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Zusammenfassung

Der laminar-turbulente Umschlag einer druckgetriebenen Strömung

zwischen zwei parallelen Platten, auch ebene Poiseuille Strömung

genannt, wird mit Hilfe einer Methode zur Strömungsvisualisierung

untersucht. Dieser Übergangsprozess ist subkritisch, sodass während-

dessen laminare und turbulente Bereiche in der Strömung gleichzeit-

ige vorhanden sind. Der Fokus dieser Arbeit liegt auf der zeitlichen

Entwicklung dieser räumlich beschränkten, turbulenten Bereiche

in einem experimentellen Kanal großer Breite und Länge.

Zu diesem Zweck werden ovale Wirbelflecken unter Zuhilfenahme

von lokalen Störungen einzeln ausgelöst und deren zeitliche En-

twicklung verfolgt, wobei auffällt dass diese Flecken eine Streifen-

form ausbilden. Deshalb wurde ein neuer Störmechanismus ent-

worfen, mit dem die Entstehung solcher Streifen in der Strömung

direkt angeregt werden können. Hierdurch konnte gezeigt wer-

den, dass, erstens, diese Streifen die natürlich vorkommende Form

lokal beschränkter Turbulenz darstellen und, zweitens, dass diese

Streifen in einem deutlich niedrigeren Bereich von Reynolds-Zahlen

bestehen können, als bisher geglaubt.

Es konnte auch gezeigt werden, dass diese Streifen einen ausgeze-

ichneten Winkel relativ zur Fließrichtung annehmen. Diese Winkel

liegen in einem engen Bereich dessen Grenzen von der Reynolds-

Zahl abhängen. Außerdem werden Zu- und Abnahme der Größe

von existierenden Streifen, sowie die Keimbildung neuer Bänder

detailliert beschrieben. Zum Schluss wurde der kritische Punkt

für den Turbulenten Umschlag einer ebenen Poiseuilleströmung

aus den durchschnittlichen Zuwachs- bzw. Abklingraten abgeleitet.

Dieser Schwellwert, unter welchem alle turbulenten Strukturen abklin-

gen, liegt deutlich tiefer als alle bisherigen Schätzungen.
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Abstract

The laminar-turbulent transition of a pressure driven flow between

two parallel plates, called plane Poiseuille flow, is studied using

a flow visualisation technique. The transition process in the sub-

critical regime is characterised by the co-existence of laminar and

turbulent regions. The present work focuses on the evolution of lo-

calised turbulence in a channel with a large aspect ratio and length.

For this purpose, individual spot-shaped structures are triggered

via a localised perturbation. Their development is monitored in

time, which shows that these turbulent spots grow into the shape of

stripes. Consequently, a new perturbation technique is developed

that directly excites localised stripes in the flow. It is shown that

the stripes are the natural form of localised turbulence and that

they can exists at Reynolds numbers much lower than previously

believed.

It is also shown that these stripes are inclined to the mean flow di-

rection in a narrow range of angles which depends on the Reynolds

number. Furthermore, the growth and decay of existing turbulent

stripes and the nucleation of new stripes is described in detail. Fi-

nally, the average growth and decay rates of these stripes are used

to deduce the critical point in plane Poiseuille flow, below which

turbulence cannot be sustained. This critical number is lower than

existing estimates in the literature.
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Chapter 1

Introduction

1.1 Motivation

Turbulent transition denotes the transition process from a well-ordered lami-

nar to a turbulent flow. Turbulence is generally characterised by unsteadiness,

three-dimensionality and chaotic fluid motion. It is thus dissipative and in-

creases the mechanical drag as well as mixing compared to a laminar flow,

which makes it relevant in a multitude of engineering applications. Studying

the onset of turbulence relates to the understanding of the mechanisms in-

volved in this transition process. Ultimately this is motivated by the objective

of controlling the onset of turbulence.

In the case of various flows, the process of turbulent transition is supercrit-

ical. These flows are linearly unstable such that infinitesimal perturbations

grow exponentially. Two examples are Rayleigh-Bénard cells or Taylor vor-

tices. In phase space, the system increases the distance from the base state

continuously while it moves towards an unstable mode. The supercritical sce-

nario to transition follows a series of bifurcations where successive states are

always close to each other. Hence, linear stability theory and the classic tools

from weakly non-linear analysis can be applied. Eventually, this transition

process leads to turbulence [1, 2].

In contrast, the transition scenario of many wall-bound shear flows is sub-

critical. This means that transition to turbulence takes place although the flow
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1. INTRODUCTION

is linearly stable. Hence, a finite size perturbation is needed to start the tran-

sition process [3]. This scenario is much less understood since it can only be

approached by determining stable solutions that, in the phase space are lo-

cated at a finite distance from the base state [1].

An important characteristic of these subcritical systems is that different lo-

cally stable states co-exist in phase space. The consequence of this in the phys-

ical space is the development of homogeneous regions of both states, laminar

and turbulent, that are in competition with each other and that are separated

by clear fronts [4]. Hence, it has been suggested that the spatio-temporally in-

termittent character of turbulent transition in wall-bound shear flows could be

explained as the nucleation problem related to a first-order phase transition.

In particular, since the turbulent state is inherently chaotic, it was argued that

it follows a stochastic contamination process such as that known for directed

percolation [5].

In the case of a plane flow, the spatio-temporally intermittent character of

the transition process manifests in the form of stripe patterns. In general, there

have been several recent studies on small systems. They mainly focused on the

temporal dynamics and some important findings have been made [6] (e.g. the

edge state [7] or localised solutions [8]). Indeed, a spatially extremely limited

system is sufficient to capture the local dynamics including the mechanisms

that lead to turbulence. However, only extended domains, at least two orders

of magnitude larger than the characteristic length of the flow, allow to study

the development of turbulent-laminar patterns. In particular, the formation

of these spatio-temporally intermittent structures is crucial to determine the

transition threshold below which turbulence always decays [8]. According to

Manneville [9], the use of very wide domains allows “...to approach the ther-
modynamic limit in the sense of statistical physics.”

One classical example of a subcritical transition is the pressure driven flow

between to stationary, parallel plates, called plane Poiseuille flow (PPF). Yet,

there are a very limited number of experimental studies. In particular, there

is no recent work on the development of the intermittent patterns in extended

domains. Hence, there is a need for an experimental study that can resolve the

largest scales of intermittent patterns.

2



1. INTRODUCTION

1.2 Objectives

In this thesis, turbulent transition in plane Poiseuille flow (PPF) is investi-

gated experimentally. A channel of large aspect ratio and length is used and

following a statistical approach the transitional range of Reynolds numbers

is explore. The focus is on the development of turbulent spots and stripes, i.e.

the coherent flow structures occurring in the spatio-temporally intermittent

flow. In particular, it shall be shown that turbulent stripes can be produced

and maintained at lower Reynolds numbers than previously suggested. For

this purpose an novel perturbation technique is proposed that allows the pro-

duction of extended disturbances. This new mechanism is used in addition to

the localised perturbation employed by a large number of authors. Ultimately,

the sum of observations and measurements shall be used to estimate a critical

point for the existence of turbulence in PPF.

Through out the entire work, only the definition of the mean Reynolds

number for PPF is used. It is given by Rem := Ubh/ν, where Ub is the bulk

velocity, h the full channel height and ν the kinematic viscosity. The results

from authors who use different characteristic scales to define the Reynolds

number, are converted to Rem, as defined here.

1.3 Background

The general context of this work is the transition from a laminar base flow

to turbulence. The first scientific study on this phenomenon was conducted

by Osborne Reynolds in 1883 [10]. He identified a single control parameter

which is now known as the Reynolds number Re = UL/ν, where U and L are

characteristic velocity and length scales and ν the kinematic viscosity.

Manneville [11] reviews the general conditions of stability as a function

of this parameter: Reg is the global stability threshold below which whatever

perturbation eventually decays and Rec is the unconditional threshold above

which infinitesimal perturbations grow. Hence Rec can be calculated from lin-

ear stability analysis. For Reg < Re < Rec the stability depends on the type

and amplitude of the perturbation. In this range, the initial perturbation must

3



1. INTRODUCTION

have a finite size in order to trigger a transition to turbulence. Furthermore,

turbulence coexists with laminar flow i.e. the flow is intermittent. In prac-

tice, there can be a third threshold Ret which signifies the point above which

the entire flow is turbulent, where Reg < Ret < Rec. The range between Reg
and Ret would then be the transitional range. In brief, turbulent transition is

sub-critical, thus, must be triggered by finite size perturbations and is charac-

terised by spatio-temporal intermittency.

In fact, intermittent turbulence had already been observed by Reynolds

[10] in his experiments on pipe flow when he reported the appearance of

flashes of turbulence before the flow turned fully turbulent. Linear stability

and hence sub-critical transition is an important premiss for such a behaviour.

Indeed, all evidence suggests that laminar pipe flow is linearly stable for all

Reynolds numbers i.e. Rec = ∞ [12, 13]. Hence turbulent transition can only

be triggered by a finite size perturbation and laminar flow can, in theory, be

sustained up to arbitrarily large Reynolds numbers. In practice, Pfenninger

[14] managed to keep pipe flow laminar up to Re = 100,000, taking extreme

care to suppress any background disturbances.

