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Kurzfassung 

Im Rahmen elliptischer partieller Differentialgleichungen (PDE) betrachten wir die Finite 
Elemente Methode (FEM) und die Randelementmethode (BEM). Wir entwickeln sowie 
analysieren adaptive Algorithmen, die nicht nur die adaptive Netzverfeinerung steuern, 

sondern auch die Terminierung von geeigneten Lösern, d.h., die Linearisierung im Fall von 

nichtlinearen Differentialgleichungen und das iterative Lösen der sich ergebenden linearen 

Gleichungssysteme. 

Zum einen betrachten wir elliptische PDEs zweiter Ordnung, bei denen die auftretenden 

diskreten Systeme nicht exakt gelöst werden. Für kontrahierende iterative Löser formulie- 

ren wir einen adaptiven Algorithmus, der die adaptive Netzverfeinerung sowie die inexakte 

Lösung der auftretenden nichtlinearen bzw. linearen Systeme überwacht und steuert. Wir 

beweisen, dass die vorgeschlagene Strategie zu linearer Konvergenz mit optimalen alge- 

braischen Raten führt. Hierbei fokussieren wir uns auf Konvergenzraten in Bezug auf den 

gesamten Rechenaufwand. Unsere Analysis ist anwendbar auf lineare Probleme, bei de- 

nen die linearen Systeme mittels optimal vorkonditionierter CG-Verfahren (PCG) gelöst 
werden, sowie nichtlineare Probleme mit stark monotoner Nichtlinearität, die mittels der 

sogenannten Zarantonello-Iteration linearisiert werden. 

Wir kombinieren die zuvor genannten Resultate im Rahmen elliptischer Randwertproble- 

me zweiter Ordnung mit stark monotoner und Lipschitz-stetiger Nichtlinearität. Wir präsen- 

tieren einen erweiterten adaptiven Algorithmus für die Berechnung der numerischen Appro- 

ximation, der neben der adaptiven Gitterverfeinerung und der Zarantonello-Linearisierung 

auch einen kontrahierenden algebraischen Löser für die auftretenden linearen Gleichungs- 

systeme steuert. Wir ermitteln Abbruchsbedingungen für den algebraischen Löser, die ei- 

nerseits nicht zu einschränkend, aber andererseits ausreichend dafür sind, dass die inexakte 

Zarantonello-Linearisierung kontrahierend bleibt. In ähnlicher Weise ermitteln wir geeig- 

nete Abbruchsbedingungen für die Zarantonello-Iteration, sodass der Linearisierungsfehler 

sich nicht nachteilig auf den residualen a posteriori Fehlerschätzer auswirkt und die ad- 

aptive Netzverfeinerung zuverlässig gesteuert wird. Wir beweisen die Kontraktion der (ge- 

schachtelten) inexakten Iteration, die auf lineare Konvergenz des Gesamtverfahrens führt. 

Desweiteren beweisen wir, dass das Verfahren mit der optimalen Rate in Bezug auf die 

Freiheitsgrade konvergiert. Schließlich beweisen wir, dass es auch mit derselben optimalen 

Rate in Bezug auf den gesamten Rechenaufwand konvergiert. 

Zum anderen betrachten wir Adaptivität und PÜG im Rahmen von Randwertproblemen 

für elliptische Integralgleichungen erster Art. Ähnlich wie zuvor steuert der präsentierte 

adaptive Algorithmus die Terminierung von PCG sowie die lokale Netzverfeinerung. Neben 

Konvergenz mit optimalen algebraischen Raten beweisen wir, dass das Verfahren mit fast- 

optimaler Rate in Bezug auf den gesamten Rechenaufwand konvergiert.





Abstract 

In the framework of elliptic partial differential equations (PDEs), we consider the finite 
element method (FEM) as well as the boundary element method (BEM). We design and 
analyze adaptive algorithms which do not only steer the adaptive mesh-refinement but also 

the termination of appropriate iterative solvers, namely, iterative linearization of nonlinear 

equations as well as iterative solvers for the arising linear systems. 

On the one hand, we consider a general framework for treating linear and nonlinear 

second-order elliptic PDEs, where the arising discrete systems are not solved exactly. For 

contractive iterative solvers, we formulate an adaptive algorithm which monitors and steers 

the adaptive mesh-refinement as well as the inexact solution of the arising discrete systems. 

We prove that the proposed strategy leads to linear convergence with optimal algebraic 

rates, where we focus on convergence rates with respect to the overall computational cost. 

Our analysis covers linear PDEs where the linear systems are solved by an optimally pre- 

conditioned conjugate gradient method (PCG) as well as nonlinear PDEs with strongly 
monotone nonlinearity which are linearized by the so-called Zarantonello iteration. 

Furthermore, we combine and extend the aforementioned results in the frame of second- 

order elliptic boundary value problems with strongly monotone and Lipschitz-continuous 

nonlinearity. We introduce an extended adaptive algorithm for the computation of the 

numerical approximation, which steers the adaptive mesh-refinement, the Zarantonello lin- 

earization, and a contractive algebraic solver to solve the arising linear systems. We identify 

stopping criteria for the algebraic solver that on the one hand do not request an overly tight 

tolerance, but on the other hand are suflicient for the inexact Zarantonello linearization to 

remain contractive. Similarly, we identify suitable stopping criteria for the Zarantonello 

iteration that leave an amount of linearization error that is not harmful for the residual 

a posteriori error estimator to steer the adaptive mesh-refinement reliably. We prove a 

contraction of the (nested) inexact iterations leading to linear convergence of the overall 

adaptive algorithm. Furthermore, we prove that the adaptive algorithm converges with 

optimal rates with respect to the number of degrees of freedom. Finally, we prove that the 

adaptive algorithm converges with the same optimal rate also with respect to the overall 

computational cost. 

On the other hand, we consider the interplay of adaptive mesh-refinement and PCG in 

the frame of BEM for elliptic integral equations of the first kind. As before, the proposed 

algorithm steers the termination of PCG as well as the local mesh-refinement. Besides 

convergence with optimal algebraic rates with respect to the number of degrees of freedom, 

we also prove that the algorithm converges with almost optimal rates with respect to the 

overall computational cost.
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1 Introduction 

1.1 Motivatıon 

Two very important methods for numerically solving partial differential equations (PDEs) 
arising in engineering and natural sciences are the finite element method (FEM) and the 
boundary element method (BEM). While typical fields of application of FEM are, e.g., struc- 

tural analysis, heat transfer, and fluid flow problems, BEM can be used to solve problems 

from, e.g., fluid mechanics, acoustics, or electromagnetics, where the PDEs on a possibly 

unbounded exterior domain have equivalently been formulated in terms of integral equations 

posed on the boundary. 

This wide range of fields of application led to the development of various numerical 

schemes based on the principal ideas of finite elements. Most of these methods discretize the 

domain of interest by a mesh of polygons, thus leading to a reduction of the PDE to a finite 

dimensional system of equations, and consequently to a finite dimensional approximation 

of the in general unknown solution. The quality of this approximation can be controlled by 

the mesh-width of the discretization of the domain. As a result, a simple and widely used 

idea to decrease the error is to uniformly refine the corresponding mesh successively, which 

yields convergence of the error to zero. However, the order of convergence might be heavily 

spoiled by singularities of the unknown solution which can be induced by the given data, 

the differential operator, and/or the geometry. Hence, significantly more computational 

effort is needed to reach a required accuracy, since the convergence of the error can be 

arbitrarily slow. To circumvent this unnecessary computational effort, the mesh can be 

refined locally at these singularities. However, doing this beforehand would require a priori 

information of the unknown solution which, in general, is not available. This led to the 

development of adaptive algorithms which automatically steer the local refinement via a 

posteriori error estimators, i.e., adaptive finite element methods (AFEM). One particular 

focus in AFEM is on the numerical analysis of rate-optimal convergence, where one aims 

to prove that the adaptive strategy leads to convergence of order O(#T)”°) along the 

sequence of generated triangulations, with s > 0 being maximal, where we plot the error 

estimator over the number of elements #T,. 

Concerning the rate- optimal convergence of AFEM, some seminal works for linear prob- 

lems are, e.g., [T® 3 | KNNOR, ®FP LA]. For nonlinear prob- 
lems, we refer to [Yuxx}2, 2303, BENRIE, GOMEEZE EFFF4] for a general frame- 
work of convergence of AFEM with optimal cı convergence rates. Some works also account for 

the approximate somputadion of the discrete solutions 7 iterative (and inexact) solvers, 

see, e.g., [E3E3t0, AGLIE] for linear problems and [33 }, GHENIS HIW o0, HWGH] 

for nonlinear model oroblems. Moreover, there are many papers on a posteriori error es- 

timation which also include the iterative and inexact solution for nonlinear problems, see, 
KIRTAN e.g., [EAHYEE, E95, AWIS, BWIN] and the references therein. 
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As far as optimal convergence rates are concerned, the mentioned works focus on rates 

with respect to the degrees of freedom. Contrary to this, in practice, one aims for the 

optimal rate of convergence with respect to the computational cost, i.e., the computational 

time, which is one of the main goals of the present thesis. In [Ste07], this is already addressed 
for the 2D Poisson model problem. However, this seminal work assumes that a sufliciently 

accurate discrete solution can be computed in linear complexity, e.g., by a multigrid solver. 

Under these so-called realistic assumptions, it is proved that the total error, which consists 

of the energy error plus data oscillations, converges also with optimal rate with respect to 

the computational cost. 

One starting point of the present thesis is [GHPS18], where an elliptic PDE with strongly 
monotone nonlinearity is considered. There, the arising nonlinear FEM problems are lin- 

earized via the so-called Zarantonello iteration, which leads to a linear Poisson problem in 

each step. The adaptive algorithm presented therein drives the linearization strategy as well 

as the local mesh-refinement and almost optimal convergence rates with respect to the total 

computational cost are proved. In the present thesis, we prove optimal rates with respect 

to the overall computational cost based on an abstract analysis in the spirit of [CFPP14]. 
Besides the mentioned Zarantonello iteration for nonlinear model problems, this abstract 

setting also covers linear solvers like PCG with optimal preconditioner. In a next step, 

we then combine these two approaches in a fully adaptive algorithm and prove optimal 

convergence rates with respect to the overall computational cost. Here a key question is to 

identify suitable stopping criteria for the involved and nested iterative solvers. 

For problems on unbounded domains, FEM often is not well applicable. In these situa- 

tions, BEM can be the better option, since it does not consider and discretize the PDE itself 

but an equivalent boundary integral equation. Hence, a given problem on an unbounded do- 

main can be reduced to a problem on its (possibly) bounded boundary. In a post-processing 

stage, the solution of this integral equation then gives rise to an approximation of the PDE 

solution on the whole space via a representation formula. Due to the dimension reduction 

and a potentially higher convergence order of BEM, this can lead to higher efficiency in 

terms of the computational cost. 

We refer to [Gan13, FKMP13, FFK"14, FFK"15, AFF" 17] for some milestones for adap- 
tive BEM. These works assume that the arising Galerkin systems are solved exactly. How- 

ever, we note that this is hardly possible in practice, where matrix compression techniques 

like the fast multipole method, panel clustering, or hierarchical matrix techniques are a must 

to deal with the dense BEM matrices. In particular, this prevents the use of direct solvers. 

