. Still, in the case of the isolated weather feature, a

139



6 Simulation

sparsity level of 50% yields results sufficiently close to the full-featured algorithm setting

in terms of average activity suggestion and acceptance. It is irrelevant to the outcome

that the average feature selection numbers show a wider variety between single simulation

runs of the MC simulation. In light of increased sparsity, this development is expected:

the less features the algorithm can observe at a trial, the longer it takes to identify which

ones are useful, and which ones are not. If anything, it illustrates how adaptive the TSRC

algorithm is to changing situations, being able to identify the correct activities without

having to overuse the observed weather data.

A short investigation into the trade-off between the number of MC simulation runs s,

and the level of sparsity d, almost confirms that, even at lower sparsity levels, results of

similar or higher quality (comparable results, narrower CIs) to the full-featured setting

can be achieved when increasing s for fixed CI parameter α, underlining that the TSRC

algorithm can still correctly identify a client’s preferred activities at high sparsity.

However, the TSRC algorithm may not yield results this explicit for more complicated

client models. Modelling accurate client responses is vital because a JITAI recommender

system must be proven to be effective in order to move on to a clinical trial, where its

usefulness is determined by running tests with real-life participants. Since the TSRC algo-

rithm is proven to be accurate for different sparsity levels and different features, research

into more elaborate client models ought to be the next step in investigating the algorithm’s

usefulness as decision rules.

6.6 The Case of Missing Data

The implications of faulty measurements, or missing data, on both the JITAI and the TSRC

algorithm are discussed in Sections 2.2.2 and 4.4.1. This simulation scenario examines how

the TSRC algorithm deals with cases of missing data, and investigates its potential to solve

any of the problems that occur within a JITAI recommender system when it is sporadically

lacking feature data. In accordance with Scenario 6.5, the same four simulation setups are

employed, each representing an isolated feature setting from previous sections.

Simulation Setup

The general simulation parameters are depicted in Table 6.60. Note that the sparsity level

is fixed at 25%, and varying sparsity levels are not regarded.

Two different values for the missing data probability q are considered: q = 0.2 and q = 0.7.
As explained in Section 5.3.3, at each trial t, one of the features wt, ft, at, mt, is missing

its data with probability q. The function missingDataGenerator.m is implemented in

140



6 Simulation

such a way that the case of missing data is established before, and the respective feature

exhibiting lack of data is selected thereafter.

T = 365 n = 3 R = 0.1, δ = 0.8, ϵ = 0.9
k = 6 s = 200 v ≈ 0.4225
d = 4 α = 0.05 q = 0.2 ∨ q = 0.7

Table 6.60: Simulation parameters for Scenario 6.6.

The client classes as well as the seeds used for simulation are depicted in Table 6.51.

Results

The MC simulation outcomes for clientWeather1 and the good weather setting show al-

most identical results between both missing data probabilities, in terms of the rounded

means and CIs for activity suggestions and acceptances. Furthermore, they are exception-

ally close to the simulation results of the default case in Scenario 6.1.1, see Tables 6.4 and

6.61. The difference for all activities is so minimal that it can be neglected.

clientWeather1 & good lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion, q = 0.2 18 ± 2 103 ± 4 18 ± 2 104 ± 4 17 ± 2 104 ± 3
activity acceptance, q = 0.2 2 ± 2 92 ± 4 2 ± 2 94 ± 4 2 ± 2 94 ± 3
activity suggestion, q = 0.7 19 ± 2 103 ± 3 20 ± 2 102 ± 3 19 ± 2 102 ± 3
activity acceptance, q = 0.7 2 ± 2 93 ± 3 2 ± 2 92 ± 3 2 ± 2 92 ± 3

Table 6.61: MC simulation results for different missing data probabilities, clientWeather1,
and good weather.

The same outcome is observed for the other three isolated features. Table 6.62 gives

the rounded means and CIs for activity suggestions and acceptances in both missing data

probabilities for the isolated fitness feature, and Table 6.17 in Scenario 6.2.1 provides the

MC simulation results for the default case.

The (rounded) widths of the CIs are identical for each activity. Furthermore, the less

desired activities (i.e., low intensity training) show average suggestion rates of around

14 − 15, and the preferred activities for the fit client (i.e., medium and high intensity

training) exhibit average suggestion rates of just over 80 in all three cases.

Table 6.63 displays the MC simulation results for activity selection and acceptance in

the isolated availability feature setting for both missing data cases. The widths of the CIs

for the preferred activities (i.e., low intensity training) remain at around 10% of both the

average numbers for activity suggestions and acceptances.

141



6 Simulation

clientFitness1 lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion, q = 0.2 14 ± 2 14 ± 2 85 ± 4 81 ± 4 84 ± 4 86 ± 4
activity acceptance, q = 0.2 1 ± 2 1 ± 2 83 ± 4 80 ± 4 82 ± 4 84 ± 4
activity suggestion, q = 0.7 14 ± 2 14 ± 2 83 ± 4 84 ± 4 88 ± 4 82 ± 4
activity acceptance, q = 0.7 1 ± 2 1 ± 2 81 ± 4 83 ± 4 85 ± 4 80 ± 4

Table 6.62: MC simulation results for clientFitness1 and different missing data proba-
bilities.

clientAvailability1 lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion, q = 0.2 99 ± 5 103 ± 5 41 ± 5 47 ± 5 38 ± 4 36 ± 4
activity acceptance, q = 0.2 72 ± 5 75 ± 5 14 ± 5 16 ± 5 11 ± 4 10 ± 4
activity suggestion, q = 0.7 100 ± 5 102 ± 5 48 ± 5 50 ± 5 32 ± 4 33 ± 4
activity acceptance, q = 0.7 73 ± 5 74 ± 5 16 ± 5 18 ± 5 9 ± 4 9 ± 4

Table 6.63: MC simulation results for clientAvailability1 and different missing data
probabilities.

clientMotivation1 lowInt.
ind.

lowInt.
outd.

medInt.
ind.

medInt.
outd.

highInt.
ind.

highInt.
outd.

activity suggestion, q = 0.2 83 ± 5 37 ± 4 33 ± 4 88 ± 5 91 ± 4 34 ± 4
activity acceptance, q = 0.2 68 ± 5 15 ± 4 13 ± 4 77 ± 5 82 ± 4 13 ± 4
activity suggestion, q = 0.7 84 ± 5 33 ± 4 31 ± 4 92 ± 5 92 ± 5 34 ± 4
activity acceptance, q = 0.7 68 ± 5 13 ± 4 12 ± 4 80 ± 5 84 ± 5 13 ± 4

Table 6.64: MC simulation results for clientMotivation1 and different missing data prob-
abilities.