Reynolds’ turbulent flashes were investigated in detail by Wygnanaski et
al. [15, 16] who defined what is known as a turbulent puff. It denotes a lo-

calised patch of disordered motion that, on average, has a constant length at

a given Reynolds number. It has been shown that these puffs decay following

a memoryless process, with the mean lifetime before decay increasing with

Reynolds number [17]. Moreover, Avila et al. [18] found that the mean life-

time before splitting also follow a memoryless. In this way they determined

what they called the critical point, Reg . At this Reynolds number the turbulent

fraction i.e. the fraction of the length of the pipe occupied by the puffs can

theoretically be sustained for ever in an infinitely large system.

Spatio-temporal intermittency is also observed in turbulent transition in

plane flows. Since these flows also extend in the span-wise direction, the ge-

ometry is essentially two-dimensional. In this case, intermittent turbulence

manifests in the form of coherent structures, called turbulent spots which were

first observed in boundary layers by Emmons [19]. Similar spots were also ob-

served in Taylor Couette flow (TCF) [20], plane Couette flow (PCF) [21, 22]

4



1. INTRODUCTION

Figure 1.1: Schematic of a plane Poiseuille flow.

and plane Poiseuille flow (PPF) [23]. Comparing these shear flows, it becomes

apparent that rather little is known about PPF which might be attributed to

complications building large experimental set-ups and the advection due to

which turbulent spots can only be observed inside the channel for a short time.

Hence, most experiments are performed in PCF and TCF.

The focus of this work is on plane Poiseuille flow, which denotes a pressure

driven flow between two stationary parallel plates (see Fig. 1.1). In this case

the flow velocity is given by Equ. 1.1 and the centre line velocity relates to the

mean velocity by Ucl = 3/2Ub [24].

u(y) = − 1
2µ
dp

dx

(h2
)2

− y2

 (1.1)

In the following paragraphs some notable findings on turbulent transition

in PPF are reviewed. As previously explained, transition to turbulence is sub-

critical and finite amplitude perturbations are necessary to trigger turbulence.

All this happens below the unconditional threshold which in the case of PPF is

Rec = 7696 [25]. In particular, localised perturbations, e.g. triggered by fluid

injection, grow into spot-like turbulent structures surrounded by streaks and

waves.

Even though the Reynolds number always compares inertial to viscous

forces, different characteristic length and velocity scales might be used. In

particular, in PPF a range of slightly different definitions is used. In this work,

only the mean Reynolds number Rem = Ubh/ν is used, based on the bulk ve-

locity and the full channel height. In contrast, various authors also use the

Recl = Uclδ/ν where Ucl is the centre line velocity of the laminar flow and

5



1. INTRODUCTION

δ = h/2 the channel half-height. In addition, some authors also use Reτ = uτδν

where uτ is the friction velocity. These definitions relate to each other as fol-

lows: Rem = 4/3Recl (e.g. Recl = 1000 corresponds to Rem ≈ 1330); for Reτ the

conversion is ambiguous since Tsukahara et al. [26] define it in a way, such

that Reτ varies with the size of the computational domain. However, for the

range of Reynolds numbers covered in this study Rem ≈ 27Reτ (e.g Reτ = 56

corresponds to Rem ≈ 1500).

Carlson et al. [23] who studied turbulent spots in detail using a flow vi-

sualisation technique, found that these structures had an arrowhead shape

pointing in stream-wise direction and longitudinal streaks around their back.

In the centre, fine scale turbulence was observed whereas oblique waves de-

limited the front and the wing tips. Carlson et al. also suggested that spots

would eventually split into two while the flow in the middle of the channel

would re-laminarise. They could not trigger growing spots repeatedly below

Rem = 1330. Alvayoon et al. [27] mostly confirmed these findings but reported

that they could not even trigger any spots below Rem = 1470. However, they

were only interested in high-Reynolds number spots that developed into cohe-

sive structures.

It is important to note that the velocity field inside of the spot has the same

characteristics as a fully developed turbulent flow at low Reynolds numbers.

This was confirmed by Klingmann and Alfredsson [28] through hot-wire mea-

surements. Furthermore, they stated that there was a minimum threshold for

the initial perturbation below which no turbulent patch was triggered. Con-

versely, the turbulent spot was independent of the initial amplitude for per-

turbations above the threshold.

Up to this moment, the sole focus lay on turbulent spots. Yet, Tsukahara

et al. [29] introduced the idea that intermittent turbulence manifested as a

periodic stripe pattern. In particular, they had performed Direct Numerical

Simulations (DNS) of a fully developed turbulent flow while decreasing the

Reynolds number in small steps. They observed the formation of oblique

bands eventually filling the whole width of their periodic domain. These

bands consisted of stream-wise streaks that were intermittently disturbed by

areas of stronger turbulence. This resulted in an alternation of quasi-laminar

6



1. INTRODUCTION

and turbulent flow in the stream-wise direction. They claimed that this stripe

pattern was the equilibrium structure of intermittent turbulence in channel

flow, in analogy to the equilibrium puffs in pipe flow, that had been studied by

Wygnanski et al. [16]. For Rem = 2300, these turbulent stripes were advected

at the bulk velocity and were inclined by 24◦ to the stream-wise direction.

Hashimoto et al. [30] confirmed these findings experimentally when observ-

ing the development of grid turbulence. They found a stripe pattern in the

range from Rem = 1700 to 2000. For lower Reynolds numbers they reported

that no stripes but only spot-like patches where maintained while all turbu-

lence decayed below Rem = 1300. Later Aida et al. [31] numerically studied

the development of a localised perturbation in a gigantic computational box

(365h × h × 180h). At the beginning they observed the same development as

had been reported by Carlson et al. [23]. However, instead of splitting into

two spots, the perturbation developed into a V-shaped structure which even-

tually becomes a stripe pattern of quasi-laminar and turbulent regions. The

same development was also observed for PCF by Duguet et al. [8]. This showed

that turbulent stripes also emerge with increasing Reynolds number.

Seki and Matsubara [32] performed hot wire measurements on re-laminarising

grid turbulence in order to determine the transitional range. Measuring the

turbulent fraction they found that transition took place between Rem = 1400

and 2660. They also measured the large scale flow around turbulent structures

and explained its origin with the increase of skin friction in turbulent areas.

Tuckerman et al. [33] did numerical simulations of turbulent stripes, im-

posing an angle of 24◦ in a very narrow, inclined domain. They investigated

Reynolds numbers between 1070 and 2530 and found that the relative velocity

of the stripe deceased with Reynolds number.

In addition to previously reviewed findings on PPF, it is instructive to com-

pare those with observations on PCF. In particular, the fact that intermittent

turbulence develops into stripe patterns underlines the similarity between

both shear flows. Moreover, it was proposed by Waleffe [34] that two super-

posed PCFs would be similar to PPF.

For instance, Barkley and Tuckerman [35] studied PCF numerically in a

computational box of minimum size, reporting about three distinct types of

7



1. INTRODUCTION

patterns, ranging from uniform turbulence over the intermittent state to lami-

nar flow. They later stated the same fact more precisely by talking of uniform,

intermittent, periodic and localised turbulence [36]. They also investigated

stripes inclined at various angles to the stream-wise direction. Stable stripe

patterns could be obtained in the range from 15◦ to 66◦.

Duguet et al. [8] performed DNS for PCF in a large domain, using a heavily

disturbed flow field as initial condition at a Reynolds number in the transi-

tional range. At first, they observed decay of the perturbation except for some

localised patches at random locations which developed into turbulent spots.

These spots grew obliquely and ultimately formed stripes. At what they con-

clude to be the critical point (Reg), these stripes don’t have a unique angle

but existed over a range of 36◦ ± 10◦ to the stream-wise direction. For higher

Reynolds numbers the stripes would approach an angle of 24◦. They also sim-

ulated the development of a localised perturbation in a fully laminar flow.

This confirmed that stripe patterns could not only result from merging spots

but could also grow from a single seed. When starting from a localised pertur-

bation, stripes developed at various angles from 24◦ to 57◦ but they cannot be

sustained when they are orthogonal (90◦) to or in stream-wise (0◦) direction.

Finally, they pointed out that the smallest initial perturbation was needed to

trigger stripes with an angle of 40◦.

Duguet and co-workers [37] also proposed a stochastic model for the span-

wise growth of turbulent structures in PCF, by creation or annihilation of

streaks but also noted the existence of a deterministic regime at low Reynolds

numbers. Investigating the laminar-turbulent interfaces Duguet and Schlat-

ter [38] stated that these streaks were advected by the flow whose velocity

depended on the wall-normal position. Hence the direction of the interface

depended on the stochastic process of streak production which explains why

the stripe’s angle is not unique but has a continuous distribution.

1.4 Outline

In the first part of this thesis, the experimental set-up and the methodology ap-

plied in the measurements is described. In particular, this chapter contains the

8



1. INTRODUCTION

description of a novel perturbation technique developed during this project.

In addition, a description of the flow visualisation technique and image pro-

cessing is presented.

Secondly, the results are presented. They are organised in the logical order

following the decisions taken during this work as a consequence of prelimi-

nary results. Discussions can be found in every section right after the results.

Most of this part is dedicated to the description of coherent structures, turbu-

lent spots and stripes, in PPF. An estimate of the critical point for sustained

turbulence is also estimated at the end.

Final conclusions are put separately at the end of this thesis. They sum-

marise the comments made in the discussions and underline the most impor-

tant findings.

9



Chapter 2

Methodology

2.1 Experimental Set-Up

Experiments on the transition to turbulence in plane Poiseuille flow (PPF) are

conducted in the rectangular channel, shown in Fig. 2.1. It is composed of

two glass plates, sandwiched together with brass spacers which constitute the

lateral walls. Everything is held together rigidly by aluminium clamps placed

on both sides with a regular spacing (not shown in the sketch). The channel

has a full height h = 2 mm. Then the width is as Lz = 125h and a length

Lx = 1000h.