Instead, we avoid the latter assumption and present an adaptive BEM algorithm to solve 

elliptic integral equations of the first kind. This algorithm uses a preconditioned conjugate 

gradient method (PCG) with optimal additive Schwarz preconditioner to approximately 
solve the arising linear discrete systems. Analogously to [GHPS18], we prove convergence 

with optimal rates with respect to the degrees of freedom. Due to an additional consistency 

error stemming from matrix compression techniques for the dense BEM matrices, this leads 

to almost optimal rates with respect to the computational complexity.



1.2 Outline 
  

1.2 Outline 

Chapter 2 

First, in Chapter 2, we collect some preliminaries and basic notations which will be used 

throughout the whole thesis and introduce Lebesgue as well as Sobolev spaces on domains 

N c R@ with d = 2,3 and boundary 0. We recall the most important results and properties 

from PDE theory and functional analysis which are needed for the analysis of the following 

chapters. 

Chapter 3 

In Chapter 3, we then introduce meshes T°’ of a domain  C R® as well as meshes T! on 

subsets I' C O0 of the boundary 90. Additionally, we recall structural properties (R1)- 

(R3) for the mesh-refinement from [CFPP14], which are essential for the abstract analysis 
concerning optimal convergence rates in the subsequent chapters. These assumptions are, 

e.g., fulfilled for the extended 1D bisection and the newest vertex bisection, which we recall 

in Section 3.5 and Section 3.6, respectively. 

Abstract framework for Chapter 4-6 

In the following chapters, we present and analyze adaptive algorithms, which take the form 

Gore] — [Bstmae] — [Mak] — [Reme] an 
where | Mark | is based on the Dörfler criterion from [Dör96] with (quasi-)minimal cardi- 

  nality [Ste07, PP20]. These algorithms generate a sequence of discrete approximations u/ 
to the, generally not available, exact solution u* of the given problem. Here, the index 

£ corresponds to the discretization of the given problem. However, since solving the aris- 

ing discrete problems exactly is usually not possible or very costly, iterative solvers are 

employed. Therefore, we adapt the strategy (1.1) as follows: 

Iteratively Solve & Estimate | — — (1.2) 

This gives rise to iterative approximations us for the exact discrete solutions v7, where the 

index k corresponds to the iterative solver. The numerical analysis of (1.2) thus requires 
the index set 

  

Q:= {(¢,k) € N3 : discrete approximation uf is computed by the algorithm 1.3 0 ¢ 

together with an ordering 

0k) < (0K EI ks computed earlier than % . 1.4 ¢ ¢ 

Additionally, we define the total step counter |(¢, k)| as 

(k)| == #I(&,k)e Q: (L,K) < (O,k)}. (1.5)
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To prove convergence with optimal algebraic rates with respect to the number of degrees 

of freedom of the iterates us to the exact solution u*, we consider a certain guasi-error 

Ak = ||u* — ufl| + ne(uf) combining the error ||u* — uf|] as well as the error estimator 
neluf). The key argument for the proof is the full linear convergence 

Ab < On KON Ak for all (&,k),(0',k') € Q with (KR) < |(¢, k)], (1.6) 
where Cjin > land 0 < gin < l are generic constants. 

Given N € Ny, let T(N) be the set of all refinements 7 of 7% with #7 - #% <N. For 
s > 0, define 

u lla, == sun +1)" Be (e — up ll + Mopt(uopi)) € R>o U {00}, (1.7) 

where us,. is the exact discrete solution associated to the mesh opt and Nopt(Uspı) 18 
the corresponding error estimator. It holds that ||w*|a, < © if and only if the quasi- 
error Ad. := ||u* — uspell + Nopt (Uspı) for the exact discrete solutions decays at least with 
algebraic rate s > 0 along a sequence of optimal meshes. In usual applications, AP, 

is equivalent to the so-called total error (i.e., error plus data oscillations) as well as to 

the estimator Nopt(U5,,) alone. Therefore, the approximability ||w*||a, can equivalently be 
defined through the total error (see, e.g., |Ste07, CKNS08, CN12, FFP14]) or the estimator 

(see, e.g., [CEFPP14]) instead of the quasi-error (used in (1.7)). The overall result will be 
the same. However, we stress that none of these equivalences hold for the solver iterates 

us ‚ Since those lack the Galerkin orthogonality, in general. 

Convergence of the adaptive loop (1.2) with optimal rates with respect to the degrees of 

freedom then means that, for all s > 0, there exists a constant C(s) > 0 such that 

CA) alla, < sup (#To— #T5+ 1D°AF < C(s) (Julla, + 1. (18) 
(L,k)eQ 

Hence, the quasi-error Af for the computed discrete iterates us decays with rate s > 0 if 

and only if rate s is possible for the exact discrete solutions on optimal meshes. 

Finally, our main goal is to prove convergence with optimal rates with regard to the 

computational cost. Assuming that all steps of the adaptive loop (1.2) can be performed 

at linear cost O(#T;), the sum 

> #% 
(' k")eQ 

(¢ ,k')<(£,k) 

is proportional to the overall computational work to compute the approximation us , since 

it depends on the full adaptive history. Convergence with optimal rates with regard to the 

computational cost then means that, for all s > 0, there exists a constant C’(s) > 0 such 

that 

() |, < sup< 5 #Te) A < Cs) (u]la.+D. 
L,k)eQ (I ,k/)eQ 

(¢ k" <(4,k) 

(1.9) 

Thus, the quasi-error A’; for the computed discrete solutions us decays with rate s > 0 

with respect to the overall computational cost if and only if rate s is possible with respect 

to the degrees of freedom for the exact discrete solutions on optimal meshes.



1.2 Outline 
  

Chapter 4 

This chapter is based on the recent own work [GHPS21]. 

Gregor Gantner, Alexander Haberl, Dirk Praetorius, and Stefan Schimanko. 

Rate optimality of adaptive finite element methods with respect to the overall 

comput ational costs. Math. Comp., accepted for publication, 2021. 

We consider the elliptic boundary value problem 

div A(Vu ) =f md, 1.10) 

u“ =0 onl, 

where N C R@ with d = 2,3 is a bounded Lipschitz domain with boundary T = ON) and 

f € L?(D) is a given load. We assume that the (possibly nonlinear) operator A: L?(N)? — 
L?(9)@ is strongly monotone and Lipschitz continuous. From this, we get the equivalent 
variational formulation: Find u* € H := H}(Q) such that 

(Au*, VHS H = / A(Vu*) - Vodx = / fvde =: (F,v)yyxy forallveH. (1.11) 
Q Q 

Due to the main theorem on monotone operators [7ei90, Section 25.4], there exists a unique 

solution u* to this weak formulation. For a given discrete subspace A, C H related to a 

mesh 77, of ), the same holds for the discrete formulation 

(Auy , vy = (F , vo)yrxn for all vy € Ar. (1.12) 

If A is nonlinear, the exact discrete solution u, can hardly be computed exactly. Even if A 

is linear, usual FEM codes employ iterative solvers like PCG, GMRES, or multigrid. For 

the abstract analysis, we assume that we have an iterative solver which is contractive in 

each step with respect to the energy norm, i.e., it holds that 

Is - bl < alu uw] forallke N (1.13) 
with a generic contraction constant 0 < qg < 1. Then, our adaptive algorithm takes the 

form (1.2). We note that (1.13) allows to control the solver error by means of 

q 

q 

  
k— 

o — gl < =g —w ll (1.14) 

We terminate the solver if [|uf — ulz_1||| is small compared to 7¢(uf) and employ nested 
iteration with u 41 us in this case. Under usual assumptions, we prove that the proposed 

adaptive strategy guarantees full linear convergence (1.6) of the quasi-error AF := ||u* — 
ußl| + ne(uf) consisting of error plus error estimator. Prior works, e.g., |Ste07, BMS10, 
CG12, GHPS18], proved linear convergence of the quasi-error only for those steps, where 

mesh-refinement takes place. Unlike this, full linear convergence (1.6) even holds for the 
full sequence of discrete approximations, i.e., independently of the algorithmic decision for 

mesh-refinement or one step of the discrete solver. Moreover, we prove convergence with
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optimal rates with respect to the degrees of freedom (1.8) as well as the computational 

cost (1.9). 
In Section 4.7, we consider the linear elliptic boundary value problem (1.10), where we 

assume that 

A: L?(0)* = 1?(0)* has the form A(v) = [z — A(z)v(z)], (1.15) 

where A e W1®(N)@*d is symmetric and uniformly positive definite. Then, the discrete 
formulation (1.12) is equivalent to the solution of a linear system 

M,x7 = b,. (1.16) 

with a positive definite and symmetric matrix M, € RY*N. We note that the condition 
number of the Galerkin matrix M; from (1.16) depends on the number of elements of T;, 

as well as the minimal and maximal diameter of its elements. Therefore, we use PCG 

in combination with an efficient preconditioner P, € RY*“N as an iterative solver. PCG 

formally applies the conjugate gradient method to the system matrix pP," ’MıP,” ? of the 

preconditioned linear system 

P, ?M,P, "x; = P,'?b,. (1.17) 

We assume that the matrix-vector products with P,' can be computed at linear cost, and 

that P, is optimal in the sense that the condition number of the preconditioned system is 

uniformly bounded, i.e, 

conda(P, *MP, %) < C, (1.18) 

where the constant C' > 1 is independent of the mesh 7;. This yields the contraction 

property (1.13) so that the abstract main results of Chapter 4 apply to this setting. In 

Sections 4.7.1-4.7.6, we formulate and analyze a multilevel diagonal scaling preconditioner 

P, € R“*N in the frame of multilevel additive Schwarz methods and prove its optimality. 

The abstract results of Chapter 4 also apply to AFEM for quasi-linear elliptic PDEs 

with strongly monotone nonlinearity (cf. Section 4.8), where we employ the Zarantonello 
iteration and assume that the arising linearized discrete equations are solved exactly at 

linear cost. The computation of one step of the Zarantonello iteration requires only the 

solution of one Poisson equation with homogeneous Dirichlet data, i.e., t0 compute un+! 

from ur, we have to solve the linear problem 

& 

(uhr! ou) = (uf, u) — 75 (Au — F,vo)gerxn for allvı € A, (1.19) 

where (-, -) = (V-, V*)r2(o)- Again, the abstract main results apply to this setting. 
To underpin the theoretical results, we present some numerical examples. 

Chapter 5 

As an extension of Chapter 4, the aim of Chapter 5 is to combine the two aforementioned 

approaches of Chapter 4, i.e., Section 4.7 as well as Section 4.8, into one fully adaptive
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algorithm for elliptic PDEs with strongly monotone nonlinearity. As before, we consider 

the elliptic boundary value problem (1.10) where the nonlinearity A: R? — R? is Lipschitz- 
continuous and strongly monotone. The presented material is based on the recent own 

work [HPSV21]: 

Alexander Haberl, Dirk Praetorius, Stefan Schimanko, and Martin Vohralik. 

Convergence and quasi-optimal cost of adaptive algorithms for nonlinear op- 

erators including iterative linearization and algebraic solver. Numer. Math., 

2021. 

We propose an adaptive algorithm of the type 
  

| estimate total error and its components 

} 

advance algebra/advance linearization/mark and refine mesh elements 

  

  

      

which monitors and adequately stops the iterative linearization and the linear algebraic 

solver as well a5 steers the local mesh-refinement. We compute a sequence of discrete 

appoximations u, W.J of the exact solution u* that have an index £ for the mesh- refinement, 

an index k for the Zarantonello linearization u 19), and an index j for the algebraic solver 

iteration approximating the exact solution un “of (1.19) by u, %1 First, we identify stopping 
criteria for the algebraic solver, e.g., PCG with optimal preconditioner, that on the one 

hand do not request an overly tight tolerance but on the other hand are sufficient for the 

inexact (perturbed) Zarantonello linearization to remain contractive. Similarly, we identify 
suitable stopping criteria for the Zarantonello iteration that leave an amount of linearization 

error that is not harmful for the residual a posteriori error estimate to steer the adaptive 

mesh-refinement reliably. 