The rounded means and CIs for activity suggestions and acceptances for the isolated

motivation feature are shown in Table 6.64. Compared to the default case depicted in

Table 6.33, the CI widths are the same for both missing data probabilities. In the default

setting, around 90% of the suggestions for the client’s favourite activity (i.e., high intensity

indoor training) are accepted, followed by around 89% for their second favourite activity

(i.e., medium intensity indoor training), and 82% for their third most popular activity (i.e.,

low intensity indoor training). In the missing data setting, these acceptance rates are found

to be 90%, 88%, and 82% for q = 0.2, and 91%, 87%, and 81% for q = 0.7.
The same trend of minimal differences to the default case is exhibited in all MC simulation

142



6 Simulation

Simulation Setup Weather Fitness Availability Motivation

clientWeather1, good, q = 0.2 274 ± 8 274 ± 8 274 ± 8 273 ± 8
clientWeather1, good, q = 0.7 275 ± 2 272 ± 3 274 ± 3 275 ± 5
clientFitness1, q = 0.2 275 ± 10 271 ± 10 275 ± 10 274 ± 10
clientFitness1, q = 0.7 270 ± 3 274 ± 3 274 ± 3 277 ± 2
clientAvailability1, q = 0.2 275 ± 7 272 ± 7 276 ± 7 271 ± 8
clientAvailability1, q = 0.7 275 ± 2 273 ± 3 275 ± 2 273 ± 3
clientMotivation1, q = 0.2 269 ± 8 267 ± 8 271 ± 8 288 ± 6
clientMotivation1, q = 0.7 274 ± 2 272 ± 2 273 ± 2 276 ± 2

Table 6.65: Rounded means and CIs of feature selection for all four client classes and dif-
ferent missing data probabilities.

results regarding feature selection, see Table 6.65. Three out of four isolated feature settings

show little discrepancy in the average number of feature selections between both missing

data probabilities. The isolated motivation feature displays a different dynamic: the default

setting as well as the missing data setting for q = 0.2 distinctly select the motivation feature

the most often compared to the other three. However, for q = 0.7, this favouritism is equalled

out, suggesting that the missing data generator may have affected the motivation feature

disproportionally more than the other three.

Note that the rounded means and CIs for feature selection in the default case are found

in the left column of Tables 6.4, 6.17, 6.27, and 6.33.

Discussion

The proximity of the results for the missing data setting to the default case is not unex-

pected. Depending on how many features are assumed to be missing at the same time and

the budget n, the TSRC algorithm possesses a natural way of dealing with missing data,

without compromising the learning procedure with erroneous information: as long as the

number of disregarded features d − n is equal to the amount of features that are expected

to have unreliable data values in the same iteration, the TSRC algorithm is expected to

show similar performance to the default case, because it will omit d−n features regardless

of whether the neglected information is viable. Due to the implementation of the missing

data generator function, see Section 5.3.3, no more than one feature may be missing per

trial. Since, d − n = 1, the TSRC algorithm disregards one feature anyway.

However, problems may arise when more than d−n feature values are invalid. The fixed

budget n ought to be set according to the amount of features that are expected to be faulty

143



6 Simulation

in the same iteration. In situations where this number is exceeded, the TSRC algorithm

should not recommend adversary suggestions to a client, and additional mechanisms must

be considered to compensate for these cases.

For example, it is possible to introduce a “dummy value” that is assigned to feature

j in case its measurements are erroneous, in addition to setting its combinatorial bandit

draw, θj , to zero. Most times, when the feature budget n covers the lack of data, the data

value of j is not regarded. However, if θj = 0 for more than d − n features, at least one

of the erroneous feature data is chosen, in which case the feature value should not distort

the results too much. For the model JITAI, this could mean setting the respective feature

value to 0.5, since it is the default value for all class properties.

In order to investigate the TSRC algorithm’s response to this (more realistic) portrayal of

the case of missing data, the codes for the algorithm TSRC.m and the missing data generator

function missingDataGenerator.m can be extended to include this functionality.

144



7 Conclusion and Outlook

The outcomes of the simulation scenarios in Chapter 6 confirm that the TSRC algorithm

ought to be considered as the decision rules component in a JITAI recommender system.

The algorithm correctly identifies the activity preferences of various model clients that base

the decision of whether or not to accept an activity suggestion on a singular contextual

feature, see Scenarios 6.1.1, 6.2.1, and 6.3.1. Furthermore, the results also reveal that no

bias is formed towards activities linked to the isolated feature when the client considers

all feature values except for the isolated feature, see Scenarios 6.1.2, 6.2.2, and 6.3.2. The

linear relationship between feature values and success probabilities for activity suggestions

is thus easily recognised by the TSRC algorithm. Even when raising the complexity level of

the connection between the isolated feature and the client’s reaction, see Scenarios 6.4.1 and

6.4.2, the algorithm correctly identifies the client’s favoured activities in order of preference.

There is no apparent reason why the TSRC algorithm should not yield equally authentic

results when interacting with a real person. However, the stationarity of the model clients

must be acknowledged. In a real-life setting, a client is likely to show inconsistent behaviour,

or to go through periods of consistency, and thus the learning rate of the TSRC algorithm

is most likely slowed down. An attempt has been made by Bouneffouf et al. [16] to tackle

non-stationary problems using TS: as mentioned in Section 3.4.3, the WTSRC algorithm

is an extension of the TSRC algorithm that assumes periods of stationarity. It allows the

number of successes Sj and failures Fj , j ∈ {1, . . . , d}, which influence the combinatorial

bandit (i.e., the feature selection) directly and the contextual bandit (i.e., the activity

selection) indirectly, to reset within each period window. This way, adaptivity can be

achieved within a pre-defined window length.

In general, the next step in the analysis of the TSRC algorithm as decision rules should

be to model more complex (i.e., more realistic) client behaviour. Many aspects of client

behaviour have been simplified, or omitted, when creating clients for the model JITAI, for

the purpose of obtaining clearly interpretable simulation results. For example, intervention

engagement and fatigue have not been regarded in model clients or the model JITAI. How-

ever, as mentioned in Chapter 2, these mechanisms are shown to significantly influence a

client’s attitude towards the JITAI intervention design.

145



7 Conclusion and Outlook

A possible way to expand existing client classes, and include these processes, is to con-

sider different delivery systems for the same activity as separate suggestions. For example,

if there are two different notification messages that deliver the same activity suggestion,

they may be regarded as two separate suggestions. In the case of the model JITAI from

Section 5.1, the number of possible activities increases from 6 to 12. The response gener-

ator within the client class then calculates different success probabilities for all 12 activity

suggestions. In turn, the model JITAI may count the number of times the suggestions have

been accepted in the past, and if the adherence to one of them is low, the program may

switch to the alternative notification.

The performance of the TSRC algorithm in terms of feature sparsity exceeds expecta-

tions. On average, the simulation results at 75% sparsity still mirror the full-featured case

throughout all isolated feature setups. This indicates that feature sparsity offers sufficient

levels of adaptivity to compensate for erroneous, or missing, feature values. However, the

performance of the TSRC algorithm is expected to decline with an increasing number of

features d. Furthermore, the natural trade-off between feature sparsity and missing data

cannot work if more than d − n feature values are unavailable. The discussion of Scenario

6.6 elaborates on the problems arising from this issue and offers dummy values as one pos-

sible solution. Another approach is to look into machine-learning based data compensation

methods that can generate feature values that are most likely to occur at a specific decision

point. In any case, research should be conducted into comparing the TSRC algorithm to

the full-featured TS algorithm working with data compensation in terms of performance

and efficiency, and a combination of both concepts is likely to be similarly competitive.

