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Kurzfassung

Im Rahmen elliptischer partieller Differentialgleichungen (PDE) betrachten wir die Finite
Elemente Methode (FEM) und die Randelementmethode (BEM). Wir entwickeln sowie
analysieren adaptive Algorithmen, die nicht nur die adaptive Netzverfeinerung steuern,
sondern auch die Terminierung von geeigneten Losern, d.h., die Linearisierung im Fall von
nichtlinearen Differentialgleichungen und das iterative Losen der sich ergebenden linearen
Gleichungssysteme.

Zum einen betrachten wir elliptische PDEs zweiter Ordnung, bei denen die auftretenden
diskreten Systeme nicht exakt gelost werden. Fiir kontrahierende iterative Loser formulie-
ren wir einen adaptiven Algorithmus, der die adaptive Netzverfeinerung sowie die inexakte
Losung der auftretenden nichtlinearen bzw. linearen Systeme iiberwacht und steuert. Wir
beweisen, dass die vorgeschlagene Strategie zu linearer Konvergenz mit optimalen alge-
braischen Raten fiihrt. Hierbei fokussieren wir uns auf Konvergenzraten in Bezug auf den
gesamten Rechenaufwand. Unsere Analysis ist anwendbar auf lineare Probleme, bei de-
nen die linearen Systeme mittels optimal vorkonditionierter CG-Verfahren (PCG) gelost
werden, sowie nichtlineare Probleme mit stark monotoner Nichtlinearitdt, die mittels der
sogenannten Zarantonello-Iteration linearisiert werden.

Wir kombinieren die zuvor genannten Resultate im Rahmen elliptischer Randwertproble-
me zweiter Ordnung mit stark monotoner und Lipschitz-stetiger Nichtlinearitét. Wir prisen-
tieren einen erweiterten adaptiven Algorithmus fiir die Berechnung der numerischen Appro-
ximation, der neben der adaptiven Gitterverfeinerung und der Zarantonello-Linearisierung
auch einen kontrahierenden algebraischen Loser fiir die auftretenden linearen Gleichungs-
systeme steuert. Wir ermitteln Abbruchsbedingungen fiir den algebraischen Loser, die ei-
nerseits nicht zu einschrinkend, aber andererseits ausreichend dafiir sind, dass die inexakte
Zarantonello-Linearisierung kontrahierend bleibt. In dhnlicher Weise ermitteln wir geeig-
nete Abbruchsbedingungen fiir die Zarantonello-Iteration, sodass der Linearisierungsfehler
sich nicht nachteilig auf den residualen a posteriori Fehlerschitzer auswirkt und die ad-
aptive Netzverfeinerung zuverlissig gesteuert wird. Wir beweisen die Kontraktion der (ge-
schachtelten) inexakten Iteration, die auf lineare Konvergenz des Gesamtverfahrens fiihrt.
Desweiteren beweisen wir, dass das Verfahren mit der optimalen Rate in Bezug auf die
Freiheitsgrade konvergiert. Schlieflich beweisen wir, dass es auch mit derselben optimalen
Rate in Bezug auf den gesamten Rechenaufwand konvergiert.

Zum anderen betrachten wir Adaptivitdt und PCG im Rahmen von Randwertproblemen
fiir elliptische Integralgleichungen erster Art. Ahnlich wie zuvor steuert der prisentierte
adaptive Algorithmus die Terminierung von PCG sowie die lokale Netzverfeinerung. Neben
Konvergenz mit optimalen algebraischen Raten beweisen wir, dass das Verfahren mit fast-
optimaler Rate in Bezug auf den gesamten Rechenaufwand konvergiert.
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Abstract

In the framework of elliptic partial differential equations (PDEs), we consider the finite
element method (FEM) as well as the boundary element method (BEM). We design and
analyze adaptive algorithms which do not only steer the adaptive mesh-refinement but also
the termination of appropriate iterative solvers, namely, iterative linearization of nonlinear
equations as well as iterative solvers for the arising linear systems.

On the one hand, we consider a general framework for treating linear and nonlinear
second-order elliptic PDEs, where the arising discrete systems are not solved exactly. For
contractive iterative solvers, we formulate an adaptive algorithm which monitors and steers
the adaptive mesh-refinement as well as the inexact solution of the arising discrete systems.
We prove that the proposed strategy leads to linear convergence with optimal algebraic
rates, where we focus on convergence rates with respect to the overall computational cost.
Our analysis covers linear PDEs where the linear systems are solved by an optimally pre-
conditioned conjugate gradient method (PCG) as well as nonlinear PDEs with strongly
monotone nonlinearity which are linearized by the so-called Zarantonello iteration.

Furthermore, we combine and extend the aforementioned results in the frame of second-
order elliptic boundary value problems with strongly monotone and Lipschitz-continuous
nonlinearity. We introduce an extended adaptive algorithm for the computation of the
numerical approximation, which steers the adaptive mesh-refinement, the Zarantonello lin-
earization, and a contractive algebraic solver to solve the arising linear systems. We identify
stopping criteria for the algebraic solver that on the one hand do not request an overly tight
tolerance, but on the other hand are sufficient for the inexact Zarantonello linearization to
remain contractive. Similarly, we identify suitable stopping criteria for the Zarantonello
iteration that leave an amount of linearization error that is not harmful for the residual
a posteriori error estimator to steer the adaptive mesh-refinement reliably. We prove a
contraction of the (nested) inexact iterations leading to linear convergence of the overall
adaptive algorithm. Furthermore, we prove that the adaptive algorithm converges with
optimal rates with respect to the number of degrees of freedom. Finally, we prove that the
adaptive algorithm converges with the same optimal rate also with respect to the overall
computational cost.

On the other hand, we consider the interplay of adaptive mesh-refinement and PCG in
the frame of BEM for elliptic integral equations of the first kind. As before, the proposed
algorithm steers the termination of PCG as well as the local mesh-refinement. Besides
convergence with optimal algebraic rates with respect to the number of degrees of freedom,
we also prove that the algorithm converges with almost optimal rates with respect to the
overall computational cost.
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1 Introduction

1.1 Motivation

Two very important methods for numerically solving partial differential equations (PDEs)
arising in engineering and natural sciences are the finite element method (FEM) and the
boundary element method (BEM). While typical fields of application of FEM are, e.g., struc-
tural analysis, heat transfer, and fluid flow problems, BEM can be used to solve problems
from, e.g., fluid mechanics, acoustics, or electromagnetics, where the PDEs on a possibly
unbounded exterior domain have equivalently been formulated in terms of integral equations
posed on the boundary.

This wide range of fields of application led to the development of various numerical
schemes based on the principal ideas of finite elements. Most of these methods discretize the
domain of interest by a mesh of polygons, thus leading to a reduction of the PDE to a finite
dimensional system of equations, and consequently to a finite dimensional approximation
of the in general unknown solution. The quality of this approximation can be controlled by
the mesh-width of the discretization of the domain. As a result, a simple and widely used
idea to decrease the error is to uniformly refine the corresponding mesh successively, which
yields convergence of the error to zero. However, the order of convergence might be heavily
spoiled by singularities of the unknown solution which can be induced by the given data,
the differential operator, and/or the geometry. Hence, significantly more computational
effort is needed to reach a required accuracy, since the convergence of the error can be
arbitrarily slow. To circumvent this unnecessary computational effort, the mesh can be
refined locally at these singularities. However, doing this beforehand would require a priori
information of the unknown solution which, in general, is not available. This led to the
development of adaptive algorithms which automatically steer the local refinement via a
posteriori error estimators, i.e., adaptive finite element methods (AFEM). One particular
focus in AFEM is on the numerical analysis of rate-optimal convergence, where one aims
to prove that the adaptive strategy leads to convergence of order (9((#72)_8) along the
sequence of generated triangulations, with s > 0 being maximal, where we plot the error
estimator over the number of elements #7,.

Concerning the rate- optlmal convergence of AFEM, some seminal works for linear prob-
lems are, e.g., [{i i s, Rial NEGR) ONY . For nonlinear prob-
lems, we refer to [* /] as well as to | ] for a general frame-
work of convergence of AFEM with optimal convergence rates. Some works also account for
the approximate computatlon of the discrete solutions by iterative (and mexact) solvers,
see, e.g., [ 4, AGLLY] for linear problems and |[¢ ;
for nonlinear model problems Moreover, there are many papers on a posteriori error es-
timation Wthh also 1nclude the iterative and inexact solution for nonlinear problems, see,
e.g., [& L, EVEE AWLE, HWiy] and the references therein.

N
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1 Introduction

As far as optimal convergence rates are concerned, the mentioned works focus on rates
with respect to the degrees of freedom. Contrary to this, in practice, one aims for the
optimal rate of convergence with respect to the computational cost, i.e., the computational
time, which is one of the main goals of the present thesis. In [Ste07], this is already addressed
for the 2D Poisson model problem. However, this seminal work assumes that a sufficiently
accurate discrete solution can be computed in linear complexity, e.g., by a multigrid solver.
Under these so-called realistic assumptions, it is proved that the total error, which consists
of the energy error plus data oscillations, converges also with optimal rate with respect to
the computational cost.

One starting point of the present thesis is [GHPS18], where an elliptic PDE with strongly
monotone nonlinearity is considered. There, the arising nonlinear FEM problems are lin-
earized via the so-called Zarantonello iteration, which leads to a linear Poisson problem in
each step. The adaptive algorithm presented therein drives the linearization strategy as well
as the local mesh-refinement and almost optimal convergence rates with respect to the total
computational cost are proved. In the present thesis, we prove optimal rates with respect
to the overall computational cost based on an abstract analysis in the spirit of [CFPP14].
Besides the mentioned Zarantonello iteration for nonlinear model problems, this abstract
setting also covers linear solvers like PCG with optimal preconditioner. In a next step,
we then combine these two approaches in a fully adaptive algorithm and prove optimal
convergence rates with respect to the overall computational cost. Here a key question is to
identify suitable stopping criteria for the involved and nested iterative solvers.

For problems on unbounded domains, FEM often is not well applicable. In these situa-
tions, BEM can be the better option, since it does not consider and discretize the PDE itself
but an equivalent boundary integral equation. Hence, a given problem on an unbounded do-
main can be reduced to a problem on its (possibly) bounded boundary. In a post-processing
stage, the solution of this integral equation then gives rise to an approximation of the PDE
solution on the whole space via a representation formula. Due to the dimension reduction
and a potentially higher convergence order of BEM, this can lead to higher efficiency in
terms of the computational cost.

We refer to [Gan13, FKMP13, FFK 14, FFK 15, AFF " 17] for some milestones for adap-
tive BEM. These works assume that the arising Galerkin systems are solved exactly. How-
ever, we note that this is hardly possible in practice, where matrix compression techniques
like the fast multipole method, panel clustering, or hierarchical matrix techniques are a must
to deal with the dense BEM matrices. In particular, this prevents the use of direct solvers.
Instead, we avoid the latter assumption and present an adaptive BEM algorithm to solve
elliptic integral equations of the first kind. This algorithm uses a preconditioned conjugate
gradient method (PCG) with optimal additive Schwarz preconditioner to approximately
solve the arising linear discrete systems. Analogously to [GHPS18], we prove convergence
with optimal rates with respect to the degrees of freedom. Due to an additional consistency
error stemming from matrix compression techniques for the dense BEM matrices, this leads
to almost optimal rates with respect to the computational complexity.



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

1.2 Qutline

1.2 Outline

Chapter 2

First, in Chapter 2, we collect some preliminaries and basic notations which will be used
throughout the whole thesis and introduce Lebesgue as well as Sobolev spaces on domains
Q c R? with d = 2, 3 and boundary 92. We recall the most important results and properties
from PDE theory and functional analysis which are needed for the analysis of the following
chapters.

Chapter 3

In Chapter 3, we then introduce meshes 7! of a domain Q C R? as well as meshes 7T on
subsets I' C 99 of the boundary 9€). Additionally, we recall structural properties (R1)—
(R3) for the mesh-refinement from [CFPP14], which are essential for the abstract analysis
concerning optimal convergence rates in the subsequent chapters. These assumptions are,
e.g., fulfilled for the extended 1D bisection and the newest verter bisection, which we recall
in Section 3.5 and Section 3.6, respectively.

Abstract framework for Chapter 4—6

In the following chapters, we present and analyze adaptive algorithms, which take the form

(Sohe] — [Bmae] — [Vak] — [Tefme] ()

where | Mark | is based on the Dorfler criterion from [D6r96] with (quasi-)minimal cardi-
nality ‘[SteOT, PP20]. These algorithms generate a sequence of discrete approximations
to the, generally not available, exact solution «* of the given problem. Here, the index
¢ corresponds to the discretization of the given problem. However, since solving the aris-
ing discrete problems exactly is usually not possible or very costly, iterative solvers are
employed. Therefore, we adapt the strategy (1.1) as follows:

Iteratively Solve & Estimate| — — (1.2)

This gives rise to iterative approximations ufi for the exact discrete solutions uj, where the
index k corresponds to the iterative solver. The numerical analysis of (1.2) thus requires
the index set

Q= {(¢,k) € N} : discrete approximation u} is computed by the algorithm}  (1.3)

together with an ordering

(k) < (k) &% b is computed earlier than b . (1.4)

Additionally, we define the total step counter |(¢,k)| as

(0K == #{(t,k) € Q : (&) < (¢,K)). (1.5)
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1 Introduction

To prove convergence with optimal algebraic rates with respect to the number of degrees
of freedom of the iterates uf to the exact solution w*, we consider a certain quasi-error
Ab = |lur — u¥|| + ne(uf) combining the error |u* — uf|| as well as the error estimator

ne(uf). The key argument for the proof is the full linear convergence

A < O g FITIERI AL for all (¢, k), (¢, K') € Q with |(6,k)] < |(¢, )],  (1.6)
where Cpin, > 1 and 0 < qiin < 1 are generic constants.

Given N € Ny, let T(IV) be the set of all refinements 7 of Ty with #7 — #7y < N. For
s > 0, define

ol = sup (N +1)° int (I~ wiull+ o) € Boo U oo}, (17)

where wug, is the exact discrete solution associated to the mesh Tope and 7opt(ugy,,) is
the corresponding error estimator. It holds that ||u*||a, < oo if and only if the quasi-
error A7 = [lu* — ud ]l + Mops (15, ) for the exact discrete solutions decays at least with
algebraic rate s > 0 along a sequence of optimal meshes. In usual applications, Af,
is equivalent to the so-called total error (i.e., error plus data oscillations) as well as to
the estimator 7opt(ug,,) alone. Therefore, the approximability [lu*|[s, can equivalently be
defined through the total error (see, e.g., [Ste07, CKNS08, CN12, FFP14]) or the estimator
(see, e.g., [CFPP14]) instead of the quasi-error (used in (1.7)). The overall result will be
the same. However, we stress that none of these equivalences hold for the solver iterates
ué?, since those lack the Galerkin orthogonality, in general.

Convergence of the adaptive loop (1.2) with optimal rates with respect to the degrees of
freedom then means that, for all s > 0, there exists a constant C'(s) > 0 such that

C(s) Hu¥|la, < sup (#Ti —#To +1)* AF < C(s) (Ju*|[a, + 1). (18)
k)eQ

Hence, the quasi-error Aé’ for the computed discrete iterates uﬁ decays with rate s > 0 if
and only if rate s is possible for the exact discrete solutions on optimal meshes.

Finally, our main goal is to prove convergence with optimal rates with regard to the
computational cost. Assuming that all steps of the adaptive loop (1.2) can be performed

at linear cost O(#7y), the sum
Y #Tw

(¢ K)eQ
(¢ K< (6,k)
is proportional to the overall computational work to compute the approximation u’;, since
it depends on the full adaptive history. Convergence with optimal rates with regard to the
computational cost then means that, for all s > 0, there exists a constant C’(s) > 0 such
that

C'(s) Y ], < p( 3 #n) Ak < C/(s) ([ la. + ).
E,k)GQ (/Z',k:’)EQ
(¢ .k)<(Lk)

(1.9)

Thus, the quasi-error A’; for the computed discrete solutions uf{ decays with rate s > 0
with respect to the overall computational cost if and only if rate s is possible with respect
to the degrees of freedom for the exact discrete solutions on optimal meshes.
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Chapter 4
This chapter is based on the recent own work [GHPS21].

Gregor Gantner, Alexander Haberl, Dirk Praetorius, and Stefan Schimanko.
Rate optimality of adaptive finite element methods with respect to the overall
comput ational costs. Math. Comp., accepted for publication, 2021.

We consider the elliptic boundary value problem

. X .

div A(Vu 2 =f in{, (1.10)
u =0 onT,

where Q@ € R? with d = 2,3 is a bounded Lipschitz domain with boundary T' = 9 and

f € L*(Q) is a given load. We assume that the (possibly nonlinear) operator A: L*(Q)? —

L*(Q)¢ is strongly monotone and Lipschitz continuous. From this, we get the equivalent
variational formulation: Find u* € H := H}(2) such that

(Au, v)rxpy = / A(Vu*)-Vodx = / fode =: (F, v)grxy forallveH. (1.11)
Q Q

Due to the main theorem on monotone operators [Zei90, Section 25.4], there exists a unique
solution u* to this weak formulation. For a given discrete subspace Ay C H related to a
mesh 7Ty of 2, the same holds for the discrete formulation

(Aug , vy = (F, ve)prxy  for all vy € Xp. (1.12)

If A is nonlinear, the exact discrete solution uj can hardly be computed exactly. Even if A
is linear, usual FEM codes employ iterative solvers like PCG, GMRES, or multigrid. For
the abstract analysis, we assume that we have an iterative solver which is contractive in
each step with respect to the energy norm, i.e., it holds that

llu; — uIZ Il < qllw; — ulzfl||| forall ke N (1.13)

with a generic contraction constant 0 < ¢ < 1. Then, our adaptive algorithm takes the
form (1.2). We note that (1.13) allows to control the solver error by means of

q

k ko k=1
o — gl < =l — w1 (1.14)

We terminate the solver if [luf — ué’_lm is small compared to 7,(uf) and employ nested
iteration with u? 1 = ué? in this case. Under usual assumptions, we prove that the proposed
adaptive strategy guarantees full linear convergence (1.6) of the quasi-error A} = |lu* —
uf|| + ne(uf) consisting of error plus error estimator. Prior works, e.g., [Ste07, BMSI0,
CG12, GHPS18], proved linear convergence of the quasi-error only for those steps, where
mesh-refinement takes place. Unlike this, full linear convergence (1.6) even holds for the
full sequence of discrete approximations, i.e., independently of the algorithmic decision for
mesh-refinement or one step of the discrete solver. Moreover, we prove convergence with
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1 Introduction

optimal rates with respect to the degrees of freedom (1.8) as well as the computational
cost (1.9).

In Section 4.7, we consider the linear elliptic boundary value problem (1.10), where we
assume that

A: L)% = L2(Q)?  has the form  A(v) = [z A(z)v(z)], (1.15)

where A € W1>(Q)?*? is symmetric and uniformly positive definite. Then, the discrete
formulation (1.12) is equivalent to the solution of a linear system

M,x} = by. (1.16)

with a positive definite and symmetric matrix M, € RY*N. We note that the condition
number of the Galerkin matrix My from (1.16) depends on the number of elements of 7y,
as well as the minimal and maximal diameter of its elements. Therefore, we use PCG
in combination with an efficient preconditioner P, € RV*Y as an iterative solver. PCG
formally applies the conjugate gradient method to the system matrix Pé_l/ QMgPE_l/ ? of the

preconditioned linear system
P, PMP, Px; = P, P, (1.17)

We assume that the matrix-vector products with P[l can be computed at linear cost, and
that P, is optimal in the sense that the condition number of the preconditioned system is
uniformly bounded, i.e,

conds (P, *MP, ) < C, (1.18)

where the constant C' > 1 is independent of the mesh 7,. This yields the contraction
property (1.13) so that the abstract main results of Chapter 4 apply to this setting. In
Sections 4.7.1-4.7.6, we formulate and analyze a multilevel diagonal scaling preconditioner
P, ¢ RV*N in the frame of multilevel additive Schwarz methods and prove its optimality.

The abstract results of Chapter 4 also apply to AFEM for quasi-linear elliptic PDEs
with strongly monotone nonlinearity (cf. Section 4.8), where we employ the Zarantonello
iteration and assume that the arising linearized discrete equations are solved exactly at
linear cost. The computation of one step of the Zarantonello iteration requires only the
solution of one Poisson equation with homogeneous Dirichlet data, i.e., to compute uf“
from ulg, we have to solve the linear problem

! a !
<<uf+1 L vg) = (uf, vg) — E(Aué‘ — F , vpyarwy Torall v, € Ay, (1.19)

where (-, -) = (V-, V-)12(0). Again, the abstract main results apply to this setting.
To underpin the theoretical results, we present some numerical examples.
Chapter 5

As an extension of Chapter 4, the aim of Chapter 5 is to combine the two aforementioned
approaches of Chapter 4, i.e., Section 4.7 as well as Section 4.8, into one fully adaptive
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1.2 Qutline

algorithm for elliptic PDEs with strongly monotone nonlinearity. As before, we consider
the elliptic boundary value problem (1.10) where the nonlinearity A: R? — R? is Lipschitz-
continuous and strongly monotone. The presented material is based on the recent own
work [HPSV21]:

Alexander Haberl, Dirk Praetorius, Stefan Schimanko, and Martin Vohralik.
Convergence and quasi-optimal cost of adaptive algorithms for nonlinear op-
erators including iterative linearization and algebraic solver. Numer. Math.,
2021.

We propose an adaptive algorithm of the type

‘ estimate total error and its components

!

advance algebra/advance linearization/mark and refine mesh elements

which monitors and adequately stops the iterative linearization and the linear algebraic
solver as well as steers the local mesh-refinement. We compute a sequence of discrete
appoximations uZ 7 of the exact solution u* that have an index ¢ for the mesh-refinement,
an index k for the Zarantonello linearization (1 19), and an 1ndex Jj for the algebraic solver
iteration approximating the exact solution u *of (1.19) by U kJ., First, we identify stopping
criteria for the algebraic solver, e.g., PCG Wlth optimal precondltloner that on the one
hand do not request an overly tight tolerance but on the other hand are sufficient for the
inexact (perturbed) Zarantonello linearization to remain contractive. Similarly, we identify
suitable stopping criteria for the Zarantonello iteration that leave an amount of linearization
error that is not harmful for the residual a posteriori error estimate to steer the adaptive
mesh-refinement reliably.

Analogously to Chapter 4, the sequential nature of the fully adaptive algorithm gives rise
to the index set

Q:={(¢,k,j) € Nj : discrete approximation 'u,];’j is computed by the algorithm }

together with the ordering

(U k,5) < (UK, 5) Lt u?’j is computed earlier than ulz,/’j /

Analogously to (1.5), we define the total step counter
(K ) =Lk, j) € Q : (LK, j) < (€K, j)}, (1.20)
as well as the quasi-error
k.j k,j k.j
AT o=l — | g™ = g ] ()

consisting, in order, of the overall error, the algebraic error, and the error estimator. Our
first main result proves that the proposed adaptive strategy is linearly convergent in the
sense of

AR < Oy HFINTERDT ARG gor all (2, k, )] < |(€, K, ), (1.21)
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1 Introduction

where Cliy > 1 and 0 < gj;, < 1 are generic constants. Second, we prove the optimal error
decay rate with respect to the number of degrees of freedom exceeding those of the initial
mesh in the sense that there exists a constant C'(s) > 0 such that

CO™ 'l £ sup (#T - #To+ 1" A < CE (0l + 1. (12)

Lk,§)EQ

As before, estimate (1.21) is the key argument to prove optimal error decay rate with
respect to the overall computational cost of the fully adaptive algorithm which steers the
mesh-refinement, the perturbed Zarantonello linearization, and the algebraic solver, i.e., for
all s > 0, there exists a constant C’(s) > 0 such that

C'(s) 7 u]la, < sup ( > #72/) AT < C'(s) (|, + 1)
(Z,k,])GQ (el’kl’jl)eg

(el7k, 7.7',)§(€7k’.7')

(1.23)

As above, we stress that under realistic assumptions the sum in (1.23) is indeed proportional
to the overall computational cost invested into the fully adaptive numerical approximation
of (1.10), if the cost of all procedures like matrix and right-hand-side assembly, one algebraic
solver step, evaluation of the involved a posteriori error estimates, marking, and local
adaptive mesh refinement is proportional to the number of mesh elements in 7, i.e., the
number of degrees of freedom.

To underpin the theoretical results, we also present some numerical examples.

Chapter 6
Chapter 6 is based on the own work [FHPS19]:

Thomas Fiihrer, Alexander Haberl, Dirk Praetorius, and Stefan Schimanko.
Adaptive BEM with inexact PCG solver yields almost optimal computational
costs. Numer. Math., 2019,

where we consider weakly-singular integral equations of first kind. We note that [FHPS19]
was the first work in the context of adaptive FEM or BEM aiming for full linear convergence
and corresponding optimal rates with respect to the computational cost. The core analysis
was later improved by the analysis of [GHPS21] presented in Chapter 4 in such a way that
the latter only needs a contractive iterative solver, whereas some of the results of [FHPS19]
are tailored to the BEM setting with inexact PCG solver.

For a bounded Lipschitz domain Q € R¢ with d = 2,3 and polyhedral boundary 95, let
I' C 99 be a (relatively) open and connected subset. Given f: I' — R, we seek the density
¢*: I' — R of the weakly-singular integral equation

(V) (a) = /I Gz — y)é*(y)dy = f(z) forallzecT, (1.24)

where G(-) denotes the fundamental solution of the Laplace operator in R?. Its lowest-order
Galerkin formulation for a given triangulation 7; of I' reads as follows: Find ¢} € P°(7;)
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such that
J W@ vt o= [ 1@ via e torall v e T (1.25)

As for FEM for linear problems in Chapter 4, the discrete formulation (1.25) can be written
as an equivalent linear system

MZX; = bg (1.26)

with a positive definite and symmetric matrix M, € RV*% which, unlike FEM, is dense for
BEM. For a given initial triangulation 7j, we again consider an adaptive mesh-refinement
strategy of the type (1.2), which generates a sequence of successively refined triangulations
To for all £ € Ny. As before in Chapter 4, the condition number of the Galerkin matrix M,
from (1.26) depends on the number of elements of 7, as well as the minimal and maximal
diameter of the elements. Therefore, we require an efficient preconditioner as well as an
appropriate iterative solver.

The available results for adaptive BEM [Gan13, FKMP13, FFK 14, FFK 15, AFF17]
assume that the Galerkin system (1.26) is solved exactly. Instead, our adaptive algorithm
steers both the local mesh-refinement and the iterations of an iterative PCG solver for the
Galerkin system (1.26). In principle, it is known [CFPP14, Section 7] that convergence
and optimal convergence rates are preserved if the linear system is solved inexactly, but
with sufficient accuracy. Analogously to Chapter 4, we guarantee this by incorporating an
appropriate stopping criterion for the PCG solver into the adaptive algorithm. Moreover,
to prove that the proposed algorithm does not only lead to optimal algebraic convergence
rates, but also to (almost) optimal computational cost, we provide a preconditioner P, €
RY*N such that the evaluation of the matrix-vector product with Pé_1 can be done in
O(#T;) operations, and that P, is optimal in the sense of (1.18), i.e., the system matrix
Pg_l/ 2MZP;U % of the preconditioned linear system has a uniformly bounded condition
number which is independent of 7.

As in Chapter 4, we prove that the quasi-error

AF = (Jlo* — of 7 + ne(6f)?)

consisting of energy error plus error estimator is linearly convergent in each step of the
adaptive algorithm, independent of whether the algorithm locally refines the mesh or does
one step of the PCG iteration, i.e., there holds (1.6). Furthermore, we also prove (1.8), i.e.,
the quasi-error decays with optimal rate with respect to the degrees of freedom.

Under realistic assumptions on the efficient treatment of the arising discrete integral
operators, one step of the algorithm can be done in (’)((#ﬁ)log2(l + #7T¢)) operations.
Hence, the cumulative computational complexity for the adaptive step (¢, k) € Q is of order

1/2

o ¥ Tl #T). (1.27)
(¢ K)eq
(¢ k)<(L,k)

As a consequence of the log-linear cost (1.27), we prove that the quasi-error converges at
almost optimal rate with respect to the computational cost, i.e., with rate s — ¢ for any
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g > ( if rate s > 0 is possible for the exact Galerkin solution. This means that there holds
the implication

s§—¢&
|o ]|, <0 = sup ( Z (#T)log?(1 + #’7@)) Af < oo foralle>0.
(f,k)GQ (@',k’)EQ

(€' k)< (L k)

The difference to the abstract result (1.9) is the logarithmic term in the single-step com-
plexity, which ultimately leads to the reduced order of convergence s — ¢.
The final section underpins the theoretical findings by some 2D and 3D experiments.

10
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2 Basic notation and function spaces

In this section, we introduce some basic notations which will be used throughout the whole
thesis. Afterwards, we recall some definitions, notations, and results for the well-known
Lebesgue and Sobolev spaces, cf., e.g., [McL00, Chapter 3] or [SS11, Chapter 2].

First, let @ C R? with d = 2,3 be a bounded Lipschitz domain with boundary 9.
Depending on the context, | -| denotes the absolute value of scalars as well as the Euclidian
norm of vectors respectively. For measurable sets in {2 or in J€2, we use the same notation
| - | for the corresponding Lebesgue measure as well as the surface measure, respectively.

In general, all constants as well as their dependencies are explicitly given for all state-
ments. However, in proofs, we also abbreviate the notation, i.e., for real-valued quantities
A, B, we write A < B to abbreviate A < ¢ B with a generic constant ¢ > 0 which is clear
from the context. Analogously, A 2 B is the abbreviation of A > ¢ B. Moreover, A ~ B
states that both estimates A < B and A 2 B hold true.

For the remaining part of this section, and in this section only, let Q be any (Lebesgue)
measurable subset of R™ with n > 1 and strictly positive measure.

2.1 Lebesgue spaces and basic notation

For 1 < p < oo, the ususal Lebesgue spaces on €2 are denoted by LP(2) with corresponding
norms

, 1/p
vl e ) = (/gz |v(z) P dx) for 1 < p < o0,

as well as ||v|| () being the essential supremum of u over 2. Analogously, Lebesgue spaces
on the boundary 02 are denoted by L”(0€2) with corresponding norms || - || r(50)-

For all p > 1, it is well-known that L?(2) is a Banach space. For p = 2, the corresponding
Lebesgue space L2(Q)) is also a Hilbert space. Hence, for all u,v € L?(Q2), we define the
scalar product (-, -)72(q) by

(u, v}z = /pu(a:)v(:z:) dz.

Let ¢ > 1 denote the conjugate exponent to p, i.e.,

1
S+ =1
p g

Then, for all w € LP(2) and all v € L(?), there holds the so-called Hélder’s inequality

(w, v) 2] = [[uvl i@y < llulle@llvllzag)

11
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2 Basic notation and function spaces

2.2 Sobolev spaces on a domain {2

Let v: Q — R, where Q C R? is a bounded Lipschitz domain with piecewise C'*°-boundary

an n-tuple of non-negative integers, we denote the partial derivatives of v by

ovw) = (5m)"  (5m) " olo)

if v is sufficiently smooth for them to exist. The order |«| of the partial derivative 0%v(z)
is defined by

la) := a1 + -+ + an.

Definition 1. Let v € L?(Q2). Then, v has a weak derivative g :== 0% € L*(Q) of order «
if there holds that

/ gw dz = (=1)ll / v0%w dz  for all w € C§°(Q),
Q Q

where C§°(Q) = {u € C*(Q) : u has compact support in Q} 1s the space of infinitely
differentiable functions with compact support.

Note that if the weak derivative of v € L?(f) exists, it is unique and if v also has a
classical derivative, the weak derivative coincides (almost everywhere) with the classical
one.

Definition 2. For ¢ € Ny, the Sobolev space H'(Q) is defined by
HY(Q) := {ve L*(Q) : 0" € L*(Q) exists in the weak sense for all |a| < ¢}.
The inner product (-, -) ye(qy on Q) is given by

(v, W) e = Z (0%, 0%w) 20y for all v,w € Q)
ol <t

b

and the corresponding norm || - || ye(qy 18 given by

[0l 30y = (Vs O)ie(y  for all v e HY(Q).

For ¢ = 1, we hence get that
HY Q) ={veL*Q): Vve L2()? exists in the weak sense }

with scalar product
(v, w1 = / vw dx+/ Vv - Vw dz,
0 Q

and norm HUH?Il(Q) = (v, 'U>H1(S2) = HUH%Z(Q) =+ ||V'U||%2(Q)-

For a non-integer ¢ := k+s with k¥ € Ngand 0 < s < 1, the Sobolev space (1) is defined
by interpolation via the K-method, i.e., HY(Q) := [H*(Q), H**1(Q)]s2, cf., e.g., [SS11,
Tri9s].