Fig. 2.1 also shows two LED light bars that are installed next to the channel.

Together, they cover a total length of 165 cm. Furthermore three cameras are

installed at a height of 150 cm above the channel. They are held by a rail and

can be moved to any position along the channel.

The standard coordinate systems has x, y and z in stream-wise, wall-normal

and span-wise direction respectively, where x and z are in the horizontal plane

and y in the vertical direction. The x-axis is centred in the channel with respect

to the span-wise and vertical direction. The origin of the coordinate system

is the point where the localised perturbations are injected into the flow (see

section 2.2.1). Typically, this is 50 cm away from the main entrance. Normally,

dimensionless variables are used. x∗ and z∗ denote the respective coordinate

non-dimensionalised by the gap width h; the time is given in advective units
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2. METHODOLOGY

t∗ = tUb/h.

Water is used as a working fluid in a gravity driven flow where the pres-

sure head of the reservoir is approximately 12 m, which is maintained constant

to within 1 cm. The water is conducted through 1 inch-pipes and in all sec-

tions of the water circuit, the Reynolds number is high enough to assure a

well-established turbulent flow, far above the transitional range. Hence, the

largest part of the pressure drop up to the channel exit occurs in these pipes.

This is important since the hydraulic resistance of the channel fluctuates as a

consequence of the intermittent flow. However, if these fluctuations are small

compared to the resistance of the whole system, they are negligible and thus

the flow rate can be maintained nearly constant in spite of a varying fraction

of turbulence in the channel. Before entering the channel, the flow passes

through a manual control valve which is used to adjust the flow rate and sub-

sequently through a magnetic flow meter (model COPA-XE DE23, fabricated

by ABB) that measures the flow rate.

In Fig. 2.1 the water flow is indicated by blue arrows. Before entering the

channel, the water is divided over four pipes which enter into a settling cham-

ber from the rear. The water has to flow around a plate which is installed in

the middle of the settling chamber and acts as obstacle for the four turbulent

jets entering from the rear. These features are built in to provide an entrance

flow that is approximately uniform over the span-wise width. Then the flow

is straightened when it is forced though honeycombs. The cells have a diam-

eter of 6 mm and a length of 50 mm. They are followed by a fine grid with

an aperture of 1.2 mm and a wire diameter of 0.3 mm which breaks up the

largest remaining eddies. Then the flow is accelerated in a straight convergent

of length 100 mm with a contraction ratio of 44.

Along the centre line of the bottom plate of the channel, pressure tappings

are installed at several locations. For measurements of the pressure drop, a

sensor (model DP45-14 with membrane 6-28, manufactured by Validyne) was

connected to two pressure tappings. It has a full scale accuracy of ±0.25 %

which corresponds to a global error of ≈ 1 mbar.

According to Schlichting [24], the development length for laminar chan-

nel flow is estimated from Equ. 2.1 to be < 100h since the range of Reynolds
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Figure 2.1: Experimental set-up. The honeycombs are shown in purple.

numbers studied in this experiment Rem < 2000. The channel exit is open to

the ambient atmosphere and the flow falls into a reservoir from where it is

pumped back into the supply reservoir to complete the circuit. The tempera-

ture of the water is measured inside this exit flow with a Pt100 probe.

Le
h

= 0.05Rem (2.1)

2.2 Perturbation method

In this work the transition from a laminar to a turbulent flow is investigated.

For this purpose, a so-called single-seed experiment is performed where tur-

bulence grows out of one single nucleus which is surrounded by a perfectly

laminar base flow. Since plane Poiseuille flow is linearly stable in the range of

Reynolds numbers investigated [25], this seed must be a perturbation of finite

amplitude. Ultimately, two methods are used to generate locally limited initial

perturbations. In addition, a strongly disturbed inlet flow is also used to study

its re-laminarisation.

12
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2.2.1 Localised Perturbation

Localised perturbations are triggered by injecting a jet of water into the lami-

nar flow. Pressure tappings are installed at several locations along the centre

line of the channel. When connected with a pressurised reservoir they can be

used for flow perturbation. It generates a jet of diameter 0.25h that is injected

in the wall-normal direction. The amplitude can be varied by changing the

supply pressure of the reservoir which can be adjusted between 0 and 9 bar

compared to a pressure drop in the channel of less than 0.05 bar. The in-

jection is controlled with a solenoid valve (model VA 210-001 fabricated by

Staiger) with short opening and closing times of ≈ 1 ms. In order to generate a

turbulent spot, it is typically kept open for 10 ms (corresponds to 3 advective

units).

In this standard configuration (injection time 10 ms), the injected volume

as a function of the supply pressure is shown in Fig. 2.2. These measure-

ments were performed by firing the perturbation 200 times in a beaker that

was open to the ambient atmosphere. Of course the pressure in the channel is

slightly higher but since it is smaller than 0.05 bar, this graph gives a good es-

timate. Fig. 2.2 shows that the injected volume (≈ 0.1 ml) is always very small

compared to the total flow rate (Q ≈ 0.3 l/s) and, as will be seen later, even

negligible compared to the absolute accuracy of the flow rate measurement.

The injection of a jet introduces a complex perturbation into the flow. How-

ever, as Klingmann and Alfredsson [28] have shown, the characteristics of the

turbulent spot are independent of the precise amplitude if it is larger than

a certain threshold. This observations was also made in this experiment, yet

only in a statistical sense. The reason is that several distinct pathways of spot

development are observed as will be pointed out in section 3.2.

Finally, this method allows to study a single perturbation in a calm en-

vironment. Hence it is a very common perturbation technique, e.g. used in

[23, 27].
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Figure 2.2: Injected volume as a function of supply pressure.

2.2.2 Extended Perturbation

A second method is also used to trigger disturbances. It was specifically de-

veloped to produce turbulent stripes at low Reynolds numbers. As will be

discussed in section 3.3, finite size effects seem to play in important role in

this case. In fact, this extended perturbation covers a much larger area than

the localised one. Fig. 2.3 shows a sketch of a novel perturbation mechanism.

For better visibility the glass plate on top is partially cut away in the image.

At the origin of the perturbation is an iron sphere which is permanently

placed inside the channel. A strong perturbation is brought into the flow when

the sphere is set into motion and moves across the channel. The sphere also

created a wake but it decays within 100h at Rem < 1200. Due to the wake,

this perturbation technique cannot be used at higher Reynolds numbers, but

in this range the localised perturbation is effective and can be used instead.

The spherical obstacle is set into motion by sliding a powerful magnet

along a rail installed above the upper glass plate. The magnet holds the sphere

in place and forces it to cross the channel when a perturbation shall be trig-

gered. This causes a strong, stripe-shaped perturbation. The force necessary

to achieve strong accelerations is supplied by a pneumatic cylinder. In this

way the magnet is pushed along the rail until it is decelerated violently when

it hits a physical stopper that is installed on the rail. Of course, this process,

in particular the impact on the stopper, produces enormous vibrations that

would be in conflict with the low level of background disturbances needed for
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precise measurements on turbulent transition. Hence, the device is isolated

from the channel and the frame holding it; no physical contact is made.

In principle, the velocity of the magnet can be adjusted by varying the sup-

ply pressure. However, a high pressure is generally preferred for two reasons:

firstly, convection plays a minor role if the magnet moves at a higher velocity

such that there is tighter control of the initial angle of the turbulent stripe;

secondly, only a strong driving force that is much larger than the dry friction

between the slider and the rail assures that the magnet moves at a relatively

constant velocity. In principle, a higher velocity of the sphere also causes a

stronger perturbation. Thus, pressurised air with 9 bar is supplied. For this

case, the movement of the magnet was investigated by recording the motion

with a camera at a frame rate 100 Hz. The result is as shown in Fig. 2.4. The

magnet (and the iron sphere with it) reach the terminal velocity after 3 cm

(15h) only. Moreover, the terminal velocity almost reaches 2 m/s which is con-

siderable faster than the mean flow velocity Ub ≈ 0.5 m/s. In practice, one

observes that this acceleration and terminal velocity are high enough to ini-

tiate a highly perturbed flow along a straight line developing into turbulent

stripes. This even works in a range of low Reynolds numbers where a localised

perturbation is not efficient any more.

Spherical obstacles have already been used to provide a perturbation. For

instance, Bottin et al. [1] used a stationary bead as a point-wise perturbation

in a plane Couette flow. They pointed out that the perturbation introduced

by the spherical obstacle was similar to the disturbance by a thick wire. This

suggests that a rapid motion of the sphere might cause a similar perturbation

as a long cylindrical obstacle that is lifted into the channel for a short moment.

2.2.3 Disturbed Inlet Flow

In both previously mentioned perturbation techniques, a spatially limited dis-

turbance is put into a laminar base flow in order to study its expansion or

decay. In contrast, this third method disturbs the entire flow close to the

inlet. Hence, the base flow is not laminar but heavily perturbed. At low

Reynolds number the disturbed inlet flow calms down to the laminar state
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Figure 2.3: Triggering mechanism.

Figure 2.4: Velocity of the extend perturbation mechanism vs. time.
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further downstream. However, in the transitional range a finite amount of

the initial perturbation should persist and the remaining seeds are expected to

grow into new structures such as turbulent spots or stripes.