An effort should also be made to further research theoretical performance evaluation.

As mentioned in Chapter 3, TS is only recently being analysed in terms of computational

effort (i.e., the expected regret) [2], namely regret bounds [79]. A theoretical background

like this does not yet exist for the TSRC algorithm, but it might shed further light on the

applicability of the algorithm as JITAI decision rules.

Even with all these boxes ticked, the road to a functional JITAI is still long: Chapter

2 elaborates on the design and implementation facets of working JITAIs, for example

deciding what functionality the JITAI will have regarding illness management, identifying

intervention options, or conducting MRTs. The former requires an already programmed

mobile phone application, which can only be created after the RL algorithm behind the

intervention recommendation is proven to be functional.

It is apparent that further research into the subject of RL algorithms as decision rules

in JITAI recommender system touches on many disciplines: data science, statistics, be-

havioural psychology, medicine, mathematics, engineering, and computer science must nat-

urally play a part in both the planning and execution of the final product. In terms of

146



7 Conclusion and Outlook

mHealth, much progress has already been made, but equal amounts of work, or even more,

still lie ahead. Making health services easily available to all global citizens is a target set

by the WHO [89], and mHealth applications can help pave the way. After all, it can be

concluded that the topic of JITAIs in mHealth, and the underlying algorithms that make

them possible, is progressing at a remarkable speed, helping both patients and caretakers

enter into a new era in healthcare and medicine.

147



List of Algorithms

1 Multi-Armed Bandit Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Contextual Multi-Armed Bandit Algorithm . . . . . . . . . . . . . . . . . . . . . 31

3 Greedy Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 e-Greedy Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Upper Confidence Bound Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Thompson Sampling Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 Thompson Sampling for the CMAB Problem . . . . . . . . . . . . . . . . . . . . 52

8 Contextual Bandit with Restricted Context Strategy . . . . . . . . . . . . . . . 68

9 Thompson Sampling for Combinatorial Bandits . . . . . . . . . . . . . . . . . . 69

10 Thompson Sampling with Restricted Context . . . . . . . . . . . . . . . . . . . 71

148



List of Figures

2.1 Intervention concept for the JITAI design, after [58]. . . . . . . . . . . . . . . 6

2.2 Summary of the pragmatic framework for developing JITAIs, from [57]. . . . 13

2.3 Screenshot of the HeartSteps app in Google Play Store and App Store, ac-

cessed on 2021 − 08 − 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Summary of the mHealth initiatives reported to the WHO in its member

states in 2011, from [89]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Screenshot of the A-CHESS smartphone app in the App Store, accessed on

2021-10-08. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Staged development of the FOCUS mobile phone application, after [13]. . . . 19

2.7 Screenshot of activity and food suggestion user interface in MyBehavior,

from [66]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8 Main screen of the SitCoach application, from [82]. . . . . . . . . . . . . . . . 22

2.9 A simplified illustration of Fogg’s behavior model, after [26]. . . . . . . . . . . 23

3.1 Visualisation of the Bernoulli MAB problem, after [70]. . . . . . . . . . . . . . 26

3.2 Pulling the arm of the i-th bandit is equal to pulling the i-th arm of a

k-armed bandit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Visual representation of the analogy between the elements of the CMAB

approach and the components of the JITAI design. . . . . . . . . . . . . . . . 33

3.4 JITAI concept from Figure 2.1 adapted for the use of a CMAB algorithm. . 33

3.5 Regret curves for different strategies, schematically sketched after [70]. . . . 36

3.6 Example of greedy strategy simulations in a three-armed bandit with initial

estimates set to 0.5 and true values (0.3,0.7,0.8), after [70]. . . . . . . . . . . 37

3.7 Comparison between greedy and e-greedy strategy for the three-armed Bernoulli

bandit and different values of e, from [70]. . . . . . . . . . . . . . . . . . . . . . 39

3.8 Decaying e-greedy strategy for different decay schedules, from [70]. . . . . . . 40

3.9 Visual representation of exploration and exploitation in a UCB strategy. . . 43

3.10 Density functions and upper confidence bounds for the three-armed Bernoulli

bandit example at 80%, after [70]. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.11 Bayesian update rule for beta distribution prior and Bernoulli observation,

assuming success, after [70]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

149



List of Figures

3.12 Example of 10 iterations of Bayesian updates assuming beta priors, posteri-

ors, and Bernoulli observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.13 UCB strategy for different upper confidence limits, from [70]. . . . . . . . . . 48

3.14 Probability density function and mean of the beta distribution, for different

values of α, β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.15 Illustration of the Thompson Sampling approach in a three-armed Bernoulli

bandit, after [70]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.16 Screenshots of different user interfaces in the mobile phone apps discussed

in Section 3.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Illustration of the direct (solid line) and indirect (dashed line) influences on

the transition into a new state via a policy. . . . . . . . . . . . . . . . . . . . . 60

4.2 Graphical representation of the relationship between CMABs and MDPs,

and the different learning paradigms solving them. . . . . . . . . . . . . . . . . 62

4.3 Example of an interaction between agent and environment from an RL per-

spective, after [83]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 A clinical trial conceptualised as a CMAB algorithm, compare Figure 3.4. . 65

4.5 Composition of a policy q in case of restricted context. . . . . . . . . . . . . . 72

5.1 Sliding scale for assessing a client’s motivation, and normalisation of the value. 77

5.2 Possible influence pattern on the intervention options. Darker areas repre-

sent high probabilities of activity acceptance when feature values are high. . 78

5.3 The model JITAI working along a timeline of 24h observation periods, show-

ing both cases of detecting and not detecting the suggested activity. . . . . . 80

5.4 Implementation tree illustrating the Matlab class properties (blue) and

methods (purple) for clients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Illustration of the idealised weather data for one year via the sine function. . 86

5.6 Illustration of the normalised weather data for 2009. . . . . . . . . . . . . . . 87

5.7 Implementation tree of weatherGenerator.m, showing the functions (yel-

low) and text files (brown) involved. . . . . . . . . . . . . . . . . . . . . . . . . 87

5.8 Implementation tree of monteCarloTSRC.m, showing the functions, client

properties, and methods called during a MC simulation. . . . . . . . . . . . . 90

6.1 Client response for single runs of TSRC.m and clientWeather1. . . . . . . . . 97

6.2 Client response to activity suggestions over time, ideal weather setting. . . . 98

6.3 MC simulation results for clientWeather1 after 365 days for ideal and 2009

weather. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4 MC simulation results for clientWeather2 after 365 days for good and bad

weather. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.5 Client response for single runs of TSRC.m and clientFitness1. . . . . . . . . 107

150



List of Figures

6.6 MC simulation results for fit and unfit clientFitness1 after 365 days. . . . 107

6.7 Success probabilities for three exercise intensity levels, for modelling the

response of clientFitness1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.8 MC simulation results for fit and unfit clientFitness2 after 365 days. . . . 110

6.9 Success probabilities for three exercise intensity levels, for modelling the

response of clientAvailability1. . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.10 Total number of suggestions and acceptances for available and unavailable

clientAvailability1 after 365 days. . . . . . . . . . . . . . . . . . . . . . . . 114