12
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2.3 Sobolev spaces on the boundary 0f)

2.3 Sobolev spaces on the boundary 92

Sobolev spaces on the boundary 9 can be defined in various ways, cf. [HW08, McL00,
SS11]. Let IH%(0€) := L*(09Q) be the space of all square-integrable functions on 9Q with
scalar product (-, -)gn and norm || - [[z2(50). For L*(0Q) := L*(00Q)¢, define the scalar
product (v, w)sn = Z;l:l(vj, w;)pn and norm ||v||2LQ(69) := (v, v)pn. Then, the space
H1(0Q) is defined as in [SS11, Section 2.4] with an equivalent norm on H'(9Q) given by

[vllz2@0) + [Vrvl L2 (50

where Vi: H'(9Q) — L*(I") denotes the surface gradient. For sufficiently smooth functions
v on §, it holds that Vrv = Vv — (Vo - n)n with the normal vector n pointing from the
domain € to the exterior domain Q% := RY\ Q.

For s € (0,1), the corresponding Sobolev space IT°(02) is defined via interpolation
techniques, cf. [SS11, Proposition 2.4.3].

Additionally, we also need Sobolev spaces on subsets I' of the boundary 9€2. Suppose
that @ # ' C 91 is a non-empty, relatively open set that stems from a Lipschitz dissection
Q=T Uor U (0Q\T), cf. [McL00, p. 99]. Define Ey as the extension operator which
extends a function on I' to 9 by zero. For s € {—1/2,0,1/2}, the spaces H'/?*5(T") and
H'/?t5(T") are defined as in [AFF17] by

H1/2+‘5(I‘) = {v|p tv € H1/2+S(8Q)}
V(1) == {v : Eyrv e VT (0Q)},

with corresponding norms

b s = 1 f 5 s . =
0[] 172420y “)EH11/121+5<8Q){HT()HH1/2+ o0y © wlr = v}
H7’||ﬁ1/2+s(p) = HEO,I‘UHH1/2+S(6Q)-

For s = 1/2, there hold the norm equivalences |[v|[711(a0) = [[v]|z2(a0) +[|Vrvl £2(90) as well
as Hv||1~11(r) =~ |[v][g2ry + [[Vrvll g2y, cf. [AFF 17, Facts 2.1] and [SS11, Section 2.4].

For ease of notation, if it is clear from the context, we identify a function v € H/25(I)
with its extension Eqrv € H'/2+5(00).

2.4 Dual spaces

For a normed space X with norm || - || x, we denote the corresponding dual space by X’ with
the duality pairing

(v, wyyrxy :=v'(w) forallv' € X and all w € X,
as well as the norm

/
= sup |<U 7w>X’><X’

for all v’ € X”.
0£weX ||LU||X

IV

13
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2 Basic notation and function spaces

To simplify notation and if it is clear from the context, we write (-, -) for the duality pairing.
If we now have a Hilbert space X with scalar product (-, -) ¥ and a continuously embedded
Hilbert space H, the following lemma allows us to interpret the duality pairing (-, -)z/xx
as a continuous extension of the scalar product (-, -)x.

Lemma 3. Let H and X be Hilbert spaces with continuous embedding H — X. Then, the
Riesz-isomorphism Jy: X — H' is a well-defined, continuous, linear operator and Jy(X)
1s dense in H'. [

If we set X = L2(0Q) and H = H/2+5(9Q) or H = H'/2+5(9Q), we get with the formal
definition

(Jxx, Mprsn = (Jxx, Warxx = (@, h)x = (7, h)r2pn) forallz e X heH

so that it is legitimate to also write (-, -)go (and analogously (-, -)r) for the duality pairing

SR EETE
For s € {—1/2,0,1/2}, the negative-order Sobolev spaces on the boundary are now
defined by duality as

o=0/249)(9Q) == 2T (00,

ﬁ*(1/2+s)(r) - H1/2+5(F)/7

H*(1/2+s)(r) - f]l/2+8(F)’,
with the extended L?-scalar product on 9 and I' respectively, cf. [AFF"17]. For these
spaces, the following continuous inclusions hold:

/241y € gE/249(D),) as well as,
ﬁ':’:(l/z-ﬁ-s) (852) —_ II:’:(l/‘Z-ﬁ-S) (agz).

For ) € L*(I"), the zero extension Eo 1) satisfies

Eorv € H2(0Q)  as well as 10l 1720y = 1 Bor ¥l 1200

2.5 Trace operators and normal derivatives

Let © be a bounded Lipschitz domain. Then, for 1/2 < s < 3/2, there exists a linear and
continuous interior trace operator

A HA(Q) — HY2(00Q)  such that  ~{™v = v]gq for all v € CO(Q),

cf., e.g., [SS11, Theorem 2.6.8]. We define ITA(Q) := {v € II'(Q) : —Av € L*(Q)} as well
as the interior conormal derivative operator vi*: [ () — H~'/2(9Q) via the first Green’s
formula

(it i) a0 = (Vu, Vw)g — (—Av, w)g  for all w € I'(Q),

cf. [AFF"17]. Analogously, the exterior trace 7§*" and exterior conormal derivative operator

~$*' can be defined. Then, the interior as well as exterior traces and the conormal derivatives
respectively give rise to jump terms, i.e., for a function v that admits both traces or conormal

derivatives, we define the jumps [v]p := Y&*v — 7w and [v]; := 7§*'v — vi% respectively.

14
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3 Meshes

3.1 Triangulations of (2

Throughout, let Q@ € R? with d = 2,3 be a polygonal or polyhedral Lipschitz domain and
let conv(S) denote the convex hull of a set S ¢ R?. With this, we define a triangulation
T on a domain .

Definition 4. A set T is called o triangulation or mesh of Q, if and only if:

o Each element T € T is a (d+ 1)-simplez, i.e., there exist d+ 1 affinely independent
points x1,--- ,xq41 € §} such that

T :=conv({xy, - ,xgr1})-
We denote the set of all vertices of an element T by N(T) := {x1,- - , 2411}

e The domain ) is covered by T, i.e.,

0= U T.
TeTS

o Two distinct elements do not overlap, i.e., for all T,T' € T with T # T, it holds
that [T NT'| =0, i.e., the overlap is a set of measure zero.

Remark 5. Usually, we do not want to allow so-called hanging nodes, i.e., no vertex of any
element T € T lies in the interior of any edge or facet of another element T' € T*2. Hence,
we say that a triangulation T is conforming or regular provided that the intersection of
two elements T,T" € T with T # T is

e cither empty,
e or a joint node,
e or a joint edge (d > 2),
e or a joint facet (d =3),
i.e., for two distinct elements T,T' € T*? with T # T', it holds that

TNT = conv(N(T) NN (T")).
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3 Meshes

Further, we collect a couple more definitions. First, we define the set of all nodes N« of
a triangulation 7* by

Nyo = N(T% = | N(©D).
TeT®

The (local) mesh-width function ho € L%®(T*) of a triangulation T is defined by
hyal|p := hya(T) = |T|"/4 for all T € 79,

where |- | denotes the volume (for d = 3) or the area (for d = 2) of an element, respectively.
Moreover, we define the element patch wyo(T) and wy«(U) resp. for an element T € T
as well as for a set of elements &/ C T by

wra(T) = U {(T"eT?:T'NT#0} and wral) = U wra(T), respectively.
Teu

Next, the shape-regularity constant o(7) of an element 7' € 7% is denoted by

diam(T)“
o(T) = diam(7)7 with  diam(7T) := sup |z — y|.
|T| z,yeT

Similarly, we define the shape-regularity constant o(7*?) of a mesh 7 by

0
o(7T") := max o(T),
(T%) = max o(T)
and we say that a family T of meshes is v-shape regular if there exists a constant v > 1
such that

sup o(T) <.

TeT

3.2 Triangulations of 9f2

Analogously to Section 2.3, we also need triangulations of the boundary 052 for the boundary
element method in Chapter 6. To this end, let @ C R¢ with d = 2,3 be a bounded
Lipschitz domain with piecewise C°°-boundary Jf), and we suppose that either I' is the
whole boundary, i.e., I' = 99, or T' is a subset of the boundary, i.e., § # I' C 09, and
relatively open such that 9Q = T'UOI' U (00 \ T'). Hence, T' stems from a Lipschitz
dissection, cf. [McLO00, p. 99].

For the definition of a triangulation 71, we also need a reference element T} defined by

d—1
Trof = {sc eR™ . 0<z,...,29-1 <1 and Z:rj < 1}.
j=1
Hence, we get that Tief = [0,1] C R is the closed unit interval for d = 2 as well as
Tret = conv{(0,0),(1,0),(0,1)} c R? for d = 3.

Definition 6. A set T is called a triangulation or mesh of I, if and only if:
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3.2 Triangulations of 05}

e Every element T € TV is the image of the reference element T,or under an affine,
bijective element map gr € C™(Tyet, T) with gr(Tret) = T. The set of nodes is given

by N(T) := gr(N(Tret)), where N (Tye)) is the set of all vertices of the reference
element Tyor.

e The domain T is covered by T', i.e.,

r=\Jr
TcTr

Remark 7. Analogously to Remark 5, we say that a triangulation T' is conforming or
regular provided that the intersection of two elements T,T' € TV with T # T' is

e either emply,
e or a joint node (d > 2),
e or a joint facet (d=3),

and for d = 3, it holds that: If TNT’ is a facet for T' € T, there exist facets f, f' C OTrer
of Tyer such that TNT' = gr(f) = gr(f') and g7 o grv: f' — f is affine.

The set of nodes as well as the element patches are defined as in Section 3.1, while
the (local) mesh-width function hrr € L>(T) is given by

hyrlr == hyo(T) == |T,1/(d71)7

where | - | denotes the (d — 1)-dimensional surface measure of an element.

Let Gr(x) := Dgr(x)T Dgr(x) € R Dx(-1) be the symmetric Gramian matrix of gr
and Apin(G7(z)) as well as Apax(Gr(x)) the corresponding extremal eigenvalues. Now, we
call a regular triangulation 7' a 4-shape regular triangulation, if the element maps gr
satisfy the following:

e Forall T € TV, it holds that

hTr(T)Q )\maX(GT(m))> <.

o(T):= sup (Amin(GT(x)) horr (T)?

TE€T ot

e If d = 2, it is explicitly required that

Since the Gramian matrix Gr(z) is symmetric and positive definite, it holds that 0 <
Amin (GT) < Amax(G7). This implies that o(7T") > 1. For d = 2, the additional assumption
ensures that the mesh-sizes of neighboring elements remain comparable.
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3 Meshes

3.3 Discrete function spaces

For the approximation of the exact solutions of the different problems, we need finite-
dimensional spaces which we introduce in this section. To this end, let 7S be a regular
triangulation of 2 and p > 1 a fixed polynomial order. We define the space of globally
continuous piecewise polynomials SP(7$) by

SP(TE) = {ve € C(Q) : ve|r is a polynomial of degree < p for all T' € 7’,9}

It holds that SP(7&) c IT'(f) and we define the corresponding conforming subspace
SH(T2?) of H5(Q2) by

S(T%) = ST N Hy ().

3.4 Mesh-refinement

Suppose that 7, € {72, 7'} is a given regular and +-shape regular triangulation. Ad-
ditionally, assume that refine(-) is a fixed mesh-refinement strategy, e.g., newest vertex
bisection, cf. [Ste08]. We write 7o = refine(7,, M,) for the coarsest one-level refinement
of 7T,, where all marked elements M, C 7, have been refined, i.e., My C T,\7;. We write
7o € refine(T,), if 75 can be obtained by finitely many steps of one-level refinement (with
appropriate, yet arbitrary marked elements in each step). We define T := refine(7y) as the
set of all meshes which can be generated from the fixed initial mesh 7y by use of refine(-).

Some important properties of v-shape regular meshes are collected in the next lemma.
For boundary meshes, a proof can be found, e.g., in [AFF 17, Lemma 2.6].

Lemma 8. Let T, € {T, TT} be a y-shape regular triangulation. Then, there exists a
constant C' > 0 that depends only on v and, in case of a boundary mesh, additionally on
the Lipschitz parametrization of 0F), such that the following assertions hold:

(i) For all T,T' € To with T NT' £ 0, it holds that h7,(T) < C hy,(T").

(ii) The number of elements in an element patch is bounded by C, i.e., #(we(T)) < C for
all T €7T,.

(iii) Tt holds that maxrer, Sl < C. O

For our analysis, we only employ the following structural properties (R1)—(R3), where
Cson > 2 and Clyesp > 0 are generic constants:

(R1) splitting property: Each refined element is split into finitely many sons, i.e., for all
Te € T and all M, C 7,, the mesh 7, = refine(7,, M,) satisfies that

#(Te \To) + #Te < #To < Coon #(Te \ To) + #(Te N To).

(R2) overlay estimate: For all meshes 7 € T and 7,,7; € refine(T ), there exists a
common refinement 7, & 75 € refine(7,) Nrefine(7;) C refine(7 ) such that

#(Te ©To) < #Te + #To — #T.
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3.5 Extended 1D bisection (EB)

(R3) mesh-closure estimate: For each sequence (7;)sen, of successively refined meshes,
i.e., Tyrq = refine(Ty, My) with M, C T, for all £ € Ny, it holds that

-1
HTo— #To < Cesn Y #M,;.

Jj=0

3.5 Extended 1D bisection (EB)

For refining meshes on a 1-dimensional boundary I' C 92 with Q C R2, we consider the
extended bisection algorithm (EB) from [AFFT13].

Algorithm 9. Input: Mesh T, € T := refine(7y), set of marked elements MO = M, C
Te, counter k := 0.
Refinement Loop:

(i) Repeat the following steps (a)—(c):

(a) Update the counter k — k + 1.

k—1)

(b) Definetd*) .= Ure -0 WANS T.\M£ : T'NT # 0 and kel > (7o) halr }-

(¢) Define Msk) = ./\/lgkfl) uU®

Until U®) =0,

(ii) Bisect all elements T € M to obtain T, = refine(Tq, Ma,).

Output: Refined mesh T, = refine(7,, M,).

Let 7o be the initial mesh on a 1-dimensional boundary I' C 99 with Q C R%. Due to
the bisection in Algorithm 9, i.e., Step (ii), EB yields a contraction of the local mesh-size
on refined elements, i.e., 7o € refine(7,) implies that

holp <2V help forall T € To\ To. (3.1)

Additionally, [AFF ™13, Theorem 2.3 (i)] guarantees uniform ~-shape regularity with v :=
20(To), i.e., for all triangulations 7, € T, it holds that

7(Te) < - (3.2)

Splitting property (R1)
Since Step (ii) of Algorithm 9 uses bisection, there holds (R1) with Cyon = 2.

Overlay estimate (R2)
The overlay estimate (R2) is shown in [AFF 13, Theorem 2.3 (ii)].
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3 Meshes

Mesh-closure estimate (R3)

The mesh-closure estimate (R3) is shown in [AFF 713, Theorem 2.3 (iii)].

3.6 Newest vertex bisection (NVB)

One of the most popular mesh-refinement strategies is the so-called newest vertez bisection
(NVB), cf. e.g., [Ste07] for d = 2 as well as [Ste08] for d = 3. We use NVB for d = 2
as refine(-) to refine triangulations of a given domain 2 C R? in Chapter 4 as well as
Chapter 5. Additionally, we also use the same algorithm for refining surface triangulations
on I' C 90 with Q@ C R? in Chapter 6.

For the sake of completeness, we include the NVB algorithm for d = 2:

Algorithm 10. Initialization: Input: Initial mesh Ty.
o For each triangle T € Ty, define an arbitrary vertex as the newest vertex.

o For each triangle T € Ty, define the edge opposite to the newest verter as the refer-
ence edge Er. Let Eorp := {ET Y ANS 76} be the set of all reference edges of the
initial mesh Ty.

Newest Vertex Bisection: Input: Mesh T, € T with corresponding set of reference edges
Eref 0 1= {ET M ANS ’T.}, set of marked elements Mo C To, counter k := 0.
Refinement Loop:

(i) Define the set of marked reference edges MY = {Er : T e M.}.

(ii) Repeat the following steps (a)—(b):
(a) Update the counter k — k + 1.
(b) Define MP) = {Er : T €7, s.t. there ezists E € MEY with E ¢ T}.
Until M = m{FY.

(iii) Refine all elements T € T, which have at least one marked edge in the set M)

according to the refinement rules depicted in Figure 3.1.

Output: Refined mesh T, = refine(T,, M,).

Let 7o be the initial mesh on a domain @ C R? with d > 2 and let 7o € T be a
refinement of 7y. It holds that NVB reduces the local mesh-size on refined elements, i.e.,
Ts € refine(7,) implies that

holp <27 Y hy|p foral T € Ty \ To. (3.3)
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3.6 Newest vertex bisection (NVB)

AR
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Figure 3.1: For each triangle T € T, there is one fixed reference edge Er, indicated by
the extra pink line. If T" is marked for refinement, we mark its reference edge,
cf. Step (i) of Algorithm 10. Additionally, if Ex C T" for a neighouring ele-
ment T" € T, the edge reference edge Erv is marked to avoid hanging nodes,
cf. Step (ii) of Algorithm 10. Hence, more than one edge of an element can be
marked (pink dots). Then, refinement of T' is done by bisecting the reference
edge, where its midpoint becomes a new vertex of the refined triangulation 7.
The reference edges of the son triangles are opposite to this newest vertex (bot-
tom left). If more than one edge is marked (top), using iterated newest vertex
bisection, the element is then split into 2, 3, or 4 son triangles (bottom).

L N A R

Figure 3.2: Newest vertex bisection does only lead (up to similarity) to a finite number of
triangles. Above, the different colors represent similarity classes. Starting with
one triangle (left), iterative use of NVB does only create (up to similarity) new
triangles in the first two steps (mid left and mid right). Hence in following steps,
no new similarity classes are generated.

A proof for (3.3) can be found, e.g., in [CKNSO8, Ste(7]. Additionally, NVB also preserves
7-shape regularity, i.e., there exists a constant ¥ > 0 such that for all triangulations Te € T
it holds that

o(Te) = maxa(T) <, (3.4

which is proved in [Ste(8]. The latter work also shows for d = 3 a similar result to Figure 3.2
which illustrates for d = 2 that (up to similarity) only a finite number of different triangles
can be constructed from the initial mesh 7o using NVB, cf. [Ste08, Theorem 2.1].

Splitting property (R1)

There holds (R1) with 2 < Cson < 00, which is proved in [GSS514]. The constant Cson > 0
depends only on 7 and d. For d = 2| it holds that Cson = 4, cf. Figure 3.1.

Overlay estimate (R2)

The proof of the overlay estimate (R2) can be found in [CKNS08, Ste07].
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3 Meshes

Mesh-closure estimate (R3)

First, the mesh-closure estimate (R3) has been proved for the case d = 2, cf. [BDDO04].
Later, (R3) has been proved for d > 2 in [Ste08]. While both works [BDD04, Ste08] require
a technical admissibility condition on T in order to prove the mesh-closure (R3), [KPP13]
proved this admissibility condition to be unnecessary for d = 2.

3.7 Other refinement strategies

A different possible refinement strategy is red-refinement with first-order hanging nodes. We
refer to [BN10], where the validity of (R1)—(R3) is shown. In the framework of isogeometric
analysis, we mention the mesh-refinement techniques for analysis-suitable T-splines [MP15]
and refer to [BGMP16] for truncated hierarchical B-splines as well as [GHP17] for hierar-
chical B-splines. For further details on mesh-refinement strategies which satisfy (R1)-(R3),
we refer to [BN10, MP15, Feil5| and to the discussion in [CFPP14, Section 2.5].
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4 Adaptive FEM for second-order elliptic
systems of partial differential equations

4.1 Introduction

This chapter is based on the recent own work [(3HP:1]. While the analytical main results
are the same, we add an additional section on preconditioning and more in-depth numerical
examples are provided. We consider and analyze adaptive finite element methods (AFEM)
for second-order elliptic systems of partial differential equations (PDEs), where the arising
discrete systems are not solved exactly. Our model problem reads as follows: Let Q ¢ R?
be a bounded Lipschitz domain with d € {2,3} and boundary T" := 9€2. We assume that
A: L2(Q)? — L2(Q)¢ is a strongly monotone and Lipschitz continuous operator, cf. Sec-
tion 4.3 for the precise definition. We consider the following quasi-linear elliptic boundary
value problem: Given a load f € L%*(Q), find v* € H := HZ(Q) such that

—divA(Vu*)=f inQ,

4.1

w'=0 onT. (4-1)
Therefrom, we get the equivalent variational formulation: Given a load f € L%(Q), find
u* € H := H}(Q) such that

<AU*, U)'H’X’H = /

A(Vu*)-Vode = / fode = (F, v)grxy forallveH. (4.2)
Q Q

The main theorem on monotone operators [« Section 25.4] admits a unique solution to
the weak form (+.2). Given a discrete subspace X; C H related to some triangulation 7 of
), also the discrete formulation

(Aug , vi)pr s = (F, ve)arxy  Tor all vy € Xy (4.3)

admits a unique solution u; € Ay, again due to the main theorem on monotone opera-
tors |1, Section 25.4|. If A is nonlinear, then uj can hardly be computed exactly. Even

if A is linear, usual FEM codes employ iterative solvers like PCG, GMRES, or multigrid.

Given an initial guess u? € X;, we assume that we can compute iterates u¥ := ®,(ut"1) €
g ? ) p ’ ¢

X, which lead to a contraction in the energy norm on H, i.e.,

I — ufll < qllwy —wg ') forall ke N (4.4)

with some A)-independent contraction constant 0 < g < 1. In explicit terms, we assume
that we have an iterative solver with iteration function &, : X, — A} which is uniformly
contractive in each step. Additionally, we assume that we can control the discretization
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

error (for the exact, but never computed discrete solution u; € Ay from (4.3)) by some
reliable a posteriori error estimator

1/2
Ot — il < melul) = ( S uz>2) , 45)
TE’T(

where the local indicators 1,(T, -) can also be evaluated for other discrete functions vy € A
instead of the exact Galerkin solution uj; € Aj.
Then, our adaptive algorithm takes the form

Iteratively Solve&Estimatel — — (4.6)

where the first step may be understood (and stated) as an inner loop, and is based
on the Dorfler criterion from [Dor96] with (quasi-) minimal cardinality [Ste07, PP20].

4.1.1 State of the art

The ultimate goal of any numerical scheme is to compute a discrete solution with error below
a prescribed tolerance at, up to a multiplicative constant, the minimal computational cost.
Since the convergence of numerical methods is usually spoiled by singularities of the (given)
data as well as the (unknown) solution, a posteriori error estimation and related adap-
tive mesh-refinement strategies are indispensable tools for reliable numerical simulations.
For many model problems, the mathematical understanding of rate-optimal convergence of
adaptive FEM has matured. We refer to [Dér96, MNS00, BDD04, Ste07, CKNS08, CN12,
FFP14] for some seminal works for linear problems, to [Vee02, DK08, BDK12, GMZ12] for
nonlinear problems, and to [CFPP14] for a general framework of convergence of adaptive
FEM with optimal convergence rates. Some works also account for the approximate compu-
tation of the discrete solutions by iterative (and inexact) solvers, see, e.g., [BMS10, AGL13]
for linear problems and [GMZ11, GHPS18, HW20a, HW20b] for nonlinear model problems.
Moreover, there are many papers on a posteriori error estimation which also include the iter-
ative and inexact solution for nonlinear problems, see, e.g., [EAEV11, EV13, AW15, HW1§]
and the references therein.

As far as optimal convergence rates are concerned, the mentioned works focus on rates
with respect to the degrees of freedom. However, in practice, one aims for the optimal
rate of convergence with respect to the computational cost, i.e., the computational time.
The issue of optimal computational cost is already addressed in the seminal work [Ste07]
for the Poisson model problem. There, it is assumed that a sufficiently accurate discrete
solution can be computed in linear complexity, e.g., by a multigrid solver. Under these
so-called realistic assumptions on the solver, it is then proved that the total error (i.e., the
sum of energy error plus data oscillations) will also converge with optimal rate with respect
to the computational cost. A similar result is obtained in [CG12] for an adaptive Laplace
eigenvalue computation.

In recent works, concrete solvers are included into the convergence analysis. In [GHPS18],
adaptive FEM for an elliptic PDE with strongly monotone nonlinearity is adressed. The
arising nonlinear FEM problems are linearized via the so-called Zarantonello iteration (or

24



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4.2 Abstract model problem

Banach—Picard iteration), which leads to a linear Poisson problem in each step. The
adaptive algorithm drives the linearization strategy as well as the local mesh-refinement.
In [GHPS18], it is proved that the overall strategy leads to optimal convergence rates with
respect to the degrees of freedom and to almost optimal convergence rates with respect to
the total computational cost. The latter means that, if the total error converges with rate
s > 0 with respect to the degrees of freedom, then it converges with rate s —e > 0 with
respect to the overall computational cost, for all € > 0. Moreover, in [FHPS19] (cf. Chap-
ter 6), we obtained analogous results for an adaptive boundary element method, where
we employed a preconditioned conjugate gradient method (PCG) with optimal additive
Schwarz preconditioner to approximately solve the arising linear discrete systems.

We now aim to prove optimal rates with respect to the overall computational cost for the
algorithm from [GHPS18]. Moreover, we give an abstract analysis in the spirit of [CFPP14]
and show that this also covers linear solvers like PCG.

4.1.2 Qutline

First, we formulate the precise assumptions on the model problem, the mesh-refinement
and the FEM spaces (Section 4.2), and the error estimator as well as the iterative solver
(Section 4.3—4.4). Then, we formulate the adaptive algorithm in Section 4.5 and state
the abstract main results in Section 4.6, namely linear convergence of the quasi-error in
Section 4.6.1 and optimal convergence rates of the quasi-error in Section 4.6.3. Before
we then apply the abstract setting to adaptive FEM with PCG solver for linear PDEs
(Section 4.7) including numerical examples (Section 4.7.7), we construct an additive Schwarz
preconditioner in Section 4.7.1 and prove its optimality in Section 4.7.3. Afterwards, we
apply the abstract setting to the the adaptive algorithm from [GHPS18] for adaptive FEM
for problems with strongly monotone nonlinearity (Section 4.8) including some numerical
experiments in Section 4.8.1 to underline the theoretical findings.

4.2 Abstract model problem

Let H be a Hilbert space over K € {R,C} with scalar product (-, -) and corresponding
norm || - ||. The usual dual space of H is denoted by H’ with the corresponding norm || - ||.
We consider nonlinear elliptic equations in the following abstract setting with variational
formulation: Given a linear and continuous functional F' € H’, find u* € H such that

(Au*, )y = (F, v)grxy forall v e H. (4.7)

To guarantee solvability, we suppose that the operator A: H — H’ satisfies the following
conditions:

(01) A is strongly monotone: There exists a constant o > 0 such that

allw—v])* < Re(Aw — Av, w — v)axy for all v,w € H.

(02) A is Lipschitz continuous: There exists a constant L > 0 such that

I Aw — Av||" < L |lw —v|| for all v,w € H.
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

(O3) A has a potential: There exists a Gateaux differentiable function P: H — K such
that its derivative dP: H — H' coincides with A, i.e., it holds that

Plw+ m;) —P(w) for all v, w € H.

<Aw, U>7-{,’><H == (dP(w) 5 'U>’H’><’H = }/E%

teR

Let 7o be a given regular initial mesh and suppose that refine(-) is a fixed refinement

strategy satisfying the axioms (R1)—(R3) from Section 3.4. To each 7y € T := refine(7y),

we associate the related finite-dimensional conforming subspace X, C H of the given Hilbert

space H. We suppose that refinement 7, € refine(7,) leads to nestedness of the corre-
sponding subspaces in the sense that A, C A%.

Then, the discrete formulation of (4.7) reads as follows: Given a linear and continuous

functional I € H’, find u} € X, such that

(Au} , ve)rrxn = (F, ve)prxp for all ve € Xs. (4.8)

The main theorem on monotone operators [Zei90, Section 25.4] yields existence and unique-
ness of solutions u* € H as well as u} € X, for both the model problem (4.7) and its discrete
version (4.8), respectively.

Let £ := Re (P — F) be the energy functional. Then, it holds that

. L
% Ny — ve ]||2 < E(ve) — E(uy) < 5 llws — ve |||2 for all v, € X, (4.9)

which is proved, e.g., in [GHPS18, Lemma 5.1]. In particular, u* € H is the unique
minimizer of the minimization problem

E(u*) =min & (v 4.10
(w*) = min&(v), (4.10)
as well as u} € X, is the unique minimizer of the minimization problem
E(uy) = min E(v,). (4.11)
Ve EXe

As for linear elliptic problems, the present setting guarantees the following Céa lemma,
where we include the proof for the sake of completeness.

Lemma 11. Suppose that the operator A satisfies (01)—(02) with constants 0 < o < L.
Then, it holds with Cces := L/« that

" — w2l < Coga i, Ju” = vl (4.12)
VeE e

Proof. There holds the Galerkin orthogonality (Au* — Auf, ve)yxy = 0 for all ve € X,.
Let we € A, and w* # u}. Then, it holds that

T (%1) Re (Au* — Au}, v — )y xn
Y =

flu* — gl

Re (A" — A - 0 — 1. hr ey (02)
_ Re{Au Al*b.! “* We ) H! 1 < Lju* — w|
flux — gl

Hence, we take the infimum over all w, € X,. Since X, is finite-dimensional, the infimum
is attained and is, in fact, a minimum. O

26



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4.3 Error estimator

4.3 Error estimator
For each mesh 7, € T, suppose that we can compute refinement indicators
ne(T,ve) >0 forall T € 7, and all v, € X,. (4.13)

To abbreviate notation, let 7¢(ve) := 7¢(7e, Ve ), Where
1/2
1o (Us, v4) = ( > me(T, v.)ﬂ) for all Uy C Te. (4.14)
We assume the following azioms of adaptivity from [CFPP14], where Csiab, Crel > 0 and
0 < greq < 1 are generic constants:
(A1) stability on non-refined element domains: For all triangulations 7, € T and

refinements 7, € refine(7,), arbitrary discrete functions v, € A, and we € X,, and
an arbitrary set Us C To N To of non-refined elements, it holds that

110 (Us, V6) — Me(Us, We )| < Chstab ||ve — wal|-

(A2) reduction on refined elements: For all triangulations 7, € T and refinements
Ts € refine(7,), and arbitrary discrete functions ve € X,, it holds that

770(7;\7:; Uo) < Gred 7o (7:\7;7 U.).

(A3) reliability: For all triangulations 7, € T, the error of the exact discrete solution
uf € X, of (4.8) can be bound by the error estimator, i.e.,

flee* — ugll < Crerme(uy)-

(A4) discrete reliability: For all triangulations 7, € T and refinements 7, € refine(7,),
the difference of the exact solutions u} € X, and u} € X, can be bounded by

g — udll < Crerme(To\ T, ug).-

We stress that the exact discrete solutions u} € X, and u} € A, in (A3)—(A4) will never be
computed but are only auxiliary quantities for the analysis.

Remark 12. The verification of (Al)—(A4) in Section /.7 and /.8 relies on scaling argu-
ments and implicitly uses that all meshes T € T are uniformly shape regular. Moreover,
we note that the analysis is implicitly tailored to weighted-residual error estimators, since
the usual verification of (A2) relies on exploiting the contraction of the mesh-size on refined
elements.
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

4.4 Discrete iterative solver

For all triangulations 7, € T, let ®,: Xo — X, be the iteration function of one step
of the iterative solver, i.e., for a given initial guess u) € X,, we can compute iterates
uf == ®4(uk1) € X,. We require one of the following two contraction properties with some

uniform constant 0 < g., < 1, which is independent of Ts:

(C1) energy contraction: For all triangulations 7, € T and an arbitrary discrete function
Ve € X, it holds that

E(Pa(va)) = E(ug) < g (E(ve) — E(u2)).

(C2) norm contraction: For all triangulations 7, € T and an arbitrary discrete function
Ve € X, it holds that

llws — Po(ve)ll < getr lus — vel-

Remark 13. For linear symmetric problems, one usually has that £(ve) — E(us) = 5 [lve —
ul||* for ve € X, and hence (C1) and (C2) are equivalent.

To formulate the stopping criterion for the iterative solver of the adaptive algorithm, we
need an additional auxiliary quantity. Let

o JIE@) = Ew)M? in case of (C1),
Alee)= {Illw — | in case of (C2). (4.15)

Then, the following lemma provides the means to stop the iterative solver.

Lemma 14. Let T, € T and ve € Xo. Then, both (C1) and (C2), respectively, imply the
following estimaltes:

(1) d(ug, ®(ve)
(i) d(ve, ®(ve)) < (1 + gewr) dl(ug, ve),
(iii) d(uk, ve) < (1 — Getr) L d(ve, ®(vs)).

) < Getr (uta ’U.),

Proof. First, let assumption (C1) hold true. From the definition of d(-,-) follows that

(4.15)

A, 8(00) 2 6@ () — E@M2 < gur [E(v0) — EQDM = s A, v0).