Analogously to Chapter 4, the sequential nature of the fully adaptive algorithm gives rise 

to the index set 

Q:= {(£,k,j) € Ny : discrete approximation u is computed by the algorithm} 

together with the ordering 

0k, 5) < (K, 5 Eh un is computed earlier than u,, o 

Analogously to (1.5), we define the total step counter 

(LK, )] = 3{(6,k,§) € Q= (LK, ) < (¢,K, ")}, (1.20) 

as well as the quasi-error 

ku 0 koo ku k.j 
A,” = |u* — ug” || + Mu” — we” || + nelug”) 

consisting, in order, of the overall error, the algebraic error, and the error estimator. Our 

first main result proves that the proposed adaptive strategy is linearly convergent in the 

sense of 

AT TERN AI for all (RZ) < I RN], (1.21)
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where Cjn > land 0 < gin < l are generic constants. Second, we prove the optimal error 

decay rate with respect to the number of degrees of freedom exceeding those of the initial 

mesh in the sense that there exists a constant C’(s) > O such that 

Cs) ju|la.< sup (HTE-#To +1)’ AN) < Cds) (ua. +1). (1.22) 
(L,k,j)EQ 

As before, estimate (1.21) is the key argument to prove optimal error decay rate with 
respect to the overall computational cost of the fully adaptive algorithm which steers the 

mesh-refinement, the perturbed Zarantonello linearization, and the algebraic solver, i.e., for 

all s > 0, there exists a constant C’(s) > 0 such that 

Cs lu]la,< sup ( 5 #7) Ars <a, +D. 
(L,k,j)EeQ (Ok j')eQ 

(&K ,5") < (£,k,7) 

(1.23) 

As above, we stress that under realistic assumptions the sum in (1.23) is indeed proportional 

to the overall computational cost invested into the fully adaptive numerical approximation 

of (1.10), if the cost of all procedures like matrix and right-hand-side assembly, one algebraic 

solver step, evaluation of the involved a posteriori error estimates, marking, and local 

adaptive mesh refinement is proportional to the number of mesh elements in 7;, i.e., the 

number of degrees of freedom. 

To underpin the theoretical results, we also present some numerical examples. 

Chapter 6 

Chapter 6 is based on the own work |[FHPS19]: 

Thomas Führer, Alexander Haberl, Dirk Praetorius, and Stefan Schimanko. 

Adaptive BEM with inexact PCG solver yields almost optimal computational 

costs. Numer. Math., 2019, 

where we consider weakly-singular integral equations of first kind. We note that [FHPS19] 
was thhe first work in the context of adaptive FEM or BEM aiming for full linear convergence 

and corresponding optimal rates with respect to the computational cost. The core analysis 

was later improved by the analysis of [GHPS21] presented in Chapter 4 in such a way that 

the latter only needs a contractive iterative solver, whereas some of the results of [FHPS19] 
are tailored to the BEM setting with inexact PCG solver. 

For a bounded Lipschitz domain Q C R® with d = 2,3 and polyhedral boundary ON), let 

T<ONbea (relatively) open and connected subset. Given f: T—R, we seek the density 
¢*: I' — R of the weakly-singular integral equation 

(Vo) (zx) := /FG(SU —y)¢*(y)dy = f(x) forall x €T, (1.24) 

where G(-) denotes the fundamental solution of the Laplace operator in R?. Its lowest-order 

Galerkin formulation for a given triangulation 7; of I’ reads as follows: Find d% € P%(T)
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such that 

/ (VOR) (a) Wrla) da = / Fa) belw) dx for all y e POT). (1.25) 
T T 

As for FEM for linear problems in Chapter 4, the discrete formulation (1.25) can be written 

as an equivalent linear system 

M,x7 = bg (1.26) 

with a positive definite and symmetric matrix M, € RY*“ which, unlike FEM, is dense for 
BEM. For a given initial triangulation 79, we again consider an adaptive mesh-refinement 

strategy of the type (1.2), which generates a sequence of successively refined triangulations 

Tr for all£ € Ng. As before in Chapter 4, the condition number of the Galerkin matrix M, 

from (1.26) depends on the number of elements of 7,, as well as the minimal and maximal 

diameter of the elements. T'herefore, we require an efficient preconditioner as well as an 

appropriate iterative solver. 

The available results for adaptive BEM [Gan13, FKMP13, FFK"14, FFK"15, AFF'17] 
assume that the Galerkin system (1.26) is solved exactly. Instead, our adaptive algorithm 

steers both the local mesh-refinement and the iterations of an iterative PÜG solver for the 

Galerkin system (1.26). In principle, it is known [CFPP14, Section 7| that convergence 
and optimal convergence rates are preserved if the linear system is solved inexactly, but 

with sufficient accuracy. Analogously to Chapter 4, we guarantee this by incorporating an 

appropriate stopping criterion for the PCG solver into the adaptive algorithm. Moreover, 

to prove that the proposed algorithm does not only lead to optimal algebraic convergence 

rates, but also to (almost) optimal computational cost, we provide a preconditioner P, € 

RY*N such that the evaluation of the matrix-vector product with P,' can be done in 

O(#T,) operations, and that P, is optimal in the sense of (1.18), i.e., the system matrix 

pP," ’M,P,” ” of the preconditioned linear system has a uniformly bounded condition 

number which is independent of 7,;. 

As in Chapter 4, we prove that the quasi-error 

Ag := (16° — BE? + neloe)”) 

consisting of energy error plus error estimator is linearly convergent in each step of the 

adaptive algorithm, independent of whether the algorithm locally refines the mesh or does 

one step of the PCG iteration, i.e., there holds (1.6). Furthermore, we also prove (1.8), i.e., 
the quasi-error decays with optimal rate with respect to the degrees of freedom. 

Under realistic assumptions on the efficient treatment of the arising discrete integral 

operators, one step of the algorithm can be done in O((#7r) log”(1 + #7%)) operations. 
Hence, the cumulative computational complexity for the adaptive step (£,k) € Q is of order 

1/2 

o( 5 TR) BL 4 ET). (1.27) 
(¢ ke 

(¢ k")<(L,k) 

As a consequence of the log-linear cost (1.27), we prove that the quasi-error converges at 

almost optimal rate with respect to the computational cost, i.e., with rate s — ¢ for any
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e > 0 if rate s > 0 is possible for the exact Galerkin solution. This means that there holds 

the implication 

I" la. <a sup ( > (#Tr)log’(1+ #70) Al <oo foralle>0. 
(L,k)EQO (’,k')EQ 

,KT)<CEK) 

The difference to the abstract result (1.9) is the logarithmic term in the single-step com- 
plexity, which ultimately leads to the reduced order of convergence s — e. 

The final section underpins the theoretical findings by some 2D and 3D experiments. 

10



2 Basic notation and function spaces 

In this section, we introduce some basic notations which will be used throughout the whole 

thesis. Afterwards, we recall some definitions, notations, and results for the well-known 

Lebesgue and Sobolev spaces, cf., e.g., [McL00, Chapter 3] or [5S11, Chapter 2]. 

First, let & c R@ with d = 2,3 be a bounded Lipschitz domain with boundary O0. 

Depending on the context, |- | denotes the absolute value of scalars as well as the Euclidian 

norm of vectors respectively. For measurable sets in ® or in OÖ, we use the same notation 

|- | for the corresponding Lebesgue measure as well as the surface measure, respectively. 

In general, all constants as well as their dependencies are explicitly given for all state- 

ments. However, in proofs, we also abbreviate the notation, i.e., for real-valued quantities 

A,B, we write A < B to abbreviate A < ¢ B with a generic constant c > O which is clear 

from the context. Analogously, A 2 B is the abbreviation of A > ¢ B. Moreover, A ~ B 
states that both estimates As Band A 2 B hold true. 

For the remaining part of this section, and in this section only, let be any (Lebesgue) 

measurable subset of R” with n > 1 and strictly positive measure. 

2.1 Lebesgue spaces and basic notation 

For 1<p< x, the ususal Lebesgue spaces on () are denoted by LP(®) with corresponding 

norms 

1/p lern = (tr ae)" or1<p<cc 

as well as ||v|| x (n) being the essential supremum of u over ©. Analogously, Lebesgue spaces 
on the boundary ON are denoted by LP(ON) with corresponding norms || - ||Lr(an)- 

For allp > 1, it is well-known that LP(Q) isa Banach space. For p = 2, the corresponding 

Lebesgue space L?(D) is also a Hilbert space. Hence, for all u,v € L?(Q), we define the 

scalar product (-, :)r2(o) by 

(u, v)L2(0) == |er@ de. 

Let q > 1 denote the conjugate exponent to p, i.e., 

1 
=+2=1. 
p 4 

Then, for all ue LP(Q) and all v € L?(N), there holds the so-called Hölder’s inequality 

Ku, v)22(0,| = |uvlloıo) < |ulıroyl\vllieo) 

11
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2.2 Sobolev spaces on a domain I) 

Let v: Q — R, where Q C R? is a bounded Lipschitz domain with piecewise C'*°-boundary 

ON, cf. [5S11, Definition 2.2.10]. For n € N and a multi-index a = (a1,...,an) € NG, i.e., 

an n-tuple of non-negative integers, we denote the partial derivatives of v by 

o) = ()" () e 
if v is sufficiently smooth for them to exist. The order || of the partial derivative 0%v(x) 
is defined by 

lal:=aı +: +@n- 

  

Definition 1. Let v € L?(N). Then, v has a weak derivative g :— O*v € L?(D) of order o 

if there holds that 

Jo» da = (-1)Pl | vor dz forallwe CH (BP), 
Q Q 

where C§°(Q) == {u € C°(Q) : u has compact support in Q} 4s the space of infinitely 
differentiable functions with compact support. 
  

Note that if the weak derivative of v € L?(N) exists, it is unique and if v also has a 
classical derivative, the weak derivative coincides (almost everywhere) with the classical 

one. 
  

Definition 2. For £ € No, the Sobolev space H*(N) is defined by 

H*(9) := {veL*Q) : 8% € L*(Q) exists in the weak sense for all |a| < £). 

The inner product -, -) yye(qyy on H*(9) is given by 

(v, w) ey == > (0%, 0%w) 2y for allv,we H'9), 

lal<t 

and the corresponding norm || : ||rr«(o) % given by 

lollzeoy = (v,v)peo, forallve HD). 

  

For £ = 1, we hence get that 

H'\(9) = {ve L?(D) : Vv € L?(9)“ exists in the weak sense } 

with scalar product 

(v, w) 1) = / vw do | Vv-Vuw de, 
Q Q 

and norm HUH%{l(Q) = (v, U>H1(Q) = HUH%Z(Q) + HVUH%Z(Q)' 

For a non-integer £ := k+s withk € No and 0 < s < 1, the Sobolev space IT*(N) is defined 
by interpolation via the K-method, i.e., H°(0) := [HF(9), HF*!(O)]sa, cf., e.g., [5S11, 
Tri95]. 