6.11 MC simulation results for available and unavailable clientAvailability1

after 365 days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.12 MC simulation results for available and unavailable clientAvailability2

after 365 days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.13 Total number of suggestions and acceptances for clientMotivation1 and

clientMotivation2 after 365 days. . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.14 MC simulation results for clientMotivation1 and clientMotivation2 af-

ter 365 days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.15 Motivation values as a function of the weather, 2009 weather scenario. . . . . 124

6.16 MC simulation results for clientMotivation3 and clientMotivation4,

and good weather after 365 days. . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.17 MC simulation results for clientMotivation3 and clientMotivation4,

and bad weather after 365 days. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.18 MC simulation results for clientMotivation3 and clientMotivation4,

and ideal weather after 365 days. . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.19 MC simulation results for clientMotivation3 and clientMotivation4,

and 2009 weather after 365 days. . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.20 MC simulation results for 0% sparsity (i.e., full-featured TS), and all client

settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.21 Overall feature selection for different sparsity levels, clientWeather1, and

good weather. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.22 Overall feature selection for fit clientFitness1 and different sparsity levels. 136

6.23 Overall feature selection for available clientAvailability1 and different

sparsity levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.24 Overall feature selection for clientMotivation1 and different sparsity levels.139

151



List of Tables

2.1 Overview and short description of applications using the JITAI design. . . . 18

3.1 Strategies used in CMAB algorithms with short descriptions. . . . . . . . . . 35

3.2 Short description of MAB- and CMAB-based applications in mHealth. . . . 55

4.1 List and short descriptions of algorithms tested against TSRC, from [16]. . . 73

5.1 Summary of the JITAI elements of the model JITAI. . . . . . . . . . . . . . . 79

5.2 Properties and their descriptions of the Matlab classes for all clients. . . . . 81

5.3 List of all client Matlab classes used in simulations. . . . . . . . . . . . . . . 84

5.4 List of plots generated after a single run of TSRC.m. . . . . . . . . . . . . . . . 89

5.5 List of plots generated after a MC simulation with TSRC.m. . . . . . . . . . . 91

5.6 Sparsity levels for the TSRC algorithm. . . . . . . . . . . . . . . . . . . . . . . 92

6.1 Simulation parameters for Scenario 6.1.1. . . . . . . . . . . . . . . . . . . . . . 95

6.2 Class property values for clientWeather1 in Scenario 6.1.1. . . . . . . . . . . 95

6.3 Weather feature values and seeds (single run, MC) for clientWeather1 in

Scenario 6.1.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4 MC simulation results for good weather and clientWeather1. . . . . . . . . 96

6.5 MC simulation results for bad weather and clientWeather1. . . . . . . . . . 97

6.6 MC simulation results for 2009 weather and clientWeather1. . . . . . . . . . 99

6.7 MC simulation results for ideal weather and clientWeather1. . . . . . . . . 99

6.8 Rounded means and CIs of feature selection for all weather scenarios and

clientWeather1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.9 MC simulation results for good weather and clientWeather2. . . . . . . . . 102

6.10 MC simulation results for bad weather and clientWeather2. . . . . . . . . . 102

6.11 MC simulation results for 2009 weather and clientWeather2. . . . . . . . . . 103

6.12 MC simulation results for ideal weather and clientWeather2. . . . . . . . . 103

6.13 Rounded means and CIs of feature selection for all weather scenarios and

clientWeather2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.14 Class property values for fit clientFitness1 in Scenario 6.2.1. . . . . . . . . 105

6.15 Class property values for unfit clientFitness1 in Scenario 6.2.1. . . . . . . 105

6.16 Seed values for clientFitness1 in Scenario 6.2.1. . . . . . . . . . . . . . . . . 106

6.17 MC simulation results for fit clientFitness1. . . . . . . . . . . . . . . . . . . 106

152



List of Tables

6.18 MC simulation results for unfit clientFitness1. . . . . . . . . . . . . . . . . 108

6.19 Rounded means and CIs of feature selection for fit and unfit clientFitness1.108

6.20 MC simulation results for fit clientFitness2. . . . . . . . . . . . . . . . . . . 110

6.21 MC simulation results for unfit clientFitness2. . . . . . . . . . . . . . . . . 111

6.22 Rounded means and CIs of feature selection for fit and unfit clientFitness2.111

6.23 Class property values for available clientAvailability1 in Scenario 6.3.1. 113

6.24 Class property values for unavailable clientAvailability1 in Scenario 6.3.1.113

6.25 Seed values for clientAvailability1 in Scenario 6.3.1. . . . . . . . . . . . . 113

6.26 MC simulation results for unavailable clientAvailability1. . . . . . . . . . 115

6.27 MC simulation results for available clientAvailability1. . . . . . . . . . . 115

6.28 Rounded means and CIs of feature selection for available and unavailable

clientAvailability1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.29 MC simulation results for available clientAvailability2. . . . . . . . . . . 117

6.30 MC simulation results for unavailable clientAvailability2. . . . . . . . . . 118

6.31 Rounded means and CIs of feature selection for available and unavailable

clientAvailability2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.32 Class property values for clientMotivation1 and clientMotivation2 in

Scenario 6.4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.33 MC simulation results for clientMotivation1. . . . . . . . . . . . . . . . . . 121

6.34 MC simulation results for clientMotivation2. . . . . . . . . . . . . . . . . . 122

6.35 Rounded means and CIs of feature selection for clientMotivation1 and

clientMotivation2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.36 Seed values for the MC simulations for different weather scnearios and both

clientMotivation3 and clientMotivation4. . . . . . . . . . . . . . . . . . . 124

6.37 MC simulation results for clientMotivation3 and good weather. . . . . . . 125

6.38 MC simulation results for clientMotivation4 and good weather. . . . . . . 125

6.39 Rounded means and CIs of feature selection for clientMotivation3 and

clientMotivation4, good weather scenario. . . . . . . . . . . . . . . . . . . . 126

6.40 MC simulation results for clientMotivation3 and bad weather. . . . . . . . 126

6.41 MC simulation results for clientMotivation4 and bad weather. . . . . . . . 126

6.42 Rounded means and CIs of feature selection for clientMotivation3 and

clientMotivation4, bad weather scenario. . . . . . . . . . . . . . . . . . . . . 127

6.43 MC simulation results for clientMotivation3 and ideal weather. . . . . . . 128

6.44 MC simulation results for clientMotivation4 and ideal weather. . . . . . . 128

6.45 Rounded means and CIs of feature selection for clientMotivation3 and

clientMotivation4, ideal weather scenario. . . . . . . . . . . . . . . . . . . . 129

6.46 MC simulation results for clientMotivation3 and 2009 weather. . . . . . . 129

153



List of Tables

6.47 MC simulation results for clientMotivation4 and 2009 weather. . . . . . . 129

6.48 Rounded means and CIs of feature selection for clientMotivation3 and

clientMotivation4, 2009 weather scenario. . . . . . . . . . . . . . . . . . . . 130