Hence, claim (i) holds true. Note that dl(-, -) is a quasi-metric, i.e., it holds for all v, ws, 2e €
X, that

o d(ve,ve) =0,

o d(ve,ws) = di(ws, vs), and,
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4.5 Adaptive algorithm

o dl(ve,26) < dl(ve,ws) + dl(ws, 2 ),

where the triangle inequality follows from the fact that (a + b)'/2 < a'/2 +b'/2 for a, b > 0.
Therefrom, we get with claim (i) that

dl(U., (I)(UO)) S Cﬂ(’U., u:) + dl(utv (I)(U.)) S (1 + thr) dl(utv 7).),

which proves claim (ii). Claim (iii) also follows from the triangle inequality combined witch
claim (i). It holds that

d(ug, ve) < d(ug, ®(ve)) + d(D(ve), vs) < getr d(uq, vs) + di(ve, D(vs)),
which is equivalent to claim (iii).
Now, let assumption (C2) hold true. Then, claim (i) is simply the norm contraction (C2)
and claim (ii)—(iii) follow from the triangle inequality of the energy norm. O

4.5 Adaptive algorithm

Now, we propose our adaptive algorithm. We will employ a lower index ¢ for the adaptive
mesh-refinement as well as an upper index k for the respective steps of the iterative solver.

Algorithm 15. Input: Initial mesh Ty and initial guess u8 € Xy, adaptivity parameters
0<6<1, Aty >0, and Crark > 1, counters £:=0 =: k.
Adaptive Loop: Iterate the following Steps (1)—(v):

(i) Repeat the following steps (a)—(c):
(a) Update the counter (£, k) ({,k+1).
(b) Do one step of the iterative solver to obtain uZ CI)Z(uE b,
(c) Compute the local contributions n,(T,uf) of the error estimator for all T € Ty.

Until  d(uff, uf ™) < A m0(ub). (4.16)
(ii) Define k(¢) := k.

(i) Determine a set My C Ty with up to the multiplicative constant C\ . minimal cardi-
nality such that

0 m(u) < mp( M, ub). (4.17)

(iv) Generate Tyyy := refine(Ty, M) and define uy, | = uf(ﬂ)

(v) Update the counter (¢,k) > (¢4 1,0) and continue with (i).
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

Output: Sequences of successively refined triangulations Ty, discrete solutions u’j, and cor-
responding error estimators m(uf), forall £ >0 and k > 0.

We define the following set of indices @ by

Q:= {(¢,k) € Nj : index pair (¢, k) is used in Algorithm 15 and k < k(¢)}.

Since uf, , = uf(e), we exclude (¢, k(¢)) from the index set Q, if (¢ + 1,0) € Q. Since
Algorithm 15 is sequential, the index set Q is naturally ordered. For ({, k), (¢, k") € Q, we
write

def
<~

(0 k) < (6k) (¢, k') appears earlier in Algorithm 15 than (¢, k). (4.18)

With this order, we can define the fotal step counter

-1

|(0,k)] == #{((' k) e Q: (¢ k)< ((k)}=k+ Z@(ﬁ’),

=0

which provides the total number of solver steps up to the computation of u’; .
To abbreviate notation, we make the convention that if the mesh index ¢ € Ny is clear
from the context, we simply write k := k(¢), e.g., u% = uﬁw. In addition, we introduce

some further notation. Define
L:=sup{l €Ny : (£,0) € Q}.

Generically, it holds that £ = oo, i.e., infinitely many steps of mesh-refinement occur.
Moreover, for (¢,0) € O, define k(¢) := sup {k € Ny : ({,k) € Q} + 1. We note that the
latter definition is consistent with that of Algorithm 15, but additionally defines k(£) = oo
if £ < 0.

4.6 Abstract main results

In this section, we state the main results in the abstract framework of Section 4.2. The
analysis relies only on the assumptions (R1)—(R3) on the mesh-refinement, (A1)—(A4) on
the error estimator, and (C1) as well as (C2) on the iterative solver respectively. Hence, for
concrete model problems, only these assumptions have to be verified, cf. Section 4.7 and
Section 4.8.

First, due to the contraction property (C1) and (C2) respectively, we have a posteriori
error control of the error.

Proposition 16. Suppose (C1) or (C2) as well as (A1)—(A3). Then, the quasi-error A§
(consisting of error plus error estimator), which is defined via

AF = lur — ||+ me(uf)  for all (6,k) € Q= QU {(L,k) : k(£) < o}, (4.19)
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4.6 Abstract main results

satisfies that

ne(uf) + d(uf,ui™") i 0<k <k(0),
A} < Clog 4 me(uf) if k= k(0), (4.20)
ne—1(u ) if k=0 and?{>0.

The constant C!; > 0 depends only on Cgab, Crel, Getr, and Ace under (C2), while it
additionally depends on o under (C1).

Proof. Let (¢,k) € Q and k > 0. Then, it holds that
™ = wgll < lu* —will + llui — wgl

(A3) * * k
< Crane(up) + [lug — ug|

< Cret (Ine(up) — me(ug)| + ﬁe(ue)) + Jlup — ui)
(A1)
< Crel 77((“@) + (Crelcstab + 1) |||u? - u? ”’

Now, we distinguish between the different contraction properties. First, suppose (C1).
With (4.9) and Lemma 14(i)&(iii), it then follows that

g — Melll \/2/@dl up, up)
= v2/ad(u;,® k 1))
2/OA Getr (W’UE 1)
2/ thr dl(ul/f,ule¢ b,

— {etr

Next, suppose (C2). With Lemma 14 (i)&(iii), it then follows that

k k—
luf —ugll = di(uz, @(uy 1))
< (Jctr(ﬂ(uhuf 1)
< qetr
1- qctr

d(uf, uf b,

Since A¥ = |lu* —uf|| +n¢(uf), this proves (4.20) for the case that 0 < k < k(¢). If k = k(¢),
the stopping criterlon (4.16) in Algorithm 15(i) yields that

dl(uf, uf_l) < Aetr 7]((%%).

This proves (4.20) for k = k(¢). If k = 0 and ¢ > 0, it holds that u) = “2%1' Hence, it
follows from the previous step that

k k
et — @l =l — )< e () = e (). (4:21)
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

Moreover, the equality u) = uf_l implies that u) € X;_1. Therefrom, (A1)—(A2) yield that

ne(ug) = (ne(Te N Toor,4))? + ne(Te \ To-1, U2)2)1/2

Al
= (s (T 1 Taa ) 4 (T \ Tam, )?) 2 wa2)
(A2) 042 0y2)1/2 .
< (e—1(Te N To—1, wd)” + me—1(Ti—1 \ To, ug)?)
= 101 (ug)-
Since A) = |Ju* — u@|| 4+ ne(uY), combining (4.21)—(4.22) concludes the proof. O

4.6.1 Linear convergence of the quasi-error

The first main theorem states linear convergence of the quasi-error. We note that under
certain assumptions, linear convergence holds for arbitrary parameters 0 < 6 < 1 and
)\Ctr > 0-

Theorem 17. Suppose (C1) or (C2) as well as (A1)—(A3). Define

00 if (C1) is valid,
Aconv ‘= 8 1. 4.23
{ #thabi;;r otherwise. ( )

Then, for all 0 < 0 < 1 and 0 < Ayr < Aconv 0, there exist constants Cy, > 1 and
0 < qiin < 1 such that the quasi-error (4.19) is linearly convergent in the sense of

AF < O glEPIEIERMAR gor g1l (6, k), (¢, k') € Q with (¢, k) < (0,k).  (4.24)

lin

The constants Cl, and qu, depend only on Cosa = L/, Cstab, Qred, Crel, Qetr, ond the
adaptivity parameters 0 and iy, while it additionally depends on L in case of (C1).

The following corollary states that the exact solution «* is discrete if £ < oo, i.e., if the
number of mesh refinements is bounded.

Corollary 18. Suppose the assumptions of Theorem 17. Then, £ < oo implies that u* = uz
and ng(uy) = 0.

Proof. According to Theorem 17, it holds that
lu* — wgll + ne(ug) = Af =0 as k — oc.
Moreover, contraction (C1) or (C2) (together with (4.9) in case of (C1)) prove that
|||uz — u]£||| ~ dl(uz,uIE) < qfu.dl(uz,ug) —0 ask — oo.

Uniqueness of the limit yields that u; = u*. Moreover, it follows that

(A1)
0 <ny(up) < ng(ulz) + Iy — ulz||| —0 ask — oc.

This concludes the proof. O
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4.6 Abstract main results

4.6.2 Proof of Theorem 17 (linear convergence)

Recall the definition of di(-, -) from (4.15). According to Algorithm 15, the contractive solver
stops for the minimal k = k(¢) > 1 such that

d(ug, g ) < Aetr me(u). (4.25)
In particular, since we exluded k from the index set Q, this implies that

ne(uf) < Mgk dl(uf, up ™) for all (£,k) € Q with k > 0. (4.26)

ctr

Proof of Theorem 17 under assumption (C1)

In this section, we give a proof of Theorem 17 under the assumption (C1), i.e., that the
iterative solver ®, leads to a uniform contraction of the discrete energy. Therefore, we first
recall that the solution ©* € ‘H minimizes the energy £ in H, i.e.,

E(u*) = min €
(u*) = min &(v)

as well as that the discrete Galerkin solution u} € X, minimizes the energy £ in A, i.e.,

E(u) = min (o),

cf. Section 4.2. Hence, for ve € X, the energy differences £(ve) — E(u*), E(uf) — E(u*), and
E(ve) — E(u}) are all non-negative. Therefrom, the absolute values in the definition of d(-,-)
can be omitted which yields the Pythagoras-type identity

d(u*,ve)? = d(u*, uf)? + d(uf,ve)* for all v, € X. (4.27)

The core of the proof of Theorem 17 is the following lemma, where 0 < 6 < 1 and A, > 0
are, in fact, arbitrary parameters.

Lemma 19. Suppose (A1)—(A3) and (C1). Let 0 < 0 <1 and A\¢iy > 0. Then, there exist
constants 1 > 0 and 0 < qin < 1 such that

AF = d(u*, ub)? + pne(uf)?  for all (6,k) € Q (4.28)
satisfies the following statements (i)—(ii):
(1) AP < gk AF for all (4,k+1) € Q.
(i) AY,, < g2 AF " for all (£41,0) € Q.

¥

The constants p and qu, depend only on L, o, Csab, Gred; Crel, 0nd Qetr 08 well as on the
adaptivity parameters 0 < 6 <1 and ¢y > 0.
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

Proof of Lemma 19(i). Let u,e > 0 be free parameters, which will be fixed below. First,
we note that reliability (A3) and stability (A1) yield

A3)
* k|12 (< 02 *\2
fle wpll* < Crgme(uy)

(A1)
< 208 ne(ug™)? +2 00 Chap lluf — w2

rel

Together with the equivalence (4.9), this leads to

(49) I
d(u*,up)? < 3 e — uf|l?

k+1 k+1
< L Ofel 772(W+ )2 + L C’rQel C’SQtab ”’uz - u£+ |"2

(4.9)
< LC?

(¢]

lng(ufﬂ)Q +2La"tC? C’Qtab di(uy, ulzﬂ)g.

rel “s

Let Cy := LC?% and Cy :=2La~ ' C2 C2,,. With this, combining the last inequality and

rel
the energy contraction (C1), we obtain that

(w1 20 (1 - ) At up)? e d ) + A, uft)?
< (1—e)d(u*,up)? + e Crmp(ub ™) + (1 + & Cp) di(uf, uf t)?

(C1)
< (o) d(u,up)? + e Croe(ug ™) + (1+ e Co) gy d(uf, up)?

Since (¢,k+ 1) € Q and according to the definition of Q, it holds that £+ 1 < k(¢). Hence,
inequality (4.26) and Lemma 14(ii) yield that

(4.26)

ne(up ™) < OANZ d(up T up)?

Lemma 14(ii) 9 9 N
< Actr (14 getr) dl(uév uél) .
Let C5 := )‘gr,% (1 + getr)?. Combining the latter two estimates, we see that
A= (a2 o e
< (1—e)d(u*,u))® + (n+Cr) ne(ug ™) + (1+ £ Ca) ¢Z, d(uf, uf)’
<(1—e)d(uu))* + {(p+eC1) C3+ (1 + e Cs) g2, } d(uy, up)?
Note that C;, Cy, (s depend only on the problem setting. Provided that
(n+eC)Cs+(1+eCy)q% <1—¢, (4.29)

we are thus led to

AR < (1 — ) (d(u*,u))? + d(uf, ub)?)
(4.27) (1 — &) d(u*,uy)?

< (1 —e) AL

Up to the final choice of u, e > 0 (see below), this concludes the proof of Lemma 19(i). O
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4.6 Abstract main results

Proof of Lemma 19(ii). Let p,d, > 0 be free parameters, which will be fixed below. First,
we note that

(A3)
s —will® < Chyme(up)?
(A1) k—1
< 2 C’1"431 7”(“’[ ) +2 Crel 3tab |”u; — Uy |||2

Together with the equivalence (4.9), this leads to

4.9 ;
d(u*,up)® < <l = ug)l?
< L C rel W(Ug ) + L C’rel tab "lué - U’Z |||2

(4.9)
< LCeln[(uﬂ ) +2LC¥ 1C'relC’stabdl(q’bévuleC 1)

and Cy = 2La "1 C2,C?

rel “'sta

Recall that C, = L C?

rel

- With this, we obtain that

g (4.27)

d(u*, ub)? (1 — &) d(u*, uf)? + e d(u*, uf)? + d(uf, uf)?
k

< (1—e)d(u,uf)? + e Crme(uf ") + e Cad(uf, uy ") + duf, uf)® (4.30)
(c1)
<

(1— &) d(u*,uf)* + e Comelug")? + (e Ca+ g2, duf, uf )2

Next, stability (A1) and reduction (A2) show that

k k k
77Z+1(UZ)2 = 041 (Te N Tt UZ)Q + 041 (Te41\Tes UZ)2
(A1) k 3
=" 0e(Te N To1, ) + o1 (Tea\Tes ug)?
(A2) k\2 2 Ek\2
< ”72(72 n 724-17 “’E) + Gred 772(72\724-17 “’,f)
k k
= e(uy)® — (1 = qrea) me(Te\ Teg1, ug)*.
According to the Dorfler marking criterion (4.17) in Algorithm 15(iii), we are led to
k k k
ner1(ug)? < (1= (1 — Goq) 0%) me(ug)® =: qome(ug)*. (4.31)
Note that

e — w17 < 2 (g — il + M — 1)

(4.9) 4 ke
< o (w7, Uy) + di(ug, uy 1)2)
(C) 4 k-1

< = (g + DA o)

Next, with § > 0 which we specify further on, we use the following variant of Young’s
inequality

(a+b)2<(1+8)a*+1+6 v forall a,beR.
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

This leads to

(A1)
k —
ne(ug)? < (ne(uy 1) + Cstab |||U4 - “e ”|)

k—1 d k k=12
< (L4 0) me(uy )? + (14671 Clap Mg — I (4.32)
k- 1, 4 k-1
< (L 8)me(g )2+ (L4871 = (g + 1) Clap A, g ).
Let Cy := 4a (¢4, + 1) C4,,- Note that Algorithm 15 guarantees that up, , = u%
Combining the latter estimates, we see that

A2+1 = dl( u*, U2+1)2 + 77€+1(u19+1)2

(4.31) ko

<" () + g me(ul)
(4.30) *  *\2 k—1\2 2

<" (1—e)d(u*,uf)? + e Crme(uf ™) 4 (e Oo + g2) diCuf, up )2 + pgg ne(ul)?
(4.32)

< (A—e)d@wu)? +{eCrip ™t + g0 (1+8)} e u§_1)2
F{eCot 2yt g (L+ 67 Ouy duf,up 2.
Note that Cy,Cs,Cy and 0 < g9 < 1 depend only on the problem setting. Provided that
eI 1 4qg(1+0)<1—c and eCo+q%, +pugp L+ HC<1—¢, (4.33)
we are thus led to

A?H <(l—¢) (dl(”*a ”?)2 + d(uz, u§_1)2 +p 772(1%&_1)2)

(427)
(1= &) (d(w*,uf ) + pne(ugH)?)
= (1—e)AFL
Up to the final choice of §, u, e > 0, this concludes the proof of Lemma 19(ii). O

Proof of Lemma 19 (fizing the free parameters). To fix all the free parameters and to show
that there exists a choice such that all the necessary assumptions are fulfilled, we proceed
as follows:

e Choose § > 0 such that (1+6)qp < 1.
e Choose p > 0 such that ¢, + ugp(1+6)"1Cy<1 and puCs+ ¢4, < 1.
e Finally, choose € > 0 sufficiently small such that (4.29) and (4.33) are satisfied.

This concludes the proof of Lemma 19 with (1 —¢) = ¢ . O

Proof of Theorem 17 under assumption (C1). According to (4.9), it holds that
d(u*, u¥) =~ ||u* —uf|| and as a consequence that A¥ ~ (A¥)!/2 where the hidden constants
depend only on u, «, and L.

Since the index set Q is linearly ordered with respect to the total step counter |(-,-)|,
linear convergence (4.24) now follows directly from Lemma 19 via induction on the index
pair. O
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4.6 Abstract main results

Proof of Theorem 17 under assumption (C2)

In order to prove Theorem 17 under assumption (C2), we first have to recall the following
main result from [GHPS18] whose proof is based on a perturbation argument.

Lemma 20 (|[GHPS18, Lemma 4.9, Theorem 5.3]). Suppose (A1)—(A3) and (C2). Let
0<b6<1and0 < Acr < Aconv 8, where Aeony = 017&. Then, it holds that

stab{ctr

I = ] < At 22 min o (0), ) (4.34)
as well as
(1= Netr/Acons) me(us) < 1) < (14 Nets/ Acons) 1e(u). (4.35)
Moreover, there exist Cgups > 0 and 0 < goaps < 1 such that
W+n(u%+n) < Ceups ¢CHps W(u%) forall ({+n+1,0) € Q. (4.36)

The constants Ccups and gcups depend only on Coea = L/, Crol, Cstab, Qred, 00d ety GS
well as on the adaptivity parameters 60 and A\ O

Lemma 20 shows that the given constraint on A.; guarantees estimator equivalence
ne(uj) ~ m(uf). Assume Dorfler marking for m(u%) and 6, cf. Algorithm 15(iii), then
there holds with stability (A1) that

0 — )‘Ctr/>\conv « (4.35) §
5 < (06— k
1+ /\Ctr/)\conv n@(ug) — (9 )\Ctr/>\conv) ﬂ[(ug)

(4.17)

k k
< T]g(Mg, U,[T) — )\ctr/)\conv Te (U[T) (437)
(A1) . «_ Kk ks
< (Mo, u7) + Cotan Iy — wfll = At /Acons me ()
(4.34)

< (M, up).

In other words, Dorfler marking for W(u%) and ¢ implies Dérfler marking for 7,(u}) and
0 = (9 - )\ctr/)\conv)/(l + )\ctr/)\conv) > 0.

In the present case, the core of the proof of Theorem 17 is the following summability
result.

Lemma 21. Suppose (A1)-(A3) and (C2). Let 0 < 6 < 1 and 0 < Actr < Aconv 0, where
again Acony = Cl—;;qt% Then, there exists Cyyy > 0 such that
Y A< Cam Al forall (¢,K) € Q. (4.38)
(,k)eQ
(6.k)> (& k")
The constant Csyyy > 0 depends only on L, o, Crel, Cstab, Qred, 0nd qctr, 08 well as on the
adaptivity parameters 0 and Acq;.
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

Proof. The proof is split into six steps.
Step 1. This step provides an equivalent quasi-error quantity. First, note that

k k
e = wgll < lu* = wgll + Nug —wl
(a3) L
S me(ug) + flug = wi|

(A1) k * k k
S melug) + lwg — ug || =: Ay

This proves that A} = [Ju* — uf[| +n.(uf) < Aj. Second, the Céa lemma (4.12) proves that

i i (4.12) i
lup —ugll < flu” —will + flu* —ugll < flw” —ug]l-
This concludes that
Af = |lup — ugll +ne(ug) ~ Ay (4.39)

Step 2. This step collects some auxiliary estimates. We start with

AY Smpa(uk ) < AE L forall (¢,0) € Q with £> 0. (4.40)

With the Céa lemma (4.12) and reliability (4.20), it follows that

k k
e = wg g Il < ™ = wll + flw™ = gy ]

(4.12) .
S et =gl

(4.20) )
< ey q)

With nested iteration u) = “%—1 and (A1)—(A2), we thus obtain that

AY = llup — ugll + ne(ug)
k k
= flug — vy Il + ne(_y)
k
< me—1(ug_y)

k
<A

This proves (4.40). Next, we prove that

AF < AF forall ((+1,0) € Qand 0 <k <Ek((). (4.41)

To see this, note that

(C2)
k k k k k—k k
g — wgll < fup — wgll + Nlug — will < (g + 1) flug — uil-
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4.6 Abstract main results

Hence, it follows that

k k k
Ay = llug = ugll =+ me(uy)
(AD « _k kK k
llwg —ug Il + g —ugll + ne(ug)
k k
S lug — gl + me(uy)
— Ak

This proves (4.41). Finally, we prove that

Af <lup — w7 for all (4,k) € Q with &k > 0. (4.42)

With the inequality (4.26), which stems from the stopping criterion (4.16) of Algorithm
15(i), and Lemma 14(ii), we get that

. 4.26) . Lemma 14(ii) L
ne(ug) S M —wg M S ey — g

This leads to

k k k
Ay = g — ugll + me(wy)
(C2) .
S g — W I+ me(uf)
S g — |

and thus proves (4.42).
Step 3. Suppose that £ = oo and hence k(¢) < oo for all £ € Ny. Note that

oo k(-1 k()1
SoooAb= > > Af+ Y AL
(Lk)EQ (=t'+1 k=0 k=K' +1
(£.k)>(¢ )
440) o k(9 k(¢
3 A Y b
=/ +1 k=1 k=k"+1

With contraction (C2), the geometric series proves for all (£,7) € Q that

EO-1  (49) k(O

Z Af S Z ll; — g~

—i+1 =i+1

IIIW — gl Z Geir'

< Al

(4.43)
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

Hence, it follows that

K(0) = A} 5 AY if k(¢) =
k
A (1.41) EO-L  (4.43)
k=1 <Y A <A ik >1
k=1
Moreover, it follows that
K +1 (40 k
: / . ! /
() = A, < Aj if k() =K +1,
k
Z Ap (4. 41) k() - (4.43)
k=k'+1 Z Ak <Al if k(¢) > k' + 1.
k=k'+1

So far, this proves that

STOAFSAN+ DAY
(6.k)eQ =011
(¢, Ic)>(€’ k')

Exploiting the linear convergence (4.36) together with the geometric series, we prove that

o0 o (4.40) "
DAY S Y el y)
(=41 =0+1
o, ¢]
k
= ne(uy)
=0
(4.36) o
S U@/ ZqGHPS
=0
k
=~ 1 ()
k
< Az,.
Overall, this proves that
& (44 ) _
S AP S AR +AY AY provided that £ = co. (4.44)
(£.k)eQ
(L) > (¢ k')

Step 4. Suppose that ¢/ = £ < co and hence k(¢') = k({) = oco. Then, the geometric
series proves that

© (443)
YoooAP= > AL <A (4.45)
(¢k)eQ k=k'+1
(£,k)> (0K
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4.6 Abstract main results

Step 5. Suppose that ¢ < £ < oo and hence k(£) = co. Then, it holds that

—1 k(¢ k(¢ —
PV Z Ak 4 Z Ae,+ZA£
(Z,k)EQ {=0+1 k=0 k=k'+1

(Lk)>( k)
First, note that

OO N (4.43) (4.40)
Z RS AL’ N AZ 1
k':

1< o
||
If\o

oAb =a
k=0

Provided that ¢ < £ < oo, it hence holds that

1 k(0 k() —1
> oAS Y Yoab+ Y ab
(L,k)eQ =0+1 k=0 k=k'+1
(Lk)> (¢ k")
(1.40) L1 KO k(&)
D D ATE D AL
(=041 k=1 k=k'+1

Along the lines of Step 3, one concludes that

L1 k() k(?')
SN AR+ D AL S AL (4.46)
=041 k=1 k=k'4+1

Step 6. In any case, (4.44)—(4.46) prove for all (¢, k') € Q that

YoooAFx= > AP SAR ~Af

(4k)cQ (£.k)eQ
(£,k)>(¢' k") (6,k)>(' k")
This concludes the proof of (4.38). O

Proof of Theorem 17 under the assumption (C2). The proof is split into two steps.
Step 1. From [CFPP14, Lemma 4.9], we recall the following implication for sequences
(otn)nen, in R>o and constants C' > 0: Assume that

Z ap, < Cay forall N € Ng.
n=N+1

Then, for N € Ny, it holds that

1+C Z ap < Z CVTL+CVN—ZO411-

n=N-+1 n=N-+1
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

Inductively, it follows that
oo xX0 o
(1+ Cil)m Z a, < Z an +ay = Z oy for all N,m € Ny.
n=N-+m n=N+1 n=N

We thus conclude that

angm < (L+CTH™™ Z an <(1+C)(1+C)™ay forall N,m € Ny.

Step 2. Since the index set Q is linearly ordered with respect to the total step counter
|(-,-)], Lemma 21 and Step 1 imply that

WERIZIERI AR for all (¢, k), (¢,K) € Q with (¢, k) > (¢, k),

Nin

A(’ < C'hn

where Cliy = 1+ Csum and gy = 1/(1 4+ C51). This concludes the proof.

4.6.3 Optimal convergence rates of the quasi-error

The second main theorem states optimal convergence rates of the quasi-error (4.19) with
respect to the overall computational costs. As usual in this context (see, e.g., [CFPP14]),
the result requires that the adaptivity parameters 0 < 8 < 1 and A, > 0 are sufficiently
small. With the following definition, we then get Theorem 23.

Definition 22. For N € Ny, let T(N) be the set of all refinements T of Ty with

#T —#To < N.
Then, for given s > 0, define
ol = sp (N 1) inf (0 ll o (150)) € Bz U fo). (447

Theorem 23. Suppose (C1) or (C2) as well as (R1)—(R3) and (A1)—(A4). Define

L gers , I
o if (C2) is valid,
)\opt = (448)
Lt /o2 otherwise.
GctrUstab

Let 0 <0 <1 and 0 < Actr < Aopt 0 such that

9 + Actr/)\opt

0<6 =
1- >\ctr/)\0pt

( Cztab Clel) 1/2 . (449)

42



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfiigbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4.6 Abstract main results

Let s > 0. Then, there exist copt, Cops > 0 such that

Cop ¥ [la, < sup (#To — #To+ 1) AY/

(¢ .k"HeQ
s, ) 4.
< sup ( > #72) A < Copy ma{||u]|a,, A}, (4.50)
' k"HeQ (4,k)eQ
(0,k)<(¢' k")

where ||u*||s, is defined in (4.47). The constant copy > 0 depends only on Ccea = L/a,
Cson, Cstab, Crel, #70, and s, and, if £ < oo or 7720(“%)) = 0 for some ({p + 1,0) € Q,
additionally on £ or {y respectively. The constant Cop > 0 depends only on Csiab, Gred,
Crel, Crmeshs 1 — Actr/Aopts, Cmarks Cleps Clins Qlins #70, and s.

rel?

Remark 24. The following comments underline the importance of the latter result:

e By definition (4.47), it holds that ||u*||s, < oo if and only if the quasi-error (for the
exact discrete solutions) converges at least with algebraic rate s > 0 along a sequence
of optimal meshes.

e If all steps of Algorithm 15 can be performed at linear costs O(#7T;), then the sum

> #T

(,k)eQ
(k) <(¢' K"

is proportional to the overall computational work (resp. the overall computational time
spent) to perform the |(¢',k')|-th step of the adaptive loop, since each adaptive step
depends on the full adaptive history. Note that the computation of, e.g., all residual
error indicators in Step (c) of Algorithm 15 as well as as the local mesh-refinement
by, e.g., newest verter bisection can be done at linear costs. The same applies to,
e.g., one step of PCG with an optimal additive Schwarz preconditioner in Step (b) of
Algorithm 15. For the Dérfler marking (4.17) in Step (#53) of Algorithm 15, we refer
to [Ste07] for an algorithm with linear cost and Cryac = 2 as well as to the recent
algorithm from [PP20] with linear cost and even Cypark = 1.

e The interpretation of (4.50) thus is that the quasi-error for the computed discrete
solutions ulg decays with rate s with respect to the overall computational costs (as well
as the degrees of freedom) if and only if rate s is possible with respect to the degrees
of freedom (for the exact discrete solutions on optimal meshes).

e Since s > 0 is arbitrary, the proposed algorithm will asymptotically regain the best
possible convergence behavior, even with respect to the computational costs.

e Prior works (see, e.g., [Ste07, BMS10, CG12, GHPS18]) proved linear convergence of
the quasi-error only for those steps, where mesh-refinement takes place. Unlike this,
we prove linear convergence (4.24) for the full sequence of discrete approzimations,
i.e., independently of the algorithmic decision for mesh-refinement or one step of the
discrete solver.
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

e In usual applications, the quasi-error Aif (i.e., error plus estimator) is equivalent to
the so-called total error (i.e., error plus data oscillations) as well as to the estimator
alone. Therefore, the approzimability ||u*||s, in (4.47) can equivalently be defined
through the total error (see, e.g., [Ste07, CKNS08, CN12, FFP1]]) or the estimator
(see, e.g., [CFPP1}]) instead of the quasi-error (used in (4.47)). The overall result
will be the same.

4.6.4 Proof of Theorem 23 (optimal convergence rates)

Recall ||u*||a, from (4.47) and the set T(N) = {7 € refine(Ty : #T — #7To < N}. Then,
the following lemma proves the first inequality in (4.50).

Lemma 25. Suppose (R1) as well as (A1)—(A3). Let s > 0. Then, it holds that

[u*]|a, < copr sup (#To — #To + 1)°Af, (4.51)

(tk)eQ

where copy > 0 depends only on Cceg, = L/, Ceon, Cstab, Crel, #70, and s, and, if { < oo
or 1y, (u%’o) =0 for some (¢p + 1,0) € Q, additionally on £ or {y respectively.

Proof. The proof is split into three steps. First, we recall Lemma 22 from [BHP17]: Let
To € T and 7, € refine(7,). Then, it holds that

#To/#Te < H#To — #To +1 < #T. (4.52)

Step 1. In this step, we consider the pathological cases that £ < oo or 7, (uf0 ) = 0 for some
(lo+1,0) € Q. In the first case, Corollary 18 gives that u* = uj as well as n(u}) = 0. From

Proposition 16 and Lemma 11, we know that the latter implies 'u,fo = u* = uy, . Hence, with
¢ = { or ¢' := {, respectively, we obtain that

u* = sup (N+1)° inf u =k |+ ur
o, = S0P (N 17 inf (0l g 050

= ma N+1)° min (lu* —ugy]| + ne(2wy)).
ey (N 1) min (=l ()
The term N + 1 within the maximum can be estimated by

(RL)
N+1<#To —#To < (CE —1)#To.

The Céa lemma (4.12) and (A1)—(A3) give that ||u* —uj|| < lv* —ugll and ne(wy) < no(uf)
(see, e.g., [CFPP14, Lemma 3.5]). Altogether, we thus arrive at

ey < (M = ugll + mo(ug))- (4.53)

Step 2. Next, we consider the generic case that £ = co and 77g0(ué—1’0 ) > 0 for all ¢y € Ny.
Algorithm 15 yields that #7; — oo as £ — oo. Thus, we can argue analogously to the
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4.6 Abstract main results

proof of [CFPP14, Theorem 4.1]: Let N € Nj. Choose the maximal ¢ € Ny such that
#To— #To+ 1< N. Then, T; € T(N). The choice of N guarantees that

N+1 < #Tppr —#To+1
(4.52)
< #Ti1
(R1) (4.54)
S C’SOIl #72
(4.52)

S C'son #76 (#72 - #76 + 1)
This leads to

(N +1)° Snin (M = gl + 10 (w0) < F#Te — #To + 1)* (I — will + ne(w)).-

Taking the supremum over all N € Ny, we conclude that

[ lla, S Sup (#Te — #To + 1) (llw — wgl| + ne(wy)).- (4.55)
€No

Step 3. With stability (A1) and the Céa lemma (4.12), we see for all (£,0) € Q that

(A1)
o =gl +meCup) S Nu® — gl + g — gl -+ ne(up)
< 2w = upll + et — )l + me(u)
(4.12) o o
S et —ugll + ne(uy)

= Al
With (4.53) and (4.55), we thus obtain that

lu llas < sup (#Te — #To + 1)° (lu* — wgll + ne(up))
(£,0)eQ
< sup (#To— #To+1)° Aéf.
(¢,k)eQ

This concludes the proof. O

To prove the converse estimate, we need the so-called comparison lemma for the error
estimator of the exact discrete solution uj € Xy, i.e., Lemma 4.14 from [CFPP14].