12



2.3 Sobolev spaces on the boundary O0 
  

2.3 Sobolev spaces on the boundary 00 

Sobolev spaces on the boundary O0 can be defined in various ways, cf. [HWO08, McL00, 

SS11]. Let (80) := L?(80) be the space of all square-integrable functions on 90 with 
scalar product (-, -)an and norm || - ||2(any. For L’(ON) := L?(80)“, define the scalar 

product (v, w)an := (5, w;)pn and norm HUHQLQ@Q) = 

H(09) is defined as in [SS11, Section 2.4] with an equivalent norm on F!(90) given by 

(v, v)an- Then, the space 

\vllzz(0) + ||Vrollzz<any; 

where Vr: H1(90) — L?(T) denotes the surface gradient. For sufficiently smooth functions 
v on Q, it holds that Vrv = Vv — (Vv - n)n with the normal vector n pointing from the 
domain €2 to the exterior domain Q° := R4\ Q. 

For s € (0,1), the corresponding Sobolev space H°(ON) is defined via interpolation 

techniques, cf. [5S11, Proposition 2.4.3]. 
Additionally, we also need Sobolev spaces on subsets I' of the boundary 90. Suppose 

that DT cC 89 is a non-empty, relatively open set that stems from a Lipschitz dissection 

92 =TUOTU(ON\T), cf. [McL00, p. 99]. Define Eo,r as the extension operator which 

extends a function on T to ÖN by zero. For s € {-1/2,0,1/2}, the spaces H'/?+*(T) and 
H\/2+s(T) are defined as in [AFF*17] by 

EP) := {ole : ve HV?F(O0)} 
HV2Fs(D) := [u : Eopv € HV?F(O9)}, 

with corresponding norms 

\ollanv2+s(ny = weHll/lgfs(aQ){HwHH1/2+s(aQ) :wlr=v} 

lellawersn, = |Borolnve+(ony- 
For s = 1/2, there hold the norm equivalences ||v | zrı(an) > |v!z2(0) + |Vrollz2(any as well 

zur ~ [[v][ L2y + Vol g2y, €. [AFF*17, Facts 2.1] and [SS11, Section 2.4]. 

For ease of notation, if it is clear from the context, we identify a function v € H1/2+s(T) 
with its extension Eo,rv € H/?+3(I0). 

as ||v 

2.4 Dual spaces 

For a normed space X with norm || - ||», we denote the corresponding dual space by X’ with 
the duality pairing 

(vw) era := vw) forallveX andallweX, 

as well as the norm 

/ 

o/l = sup ] for all v/ € X". 
o#wexr  |wllx 

13
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To simplify notation and if it is clear from the context, we write (-, -) for the duality pairing. 

If we now have a Hilbert space A with scalar product (-, -)x and a continuously embedded 
Hilbert space H, the following lemma allows us to interpret the duality pairing (-, -Jayx# 

as a continuous extension of the scalar product (-, -)x. 
  

Lemma 3. Let H and X be Hilbert spaces with continuous embedding H — X. Then, the 

Riesz-isomorphism Jx: X — H’ is a well-defined, continuous, linear operator and Jx(A) 

is dense in H'. O 

If we set X = L2(0) and H = HY/2+5(9Q) or H = I!/2+s(80), we get with the formal 
definition 

  

(x, hywn = (Jar, hyaxa = (a, h)x = (&,h)ızon, forallz e X, heH 

so that it is legitimate to also write (-, -)ao (and analogously (-, -)r) for the duality pairing 

Wh: 
For s € {-1/2,0,1/2}, the negative-order Sobolev spaces on the boundary are now 

defined by duality as 

’ 

I(V2+s) (a9) - H1/2+S((9Q)/ 

fi—(l/Q—l—s)(l—w) - Hl/Q—i—S(F)/’ 

H_(1/2+S)(F) - fi1/2+s<1—w)/’ 

with the extended L?-scalar product on dQ and T respectively, cf. [AFF'17]. For these 

spaces, the following continuous inclusions hold: 

HFUR+s)(D) c mF@V2+s)(T), as well as, 

+24) (a0) _ Hj:(l/Q—l—s)(@Q) 

For ı) € L?(T), the zero extension Ey,rı) satisfies 

Eory € H_l/Q((?Q) as well as HwHfi—l/Z(F) = HEO,FZDHH—l/Z(aQ)- 

2.5 Trace operators and normal derivatives 

Let 2 be a bounded Lipschitz domain. Then, for 1/2 < s < 3/2, there exists a linear and 
continuous interior trace operator 

aut. 79) > H°V?(80) such that ™o = v|sq for all v € CO(Q), 

cf., e.g., [5S11, Theorem 2.6.8]. We define HA () := {v € H(Q) : —Av € L*(Q)} as well 
as the interior conormal derivative operator vi"t: [T} (Q) — II~Y/2(6Q) via the first Green’s 
formula 

(v, w)an = (Vv, Vw)g— (-Av, w)o for all we (0), 
cf. [AFF"17]. Analogously, the exterior trace Y$*' and exterior conormal derivative operator 
‘y$*' can be defined. Then, the interior as well as exterior traces and the conormal derivatives 

respectively give rise to jump terms, i.e., for a function v that admits both traces or conormal 

derivatives, we define the jumps [v]o := Y*v — yitv and [v]; := Y*v — YiRtv respectively. 

14



3 Meshes 

3.1 Triangulations of 2 

Throughout, let 0 C R@ with d = 2,3 be a polygonal or polyhedral Lipschitz domain and 

let conv(,5) denote the convex hull of a set SC R@. With this, we define a triangulation 

T“” on a domain 0. 
  

Definition 4. A set T” is called a triangulation or mesh of), if and only if: 

e Each element T € T is a (d+ 1)-simplex, i.e., there exist d+ 1 affinely independent 

points x1, - ,x441 € ) such that 

T :=conv({xy, - ‚2arı))- 

We denote the set of all vertices of an element T by N(T') := {x1, -+ , 2411} 

o The domain Q) is covered by T, i.e., 

a= | 
TeT® 

e Two distinct elements do not overlap, i.e., for all T,T' e T” with T#T", it holds 

that TNT'|=0, i.e., the overlap is a set of measure zero. 

  

  

Remark 5. Usually, we do not want to allow so-called hanging nodes, i.e., no vertex of any 

element T € T° lies in the interior of any edge or facet of another element T' &e T”. Hence, 

we say that a triangulation T“” is conforming or regular provided that the intersection of 

two elements T,T' € T with T # T’ is 

either empty, 

or a joint node, 

or a joint edge (d > 2), 

oe or a joint facet (d=3), 

i.e., for two distinct elements T,T' € T” with T # T, it holds that 

TNT = comv(N(T)NN(T)). 

  

15
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Further, we collect a couple more definitions. First, we define the set of all nodes No of 

a triangulation 7° by 

Nyo == N(T% = |) NM). 
TeT? 

The (local) mesh-width function hro € L®(T*?) of a triangulation T*! is defined by 

hralr :=hra(T) := |T|/  forall T e T%, 

where |: | denotes the volume (for d = 3) or the area (for d= 2) of an element, respectively. 
Moreover, we define the element patch w7o(T) and wro.(U) resp. for an element T' € T 
as well as for a set of elements U C T” by 

wra(T) := U ITET?”:TNTZÖN and wre(U) := U wra(T), respectively. 
Teu 

Next, the shape-regularity constant o(T) of an element T € T°” is denoted by 

diam(T')* 
o(T) := dam)“ with diam(7) := sup |e - y|. 

7 2 yEeT 

Similarly, we define the shape-regularity constant o(T°) of a mesh 7° by 

Q o(T):= max o(T), (7?) := max o(T) 
and we say that a family T of meshes is y-shape regular if there exists a constant v > 1 

such that 

sup o(T%) < 7. 
TP?EeT 

3.2 Triangulations of IN 

Analogously to Section 2.3, we also need triangulations of the boundary O0 for the boundary 

element method in Chapter 6. To this end, let @ C R@ with d = 2,3 be a bounded 

Lipschitz domain with piecewise C'*°-boundary 0f), and we suppose that either T’ is the 

whole boundary, i.e., I = O0, or T is a subset of the boundary, i.e., d ZT C O0, and 

relatively open such that 90 = TUÖT U (OD \T). Hence, T stems from a Lipschitz 

dissection, cf. [McL00, p. 99]. 

For the definition of a triangulation 7", we also need a reference element T,.r defined by 

d—1 

Tref := {x eRT!.0< X1,...,24-1 <1 and Zazj < 1}. 

j=1 

Hence, we get that T.ef = [0,1] C R is the closed unit interval for d = 2 as well as 

Trer = conv{(0,0),(1,0),(0,1)} ¢ R? for d = 3. 
  

Definition 6. A set T" is called a triangulation or mesh of T', if and only if: 

16
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oe Every element T € T! is the image of the reference element T,e under an affine, 

bijective element map gr € CX(T,e, T) with gr(Trer) = T. The set of nodes is given 

by N(T) := gr(N (Trer)), where N (T,er)) is the set of all vertices of the reference 
element Tre. 

e The domain T is covered by T', i.e., 

T= |)T 
TeT! 

  

  

Remark 7. Analogously to Remark 5, we say that a triangulation T" is conforming or 

regular provided that the intersection of two elements T,T’ € TV with T # T' is 

e either empty, 

oe or a joint node (d > 2), 

oe or a joint facet (d=3), 

and for d= 3, it holds that: IETNT’ is a facet for T' © T!, there exist facets f, f' < OT,er 
of Tyeg such that TNT’ = gr(f) = grr(f’) and IT ogrı: f > f is affıne. 

The set of nodes as well as the element patches are defined as in Section 3.1, while 

the (local) mesh-width function hr € LX(T) is given by 

  

hre|r = hrr (T) = red, 

where | | denotes the (d — 1)-dimensional surface measure of an element. 
Let Gr(x) := Dgr(x)' Dgr(x) € R(4-Vx(d-1) He the symmetric Gramian matrix of gr 

and Amin(Gr(x)) as well as Amax(Gr(x)) the corresponding extremal eigenvalues. Now, we 
call a regular triangulation TT a y-shape regular triangulation, if the element maps gr 

satisfy the following: 

e For alTeTT, it holds that 

  
hr (T)? . )\maX(GT(:U))> <~ 

LT) = sup en hr (T)? 
ET rer 

o If d= 2, it is explicitly required that 

Since the Gramian matrix Gr(z) is symmetric and positive definite, it holds that 0 < 
Amin(GT) < Amax(Gr)- This implies that o(T) > 1. For d = 2, the additional assumption 
ensures that the mesh-sizes of neighboring elements remain comparable. 
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3.3 Discrete function spaces 

For the approximation of the exact solutions of the different problems, we need finite- 

dimensional spaces which we introduce in this section. To this end, let 7? be a regular 

triangulation of 2 and p > 1 a fixed polynomial order. We define the space of globally 

continuous piecewise polynomials SP(T?) by 

SP(TE = {ve € C(9) : velr is a polynomial of degree <pforalTe Te} 

It holds that SP(TP) c H!(D) and we define the corresponding conforming subspace 

SE(TE) of HAQ) by 
STETTIN). 

3.4 Mesh-refinement 

Suppose that T, € {7, 71} is a given regular and -shape regular triangulation. Ad- 
ditionally, assume that refine(-) is a fixed mesh-refinement strategy, e.g., newest vertex 
bisection, cf. [Ste08]. We write 75 = refine(7,, M.) for the coarsest one-level refinement 
of 7,, where all marked elements M, < 7T, have been refined, i.e., M, < T7.\7;. We write 

To € refine(T,), if 7, can be obtained by finitely many steps of one-level refinement (with 

appropriate, yet arbitrary marked elements in each step). We define T := refine(79) as the 

set of all meshes which can be generated from the fixed initial mesh 7y by use of refine(.). 
Some important properties of y-shape regular meshes are collected in the next lemma. 