6.49 Simulation parameters for Scenario 6.5. . . . . . . . . . . . . . . . . . . . . . . 132

6.50 Different sparsity levels and values for v in all client settings. . . . . . . . . . 132

6.51 Representative settings for sparsity investigation. . . . . . . . . . . . . . . . . 133

6.52 MC simulation results for clientWeather1, good weather, and different

sparsity levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.53 Rounded means and CIs of feature selection for clientWeather1, good

weather, and different sparsity levels. . . . . . . . . . . . . . . . . . . . . . . . . 135

6.54 MC simulation results for fit clientFitness1 and different sparsity levels. . 136

6.55 Rounded means and CIs of feature selection for different sparsity levels and

fit clientFitness1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.56 MC simulation results for available clientAvailability1 and different spar-

sity levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.57 Rounded means and CIs of feature selection for different sparsity levels and

available clientAvailability1. . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.58 MC simulation results for clientMotivation1 and different sparsity levels. 138

6.59 Rounded means and CIs of feature selection for different sparsity levels and

clientMotivation1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.60 Simulation parameters for Scenario 6.6. . . . . . . . . . . . . . . . . . . . . . . 141

6.61 MC simulation results for different missing data probabilities, clientWeather1,

and good weather. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.62 MC simulation results for clientFitness1 and different missing data prob-

abilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.63 MC simulation results for clientAvailability1 and different missing data

probabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.64 MC simulation results for clientMotivation1 and different missing data

probabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.65 Rounded means and CIs of feature selection for all four client classes and

different missing data probabilities. . . . . . . . . . . . . . . . . . . . . . . . . . 143

154



Index

A-CHESS, 8, 17

Active assessment, 8

Adaptive Intervention (AI), 4

Bayes theorem, 44, 45

Bernoulli bandit, 29, 35

Bernoulli distribution, 34

Beta distribution, 48

CalFit, 55

Central limit theorem, 89

Combinatorial bandit, 67

Context-free bandit, 27

Contextual bandit algorithm, 31

Contextual bandit problem, 31

Contextual bandit with restricted

context (CBRC), 65

Contextual multi-armed bandit

(CMAB), 25

Contextual multi-armed bandits, 30

Decision points, 6, 7

Decision rules, 6, 10

Distal Outcome, 6

e-Greedy strategy, 35, 36

Ecological momentary assessment, 8

Epoch-greedy strategy, 41

Evidence, 44

Expected reward, 28

Expected T-trial regret, 28

Exploration parameter, 38

Exploration-exploitation trade-off, 26

FOCUS, 19

Fogg’s behavior model, 23

HeartSteps, 14, 55

Intervention concept, 6

Intervention engagement, 9

Intervention fatigue, 7, 9

Intervention options, 6, 9

Intervention protocol, 5

JTIAI, 4

Just-in-time (JIT), 4

Likelihood function, 44

Markov decision process, 59

Markov property, 61

Micro-randomized trial, 146

Micro-randomized trial (MRT), 13

Mobile health (mHealth), 15

Monte Carlo simulation, 88

Multi-armed bandit, 25

MyBehavior, 20, 55

Optimal expected T-trial reward, 28

Optimistic initialisation, 40

Passive assessment, 8

Policy, 59, 62, 63

155



INDEX

PopTherapy, 55

Posterior probability, 44

Prior probability, 44

Proximal outcome, 6, 11

Reinforcement learning (RL), 54, 62

Reward function, 59

Semi-adversarial bandit, 31

Semi-stochastic bandit, 31

SitCoach, 21

State of opportunity, 5

State of vulnerability, 5

Stochastic bandit, 31

Supervised learning, 62

Tailoring variables, 6, 8

Temporal Progression, 22

Temporal progression, 12

Thompson Sampling (TS), 35, 48

Thompson Sampling with restricted

context (TSRC), 52

Timing, 4

Total T-trial reward, 28

Transition function, 59

Unsupervised learning, 62

Upper confidence bound strategy, 35, 41

Value function, 59, 63

Warm start, 36

Window TSRC, 52, 145

156



Bibliography

[1] N. Abe, A. W. Biermann, and P. M. Long. Reinforcement learning with immediate

rewards and linear hypotheses. Algorithmica, 37:263–293, 2003.

[2] S. Agrawal and N. Goyal. Analysis of thompson sampling for the multi-armed bandit

problem. In S. Mannor, N. Srebro, and R. C. Williamson, editors, Proceedings of the

25th Annual Conference on Learning Theory, volume 23, pages 39.1–39.26, 2012.

[3] S. Agrawal and N. Goyal. Further optimal regret bounds for thompson sampling.

In C. M. Carvalho and P. Ravikumar, editors, Proceedings of the 16th International

Conference on Artificial Intelligence and Statistics, volume 31, pages 99–107, 2013.

[4] S. Agrawal and N. Goyal. Thompson sampling for contextual bandits with linear pay-

offs. In S. Dasgupta and D. Mcallester, editors, Proceedings of the 30th International

Conference on Machine Learning, volume 28, pages 127–135, 2013.

[5] M. K. Ameko, M. L. Beltzer, L. Cai, M. Boukhechba, B. A. Teachman, and L. E.

Barnes. Offline contextual multi-armed bandits for mobile health interventions: A

case study on emotion regulation. In Fourteenth ACM Conference on Recommender

Systems, page 249–258, 2020.

[6] D. G. Ancona, G. A. Okhuysen, and L. A. Perlow. Taking time to integrate temporal

research. Academy of Management Review, 26(4):512–529, 2001.

[7] P. Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of

Machine Learning Research, 3:397–422, 2002.

[8] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed

bandit problem. Machine Learning, 47:235–256, 2002.

[9] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. The nonstochastic multiarmed

bandit problem. SIAM Journal on Computing, 32:48–77, 2002.

[10] A. B. Bakker, E. Demerouti, and A. I. Sanz-Vergel. Burnout and work engagement:

The jd–r approach. Annual Review of Organizational Psychology and Organizational

Behavior, 1(1):389–411, 2014.

157



Bibliography

[11] T. Bayes and R. Price. An essay towards solving a problem in the doctrine of chances.

by the late rev. mr. bayes, f. r. s. communicated by mr. price, in a letter to john canton,

a. m. f. r. s. Philosophical Transactions (1683-1775), 53:370–418, 1763.

[12] D. Ben-Zeev, C. Brenner, M. Begale, J. Duffecy, D. Mohr, and K. Mueser. Feasibility,

acceptability, and preliminary efficacy of a smartphone intervention for schizophrenia.

Schizophrenia Bulletin, 40(6):1244–1253, 2014.

[13] D. Ben-Zeev, S. M. Kaiser, C. J. Brenner, M. Begale, J. Duffecy, and D. C. Mohr.

Development and usability testing of focus: a smartphone system for self-management

of schizophrenia. Psychiatric rehabilitation journal, 36(4):289–296, 2013.

[14] D. Bouneffouf, A. Bouzeghoub, and A. L. Gançarski. A contextual-bandit algorithm

for mobile context-aware recommender system. In T. Huang, Z. Zeng, C. Li, and C. S.

Leung, editors, Neural Information Processing, volume 19, pages 324–331, 2012.