Lemma 26. Suppose (R1)—(R2) and (A1)—(A4). Let 0 < 6/ < Oopq := (1 4+ C2,, C2)71/2.

sta rel

Then, there ezist constants C1,Ca > 0 such that for all s > 0 with ||u*||s, < oo and all
Te € T, there exisis a subset Ro C To which satisfies that

#Ra < C1 Oy [ ()12, (4.56)

and the Dorfler marking criterion
O (3) < o(Re 3. (457)
The constants Cy1,Cy depend only on the constants of (Al)—(A4). d
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Proof of Theorem 23. The proof is split into six steps.
Step 1. It holds that

sup (#To — #To + 1)*Af < sup ( 2. #ﬁ) Af.
(' k"eQ (¥ kNeQ (neo
(L,E)< ('K

Hence, in accordance with Lemma 25, it only remains to prove that

sup ( Z #7}) Al < max {I[w*||a,, AQ}- (4.58)
ERIEQ N (1r)eo
(k)< (¢ k")

Without loss of generality, we may assume that |[u*]|a, < oco.
Step 2. Provided that (¢+1,0) € Q (and as a consequence that k(¢) < oo) Lemma 14(i)&(iii)
and the stopping criterion (4.16) of Algorithm 15 prove that
Lemma 14(i)
d(uf,ug) < gewd(uf,ug )
Lemma 14(iii)
S thI‘ dl(u%’ ’U,%il)
1 — getr ’

19 g

k
Aetr Ne(w5).
R R, ct 77[( 6)

Under (C2), this leads to

k k
g — ufl] = d(uf. )

< Getr

Actr 70 (1) (4.59a)

1 — getr
(4.48)
< C_l )\ctr/)\opt 77/2(“%)

stab

Under (C1), this leads to

. - (49) . &
lup — gl < V/2/ad(uf,uf)

< V2/as ‘“q Aetr ne(uX) (4.59b)
— Yetr
)

(4

48) .
< Coap Aetr/ Xopt ne ().

Step 3. With Step 2, we see that

k (A1) * * k (4.59) * k
ne(ug) < ne(ug) + Csan lug —ugll < ne(ug) + Acte/Aopt e (1),

* (A1) k * k (4.59) k k
ne(uz) < me(ug) + Csian llug —ugll - < ne(uy) + Actr/Aopt 10 (1)

With 0 < Actr/Aopt < 1, this guarantees for all (£ +1,0) € Q the equivalence

(1= At/ Aopt) 10(0f) < M) < (14 Aete/Aopt) e (117). (4.60)
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4.6 Abstract main results

Step 4. Let Ry C 7; be the subset from Lemma 26 with 6’ from (4.49). Note that

L (A i o
m(Re,up) < me(Re,uy) + Copan luyp — |

(4.59) (4.61)
< m(Ry, Ug) + Actr/ Aopt 7712(“@)
This proves that
) o, (460)
(1= Actr/Aopt) 0 W(Ue) < 0 me(up)
(4<57) (R ) (4.62)
(4.61)

< UZ(R& U’,f) + )\ctr/)\opt 772(“5)
The choice of ¢’ in (4.49) gives that 6 = (1 — Aotr/Aopt) @' — Aotr/Aopt- Thus, we obtain that

4.49 (4.62) |
6 7]@(“@) 2 ((1 - ctr/>\opt) 0 — ctr/Aopt) 776(”%) < U@(Réa ugk)

Hence, R, satisfies the Dorfler marking criterion (4.17) used in Algorithm 15(iii). By
(quasi-)minimality of M, in Algorithm 15(iii), we infer that

< (426) x1/s 1/3 4.6 1/s 1/3
#Me S #HRe S Nl me(ug)™ Pl W o)™
Nested iteration guarantees that uf , = uf Thus, reliability (4.20) and (A1)—(A2) lead to

. (4.20) .
ne(uf) =" Af

= " — a4 me ()
> Jlu* — gy [l + e (upyr)
=AJ,,.
Overall, we derive that
HMy < (| e (uf) 7 S

The hidden constant depends only on Csab, Gred, Crel, 1 — Actr/Aopts Cmarks C’rel, and s.
Step 5. For (¢, k) € Q with T; # To, Step 4 and the closure estimate (R3) lead to

37 (AY )Y forall (€4 1,0) € Q. (4.63)

(R3) =1 (4.63) ¢
BT —#To+ 14T — 4T S S #M, Sty > (a9)~s.
n=0 n=0

Replacing ||u*||s, with max{|u*||a., A8}, the overall estimate trivially holds for T; = To.
We thus have derived that

£
#HTo — #To + 1 < max{||u*||a,, AGH/* D (AD)H?
n=0
< max{|Ju*|la,, AT D (AF)TVE forall (£,k) € Q,
. kHeQ

(¢ k)< (6,k)
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

where the hidden constant depends only on Cab, gred, Crel; Cmeshs 1 — Actr/Aopt; Cmark,
' » AY, and s. Finally, we employ linear convergence (4.24) to bound the latter sum by

rel’

means of the geometric series

o 8(4‘24) s “1/s s (P !
SNoo@k) T < el S ()RR
(¢ ,k")eQ GRAE)
(¢ ,E)<(¢,k) (0 K< (4,k)
/e "
< i (Af)
L =gy

Combining the latter two estimates, we see that
#T— #To+ 1 S max{|[u*|la,, AGH/*(A)) 71" forall (k) €Q,  (464)

where the hidden constant depends Only on Cstaba Qred Crela Cmark; 1- >\ctr/)\opta Cmarka
;eli Clin, Qlin; Ag, and s.

Step 6. Let (¢, k') € Q. Together with Step 5, the geometric series proves that

(4.52)
S OWT 2 W)Y T - 4T+ )

(L,k)eQ (L.k)eQ
(k)<L K") (LE)< (LK)
(4ﬁ4) * AO 1/s Ak: —1/s
< max{|[ut|la, A DY (Af)
(L,k)eQ
(€k)<(¢E)
(424) * AO11/s Cl/s AKN=1/s L/s\ | (¢ &Y —|(4,k)]|
S max{|[u*]|a,, Ag} lin (Ag) Z (%, )
(,k)eQ
(LR)< (2K

/s

< — 1 maxc{|[ut ], AR (AF) 7.
~ Qiin

Rearranging this estimate, we end up with

sup ( 3 #72) AY < max{]ju*]la., A},
EIEQ N (rh)eo
(L,k)<(¢ k")

where the hidden constant depends only on Cgab, @reds Crel; Cmesh, 1 — Actr/Aopts Cmark,
C!1, Cin, Qiin, A3, #7o, and s. This concludes the proof. O
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4.7 AFEM for linear elliptic PDE with optimal PCG solver

4.7 AFEM for linear elliptic PDE with optimal PCG solver

We present our first setting which fits in the abstract framework of Section 4.2-4.6.

Model problem

We consider the elliptic boundary value problem (4.1)
—divA(Vu*)=f inQ
u*=0 onT :=0Q,
where @ C R? is a bounded Lipschitz domain with d € {2,3}, and f € L?(Q) is a given

load. Recall the corresponding variational formulation (4.2): Given a load f € L*(Q), find
u* € H = H}(Q) such that

(AU*, ’U>’H’><H = /

A(Vu*) - Vode = / foedz =: (F, v)ywy forall veH.
Q Q

We assume that A: L2(Q)¢ — L*(Q)¢ has the given form
A(v) = [z Az)v(z)] for v e L2 (Q)4,

where A € WH>(Q)9*? is symmetric and uniformly positive definite. The choice of
Whee(Q) as the domain of A instead of L>°(f2) is only necessary to ensure that the residual

error indicators (4.69) are well-defined.
We define the potential P: H}(Q) — R via

1 ,
P(v) = §/QAV'U Vo dz for all v € HA(RQ). (4.65)

Then, it holds that
5 Pw+tv) — P(w) . [oAV(w+tv) V(w4 tv) de — [, AVw - Vw dz
120 t ~ 50 21
teR teR
i Jo2AVw - V(tv) + AV (tv) - V(tv) dz
= lim

t—0 2t
teR

: 1
= lim/ AVw-Vv+ =AVv - V(tv) dz
ter /9 2

:/ AVw - Vv dx
Q

= (Au*, 'U)’,L[/XH

Hence, assumption (O3) is satisfied.
We equip H¢(Q) with the scalar product

(v, w) = /QAVW -Vw dx (4.66)

and the induced norm ||v||? := (v, v). Then, the assumptions (O1)—(02) are satisfied with
a=1=0L.
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

Triangulation and mesh-refinement

Let 7o be a conforming initial triangulation of €2 into simplices T" € T5. We use newest
vertex bisection for the mesh-refinement refine(-) such that the axioms (R1)-(R3) are
satisfied, cf. Section 3.6. In this section, we define the local mesh-width function as

hZ|T = hz(T) = diam(T) forall T € 72,

which is equivalent to the definition of Section 3.1. For a node z € T;, we additionally define
the mesh-width

he(z) = max diam(T).
TCuwe(z)

It holds that

he(T) < hy(z) She(T) forall ze Nyand T € Ty with z € T, (4.67)

where the hidden constant depends only on 7-shape regularity.

Discretization
For T; € T, we use the corresponding ansatz space
X:={veC(Q) :v|r=0and vy € P! forall T € T¢}, (4.68)
i.e., the space of all continuous piecewise first degree polynomials that vanish on the bound-

ary I' = 0Q.

Error estimator

Next, we define the weighted-residual error indicators (see, e.g., [AO11, Ver13]). For all
T € T; and v, € &, define the error indicators 7, (T, vy)? as

ne(T,v0)* i= TP f o+ div (AV) | 20y + 1TV [ [AV v - m]

L2(8TNQ)> (4.69)

where [-] denotes the usual jump of piecewise continuous functions across element interfaces,
and n is the outer normal vector of the considered element. It is well-known that the
resulting error estimator satisfies the axioms (A1)—(A4), see, e.g., [CFPP14, Section 6.1]
and the references therein.

Galerkin system

With the usual Lagrangian basis {7, 1,...,m,n} C &y of Xy, we define the Galerkin matrix
Mg via

N NxN
My = (/ AV - Ve, dﬂ?) € R™ >
Q 4j=
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4.7 AFEM for linear elliptic PDE with optimal PCG solver

as well as the right-hand side,

b, := (/g;f"?g’i dl‘)jil S RN

corresponding to (4.8). Hence, the coefficient vector x; € RY of the solution u} =
SN x5[i] mes is the unique solution of the linear system

M, x; = by. (4.70)

Preconditioned conjugate gradient method (PCG) for the Galerkin system

Finally, we introduce the iteration function ®, : X; — X for Step (i) of Algorithm 15 as
one step of the preconditioned conjugated gradient method (PCG): Given an initial guess
x) € RY, PCG approximates the solution xj € R of (4.70).

Let P, € RV*Y be an arbitrary symmetric positive definite preconditioner and define

M, .= P, *m,p,; "
as well as
by =P, b,

Now, instead of solving the linear system (4.70), the PCG iteration considers the precondi-
tioned system

M, % = by (4.71)
and formally applies the conjugate gradient method (CG, cf. [GVL13, Algorithm 11.3.2])
to (4.71) with the given initial guess xJ. Note that x} and X} are connected via

* __ p—1/2~%
Xl}, = Pé‘ Xe.

Also, the iterates x§ € RY of PCG (for P;, My, by, and the initial guess x{) and the iterates
x% of CG (for M,, by, and the initial guess X) = Pt}/ 2X?) are formally linked by

E_ p-1/2zk
X, = Pe Xy,

see [GVL13, Section 11.5].
Let vy € X, with coefficient vector y, € RY. Then, there holds the elementary identity

llvell> = ye - Myye = |yelin,- (4.72)

In addition, for ¥, € RY and y, € RY such that y, = P;l/ 2 y¢, direct computation yields
that

¥elyz, = Ve My

= Py - P, 2 M, P, 2P Py, (4.73)
=ye -Meyy
. 2
- |y£|Mg'
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

Hence, [GVL13, Theorem 11.3.3] for CG (applied to M,, by, x9) yields the following
lemma for PCG (which follows from the implicit steepest decent property of CG).

Lemma 27. Let My, P, € RY*N be symmetric and positive definite, b, ¢ RY, Xy =
M[l by, and xg € RN, Suppose the (-condition number estimate

condy (P, * M, P, %) < Oy (4.74)

Then, the iterates x? of the PCG algorithm satisfy the coniraction property
Ix; — x5 v, < gpeg X5 — xEnr,  for all k € Ny, (4.75)
where gpeg := (1 — 1/Cug)'/? < 1. O

Remark 28. Fach step of PCG has the following computational costs:

e O(N) costs for vector operations (e.g., assignment, addition, scalar product),
e computation of one matriz-vector product with My,

e computation of one matriz-vector product with Pgl.

Optimal preconditioner

We suppose that the employed preconditioners P, are optimal. This means that the con-
stant Cy1e > 0 of Lemma 27 depends only on the coefficient matrix A, the initial mesh 7y,
and the polynomial degree p. One example of such an optimal preconditioner is the mul-
tilevel additive Schwarz preconditioner from Section 4.7.1, see also, e.g., [WC06, SMPZ08,
XCH10, CNX12]. We stress that the product of P, with one vector can be realized in linear
complexity O(N).

Hence, to fit the framework of the main results from Section 4.6, at least one of the
contraction properties (C1)—(C2) has to be fulfilled: From the contraction property (4.75)
and the identity (4.72), it follows that

k1 (472) k+1
g — g™ =" %5 — x|
(4.75) .
< qf)cg |X2 — Xy ’Ml
(4.72)

k
= g [l — il

2

Hence, there holds the contraction property (C2) with getr := gpeg = (1 — 1/Cag) /2.
From (4.65)—(4.66), it directly follows that

1 .
IE(v) — E(w)] = 3 lw —v||* for all v,w € IT} ().

Thus, the norm contraction property (C2) is equivalent to the energy contraction prop-
erty (C1). Altogether, the main results from Section 4.6 apply to the present setting and the
linear convergence (4.24) from Theorem 17 holds even for arbitrary Ae; >0 and 0 <9 <1
in Algorithm 15.
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4.7 AFEM for linear elliptic PDE with optimal PCG solver

4.7.1 Optimal multilevel additive Schwarz preconditioner

In this section, we propose a multilevel additive Schwarz preconditioner for the arising
Galerkin matrix and prove its optimality in the sense that the condition number of the
additive Schwarz matrix is uniformly bounded.

Multilevel additive Schwarz preconditioner

In order to define the additive Schwarz preconditioner, we introduce the set of vertices N;
for ¢ € Ny via

./Vo = No
as well as
Ny =N, \ N U {z ENNNp1 = wi(2) & wg;l(z)} for ¢ > 1.

Hence, N, is the set of new vertices and their direct neighbors in the mesh 7;. Additionally,
we define the corresponding subspaces

?Eg = span{m’z A ./\7/}
as well as
Xf,z = Span{n&z}-

Then, for all 0 < L and with N, := #M;, the local multilevel diagonal preconditioner is
given by

L
Py =Y 1I,D;'(1,)7, (4.76)
£=0

where the appearing matrices are defined as follows:
o D, ¢ RN*MNe i a diagonal matrix with entries

. ooy—1¢ . ~
(My(4,5)) 0 if 2z € NG,
0 otherwise,

(D) (k) = {

where ;1 is the usual Kronecker delta. Hence, for all degrees of freedom in J\N/'g, the
corresponding diagonal elements of D[l are the inverse diagonal entries of M.

e I, ¢ RVxNe ig the matrix representation of the embedding operator Z,: Xy — X.
Instead of solving the linear system
Mpxr =bp,
we instead consider the preconditioned linear system

P Mrx;, =Prb;.
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

Optimal cost of matrix-vector multiplication

Let Ig“ € RNe+1XNe denote the matrix representation of the embedding operator from X;_;
to Xp. Then, it holds that

L L—1 41
L=Iy I, 5 - It

Hence, we can rewrite the preconditioner Py, from (4.76) as follows
L o~
P,=> LD, (L)'
=0

=Tp_ LD (1) (1) + .+ 17, D (T72,) T+ D

Using this representation, we can evaluate the matrix-vector multiplication with the pre-
conditioner P with the following algorithm.

Algorithm 29 (Evaluation of y = P x). Input: y := x € RV matrices {Iﬁ“}f;ol,
{ﬁ;l}£:0, auziliory memory yg € RN, ...y, € RNc,
(i) For ¢ =1L,...,1 do:
ye<—D,ly
y « (L)'y
End for
(i) yo+—Dg'y
(iii) For £ =0,...,L —1 do:
y— Iy
Y=y -ty
End for

Output: y = P x.

In order to analyze the computational costs of Algorithm 29, we first note that Ny consists
only of newly created nodes and some of its neighbours. This yields that

Ne:= #Np < C(Ne — Ne-1) = C#WNe \ Ni-a),
where the constant C' > 0 depends only on shape regularity. Since the matrices ]5[1 have

only O(Ny — Ny—1) non-zero entries, the overall storage requirements are

L
O(No+ Y (Ny— Ne_y)) = O(Ny).
(=1
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4.7 AFEM for linear elliptic PDE with optimal PCG solver

The same holds for the evaluations Iﬁ_l x as well as (Iﬁ_l)T x. All values of x with indices
corresponding to nodes in Ny remain unchanged during the evaluation and we hence only
need O(Ny.1—Ny) many arithmetic operations. Summing up all operations in Algorithm 29,
we then end up with linear complexity O(Ny) for the evaluation of the preconditioner Py .

Optimal condition number

The following theorem is the main result of this section.

Theorem 30. The minimal and mazimal eigenvalues of P My satisfy
C S )\min (PLML) and >\max (PLML) S C, (477)

where the constants ¢,C > 0 depend only on 2, d, the initial triangulation Tg, and the
diffusion coefficient A. In particular, it holds that

s lQ

COIldML (PLML) < —, (478)

i.e., the condition number of the preconditioned matriz P My is L-independently bounded
and therefrom the multilevel diagonal scaling preconditioner P is oplimal.

4.7.2 Auxiliary results
Level function and uniform mesh-refinement

In this section, we define the level function levely(-) as well as the sequence of uniformly
refined triangulations ’/7\777, and collect some technical results.

To this end, we first define the generation gen(7") € Ny of an element 7. Let T € T; be
an element of the triangulation 7; and Ty € 7o the unique ancestor element of the initial
triangulation 7g such that 7" C Tj. Then, the generation of T is defined by

‘ _ og(|T|/|Tol)
gen(T) = TUQ)O

ie., |T| = 278D)|T,| and gen(T) returns the number of bisections to generate T from Ty.
Based on the generation, we now define for each node z € N, the level

€ Ny,

levely(z) := [max{gen(T)/d : T € Ty with T C wy(2)}], (4.79)

where [-] denotes the Gaussian ceil function, i.e., [z] := min{n € Ny :  <n} for z > 0.
Next, let z € N, and k € Ny. We define the index set

Ki(z) := {eef{o0,1,....,L} : z € Ny and levely(z) = k}, (4.80)

which describes in how many sets Ay with levely(z) = k a given node z € N, appears. The
following lemma from [WC06, Lemma 3.1] proves that the cardinality of this set can be
uniformely bounded.
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

Lemma 31. It holds that
#Ki(2) <C  for all z € Ny, and k € Ny, (4.81)

where the constant C > 0 depends only on 7. O

The sequence of uniform triangulations 77n is defined as . follows: Let 76 =Ty. Form > 1,
the mesh T is obtained by uniformely refining the mesh Tm 1, 1.e., every element 1" € Tm 1
is successively bisected into 2¢ many son elements 7" € 7y, Wlth measure |T'| = 2797},
cf. [Ste08, Theorem 2.1]. With J\A/'m denoting the set of all nodes of ’7A;n, we define the local
mesh-width

ho == max ho(T) and Tm :=2""hy  for all m > 1. (4.82)
TeTo

From [Ste08, Section 4], we get the equivalence
IT| ~ he(T)* = diam(T)? ~ 27¢T) forall T € Ty,
where the implicit constants depend only on 7y and d. Hence, it holds that

~

hy = 2"”%0 = 2_ge“(T)/dﬁo ~ diam(7T") forall T € T and m > 0.

Lemma 32. Let z € Ny and m := levely(z). Then, it holds that z € Ny as well as
M, € X, = 51(7' ). Additionally, there holds the equivalence

C?Lm < hg(Z) < C/Em: (483)

where hy(z) := max {diam(T) : T € T;,z € T} and the constants c,C > 0 depend only on
the initial triangulation To.

Proof. For T € T,, and T € T; with T C w(2), it holds that
gen(f) =md > gen(T). (4.84)

Now, let 2’ € wy(z) NNy and T € Ty with T C wy(z) such that 2’ € T. Let Ty € To be
the unique ancestor of T'. From (4.84), it follows that there exists a T e 7A;n such that
TCTCTyand 2 € N,,NT. Hence, it holds for all nodes 2’ € wy(2) N Ny that 2/ € Non
and consequently 7, , € X,,. To see (4.83), recall the definition (4.79) of m = levely(z), i.e
there exists T/ € T; with T7 C wy(z) such that

gen(T') 4+ 1 > md = gen(T) > gen(T").
Therefore, it holds that
diam(T) ~ diam(T") ~ diam(T) for all T € T,, and T C wy(2).

This implies the equivalence (4.83). O
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Let ﬁm: L?(Q) — Q?m denote the L?-orthogonal projection onto Q?m = Sg(/\m).

Lemma 33. For all v € H}(Q), it holds that
3 Balllo = vl 20y < Coorm 01310y (4.85)
m=0

where the constant Cporm > 0 depends only on ) and the initiol triangulation Tg.

Proof. Let w € H}(£2). It follows from the orthogonality of the L%-projection that

=

N
D T = T )wl|Faggy = Y [Tk — i 1)w| 720
k=1

k=1 F S (4.86)
= [IIyw — HOw||L2(Q)
= [|(1 = To)w|[F20y — 11 = Hn)wl|72()-
Taking the limit N — oo, we hence get that
lw — Towl|72y = > (M — Me)w|3aqy  for all w e Hp (), (4.87)

k=1

since the last term in (4.87) converges to 0 for N — co. From [Xu96, Theorem 4.32| follows
that

|w — l/_\[OwH?{l(Q) o~ ZE;QH(ﬁk - ﬁk—l)wH%z(Q) for all w € H (). (4.88)
k=1

With w:=v — ﬁmv, and I1,,11,,,0 = ﬁmin{nm}z), we get that

lo = Tonvl|Z2 (g = [l 20y = 1w — Howl|Z

(187) o= | & = A
SO (I = Ty )wl |2

- (4.89)
= Y (@ — T 1)v][72 (-
k=m+1
With the definition (4.82) of h,,, we infer that

k—1 R R k—1 R R

e = hg? Y 2 < gt 2 =R (4.90)
m=0 m=0
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

Combining (4.89)—(4.90), changing the order of summation, and exploiting (4.88), we derive
that

(4.59)
Zh v — mU||L2(Q Z Z B | (T — Tl ) ol 72

m=0 m=0k=m+1

oo k—1
SO b 10 — T 1)o[[72 0
k=1 m=0

490) .
<3 TR — y)w vl|72(0
k=1

(488)

[EE
< HUHHl(Q)7

where the last inequality follows from the H'-stability of the L2-orthogonal projection Il
cf. [CT87, BPS02, Car02]. This concludes the proof. O

The patches &F,(z) corresponding to the uniformly refined mesh 7,, are defined analo-
gously to the patches wk (2).
For each 2 € N, we define

r¢(2) :=min {gen(T) : T € Tr_1 with T Cwj 1(2)} (4.91)
as well as
Ry(z) == [re(2)/d], (4.92)

where -] denotes the Gaussian floor function, i.e., [z] ;== max{n € Ny : z > n}.

Lemma 34. For all z € Ny, there hold (1)—(iii):

(1) It holds that levely(z) < Ry(z) + C1, where the constant Cy > 0 depends only on the
initial triangulation To.

(ii) For cﬂl T € Tioy with T C w? |(2), there exists an element T e ?Rf(z) such that
TCT.

(iii) There ezists an index n € Ny, which depends only on the initial triangulation Ty, such
that we(z) Cw? ((2) C @f;veli( )(z)

Proof of (i). Let T € T; with T' C wy(2) such that [gen(T)/d]| = levely(z) and let 7" € Tp_y
with 7 C w? | (z) such that |gen(T”)/d| = Ry(z). Let T C Ty € Ty and T/ C Tf € Ty be
the corresponding ancestor elements in 7y, respectively. Due to ~-shape regularity of the
mesh, there exists a constant C' > 0 which depends only on the initial triangulation 7 such
that

log(C)

log(1/2)’

log(|T|/|To]) _ log(C|T"|/|T5))

og(1/2) = loa(tjzyEnI)H

gen(T) =
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4.7 AFEM for linear elliptic PDE with optimal PCG solver

Therefrom, we get that
levely(z) = [gen(T)/d]
log(C) W

< |gen(T")/d| + 1+ Log(m)

This concludes the proof with Cy := 1+ [; g((l /2))]. O
Proof of (ii). Let T € Ty—1 with T C w? ,(z). Due to the definition (4.91) of r,(z), it holds
that gen(T) > re(2) > [re(2)/d] = Ry(2). Since T € Tgen(r) and gen(T) > Ry(z), there
exists an ancestor element T € 7532 such that T C T. a
Proof of (iii). Since the mesh 7 is a refinement of 7;_1, it holds that wy(z) C wy_1(2) C
w? ;(2). Hence, it only remains to prove the second inclusion w? ,(2) C wlevelf(z)( z). To
that end, let T € 7,1 with T C w? ,(z). Lemma 34(11) provides an element T' € TRZ ()

such that T C T. Furthermore, it holds that 7 C & ( )( z) and hence T C T C wR () (2 2).

The element T can be rewritten with elements of 7532 y+c, the followmg way. Since the

series 7' is generated by uniform refinement via bisection, the element T gets bisected into
24C1 many elements T € TRZ(Z)JFCl such that

-Us

Since T € UAJ%Q( )( z), there exists n € N with n < 2¢C1+! guch that 7 C W, (2)4C1

Lemma 34(i) yields that level,(2) < Ry(z) + C1 and hence &}, (2 )+01( z) C wlevel(< )(2). So
far, this proves that T C T C Wlovely(» )(2), and we conclude that wi 1(2) C @i’évewz)(z). O

w\

Scott—Zhang projection

We recall a variant of the Scott—Zhang quasi-interpolation operator, cf. [SZ90] or [BS02,
Section 4.8]. For z € Ny, let Ty, € Ty be an element with z € Ty .. Let ¢, , denote the
(unique) L?*(T} )-dual basis function with

/ VYo (x) e (z) dz =8, for all 2/ € Ny,
JT,

\Z

where ¢,/ denotes the Kronecker delta. Defining the Scott-Zhang operator J;: L?(Q) —
S'(Te) by

Jov = Z 77@2/ Py (x )dz forallve LQ(Q)
zEN, ng

we note the following properties, where the constant C' > 0 depends only on the ~-shape
regularity of 7:
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Jy is a linear projection onto S}(7p), i.e.,

Jovp = vy for all vy € S& (72) (4.93)

Jy is locally L%-stable, i.e., for all T € 7y, it holds that

v — Jevll2(ry < Cllvllp2,ryy forallve L*(Q).

Jy is locally H'-stable, i.e., for all T' € Ty, it holds that

||V(U - JEU)HLQ(T) < C ||VU||L2(0J¢(T)) for all v € H&(Q)

Jp has a local first-order approximation property

v — Jevll 2y < C he(T) | V0l 20,y for all v € Hy ().

The freedom in the choice of the averaging element 7, . can be exploited to ensure
additional properties. In our case, the choice of T}, is arbitrary, but we require that

Tro1, =Ty, € TeNTy—q forall z e N \ Ny C Ni_1. From this choice, it also follows that
Moz = Ni—1,. and ¥y, = p_1, for all z € Ny \ Ny. Hence, we get that

(Jo — Jo—)v(z) =0 for all z € Ny \ N,

as well as

(Jo— Jpq)v € span{mvz: z € j\Nfg} = X, (4.94)

Lemma 35. For all v € L2(Q) and z € Ny, it holds that

|(Je = Je1)v(2)] < |[Jev(2)] + | Je10(2)]

_ (4.95)
< Che(2)™ " [vll 2z o)

where C' > 0 depends only on ~y-shape reqularity of 7.

Proof. The first inequality in (4.95) follows from the usual triangle inequality. Hence, it
only remains to prove the second inequality. [SZ90, Lemma 3.1] states that ||y .|| Lo (7, ) S

|Ty.| 7. For z € Ny, it holds that Ty, Cwe(z) Cw? |(2). Thus, the first summand in (4.95)
is bounded by

|Jev(z)] < /T |- (x)v(x)| do

< ezl poo oy 1Tl 0l 22ry (4.96)
STl 2 ol 2, oy

o hy(z) 4 [0l L2z 2
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4.7 AFEM for linear elliptic PDE with optimal PCG solver

To bound the second summand in (4.95), we must consider two cases: First, let z € J\N/g
Ni—1. It holds that |7} .| ~ h¢(2) as well as Ty_1.. € wy—1(2) C w? | (2). Similarly to (4.96),
we get that

| Je—1v(2)] S/T [Ye—1,.(2)v(2)| do

< ezl o,y ) 1Temr 2l 0l L2er, (4.97)
STl 72 ol 2wz o)

< hy(z) 742 10l 222, (2)-

Second, let z € ./\N/'g\./\/'g_l. Then, due to y-shape regularity, there exists a uniformly bounded
number of nodes 21, 22, ..., 2,(») € Ny_1 such that

Jg 1U Z Te—1 zZ / w€~1,zi (ZE) U(ZE) dz.
T

—1,z;

For i € {1,2,...,n(2)}, it again holds that |T}_1 | =~ h¢(2) as well as Ty ., C wy_1(2;) C
w} | (2). With the same arguments as for (4.97), it follows that

n(z)
|J[ 1U |<Z/ W)/ 121 ) (:E)’ da

Te-1,z,

,S Z |T€—1,z7;’71/2 ||’UHL2(T€~1,zi)

i=1

< halz) "2 lollz2wz | (2))-
Combining (4.96)—(4.98), we conclude (4.95). O

4.7.3 Additive Schwarz operator

For all z € Ny, we define the local orthogonal projections Py, : H} () — X, = span{n}
by

(Pe.v, we.) = (v, we,) foral wy, € Xy,

with the explicit representation

Py v = Wm . forall v € HY(Q). (4.99)

Based on these projections, we define the additive Schwarz operator as

L
Qr:=Y_ > Pp.: HH(Q) — Xp. (4.100)
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

Therefore, the multilevel diagonal scaling is a multilevel additive Schwarz method and
we can use the abstract analysis of these methods.
The key result reads as follows.

Proposition 36. The operator Qp is linear and bounded as well as symmetric

(Qrv, w) = (v, Qrw) for all v,w € I}(N) (4.101)
and sotisfies

cllvll®* < (Qrv, v) < C|v|* for all v € Xy (4.102)

The constants c¢,C > 0 depend only on ), the initial triangulation Ty, and the diffusion
coefficient A.

While linearity, boundedness, and symmetry of additive Schwarz operators are well-known
(cf. [GO94, Lemma 2|), we will provide the proof of (4.102) in Section 4.7.5 as well as
Section 4.7.6.

4.7.4 Proof of Theorem 30 (optimal condition number)

Let v := ;V:LO XjNL,z; € X1 and w 1= Z?LLO YL,z € XL. From the definition (4.76) of the
local multilevel diagonal preconditioner, it follows that M ;P ;M is symmetric. We define
the additive Schwarz matrix Qr, := PrMj. It then holds that

(Qrv, w) = (Qrx, y)m,- (4.103)
Combining the identity (4.103) with (4.102), we see that
cix, x)m,, = clloll® < (Qrv, v) = (Qrx, x)m,
as well as
(Qrx, x)m, = (Qrv, v) < C ol = C (x, x)m,.
Due to the symmetry (4.101) and again the identity (4.103), we get that
(Qrx, y)m, = (Qrv, w) = (v, Qrw) = x, QLy)m,,

i.e.,, Qp is symmetric with respect to (-, -)p,. Now, [TWO05, Lemma C.1] or [GVL13,
Section 8.1] yield the Rayleigh quotient estimates
<QLX ) X>

. M
Ami = L >
min (QL) xIGIE}\]TL <X, X)ML = C,

x7#0

and
Amax (QL) = max M < (.
x€RNL (X, X)M,

x#0

In particular, it follows that
Amax (QL) C
condy, (Qp) = ——— < —.
“ ( ) Amin (QL) c

This concludes the proof. O
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4.7 AFEM for linear elliptic PDE with optimal PCG solver

Lions’ lemma

The last lemma we need for the proof of the lower bound in (4.102) is known as Lions’s
lemma, cf. [Lio88, Wid89] and [TWO05, Lemma 2.5].