For boundary meshes, a proof can be found, e.g., in [AFF' 17, Lemma 2.6]. 

  

Lemma 8. Let T,. € {T”,TT} be a Y-shape regular triangulation. Then, there exists a 

constant C > 0 that depends only on y and, in case of a boundary mesh, additionally on 

the Lipschitz parametrization of O0, such that the following assertions hold: 

(i) For all T,T" € To with T NT" # 0, it holds that hr,(T) < C hr,(T"). 

(ii) The number of elements in an element patch is bounded by C, i.e., #(we(T)) < C for 

al Te T,. 

(fü) It holds that maxrer, EI <C. O 
  

For our analysis, we only employ the following structural properties (R1)-(R3), where 

Uson Z 2 and Umesh > 0 are generic constants: 

(R1) splitting property: Each refined element is split into finitely many sons, i.e., for all 
T. € Tand all M, C T,, the mesh 75 = refine(T,, M,) satisfies that 

H(To\To) HET SFR < On HT\T)+HT NT). 

(R2) overlay estimate: For all meshes 7 € T and 7,7; € refine(7), there exists a 
common refinement 7, &® 7, € refine(7,) Nrefine(7,) C refine(7) such that 

#(Te & To) < #Te + #To — #T. 
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(R3) mesh-closure estimate: For each sequence (T,)sen, Of successively refined meshes, 

i.e., 7041 := refine(7,, M;) with M,; C Ty for all ¢ € Ny, it holds that 

t—1 

HT - HT < Cuesh D _ #M;. 
J=0 

3.5 Extended 1D bisection (EB) 

For refining meshes on a 1-dimensional boundary TC 002 with C R?, we consider the 

extended bisection algorithm (EB) from [AFF 13]. 

  

Algorithm 9. Input: Mesh T, € T := refine(79), set of marked elements MY = M, C 
Te, counter k := 0. 

Refinement Loop: 

(i) Repeat the following steps (a)-(c): 

(a) Update the counter k — k + 1. 

(b) Defineu'®) :— Urem-D IT’ € MT : TAT #0 and helr > o(To) helr}. 

(c) Define MM) = /\/lgk_l) Uk 

Until u®M = 0. 

(ii) Bisect all elements T € MS to obtain T, := refine(7T,, Ma,). 

Output: Refined mesh T, = refine(T,, M,). 

Let 70 be the initial mesh on a 1-dimensional boundary I' C 00 with C R?. Due to 

the bisection in Algorithm 9, i.e., Step (ii), EB yields a contraction of the local mesh-size 

on refined elements, i.e., 7. € refine(7,) implies that 

hlr <2 "her fralTET\T. (3.1) 

Additionally, [AFF "13, Theorem 2.3 (i)] guarantees uniform ~-shape regularity with Y := 
20(70), i.e., for all triangulations 7, € T, it holds that 

Te) <Y. (3.2) 

Splitting property (R1) 

Since Step (ii) of Algorithm 9 uses bisection, there holds (R1) with Cson = 2. 

Overlay estimate (R2) 

The overlay estimate (R2) is shown in [AFF'13, Theorem 2.3 (ii)]. 
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Mesh-closure estimate (R3) 

The mesh-closure estimate (R3) is shown in [AFF"13, Theorem 2.3 (iüi)]. 

3.6 Newest vertex bisection (NVB) 

One of the most popular mesh-refinement strategies is the so-called newest verter bisection 

(NVB), cf. e.g., [Ste07] for d = 2 as well as |Ste08] for d = 3. We use NVB for d= 2 
as refine(-) to refine triangulations of a given domain N C R? in Chapter 4 as well as 
Chapter 5. Additionally, we also use the same algorithm for refining surface triangulations 

on I' C 99 with Q ¢ R? in Chapter 6. 

For the sake of completeness, we include the NVB algorithm for d = 2: 

  

Algorithm 10. Initialization: Input: Initial mesh To. 

e For each triangle T € To, define an arbitrary vertex as the newest vertex. 

e For each triangle T € To, define the edge opposite to the newest verter as the refer- 

ence edge Er. Let &xer,o := {Er : Te To} be the set of all reference edges of the 

initial mesh To. 

Newest Vertex Bisection: Input: Mesh 7, € T with corresponding set of reference edges 

Eref,e != {Er : Te Tet, set of marked elements M, < Te, counter k :—= 0. 

Refinement Loop: 

(i) Define the set of marked reference edges MY = {Er : T € M.}. 

(ii) Repeat the following steps (a)-(b): 

(a) Update the counter k — k + 1. 

(b) Define MP = {Er : T €7, s.t. there erists E € MED with EC T}. 

Until MO = MI. 

(ii) Refine all elements T € T, which have at least one marked edge in the set MM 
according to the refinement rules depicted in Figure 3.1. 

Output: Refined mesh T, = refine(T,, M.). 
  

Let 70 be the initial mesh on a domain I C R@ with d > 2 and let 7o € T be a 

refinement of 70. It holds that NVB reduces the local mesh-size on refined elements, i.e., 

T, € refine(7,) implies that 

hr<2 Y9 he|p fralTET\T. (3.3) 
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  > 
m ZI I „A 

Figure 3.1: For each triangle T € T,, there is one fixed reference edge Er, indicated by 

the extra pink line. If T is marked for refinement, we mark its reference edge, 
cf. Step (i) of Algorithm 10. Additionally, if Er C T’ for a neigbouring ele- 
ment T’ € Te, the edge reference edge Er is marked to avoid hanging nodes, 
cf. Step (ii) of Algorithm 10. Hence, more than one edge of an element can be 

marked (pink dots). Then, refinement of T is done by bisecting the reference 
edge, where its midpoint becomes a new vertex of the refined triangulation To. 

The reference edges of the son triangles are opposite to this newest vertex (bot- 

tom left). If more than one edge is marked (top), using iterated newest vertex 
bisection, the element is then split into 2 or 4 son triangles (bottom). 

nr Ra In en 
Figure 3.2: Newest vertex bisection does only lead (up to similarity) to a finite number of 

the different colors represent a) clas: Starting with 

one triangle (left), iterative use of NVB does only create (up to similarity) new 

triangles in the first two steps (mid left and mid right). Hence in following steps, 
no new similarity classes are generated. 

    

      
   

A proof for (3.3) can be found, e.g., in [UKNSO0S, Ste07]. Additionally, NVB also preserves 

Y-shape regularity, i.e., there exists a constant y > 0 such that for all triangulations T, € T 
it holds that 

oT.) = maxo(T) < <7, (3.4) 

which is proved in [Ste08]. The latter work also shows for d= 3a similar result to Figure 3.2 

which illustrates for d= 2 that (up to similarity) only a finite number of different triangles 

can be constructed from the initial mesh 76 using NVB, ef. [Ste08, Theorem 2.1]. 

Splitting property (R1) 

There holds (R1) with 2 < Con < ©, which is proved in [GSS14]. The constant Oson > O0 

depends only on 70 and d. For d=2, it holds that Cson = 4, cf. Figure 3.1. 

Overlay estimate (R2) 

The proof of the overlay estimate (R2) can be found in [UKNS0S, Ste07].



3 Meshes 
  

Mesh-closure estimate (R3) 

First, the mesh-closure estimate (R3) has been proved for the case d = 2, cf. [BDD04]. 
Later, (R3) has been proved for d > 2 in |Ste08]. While both works [BDD04, Ste08] require 
a technical admissibility condition on To in order to prove the mesh-closure (R3), [KPP13] 
proved this admissibility condition to be unnecessary for d = 2. 

3.7 Other refinement strategies 

A different possible refinement strategy is red-refinement with first-order hanging nodes. We 

refer to |BN10], where the validity of (R1)-(R3) is shown. In the framework of isogeometric 
analysis, we mention the mesh-refinement techniques for analysis-suitable T-splines [MP15] 

and refer to |BGMP16] for truncated hierarchical B-splines as well as [GHP17] for hierar- 
chical B-splines. For further details on mesh-refinement strategies which satisfy (R1)—(R3), 
we refer to [BN10, MP15, Feil5] and to the discussion in [UÜFPP14, Section 2.5]. 
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4 Adaptive FEM for second-order elliptic 

systems of partial differential equations 

4.1 Introduction 

This chapter is based on the recent own work [ÜHF°:i]. While the analytical main results 
are the same, we add an additional section on preconditioning and more in-depth numerical 

examples are provided. We consider and analyze adaptive finite element methods (AFEM) 

for second-order elliptic systems of partial differential equations (PDEs), where the arising 
discrete systems are not solved exactly. Our model problem reads as follows: Let N C R“ 

be a bounded Lipschitz domain with d € {2,3} and boundary T' := 00. We assume that 
A: L2(0)* — L?(9)® is a strongly monotone and Lipschitz continuous operator, cf. Sec- 
tion #. for the precise definition. We consider the following quasi-linear elliptic boundary 

value problem: Given a load f € L?(9), find u* € H := HA(9) such that 

—div A(Vu*) = f in Q, 
4.1 

u =0 onT. 41) 

Therefrom, we get the equivalent variational formulation: Given a load f € L?(9), find 
u* € H = H}(Q) such that 

(Au™, v)p sy = / A(Vu*) - Vodx = / fode = (F, v)grxn TorallveH. (42) 
Q Q 

The main theorem on monotone operators [i®}, Section 25.4] admits a unique solution to 

the weak form (4.2). Given a discrete subspace X, C H related to some triangulation 7; of 

0), also the discrete formulation 

(Aug , vos n = (F, von for alle X (4.3) 

admits a unique solution u; € Ay, again due to the main theorem on monotone opera- 

tors [#:i%%, Section 25.4]. If A is nonlinear, then u; can hardly be computed exactly. Even 

if A is linear, usual FEM codes employ iterative solvers like PCG, GMRES, or multigrid. 

Given an initial guess w € A,, we assume that we can compute iterates uk = du‘) € 

X, which lead to a contraction in the energy norm on #, i.e., 

llu; —wfll < qllui —wf™Y forall ke N (4.4) 
with some A,-independent contraction constant 0 < q < 1. In explicit terms, we assume 

that we have an iterative solver with iteration function ®, : Xy — A; which is uniformly 

contractive in each step. Additionally, we assume that we can control the discretization 
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error (for the exact, but never computed discrete solution u; € X, from (4.3)) by some 

reliable a posteriori error estimator 

1/2 

Ca |lu* — ug] < meta) = ( S (T u”) | (45) 
TeT, 

where the local indicators n,(T', -) can also be evaluated for other discrete functions v, € &} 

instead of the exact Galerkin solution u; € Ay. 

Then, our adaptive algorithm takes the form 

Iteratively Solve & Estimate | — — (4.6) 

where the first step may be understood (and stated) as an inner loop, and is based 

  

on the Dörfler criterion from [|Dör96] with (quasi-) minimal cardinality [|Ste07, PP20]. 

4.1.1 State of the art 

The ultimate goal of any numerical scheme is to compute a discrete solution with error below 

a prescribed tolerance at, up to a multiplicative constant, the minimal computational cost. 

Since the convergence of numerical methods is usually spoiled by singularities of the (given) 

data as well as the (unknown) solution, a posteriori error estimation and related adap- 

tive mesh-refinement strategies are indispensable tools for reliable numerical simulations. 