[15] D. Bouneffouf, I. Rish, and C. Aggarwal. Survey on applications of multi-armed and

contextual bandits. In 2020 IEEE Congress on Evolutionary Computation (CEC),

pages 1–8, 2020.

[16] D. Bouneffouf, I. Rish, G. Cecchi, and R. Féraud. Context attentive bandits: Contex-

tual bandit with restricted context. In Proceedings of the Twenty-Sixth International

Joint Conference on Artificial Intelligence, pages 1468–1475, 2017.

[17] J. Brownlee. A gentle introduction to bayes theorem for machine learning. https://

machinelearningmastery.com/bayes-theorem-for-machine-learning/. accessed

on 20201-08-30.

[18] O. Chapelle and L. Li. An empirical evaluation of thompson sampling. In Proceedings

of the 24th International Conference on Neural Information Processing Systems, page

2249–2257, 2011.

[19] W. Chen, Y. Wang, and Y. Yuan. Combinatorial multi-armed bandit: General frame-

work and applications. In S. Dasgupta and D. McAllester, editors, Proceedings of the

30th International Conference on Machine Learning, volume 28, pages 151–159, 2013.

[20] S. Choudhuri. Additional bioinformatic analyses involving nucleic-acid sequences. In

S. Choudhuri, editor, Bioinformatics for Beginners, pages 157–181. 2014.

[21] W. Chu, L. Li, L. Reyzin, and R. Schapire. Contextual bandits with linear payoff

functions. In G. Gordon, D. Dunson, and M. Dud́ık, editors, Proceedings of the 14th

158

https://machinelearningmastery.com/bayes-theorem-for-machine-learning/
https://machinelearningmastery.com/bayes-theorem-for-machine-learning/


Bibliography

International Conference on Artificial Intelligence and Statistics, volume 15, pages

208–214, 2011.

[22] L. Collins, I. Nahum-Shani, and D. Almirall. Optimization of behavioral dynamic

treatment regimens based on the sequential, multiple assignment, randomized trial

(smart). Clinical Trials, 11(4):426–434, 2014.

[23] E. Crawford, J. Lepine, and B. Rich. Linking job demands and resources to employee

engagement and burnout: A theoretical extension and meta-analytic test. The Journal

of Applied Psychology, 95:834–848, 2010.

[24] K. Ding, J. Li, and H. Liu. Interactive anomaly detection on attributed networks.

In Proceedings of the 12th ACM International Conference on Web Search and Data

Mining, pages 357–365, 2019.

[25] A. Durand and C. Gagné. Thompson sampling for combinatorial bandits and its

application to online feature selection. In Proceedings of the 28th AAAI Conference

Workshop on Sequential Decision-Making with Big Data, 2014.

[26] B. Fogg. Website of the fogg behavior model, by dr. bj fogg from stanford university.

https://behaviormodel.org/. accessed on 2021-08-26.

[27] B. Fogg. A behavior model for persuasive design. In Proceedings of the 4th Interna-

tional Conference on Persuasive Technology, number 40, 2009.

[28] E. M. Forman, S. G. Kerrigan, M. L. Butryn, A. S. Juarascio, S. M. Manasse,

S. Ontañón, D. H. Dallal, R. J. Crochiere, and D. Moskow. Can the artificial in-

telligence technique of reinforcement learning use continuously-monitored digital data

to optimize treatment for weight loss? Journal of Behavioral Medicine, 42(2):276–290,

2019.

[29] A. Goldenshluger and A. Zeevi. A linear response bandit problem. Stochastic Systems,

3(1):230–261, 2013.

[30] R. Z. Goldstein, A. Craig, A. Bechara, H. Garavan, A. R. Childress, M. P. Paulus,

and N. D. Volkow. The neurocircuitry of imparied insight in drug addiction. Trends

in Cognitive Sciences, 13(9):372–380, 2009.

[31] S. Gonul, T. Namli, S. Huisman, G. B. Laleci Erturkmen, I. H. Toroslu, and A. Cosar.

An expandable approach for design and personalization of digital, just-in-time adaptive

interventions. Journal of the American Medical Informatics Association, 26(3):198–

210, 2018.

159

https://behaviormodel.org/


Bibliography

[32] A. Gopalan and S. Mannor. Thompson sampling for learning parameterized markov

decision processes. In P. Grünwald, E. Hazan, and S. Kale, editors, Proceedings of The

28th Conference on Learning Theory, volume 40, pages 861–898, 2015.

[33] D. H. Gustafson, F. M. McTavish, M.-Y. Chih, A. K. Atwood, R. A. Johnson, M. G.

Boyle, M. S. Levy, H. Driscoll, S. M. Chisholm, L. Dillenburg, A. Isham, and D. Shah.

A smartphone application to support recovery from alcoholism: A randomized clinical

trial. JAMA Psychiatry, 71(5):566–572, 2014.

[34] D. H. Gustafson, B. R. Shaw, A. Isham, T. Baker, M. G. Boyle, and M. Levy. Ex-

plicating an evidence-based, theoretically informed, mobile technology-based system

to improve outcomes for people in recovery for alcohol dependence. Substance Use &

Misuse, 46(1):96–111, 2011.

[35] A. Hallak, D. Di Castro, and S. Mannor. Contextual markov decision processes. ArXiv,

2015. ArXiv ID: 1502.02259v1.

[36] W. Hardeman, J. Houghton, K. Lane, A. Jones, and F. Naughton. A systematic

review of just-in-time adaptive interventions (jitais) to promote physical activity. In-

ternational Journal of Behavioral Nutrition and Physical Activity, 16:31, 2019.

[37] M. Haugh. Monte-carlo simulation - output analysis for monte-carlo. http://www.

columbia.edu/~mh2078/MonteCarlo/MCS_Output_Analysis_MasterSlides.pdf.

Presentation slides, accessed on 2021-10-21.

[38] Google play store - heartsteps. https://play.google.com/store/apps/details?

id=net.heartsteps.kpw&hl=de_AT&gl=US. accessed on 2021-08-20.

[39] B. W. Heckman, A. R. Mathew, and M. J. Carpenter. Treatment burden and treatment

fatigue as barriers to health. Current Opinion in Psychology, 5:31–36, 2015.

[40] B. Hoffmann and D. Ritchie. Using multimedia to overcome the problems with problem

based learning. Instructional Science, 25:97–115, 1997.

[41] E. Jochems, C. Mulder, A. van Dam, H. Duivenvoorden, S. Scheffer, W. Spek, and

C. Van der Feltz-Cornelis. Motivation and treatment engagement intervention trial

(motivate-it): The effects of motivation feedback to clinicians on treatment engage-

ment in patients with severe mental illness. BMC Psychiatry, 12:209, 2012.

[42] L. P. Kaelbling. Associative reinforcement learning: A generate and test algorithm.

Machine Learning, 15(3):299–319, 1994.