Lemma 37 (Lions). Let m € Ny and v € V, where V is a finite-dimensional Hilbert
space with scalar product (-, -) and corresponding norm || - ||. Assume that there exists a
decomposition of V into spaces V; with 0 < ¢ < m such that V = ;" , Vi and orthogonal
projections Py: V — Vy defined by

(Pev, we) = (v, we) for all wy € V.
Define Pas := Y ;o Pe. If there exists a constant C' > 0 such that every v € V admits a

decomposition v ="y ;" vy with v, € V; that satisfies

m
> lloell® < Clloll?,
£=0

then it holds that
loll* < C(Pasv, v)
forallveV. O

4.7.5 Proof of lower bound in Proposition 36

The proof is split into 5 steps.
Step 1. With property (4.94) of the Scott—Zhang projection .J;, we define the difference

W= —JeweX, forveX,and0< (<L, (4.104a)

where J_; := 0. Henceforth, we can rewrite any v € X7, using the projection property (4.93)
of Jr, as a telescoping series as follows

L
v=Jw=(Jp—J)v=> T (4.104b)
/=0

Using the basis representation of vy, we can decompose this further into

L L
v = Z Z ve(2)1e,2 =: Z Z vy, with v, € Xy . (4.104c)

£=0 ZG./\N/’e £=0 ZGJ\Nfg

Step 2. Let z € N;. Then, there holds the inverse inequality

V02 220 S Pe(2) ™0 M2l 2202

which follows from a scaling argument with the hidden constant depending only on ~-shape
regularity of 7;. Combining this inequality with the equivalence (4.83), it holds that

e, S V0202 0y ) S e(2) ™2 0,272 (o) < ()72 Jwe(2)] = he(2)"2.
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

Hence, we get that
lloe % = le W 15e(2) 1 S e(2)2 (T = Je—a)o(2)]*.
Step 3. Let II,,, := II; for m < 0. From Lemma 34(i), we get that

Wievel,(2)—c1 v € XRy(2)

(4.105)

and especially that (ﬁlevell(z)_clv)h is affine on all T € T;_q with T C w} () as well as
continuous on the whole patch w? ,(z). In particular, the same holds also on the patch
w?(z). Therefore, the projection property (4.93) of the Scott—Zhang operator yields that

(Jenlevel[(z)—Clv) (Z) = (Hlevelg(z)—c’lv) (Z) = (Jf—lnlevelg(z)—leU)(z)'
Together with Lemma 35, this yields that
o~ 2
(e = Je-1)o()* = [(Je = Je-1) (v = Thevety(2) -, v) ()]
< hé(z)_d v — Hlevelg(Z)—01U||%2(wf_l(z))'
Step 4. Combining Step 2 and Step 3, we see that

ot 212 < 7e2) ™ o~ iowater-cr0 22z oy

Using the equivalence hy(2) ~ Blevel /(=) from (4.83), we get that

L L(4107) L ) . )
> Z loe:0” <) Z he(2)77 [0 = Tievely (2)-c1 V172 w2 (2)
£=0 z€Ny £=0 z€N

L
~_5 o= 2
~ EN hlevelg(Z) ||’b - Hlevel[(z)—cl UHLQ(w?_l(z))
eN,

L
P2 = 2
Yo > - Tevllfage o)

m=0 K:O ZGM
level,(z)=m

Combining Lemma 34(iii) with the definition (4.80) of Kp,(2), we see that

oo L
S Y hllv-Taeavla: o)

m=0 ¢=0 2N,
levely(z)=m

oo L
~_ ~
<22 2 hlv-Tacv
m=0 £=0 2eN,
levely(z)=m

(4.80) Z Z Z /]:L;?||vfﬁm—(/&vniz@ih(z))'

m=0zeNY, 1k, ()

2
L2(@p(2))
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4.7 AFEM for linear elliptic PDE with optimal PCG solver

Lemma, 32 states that z € NV, with level,(z) = m is also an element of Ny, Together with
the boundedness (4.81) of #K,,,(z) from Lemma 31, this yields that

Z ST R Tn el Faen o)

m=02eNL e, (2)

= Z Z Z h HU 1L, - Cl””%%@,’,@(z))
m=0 e AL AN, €K m (2)
(4.81)

5 Z Z h;n2 HU - H??L—ClvH%?(GgL(z))

m=0 ;e Ny N

<3SN W2 o Tneeyv 22z -

m=0 ZG/Vm

Due to uniform -shape regularity of 7., and the definition II,,, = Iy for m < 0, it follows
that

Z Y bl o =Tl o oy S D Ao 0 = Ty v 720

m=0 ZGNm m=0

oo
< Z ho 2 ||v — HmvH%g(Q).

m=0

Combining the last four estimates, we end up with
Z S oeal? Z ol [0 — Tl - (4.108)
£=0 ZGNg

Step 5: Finally, Step 4 together with Lemma 33 and norm equivalence yields that

(4.104) )
@ < lolZg=ll’  (4.109)

L .
SN el 5 S e

=0 e N, m=0
for all v € A, and the decomposition v = ZeL:o ZZGJ\NQ vy, from (4.104c). Due to Lions’s
lemma (cf. Lemma 37) this guarantees the ellipticity of the additive Schwarz operator Q9
from (4.100).
ol < {Qrv, v) forallve x*,

which concludes the proof of the lower bound in (4.102). O
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

Auxiliary results

We define the maximal level M := max,ep, s levelr (z) of all nodes z € Np. From Lemma 32,
it follows that N7, C Ny and Xf, C Xy;. We rewrite the additive Schwarz operator Qj, as

L M L
QL= Z Z PZ,Z - Z QL,Tn with QL,'m = Z Z ,Pé’z. (4110)

0.y, om0 =0 exy
levely(z)=m

Then, there holds the following lemma, which is used to prove the strenghtened Cauchy-
Schwarz inequality (4.118).

Lemma 38. Let 0 < k<m <M and 0 < ¢ < L. ForTeﬁ, ﬁkefk, andeJ\N/g with
levely(z) = m, it holds that

' ~ — m—k 77— ~
/ AV, - Vi, dz < C (2 1/2) ht IV L2¢) 76,2 L2 (1) (4.111)
T

where the constant C' > 0 depends only on the initial triangulation Ty, and || Al|co-

Proof. From Lemma 32, we know that 7, , € /'?m. Hence, we can decompose 7 . as follows.
We define vy, o € A}, such that i, o vanishes on 0T and is equal to 7, . at the interior nodes
in T. Let v, 1 = 1¢,, — Upy0- Then, it holds that

/ AV, - VT]g’Z dr = / AV, - Vi)\m’o dr + / AV, - VﬁmJ dzr. (4.112)
T T T

Note that Vvg|r is constant, since T' € 7A7€ Moreover, note that v, 0lor = 0. With
integration by parts and V, € P°(T), we get for the first summand of (4.112) that

/ AV, - Vi do = — / div (AV5;) 5 o do

T T (4.113)

. / ((div A)V5,) T da.
T

From the Cauchy-Schwarz inequality combined with 1 < (2=(m=*)1/27~1  we estimate the
latter term as follows

LX(T)

_ / ((div A)VBL) By dz < [ V5|22 [T
T

kN 1/2 5 ~
< (2 ( k)) / hml ||V7Jk||L2(T)HW,Z||L2(T)'

(4.114)

Hence, § only remains to estimate the second summand of (4.112). We define T,,, :=
U{K € Tm : KNOT # fZ]}, cf. Figure 4.1. It then holds that suppv,,1 C 7,, and

| Lo | ~ ﬁg*%m Again, using the Cauchy—Schwarz inequality, we see that
/ AV@\/@ . V@\m’l dr = AV@\/@ . V@\m,] dx
T T (4.115)
S IVl L2 IVUmall L2(1,0)-
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4.7 AFEM for linear elliptic PDE with optimal PCG solver

Figure 4.1; Illustration of the set Ty, = U{K = "?m KnaT #+ ﬂ} from the proof of

Lemma 38: The outer triangle (solid lines, pink) represents the element T' € "ﬁc,
while the inner triangles (dashed lines) correspond to all elements K € T such
that T'C K. Then, the set T, is the outer cyan area.

Since U € Ay, we know that VU is constant on K. This yields that

- i 1/2
IVlkagry = o 1Vl

(1.83) hd i 4.116
= (g B ) 2 7 ekt
_ k
(1.82) (2—(m—k))1f'2 "V@k"L?-_(_T.}-
The remaining term ||V0m,1||L2(r,) is estimated by an inverse estimate
IVt [l L2 (1) S B (Bt |2y < P 12,2 ]| 227y- (4.117)

Combining (1.112)-(4.117), we finally get that
[ AVOL- e, a5 (2 9) R (Vo ey

This concludes the proof.

D_
Now, we are able to prove the following strenghtened Cauchy-Schwarz inequality.
Lemma 39. For all 0 <k <m < M, it holds that
(B, Qrm®e) < C (2 V2™ Gl Dkl for all B @r € i, (4.118)

where C > 0 depends only on 0, the initial triangulation To, ||A||co, and v-shape regularity.
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

Proof. The proof is split into three steps.
Step 1: Define ¢ := 27/2 and let z € A} with 0 < k < m = levely(z). Then, Lemma 38,
the Cauchy—Schwarz inequality, and the Friedrichs inequality yield that

By mez) = > / AV - Vi, do
KeTs, K
(4.111) R
SR Y IV 2 176,
KeTi

< g Rl VB ey e 2

L2(K)

—ET—1 e~
~q" h’ml "lvk ”’ H77€,Z||L2(wg(z))
k-1~ .
< ¢ oy 10kl diamm(we(2)) [[V776,2 | 22 2))

~ " e Gkl o 76,2

—k n-~
= ¢" " okl e,z NI

Summing up, we have that

@ s me.2) S d™F Tl ezl for all 2 € N with k < m = levely(2) |, (4.119)

where the hidden constant depends only on 7y and A.
Step 2: Next, we show that

L
S WPl < Nk, (4.120)
£=0 ZG./V@
levely(z)=m

where the hidden constant depends only on 7y and v-shape regularity. The representa-
tion (4.99), the Cauchy—Schwarz inequality, and Lemma 34(iii) yield that

o (499 |{ Wk, Mo,z )]
Pe k|l =" =———
(|

< @l 2
T g o
Recall the set Ky (z) from (4.80)
Ki(z) = {te{0,1,...,L} : » € Ny and levely(z) = k}.

From Lemma, 31, we know that supcy, #Ki(2) < O(Tp) < oo for all z € Ny with a constant
C(7o0) > 0 depending only on the initial mesh 7. Hence, from the last inequality and shape
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4.7 AFEM for linear elliptic PDE with optimal PCG solver

regularity of the mesh 7,,, it follows that

L
S>> Pl = > D Pkl

=0 e, 2ENT Wiy £€K m (2)

levely(z)=m
< D l@kllon e
z€NL Ao feﬁm(z)
(4.81)
S Y Naklley
Zeﬁm
=~ ||wel-

Step 3: Since Py .wy, € Xy . = span{ny .}, there exists Ay, € R such that Py W = A .70 -
Based on the previous steps, the definition of Qy, ,, shows that

L
(@, Qrmie) “20ST ST (@, P

=0 LeN,
levely(z)=m

L

- Z ’)\£1Z| <<i)\k ’ né,z»
£=0 2eN,
levelg(z):m

(4.119) . L
SO YD YD Pl el

£=0 ZGJ\Nfe
levely(z)=m

L
="M Y D 1Pl

£=0 ZG./\N/’e
levely(z)=m

(4.120) .
S " vkl @l

This concludes the proof. O

Remark 40. Due to the self-adjoininess of the orthogonal projections P, ., we know that
(Qrm-, ) is a symmetric bilinear form on Xj, for k < m. By definition (4.110) of Qr m,
it holds that

L L
(Qrmv, v) = Z Z (Pe v, v) = Z Z IPe-v]|> >0 forallvc X

£=0 ZG./\N/Z =0 ZG./\NQ
level,(z)=m levely(z)=m

Hence, (QL-.-) is even positive semi-definite. As a consequence, there holds the Cauchy-
Schwarz inequality

(Qrmv, w) < (Qrmv, v)*(Qpmw, wh/?  for all v,w € Xy (4.121)
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

4.7.6 Proof of upper bound in Proposition 36

First, we define the Galerkin projection Gy, : H" Q) — X,,, with respect to the scalar product

(-, ) via
(Gmv, W) = (v, @Wn) for all @y, € Xpp,.

With (j_l := 0, we can rewrite gmv as a telescoping sum, i.e., Q’Tm = Z‘:O(@c — @k_l). Let
v e X C )?M. It holds that C?Mv = 0.

Since Qr v € P?M, cf. Lemma 32, the representation (4.110), the symmetry of (-, -},
and the Cauchy—Schwarz inequality (4.121) yield that

M

(Qrv, v) = ) (Qrmv,v)

(]

3
3
Il
o

(Qrmv, Guv)

-

3
3
Il
o

> (QLmv s (G — Ge-1)v)

o

3
S
Il
o
e
i
o

(Ormv, ¥)Y? (Qrm(Gr — Ge_1)v, (Gk — Gr_1)v)*/2.

-
NE

3
]
[
_
|
(=)

Next, we use the strenghtened Cauchy—Schwarz inequality (4.118) with (g} — §k_1)v € /\A,’k
and get that

M m
Z Z<<QL,mU, U>>1/2 <<QL,m(§k o é\k—l)v, (é\k . gk_l)v>>1/2
m=0 k=0
(4.118) M m i o
<0 2 IO v, ) NG~ Gl
m=0 k=0
M m , R ~ |
=C Z Z g (m=B/ (Qrmv, ’0»1/2 ((Gk — Gk—1)v, v>>1/2,
m=0 k=0

where C' > 0 is the constant from the strenghtened Cauchy—Schwarz inequality. With § > 0,
which will be fixed later, we use the following variant of the Young inequality

0 5 51 9
ab§§a —|—7b for all a,b € R.
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4.7 AFEM for linear elliptic PDE with optimal PCG solver

We get that

M m
C 332Gy, ) (G — Ger)v, )

m=0 k=0
M m
<C ZZQ m—k)/ (Qrmv, v)
m=0 k=0
ro 3 Sz G Gy,

m=0 k=0

The inner sum over k of the first double sum can be bounded by Y j-, 2 (m—k)/4

D ore02” k/4 —. K < co. Together with changing the summation order in the second sum,
we see that

M m
(Quv, vy <0 >0 D2 B2 (0r )

m=0 k=0

M m 5_ R R
C Y D> 2R (G — Geo1)v, v)

m=0 k=0
5 M
< CK§ mZ_O«QL,mUv U>>
51 MM R
TZZ (m=k)/4 (Gt — Ge—1)v, v)
k=0 m=k
5 M UM
<CK B Z (Qrmv, v) +CK - Z ((Gr — Gr—1)v, v)
m=0 k=0
5 -1 L
=CK o (Quv, v) + O K — <<;<gk ~Gr-1)v, v)

-1
= CK% (Qrv, v) + CK(ST (v, v).

Let 6 < 2(C K)~!. Then, it holds that

5\ —1 51
(Qrv,v) < (1-CK E) lC’KT((U v)
0 .
=(1-CK ) CK—W [
Hence, there holds the upper bound in (4.102). O
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4.7.7 Numerical experiments

In this section, we provide numerical experiments that underpin the theoretical findings of
Section 4.6, where we employ H'-conforming lowest-order FEM in 2D. For ease of notation,
we define \ := A, for this section. We present an example for AFEM with optimal PCG
solver, cf. Section 4.7, and compare the performance of Algorithm 15 for

e different geometries, i.e., the domain Q C R? is either the Z-shaped domain or the
L—shaped domain, cf. Figure 4.2,

e different values of A € {1,107%% 1071 ... 1074},
e different values of 6 € {0.05,0.1,0.15,...,1},

where # = 1 corresponds to uniform mesh-refinement.
We consider the following Poisson problem with homogeneous Dirichlet boundary conditions

—Au*=1 1in Q,

4.122
v =0 onlI:=0Q, ( )
for both geometries from Figure 4.2. As preconditioner for the PCG solver, we use the

multilevel additive Schwarz preconditioner of Section 4.7.1 which is optimal, cf. Theorem 30.

Poisson problem (4.122) on Z-shaped domain

In Figure 4.3, we compare Algorithm 15 for different values of # and A, and uniform mesh-
refinement on the Z-shaped domain, cf. Figure 4.2. To this end, the error estimator U@(U%)
of the last step of the PCG solver is plotted over the number of elements. Recall that
W(u%) o~ A% according to Proposition 16. We see that uniform mesh-refinement leads
to the suboptimal rate of convergence O(N~%/7), while Algorithm 15 regains the optimal
rate of convergence O(N~/2). This empirically confirms Theorem 23. The latter rate of
convergence appears to be even robust with respect to # € {0.1,0.3,...,0.9} as well as
A€ {1,1071,... 1074}

In Figure 4.4, we aim to underpin that Algorithm 15 has the optimal rate of convergence
with respect to the computational complexity. To this end, we plot the error estimator
W(u%) of the last step of the PCG solver over the cumulative sum -y 1)< (4 ) #7¢- In ac-

cordance with Theorem 23, we observe again the optimal order O (( Z(/c”, k)< (k) #T/) - 2).
In Figure 4.5, we take a look at the number of PCG iterations. We observe that a larger
value of A or a smaller value of # lead to a smaller number of PCG iterations. Nonetheless,
in each case, this number stays uniformly bounded.
Summing up so far, we see

e that Algorithm 15 appears to be robust with respect to the choice of # and A, cf. Fig-
ure 4.3,

e that a larger value of X leads to less computational cost and a smaller value of 6 leads
to higher computational cost, cf. Figure 4.4, and,
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Z-shaped domain

10!

)

10°

k
£

10

1072

error estimator 7, (u

16

~o—-1mif, A=1

~<--unif., A=10"1
~v-unif., A =102
-+~ ynif., A =102
—g- unif, A=10"*

o A=05 A=1

—+—0 =05 =10"
—~+—80 =05 A=10"2
——0 =05 1=10"? =
—w—f =15, XA =102 O(N—/2) ~~

10! 102 102 104 10° 106 107 108
number of elements N

10°

5

10—

1072

error estimator (u

Figure 4.3:
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—o—0 =01, A=10"2
—+-0=03,A=10""2
—~v—80=051=10"2
——0 =07, A =102

—#—0 =09, A=10"" .
-5 unif., A= 10~2 O(N—1/2) >~

101 102 103 104 10° 106 107 108
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Example from Section 1.7.7 (Poisson problem on Z-shaped domain): Error es-
timator ng(u%) of the last step of the PCG solver with respect to the number of
elements N of the mesh T for § = 0.5 and A € {1,107%,...,1074} (top) as well
as for A =102 and § € {0.1,0.3,...,0.9} (bottom).
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4.7 AFEM for linear elliptic PDE with optimal PCG solver

Z-shaped domain
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Figure 4.4: Example from Section 4.7.7 (Poisson problem on Z-shaped domain): Error esti-

mator ‘r;fg(u%) of the last step of the PCG solver with respect to the overall compu-
tational cost expressed as the cumulative sum z(g_r,k;)é(g@ #Te for § = 0.5 and
Ae{1,1071,...,107%} (top) as well as for A=10"2 and @ € {0.1,0.3,...,0.9}
(bottom).
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Figure 4.5: Example from Section 1.7.7 (Poisson problem on Z-shaped domain): Number
of PCG iterations with respect to the number of elements N for 8 = 0.5 and
A€ {1,107%,...,107} (top) as well as for A=10"2 and 6 € {0.1,0.3,...,0.9}
(bottom).
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7=10"2, A € {1,107, ..., 107}, and 0 € {0.05,0.1,...,0.95}.
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

e that a larger value of X\ as well as a smaller value of § lead to fewer PCG iterations,
cf. Figure 4.5.

Hence, the question arises, how to choose # and A in order to mimize the overall computa-
tional cost to reach a given bound 7 > 0 for the error estimator, i.e., such that m(uf) <T.
In Figure 4.6, we compare the computational cost to reach the precision 7 = 102 for
A€ {1,107%5,...,107*} and 6 € {0.05,0.1,...,0.95}. As a result, we get that the best
choice is A = 1079 and 6 = 0.7. For the overall computational cost it then holds that

Z HT = 4034040,

(¢ ,k")<(LE)

where u% is the first approximation such that ng(u%) <1072

Poisson problem (4.122) on L-shaped domain

In Figure 4.7, we compare Algorithm 15 for different values of # and A, and uniform mesh-
refinement on the L-shaped domain, cf. Figure 4.2. To this end, the error estimator U@(U%)
of the last step of the PCG solver is plotted over the number of elements. Recall that
7’]@(’&%) o~ A% according to Proposition 16. We see that uniform mesh-refinement leads to
the suboptimal rate of convergence O(N ~1/3), while Algorithm 15 regains the optimal rate
of convergence O(N -1/ 2). Again, this empirically confirms Theorem 23. The latter rate
of convergence appears to be even robust with respect to # € {0.1,0.3,...,0.9} as well as
Ae{1,1071,..., 1074}

In Figure 4.8, the error estimator m(u%) of the last step of the PCG solver is plotted over
the cumulative sum Z(/g/, k)< (6.k) #7Ty. In accordance with Theorem 23, we observe again

the optimal order O(( Y wry< (i #7¢) 7).

In Figure 4.9, we take a look at the number of PCG iterations. We observe that a larger
value of X or a smaller value of # lead to a smaller number of PCG iterations. Nonetheless,
in each case, this number stays uniformly bounded.

As for the Z-shaped domain, we see

e that Algorithm 15 appears to be robust with respect to the choice of # and A, cf. Fig-
ure 4.3,

e that a larger value of X leads to less computational cost and a smaller value of 6 leads
to higher computational cost, cf. Figure 4.4, and,

e that a larger value of A as well as a smaller value of 8 lead to fewer PCG iterations,
cf. Figure 4.5.

In Figure 4.10, we compare the computational cost to reach the precision 7 = 1072 for
A€ {1,107%5,...,107*} and 6 € {0.05,0.1,...,0.95}. As a result, we get that the best
choice is A = 1079 and 6 = 0.8. For the overall computational cost it then holds that

N #Te = 2832761,
(@ k)< (k)

where u% is the first approximation such that 7, (u%) <1072
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Example from Section 1.7.7 (Poisson problem on L-shaped domain): Error es-

timator ng(u%) of the last step of the PCG solver with respect to the number of
elements IV of the mesh Ty for # = 0.5 and A € {1, ... 10_4} (top) as well
as for A=10"2 and 0 € {0.1,0.3,...,0.9} (bottom).
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4 Adaptive FEM for second-order elliptic systems of partial differential equations
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Example from Section 1.7.7 (Poisson problem on L-shaped domain): Error esti-
mator ?}'g(H%) of the last step of the PCG solver with respect to the overall compu-
tational cost expressed as the cumulative sum Z(f’,k’)g(f,&) #Tp for # = 0.5 and
A€ {1,107%,...,107%} (top) as well as for A =10"2 and 6 € {0.1,0.3,...,0.9}
(bottom).
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4.7 AFEM for linear elliptic PDE with optimal PCG solver
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Figure 4.9: Example from Section 4.7.7 (Poisson problem on L-shaped domain): Number

of PCG iterations with respect to the number of elements N for 8 = 0.5 and
A€ {1,107%,...,1074} (top) as well as for A=10"2 and 0 € {0.1,0.3,...,0.9}
(bottom).
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4 Adaptive FEM for second-order elliptic systems of partial differential equations
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Figure 4.10: Example from Section 4.7.7 (Poisson problem on L-shaped domain): Overall
computational cost s < (g ) # T such that m(u%) < 7 for given precision
=102, A€ {1,107%5 ..., 107*}, and 6 € {0.05,0.1,...,0.95}.
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4.8 AFEM for quasi-linear elliptic PDE with strongly monotone nonlinearity

4.8 AFEM for quasi-linear elliptic PDE with strongly
monotone nonlinearity

The second setting which we introduce in this chapter and which fits into the abstract
framework of Section 4.2-Section 4.6 is AFEM for a boundary value problem with a strongly
monotone nonlinearity.

Model problem

We consider the following boundary value problem

—div (u(z, [Vu*(2) ) Vu*(2)) = f(x) in Q,
u(z) =0 on I'p, (4.123)
pla, |Vu*(2)]?) Opu*(z) = g(x)  on Ty,

where Q C R? is a bounded Lipschitz domain with d € {2,3} and polytopal boundary
I = 99, and given f € L%(Q), g € L*(T) as well as a scalar nonlinearity p:  x R>g —
R. Let the boundary I" be split into relatively open and disjoint Dirichlet and Neumann
boundaries I'p, I'y such that [I'p| > 0and I' = TpUT n. The scalar nonlinea,}:ity 1 satisfies
the following properties (N1)—(N4) with generic constants v1,7v2,71, %2, Ly, L, > 0, which
have already been considered in [GMZ12, GHPS18]:

(N1) boundedness of p(x,t): There exist constants v1,v2 > 0 such that

v < p(z,t) <7y forall z e Qandt>0.

(N2) boundedness of p(x,t) + 2t%p,(:c,t): For z € Q, the function p(z,-) is con-
tinuously differentiable, i.e., u(z,-) € C'(R>q,R) and there exist constants 71,732 > 0
such that

~ d -
Y1 < plx,t) + 2ta,u(:z?,t) <7y forallz e Qandt>0.

(N3) Lipschitz-continuity of p(«x,t) in x: There exists a constant L, > 0 such that

ln(z,t) — p(y,t)| < Lylz —y| forall z,y € Qand t > 0.

(N4) Lipschitz-continuity of t%u(x,t) in x: There exists a constant Zu > 0 such
that

|t%u(m,t) - t%u(y,tﬂ < Z,,,]sc —y| foralz,yeQandt>0.
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

Weak formulation

The weak formulation of (4.123) reads as follows: Find v € H}(Q) := {w € HY(Q) : w =
0 on I'p} such that

/ w(z, |Vu*(x)]?) Vu* - Vodz = / fvdz —I—/ gvds for all v € H},(Q). (4.124)
Q Q r

N

With respect to the abstract framework of Section 4.2, we take H = H},(Q), K = R,
and (-, -) = (V-, V-) with corresponding norm ||v|| = [[Vv[|z2(q). We obtain (4.7) with
operators

(Aw, v)rwy = /Qp(x, |Vw(z)|*) Vw(z) - Vou(z) d, (4.125a)
F(v) = /va dz +/F gvds (4.125D)

for all v,w € H. We recall from [GHPS18, Proposition 8.2] that (N1)—(N2) implies that
A is strongly monotone (with « := 7;) and Lipschitz continuous (with L := 7,), and
that there exists a potential P: H}(2) — R, i.e., there hold (O1)-(03) with a = 7; and
L = 5. The assumptions (N3)—(N4) are required to prove the well-posedness and the
properties (A1)—(A4) of the residual a posteriori error estimator.

Triangulation and mesh-refinement

Let 7o be a conforming initial triangulation of €2 into simplices 7" € Ty. As the refinement
strategy refine(-), we employ newest vertex bisection such that the axioms (R1)—(R3) are
fulfilled, cf. Section 3.6.

Discretization
For T; € T, we consider the lowest-order FEM space

Xp={veC@) :vlr e PHT) forall T € T;} N HH(Q), (4.126)

i.e., the space of all continuous piecewise affine functions that vanish on the boundary
I'=09Q.

Error estimator

For all elements T' € T; and discrete functions vy € X, we define the weighted-residual error
indicators, cf., e.g., [GMZ12, GHPS18]) via

(T, v0)% =T | £+ div (u(-, Vol D) Vo) 2y + 1T 1, [Vvel*) Ve - 0|l 2 arm0)
TV g — (-, |[Vvel*) Vo -1

L2(ATNIx ) (4.127)

where [-] denotes the usual jump of piecewise continuous functions across element interfaces,
and n is the outer normal vector of the considered element. Due to assumption (N3) on the
nonlinearity u(-,-), the presented error indicators are well-defined.
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4.8 AFEM for quasi-linear elliptic PDE with strongly monotone nonlinearity

While reliability (A3) and discrete reliability (A4) are proved as in the linear case; cf.,
e.g., [CKNS08] for the linear case and [GMZ12, Theorem 3.3 and 3.4] for the present non-
linear setting, the verification of stability (A1) and reduction (A2) requires the validity of
an appropriate inverse estimate. For scalar nonlinearities and under the assumptions (N1)—
(N4), the latter is proved in [GMZ12, Lemma 3.7]. Using this inverse estimate, the proof
of (A1)—(A2) follows as for the linear case, cf., e.g., [CKNS08] for the linear case or [GMZ12,
Section 3.3] for scalar nonlinearities.

Zarantonello iteration

Since the nonlinear system (4.8) can hardly be solved exactly, we use the Zarantonello
iteration, also called Banach—Picard iteration, as iteration function ®,: X, — X} for Step (i)
of Algorithm 15: Recall that the Riesz mapping I;: H — H', Iyw — (-, w) is an isometric
isomorphism, cf. [Yos80, Chapter IIL.6] and let I,;: Xy — X, I;ug — (-, v¢) denote the
discrete Riesz operator. Additionally, let A;: Xy — A7) and F;: X; — R be the restrictions
of A and F respectively to the discrete space Xy. Then, define

— 2 Y (A — Fy). (4.128)

72
Given u’g € X, we thus compute the discrete iterate uf“ = @g(u’g) as follows:

(I)g: Xg — Xg, Vp = Uy

(i) Solve the linear system (vy, we) = (Aul — F, vg)3 3 for all vy € Xj.
(ii) Define ulfrl = ub — Tz Wy-

In explicit terms, the computation of one step of the iteration requires only the solution of
one (discretized) Poisson equation with homogeneous Dirichlet data. Then, ®, satisfies the
norm contraction (C2) with ¢%, = 1 — a?/L?, cf., e.g., [GHPS18, Section 3.2] and it holds
that

. (4.9) T, . 9
E(@e(vr) = E(wq) = 5 flug — Telvo)|
(€c2) 1, N
< 5 el — vl
(4.9) T,

< > Gor (E(ve) — E(u})).

In this case, the additional validity of (C1) with the modified constant
an additional condition on L/« involving the golden ratio, namely

L, L « L 145
— =——=<1 = =<
qlr =5 T o 2

Moreover, with the same arguments, (C1) guarantees that

L

[0

qgtr follows from

0< ~ 1.618. (4.129)

L .
llui — @e(wo)ll* < > Qe g — vell.

Hence, the condition (4.129) even yields equivalence of (C1) and (C2) (but with different
contraction constants g, )-

Altogether, the present setting fits into the abstract framework of Section 4.2 and the
main results from Section 4.6 apply to it.
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

4.8.1 Numerical experiments

In this section, we provide numerical experiments that again underpin the theoretical find-
ings of Section 4.6. For ease of notation, we define A\ := Ay, for this section. We present
two examples for AFEM for strongly monotone nonlinearities, cf. Section 4.8, one with
homogeneous Dirichlet boundary conditions on the L-shaped domain and the second with
mixed boundary conditions on the Z-shaped domain, cf. Figure 4.11 where the Dirichlet
boundary I'p is marked by a thick pink line. We compare the performance of Algorithm 15
for

e different values of A € {1,107%% 1071 ... 1074},
e different values of 6 € {0.05,0.1,0.15,...,1},

where # = 1 corresponds to uniform mesh-refinement.

Homogeneous problem on L-shaped domain

We consider the boundary value problem

—div (u(-, |[Vu*[))Vu*) =1 in Q,

4.130
uw=0 onT, ( )
where the scalar nonlinearity p: 2 x R>¢ — R is defined by
A In(1 + |Vu*]?
plz, [Vur]?) =1+ M (4.131)

1+ |Vur|?

Then, (N1)—(N4) hold with o = 7; &~ 0.9582898017 and L = 7, ~ 1.542343818.

In Figure 4.12, we compare Algorithm 15 for different values of # and A, and uniform
mesh-refinement. To this end, the error estimator m(uf) of the last step of the Zarantonello
iteration is plotted over the number of elements. We see that uniform mesh-refinement leads
to the suboptimal rate of convergence O(N~1/3) for the L-shaped domain. Algorithm 15
regains the optimal rate of convergence O(N~'/2), independently of the actual choice of § €
{0.1,0.3,...,0.9} and X € {1,107%,...,107%}. Since m(uf) ~ Af, this again empirically
confirms Theorem 23.

In Figure 4.13, we plot the estimator 775(1t§) of the last step of the Zarantonello iteration
over the cumulative sum Z((&/, K< (Ck) #7To. As predicted in Theorem 23, we observe that

Algorithm 15 regains the optimal order of convergence O(( Xy jy<(rp) #7}1)71/ 2) with
respect to the computational complexity. The rate seems to be independent of the values
of Aor 6.

In Figure 4.14, we take a look at the number of Zarantonello iterations. Similarly to
the number of PCG iterations in Figure 4.5 and Figure 4.9, we observe that that a larger
value of A\ or a smaller value of 6 lead to less iterations, while the number stays uniformly
bounded in each case.