A disturbed inlet flow is achieved by placing obstacles close to the entrance

of the channel. Two rectangular plates of size 70 × 40 × 1.5 mm are used.

The perturbation originates from flow separation around sharp corners of the

plates and the disturbance is enhanced by the local increase of the Reynolds

number due to partial blockage of the channel. In principle the strength of the

initial disturbance varies as a function of the relative orientation of the plates

inside the channel. However, it is almost impossible to estimate the strength

of the perturbation which is the largest disadvantage of this method.

This technique is conceptually similar to experiments like [30, 32] where

a turbulence grid was used at the channel inlet. The unknown size of the

perturbation is inconvenient. However, it shall be used to compare with the

results from the other two perturbation techniques.

2.3 Flow Visualisation

The main focus of this work is on the development of perturbations inside

the channel. In particular, their size and shape is investigated which makes it

necessary to observe the flow in a large part of the channel. Flow visualisation

is found to be the most suitable measurement technique. For this purpose

platelet shaped mica particles are used (product name Iriodin 9103, fabricated

by Merck Millipore). Their size ranges between 5 and 40 µm and their coated

surface reflects light specularly.

With a relative density of around 3 g/cm3, the particles are considerably

heavier than water. However, the flow velocities in the channel are relatively

high (Ub & 0.5 m/s) and thus the residence time in the channel is short. Con-

sequently, particles are not likely to settle but to follow the flow sufficiently

well to visualise the features of intermittent turbulence. Additionally, the 3D

flow is not of interest since only 2D flow structures are investigated. All in all,

the properties of these particles are judged sufficient for the purpose of the

experiments performed.
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The flow visualisation technique employed in this experiment is based on

the fact that platelet shaped particles align with the flow, the normal to the

platelet surface pointing into the same direction as the gradient of mechanical

strain. If the channel is lighted from a single source, the amount of light that

is reflected towards the observer, the brightness, depends on the inclination of

the particles. In particular, in a laminar flow the surface of every platelet is

aligned with the channel such that it has a uniform brightness.

In contrast, if the platelets align with the fluid motion in a turbulent flow,

the inclination of the platelets changes in space and time. Since the inclination

of the platelets is related to the brightness, the flow is coloured in different

shades of grey which allows to distinguish the shape of turbulent eddies or

other flow patterns. Carlson et al. pointed out that these platelets thus visu-

alise the vorticity field [23].

In this work the channel is continuously lighted from one side of the chan-

nel. In total, 120 high power LEDs with a 30◦-spot beam and a total luminosity

of 14,000 lm illuminate the entire length of the channel sufficiently. Uniform

DC current is provided in order to avoid high frequency flickering of the LEDs.

The light source is placed at an angle of 75◦ from the vertical. The cameras are

placed at a height of 150 cm right above the channel. In this configuration,

laminar flow looks dark on the images, whereas areas of higher vorticity are

lighter. For better contrast the bottom plate of the channel is covered with

black paper.

The cameras (model acA2040-180km, fabricated by Basler AG) have a reso-

lution of 2048 × 2048 px and can reach a maximum frame rate of 180 frames

per second. They are connected to the computer via the serial communication

protocol Camera Link. The process of taking an image is controlled via TTL

pulse. This allows a precise timing with respect to the triggering of the per-

turbation. The cameras are used with a standard Nikon lens (model AF Nikkor
50mm f/1.8D).

The cameras are used to record grey scale images at the maximum resolu-

tion (2048×2048 px). In this case, one camera can cover approximately an area

of 34×34 cm2. In order to capture the instantaneous flow field, a high shutter

speed of 1/400 s was chosen.
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2.4 Image Processing

In this experiment, turbulent spots are solely monitored visually and the data

is only recorded in form of images captured by the cameras. Hence informa-

tion has to be extracted from the primary data through image processing. In

order to measure the size (area and span-wise extent) of the turbulent struc-

tures observed in experiment, a self-developed MATLAB code automatically

performs the following steps:

• In all images the background is suppressed by division. In contrast to

subtraction, division also takes non-uniform lighting into account.

• A global threshold is applied, setting all pixels whose luminosity is below

a certain value to zero. In particular, this is done to distinguish relam-

inarised flow from the turbulent structures. Since the global brightness

varies considerably with the amount of particles in the water, this value

has to be adjusted for every round of measurements. In practice, this

value has to be slightly higher than the general brightness of the back-

ground. The threshold is increased in small steps and in short test runs

the user has to check that no turbulent structure are wrongly suppressed.

• Noise is removed by neighbourhood averaging. In practice, the best re-

sult is reached when using a spatial average, weighted by a Gaussian

bell-curve [39]. Hence a rotationally symmetric Gaussian low-pass filter

is used. A standard deviation between 2.5 and 3 is found to give the best

results.

• The entire domain is chopped up into sub-areas and the spatial standard

deviation of pixel luminosity is calculated for each one of them. Ulti-

mately, coherent structures are detected by applying another threshold

on this standard deviation. The sub-areas are chosen to be 32 px long

(in stream-wise direction) and 16 px wide. The reason is that the pertur-

bation is expected to be partly composed of from longitudinal streaks.

Their presence would increase the standard deviation in a rectangular

area such as the one proposed.
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• Since large coherent structures are investigated, the processing is fin-

ished by smoothing the interfaces using a technique called erosion and

filling the holes in order to find the area of the structure. This step is

based on the experience that there are no holes in the structures ob-

served.

2.5 Error Estimates

In this work, experimental data is solely extracted in the form of photos and

the information is put into context by comparing with the a priori single con-

trol parameter Rem. Therefore, measurement errors may arise from the camera

timing and the evaluation of the Reynolds number, using the flow meter and

temperature measurements.

First, the cameras are triggered automatically and the timing is precise to

less than 1 ms. In addition, the exposure time is 1/400 s = 2.5 ms. This is less

one in the advective time scale and negligible when compared to observation

times of O(100).

Secondly, the accuracy in the measurement of the Reynolds number de-

pends on the geometry of the channel as well as the flow rate and temperature

measurement. Since Rem := Ubh/ν = Q/(wν), small variations of the channel

height along stream-wise direction have no influence on the Reynolds num-

ber. Curvature in the walls would obviously disturb the flow but since the

channel is made of strong glass plates (thickness 10 mm) deformation under

its weight or the water pressure are negligible compared to other inaccuracies.

Conversely, changes in the span-wise channel width add up to the global error

in the Reynolds number. The lateral walls are aligned to within ±1 mm which

corresponds to an error in Rem of 0.5 %.

The flow is gravity driven and the pressure head varies by less than a cen-

timetre compared to a total head of approximately 12 m. Hence the flow rate

can be assumed to be approximately constant. The magnetic flow meter, how-

ever, has an accuracy of ±0.5 %.

The temperature of the water increases continuously during one experi-

mental run, mostly due to mechanical dissipation. However, the water is cir-
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culated for several minutes before starting the experiment. Thus, the water is

well mixed and the temperature is approximately uniform such that the vari-

ations are small and continuous measurement of the Reynolds number can be

kept within a range of ±10.

The temperature is measured with a Pt100-probe placed in a small reser-

voir which is installed right after the channel exit. Due to relatively high flow

rate, the water in this reservoir is well-stirred and can thus be assumed to

be approximately at the same temperature as the channel. Calibration of the

temperature probe show that the temperature can be measured with an accu-

racy of ±0.1◦C. From the temperature measurement, the kinematic viscosity

is calculated using a forth order polynomial approximation. At an operating

temperature of ≈ 25◦C, the error in the temperature reading corresponds to an

error in Reynolds number of 0.2 %.

Moreover the viscosity is modified by the presence of the particles used for

flow visualisation. Since, the particles are much smaller than the characteris-

tic length of the channel, Einstein’s formula is used to estimate the effective

change in viscosity νeff/ν = 1 + 2.5φ where φ is the volume fraction of the par-

ticles [23]. For 250 g and ≈ 50 L of water this gives νeff/ν ≈ 1.005.

Considering all these effects, it can be concluded that the Reynolds number

in the range of measurements is Reeff = Rem ± 10.
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Chapter 3

Results and Discussion

3.1 Properties of the Channel Flow

3.1.1 Transition to Turbulence

In the experimental set-up used, the channel flow remains laminar up to Rem ≈
1600. Above this threshold perturbations (side-wall bound turbulent patches)

are triggered randomly on the sides of the channel inlet. This is a result of the

sharp edge between the convergent section and the channel.

Single seed experiments can be performed up to Rem ≈ 1550 if care is taken

to minimise the background level of vibrations. This range is sufficient since

the scope of this study is on turbulent spots and stripes at low Reynolds num-

ber.

3.1.2 Pressure Drop

Due to the narrow gap width (h = 2 mm), measurements of the velocity pro-

file using, for instance Particle Image Velocimetry would be very complicated.

Therefore, the pressure drop was measured instead, to check the quality of the

experimental set-up.

For each measurement point the temperature, the pressure and the flow

rate were averaged over one minute. Three sets of measurement are performed.

The first and the second measurement series of the pressure drop are taken
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over the upstream half of the channel, stretching across ∆x = 700 mm from

the uppermost pressure tapping to the middle of the channel, the third one

over the downstream part of the channel over a length of 950 mm, reaching

from the middle to the last pressure tapping. The measurements show that

the pressure drop in the laminar channel flow is approximately 35 mbar for

Rem = 1500. In Fig. 3.1 the results for the pressure drop are represented in in

terms of the Darcy friction factor f .

f :=
4h

U2
b ρ

∆p

∆x
(3.1)

For plane Poiseuille flow the theoretical value of the friction factor scales

as follows:

f =
48
Reh

(3.2)

Firstly, both measurements in the upstream half of the channel are in good

agreement with the theoretical curve and with each other. This demonstrates

the repeatability of these pressure measurements as well as the establishment

of fully developed laminar plane Poiseuille flow in the upper half of the chan-

nel. This also suggests that 200 mm are sufficient as development length for

the channel.