160

http://www.columbia.edu/~mh2078/MonteCarlo/MCS_Output_Analysis_MasterSlides.pdf
http://www.columbia.edu/~mh2078/MonteCarlo/MCS_Output_Analysis_MasterSlides.pdf
https://play.google.com/store/apps/details?id=net.heartsteps.kpw&hl=de_AT&gl=US
https://play.google.com/store/apps/details?id=net.heartsteps.kpw&hl=de_AT&gl=US


Bibliography

[43] E. Kaufmann, O. Cappe, and A. Garivier. On bayesian upper confidence bounds for

bandit problems. In N. D. Lawrence and M. Girolami, editors, Proceedings of the 15th

International Conference on Artificial Intelligence and Statistics, volume 22, pages

592–600, 2012.

[44] A. C. King, D. K. Ahn, B. M. Oliveira, A. A. Atienza, C. M. Castro, and C. D. Gard-

ner. Promoting physical activity through hand-held computer technology. American

journal of preventive medicine, 34(2):138—142, 2008.

[45] G. King, M. Currie, and P. Petersen. Child and parent engagement in the mental

health intervention process: A motivational framework. Child and Adolescent Mental

Health, 19(1):2–8, 2014.

[46] P. Klasnja, E. B. Helker, S. Shiffman, A. Boruvka, D. Almirall, A. Tewari, and S. A.

Murphy. Micro-randomized trials: An experimental design for developing just-in-time

adaptive interventions. Health Psychology, 34(0):1220–1228, 2015.

[47] S. Kumar, W. J. Nilsen, A. Abernethy, A. Atienza, K. Patrick, M. Pavel, W. T.

Riley, A. Shar, B. Spring, D. Spruijt-Metz, D. Hedeker, V. Honavar, R. Kravitz, R. C.

Lefebvre, D. C. Mohr, S. A. Murphy, C. Quinn, V. Shusterman, and D. Swendeman.

Mobile health technology evaluation: The mhealth evidence workshop. American

Journal of Preventive Medicine, 45(2):228–236, 2013.

[48] J. Langford and T. Zhang. The epoch-greedy algorithm for contextual multi-armed

bandits. In Proceedings of the 20th International Conference on Neural Information

Processing Systems, page 817–824, 2007.

[49] P. W. Lavori and R. Dawson. Introduction to dynamic treatment strategies and se-

quential multiple assignment randomization. Clinical Trials, 11(4):393–399, 2014.

[50] H. Lei, A. Tewari, and S. A. Murphy. An actor-critic contextual bandit algorithm for

personalized mobile health interventions. e-Print arXiv:1706.09090, 2017. published

on arXiv.org, statML.

[51] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to

personalized news article recommendation. In Proceedings of the 19th International

Conference on World Wide Web, page 661–670, 2010.

[52] P. Liao, K. Greenewald, P. Klasnja, and S. Murphy. Personalized heartsteps: A

reinforcement learning algorithm for optimizing physical activity. In Proceedings of

the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, volume 4,

pages 1–22, 2020.

161



Bibliography

[53] Y. Lin, J. Jessurun, B. de Vries, and H. Timmermans. Motivate: towards context-

aware recommendation mobile system for healthy living. In 5th International ICST

Conference on Pervasive Computing Technologies for Healthcare, 2012.

[54] F. Mael and S. Jex. Workplace boredom: An integrative model of traditional and

contemporary approaches. Group & Organization Management, 40(2):131–159, 2015.

[55] B. C. May, N. Korda, A. Lee, and D. S. Leslie. Optimistic bayesian sampling in

contextual-bandit problems. Journal of Machine Learning Research, 13(67):2069–2106,

2012.

[56] K. T. Mueser, P. S. Meyer, D. L. Penn, R. Clancy, D. M. Clancy, and M. P. Salyers. The

illness management and recovery program: Rationale, development, and preliminary

findings. Schizophrenia Bulletin, 32(Suppl 1):S32–S43, 2006.

[57] I. Nahum-Shani, E. B. Hekler, and D. Sprujitz-Metz. Building health behavior models

to guide the development of just-in-time adaptive interventions: A pragmatic frame-

work. Health Psychology, 34(0):1209–1219, 2015.

[58] I. Nahum-Shani, S. Smith, B. Spring, L. Collins, K. Witkiewitz, A. Tewari, and S. Mur-

phy. Just-in-time adaptive interventions (jitais) in mobile health: Key components and

design principles for ongoing health behavior support. Annals of Behavioral Medicine,

52(6):446–462, 2018.

[59] J. Nemec, C. Gruber, B. Chimani, and I. Auer. Trends in extreme temperature indices

in austria based on a new homogenised dataset. International Journal of Climatology,

33(6):1538–1550, 2013.

[60] Y. Ouyang, M. Gagrani, A. Nayyar, and R. Jain. Learning unknown markov decision

processes: A thompson sampling approach. In Proceedings of the 31st International

Conference on Neural Information Processing Systems, page 1333–1342, 2017.

[61] P. Paredes, R. Gilad-Bachrach, M. Czerwinski, A. Roseway, K. Rowan, and J. Hernan-

dez. Poptherapy: Coping with stress through pop-culture. In Proceedings of the 8th

International Conference on Pervasive Computing Technologies for Healthcare, page

109–117, 2014.

[62] S. Pauker, E. Zane, and D. Salem. Creating a safer health care system: finding the

constraint. JAMA, 294:2906–2908, 2005.

[63] K. J. Preacher and A. F. Hayes. Asymptotic and resampling strategies for assessing and

comparing indirect effects in multiple mediator models. Behavior Research Methods,

40(3):879–891, 2008.

162



Bibliography

[64] L. Quintens and P. Matthyssens. Involving the process dimensions of time in case-

based research. Industrial Marketing Management, 39(1):91–99, 2010. Case Study

Research in Industrial Marketing.

[65] M. Rabbi. Personal website of mashfiqui rabbi, phd student at cornell university.

https://www.cs.cornell.edu/~ms2749/#. accessed on 2021-08-20.

[66] M. Rabbi, M. H. Aung, M. Zhang, and T. Choudhury. Mybehavior: automatic per-

sonalized health feedback from user behaviors and preferences using smartphones. In

Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiq-

uitous Computing, page 707–718, 2015.

[67] M. Rabbi, P. Klasnja, T. Choudhury, A. Tewari, and S. Murphy. Optimizing mhealth

interventions with a bandit. In Digital Phenotyping and Mobile Sensing: New Devel-

opments in Psychoinformatics, pages 277–291, 2019.

[68] V. Rajanna, R. Lara-Garduno, D. J. Behera, K. Madanagopal, D. Goldberg, and

T. Hammond. Step up life: A context aware health assistant. In Proceedings of the

Third ACM SIGSPATIAL International Workshop on the Use of GIS in Public Health,

page 21–30, 2014.

[69] W. T. Riley. Theoretical models to inform technology-based health behavior inter-

ventions. In L. Marsch, S. Lord, and J. Dallery, editors, Behavioral Health Care

and Technology Using Science-Based Innovations to Transform Practice, pages 13–23,

2014.

[70] J. Rocca and B. Rocca. The exploration-exploitation trade-

off: intuitions and strategies. https://towardsdatascience.com/

the-exploration-exploitation-dilemma-f5622fbe1e82. accessed on 2021-07-16.

[71] R. M. Ryan and E. L. Deci. Self-regulation and the problem of human autonomy:

does psychology need choice, self-determination, and will? Journal of Personality,

74(6):1557–1585, 2006.