In Figure 4.15, we compare the computational cost to reach the precision 7 = 102 for
A€ {1,107%5, ... 107} and 6 € {0.05,0.1,...,0.95}. As a result, we get that the best
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Figure 4.12; Example from Section 1.5.1 (Homogeneous problem on L-shaped domain):

88

Error estimator ng(u%) of the last step of the Zarantonello iteration with
respect to the number of elements N of the mesh 7; for @ = 0.5 and
A€ {1,107%,...,107%} (top) as well asfor A = 10~2 and 6 € {0.1,0.3,...,0.9}
(bottom).
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L—shaped domain
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Figure 4.13: Example from Section 1.8.1 (Homogeneous problemn on L-gshaped domain):

Error estimator ﬂg{ﬂ%) of the last step of the Zarantonello iteration with
respect to the overall computational cost expressed as the cumulative sum
Y wy<iep #Te for § =05 and A € {1,107,...,10%} (top) as well as for
A=10"2and 0 € {0.1,0.3,...,0.9} (bottom).
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L—shaped domain
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number of elements N

Example from Section 1.8.1 (Homogeneous problem on L-shaped domain):
Number of Zarantonello iterations with respect to the number of elements
N for @ = 0.5 and A € {1,107%,...,10~*} (top) as well as for A = 102 and
6 € {0.1,0.3,...,0.9} (bottom).
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Figure 4.15: Example from Section 4.8.1 (Homogeneous problem on L-shaped domain):
Overall computational cost > < (s ) #7T¢ such that ng(uf) < 7 for given

precision 7 = 1072, A € {1,107%%,...,107*}, and 0 € {0.05,0.1,...,0.95}.
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

choice is A = 1 and € = 0.75. For the overall computational cost it then holds that

Z #Tp = 1531423,
(€ k) <(C.k)

where u% is the first approximation such that 77[(”[1%) <1072

Experiment with known solution on Z-shaped domain

We consider the Z-shaped domain © C R? from Figure 4.11 (top) and the boundary value
problem (4.123)

—div (u(z, [Vu* (2)*)Vu'(z) = f(z)  inQ,
* 0 on FD;
w(z, [Vu*(2)]?) Onu*(z) = g(x) on I'y,

where the scalar nonlinearity p: € X R>o — R is defined by

1
1+¢

p(z,t):=1+ (4.132)

;

This leads to (N1)—(N4) with « =74; =2 and L = 72 = 3.
We prescribe the solution u* in polar coordinates (z,y) = r(cos ¢, sin ¢) with ¢ € (—m, 7)
by

u*(z,y) = r’ cos(8 ¢), (4.133)

where 3 = 4/7 and compute f and ¢ in (4.123) accordingly. We note that «* has a generic
singularity at the re-entrant corner (z,y) = (0,0).

In Figure 4.16, we compare Algorithm 15 for different values of § and A, and uniform
mesh-refinement. To this end, the error estimator m(u%) of the last step of the Zarantonello
iteration is plotted over the number of elements. We see that uniform mesh-refinement leads
to the suboptimal rate of convergence O(N~2/7) for the Z-shaped domain. Algorithm 15
regains the optimal rate of convergence O(N ~1/2), independently of the actual choice of
6 ¢ {0.1,0.3,...,0.9} and X\ € {1,1071,...,107*}. Since m(u%) ~ A%, this once again
empirically underpins Theorem 23.

In Figure 4.17, we plot the estimator m(u%) of the last step of the Zarantonello iteration
over the cumulative sum Z(é", KY<(0.k) #Ty. As predicted in Theorem 23, we observe that

Algorithm 15 regains the optimal order of convergence O((3( 1)<(r) #7}/)_1/ 2) with
respect to the computational complexity, while the rate seems to be independent of the
values of A or 6.

In Figure 4.18, we take a look at the number of Zarantonello iterations. As in Figure 4.14,
we observe that that a larger value of A or a smaller value of 8 lead to less iterations, while
the number stays uniformly bounded in each case.
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Figure 4.16: Example from Section 1.%.1 (Experiment with known solution on Z-shaped

domain): Error estimator ’.';.'g(u%) of the last step of the Zarantonello iteration
with respect to the number of elements N of the mesh 7p for 8 = 0.5 and
A€ {1,107%,...,1074} (top) as well as for A = 1072 and @ € {0.1,0.3,...,0.9}
(bottom).
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Z-shaped domain
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Figure 4.17: Example from Section 1.8.1 (Experiment with known solution on Z-shaped

domain): Error estimator m;(u%) of the last step of the Zarantonello iteration
with respect to the overall computational cost expressed as the cumulative sum
2 w)<(en) FTe for § = 0.5 and A € {1,10-1,...,10~4} (top) as well as for
A=10"2and 0 € {0.1,0.3,...,0.9} (bottorn).
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Figure 4.18: Example from Section 1.8.1 (Experiment with known solution on Z-shaped
domain): Number of Zarantonello iterations with respect to the number of
elements N for @ = 0.5and A € {1,107%,...,104} (top) as well as for A = 102
and 6 € {0.1,0.3,...,0.9} (bottom).
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Figure 4.19: Example from Section 4.8.1 (Experiment with known solution on Z-shaped
domain): Overall computational cost Do ()< (e.k) # T such that ng(uf) <
7 for given precision 7 = 3 - 1072, A € {1,107%% ...,107%}, and 6 <
{0.05,0.1,...,0.95}.
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4.8 AFEM for quasi-linear elliptic PDE with strongly monotone nonlinearity

In Figure 4.19, we compare the computational cost to reach the precision 7 = 3 - 102
for A € {1,10792,...,107*} and @ € {0.05,0.1,...,0.95}. As a result, we get that the best
choice is A = 1 and # = 0.75. For the overall computational cost it then holds that

Z Ty = 5439636,

(¢ k") <(L.E)

where u% is the first approximation such that ng(u%) <3-1072
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5 Fully adaptive algorithm for AFEM for
nonlinear operators

5.1 Introduction

In Chapter 4, we considered adaptive finite element methods for second-order elliptic PDEs
where the arising discrete systems are not solved exactly. We showed that both AFEM for
linear elliptic PDEs in combination with an optimal PCG solver for the Galerkin system,
cf. Section 4.7, as well as AFEM for certain nonlinear elliptic PDEs in combination with
the Zarantonello iteration, cf. Section 4.8, fit in the abstract framework of Algorithm 15.
The idea of this chapter, which is based on [HPSV21], is to combine these two settings into
one fully adaptive algorithm.

Let Q ¢ R? with d > 1 be a bounded Lipschitz domain with polytopal boundary. Given
f € L*(Q) and a nonlinear operator A: R? — RY, we then aim to numerically approximate
the weak solution u* € IH}(2) of the nonlinear boundary value problem

—div A(Vu*) = f in Q,
uw* =0 on 99Q.

To this end, we propose an adaptive algorithm of the type

‘ estimate total error and its components
\ (5.2)

advance algebra/advance linearization/mark and refine mesh elements

which monitors and adequately stops the iterative linearization and the linear algebraic
solver as well as steers the local mesh-refinement. The goal of this chapter is to perform a
rigorous mathematical analysis of this algorithm in terms of convergence and quasi-optimal
computational cost.

5.1.1 Finite element approximation and Banach—Picard iteration

Suppose that the nonlinearity A in (5.1) is Lipschitz-continuous (with constant L > 0)
and strongly monotone (with constant o > 0), see Section 5.2 for details. Then, the
main theorem on monotone operators yields the existence and uniqueness of the weak
solution u* € H{(Q), see, e.g., [Zei90, Theorem 25.B]. Given a triangulation 7, of Q,
the lowest-order finite element method (FEM) for problem (5.1) reads as follows: Find
ur € Xy = {v. e C(ﬁ) : ve|r is affine for all T' € T, and v, |90 = O} C Hé(Q) such that

(A(Vu)), Vve)a = (f, ve)o for all ve € X,. (5.3)
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5 Fully adaptive algorithm for AFEM for nonlinear operators

The discrete solution u} € X, again exists and is unique, but (5.3) corresponds to a nonlinear
discrete system which can typically only be solved inezactly.

The most straightforward algorithm for iterative linearization of (5.3) stems from the
proof of the main theorem on monotone operators which is constructive and relies on the
Banach fixed point theorem: Define the (nonlinea.r) operator ®, : Xy — X, by

(VDPq(we), Ve)o = (Vwe , Vel [(A(Vws), Vua)o — (f, vea ] (5.4)

L‘)
for all we,ve € X,. Note that (5.4) corresponds to a discrete Poisson problem and hence
®o(ws) € Xy is well-defined. Then, it holds that

[V (ug — Po(we))l12(02) < gpic ||V (ug — we)

with
gpic = (1 —a?/L})? <1,

see, e.g., [Zei90, Section 25.4]. Based on the contraction ®,, the Banach—Picard iteration
starts from an arbitrary discrete initial guess and applies ®, inductively to generate a se-
quence of discrete functions which hence converge towards u}. Note that the computation
of ®,(wyp) by means of the discrete variational formulation (5.4) corresponds to the so-
lution of a (generically large) linear discrete system with symmetric and positive definite
matrix that does not change during the iterations. As mentioned before, we now suppose
that also (5.4) is solved inezactly by means of a contractive iterative algebraic solver (with
contraction factor ga; < 1), e.g., PCG with optimal preconditioner, see, e.g., [OT14].

5.1.2 Fully adaptive algorithm

In our approach, we compute a sequence of discrete approximations u[ J of u* that have an
index ¢ for the mesh-refinement, an index k for the Banach—Picard linearization iteration,
and an index j for the algebraic solver iteration.

First, we design a stopping criterion for the algebraic solver such that, at linearization
step & — 1 € Ny on the mesh 7;, we stop for some index j € N. At the next linearization
step k € N, the arising linear system reads as follows:

Find uf’* € Xy such that, for all v, € A},

a yi 5.6
(Vul™, Voo = (Vay L, Voge 12 [(A(VU]Z ") Vo — (f vda], (59

! k—1,j
with uniquely defined but not computed exact solution uz T = By(u, %) and computed

iterates u, % that approximate ue Note that (5.6) is a perturbed Banach—Picard iteration

k-
since it starts from the available u, = typlcally not equal to the unavailable uk L,

Second, we design a stopping criterlon for the perturbed Banach-Picard 1terat10n at some
k,
index k, producing a discrete approximation u, ‘7.
Finally, we locally refine the triangulation 7, on the basis of the Dorfler marking criterion

for the local contributions of the residual error estimator 774(11 » ) and, to lower the compu-
tational effort, employ nested iteration in that the continuation on the new triangulation

k
Tes+1 is started with the initial guess ug f L= Uy 2
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5.1 Introduction

5.1.3 State of the art

Solving the linear system (5.6) inexactly gives rise to the so-called “inexact Newton method”,
see, e.g., in [Deudl, EW94] and the references therein. Under appropriate conditions, these
can asymptotically preserve the convergence speed of the “exact” Newton method. However,
these approaches only focus on the finite-dimensional system of nonlinear algebraic equa-
tions of the form (5.3) but do not take into account the continuous problem (5.1), which is
our central issue here.

Solving the nonlinear algebraic systems (5.3) “exactly” (up to machine precision), only
the discretization error is left. Then, convergence and optimal decay rates of the error
|V (u* —ug)||L2(q) with respect to the degrees of freedom of FEM adapting the approxima-
tion space (mesh) were obtained in [Vee02, DK08, BDK12, GMZ12], following the seminal
contributions [D6r96, MNS00, BDD04, Ste07, CKNS08] for linear problems. We also re-
fer to [CFPP14] for a general framework of convergence of adaptive FEM with optimal
convergence rates.

Solving only the linear algebraic systems (5.6) “exactly” but (5.3) inexactly leaves the
discretization and linearization errors. Such a setting has been considered in, e.g., [CS07,
EAEV11], where reliable (guaranteed) and efficient a posteriori error estimates were derived.
Adaptive algorithms aiming at a balance of the linearization and discretization errors were
proposed and their optimal performance was observed numerically, see, e.g., [BDMS15,
BCL15, CW17, HW18]. Later, theoretical proofs of plain convergence (without rates) were
given in [GMZ11, HW20b], where [HW20b] builds on the unified framework of [HW20a)
encompassing also the Kaanov and (damped) Newton linearizations in addition to the
Banach—Picard linearization (5.6).

The works [GHPS18, GHPS21], cf. Chapter 4, considered that the linear systems (5.6) are

solved exactly at linear cost (so that u?’l = uf;’* with j(¢, k) = O(1) in the present notation),
as in the seminal work [Ste07] for the Poisson model problem and in [CG12] for an adaptive
Laplace eigenvalue computation. Under this so-called realistic assumption on the algebraic
solver, [GHPS18] proved that the overall strategy leads to optimal convergence rates with
respect to the number of degrees of freedom as well as to almost optimal convergence rates
with respect to the owverall computational cost. The latter means that, if the total error
converges with rate s > 0 with respect to the degrees of freedom, then, for all £ > 0, it also
converges with rate s — e > 0 with respect to the overall computational cost. The proof
of [GHPS18| was based on proving first that the estimator m(uf’*) for the final Picard
iterates decays with optimal rate s and second that the number of Picard iterates satisfies
E(0) <1+ log[L + ne(ugy) /ne(wy™)). This logarithmic bound then led to the bound s — ¢
for the convergence rate with respect to the overall computational cost.

As shown in Chapter 4, we have improved the latter result in [GHPS21] and proved
optimal computational cost (i.e., ¢ = 0), still relying on the assumption that the discrete
Poisson problem (5.6) is solved exactly at linear cost. The core idea of the new proof follows
ideas from adaptive Uzawa FEM for the Stokes model problem [KS08, DFFGP19]. However,
besides the nonlinearity, the structural difference is that the adaptive Uzawa FEM employs
an outer iteration on the continuous level (i.e., we first linearize and then discretize), while
the approach of [CW17, GHPS18, HW20a, HW20b, GHPS21] is first to discretize and then

to linearize.
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5 Fully adaptive algorithm for AFEM for nonlinear operators

As in the present setting, the “adaptive inexact Newton method” in [EV13] takes into
account all discretization, linearization, and algebraic error components, see also [CPV14,
DPVY15] and [Pol16] for regularizations on coarse meshes ensuring well-posedness of the
discrete systems in Newton-like linearizations. The goal of this chapter is to perform a
rigorous mathematical analysis of such algorithms in terms of convergence and optimal
decay rate of the error with respect to computational cost.

We stress that such results have already been derived for adaptive wavelet discretiza-
tions [CDDO03, Stel4] which provide inherent control of the residual error in terms of the
wavelet coefficients, while the present analysis for standard finite element discretizations
has to rely on the local information of appropriate a posteriori error estimators. Also,
while the present analysis is closely related to that of [GHPS21]|, we stress that both
works [GHPS18, GHPS21] focused only on linearization and discretization, while here, we
also include the innermost algebraic loop into the adaptive algorithm. In particular, the
technical challenges in the present analysis are much more involved than in [GHPS21]| due
to the coupling of the two nested inexact solvers.

5.1.4 Main results and outline

Similarly to Chapter 4, the sequential nature of the fully adaptive algorithm of Section 5.1.2
gives rise to an index set

Q= {({,k,j) € Nj : discrete approximation uIZ’j is computed by the algorithm}

together with an ordering

6k, D < (0K, )] L2 uk is computed earlier than uf, 7",
Our first main result, formulated in Theorem 45 below, proves that the proposed adaptive
strategy is coniractive after some amount of steps and linearly convergent in the sense of

AF < CpglF IR AR for al (6,5, 5)] < (€K, 7)), (5.7)

where Cy, > 1 and 0 < ¢, < 1 are generic constants and Alg’j is an appropriate quasi-error
quantity involving the error ||V (u* — uf’j M z2(q) as well as the error estimator mg(uf'j ).
Second, we prove the optimal error decay rate with respect to the number of degrees of
freedom added with respect to the initial mesh in the sense that

sup (#T¢ — #To + 1)SA§"7 < 00 (5.8)
(Lk,5)eQ
whenever v* is approximable at algebraic rate s > 0, see Theorem 49 below for the details.
Finally, estimate (5.7) appears to be also the key argument to prove our most eminent result,
namely the optimal error decay rate with respect to the owverall compuiational cost of the
fully adaptive algorithm which steers the mesh-refinement, the perturbed Banach—Picard
linearization, and the algebraic solver. In short, this reads

sup ( > #72> A < oo (5:9)
(0K j")EQ L.k, 5)EQ
(LR, NS E 5"
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5.2 Adaptive algorithm

whenever u* is approximable at algebraic rate s > 0; see Theorem 53 below for the details.
We stress that under realistic assumptions the sum in (5.9) is indeed proportional to the
overall computational cost invested into the fully adaptive numerical approximation of (5.1),
if the cost of all procedures like matrix and right-hand-side assembly, one algebraic solver
step, evaluation of the involved a posteriori error estimates, marking, and local adaptive
mesh refinement is proportional to the number of mesh elements in 7; (i.e., the number of
degrees of freedom).

The remainder of this section is organised as follows. In Section 5.2, we introduce the
abstract setting for our algorithm as well as the requirements on mesh-refinement, error
estimator, and algebraic solver, before we state the fully adaptive algorithm in Section 5.2.5.
In Section 5.3, we then state the aforementioned main results, i.e., linear convergence of the
quasi-error in each step of the adaptive algorithm (Section 5.3.4), optimal convergence rates
of the quasi-error with respect to the number of degrees of freedom (Section 5.3.6), as well as
optimal convergence rates of the quasi-error with respect to the overall computational cost
of the fully adaptive algorithm (Section 5.3.7). Finally, numerical experiments in Section 5.4
underline the theoretical findings.

5.2 Adaptive algorithm

In this section, we introduce an abstract setting, in which all our results will be formulated,
define the exact weak and finite elements solutions, introduce our requirements on mesh-
refinement, error estimator, and algebraic solver, state our adaptive algorithm, and present
our main results, including some discussions.

5.2.1 Abstract setting

Let H be a Hilbert space over K € {R, C} with scalar product (-, -), corresponding norm
Il - I, and dual space #’ (with canonical operator norm || -||’). Let the operator A: H — H’
satisfy (O1)—(03) from Section 4.2 with potential P: H — K, i.e., we suppose that the
operator A is strongly monotone and Lipschitz-continuous, i.e.,

allw—v|* <Re(Aw — Av, w — v)rxn  and | Aw — Av|’ < L||lw — || (5.10)
for all v, w € H, where 0 < o < L are generic real constants and P is Gateaux-differentiable
with derivative A := dP: H — H’, i.e., there holds that

Plw+tv) = P(w) for all v,w € H.

(Aw , )y = lim
t—0
teR

Given a linear and continuous functional ' € H’, the main theorem on monotone opera-
tors [Zei90, Section 25.4] yields existence and uniqueness of the solution u* € H of

<AU*, U>”H'><H = F(b) for all v € H. (511)

The result actually holds true for any closed subspace Xy C 7, which also gives rise to a
unique uy € X, such that

(Auy , ve)yrxn = F(ve) for all ve € A. (5.12)
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5 Fully adaptive algorithm for AFEM for nonlinear operators

Finally, with the energy functional £ := Re (P — F), it holds that
@ * |12 * L *12
5 llve — ug|l® < E(ve) — E(uy) < 5 llve — ujf|* for all ve € A, (5.13)

see, e.g., |[GHPS18, Lemma 5.1]. In particular, «* € H is the unique minimizer of the
minimization problem

E(w) = gg?r{l E(v) (5.14)

as well as u} € X} is the unique minimizer of the minimization problem

E(u}) = min E(ve). (5.15)
As in Section 4.2, it follows from (5.10)—(5.12) that the present setting guarantees the
Céa lemma

flw* — uy]| < Ceea || — ve|| for all ve € Xo with Ceea := L/cv. (5.16)

5.2.2 Mesh-refinement

We briefly recall some definitions of the mesh-refinement from Section 3.4. Let 7, be a
conforming simplicial mesh of , i.e., a partition of Q into compact simplices T such that
Urer, T = Q and such that the intersection of two different simplices is either empty or
their common vertex, edge, or face.

We assume that refine(-) is a fixed mesh-refinement strategy, e.g., newest vertex bisec-
tion, cf. Section 3.6.

We write 7, = refine(7,, M,) for the coarsest one-level refinement of 7,, where all
marked elements M, C 7T, have been refined, i.e., Mo C To\To. We write 75 € refine(7,),
if 75 can be obtained by finitely many steps of one-level refinement (with appropriate, yet
arbitrary marked elements in each step). We define T := refine(7) as the set of all meshes
which can be generated from the initial simplicial mesh 7y of €2 by use of refine(-).

Finally, we associate to each T, € T a corresponding finite-dimensional subspace X, ; H,
where we suppose that Xo C X, whenever T,,7; € T with 7 € refine(T,).

For newest vertex bisection, we refer to Section 3.6 for the validity of (R1)—(R3) as well
as Section 3.7 for other refinement strategies.

5.2.3 Error estimator

For each mesh 7, € T, suppose that we can compute refinement indicators

Ne(T,ve) >0 forall T € T, and all v, € A. (5.17)
We denote
N\ 1/2
Ne(Ve, Ve ) := ( Z ne (T, ,U.)z> for all V, C 7T, (5.18)
TEVe
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5.2 Adaptive algorithm

and abbreviate 7, (ve) := 1776 (Ts,vs). Analogously to Section 4.3, we assume the azioms of
adaptivity (A1)—(A4) from [CFPP14] for all 7, € T and all 75 € refine(7,) with generic
constants Cgab, Crel > 0, and 0 < ¢req < 1. We stress that the exact discrete solutions u}
(and u} respectively) in (A3)—(A4) will never be computed but are only auxiliary quantities
for the analysis.

We refer to Section 5.4 below for precise assumptions on the nonlinearity A(-) of prob-
lem (5.1) such that the standard residual error estimator satisfies (A1)—(A4) for lowest-order
Courant finite elements, see also Section 5.4.1-5.4.2.

5.2.4 Algebraic solver

For given linear and continuous functionals G € H’, we consider linear systems of algebraic
equations of the type

(vy, we) = G(we) for all we € X, (5.19)

with unique (but not computed) exact solution v} € AX,. We suppose here that we have at
hand a contractive iterative algebraic solver for problems of the form (5.19). More precisely,
let v € X, be an initial guess and let the solver produce a sequence v € X,, j > 1. Then,
we suppose that there exists a generic constant 0 < g, < 1 such that

o3 — il < quig vy — v 7H|| - for all j > 1. (5.20)
Examples for such solvers are suitably preconditioned conjugate gradients or multigrid, see,
e.g., Olshanskii and Tyrtyshnikov [OT14] and the references therein.
5.2.5 Adaptive algorithm

For the numerical approximation of problem (5.11), we consider an adaptive algorithm which
steers mesh-refinement with index ¢, a (perturbed) contractive Banach—Picard iteration with
index k, and a contractive algebraic solver with index j. On each step (¢, k, j), it yields an
approximation ulg’j € A&y to the unique but unavailable u; € A, on the mesh 7, defined by

(Auy , ve)rrxpy = Fvg) for all vy € A (5.21)

Reporting for the summary of notation to Table 5.1, the algorithm reads as follows:

. " . 0,j
Algorithm 41. Input: Initial mesh Ty and initial guess ug’o = uo‘l € Ay, parameters

0<0<1,0< e <1,0<Apic, and 1 < Ciark, counters £ =k = 5 = 0.
Adaptive loop: Iterate the following steps (1)—(vi): (adaptive mesh-refinement loop)

(i) Repeat the following steps (a)—(c): (linearization loop)

(a) Define ulgﬂ’o = ulz’j and update counters k =k + 1 as well as 7 := 0.

(b) Repeat the following steps (I)—(I11): (algebraic solver loop)
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5 Fully adaptive algorithm for AFEM for nonlinear operators

counter discrete solution
available unavailable
running stopping running stopping exact
mesh 14 4 uf’l uf’] uj from (5.21)
linearization k k f’l ufl ub™ from (5.22)
algebraic solver j J uf’j u?’i

Table 5.1: Counters and discrete solutions in Algorithm 41.

(I) Update counter j := j + 1.
(IT) Consider the problem of finding

u]Z’* € Xy such that, for oll vy € Xy,

1 1) 5.22
(b ) = (uy "L, ug)— <A’; LR ) aren (5.22)

and do one step of the algebraic solver applied to (5.22) starting from u];’j_l,

which yields ulg’J (an approzimation to uf’*

IIT) Compute the local indicators ny(T, uld for all T € 7,.
¢

. k.j kj—1 k.j k.j k 1y
Until JJug? — ug? 7 < Naig [ me(ug?) + flug? — Il (5.23)

(c) Define j := j({, k) :=
Until  [Juy — w2 < Apsome(up D). (5.24)
(ii) Define k := k({) := k.
(iii) If 77@(11;%1) =0, then set £ := { and exit.

(iv) Determine a set My C Ty with up to the multiplicative constant C\arc minimal cardi-
nality such that

977/(% 7 < U/(M/:Uy ). (5.25)

0.4 k,
(v) Generate Tyy1 := refine(Ty, My) and define u,“_1 = u[il = u,;l

(vi) Update counters { :={+ 1, k:=0, and j := 0 and continue with (i).

kg

Output: Sequence of discrete solutions w,™ and corresponding error estimators 77@(uf’j).

Remark 42. Some remarks in order to explain the nature of Algorithm 41:
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5.2 Adaptive algorithm

e The innermost loop, Algorithm /1(i)(b), steers the algebraic solver. Note that the

exact solution u, ki of (5.22) is not computed but only approzimated by the computed
iterates ulz’J . For the linear system (5.22), the contraction assumption (5.20) reads as

ks 7‘ kv k1 j— >
I = ub ) < g ™ — b for all j > 1. (5.26)

Then, the triangle inequality implies that

1= Galg  kx , kj—1 k, k 1
8 Yy — I < Mg — T < (L qatg) g — g (5.27)

alg
1
RI7U| provides a means to estimate the algebraic error

|Huif’* - ulg’j ll. In particular, the approximation uf’ﬂ

Hence, the term |||ulgj —
1s accepled and the algebraic

solver is stopped if the algebraic error estimate |||u§’j k7 Y is, up to the threshold
ay

Aalg, below the estimate on the sum 77@(71[ )—|— |Hué’] —u, —|H of the dzscretzzatzon and

linearization error, see (5.23). Since |||u£ - e oI = |||u€ - ué' —||| the stopping

criterion (5.23) would always terminate the algebraic solver at the first step j = 1 if
Aalg was chosen greater or equal to 1 which motivates the restriction Ay < 1.

The middle loop, Algorithm /1(i), steers the linearization by means of the (perturbed)
Banach—Picard iteration. Lemma // below shows that the term |||u]£C ulg 1’—||| esti-

k,j .
mates the linearization error ||uj — u,~||. Note that, a priori, only the non-perturbed
Banach—-Picard iteration corresponding to the (unavailable) exzact solve of (5.22) yield-

mng U]Z’* would lead to the contraction
kflg .
llwy; — ue I < gpic llup —w, = for all (¢,k,0) € Q with k > 1, (5.28)

where 0 < gpic == (1 — o?/L*)Y? < 1 and Q the index set defined in (5.29). The

approximation u,g.’l 1s accepted and the linearization is stopped if the linearization
k,j k=14, . . o

error estimate |||u£‘l — U, || 4s, up to the threshold Apic, below the discretization

k
error estimate m(ué’l), see (5.24) (here \pic < 1 is not necessary).

Finally, the outermost adaptive loop steers the local adaptive mesh-refinement. To this
end, the Dorfler marking criterion (5.25) from [Dir96] is employed to mark elements

k
T € My for refinement, unless 7yg(uz’l) = 0, in which case Proposition /3 below

k
ensures that the approrimation uz’l coincides with the exact solution u* of (5.11).

In a practical implementation, Algorithm /1 has to be complemented by appropriate
stopping criteria in all of the loops so that the compulation is terminated if ulg"’ e Xy
15 o sufficiently accurate approrimation of u*. This can be done with the help of the
reliable a posteriori error estimates summarized in Proposition 43 below.
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5 Fully adaptive algorithm for AFEM for nonlinear operators

5.2.6 Index set Q for the triple loop

To analyze the asymptotic convergence behavior of Algorithm 41, we define the index set
Q:={(¢,k,j) € N} : index triple (¢, k, 7) is used in Algorithm 41}. (5.29)

Since Algorithm 41 is sequential, the index set Q is naturally ordered. For indices (¢, k, j),

(0K, j") € Q, we write

Uk, 5) < (UK, 7) PN (¢, k,7) appears earlier in Algorithm 41 than (¢, %', j"). (5.30)

With this order, we can define
(0, K, 9)| = #{ (0K, 5") € Q - (¢ K,5) < (6,k,5)},

which is the total step number of Algorithm 41. We make the following definitions, which
are consistent with that of Algorithm 41, and additionally define j(£,0) := 0:

L:=sup{€ €Ny : (£,0,0) € Q} € NgU {00},
k(¢) :==sup{k € Ny : ((,k,0) € Q} € NgU {oo} if (£0,0) € Q,
j k) :==sup{j e Ny : ((,k,j) € Q} e NoU{oo} if (£,k,0)€ Q.
Generically, it holds that £ = oo, i.e., infinitely many steps of mesh-refinement take place.

However, our analysis also covers the cases that either the k-loop (linearization) or the
j-loop (algebraic solver) does not terminate, i.e.,

k(f) =00 if £<o0 resp. j(£,k)=o0 if £< oo and k() < oo,

"y
or that the exact solution w* is hit at Step (iii) of Algorithm 41 (note that ng(uz’l) =0

implies u* = “z by virtue of Proposition 43 below). To abbreviate notation, we make the

following convention: If the mesh index ¢ € Ny is clear from the context, we simply write
k k.j(6,k
k:=k(), e.g., ulz = ué,( ) . Similarly, we simply write j =jl, k), e.g., u, 4. uk’l( ' ).

Note that there in particular holds uy% = w0 = u} for all (¢£,0,0) € Q with ¢ >
1. Hence, these approximate solutions are indexed three times. This is our notational
choice that will not be harmful for what follows. Alternatively, one could only index the
approximate solutions that appear on Step (i)(b)(II) of Algorithm 41.

5.3 Main results

5.3.1 Reliabilty estimates of Algorithm 41

Our first proposition provides computable upper bounds for the energy error |Ju* — k’j || of
the iterates u, k3 of Algorithm 41 at any step (0, k,7) e Q. In particular, we note that the
stopping criteria (5.23)—(5.24) ensure reliability of 7, (ué =) for the final perturbed Banach—

. . k,j
Picard iterates uy
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5.3 Main results

Proposition 43 (Reliability at various stages of Algorithm 41). Suppose (Al)
and (A3). Then, for all ({,k,j) € Q, it holds that

(7Y - b T — g T —
if 0<k<E({) and0<j<j(k),
lla* — )] < Cloy § meug ) + g =y 2 0 < k < k(0) ond j = j(K),  (5.31)
ne(ug ) if k=k(¢) and j=j(tk),
ng_l(uz’_ll) if k=0and?{>0.

The constant C’;el > 0 depends only on C.el, Csiab, Galgs Aalgs GPic, 004 Apic.

The proof ist postponed to Section 5.3.2, because we first need some auxiliary results for
Algorithm 41.
Observations on Algorithm 41

First, we collect some elementary observations on Algorithm 41 in what concerns nested
iteration and stopping criteria. The given initial value of Algorithm 41 reads

80 = u87 = “0 € Xp. (5.32)
If (¢,0,0) € Q with ¢ > 1, then
" k’ j
u,?* = ugo = ugl = u,j_ll € X1 C A, (5.33)

If (4,k,0) € Q, then the initial guess for the algebraic solver reads

ug 0 for £ =0,
A G ifk—0and ¢> 1, (5.34)
u T i k>0,

i.e., the algebraic solver employs nested iteration. The stopping criterion (5.23) of Algo-
rithm 41 guarantees that j(¢, k) > 1 if £ > 0 and, for all (¢, k, j) € Q, it holds that

k.j k 1,5 . .
g = 0 < Aatg [ ™) + g = ] for j = j(e k), (5.35)

. k 1, . .
9 — w70 > N (e () + Juf? — ] for < j(tk),  (5.36)

i.e., the algebraic error estimate |||ue”J k 71| only drops below the discretization plus

linearization error estimate at the stoppmg iteration j = j(¢, k).
The final iterates u, L of the algebraic solver are used to obtain the perturbed Banach-

Picard iterates u?“’l for k > 0, see (5.22). The stopping criterion (5.24) of Algorithm 41
guarantees that k(¢) > 1 and, for all (£, k,j) € Q, it holds that

|||u; g < Apie el i) for k = k(¢), (5.37)

S |
|||71€ = —u, —]H > Apic m( 1) for k < k(0), (5.38)
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5 Fully adaptive algorithm for AFEM for nonlinear operators

kj  k=1j . o
i.e., the linearization error estimate [|u, o u, || only drops below the discretization error
estimate at the stopping iteration k = k(¥).