Secondly, the measurements in the downstream part are also reasonably

close to the theoretical values. This indicates that the influence of the lateral

boundaries does not grow significantly over the length of the channel. In ad-

dition, it was seen that turbulent patches started occurring randomly above

Rem ≈ 1600. However, these spots are small and don’t change the static pres-

sure drop significantly, as can be seen in Fig. 3.1.

Finally, it is notable that the difference between the empirical pressure drop

and the corresponding theoretical value is less than 0.5 mbar for all measure-

ment points. Moreover, all points of one set of measurements are off the the-

oretical curve by approximately the same pressure difference. This suggests

that they are caused by a calibration error.
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Figure 3.1: Friction factor f .

3.2 Characteristics of Turbulent Spots

3.2.1 Typical Development of a Turbulent Spot

In a first round of measurements, the localised perturbation by fluid injection

as described in section 2.2.1 is used to trigger turbulent spots. The develop-

ment of a typical turbulent spot in time is shown in Fig. 3.2. In this case, the

Reynolds number is 1300. The flow is perturbed at the time t∗ = tUb/h = 0 in

the location x∗ = x/h = 0, z∗ = z/h = 0 where a small amount of fluid is injected

over 10 ms at a pressure of 0.5 bar.

The first image shows the turbulent spot just after its creation. Waves are

visible around the wing tips and stream-wise streaks are trailing from its back.

In the centre, one observes that the streaks are disordered and not as bright as

around the trailing edge. This corresponds to small scale turbulence.

By comparison of the first and the second image, one observes that the spot

grows in both the stream-wise and span-wise directions. Some waves are still

visible around the wing tips. In proximity to these waves two areas of small

scale structures are present whereas the centre of the spot calms down, yet still

contains several streaks. In contrast, the area of the former leading edge has

fully re-laminarised and consequently the spot grows into a V-shape.

Up to this point, observations are fully in line with the results by Carlson et
al. [23]. They suggested that the spot was just about to split into two. However,

the third image shows the same turbulent spot further downstream: all streaks
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have disappeared from the centre but instead of splitting into several spots,

the disturbance structure develops into two stripe-like structures. Just like

the initial spot, these stripes have waves around their new leading edges. In

the centre, the stripe contains an area of fine structures which is delimited by

longitudinal streaks at the upstream side. The stripes are straight and the fine

scale area has a clear angle to the stream-wise direction.

It must be underlined that this is only one possible development of a tur-

bulent spot. Since its evolution is stochastic, all spots are essentially different

but several categories of pathways can be distinguished. In particular, the spot

might only develop one branch independently of the strength of the perturba-

tion. This shows a sensitive dependence on initial conditions. Consequently,

only a statistical approach is sensible as previously pointed out by Bottin and

Chaté [40] for PCF.

Moreover, the third image shows a relatively large area of re-laminarised

flow between the two stripes. One observes that this region originates because

longitudinal streaks break off the stripe’s trailing edge and ultimately decay. In

the image, this is just about to happen for a bundle of streaks separating from

the right stripe, in the bottom half of the photo. The growth of a calm flow

region in the centre suggests that turbulent stripes only decay but never grow

on their trailing edge in the upstream direction, as will be shown later. In the

particular case shown in Fig. 3.2 the stripes grows much faster at its leading

edge than it is consumed at its rear, which causes a positive net growth of the

whole structure.

The development of a turbulent spot is slightly different for higher Reynolds

numbers. For instance, Fig. 3.3 shows a turbulent spot at Rem = 1500 in a

downstream position that can be compared to the third image from Fig. 3.2.

Its wing tips touch the lateral walls but some interesting qualitative observa-

tions can still be made. First, it is remarkable that the centre of the flow did

not re-laminarise fully (a in Fig. 3.3). Its trailing edge is still formed by parts

of the original spot, involving both streaks and small scale structures and one

stripe growing in positive z-direction is still connected to it. Secondly, it can

be seen that both stripes that had grown from the turbulent spot have split (b).

The word splitting shall be used to denote the independent formation of a new
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stripe next to an existent one, if both are approximately parallel. As can be

interfered from Fig. 3.2, this happens if the original stripe breaks. The mech-

anism suggested for this process is as follows: a turbulent stripe randomly

bends at one location into an S-shape; if the stripe breaks in this location, two

parallel pieces of the original stripe exist, one from the trailing edge to the

break point and one from the break point to the leading edge. If the rear part

now forms its own leading edge, it can form a second stripe that is parallel

to the other piece. Now, both, the rear and the front of the original stripe,

have individual leading edges where new streaks are seeded into the laminar

flow. Hence, they are growing independently from each other and thus form a

stripe pattern. The rear part of the original stripe grows on the upstream side

of the second one. Finally, new stripes can also form by another process, which

shall be called branching. In this case the newly seeded stripe grows into the

opposite span-wise direction compared to the original stripe. Furthermore,

the original stripe does not break but stays intact. One fully formed example,

can be seen in the centre of the image (c). Moreover, there are various points

where a branching event is just taking place (d). They are marked by a bun-

dle of streaks outside of an existing stripe. These streaks are inclined to the

stream-wise direction and form an arrow-head shaped, triangular structure.

It is notable that in both cases, splitting or branching the new stripe is always

seeded in front (downstream) of the originally existing one.

The flow structure shown in Fig. 3.3 has the same features as simulation

results by Aida et al. [31] who describe the evolution of a turbulent spot in

a V-shape stripe pattern (note that Rem = 1500 corresponds approximately to

Reτ = 56 used in that publication).

Having observed that turbulent stripes can split and branch off, it is rea-

sonable to assume that the stripe pattern of laminar and turbulent areas will

finally fill the entire channel. Indeed, Duguet et al. [8] reported that a localised

perturbation in a PCF ultimately developed into a stripe pattern. The same

development could now be observed for PPF. The flow became intermittent,

developing into a stripe pattern with both turbulent and laminar flow being

present. This intermittent behaviour was also observed by Seki and Matsub-

ara [32] who used hot-wire probe in a re-laminarising flow. However, due to
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this measurement technique they were not able to observe the nature of these

patterns.

3.2.2 Spreading of the Turbulent Spot

Fig. 3.2 shows that a turbulent spot expands in both the stream-wise and the

span-wise direction. This was measured using appropriate quantities that can

be defined unambiguously in spite of the random nature turbulent structures.

First, the so-called spreading angle shall be used as a measure for the span-

wise growth to assure a simple comparison with other studies. Fig. 3.4 shows

a schematic which explains the definition of this quantity: two diverging lines

represent the envelop of the turbulent spot in a mathematical sense i.e. they

are the trajectories of the spot’s wing-tips. These lines define the spreading

angle but for conventional reasons only the spreading half-angle is used. The

variation of the average spreading half-angle with Reynolds number is shown

in Fig. 3.5. Errorbars give the fluctuation in terms of standard deviation. For

every measurement point, the average over 30 spots is considered. The spread-

ing half-angle is found to be around 6◦ in the entire range while it slightly

decreases with Reynolds number.

The size of the spreading half-angle is in good agreement with previous

findings: Carlson et al. [23] reported 8◦ for Rem ≈ 1330 and Alvayoon et al.
[27] found 6◦ for Rem ≈ 1450. However, in the latter study, an increase of

the spreading half-angle with the Reynolds number is mentioned which was

confirmed for high Reynolds numbers by Henningson and Alfredsson [41].

Yet, it must be pointed out that these studies looked at much higher Reynolds

numbers from Rem = 1500 to 4000.

Ultimately, the spreading angle is of limited use since turbulent spots do

not remain compact patches but develop into stripe patterns. The stream-wise

growth gives a better indication of the area covered by intermittent turbu-

lence, as can easily be seen by comparison of the third image in Fig. 3.2 and

Fig. 3.3. In order to measure stream-wise spreading of the turbulent spot, the

positions of the leading and trailing edge are monitored. They are defined

as the most downstream respectively upstream part of the entire turbulent
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Figure 3.2: Development of a turbulent spot at Rem = 1300. Images are taken
at t∗ = 60 (top), 115 (middle) and 400 (bottom). x∗ = x/h and z∗ = z/h; x = 0 and
z = 0 at the point of perturbation.
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Figure 3.3: A turbulent spot at Rem = 1500, t∗ = 500.

structure. Whereas the leading edge can be clearly identified, the streaky rear

of the spot is ill-defined. Thus, the position is averaged over 30 spots and for

better comparability only spots that have developed into two branches (such

as seen in Fig. 3.2) are considered. The results are shown in Fig. 3.6 in non-

dimensional form. Only the average development is shown here whereas the

stripes’ growth is inherently stochastic. The fluctuations are of the order of

±5h; they are slightly larger for low Reynolds numbers. These fluctuations are

very small compared to the characteristic size of turbulent structures involved.

This could be related to the fact that only spots that had developed into two or

more stripes were considered.