For many model problems, the mathematical understanding of rate-optimal convergence of 

adaptive FEM has matured. We refer to [Dör96, MNS00, BDD0A, Ste07, CKNS08, CN12, 

FFP14] for some seminal works for linear problems, to [Vee02, DK08, BDK12, GMZ12] for 

nonlinear problems, and to |ÜFPP14] for a general framework of convergence of adaptive 
FEM with optimal convergence rates. Some works also account for the approximate compu- 

tation of the discrete solutions by iterative (and inexact) solvers, see, e.g., [BMS10, AGL13] 
for linear problems and [GMZ11, GHPS18, HW20a, HW20b] for nonlinear model problems. 

Moreover, there are many papers on a posteriori error estimation which also include the iter- 

ative and inexact solution for nonlinear problems, see, e.g., [EAEV11, EV13, AW15, HW18] 

and the references therein. 

As far as optimal convergence rates are concerned, the mentioned works focus on rates 

with respect to the degrees of freedom. However, in practice, one aims for the optimal 

rate of convergence with respect to the computational cost, i.e., the computational time. 

The issue of optimal computational cost is already addressed in the seminal work |Ste07] 

for the Poisson model problem. There, it is assumed that a sufficiently accurate discrete 

solution can be computed in linear complexity, e.g., by a multigrid solver. Under these 

so-called realistic assumptions on the solver, it is then proved that the total error (i.e., the 

sum of energy error plus data oscillations) will also converge with optimal rate with respect 

to the computational cost. A similar result is obtained in [ÜG12] for an adaptive Laplace 

eigenvalue computation. 

In recent works, concrete solvers are included into the convergence analysis. In [GHPS1B8], 

adaptive FEM for an elliptic PDE with strongly monotone nonlinearity is adressed. The 

arising nonlinear FEM problems are linearized via the so-called Zarantonello iteration (or 
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Banach-Picard iteration), which leads to a linear Poisson problem in each step. The 

adaptive algorithm drives the linearization strategy as well as the local mesh-refinement. 

In [GHPS18], it is proved that the overall strategy leads to optimal convergence rates with 

respect to the degrees of freedom and to almost optimal convergence rates with respect to 

the total computational cost. The latter means that, if the total error converges with rate 

s > O0 with respect to the degrees of freedom, then it converges with rate s-—e > O with 

respect to the overall computational cost, for alle > 0. Moreover, in [FHPS19] (cf. Chap- 
ter 6), we obtained analogous results for an adaptive boundary element method, where 

we employed a preconditioned conjugate gradient method (PCG) with optimal additive 

Schwarz preconditioner to approximately solve the arising linear discrete systems. 

We now aim to prove optimal rates with respect to the overall computational cost for the 

algorithm from [GHPS18]. Moreover, we give an abstract analysis in the spirit of [CÜFPP14] 
and show that this also covers linear solvers like PCG. 

4.1.2 Outline 

First, we formulate the precise assumptions on the model problem, the mesh-refinement 

and the FEM spaces (Section 4.2), and the error estimator as well as the iterative solver 

(Section 4.3-4.4). Then, we formulate the adaptive algorithm in Section 4.5 and state 

the abstract main results in Section 4.6, namely linear convergence of the quasi-error in 

Section 4.6.1 and optimal convergence rates of the quasi-error in Section 4.6.3. Before 

we then apply the abstract setting to adaptive FEM with PCG solver for linear PDEs 

(Section 4.7) including numerical examples (Section 4.7.7), we construct an additive Schwarz 
preconditioner in Section 4.7.1 and prove its optimality in Section 4.7.3. Afterwards, we 

apply the abstract setting to the the adaptive algorithm from [GHPS18] for adaptive FEM 

for problems with strongly monotone nonlinearity (Section 4.8) including some numerical 

experiments in Section 4.8.1 to underline the theoretical findings. 

4.2 Abstract model problem 

Let H be a Hilbert space over K € {R,C} with scalar product (-, -) and corresponding 
norm || - ||. The usual dual space of H is denoted by H’ with the corresponding norm || - |]. 
We consider nonlinear elliptic equations in the following abstract setting with variational 

formulation: Given a linear and continuous functional F € H’, find u* € H such that 

(Au*, VHS H = (F, VHS H for all v € H. (4.7) 

To guarantee solvability, we suppose that the operator A: H — #’ satisfies the following 

conditions: 

(O1) A is strongly monotone: There exists a constant & > 0 such that 

a |w — v]|? < Re (Aw —- Av, w— v)ypxy for all v,w € H. 

(O2) A is Lipschitz continuous: There exists a constant L > O such that 

|Aw- Avll’ < L||w-—v|| for all v,weH. 
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(O3) A has a potential: There exists a Gäteaux differentiable function P: H — K such 

that its derivative dP: H — #’ coincides with A, i.e., it holds that 

P(w-+tv) — P(w) 
(Aw , V)yrwy = (dP(w) , v)yy x = lim for all v,w € H. 

ter 

Let 70 be a given regular initial mesh and suppose that refine(-) is a fixed refinement 
strategy satisfying the axioms (R1)-(R3) from Section 3.4. To each 7, € T:= refine(75), 
we associate the related finite-dimensional conforming subspace X, C H ofthe given Hilbert 

space H. We suppose that refinement 7, € refine(7,) leads to nestedness of the corre- 

sponding subspaces in the sense that X, C X.. 

Then, the discrete formulation of (4.7) reads as follows: Given a linear and continuous 
functional F € H', find us € X, such that 

(Aus, Ve) H = (F, Ve) x H for all v. € As. (4.8) 

The main theorem on monotone operators |[Zei90, Section 25.4] yields existence and unique- 
ness of solutions u* € H as well as us € X, for both the model problem (4.7) and its discrete 
version (4.8), respectively. 

Let E := Re (P — F) be the energy functional. Then, it holds that 

L 
5 flug — vell® < E(va) - Eur) < 7 llue = vol” for all v, € A, (4.9) 

which is proved, e.g., in [GHPS18, Lemma 5.1]. In particular, u“ € H is the unique 

minimizer of the minimization problem 

E(u”) = minE 4.10 (u) = min&(v), (4.10) 

as well as u) € X, is the unique minimizer of the minimization problem 

E(u)) = min E(v.). (4.11) 
Ve ENXe 

As for linear elliptic problems, the present setting guarantees the following Céa lemma, 

where we include the proof for the sake of completeness. 
  

Lemma 11. Suppose that the operator A satisfies (O1)—(02) with constants 0 < o < L. 
Then, it holds with Coea := L/« that 

u” = well < Ocean min |Iu” — voll. (4.12) 
  

Proof. There holds the Galerkin orthogonality (Au* — Aus, ve)rxu = 0 for allv, € A,. 

Let w, € X, and u* Z u). Then, it holds that 

allu* o Uf||| > Re (Au* - Aus 3 ur — U) SH 
  

  

I =3l 
Re (Au* — Auf, u* — we)pyrxpy (02 

- ||u* = u) ——— < L]|w* - well. 
® 

Hence, we take the infimum over all w. € X,. Since X, is finite-dimensional, the infimum 

is attained and is, in fact, a minimum. [1 
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4.3 Error estimator 

For each mesh 7, € T, suppose that we can compute refinement indicators 

n(T,v)>0 foralTeT,andallv, € A,. (4.13) 

To abbreviate notation, let 7e(ve) := e(Te, ve), where 

1/2 
e (Ue, Vo) := < > ne(T, 2.) for all Uy C Te. (4.14) 

We assume the following azioms of adaptivity from [CEFPP14], where Csiap, Crel > 0 and 

0 < greq < 1 are generic constants: 

(Al) stability on non-refined element domains: For all triangulations 7, € T and 
refinements 7, € refine(7,), arbitrary discrete functions v, € A, and w. € A,, and 

an arbitrary set U, < 7.N 7, of non-refined elements, it holds that 

Mo (Uo, vo) — 116 (Us, we)| < Citanllve — well. 

(A2) reduction on refined elements: For all triangulations 7, € T and refinements 
T, € refine(7,), and arbitrary discrete functions ve € X,, it holds that 

no(To\Te, Ve) < (red ne(Te\To, ve). 

(A3) reliability: For all triangulations 7, € T, the error of the exact discrete solution 
us € X, of (4.8) can be bound by the error estimator, i.e., 

II” - wall < Creime(ug). 

(AA) discrete reliability: For all triangulations 7, € T and refinements 7, € refine(7,), 
the difference of the exact solutions u, € X, and u} € X, can be bounded by 

IIus < well S Creine(Te\To, un). 

We stress that the exact discrete solutions us € X, and uf € A, in (A3)-(A4) will never be 
computed but are only auxiliary quantities for the analysis. 

  

Remark 12. The verification of (Al)-(A4) in Section 4.7 and }.8 relies on scaling argu- 

ments and implicitly uses that all meshes T, € T are uniformly shape regular. Moreover, 

we note that Ihe analysıs is impkcitly tailored to weighted-residual error estimators, since 

the usual verification of (A2) relies on exploiting the contraction of the mesh-size on refined 

elements. 
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4.4 Discrete iterative solver 

For all triangulations 7, € T, let ®,:X%, — A, be the iteration function of one step 

of the iterative solver, i.e., for a given initial guess ud € X,, we can compute iterates 

uk := &, (uk!) e X. We require one of the following two contraction properties with some 

uniform constant 0 < getr < 1, which is independent of T.: 

(C1) energy contraction: For all triangulations 7, € T and an arbitrary discrete function 
ve € As, it holds that 

E(®e(ve)) - Eur) < o (E(va) — E(ug)). 

(C2) norm contraction: For all triangulations 7, € T and an arbitrary discrete function 
Ve € X, it holds that 

lug = Po(va)ll < getr lug — vall.- 

  

Remark 13. For linear symmetric problems, one usually has that E(v.) — E(u}) = 3 ||ve — 
ul||* for ve € X, and hence (C1) and (C2) are equivalent. 
  

To formulate the stopping criterion for the iterative solver of the adaptive algorithm, we 

need an additional auxiliary quantity. Let 

JEW) - E(w)|Y? in case of (C1), 

Aw, v) = K | in case of (02). (4.15) 

Then, the following lemma provides the means to stop the iterative solver. 
  

Lemma 14. Let T, € Tandv, € A,. Then, both (Cl) and (Ö2), respectively, imply the 

following estimates: 

(1) d(ug, ®(ve) 

(i) di(ve, ®(ve)) < (1 + getr) di(ug, ve), 

(ii) d(ug,ve) < (1~ gotr) ™" d(ve, D(ve)). 

) < Ietr Aus, ve), 

  

Proof. First, let assumption (C1) hold true. From the definition of di(-, -) follows that 

(C1) 
A, D)) LV 1E(@ ) — E@HM2 < ger Eloe) -EW|? = gar Aus, ve). 

Hence, claim (i) holds true. Note that dI(-, -) is a quasi-metric, i.e., it holds for all v., we, 2. € 

X, that 

o d(ve,ve) =0, 

o d(ve,we) = d(we,ve), and, 
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e A(ve,20) < d(ve, we) + dA(we,2e), 

where the triangle inequality follows from the fact that (a+b)V/? < a2 + b2 for a,b > 0. 
Therefrom, we get with claim (i) that 

Ave, B(ve)) < Ave, us) + di(ug, P(ve)) < (1 + Ger) Alun, ve), 

which proves claim (ii). Claim (iii) also follows from the triangle inequality combined witch 
claim (i). It holds that 

Aus; ve) < Aus, Dlve)) + ADlve), ve) < ger Aus, ve) + dlve, Plve)), 

which is equivalent to claim (iii). 