[72] J. Sarkar. One-armed bandit problems with covariates. The Annals of Statistics,

19(4):1978–2002, 1991.

[73] S. C. Segerstrom and D. B. O’Connor. Stress, health and illness: four challenges for

the future. Psychology & Health, 27(2):128—140, 2012.

[74] S. Shiffman and A. A. Stone. Ecological momentary assessment: A new tool for

behavioral medicine research. In Technology and Methods in Behavioral Medicine,

pages 117–131, 1998.

163

https://www.cs.cornell.edu/~ms2749/#
https://towardsdatascience.com/the-exploration-exploitation-dilemma-f5622fbe1e82
https://towardsdatascience.com/the-exploration-exploitation-dilemma-f5622fbe1e82


Bibliography

[75] D. Spruijt-Metz, C. K. F. Wen, B. M. Bell, S. Intille, J. S. Huang, and T. Baranowski.

Advances and controversies in diet and physical activity measurement in youth. Amer-

ican Journal of Preventive Medicine, 55(4):e81–e91, 2018.

[76] A. L. Strehl, C. Mesterharm, M. L. Littman, and H. Hirsh. Experience-efficient learn-

ing in associative bandit problems. In Proceedings of the 23rd International Conference

on Machine Learning, page 889–896, 2006.

[77] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. 2017. Second

edition.

[78] C. Tekin, O. Atan, and M. Van Der Schaar. Discover the expert: Context-adaptive

expert selection for medical diagnosis. IEEE Transactions on Emerging Topics in

Computing, 3(2):220–234, 2015.

[79] A. Tewari and S. A. Murphy. From ads to interventions: Contextual bandits in mobile

health. InMobile Health: Sensors, Analytic Methods, and Applications, pages 495–517,

2017.

[80] W. R. Thompson. On the likelihood that one unknown probability exceeds another in

view of the evidence of two samples. Biometrika, 25(3-4):285–294, 1933.

[81] P. Turnbull, N. Oliver, and B. Wilkinson. Buyer-supplier relations in the uk - automo-

tive industry: Strategic implications of the japanese manufacturing model. Southern

Medical Journal, 13:159–168, 1992.

[82] S. Van Dantzig, G. Geleijnse, and A. Halteren. Towards a persuasive mobile application

to reduce sedentary behavior. Personal and Ubiquitous Computing, 17(6):1237 – 1246,

2011.

[83] M. van Otterlo and M.Wiering. Reinforcement learning and markov decision processes.

In Reinforcement Learning: State-of-the-Art, pages 3–42, 2012.

[84] S. S. Villar, J. Bowden, and J. Wason. Multi-armed bandit models for the optimal

design of clinical trials: Benefits and challenges. Statistical Science, 30(2):199–215,

2015.

[85] C.-C. Wang, S. R. Kulkarni, and H. V. Poor. Bandit problems with side observations.

IEEE Transactions on Automatic Control, 50(3):338–355, 2005.

[86] S. J. Wenze and I. W. Miller. Use of ecological momentary assessment in mood

disorders research. Clinical Psychology Review, 30(6):794–804, 2010.

164



Bibliography

[87] WHO. Cardiovascular diseases fact sheet. https://www.who.int/news-room/

fact-sheets/detail/cardiovascular-diseases-(cvds). accessed on 2021-07-19.

[88] WHO. Global strategy on digital health 2020-2025. Licence: CC BY-NC-SA 3.0 IGO.

[89] WHO. mhealth: New horizons for health through mobile technologies: second global

survey on ehealth. https://www.who.int/goe/publications/goe_mhealth_web.

pdf. accessed on 2021-07-19.

[90] WHO. Obesity and overweight fact sheet. https://www.who.int/news-room/

fact-sheets/detail/obesity-and-overweight. accessed on 2021-07-19.

[91] M. Woodroofe. A one-armed bandit problem with a concomitant variable. Journal of

the American Statistical Association, 74(368):799–806, 1979.

[92] E. Yom-Tov, G. Feraru, M. Kozdoba, S. Mannor, M. Tennenholtz, and I. Hochberg.

Encouraging physical activity in patients with diabetes: Intervention using a reinforce-

ment learning system. Journal of Medical Internet Research, 19(10):e338, 2017.

[93] M. Zhou, Y. Mintz, Y. Fukuoka, K. Goldberg, E. Flowers, P. Kaminsky, A. Castillejo,

and A. Aswani. Personalizing mobile fitness apps using reinforcement learning. In

A. Said and T. Komatsu, editors, Joint Proceedings of the ACM IUI 2018 Workshops,

volume 2068, 2018.

165

https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.who.int/goe/publications/goe_mhealth_web.pdf
https://www.who.int/goe/publications/goe_mhealth_web.pdf
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

	Introduction
	Just-in-Time Adaptive Interventions
	Why Just-In-Time Adaptive Interventions?
	Design and Concept of a Just-In-Time Adaptive Intervention
	Decision Points
	Tailoring Variables
	Intervention Options
	Decision Rules
	Proximal Outcome
	Construction and Evaluation of a Just-in-Time Adaptive Intervention

	Applications in Mobile Health
	State-of-the-Art Mobile Health Applications
	Challenges


	The Contextual Multi-Armed Bandit Problem
	The Multi-Armed Bandit Problem
	Regarding Context in a Multi-Armed Bandit
	The Contextual Multi-Armed Bandit Approach for Decision Rules in a Clinical Setting
	Contextual Multi-Armed Bandit Algorithms
	The e-Greedy Strategy
	The Upper Confidence Bound Strategy
	The Thompson Sampling Strategy

	Applications of Multi-Armed Bandits and Contextual Multi-Armed Bandits in Mobile Health

	A Choice of Thompson Sampling Algorithm
	Markov Decision Processes
	Contextual Multi-Armed Bandits versus Markov Decision Processes
	Thompson Sampling as a Reinforcement Learning Algorithm
	Contextual Bandits with Restricted Context
	Handling Restricted Context in a Contextual Multi-Armed Bandit
	Combinatorial Bandits

	Thompson Sampling with Restricted Context

	Methods of Implementation
	The Model Just-In-Time Adaptive Intervention
	Modelling the Client
	The Code Architecture
	The Weather Generator Function weatherGenerator.m
	The Function TSRC.m
	The Monte Carlo Simulation Function monteCarloTSRC.m


	Simulation
	The Weather Feature
	Comparing Different Weather Scenarios for a Weather-Sensitive Client
	Comparing a Weather-Sensitive Client to a Weather-Insensitive Client

	The Fitness Feature
	Comparing Different Fitness Levels
	Comparing a Fitness-Sensitive Client to a Fitness-Insensitive Client

	The Availability Feature
	Comparing Different Levels of Availability
	Comparing an Availability-Sensitive Client to an Availability-Insensitive Client

	The Motivation Feature
	Comparing Clients Motivated for Different Activities
	Comparing Different Models for Motivation

	Investigating Feature Sparsity
	The Case of Missing Data

	Conclusion and Outlook
	List of Figures
	List of Tables
	List of Algorithms
	Index
	Bibliography