Contraction of the perturbed Banach—Picard iteration

Assumption (5.20) immediately implies the algebraic solver contraction (5.26) and relia-
bility (5.27) of the algebraic error estimate |||u§] — uf’rlm. Similarly, one step of the

non-perturbed Banach—Picard iteration (5.22) (i.e., with an exact algebraic solve of prob-

lem (5.22) with the datum u?_l’l) leads to contraction (5.28) and consequently to the
reliability

1 —gpi k, k, k=14 k—1,j
g — g < My =y < (L gpic) flup — vy ) (5.39)

1C
k—1,j
of the unavailable linearization error estimate H|u]€H —u, “||. As our first result, we now
show that, for sufficiently small stopping parameters 0 < A.j, in (5.23), we also get that the
perturbed Banach—Picard iteration is a contraction.

Recall that u; € A} is the (unavailable) exact discrete solution given by (5.21), that
e
uf’* € &y is the (unavailable) exact linearization solution given by (5.22), and that u, Tex

is the computed solution for which the algebraic solver is stopped, see (5.23) (and (5.35)—
(5.36) respectively) for the stopping criterion.

Lemma 44. There ezists /\zIg > 0 only depending on q.; and qpic such that

dalg *
qric T+ 15— a1
! e Qalg alg
0< dpic = 1_ Tole I < 1. (540)
1_(Ia,lg alg

Moreover, for all stopping parameters 0 < A\yg < 1 and 0 < Apic from (5.23)—(5.24) such

that 0 < Aaig + Aalg/Apic < )\;lg, it holds thail

k,j k—1,7
s — gl < ghic g —wg 20 for all 1< k < k(0). (5.41)
This also implies that

1—gp, k,j kj o k=l k—1,j
— g — uy =) < = =y T < (L gpie) up — w7 (5.42)
Pic

Proof. Clearly, (5.42) follows from (5.41) by the triangle inequality as in (5.27) and (5.39).
Moreover, (5.40) is obvious for sufficiently small A}, since gpic = (1 — 2/ < 1
from (5.28) and 0 < g1 < 1 is fixed from (5.20). To see (5.41), first note that

k,j k, k, kg
g — g 20 < s — b0+ ™ — g™

(5.28) k—1,5 k k.j
< gpicllui —u, Fl+ I”W’* —up |,
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5.3 Main results

where the first term corresponds to the unperturbed Banach—-Picard iteration (5.22) and
the second to the algebraic error. Second, note that, since 1 < k < k(¢),

ke ki 020 qq ki o kgl
o =2 =
— Qalg
(5:35) g k 1j
< 7 aE )\alg[nf(ug 2) 4 fJu ,g - Il
— Galg
(5:38)  qal k,j k—1,5
< 1 o ()‘alg + )‘alg//\PiC) ”|ue T Uy ll"
— Qalg
qal, k.j k—1,5
<7 —2— (Nalg + Aatg/Apic) [Nluf — u, =l + llug —uy =]
Galg
Combining the latter estimates with the assumption A1z + Aaig/Apic < )\alg, we see that
k,‘ q 1 k la.] q 1 k’ j
g — w, =l < (gpic + == Xag) Nluf — w0+ 2= Ny Mg — w, =l
1 alg 1 alg
If 0 < A, is sufficiently small, it follows for all 1 <k < k(¢) that
. Qalg *
i — bl < 0T Twe Sl gL
(4 ¢ - 1- Qalg * Uy
1- Qalg alg
N k-1,
= qpiclluy — v, -
This concludes the proof. O

5.3.2 Proof of Proposition 43 (reliability estimates)

We are now ready to prove the estimates (5.31).

Proof of Proposition /3. First, let (¢,k,j) € Q with 0 <k <k(¢) and 0 < j < j(¢, k).
Due to stability (A1), reliability (A3), and the contraction properties (5.27) resp. (5.39), it
holds that

lle* = g < M =l + g — g

(A3)
< mewd) + g — |
(A1) . .
k k
S me(uy?) + flug — W 7
k,j k.j
< meug?) + g — g+ g™ = | (5.43)
(5.39) k:—l . & .y
R R (e i N (Tl |
2, s k.7
< () + g — g 2 2 g - uf )
(5.27)
T R I N i |
111



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

5 Fully adaptive algorithm for AFEM for nonlinear operators

This proves (5.31) for the case 0 < k < k(¢) and 0 < j < j(£, k).
If j = j(¢,k), we can improve this estimate using the stopping criterion (5.35) which
yields that

ki kg-1, 039 g kj o k—lj
lwy= == I S meluy ™) + ™ —w, =l (5.44)

Combined with (5.43), this proves (5.31) for j = j(¢, k). If additionally k& = E(¢), the
stopping criterion (5.37) and the previous estimate (5.44) provide that

ki kg1, O g ki k1, O30 g
lg= —w, = I S me(wy ™) 4wy —wy S me(uy ™), (5.45)

which proves (5.31) for this case. Finally, for & = 0, £ > 0 and hence j = j = 0, it directly
follows from nested iteration (5.33) and the previous case k = k(¢ — 1) resp. j = j({ — 1, k)
that

0,0 kJj kJj
et — w9 = e — w1 S e (). (5.46)

This concludes the proof. O

5.3.3 Linear convergence of the quasi-error

The first main theorem states linear convergence in each step of the adaptive algorithm,
i.e., algebraic solver or linearization or mesh-refinement.

Theorem 45 (linear convergence). Suppose (A1)-(A3). Then, there ezist A7), Ay, > 0
such that for arbitrary 0 < 0, Aag, Apic with

0<6<1,

0 <A <1,

0 < Aalg + Aalg/Apic < )\;lg, and,
0< Apic/O < Af’ic:

there exist constants Cyin, > 1 and 0 < qin < 1 such that the quasi-error
kh‘ «-— kh. k7 kh' kh‘
AP =l = g ™ — g ey ), (5.47)

composed of the overall error, the algebraic error, and the error estimator, is linearly con-
vergent in the sense of

A < I (549

for all (LK, 5), (¢ K ,5") € Q with (¢,K,j") > ({,k,j). The constants Cy, and qu, depend
Oﬂly on Crel’ Cstab) Gred, 97 Galg, )\alg} 4Pic, APiC) «a, and L.

Note that A¥7" = A when (¢,k/,j') = (¢,k, ), and then (5.48) holds with equality

K i k,j K k.j
for Ciin = 1. There are other cases where u,” = u,” and where u,” = u;” together
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5.3 Main results

with Ty = Ty, and consequently ng/(ulz,,’j ,) = ng(uf’j ), related to our notational choice for
Q in (5.29) that also indexes nested iterates. The case with ¢ = ¢ arises for instance when
j=1J,J =0,and k' = k + 1, see Step (i)(a) of Algorithm 41. Note, however, that in
such a situation, typically u]g,l’* + ulg’*, and consequently A]g,/’j e Alz’j . A situation where
Alz, 7 Af’j for (¢, k', j") # (¢, k, j) can nevertheless also appear, and is covered in (5.48).

For instance, in the above example, when j = j, ' = 0, ¥ = k + 1, and ¢ = £, and where

kg _  kx kg ks k' % k' .
moreover u,” = u,”" = u} (so that u,” = w,”" = u,™ =wu,” = u}), Algorithm 41 performs

only one step of the algebraic solver on the linearization step k', so that Cyy, = 1/qii, leads
to equality in (5.48) where now |(¢/, k', 7)) — |(£, k, 5)| = 1.

In order to prove Theorem 45, we first introduce an auxiliary adaptive algorithm which
we employ to prove a certain summability property of the quasi-error, before we prove linear
convergence in Section 45.

An auxiliary adaptive algorithm

k
Due to Lemma 44, the iterates u, 4 are contractive in the index k. Consequently, Algo—

rithm 41 fits into the framework of [GHPS18] upon defining u, from [GHPS18] as uy := w, ™~ wd
for the case where k(¢) < oo and j(¢,k) < oo, i.e., both the algebraic and the lineariza-
tion solvers are stopped by (5.23)-(5.24) on the mesh Ti. Note that the assumption
({+n+1,0,0) € Q below ensures this for all meshes 7 with 0 < ¢/ < ¢+ n. Then,
we can rewrite [GHPS18, Lemma 4.9, equation (4.10)] and [GHPS18, Theorem 5.3, equa-
tion (5 5)] in the current setting to conclude two important properties: First, the estimators

k.j
778(“@ =) available at Step (iv) of Algorithm 41 are, up to a constant, equivalent to the esti-
mators 7y (u}) correspondmg to the unavailable exact linearization v} of (5.21). And second,

k,j
the estimators W(W =) are linearly convergent.

Lemma 46 ([GHPS18, Lemma 4.9, Theorem 5.3]). Recall A}, > 0 and 0 < gp;, < 1
from Lemma /4. Define

1— g
Eic = Iic >0
qPiCCstab

and note that it depends only on qpic, qalg, and Cyan- Then, for all 0 < 0, \yyg, Apic with

0<0<1,

0 < Aag <1,

0 < Aalg + Aatg/Apic < Ay, and,
0 < Apic/0 < Apic

and all (£, k,j) € Q with k < co and j < 00, it holds that

k.j
(1 — Apic/Apic) W(ue ) < W(W) (14 Apic/Apic) W(W ) (5.49)
Moreover, there exist Copps > 0 and 0 < goups < 1 such that
k. . ki
7]€+”’(1LZ~|%[L) < Caups Gups (1, l) forall ({+n+1,0,0) € Q. (5.50)
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5 Fully adaptive algorithm for AFEM for nonlinear operators

The constants Caups and qcups depend only on L, «, Crel, Cstab, Gred; Galg, 014 qpic, aS
well as on the adaptivity parameters 0, \.g, and Apic. O

As aresult of Lemma 46 and Proposition 43, we get the following lemma for the quasi-error
of (5.47) on stopping indices k(¢), j(¢, k). Please note that when ¢ < oo, the summation
below only goes to £ — 1, as the arguments rely on (5.50) which needs finite stopping indices
k(¢) and j(¢, k) on each mesh 7;.

Lemma 47. Suppose that 0 < Aajg+ Aalg/Apic < Ay, (from Lemma /4) as well as 0 < 0 <1
and 0 < Apic/0 < \j;. (from Lemma /6). With the convention { —1 = oo if £ = oo, there
holds summability

1 ,
S° A <cAP forall (¢k,j) € Q, (5.51)
=0 +1

where C'> 0 depends Only on L7 «, Crely Cstalm Gred, 6) qalg; qPic, )\algf and )\Pic-

Proof. Define ﬁ = [lu* — u, —||| + qg(u]; =) as the sum of overall error plus error estimator.
In comparison with (5.47), Alg omits the algebraic error term but is only defined for the
algebraic stopping indices j(¢, k). With Proposition 43 and the linear convergence (5.50),
we get that N

. (8:31) -1 ki (9:50) e
Z AP S 3T mlu) < e Ue' Z GGrips S A%
£=041 (=041 =0'+1

Let (¢',k,j) € Q. By definition (5.47), it holds that

Ehj _’7 E’.j Nk k
At = = g+ g — g+ e () = A+ ™ — ).

Moreover, note that

k.j kj—1
”|uy/ sz ”| 5 e —
(5.35) k. k-1,
< e (ug?) + WW —tp
(5.37) y
< e (uy?)
<AL

kj o~
This proves the equivalence Az,"l ~ A% for all (¢, k, j) € Q and concludes the proof.
O

5.3.4 Proof of Theorem 45 (linear convergence)

This section is dedicated to the proof of Theorem 45. The core is the following lemma that
extends Lemma 47 to our setting with the triple indices.
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5.3 Main results

Lemma 48. Suppose that 0 < Aaig+ Aalg/ Apic < )\glg (from Lemma 4/) as well as 0 < 0 < 1

and 0 < Apic/0 < A}, (from Lemma /6). Then, there exists Csym > 0 such that

S AN < Cun AN forall (6K, ) € Q. (5.52)

(£,k.5)eQ
(6k.3)> (€ K 5"

The constant Csym depends Only on Crel; Cstab’ Qred 9’ Galg, )\alg: 4dPic; >\Pic: «, and L.

Proof. Step 1. We prove that

AR = [l — ) 4 T — o) = AR for all (6k,j) € Q. (5.53)

Note that Af’j and Alz’j only differ in the first term, where the overall error is replaced by
the (inexact) linearization error. According to the Céa lemma (5.16), it holds that

. , (5.16) . ,
i = ug I < Nu* =7+ o = wfll < Jlu® —ug? | < A7

~

This implies that Af’j < Alg’j. To see the converse inequality, note that

ot — gl < Mw* — gl + g — ||
(2) * * k,j

S ome(up) + lug — ||

Bk ok

S me(ug?) + lug — w |l

k.j
< AR,

This proves Af’j < A]Z’j and concludes this step.

Step 2. We prove some auxiliary estimates. First, we prove that the algebraic error
|||uf* - uf“’_l || dominates the modified total error Ag"] , before the algebraic stopping cri-
terion (5.23) is reached, i.e.,

AjT <l — w77 for all (¢,k,5) € Q with k> 1and 1 <j < j(6,k).|  (5.54)

To this end, note that

k.j k, k.j k, k, k.j
Ny —wg? |+ Ny ™ = wg? < Mg —wg W+ 2 luy™ — wg |

(5.39) . .
S luy™ =y TN ey = wg |
k, k.j k.j k=14
< 2wy — w7+ flug? —wy
(5.27) , . . b1
kg Ej—1 k, i—1,5
Sy — w7 e =y
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5 Fully adaptive algorithm for AFEM for nonlinear operators

Since 1 < j < j(¢, k), we obtain from the latter equation that

k" k" k ° 2
Ay = g = g+ g™ = i) +77£(Uz])

k" b 1 9, =
S Wb ? — a4 Ty )
(5.36)
kj kg1
O A
(5.27)
feyx g1
S [y |

This proves (5.54).

Second, we consider the use of nested iteration when passing to the next perturbed
Banach—Picard step. We prove that

kox
(%

k—
ROl < A,

for all (¢,k,0) € Q with k > 1,

To this end, simply note that

k,
llug™ — g

This proves (5.55).
Third, we prove that

(5:34)

k 17_’” (5.39)

AV < AR for all (,k,j) € Q,

k 1,5 k— 17
S M —uy TI< A

(5.55)

(5.56)

related to the algebraic error contraction. Note that k¥ = 0 implies j = 0, so that (5.56)
trivially holds for k& = 0 with equality. Let now k& > 1. We first consider the last but one
algebraic iteration step j = j(£,k) —1 > 0. There holds that

k,j
A = lup —, S+ g™ — W s+ W(W )
kj—1 17 1 J—
< H|W —u T+ I + W(U@ 2) 42 |||u —u, "
AD kg1 kg kgel
< Ay e, =,
(5.27) .
kgj—1 k,j—1
STATT eyt -t
~ AZ’i 1.

This proves (5.56) for j = j(¢,k) —1 > 0. Note that this argument also applies when j = 1.

If 0 <j <j(4k)— 2, then we employ the last estimate and (5.54) to obtain that

kj kgl K, (5.26) k.j k.j
ASSAST T S ey = Tl |||u — || < A,

(5.54) kg2

also using that gajg < 1. This concludes the proof of (5.56).
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5.3 Main results

k—1
Fourth we prove that the linearization error ||uj —u, ]||| dominates the modified total

error Ae =, before the linearization stopping criterion (5.24) is reached, i.e.,

APL < lup —uy )| for all (€,k,j) € Q with 1 < k < K(0). (5.57)

To see this, note that 1 < k < k(¢) yields that

k.j k.j
Ay = g — g+ e — g 0+ o)
(5.27) J . .
S -, ‘||| + ”|Ue - I+ e, )
(5:35) k.j kj k-1 k.j
S Mg = w0+ ™ =T+ me(u, ™)
GA42) g k 1j k.j
Sl — -+ me(ug )
(538 L g1y
Sl =y
(5.42) k .
S g - ),

where we employ Lemma 44 and hence require 0 < Auig + Aalg/Apic to be sufficiently small.
This proves (5.57).
Fifth, we consider the use of nested iteration when refining the mesh. We prove that

AV <y (upd) < AR forall (4 k) € Q. (5.58)

To this end, note that

(5.16) . (5.31)

kg kg
g — gl < et = wfl+ e =il S Bt~ S ). (5.59)
k
Next, recall from (5.33) that ug’* = ug’l = u[”l From (A1) used on non-refined mesh

elements and (A2) used on refined mesh elements, we hence conclude that

0,4 0,4 0,4
ApT = g ==l + e, ™)

(5.33) kg kg
e —= w5+ me(w )

(5.59) o y
S e 1(“211) + 7]€(Uzi1)

k.j
= M- 1(“4 1)+77/(7? 1072,%' ')JFW(W\T# 1, Up )

(A1)
< ne- 1(“@ 1)+77e 1(Te—1 N Te, U@ 1)+77£(T\7Z 1;“@ 1)

(A2)
< me— 1(W 1)+W(72 mﬁ,ug 1)+W 1(Te— 1\72,u£ 1)

k7.
=211 (u[;l).
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5 Fully adaptive algorithm for AFEM for nonlinear operators

This proves (5.58).
Sixth, we prove that

AP < AT forall (4, j) € Q, (5.60)

related to the linearization error contraction. We first consider k = k(¢) —1 > 0. Note that

k— 1,] k— 15]

k: LA ’ ) ' 7
[ e T R B i S g — w2 < Ay (5.61)
Hence, the triangle inequality leads to
k. k.
AT = flup — g+ ok Uz ||| + ()
E 1’ _. E j
< |||Uz I ™ — gl 2 g — ) e
(5.61) i .
< AT gt = )
(AL 1 ki k-
5 A gt =
(5:42) 1y e
< AT g -
<2AF L

This proves (5.60) for k = k(¢) — 1. Note that the same argument also applies when k = 1.
If0 <k < k(¢) — 2, then

kj _ k-1 0230 k-2, 41 ki
ASSA T S =y T IHW —upd) < AyY

also using that ¢p;. < 1. This concludes the proof of (5.60).
Seventh, we consider the use of nested iteration when passing to the next perturbed
Banach—Picard step. We prove that

Alco <Ak 1.4

for all (£, k,0) € Q with k > 1. (5.62)

Using (5.55) and recalling the definition u/* = u, ", it holds that

kl]

7

k-1, 59 ko1
¢

k,0 k,0
AP =g —uy A ey = e, ) S A

which is the claim (5.62).

Step 3. This step collects auxiliary estimates following from the geometric series and
the contraction properties of the linearization and the algebraic solver. First, with the
convention j(£, k) — 1 = oo when j(£, k) = oo, it holds that

j(ek)—1
ST AP Sl —up'l < AP for all (¢,k,i) € Q with k> 1. (5.63)
j=i+1
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This follows immediately from

i(bk)-1 55y 2(LR)-1

k,j k, kj—1
DoAY S Y T -
Jj=i+1 Jj=i+1

(5.26) -
< g — |||anlg

k’ ’
< W“@ - Uy |||

Analogously, with the convention that k(¢)—1 = oo when k(¢) = oo, the contraction (5.41)
of the perturbed Banach—Picard iteration leads to

KO-1 -
S AL S up — < AL for all (4,4, ) € Q. (5.64)
k=i+1

This follows immediately from

-1 ; (5.57) k()—1 k L
5 A DN
k=i+1 k=i+1

(5.41

)
< i - w Z (apic)®
’-]
< e — Il

With the analogous convention { — 1 = co when f = o¢, we finally prove that

-1
> A—’J <AY forall (ik ) € Q. (5.65)
f=i+1

This follows from Step 1 and

Z AbLC2D Z a2 U0 ABI O jkg

~ 1 k2
—i+1 —i+1

Step 4. From now on, let (¢, k',j') € Q be arbitrary. Suppose first that £ = oc, i.e.,
both algebraic and linearization solvers terminate at some finite values k(¢) for all ¢ > 0 and
j(4, k) for all £ > 0 and all k < k(¢), whereas infinitely many steps of mesh-refinement take
place. By the definition of our index set Q in (5.29) (which in particular features nested
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5 Fully adaptive algorithm for AFEM for nonlinear operators

iterates), it holds that

00 k(¢) i(tF)
SRNPCES ol (UES SICUES W TH)

e (=041 k=1 =
(£:k.5)> (0K ,57)

k(¢ J(e k) J(e k")
i Z (AlzloJr Z Ak,j) Z Ak,] (5.66)
k=k'+1 Jj=j3'+1
o k(6) j(Ek) k(e') i k) J( k)
DO ID IR AEID DR DE ViR DI it
=0 +1 k=1 j=1 k=k'+1 j=1 J=3'+1

where we have employed estimates (5.58) and (5.62) in order to start all the summations
from k=1and j = 1.

We consider the three summands in (5.66) separately. For the first sum, we infer that

] 1] ]C,O
2 L3 S )
{=0'+1k=1 j=1 {=t'+1 k=1

(5.55) o KO

k.j k—1,j
< Z Z(AelJFAe 11)
=0 +1 k=1
0, ko k,
Z (A 7+ZA 7)
/ 0 +1
(5.64) 0 0.4 &
< Z (A7 + A7)
t=t/+1 (5.67)
G358 SN ki kg
SO (A A
I_e/Jrl
<ALy Z AP
{=0"+1
(5.65)
< A
(5.60) ., .
< AL
(5.56)
< ALY
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5.3 Main results

If ¥ = k(¢'), the second sum in the bound (5.66) disappears. If k' < k(¢), we infer that
k

£ (5:63) » -
A ST DT (AT ey — gl
k=k'+1 j=1 k=k'+1
(.55 & L
S (At + Ay )
k=k'+1
k()
<ANLY > oA, ol (5.68)
k=k'+1
(5.64) .,
< ApLeat
(5:60) s
>~ o
(6:56) .,
< AR
If j/ = j(¢, k), the third sum in the bound (5.66) disappears. If j' < j(¢', k'), we infer that
(K vy (559 b (5:56) .,
dooApY < Ag, +ALT <AL (5.69)
j=i"+1

Summing up (5.66)—(5.69), we see that, provided that £ = co

ST A} <AL provided that £ = oo

(k.j)eQ
(L k.3)> (¢ K 5")

Step 5. Suppose that £ < co and k({) = oo, i.e., for the mesh 7y, the linearization loop
does not terminate. Moreover, let ¢/ < £. Then, it holds as in (5.66) that

o ilk) -1 k(0) jLk) k() §(.K) GRS '
D ATEI D AT D DD AT Z 2 A D A
(b,k.3)> (€K' 5"
(5.70)
We argue as before to see that
(=1 k(¢) 3(6F) O
A sJ g A ,77 ,
(=0'+1k=1 j=1
O IER ses)
ST A <AL, and, (5.71)
k=k'+1 j=1
KDY 560y
AT < ALY
Jj=j'+1
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5 Fully adaptive algorithm for AFEM for nonlinear operators

It only remains to estimate

j(L,k)
> = (5.63) ® k.j
YD A S Z(Afﬂnu’z —uf )

k=1 j=1
(5.55) 0.j j
S OAS +ZA’
k=1

(5.64) 4
A)?

~

(5.58) . .
< A (5.72)

< A—’] T Z A—’J

=041
(5.65)
< A
(5.60) L.
7.7

5 Ag/_

5.56
( < ) Ak,',j'_

~ 14

Altogether, we hence obtain that

ST A< ALY provided that £ < £ < oo and k(£) = co.

(tk,j)eQ
(k. 3)> (K 5"

Step 6. Suppose that £ < co and k({) = oo, i.e., for the mesh 7y, the linearization loop
does not terminate, and moreover, ¢/ = £. Arguing as in (5.72) and (5.69), it holds that

o AH) B K
DR VR D W VAR R VAR VA (5.73)
(4,k,5)eQ k=k'+1 j=1 j=j'+1
(Ek9)>(E K )

Step 7. Suppose that £ < oo, where k(£) < oo and hence j({, k) = oo, i.e., the linear
solver does not terminate for the linearization step k(£). Suppose moreover ¢’ < £. Then,
it holds that

k()—13(Lk) -1 k(£) 3(L.k)
S AERA Y S Y S S
(.k,j)eQ (=041 k=1 j=1
(€.k.5)> ('K 5") (5.74)
k(e) i(t.k) J( K"
+ Y Y AT Y AR
k=k'+1 j=1 J=5'+1
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We argue as before to see that

](@’k) ( ) )
SToapd o< AR
J=j'+1

For the first sum in (5.74), we get that

& . (5.63) (5.55) (5.67)
ka Ea E10 k— 1"] k, i’
DOAP S gt -l AL < AT

~ ~

(5.75)

Hence, it only remains to estimate the second sum in (5.74), which can be treated analo-
gously to (5.72) in Step 5 by A];, 7. This proves that

k(D) —13(Lk)

SN Ay ‘g < K AR

k=1 j=1

Altogether, we obtain that

ST AJT < APV provided that ¢ < £ < oo, k(£) < oo, and j(£ k) = oo

(£k.5)eQ
(bk.g)> (K 5")

Step 8. Suppose that £ < oo, where k(£) < oo and hence j({, k) = oo, i.e., the linear
solver does not terminate for the linearization step k(£). Suppose moreover ¢ = £ but
k" < k(¢). Then, it holds that

k(-1 3¢ k) J K"
k, k.j k
> A 7<ZA + 2. ZA/+ Z A (5.76)
(L,k,5)EQ k=k'+1 j=1 =j'+1
(ﬁvk‘ﬂj)>(€/7k/a]/)
We argue as before to see that
Soaks S Al
=
k() — 1J(£ k) (5.6
SN A < A’“’J, and,
k=k'+1 j=1
(k") . (569,
> AL S ALY
Jj=3'+1
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5 Fully adaptive algorithm for AFEM for nonlinear operators

Hence, we obtain that

ST AY < ALY provided that £ = ¢ < oo, K < k(¢') < oo, and j(¢, k) = co.

(k,5)EQ
(8.k,g)> (0K 5")

Step 9. Suppose that £ < oo, where k(£) < oo and hence j(£, k) = oo, i.e., the linear
solver does not terminate for the linearization step k(£). Suppose ¢/ = £ and k' = k(¢).
Then, it holds that

o o, (663
Z Ayl = Z Apt S AT (5.77)
(£k.5)€Q J=3'+1 )
(Lk.g)> (K 5"

Step 10. Suppose that £, k(£), j(£, k(£)) < oo and that Algorithm 41 finished on Step (iii)

when ng(ulz =) = 0. From (5.31), we see that ng(w ) = 0 implies u* = uf , 1.e., the exact
solution was found. Moreover, through the stopping criteria (5.24) and (5.23), We see that

zf b ulg’] - lf’], so that (5.42) gives uy = u];—, and finally (5.22) gives u[ = uﬁl
Thus A"j =0.
Let E’ < £. Then, as in (5.70),
k() (LK) -1 k(¢) 3(Lk) k() J.k) 3K ‘
PIREEDID IR EID DD DEVAEED DD DEVAE D DI VAL
(Lk.5)EQ k=1 j=1 =0'+1k=1 j=1 k=k'+1 j=1 j=j'+1

(£:k5)> (€K' 5")
Here, the last three terms are estimated as in (5.71), whereas for the first one, we can

proceed as in (5.72), crucially noting that the last summand A = is zero.
If ¢/ = ¢, three cases are possible. The first case is ¥’ < k. Then

k() j¢.k) J(0 k")
Y b "y
SRUES S SRR SRt
(kj)EQ k=k'+1 j=1 j=j'+1

(k.5)> (K 5"

which is controlled as in (5.71). The second case is k' = k but j’ < j, where directly

5.63)
Z Ak7< Z Ak’7(< Ak'J'
(Lk,5)€EQ J=i'+1
(8 k.5)>(C K \5")

K.
again using A, 2 — 0. Finally, in the third case, X = k and j/ = J, the sum is void.
Altogether

ki < AR
> ATSA

(€k,5)€Q
(8.k,g)> (K \5")

(5.78)
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5.3 Main results

also holds in this case.

Step 11. Combining Steps 4-10 that cover all possible runs of Algorithm 41 with Step 1,
we finally see that

. (5.53 ; r s (5.53 ;s
>ooooay o S A S A ol AFT forall (¢,K,5') € Q.
(L:k,5)eQ (Lk.5)eQ
(Z,k,j)><£/,k,,j/) ([,k,j)>(€,,k/,j’)
This concludes the proof of (5.52). O

Proof of Theorem /5. The proof is split into two steps.
Step 1. For the convenience of the reader, we recall an argument from the proof
of [CFPP14, Lemma 4.9]: For M € NU {oc}, let C > 0 and «,, > 0 satisfy that

M
Z anp < Cay forall N € Ny with N < min{M, oo}.
n=N-+1

Then,

1+C’ Z oy < Z an+aN—Zan for all N ¢ Np.
n=N+1 n=N+1

Inductively, it follows for all N,m € Ny with N +m < min{M + 1,00} that

(1+ Z ap, < Z an+azv~zan

n=N-+m n=N-+1

We thus conclude for all N,m € Ny with N +m < min{M + 1,00} that

ANtm < Z ap < ( 1+C mZan_ (1+C) (1+C’*1)*maN.
n=N+m

Step 2. Since the index set Q is linearly ordered with respect to the total step counter
|(-,+,-)], Lemma 48 and Step 1 imply that

K5 [(¢ & ) =1(&kD] A kvd
Ay < Chin gy, A,

for all (£, k,7),(¢',k',§") € Q with (¢,K,j") > (£,k, ), where Cin = 1 + Csum and qin =
Csum/(Csum + 1). This concludes the proof. O
5.3.5 Optimal convergence rates of the quasi-error

The second main result states optimal decay rate of the quasi-error A]Z’j of (5.47) (and

consequently of the total error |Ju* — uf’j II) in terms of the number of degrees of freedom
added in the space X, with respect to Xy. More precisely, the result states that if the
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5 Fully adaptive algorithm for AFEM for nonlinear operators

unknown weak solution u of (5.11) can be approximated at algebraic decay rate s with
respect to the number of mesh elements added in the refinement of 7y (plus one) for a
best-possible mesh, then Algorithm 41 achieves the same decay rate s with respect to the
number of elements actually added in Algorithm 41, (#7; — #70 + 1), up to a generic
multiplicative constant. The proof of the following Theorem 49 is given in Section 5.3.6.

Theorem 49 (optimal decay rate wrt. degrees of freedom). Suppose (Al)—(A4)

and (R1)~(R3). Recall \};),, Ap;. > 0 from Theorem /5. Let

Cpic := qpic/(1 — gpic) > 0,
Calg = Qalg/(1 — qaig) >0, and,
Oopt == (1+ CZpCh)

Then, there exists 0* such that for all 0 < 0, \yg, Apic with

0 < 6 < min{1,60"},

0 <A <1,

0 < Aalg + Aalg/ Apic < )\.’;Ig, and,
0< Apic/O < )\Eic,

it holds that

0 + Gstab ((1 + CPic)Calg)\alg + [CPiC + (1 -+ CPic)CalgAalg] APiC)
1 — Apic /Ay

0< 6 = < opt,  (5.79)

where the constant 6 > 0 depends only on Csiap, qpic, ond qag. Let s > 0 and define

HU*HAS = jsggo <(N + 1); %ptiél’]%(]\/') UOPL(u;pt)) € RZO U {OO}, (580)

where Nopt(u5,) s the error estimator corresponding to the ezact solution of (5.12) with
respect to the mesh Top, and

T(N):={T €T : #T —#To < N}.
Then, there exist copr, Copt > 0 such that

cgplt |w*]a, < ( su§) (#To — #To + 1)SA§J < Copt I'IlaX{H’U,*HAS,Ag’O}. (5.81)
0k.5)EQ

The constant cop, > 0 depends only on Coea = L/, Cstaty, Crel, Cson, #70, 8, and, if £ < 0o,
additionally on (. The constant Copy > 0 depends only on Cyab, Crel, Crark, 1 — Apic/Apic,
Coea = L/, C';, Crueshi; Clin, Qin, #70, and s. The mazimum in the right inequality is

rel?
only needed if ¢ = 0. If £ > 1, the mazimum max{||u*| I A, -

Aus AS’U} can be replaced by ||u
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5.3 Main results

Remark 50. Note that AO O can be arbitrarily bad due to a bad initial guess Uo . However,
|u*||a, as well as the constant Copy are independent of the initial guess, so that the upper
bound in (5.81) cannot avoid max{||u*||4,, AO’O} for the case ¢{ = 0. Such a phenomenon
does not appear at later stages, since the stopping criteria (5.23) and (5.24) ensure that,
though ue L does not in general coincide with uj, it is sufficiently accurate. If one restricts
the indices to ({,k,7) € Q with ¢ > 1, then the upper bound in (5.81) may omit AO )

5.3.6 Proof of Theorem 49 (optimal convergence rates)
Lower bound in (5.81)

The first result of this section proves the left inequality in (5.81):

Lemma 51. Suppose (R1) as well as (A1), (A2), and (A4). Let s > 0 and assume ||u*|[5, >
0. Then, it holds that

[u*|lay < copr  sup  (#Tw — #To + 1)° AR (5.82)
(Z/’kl’jl)eg

where the constant cop, > 0 depends only on Coeq = L/, Cstab, Crel; Cson, #7T0, 8, and, if
£ < o0, additionally on £.