For the leading edge, the average trajectories for various Reynolds num-

bers collapse into a single straight line. This observation is in good agreement

with numerical results by Aida et al. [31]. First, this suggests that the leading

edge of a turbulent spot moves with a constant velocity, if fluctuations are left

aside. Secondly, this velocity seems to be invariant with the Rem. Averaging

the data from 3.6, one finds that uLE/Ub ≈ 1.22 where uLE denotes the stream-

wise velocity of the leading edge. Conversely, the average propagation velocity

of the trailing edge uT E depends on the Reynolds number. In particular, the

propagation velocity of the trailing edge decreases with rising Reynolds num-

ber. Consequently the span-wise spreading of turbulent spots is enhanced at
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Figure 3.4: Schematic for the spreading angle of a turbulent spot.

Figure 3.5: Variation of the spreading angle with the Reynolds number.

high Rem. Finally, it is remarkable that the trajectories of front and rear di-

verge even for Rem = 1200. This signifies that the net growth of the turbulent

spot is positive i.e. it is not decaying. The last observation is particularly in-

teresting since various studies claim that turbulence cannot be maintained at

Rem < 1300 [27, 30, 32].

3.3 Growth and Decay Rates

One objective of this work is the determination of a critical point for sustained

turbulenc in plane Poiseuille flow. By analogy to pipe flow, it shall be deter-

mined in a single seed experiment following a similar approach as Avila et
al. [18]. Here, the downstream evolution of the ensemble averaged turbulent

fraction is determined as a function of the Reynolds number. Below critical,

this value should ultimately decrease downstream, and above it, the turbulent
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Figure 3.6: Position of the spot’s leading (-) and trailing edge (- -) over time.

fraction should increase. Whereas the turbulent fraction in the pipe was mea-

sured as the number of turbulent puffs per unit length, the surface area of the

turbulent spots is chosen in plane Poiseuille flow.

In a first attempt to describe the growth or decay of intermittent turbulence

in a plane Poiseuille flow the average evolution of turbulent spots is investi-

gated. The evolution of a spot is monitored in the following way: Rem is fixed

to within ±5 and for every Reynolds number a series of data points, consisting

of several downstream positions, is recorded. For each individual data point,

100 localised perturbations are triggered and images of them are taken at a

single downstream position. Injecting fluid at a pressure of 0.2 bar for 5 ms

is found sufficient to trigger turbulent spots in the entire range of Reynolds

numbers studied here. Their size is found by image processing as described in

section 2.4. The results on the average spot area are shown in Fig. 3.7.

Within the first 100 advective time units, the perturbation spreads out.

Only after this initial development time, the influence of the Reynolds num-

ber on the growth of the turbulent area is observed. There is a clear and steady

growth of the average spot area for Rem > 1400 whereas spots initially de-

cay for Rem < 1300. However, ultimately the average area increases for all

Reynolds numbers apart form Rem = 1200.

The reason the initial decay is found when analysing the statistical distri-

bution of the spot size at a given position (Fig. 3.8). Comparing Fig. 3.8a and

3.8b shows the spreading of the localised perturbation. Yet, in most cases, this

initial perturbation decays shortly afterwards (Fig. 3.8c). On the other hand, a
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couple of turbulent spots are formed which grow in the long term (Fig. 3.8d)

in exactly the same way as shown in Fig. 3.2. In the end, these spots dominate

the statistics which leads to a increase of the average size.

In addition the same experimental data is presented in an alternative way

by showing the probability of decay in Fig. 3.9. A spot is said to decay if its size

is less than half the area that was observed at t∗ ≈ 55 (the first measurement

point) for the same Reynolds number. The result is found to be independent of

the precise value of the threshold. Wiggles that appear in the probability ac-

cumulation function for low Reynolds numbers are due to the limited sample

size (100).

The main trend is that spots are more likely to decay at lower Reynolds

numbers. Yet, in no case, Pdecay = 1 is reached (the maximum is 0.99). In fact,

for every value Rem the probability accumulation functions converges towards

a finite value < 1, e.g. Pdecay −−−−−→
t∗→∞

0.8 for Rem = 1302. This means that, there

is a point in time beyond which spots do not decay any more. This suggests

that perturbations following the initial decay have never formed an actual tur-

bulent spot. Conversely, the successful formation of a turbulent spot resulting

in a steady growth could be observed in the whole range of Reynolds numbers

studied.

Most importantly, this shows that turbulent spots can also grow at Reynolds

numbers around 1200, if the perturbation is sufficient to generate a well-

formed spot. Moreover, in this range of Rem it seems that these growing stripes

do not stop to grow. However, it will later be discussed later (section 3.4.1) that

the developing stripe may grow at its leading edge but also decays at the trail-

ing edge. Even though further studies are necessary, it is already reasonable to

assume the existence of an equilibrium between growth and decay at a certain

Reynolds number. Thus the existence of a critical point is still justified and its

exact value can, in principle, be determined.

In particular, the existence of growing spots signifies that turbulence is

maintained. This is in contrast to all previous studies [27, 30, 32] suggesting a

critical point of 1300 or above.

Finally, one also notes that a successful perturbation always develops into

a stripe-shaped structure. In fact, the compact, round structure of a turbulent
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Figure 3.7: Evolution of the average area of a turbulent spot Ā/h2 = f (Rem, t∗).

spot cannot persist in time. This suggests that turbulent spots are not the

equilibrium from of intermittent turbulence in plane Poiseuille flow. They

only exist momentarily after being triggered by a localised perturbation and

before growing into a stripes pattern. In this case, turbulent stripes might take

over their role as suggested by Tsukahara et al. [29].

In a nutshell, the majority of spots triggered by localised perturbation de-

cay at low Reynolds numbers. However, it seems that if a spot develops into

a stripe of a certain minimum size, the resulting structure grows most of the

time, even at the lowest Reynolds numbers studied here. Conversely, if the

spot does not grow into a small stripe initially, it decays. This suggests that

the localised perturbation is not optimal way of producing turbulent stripes.

Hence, an extended perturbation shall be used in the following experiments.

3.4 Characteristics of Turbulent Stripes

In section 3.2 it was found that localised perturbations trigger turbulent spots

which ultimately grow into stripe patterns. Hence, studying turbulent stripes

is more significant with respect to the characteristics of spatio-temporally in-

termittent flow. In particular, it is interesting to see that turbulent stripes seem

to grow at Reynolds numbers below 1200, implying that the critical Reynolds

number for plane Poiseuille flow lies even lower.

However, section 3.2 also showed that a localised perturbation by fluid in-

33



3. RESULTS AND DISCUSSION

(a) t∗ ≈ 55. (b) t∗ ≈ 110.

(c) t∗ ≈ 275. (d) t∗ ≈ 460.

Figure 3.8: Size distribution of turbulent spots at various positions for Rem =
1250. The red vertical represents the average size.

Figure 3.9: Probability of decay for a turbulent spot.
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jection is not an efficient method to produce turbulent stripes since only 1 spot

out of 100 develops this characteristic shape at Rem = 1200. Hence, a newly

developed technique (see section 2.2.2) is employed to produce extended per-

turbations which favour the development of turbulent stripes.

3.4.1 Typical Development of Turbulent Stripes

The use of an extended perturbation described in section 2.2.2 allows to pro-

duce turbulent stripes repetitively at low Reynolds numbers, compared to the

thresholds reported in various publications. This is demonstrated in Fig. 3.10

which shows the development of a turbulent stripe at Rem ≈ 1100. The ex-

tended perturbation mechanism is applied in the area of −100 < x∗ < 0. The

device is inclined to the stream-wise direction by an angle of 50◦ but due to

advection by the flow, the resulting stripe has an effective initial angle of ≈ 40◦.

The first image shows the turbulent strip right after its creation where the

wake of the spherical obstacle has not decayed yet. For precise measurement

of the growth rate the stripes should only be considered further downstream

where they are surrounded by weakly disturbed flow. Thus, the general struc-

ture is described with respect to the second and third image: the stripe is com-

posed of stream-wise streaks but the dark centre indicates the existence of

small scale motion. The leading edge is wedge-shaped and one can clearly see

the waves preceding the main structure of the stripe. By comparison the trail-

ing edge is much smoother and very little small scale motion is found close to

it.

A great impression of the typical development of a turbulent stripe can be

interfered by comparing the second and the third image. At Rem = 1100, clear

net growth can be observed. The leading edge advances quickly and increases

the stripes size considerably. Indeed, once a stripe starts growing at its leading

edge, it seems that this process does never stop. At least, this has not been

observed in the experiment so far. Conversely, the stripe does not expand at

its trailing edge but retreats step by step. In general terms, this suggests that

turbulent stripes only grow in length at their leading edge.

Indeed, the stripe looses some patches at its trailing edge which separate
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and re-laminarise. Notably, this does not happen steadily as in the case of the

leading edge but in distinct events that can be described as follows. Even ini-

tially, little small scale motion is observed in proximity to the trailing edge.

In a first step, this patch of turbulence vanishes leaving behind the longitu-

dinal streaks. These streaks don’t stay aligned with the rest of the stripe but

bend forward in the stream-wise direction. Finally, this entire patch of streaks

cannot sustain itself and decays. The preferred break-point seems to be a lo-

cation close to the trailing edge where the stripe is not perfectly straight but

shows a slight bend. Conversely, this definitely has a stochastic component

since several bends observed in the second image did not cause separation but

they were straightened out until the third image.

In general, these characteristics of turbulent stripes are consistent with

findings about the two branches growing out of the turbulent spot shown

in Fig. 3.2. The retreat of the trailing edge gives an explanation for the re-

laminarisation in the centre of the turbulent spot. One concludes that the

stripes triggered with the extended perturbation qualitatively behave in the

same way as the stripes that grow freely from a localised perturbation. Of

course, this is also true for the stochastic nature of turbulent stripes due to a

sensitive dependence on initial conditions, which makes a statistical approach

necessary in order to quantify the development of turbulent stripes.