Now, let assumption (C2) hold true. Then, claim (i) is simply the norm contraction (O2) 
and claim (ii)-(iii) follow from the triangle inequality of the energy norm. DI 

4.5 Adaptive algorithm 

Now, we propose our adaptive algorithm. We will employ a lower index £ for the adaptive 

mesh-refinement as well as an upper index k for the respective steps of the iterative solver. 

  

Algorithm 15. Input: Initial mesh To and initial guess ur € Ao, adaptıvıty parameters 

0<6<1, Aetr >0, and Umark 2 1, counters L:=0 =: k. 

Adaptive Loop: Iterate the following Steps (i)-(v): 

(i) Repeat the following steps (a)-(c): 

(a) Update the counter (L,k) > (l,k+1). 

(b) Do one step of the iterative solver to obtain ul := Blu }). 

(c) Compute the local contributions ry(T, uf) of the error estimator for allT € Tr. 

Until d(uf, ut) < Acır neluh). (4.16) 

(ii) Define k(l) := k. 

(iii) Determine a set M,;, C T, with up to the multiplicative constant Cmark minimal cardi- 

nality such that 

0 m0(u) < e My, ub). (4.17) 

(iv) Generate Ty;ı := refine(T,,. My) and define u, , := u, 

(v) Update the counter (£,k) > (£+1,0) and continue with (i). 
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Output: Sequences of successively refined triangulations Ty, discrete solutions uk, and cor- 

responding error estimators ne(uf), for all >O andk >0. 
  

We define the following set of indices Q by 

Q := {(¢,k) € Nj : index pair (¢, k) is used in Algorithm 15 and k < k(¢)}. 

Since up,; = u, we exclude (£,k(£)) from the index set 9, if (+ 1,0) € ©. Since 
Algorithm 15 is sequential, the index set © is naturally ordered. For (¢, k), (¢, k') € Q, we 
write 

def 
— (0K < (k) (¢, k') appears earlier in Algorithm 15 than (¢, k). (4.18) 

With this order, we can define the total step counter 

t—1 

(6, k)| :=#{(l k) e Q: (k)< (L,k)} =k+ Ik), 
=0 

which provides the total number of solver steps up to the computation of u’j 

To abbreviate notation, we make the convention that if the mesh index ¢ € No is clear 

from the context, we simply write k := k(l), e.g., ur = u%(e). In addition, we introduce 

some further notation. Define 

2 := sup u E No : (£,0) € oO}. 

Generically, it holds that £ = x, i.e., infinitely many steps of mesh-refinement occur. 

Moreover, for (£,0) € Q, define k(£) := sup{k € Ny : (£,k) € Q} + 1. We note that the 
latter definition is consistent with that of Algorithm 15, but additionally defines k(£) = © 
if £ < o0. 

4.6 Abstract main results 

In this section, we state the main results in the abstract framework of Section 4.2. The 

analysis relies only on the assumptions (R1)-(R3) on the mesh-refinement, (A1l)-(A4) on 
the error estimator, and (Cl) as well as (C2) on the iterative solver respectively. Hence, for 
concrete model problems, only these assumptions have to be verified, cf. Section 4.7 and 

Section 4.8. 

First, due to the contraction property (Cl) and (C2) respectively, we have a posteriori 
error control of the error. 
  

Proposition 16. Suppose (C1) or (C2) as well as (Al)-(A3). Then, the quasi-error AY 
(consisting of error plus error estimator), which is defined via 

Af =t —uf || +ne(up)  for all (4,k) € Q== QU {(£,k) : k(¢) < oo}, (4.19) 
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satisfies that 

neu) + du, uf!) i 0<k <k(0), 
AF < Clay nelup) if k= k(0), (4.20) 

ne—1(uy) if k=0 and ¢{>0. 

The constant Ca > 0 depends only on Csiap, Crel, Getr, and Acır under (O2), while it 

additionally depends on a under (C1). 
  

Proof. Let (£,k)e Q and k > 0. Then, it holds that 

k k 
Iu* — ur || < lu* —wp|l + ur — we || 

(A3) * * k 
< Genus) + ur — ur || 

k k k 
< Orcı (meluz) — new )| + new )) + ur - Wr 

(A1) R 
< Greneluf) + (OreiCstan +1 |uf — uf]. 

Now, we distinguish between the different contraction properties. First, suppose (Cl). 

With (4.9) and Lemma 14(i)&(iii), it then follows that 

llup — g ||| \/2/04011 a 

= are w,® uw N)) 

hr detr in ni ') 

uk k—1 

Uy, Up ). 
Fri: 

  

Next, suppose (Ö2). With Lemma 14 (i)&{iii), it then follows that 

k— 
ug — will = Mur, ug") 

< getr Alu, u ') 

Getr k uk- 1 
< dl , . 
1 Getr (u “ “ ) 

  

Since AY = ||u*— uR||+ne(uf), this proves (4.20) for the case that 0 < k < k(¢). If k = k(¢), 
the stopping criterion (4.16) in Algorithm 15(i) yields that 

A(us, u.) < Actr (ur). 

This proves (4.20) for k = k(¢). If k = 0 and ¢ > 0, it holds that u) = u. Hence, it 
follows from the previous step that 

k k I“ — a0] = It -u& JS mil) = mild). 4.21) 
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Moreover, the equality u) = u, implies that u) € A%_ı. Therefrom, (A1)-(A2) yield that 

nel) = (EN Te, +e(Te\ Te-ı; u0)2) 7? 
Al = (ma T, ) 4 Tu?) 2 . 
(A2) ' 
< (malTN Tu)? + nahe \ Tu?) 
= m-ı (up). 

Since Ay = ||u* — up || + e(u}), combining (4.21)-(4.22) concludes the proof. O 

4.6.1 Linear convergence of the quasi-error 

The first main theorem states linear convergence of the quasi-error. We note that under 

certain assumptions, linear convergence holds for arbitrary parameters 0 < 6 < 1 and 

Actr > 0. 

  

Theorem 17. Suppose (Cl) or (C2) as well as (Al)-(A3). Define 

N x if (Cl)'z's valid, (4.23) 

TERRRTIEEn otherwise. 
stab{dctr 

Then, for all 0 < 0 < 1 and 0 < Acr < Aconv O, there exist constants Cin > 1 and 

0 < qun < 1 such that the quasi-error (4.19) is linearly convergent in the sense of 

Ab < ONE AK for all (0,K), (¢, K) € Q with (O,k') <(0,k). (4.24) 

The constants Cjn and in depend only on Ccea = L/a, Ostab; Greds, Chrel, Ietr, and the 

adaptivity parameters 0 and Acır, while it additionally depends on L in case of (C1). 
  

The following corollary states that the exact solution u* is discrete if £E < oo, i.e., if the 

number of mesh refinements is bounded. 
  

Corollary 18. Suppose the assumptions of Theorem 17. Then, £ < © implies that u* = u, 

and ng(uw;) = 0. 
  

Proof. According to Theorem 17, it holds that 

|u* — 7 + ne(uf) = A’Z —0 ask — oo. 

Moreover, contraction (C1) or (C2) (together with (4.9) in case of (C1)) prove that 

luy — ul] = dus, u) < gk, d(up, ur) —0 ask — oo. 

Uniqueness of the limit yields that u; = u“. Moreover, it follows that 

(A1) 
0<me(u}) < ne(uf) + llug —uf]l =0 ask. 

This concludes the proof. [] 
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4.6.2 Proof of Theorem 17 (linear convergence) 

Recall the definition of d((-,:) from (4.15). According to Algorithm 15, the contractive solver 
stops for the minimal k = k(£) > 1 such that 

d(uf, uf ) < Acır nelur). (4.25) 

In particular, since we exluded k from the index set Q, this implies that 

ne(uf) < Agr d(ug,uf !) for all (¢,k) € Q with k > 0. (4.26) ctr 

Proof of Theorem 17 under assumption (C1) 

In this section, we give a proof of Theorem 17 under the assumption (C1), i.e., that the 

iterative solver ®, leads to a uniform contraction of the discrete energy. Therefore, we first 

recall that the solution u* € H minimizes the energy E in H, i.e., 

E(u*) = min E(v) 

as well as that the discrete Galerkin solution u, € X, minimizes the energy E in A, i.e., 

Eiu,) = en Eve), 

cf. Section 4.2. Hence, for v, € X, the energy differences E(v.) — E(u*), E(us) — E(u*), and 
E(ve) —E(u}) are all non-negative. Therefrom, the absolute values in the definition of d((-, -) 
can be omitted which yields the Pythagoras-type identity 

d(u*,v.)” = d(u*, uf)” + d(uf,ve)” for all ve € A,. (4.27) 

The core of the proof of Theorem 17 is the following lemma, where 0 << land Acır > O 

are, in fact, arbitrary parameters. 
  

Lemma 19. Suppose (Al)-(A3) and (C1). Let0 <A <1 and Acır > 0. Then, there exist 
constants ;1 > 0 and 0 < in < 1 such that 

AF = d(u*, uf)? + ume(luf)?” for all (k) € Q (4.28) 

satisfies the following statements (i)-(ü): 

(i) AL < AF for all (6,k+1) € Q. 

(i) AY,, < g2 AF " for all (£+1,0) € Q. 

The constants u and gin depend only on L, o, Ustab, Greds Orc; ANd Getr as well as on the 

adaptivity parameters 0 < 0 <1 and A > 0. 
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Proof of Lemma 19(i). Let u,c > O be free parameters, which will be fixed below. First, 

we note that reliability (A3) and stability (Al) yield 

3) 2 *\2 
Oreı 10 (u ) Iu* - ll" < 

(A1) 
< 

k+1 k: 1 
2061 lu; )”+ 2 CH, Chab IIur — * ”l2 

Together with the equivalence (4.9), this leads to 

(4.9) L 

Au‘, ur)” < = 5 |“ - 7” 
k+1 k: 1 

<L C11rel 77€<u£+ ) + L CH Chab | KO * II" 

(4.9) 
< L CA n(uit") +2La!c? 

I 

k 
el cz stab d(uz, u)” . 

Let Cy := LC?, and Cy :=2La ' C? C2 . With this, combining the last inequality and 
the energy contraction (C1), we obtain that 

2 (4.27) 
d(u*, uy ) (L — &) d(u,uf)? + e du’, uf)? + d(uf, uy ) 

< (1-e)d(u*, u) +ECınelu 2 + (1 +€C’2)dl(ue,ulz+1) 

(C1) 
< (1-e)d(u*, uf)? +2Cı meluft')” + (1+EC5) gar Au, uf)” 

Since (£,k +1) € Q and according to the definition of ©, it holds that k+1 < k(£). Hence, 
inequality (4.26) and Lemma 14(ii) yield that 

(4.26) 
nut)” < AZ d(u T up)? 

Lemma 14(ii) 9 9 AN 
Actr (1 + detr) A(uz, u) ’ 

Let C3 := A% (1 + Getr)-- Combining the latter two estimates, we see that 

Mr dur, u) + une) 
< (1-2) d(u*, u)” + (u + EC) melug')” + (1+EC9) ac Auf, uf)” 
< (1- ec) d(u*, u)” + {(n+eCi)Cy+ (1 +£Co) g3, } Alu, uf)” 

Note that C1, Ca, Ca depend only on the problem setting. Provided that 

(u+E.C)OG+l+.O)g.<1-:, (4.29) 

we are thus led to 

ag < (1<e) (d(u*, a7)” + Alu, ur)”) 
4.27 x 
2 (1- ae ‚uf)” 

Up to the final choice of u, > 0 (see below), this concludes the proof of Lemma 19(i). O 
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Proof of Lemma 19(ii). Let u,6,&c > 0 be free parameters, which will be fixed below. First, 
we note that 

ko k)2 © c2 ¥\ 2 
lu” - w7 || ve e (1) 

(AN) c2,02 * k-1j12 
< 2 CH nelug 2 +2 rel Ostab ||“? u up | . 