Proof. The proof is split into three steps. First, we recall from [BHP17, Lemma 22] that
HTo/#Te < #To —#Te +1 < #7T, forall 7, € T and all 7, € refine(7,). (5.83)

Step 1. We consider the three non-generic cases with £ < oo. First let k() < o0, and

J(£, k) < co. Then, Algorithm 41 was terminated in Step (iii) with m(ué 1) = 0. Due to the
Céa lemma (5.16) and Proposition 43, it follows that

L, (319 (5.31) K
llw* =wzll < flw” *ug‘lll S me(u”) =0

~ ~

and hence u* = u} = uf; * = ul; and 7(uy) = 0.
Second, let k(£) < oo but j(€, k) = o0, i.e., the algebraic solver does not stop. According
to Theorem 45, it holds that

AP =l — g |+ lug™ — g | + ne(ug?) = 0 as j — oo,

Hence, due to the uniqueness of the limit and the Céa lemma (5.16), we obtain that u* =
uy = u;’ From stability (A1), it follows that

(A1)
k’ _7
0 <me(uf) S me(wy?) +lluf — gl >0 as j— oo.

Hence, we see that n(u;) = ne(u IZ*) =0.
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5 Fully adaptive algorithm for AFEM for nonlinear operators

Finally, let k(¢) = oo, i.e., the linearization solver does not stop. Analogously to the
previous case, we obtain that

kg kg hx ki kg
Ay =l =y T g™ =g =l (e, ™) =0 as k- oo

With the Céa lemma (5.16), this leads to

. kg, (516) Lk
0 < |lu; — ) N < (14 Cesa)lle” — ué—”] —0 as k— oc.

Hence, we get that u* = uj. Again, stability (A1) yields that ng(u}) = 0.
In any case, £ < oo implies that ||u* — wj|| + 7¢(u}) = 0 and hence that

* S . *
w|a, = sup ( N +1 inf  Mops(u )
folla, = s (VD7 int s (1)

The term N + 1 within the supremum can be estimated by

(R1)
N+1 S#E_#% < (Cgon_l)#%'

Moreover, (Al), (A2), and (A4) yield quasi-monotonicity 7opt(ugy,) < no(ugs) (see, e.g.,
[CEPP14, Lemma 3.5]). Altogether, we thus arrive at

][4, < mo(ug) < JSup #Te — #To +1)° ner (ufy). (5.84)
’eNg

Step 2. We consider the generic case that £ = oo and ng(uf’l) > 0 for all ¢ € Nj.
Algorithm 41 then guarantees that #7; — oo as £ — co. Thus, we can argue analogously
to the proof of [CFPP14, Theorem 4.1]: Let N € N. Choose the maximal ¢’ € Ny such that
#Ty —#To+1 < N. Then, Ty € T(N). The choice of N guarantees that

N+1<#Tp1 —#To+1
(5.83)
#To 11
< C)son#T’

(5.83)
< Cson#’ﬁ) (#7;’ - #76 + 1)

(5.85)

This leads to

(N+1)° %ptigylf[:(N) Nopt (Uopt) S (FTer — ##To + 1)*ner (uy),

and we immediately see that this also holds for N = 0 with ¢ = 0. Taking the supremum
over all NV € Ny, we conclude that

[u*]la, S Jup (#HTe — #To + 1) ner (upy).- (5.86)
'€Ng

128



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

5.3 Main results

Step 3. With stability (A1) and the Céa lemma (5.16), we see for all (¢/,0,0) € Q that
(A1) 0,0 0,0
ne(up) S llup — gl 4 ne(uy)
0,0 0,0
<l = will + e = gl + mer (uy )
(5.16)

0,0 0,0
S et —wy N+ ne(uy)
< AP

With (5.84) and (5.86), we thus obtain that

s, S o Q(#ﬁf = #To+ 1)° ne (ugy)
/,0,0)€

< sup (#Tpy —#To+1)° AIZ,,JI.
(¢ k'3)EQ

This concludes the proof. a

Upper bound in (5.81)

To prove the right inequality in (5.81), we need the comparison lemma from [CFPP14,
Lemma 4.14] for the error estimator of the exact discrete solution u; € A}.

Lemma 52. Suppose (R1)—(R2) as well as (A1), (A2), and (A4). Let 0 < 6’ < Ogpt =
(1+ C2,,C%)"'. Then, there exist constants C1,Cy > 0 such that for all s > 0 with
0 < |Ju*||a, < o0 and all T; € T, there exists Ry C Ty which satisfies

#Re < C10 13 me(up) V2, (5.87)
as well as the Dorfler marking criterion
0'1e(up) < ne(Re,uy)- (5.88)

The constants C1,Co depend only on Cgap, and Clg. |

We are now ready to prove the right inequality in (5.81), which is the main result of
Theorem 49:

Proof of Theorem /9. The proof is split into four steps. Without loss of generality, we
may assume that ||u*[[4, < oc.

Step 1. Due to the assumptions Az + Aalg/Apic < )\glg (from Lemma 44) and Apic/0 <
Apie (from Lemma 46), we get that A\a, < )\;g Apic < )\zlg Ap;. 0. Hence, it holds that

0+ Cstab ((1 =+ C)PiC)CaIgAalg + [C)Pic + (1 + CPic)CalgAalg] /\Pic>

0 =
1 — Apic /Apic
< 0+ Cstab <(1 + C)PiC)CalgA;lg)\’lgice + [CPiC + (1 + CPiC)Calg ;lgA,l;ica] /\,15109)
- 1-46
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5 Fully adaptive algorithm for AFEM for nonlinear operators

which converges to 0 as § — 0. As a consequence, (5.79) holds for sufficiently small 6.

Clearly, the parameters Mg, Apic, > 0 can be chosen such that all assumptions are
fulfilled. First, choose 6 > 0 such that 0 < 6 < min{1,6*}. Then, choose Ap;. > 0 such
that 0 < Apic/0 < Ap;.- Finally, choose 0 < Aug < 1 such that Aag + Aaig/Apic < )\alg

Step 2. Recall that Cpic = gpic/(1 — gpic) and Calg = alg/(1 — qaig). Provided that
(£+1,0,0) € Q, it follows from the contraction properties (5.27) as well as (5.39), and the
stopping criteria (5.35) as well as (5.37) that

_7-]
g — g < g — ™+ g™ —
(539) k __ ’.] k EJ

< Opic llug™ — g ‘||| + g™ —

kox J k—1.j
< (1+ Opi) ™ — g + Cpie llug™ — g™

_J
“l

: k,j—1 J k—1.j
< (14 Cpic)Cayg |||U4 =1y~ |l + Cpic W“e —u,

__15

15,

,\
o
Nt
5
N
A

< (1+ Cric) Catghatg e (1) + [Cic + (1+ Cpic) Catghaig] Iy — g~

(5.37)

IA

(( 14 Cpic)CalgAalg + [Cpic + (1 + Cpic)CalgAalg APiC)”V(“’%i)
* k.j
(5. 79) Cstab (9/(1 _ /\Pic/APiC) — 9) Ue(uz l).

Step 3. Let Ry C T; be the subset from Lemma 52 with 6’ from (5.79). From Step 2,
we obtain that

L AD k.j
n(Re,ug) < m(Re,ue 5+ Cualle; —

g (5.89)
< me(Rey ) + (0 (1= Arie/ Noic) — 0) el ).

With the equivalence (5.49), Lemma 52, and estimate (5.89), we see that

/ * k.j ( 49) /
0" (1 — Apic/Apic) me(uy™) < 0'me(up)
(5.88)
< (Rh Ue)

(5.89)
< (R, UZJ) (9/(1 - )\Pic/>\f>ic) - 9) W(ufﬂ)~

Thus, we are led to

k.
9775(% ) < (R, uy 7)~

Hence, Ry satisfies the Dorfler marking criterion (5.25) used in Algorithm 41. By the
(quasi-)minimality of M, in (5.25), we infer that

(5-87) 1/s (5.4 *x1/s k.j —1/s
HMy SHRe <l o)™V ||U [ a, me(u, =)~ 7%

~
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5.3 Main results

Recall from (5.34) that ué +1 = “e . Thus, (5.58) and the equivalence (5.53) lead to

k:,' _ o (558) O,‘ _ o (553) S
ne(uy ) VS (A TR (A Y

Overall, we end up with
HMy S (ALY for all (£41,0,0) € Q. (5.90)

The hidden constant depends only on Cyian, Crel, Crmark, 1 — Apic/Api, Coea = L/, Cl
and s.
Step 4. With linear convergence (5.48) and the geometric series, we see that

ARG =175 O akiy -1z 153 |(€k) -1 TR
Z ( 7 ) S ) ) Z (qhn )
@ineo @ineo (5.91)
Tk k) TE<(tk)
< @)

with hidden constants depending only on Ciy, qin, and s. For (4,k,7) € Q such that
(£+1,0,0) € Q and such that 7; # 7o, Step 3 and the closure estimate (R3) lead to

#To— #To+ 1= #To — #To
(Rﬁ)é)l

< Z#M~

2 *|1/s 1/s
ST T Y Z( oh

*1/s E,} —1/s
S A N A
(Lkj)eQ

(CRD<(Ek,5)

(5.91) o
< Il (agh) e,

Replacing [|u*||a, with max{|w*|a,, Ag’o}, the overall estimate trivially holds for 7, = 7.
This proves that

max{|u*||a,, Ag"},  if (£+1,0,0) € Qand £>0

5.92
[, (01 1.00)cQande>1 O

(#Te — #To + 1)° Ak < {

It remains to consider the cases where (£, k,j) € Q but (£+1,0,0) ¢ O, as well as the case
T = To. In the first case, it holds that 1 < ¢ = £ < oo, and one of the cases discussed in
detail in Step 1 of Lemma 51 arises.

First, let 2 < ¢ ={ < o0. Since { —1 > 1 and (¢,0,0) € Q, (5.92) shows that

(#Tim1 — #T5 + 1)°A% < |
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5 Fully adaptive algorithm for AFEM for nonlinear operators

Moreover, Lemma 48 leads to A]Z’j < Af’_ll. Therefore, we obtain from (5.85) that

#To — #To + 1 < Coon#To(#Te—1 — #To + 1). (5.93)

Altogether, (5.92) holds for this case as well.
Second, let £ = £ = 1. Then, we can rely on the inequality

. (5.93) ‘
(#T1 — #To+ 1AM T <7 (Coon#To)® AN
(5.52)

< At
(5.47) kj ks kg k.j
= = g™+ g™ = v+ 10 (™)
(5:21) . kg ki kil k.j
S et =gl lug — w4+ llwg™ —wp™ I+ no(wp™)
(5.23) ka] k17 k_11.7 k:aJ
Sl =gl A g = ug ™l llug™ — g Tl + 1o ™) (5.94)
(5.42) X ki kol K
S Mt =gl ™ — vl A o)
(629 k.
S et =gl mo(ug™)
(5.49)
S et =gl + mo(ug)
(a3
< mo(ug)
< e,
Thus, (5.92) holds for this case as well.
Finally, let £ = £ = 0. Then, linear convergence (5.48) proves that
L (548
ART < A0 (5.95)
Hence, (5.92) also holds for this case, and we conclude the proof of (5.81) O

5.3.7 Optimal computational complexity

Our last main result states that Algorithm 41 drives the quasi-error down at each possible
rate s not only with respect to the number of degrees of freedom added in the space A}
in comparison with Xy, but actually also with respect to the overall computational cost
expressed as a cumulated sum of the number of degrees of freedom. This is an important
improvement of Theorem 49. More precisely, under the same conditions as above, i.e.,
if the unknown weak solution u of (5.11) can be approximated at algebraic decay rate s
with respect to the number of mesh elements added in the refinement of 7; (plus one),
then Algorithm 41 generates a sequence of triple-(¢, k, j)-indexed approximations (mesh,
linearization, algebraic solver) such that the quasi-error decays at rate s with respect to the
overall algorithmic cost expressed as the sum of the number of simplices #7; over all steps
(4, k,j) € Q effectuated by Algorithm 41.
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5.3 Main results

Theorem 53 (optimal decay rate wrt. overall computational cost). Let the assump-
tions of Theorem 49 be verified. Then

Gl < s (3 #m)ap
d 0k EQ
(&k(,j)s]()é’,k',j’) (5.96)

< ¢! max{||u||a,, AYC}

opt
The mazimum in the right inequolity is only needed if £ = 0. If £ > 1, the mazimum
max{||u*]|a,, AO’O} can be replaced by ||u*||a,. While cope > 0 is the constant of Theorem 49,
the constant C! ot > 0 reads C, Opt = (#70)° Copt Clin ( qllu/ls)

Remark 54. Analogously to the comments after Theorem /9, the upper estimate in (5.96)
cannot avoid max{||u*HAs,A8’o} for the case ! = { = 0. As above, if one restricts the
in(()lgces to (U, K',7)), (6 k,j) € Q with ¢/, £ > 1, then the upper bound in (5.96) may omit
Ay

0Note that for any reasonable algebraic solver on mesh T;, the cost of its one step is pro-
portional to #7T;. This also holds true for matriz and right-hand-side assembly in (5.22),
evaluation of the residual estimators ng(ul?j ), Dérfler marking, and local adaptive mesh
refinement by, e.g., newest verter bisection, while the cost of evaluation of the stopping
criteria (5.23) and (5.24) is of O(1). Thus, the sum in (5.96) is indeed proportional to
the overall computational cost invested into the numerical approzimation of (5.1) by Algo-
rithm 4 1.

Proof of Theorem 53. Note that #Ty — #To+1 =1 < #T for ¢/ = 0 and #Tp —
#To+ 1 < #Tp for ¢/ > 0, so that the left inequality in (5.96) immediately follows from
the left inequality in (5.81). In order to prove the upper bound in (5.96), let (¢, k', j") € Q.
Employing the right inequality in (5.81) (cf. (5.92)), the geometric series proves that

(5.83)

Y. #T < #T Y, #T—#To+1)
(4,k,5)€Q (Lk,j)eQ
Lk, )< ('K 5" L.k, )< K 5"
(5.92) e 178
< #To ol max{|fua,, AJOYY ST (aph) Y
(6,k,j)€Q
(L, J)<(¢' K 5"

(5.48)

< i ol L e, AP

lin
Rearranging this estimate, we end up with
8 A/ 4
sup ( > #72) AT S

EHRIVEQ N (1h,5)eQ, 021
(6k,5)<(' K 5")

* 0,0
Ag>s AO }7
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5 Fully adaptive algorithm for AFEM for nonlinear operators

where the hidden constant depends only on Cgiab, Crel, Cmark, 1 — Apic/Apie; Ccea = L/,
' 15 Cresh, Clins Qiiny #70, and s. This proves the right inequality in (5.96). O

rel’

5.4 Numerical experiments

In this section, we present numerical experiments in 2D to underpin our theoretical findings.
We compare the performance of Algorithm 41 for

e different values of Ay, € {10705,1071, 10712, ... 1074},
o different values of Apic € {1,1070% 1071 ... 1074},
e different values of 6 € {0.05,0.1,0.15,...,1},

As model problems serve nonlinear boundary value problems which arise, e.g., from nonlin-
ear material laws in magnetostatic computations, where the mesh-refinement is steered by
newest vertex bisection.

As an algebraic solver for the linear problems arising from the Banach—Picard iteration,
we use PCG with an optimal multilevel additive Schwarz preconditioner, cf. [Fiih14, Sec-
tion 7.4.1] and Section 4.7.1 respectively, i.e., the condition number of the preconditioned
system is uniformly bounded.

Model problem

Analogously to Section 4.8, let Q@ C R¢ with d > 2 be a bounded Lipschitz domain with
polytopal boundary I" = 9€2. We again suppose that the boundary T is split into relatively
open and disjoint Dirichlet and Neumann boundaries I'p, 'y C T' with [I'p| > 0, i.e.,
I' =Tp UTy. While the numerical experiments in Section 5.4.3-5.4.4 only consider d = 2,
we stress that this model problem is covered by the abstract theory for any d > 2. For
f € L*Q) and g € L*(T), find u* such that:

—div (u(z, |Vu*(2) ) Vu*(2)) = f(x) in Q,
*(x) =0 on I'p, (5.97)
(

x) = g(x) on 'y,

u
e, |V (2)]?) Onu*

where the scalar nonlinearity u: Q x R>o — R satisfies the properties (N1)-(N4) from
Section 4.8. For the sake of completeness, we recall these properties in detail:

(N1) boundedness of p(x,t): There exist constants y1,v2 > 0 such that

v < p(x,t) <y forallz € Qandt>0.

(N2) boundedness of p(x,t) + 2t%u(m, t): For x € , the function p(x,-) is contin-
uously differentiable, i.e., u(z,-) € C1(R>q,R) and there exist constants 71,7, > 0
such that

Y1 < plx,t) + Qt%u(x,t) <% forallzeQandt>0.
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5.4 Numerical experiments

(N3) Lipschitz-continuity of p(x,t) in x: There exists a constant L, > 0 such that
lp(z,t) — u(y,t)| < Lylz —y| forallz,y € Qandt > 0.

(N4) Lipschitz-continuity of t%p,(:c,t) in @: There exists a constant L, > 0 such
that

|t%li(x,t) — t%u(y,tﬂ < Zulx —y| forall z,y € Qand t > 0.

5.4.1 Weak formulation

The weak formulation of (5.97) reads as follows: Find v € HL(2) := {w € HY(Q) : w =
0 on I'p} such that

/ p(z, |Vu*(x)]?) Vu* - Vodz = / fvdz +/ guds for all v € H} (). (5.98)
Q Q r

N

With respect to the abstract framework of Section 5.2.1, we take H = I},(Q2), K = R, and
() =(V-, V) with Jv|| = [[Vv||12(0). We obtain (5.11) with operators

(Aw , V)3 wp = / plz, |Vw(z)|?) Vw(z) - Vo(z) d, (5.99a)
Q

F(v):/vad:rJr/F gvds (5.99b)

for all v,w € H. We again recall from [GHPS18, Proposition 8.2] that (N1)—(N2) implies
that A is strongly monotone (with « := 5;) and Lipschitz continuous (with L := 73), so
that (5.97) fits into the setting of Section 5.2.1. Moreover, (N3)—(N4) are required to prove
the well-posedness and the properties (A1)—(A4) of the residual a posteriori error estimator.

5.4.2 Discretization and a posteriori error estimator

Let 7o be a conforming initial triangulation of €2 into simplices 7 € 7y. For each 7; € T,
consider the lowest-order FEM space

He:={veC(Q) : v|r =0and v|pr € PHT) for all T € Ty} (5.100)

As in Section 4.8, cf. [GMZ12, Section 3.2], we define for all T € T; and all vy € Hy, the
corresponding weighted residual error indicators

1e(T, ve)* = [T f + div (u(-, |[Voe*) Vg)
T (-, | Voe*) Vo) - ]

2
L) (5.101)

L2(8TN0)*

where [-] denotes the usual jump of discrete functions across element interfaces, and n is
the outer normal vector of the considered element.

Due to (N3), the error estimator is well-posed, since the nonlinearity pu(z,t) is Lipschitz
continuous in z. Then, reliability (A3) and discrete reliability (A4) are proved as in the
linear case, see, e.g., [CKNS08] for the linear case or [GMZ12, Theorem 3.3] and [GMZ12,
Theorem 3.4], respectively, for strongly monotone nonlinearities.
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Figure 5.1: Z-shaped domain Q C R? with initial mesh 7o (top) and L-shaped domain
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5.4 Numerical experiments

5.4.3 Experiment with known solution on Z-shaped domain

We consider the Z-shaped domain Q@ C R? from Figure 5.1 (top) with mixed boundary
conditions and the nonlinear problem (5.97) with

1
V1+ [Vu(z)]2

This leads to the bounds @ = 2 and L = 3 in (5.10). We prescribe the solution «* in polar
coordinates (z1,z2) = r(cos¢,sing) with £ € (—=,7) by

pwla, [Vu* (@)]?) =2+

w* (1, 29) = 77 cos(B ), (5.102)

with § = 4/7 and compute f and g in (5.97) accordingly. We note that «* has a generic
singularity at the re-entrant corner (z,y) = (0,0).
In Figure 5.2, we compare uniform mesh-refinement (6 = 1) to adaptive mesh-refinement

(0 < 6 < 1) for different values of A\, and Apjc. We plot the error estimator m(uf’l)
over the number of elements N := #7,. First (top), we fix # = 0.5, Apic = 1072, and
choose Aag € {1071,1072,1073,107*}. We see that uniform mesh-refinement leads to
the suboptimal rate of convergence O(N~%/7), whereas Algorithm 41 with adaptive mesh-
refinement regains the optimal rate of convergence O(N~1/2), independently of the actual
choice of \,;. We observe the very same if we fix 0 = 0.5, Aye = 1072, and choose
Apic € {1,1071,1072,1073,107%} (middle), or, if we fix Aalg = Apic = 1072 and vary
0 € {0.1,0.3,0.5,0.7,0.9} (bottom). Since we know from Proposition 43 and the estimate

e ki 20k k-1
lug™ ="l S My =™ 7l
©-3)  ky ki k-1
S ne(uy) + ™ =y |
(5.37) y

< melug?)

that ng(uf’l) ~ Af’l, this empirically underpins Theorem 49.
In Figure 5.3, analogously to Figure 5.2, we choose different combinations of ¢, A.e, and

Apic. We plot the error estimator 7’/4/(1@% ) over the cumulative sum Dok )< K, i #Te-
Independently of the choice of 0, A,s, and Api., we observe the optimal order of conver-
gence (’)(( Z(é‘,k, D<@ G #72) -y 2) with respect to the overall computational complexity
in accordance with Theorem 53.

In Figure 5.4, we also consider the total number of PCG iterations cumulated over all
Picard steps on the given mesh for different combinations of 0, A\.js, and Ap;.. We observe
that independently of the choice of these parameters, the total number of PCG iterations
stays uniformly bounded. Additionally, we see that for larger values of A, and Api, as
well as for smaller values of #, the total number of PCG iterations is smaller.

In contrast to the the previous Chapters 4—6, where the corresponding algorithms steer the
adaptive mesh-refinement and either incorporated an iterative linearization or an algebraic
solver, our proposed Algorithm 41 combines these two concepts. Hence, to try to analyze
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5 Fully adaptive algorithm for AFEM for nonlinear operators
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Figure 5.2: Example from Section 5.1.3 (Experiment with known solution on Z-shaped do-

138

main): Error estimator ?}g(’l&g 1) on mesh Tg, perturbed Banach—Picard iteration
k, and PCG step J of Algorithm 41 with respect to the number of elements N
of the mesh Tg for various parameters @, Apic, and Aalg.
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Figure 5.3: Example from Section 5.4.3 (Experiment with known solution on Z-shaped do-

; ; Kj' : p
main): Error estimator ?]gr(u},’i) on mesh Ty, perturbed Banach-Picard iter-
ation k', and PCG step j' of Algorithm 41 with respect to the overall cost

expressed as the cumulative sum E(e,k,_f)g(e',g,i’) #7T; for various parameters 6,

)tPic.l and /\alg-
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A Fully adaptive algorithm for AFEM for nonlinear operators
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Figure 5.4: Example from Section 5.4.3 (Experiment with known solution on Z-shaped do-
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main): Number of PCG iterations wrt. the number of elements N = #7,
for § = 0.5, Apic = 1072, and Ay € {1071,...,107%} (top), for 8 =
Aalg = 10=2 and Api € {1, 10-1, ,10—4} (middle), and for Age = Apic = 10—2

and 6 € {0.1,0.3,...

,0.9} (bottom).
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5.4 Numerical experiments

what the best choice of the three parameters 0, A.g, and Api. could be, we have to vary
them all. First, we prescribe a precision 7 = 3 - 1072 and vary # € {0.2,0.4,0.6,0.8},
Aalg € {1071,10715...,1074}, and Apie € {1,1070%,1071,...,107*}. Figure 5.5 then
shows the computational cost expressed in terms of the cumulative sum Z(z‘, k)< K ) #T,
to reach the given precision 7. It seems that a smaller value of Ay, or Api. leads to more
computational cost to reach the same precision, independently of the choice of 6.

In Figure 5.6 (top), we vary 6 € {0.05,0.1,0.15,...,0.9} and only print the correspond-
ing best choices of A,y € {1071,10735,...,107%} and Apic € {1,1070%,107,..., 1074}
together with the minimal overall computational cost to reach the given precision. As a
result, we see that the overall best choice in terms of computational cost to reach the given
precision 7 =3-10"2is § = 0.7, Aalg = 1071, and Apic = 10799 with

> #T; = 25058328

(k)< K ")

where u% is the first approximation such that m(u%) < 3-1072. We also observe that the
worst possible choice is 6 = 0.05, Ay = 10739, and Apic = 107*. With these parame-
ters it takes more than 1000 times the computational cost to reach the same precision in
comparison to the best choice.

5.4.4 Experiment with unknown solution

We consider the L-shaped domain  C R? from Figure 5.1 (bottom) and the nonlinear
problem (5.97) with I'p = I" and constant right-hand side f = 1 where u(-, ) is given by

p(z, |[Vu*(z)]?) := 1 + arctan(|Vu*(z)|%).

Then, according to [CW17, Example 1], there hold (N1)-(N4) with @ = 1 and L ~=
1 ++/3/2 + m/3, while the exact solution is unknown.
In Figure 5.7, we again test Algorithm 41 with varying 0, Aa, and Api.. We plot the

error estimator ng(uf’l) over the number of elements NV := #7,. Uniform mesh-refinement
leads to the suboptimal rate of convergence O(N —1/ 3), whereas Algorithm 41 with adaptive
mesh-refinement regains the optimal rate of convergence O(N~'/2). Again, this empirically
confirms Theorem 49. The latter rate of convergence even appears to be robust with respect
to 9, )\algu and >\Pic-

N4

. . K\ .
In Figure 5.8, we plot the estimator 1y (u,, %) over the cumulative sum k< i) Fe
Independently of the choice of the parameters 0, \,is, and Ap;., we observe the optimal or-

der of convergence O( (21 ;< &', #72)71/ ?) with respect to the overall computational
cost, which empirically underpins Theorem 53.

In Figure 5.9, we finally consider the total number of PCG iterations cumulated over all
Picard steps on the given mesh. We observe that independently of the choice of 0, A,, and
Apic, the total number of PCG iterations stays uniformly bounded. Additionally, we see
that for larger values of A,z and Ap;c, as well as for smaller values of 0, the total number
of PCG iterations is smaller.
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Figure 5.5: Example from Section 5.4.3 (Experiment with known solution on Z-shaped do-
main): Overall computational cost Z(Zﬁm)gw’%jl) #7T; such that ng(u%,l) <T

for given precision 7 = 31072, Ay € {1071,10715,...,107}, and Apic €
{1,107%% 1071, ..., 1074}.

142



5.4 Numerical experiments

"2-0T = < q3m (urewop podeys~7 U0 UOIN[OS UMOUNUN
s opdurexyy) ¢ uonoeg woy ojdurexy wojog T, (1§ = L Y3 (urewop padeys-yz uo uornjos umouy yjm ord

-urexy]) ¢'F'¢ uonoog woxj ojdurexy :doJ, '+ uoisooald uoAld I10f L > Am\;v? yeys yons {,_ 01 """ “[_0T ‘¢:q—0T T}

> E&K pue nﬁwIOH bow. “m.HIOﬁ “HIOHW > wﬁ& AA“H@.O“ S “m.mc “ﬁO “mOOW 5 § JO son[eA JUSIOPIP I0j

o

143

11 # (A= )77 4500 TeuoryRINdWIOd [[RIFA0 [RWIIXRU PUR [RWIUTUI oY} Jo uostedwo)) j ¢ uorosg woiy sorduwrexy :9'¢ oanSiy

p-0T p-0T p-0T p-0T p—0T p-0T p-0T p—0T1 v—0T p-0T v-0T v-0T 0T p-0T p-0T 0T »-0T p-0T Py
p-0T p-0T p- 0T p-01 p- 01 p-01 p-0T v 01 p- 0T p- 0L p-0T p-0T p-01 p- 0T p- 01 p 01 p-01 p-0T '
xXeul
1 T 1 1 T T T T T T T T T 1 T T T ¢p-0T Py
o101 ¢1-0T 10T 10T 10T ¢1-0T 10T 1-0T 0T 1-0T 10T 10T 1-0T 10T 10T 10T 1-0T 10T Ady
E_E
6'0 g8'0 8'0 §L'0 20 990 9'0 98°0 g0 ] 70 S€'0 €0 920 z'0 ST0 10 80'0 )
urewop podeys-7
v—0T y—0T 0T p—0T 70T v—0T v—0T p—0T v—0T y—0T p—0T p—0T 70T v—0T p—0T 70T v—0T v—0T My
o101 ¢1-0T 20T 201 201 201 ¢1-0T ¢1-0T ¢1-01 10T ¢ 0T 10T 10T 10T 10T 201 ¢g- 0T ¢ 0T ey
R 0| oo | s [ | v [ [ovon o v | o oo e e~
1 T 10T 1 ¢0-0T 1 ¢-0T 1 10T 1 10T 1 1 10T 1 ¢1-0T T ¢1-0T Sty
¢1-0T ¢1-0T ¢1-0T ¢ 1-0T 1-0T =0T 1-0T ¢1-0T ¢1-0T ¢1-0T ¢1-0T ¢ 10T 1-0T ¢1-0T 1-0T 1-0T 1-0T 10T Bley
urua
60 g8°0 8°0 SL°0 L0 99°0 90 990 g0 5 4l0] 70 S€°0 €0 920 z°0 ST°0 10 S0°0
0
urewop podeys-7

“Yayloljqig usip N.L Te 1uld ul ajgejrene si sisay) 210190 Syl JO UoisiaA [eulblio panoidde ay 1
“regBnjian Yayioljqig UsIpn NL Jap ue 1sI uoneuassiq Jasalp uoisiaAfeulblO aponipab ausiqoidde aiqg

qny a8pajMmous| JNoA

Slaylonqie



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hub

5 Fully adaptive algorithm for AFEM for nonlinear operators

L-shaped domain

= umif,, Aug = 10~ Ap;e = 1072
10° - o umif,, Agg = 1072, Apye = 102 1
T g —e—umif., Awg = 1072, Ape = 1072 3
"“'_-g i - umif, Agg = 1074 Apse = 1072
=
= t i
ol
§ Wl E
= 5 J
- | N i
-
£ B ]
e L Tmag,,  SEN ]
g [ e = 05, Ay — 107, Ay — 10°2 e, O(NTR) 1
@ jgal =035 kg —107% App = 102 Ty, TR i
= 0.5, Ayg = 1072, Apye = 1072 B~ By heeg 1
E = 05, dag = 10°%, Mo — 1072 i 1
i il i i il i i ioiiavil i i i diaal i i i il i 1 i il i 1 ida il
10t 10* 10 il il 10® 10"
number of elements N
L-shaped domain
- Uit Aggg = 1072, Apse = 1
107 |- - unif,, Aug = 102, Apse = 10! |
ke o F o umif., Ay = 1072, Apse = 1072 4
el i < umif,, Agg = 1072 Apse = 1073 1
= I 3 1 APic i
= i o unif, Ayg = 1072, Ape = 1079 |
=
= "
= Wi =
E | i
$ [ = =05 pug =102 Apse =1 e O 1
= —o—f = 0.5, Aug = 1072, Apje = 10 N
g o2k =05, hag = 1072, dpo — 102 e o, T -
F == 0.5, Agp = 1072, Apjp = 1072 - 0 = ]
F =05, dag = 1072, Apie = 1074 O(N—HE) 7
L fa el T R | . P | PR | P | . PR PR | o
1ot 102 108 1 108 108 g
number of elements N
L-shaped domain
et = - unif, Adgg = 1072, Apj = 1072 .
e -
=
;- g
8 ATk E
=2 -
)
? P 8= 01, Mg = 1072, Ape = 102 sy
E T 8 =0.3, Age = 10-2, Apy = 102 W, O
ik =05, Aug = 1073 A = 1077 S Sy Sl j
E =07, Ay = 1072, Apy, = 1072 ]
F e = 0.0, Ayg — 1072, Ay — 102 ON=ME 5
Lol L TR I R | 1 Lo gl L Lol L (R W a| L il L Lol L L
10 10?2 1P 1 i 108 107

Figure 5

144

number of elements N

.7: Example from Section 5.4.1 (Experiment with unknown solution on L-shaped

. . k . .
domain): Error estimator ne(, ”1) on mesh Tz, perturbed Banach—Picard itera-
tion k, and PCG step j of Algorithm 11 with respeet to the number of elements

N of the mesh Tg for various parameters @, Apic, and Aajg.
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Figure 5.8: Example from Section 5.1.4 (Experiment with unknown solution on L-shaped

k;! i’ - -
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eration k', and PCG step i’ of Algorithm 11 with respect to the overall cost
expressed as the cumulative sum ¢ iy<(e 1) # e for various parameters 6,
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