In general, stripes are straight and slender but their width shows statistical

fluctuations. The width denotes the extent of a stripe normal to its length,

including fine scale motion and streaks. At high Reynolds numbers, turbulent

stripes and the average width is observed to increases from 15h to 30h in the

range 1100 < Rem < 1450 but on average does not change in time. This shows

the same trend as reported for turbulent puffs in pipe flow [16].

As far as the growth is concerned, one can compare current observations

with modelling efforts in plane Couette flow by Duguet et al. [37]. They

suggested a stochastic growth mechanism behind the creation of new streaks

whereas this experiment shows a continuous, steady growth, which might in-

dicate a deterministic growth mechanism. Of course, PCF and PPF are dif-

ferent in the sense that there is no mean flow in PCF. Conversely, in PPF the

wedge-shaped leading edge pointing in stream-wise direction seems to play
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an important role in maintaining the stripe, in particular, in combination with

strong waves originating around the leading edge. This suggestion is based on

the observation that all growing stripes share this characteristic whereas they

never occur in decaying stripes.

In contrast, the retreat of the trailing edge seems to have a strong stochastic

component. The secondary flow around the stripe, which itself is caused by

increased wall friction in stripe’s area, can be suggested as a reason. In fact,

the stripe acts like an obstacle so that a certain amount of the flow takes a

detour around its edges. The leading edge is already inclined towards the

downstream direction such that this flow has no effect. However, the high

velocity flow around the trailing edge causes this part of the stripe to bend

forward. Apparently, imposing a much larger angle on the rear of the stripe

destabilises it. In section 3.4.3 a reason for this behaviour will be presented.

In addition, Fig. 3.10 also shows several advantages of the new perturba-

tion technique, in addition to the high efficiency in triggering stripes at low

Reynolds numbers. Since stripes only grow at the leading edge, they can be

triggered with their trailing edge being close to the lateral wall, which ef-

fectively doubles the width of the channel as far as the stripe is concerned.

Secondly, the stripe-shaped perturbation can immediately form a turbulent

stripe. Since no initial development from a spot into a stripe is necessary, us-

ing the extended perturbation increases the effective length of the experimen-

tal set-up. Finally, the extended perturbation also allows to generate “custom-

made ” stripes with an arbitrary angle and length. For instance the behaviour

of stripes that have not freely grown in their natural angle can be studied in

this way. For instance, this allows one to test whether stripes have a preferred

angle.

3.4.2 Branching of Turbulent Stripes

For turbulent stripes originating from a localised perturbation, two processes

for the formation of new stripes have been observed. A turbulent stripe split

into two parallel stripes or branch off, forming a V-shape. The latter process

shall be investigated closely. For this reason an image sequence is recorded
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Figure 3.10: Development of a turbulent stripe at Rem = 1100. The photos are
taken at t∗ = 170 (top), 385 (middle) and 480 (bottom). An extended perturba-
tion is applied at −100 < x∗ < 0.
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with a frame rate of 50 Hz (note that the interval between two images, 20 ms,

approximately corresponds to ∆t∗ = 5), starting at around t∗ ≈ 480. One branch-

ing event observed at Rem = 1200 is shown in Fig. 3.11. For this purpose sev-

eral images are selected from the entire sequence.

The first image only shows the leading edge entering the frame. The stripe

has the same shape as in Fig. 3.10 where not branching occurs. Between the

first and second image (∆t∗ ≈ 20) a pack of four parallel streaks forms at the

laminar-turbulent interface, downstream of the stripe, not too far from the

leading edge (z∗ ≈ 20). Whereas the streaks in the close neighbourhood are

aligned with the stream-wise direction, the front of this pack is inclined to-

wards the leading edge. Until the third image the pack has grown to a size

of six streaks. In this moment the streaks closest to the leading edge have de-

tached themselves from the stripe such that the pack sticks out of the front

of the stripe. The streaks start forming a wedge shape which seems to have

finished by the fourth image. This shape is already similar to the leading edge

of the original stripes. Until the last image a stripe has grown to a length of

≈ 10h. This growth happens by seeding new streaks in the laminar flow in

front of the leading edge.

This observation of a branching event underlines the importance of the

formation of a wedge-shape leading edge. Branching events don’t happen

regularly and they are relatively rare at this Reynolds number. In fact, at

Rem = 1200 branching could only be observed in the channel with a proba-

bility that was of the order of magnitude O(0.01). Notably, splitting such as

observed in Fig. 3.3 and resulting in two parallel stripes, was not observed at

this Reynolds number. It has only been seen to occur for Rem > 1450 using a

localised perturbation.

3.4.3 Natural Angle of Turbulent Stripes

In a next step the inclination of turbulent strips shall be studied. In general,

stripes are straight and their inclination with respect to the stream-wise direc-

tion is well defined. In this work, the inclination of the stripe will be denoted

as α which is defined according to Fig. 3.12a.
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Figure 3.11: Image sequence of a splitting event at Rem = 1200. The time steps
with respect to the first image are t∗ = 0, 20, 35, 55 and 105.
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αtrig 40◦ 50◦ 60◦ 75◦ 85◦

≈ α0 35◦ 40◦ 48◦ 60◦ 70◦

Table 3.1: Comparison of trigger angle αtrig and the effective initial angle α0.

In a first test, the time evolution of α is examined after having imposed an

initial angle using the extended perturbation method. Fig. 3.12b shows the

results for Rem = 960, averaged over 30 stripes. The legend lists the values of

the trigger angle αtrig . This angle measures the inclination of the triggering

device in the laboratory frame with respect to the stream-wise direction. This

gives the angle of the trajectory for the spherical obstacle inside the channel.

The trigger angle is not equal to the initial angle due to advection by the mean

flow. In fact, the initial angle can only be estimated from images showing the

stripe shortly after its formation, e.g. at t∗ = 100. Since these stripes are created

by moving the obstacle from the leading to trailing edge, the effective initial

angle is somewhat smaller than the trigger angle. The approximate relation

between both values is summarised in Tab. 3.1.

Fig. 3.12b shows that irrespectively of the initial angle, the stripes eventu-

ally converge towards an angle 40◦ < α < 50◦. This is an important result since

it demonstrates that stripes have a preferred angle and that they auto-correct a

wrong angle by converging towards this preferred value. Only after having es-

tablished these two facts, the existence of a sensible natural angle of turbulent

stripes can be confirmed.

In a second step the average growth of stripes is measured as a function of

the initial angle. Fig. 3.13 shows the time evolution of the average stripe size

for a fixed Reynolds number; legend entries give the trigger angle αtrig which

can be converted to the initial angle using Tab. 3.1.

The growth is measured by two different quantities: the span-wise extent

W , as defined in Fig. 3.12a and the area. Fig. 3.13a shows the time evolution of

W and 3.13b the evolution of the stripe’s area, including the area of small scale

motion and the streaks. The time evolution of both quantities only differs in

the first stage of development (t∗ < 300) but eventually both figures show the

same trends.

For a trigger angle αtrig = 40◦ and 85◦ the average size decreases by 25 %
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and 50 % respectively, in the time interval 300 < t∗ < 450. This suggests that

a large fraction of initial perturbations decay. In contrast, the evolution of

the stripes as a function of the trigger angle does not vary much in the range

50◦ ≤ αtrig ≤ 75◦.

By comparison with Tab. 3.1 one notes that, this range of trigger angles cor-

responds to the initial angle 40◦ ≤ α0 ≤ 60◦. This is interesting since Duguet

et al. [8] observed in numerical simulations on PCF that the lowest initial per-

turbation was necessary to produce a turbulent stripe at an angle of ∼ 40◦.

Indeed, it is aboserved that turbulent stripes cannot be maintained outside

this range, e.g. observed in the current experiment for α0 = 35◦ and 70◦.

Thus, in order to assure the formation of turbulent stripes, it is in the best

interest to trigger stripes at an angle that is inside this range. Finally, one notes

that this range 40◦ ≤ α0 ≤ 60◦ coincides with 40◦ < α < 55◦, the interval where

the natural angle is expected according to Fig. 3.12b.

For this reason, the natural angle shall be measured in the widest possible

range of Reynolds numbers possible with the current set-up. In the end, three

different types of perturbations are used in the appropriate range of Reynolds

numbers. In every case the perturbation is given enough time to develop into a

shape that is as independent as possible from the original perturbation. From

Fig. 3.12b one interferes that the turbulent spot/stripe needs to develop freely

for at least ∆t∗ > 300. The angle was detected visually by selecting two points

in a straight region of small scale turbulence, such as indicated in Fig. 3.12a.

To make sure the values are not biased by decay, deformation or splitting, only

well-formed stripes are considered. In this case well-formed means that the

angle can be measured unambiguously. Furthermore, stripes that touch the

wall are also excluded.

The results of these measurement of the natural angle of a turbulent stripe

as a function of Reynolds number are compiled in Fig. 3.14. The set of mea-

surement called “spot” denotes the use of the localised perturbation while

providing a supply pressure of 2 bar to the injector; “stripe” stands for the

extended perturbation method at a trigger angle αtrig = 50◦; “plate” means

the placement of two plates in the channel inlet in order to create a highly

disturbed inlet flow. Error bars show the standard deviation at each measure-
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ment point. One notes that the results for all three perturbation techniques

are consistent since the standard deviation is typically larger than the off-set

between different sets of measurements.

In general, the stripe’s natural angle αn decreases with rising Reynolds

number over the entire range 900 < Rem < 1500. Rem = 900 marks the low-

est point where a clear stripe such as previously described could be identified.

At this point of very low Reynolds numbers the natural angle is found to be

αn ≈ 45◦. Up to Rem = 1300 the natural angle only decreases slowly but then

drops rather quickly to ≈ 25◦.

Finally, Fig. 3.14 shows that there is a universal natural angle for turbulent

stripes irrespective of the specific perturbation method used. This also adds

evidence that the stripes produced from localised and extended perturbation

are equivalent. In addition, Fig. 3.15 shows the spread of data for three dif-

ferent points. In every case, a continuous distribution is found suggesting that

stripes naturally exist in a certain range around the mean natural angle. Com-

paring with Fig. shows that this range is identical with the range where the

temporal evolution of the turbulent stripes is independent of the initial angle.

The existence of a continuous distribution was also found by Duguet and

Schlatter [38] in PCF. The overall range of angles observed 22◦ < αn < 47◦ is

consistent with results from Tuckerman and Barkley [36]. They enforced the

angle in a numerical domain and found that stripe patterns could develop

between 15◦ and 66◦. Hence, this should give the maximum stability range

for turbulent stripes. The range of natural angles has to be contained but

obviously must be considerably narrower. However, having confirmed that

the stripe’s natural angle various drastically with Reynolds number, ultimately

rises questions about an approach followed by Tuckerman and co-workers [33,

36] who fix the angle of a the stripe over a wide range of Reynolds numbers in

a numerical study, e.g. when imposing 24◦ at Rem = 1100.

3.5 Critical Point in Plane Poiseuille Flow

Having established that perturbations in plane Poiseuille flow (PPF) always

either decay or develop into a stripe pattern, finally, the critical point shall
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(a) Definition of the stripe’s angle α
and the span-wise extent W .

(b) Time evolution of the stripe’s aver-
age angle. Rem = 960.

Figure 3.12: The evolution of the angle of a turbulent stripe.

(a) Span-wise extent of the stripe. (b) Area of the stripe.

Figure 3.13: Growth and decay of a turbulent stripe as a function of the trigger-
angle. Rem = 960.

Figure 3.14: The natural angle as a function of Reynolds number.
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(a) Localised perturba-
tion, Rem = 1400.

(b) Extended perturba-
tion, Rem = 1200.

(c) Fully disturbed flow,
Rem = 900.

Figure 3.15: PDFs for the distribution for the angle of turbulent stripes. The
red vertical represents the mean value.

be estimated. For this purpose, the extended perturbation mechanism is em-

ployed while making use of the insight gained into the typical development of

turbulent stripe.

At first, the average development of turbulent stripes is investigated. Fig.

3.16 shows the average evolution of the stripes’ size. The trigger angle is

αtrig = 60◦ (corresponding to an initial angle α0 = 48◦), since this lies in the

middle of the range where turbulent stripes naturally exist and where the

small variations of the initial angle don’t influence the formation of stripes.

The average is calculated from a sample size of 50.

In a 2D flow, e.g. PPF, the most intuitive way of measuring the turbulent

fraction is the area covered by the disturbed flow. However, when performing

flow visualisation, the disturbed area of a decaying stripe cannot always be

identified unambiguously. The span-wise extent W (see Fig. 3.12a) was found

to be a more robust measure for a stripe’s growth. Indeed, both measures, the

span-wise extent and the stripe’s size are equivalent since the stripe has a slen-

der shape with a constant width and its angle is within a narrow range. Of

course, this is only true if no splitting events happen, but they were not ob-

served within the length of the channel at very low Reynolds numbers around

what is presumable the critical point. Thus, qualitative differences between

Fig. 3.16a and Fig. 3.16b only exist in the first interval whereas both measures

shows similar results for well-established stripes far from the perturbation.

As for the quantitative measurements, one observes that turbulent stripes
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(a) Span-wise extent. (b) Area.

Figure 3.16: Growth of turbulent stripes as a function of Reynolds number.
Trigger angle αtrig = 60◦.

on average decay for Reynolds numbers Rem ≤ 950. Conversely, there is a net

growth of the average size for Rem ≥ 1000. This is only possible if a significant

fraction of stripes grow. Yet, after a quick rise in size over the first interval,

the growth is much smaller in the second interval. This could be related to the

beginning decay of the stripe on the trailing edge as discussed in section 3.4.1.

For a trigger angle αtrig = 50◦ (α0 = 40◦)) the same result is found: the av-

erage size grows for Rem ≥ 990 and decreases for Rem ≤ 950. This is consistent

with the results from section 3.4.3 that the behaviour of turbulent stripes is

similar as long as their initial angle is within a certain range. In this range of

Reynolds numbers, the range of angles is approximately 40◦ ≤ α0 ≤ 60◦.

This suggests that the critical lies in the range 950 < Rem < 1000. This is

lower than any value reported in earlier publications. Most recently, Seki and

Matsubara [32] claimed the critical point to be Rem = 1400. Their estimate is

based on the stream-wise evolution of the kinetic energy contained in the ve-

locity fluctuations. However, complete decay for Rem < 1390 is only suggested

by extrapolation of their actual data. Furthermore, the hot-wire measurement

did not allow them to observe the formation of coherent structures in the same

way as this is possible when using flow visualisation.
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Conclusion

In plane Poiseuille flow (PPF), transition to turbulence takes place at Reynolds

numbers that are far below the linear instability threshold. Due to its subcrit-

ical nature, the transition scenario is characterised by spatio-temporal inter-

mittency which, at low Reynolds numbers, manifests in the form of localised

turbulent areas surrounded by laminar flow. In this thesis, a rectangular chan-

nel of large aspect ratio and length was used to study the development of these

localised structures, in particular, in a lower range of Reynolds numbers than

previously considered.

4.1 Summary of the Results

It has long been known that a localised (point-wise) perturbation of sufficient

amplitude develops into a turbulent spot of oval shape [23]. Experiments

clearly show that these spots develop into stripes forming a V-shape. This con-

firms numerical results [31] and suggests that turbulent stripes are the natural

form of intermittent turbulence in plane Poiseuille flow. Conversely, turbu-

lent spots are a transient stage of these localised structures that either decay or

grow into turbulent stripes. The formation of these structures has a stochastic

nature such that a turbulent spot may decay or as well grow into one or two

stripes. For lower Reynolds numbers the probability of decay increases and

below Rem = 1200 practically no stripes grow any more.

A new perturbation mechanism for extended perturbations was presented.
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The stripes produced with this technique were found to be equivalent to the

ones which grow freely from a localised perturbation. Moreover, this method

allows for the creation of turbulent stripes at very low Reynolds numbers

Rem < 1100.

Turbulent stripes are approximately advected with at the mean flow ve-

locity. Their development also shows a stochastic behaviour. In the range of

Reynolds numbers investigated, turbulent stripes are found to grow only on

their leading edge. At the same time the trailing edge decays step by step.

In general, turbulent stripes grow steadily at Reynolds numbers far below all

estimates for the critical point in previous studies. All well-established tur-

bulent stripes which show strong growth have an wedge shaped leading edge

and waves originating from it.

At the higher side of the range of Reynolds number investigated, the origi-

nally formed stripe, seeds new stripes into the laminar flow. Two mechanisms

are observed for this process: first, splitting events are observed for Rem = 1450.

In this case the front and the rear part of the stripe disconnect and subse-

quently grow independently as two parallel stripes. Secondly, stripes are also

found to branch into the a V-shape for Reynolds numbers as low as 1100.

There is a preferred natural angle for turbulent stripes. Stripes produced at

a different initial angles either decay rapidly or slowly adjust to a small range

around the natural angle. The stripe’s natural angle shows a clear trend and

decreases from 45◦ to 25◦ in the range 900 < Rem < 1500.

It has thus been established that turbulent stripes are the relevant localized

structures in the transitional range. At low Rem they start decaying from the

trailing edge. Conversely, they grow from their leading edge and, in addition,

spread by splitting and branching. In general, the competition between these

process decides whether turbulence ultimately decays or grows. The overall

growth rates can be estimated as a function of Reynolds number by ensemble

average of the turbulent fraction. Hence the critical Re for sustained turbu-

lence is found in the range 950 < Rem < 1000. Notably, this is far below all

previous estimates.
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4. CONCLUSIONS

4.2 Outlook

This study demonstrated the importance of a suitable initial perturbation for

studying localised turbulence at low Reynolds numbers. The perturbation

must ensure the formation of a well-established stripe as described earlier.

Hence quench experiments, where a stripe is generated in a high Reynolds

number flow and then is introduced into an area of low-Reynolds number,

would complement the present result.

This study suggested the existence of the critical point in an entirely dif-

ferent range of Reynolds numbers than reported in previous work. In order

to narrow down the critical point a channel of even larger aspect ratio and

longer observation time would be required to distinguish smaller changes in

turbulent fraction.

Future work on the behaviour of localised turbulence could focus on a

higher range of Reynolds numbers to study the transition from intermittent

to fully turbulent flow. It would be the obvious next step to extend this study

to the interaction between stripes and the formation of patterns, as well as the

influence of these interactions on the critical Reynolds number. Consequently,

the analogy of a percolation-like phase transition at the critical point could be

explored. However, due to advection this would be particularly challenging in

experiments since much longer observation times are needed.
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