Together with the equivalence (4.9), this leads to 

d * *2(42) * * 1|2 
(u*, up) | 

<LC 776(% + 102, Can lluz — u ik 

(4.9) _ k—1 
< LCel 7]8(“@ ) +2La ! C11rel C152tab dl(“’zauz )” 

Recall that Cı = LC#, and Ca = 2La”!C2, C2,,. With this, we obtain that rel 

Alu‘, u)? "EI (1 - e)dlu‘,ur)? + 2d(u*, us)? + d(ui, u)? 
< (1- )d(u‘, uf)? +sCı lu 7 +sCad(uf,ug > + Auf, ug)” (4.30) 

(C1) _ _ 
< (1—e)d(u*,uf)? + e Crpp(ul ™2 + (e Co + ¢2,) d(uf, v )2, 

Next, stability (Al) and reduction (A2) show that 

k k k 
ner (up) = No+1(Te N Teri, u) + nerı(Terı\Te, u) 

Al 
= (Ten Ten; un)? + ne+1(Terı\ Te, un) 

(A2) 
< 0e(Te N Togn ) + ¢ e (T\ Tosn, us)? 

— eluh)? — (1 - ga) mulTe\ Tri, ub)?. 

According to the Dörfler marking criterion (4.17) in Algorithm 15(iii), we are led to 

ner (ur)? < (L- (1 = ea) 8°) neluy)? =: gonelup)”. (4.31) 
Note that 

ur ur 1? < 2 (If - ug? + ui - ur IP) 

A Qg b + auf, u?) 
Q& 

(C1) 4 _ 
< — (qctr + 1) Iu;, us „2. 

Next, with ö > O0 which we specify further on, we use the following variant of Young’s 

inequality 

(a+b” <(1+8)a+(1+51)b? foralla,beR. 
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This leads to 

(Al) k k— k k—1 2 

uw) < (neu, + Cstap | - u I) 

<A) PH) Au |]? (4.32) 
_ nd ik < (+ mel )+ (1437 2 (g + 1) Clap Al g )™ 

Let Cy == 407" (g2, +1)C2,,. Note that Algorithm 15 guarantees that ul,, = uj. 
Combining the latter estimates, we see that 

Ag—l—l = di(u”, uw) ru ner lu) 
(4.31) 

< A(u*, us)? + ugone(un)” 
(4.30) B ke 

< (1 o) d(ut, u)? + e Crnp(ud™ )2 + (e Co + g,) Alui, ug)? + g ne(ud)? 
(4.32) 

< (1-2)Aut, u)? + leCın + o (1+0)} ey ) 
+ {2 Co + 2+ prap (14 071) Cul d(uf, uf )- 

Note that Ci, Ca, C4 and O < gg < 1 depend only on the problem setting. Provided that 

eChu '+p(ll+ö)<1-e and en +, ta + )Cı<i1-e, (4.33) 

we are thus led to 

N < (1) (Aut, a7)? + Aura)? + undur ')°) 
e (@ e+ ) 

= (1-2). 

Up to the final choice of ö, u,e > 0, this concludes the proof of Lemma 19(ii). O 

Proof of Lemma 19 (fixing the free parameters). To fix all the free parameters and to show 

that there exists a choice such that all the necessary assumptions are fulfilled, we proceed 

as follows: 

e Choose § > 0 such that (14 4d)qp < 1. 

e Choose u >O such that ¢%, + puqe(1+6)"1Cy <1 and puCs+ ¢, < 1. 

e Finally, choose ¢ > 0 sufficiently small such that (4.29) and (4.33) are satisfied. 

This concludes the proof of Lemma 19 with (1 —¢) = ¢f_. O 

Proof of Theorem 17 under assumption (C1). According to (4.9), it holds that 
A(u*, uk) = ||u* — uf|] and as a consequence that A¥ = (AF)V/2, where the hidden constants 
depend only on u, a, and L. 

Since the index set © is linearly ordered with respect to the total step counter |(-, -)]|, 
linear convergence (4.24) now follows directly from Lemma 19 via induction on the index 

pair. [] 
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Proof of Theorem 17 under assumption (C2) 

In order to prove Theorem 17 under assumption (C2), we first have to recall the following 
main result from |GHPS18] whose proof is based on a perturbation argument. 
  

Lemma 20 ([GHPS18, Lemma 4.9, Theorem 5.3]). Suppose (Al)-(A3) and (C2). Let 

0<6<1and0 < Actr < Aconv 8, where Aconv = Cl_&. Then, it holds that 
stab{ctr 

  * k Getr . k 1 * Id = ill < Ar 7 min u), Te (4.34) 

as well as 

(1 - Actr/ Aconv ) ne(uy) < ne(ur) < (1 + Actr/ Aconv ) nel). (4.35) 

Moreover, there exist Camps > O and < ganps <1 such that 

Net (Un) < CcHps danps ne(uy) forall ({+n+1,0) € Q. (4.36) 

The constants Copps and qanps depend only on Ocea = L/Q, Crel, Cstab, Gred, 004 Qetr, GS 

well as on the adaptivity parameters 0 and Actr- O] 
  

Lemma 20 shows that the given constraint on Acır guarantees estimator equivalence 

ne(uy) ~ m(u%). Assume Dörfler marking for ne(uy) and 9, cf. Algorithm 15(iii), then 
there holds with stability (Al) that 

9 — Actr/ Aconv „ (435) . 

Tı Iy < — k 
1+ )‘Ctr/)\conv 775(“6) = (0 Actr/ Aconv ) 7 (u,) 

(4.17) 
< m(M;, ur) - Actr/ Aconv ne (u) (4.37) 

(A1) x x k k 

< Ne (M€7 ur) + Ustab |w; = u] = Actr /Aconv rJe (u,) 

(4.34) 

< ne(Me,u). 

In other words, Dörfler marking for ne(u,) and 6 implies Dörfler marking for ny(u}) and 

0* = (0 — Actr/Aconv )/ (1 + Actr/ Aconv ) > 0. 

In the present case, the core of the proof of Theorem 17 is the following summability 

result. 
  

Lemma 21. Suppose (A1)—(A3) and (C2). Let 0 < 0 < 1 and 0 < Aeir < Aconv 0, where 

again Aconv = . Then, there exists CUsum > 0 such that 

Y A< CamAf forall (¢ K) € Q. (4.38) 
(£,k)eQ 

(6,k)>(¢ k") 

The constant Ugum > 0 depends only on L, o, Ciel, Cstab, Ired; ANd Getr, as well as on the 

adaptıvity parameters 9 and Acır- 
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Proof. The proof is split into six steps. 

Step 1. This step provides an equivalent quasi-error quantity. First, note that 

k k 
I” = ug < Ihe — wol + Ir — well 

(A3) 
S nelur) + Id — wel 

(Al) 
S nelwe) + | — w| =: Ar. 

This proves that Ay = |u* - u ||+ me(uf) S Ay. Second, the C6a lemma (4.12) proves that 

. Ly (412) . 

ug < well < u” < will + ut wi || S u url. o 

This concludes that 

  

    AF = llug — ugll + me(ug) = Ar. (4.39)   

Step 2. This step collects some auxiliary estimates. We start with 

  

A <mnrlus,)<AL, for all (¢,0) € Q with £ > 0. (4.40) 
      

With the C&a lemma (4.12) and reliability (4.20), it follows that 

k k 
Ir = gy | < fle® = gl + o = vyl 

(4.12) . 

Ss et =l 
(4.20) . 
S e (uyy) 

With nested iteration ud = w2 | and (A1)-(A2), we thus obtain that 

Ag = ||Iug — wol] + nelur) 
k k 

= ug — w_ || + me(uy_y) 
k 

<m-ı(lu, 1) 
k 

<Ay 

This proves (4.40). Next, we prove that 

  

  
AE < AF forall ((41,0) € Qand 0 <k < k(0). (4.41) 

    

To see this, note that 

(C2) k k k k k—k k 
ur — will < flug —wgll + lwf —will < (g + I - well. 
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Hence, it follows that 

AF = Jlug — ww | + neluy) 

< b+ R+ et ~ ¢ ¢ ¢ ¢ fie(ue) 

< Int — all nun) 
— Ah. 

This proves (4.41). Finally, we prove that 

  

  
Ar < lup —uf 7Y for all (4,k) € Q with k > 0. (4.42) 

    

With the inequality (4.26), which stems from the stopping criterion (4.16) of Algorithm 
15(i), and Lemma 14(ii), we get that 

„ (429) ,, Pemma 14(i) . 

new) Ss eu S ey = 

This leads to 

k k k 
Ay = | — ug | + meuy) 

(C2) 4 
S Mg u II + natur) 

< | uw | 

and thus proves (4.42). 

Step 3. Suppose that £ = © and hence k(£) < x for all£e No. Note that 

© kd-1 k(¢)—1 

> AN DAH Ds 
(L,k)EQ t=l'+1 k=0 k=k'+1 

(£,k)>(¢ k") 

(4 40) oo k(l) kl) 

D DA+ D AL 
{=0'+1 k=1 k=k’+1 

With contraction (C2), the geometric series proves for all (£,:) € Q that 

k(O-—1 (4.42) ) kW- 1 

DAL S D - 
k=1+1 k=1+1 

|||Ue u] IB in 

< Al 

(4.43) 
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Hence, it follows that 

0 =A; S A4 if k(¢) =1, 
k 

> A (1a) KO-I (a4) 
k=1 <) AP S A R0 > L 

k=1 

Moreover, it follows that 

k'+1 21) k ! : / / 

k(¢ = Ay Ss A if k(') = k" + 1, 
k 

Z Ay au) OA aa), 
k=k/+1 s Ah Ss A if k(¢') > k' +1. 

k=k'+1 

So far, this proves that 

> ASAb+ N, A. 
(L,k)eQ (=0 +1 

(L,k)>(0,k’) 

Exploiting the linear convergence (4.36) together with the geometric series, we prove that 

er) X . 
Aa XS) mal) 

=0 +1 =041 

oo 

k 
=) nelu,) 

IH! 

(4.36) L 
K Il 

S 776’(“5/)2‘]@1{135 
(=0 

k 
=~ (ug) 

< AL 

Overall, this proves that 

’ 4.41 ’ 
S AP S AN +Aj w A% provided that £= x. (4.44) 

(L,k)EQ 
(£,k)> (£ k') 

Step 4. Suppose that ¢ = £ < oo and hence k(¢') = k({) = oo. Then, the geometric 
series proves that 

x (4.43) 

(L,k)eQ k=k'+1 
(&,k)>(0',k’) 
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Step 5. Suppose that  <£< oo and hence k(£) = x. Then, it holds that 

-1 k(0)—1 E(¢')—1 

> A=-) > AR+ Y NLA 
(L,K)EQ (=0'+1 k=0 k=K' +1 

(0,k)>( k") 

First, note that 

x x (4.43) (4.40) 

LA=-AHNA <A S AL, 
k=0 = 

Provided that ¢/ < £ < oo, it hence holds that 

a k() k@)-1 
AS» Y AR+ Y A 

(L,k)eQ a) k=k'+1 
(6,k)>(¢ k") 

(4.40 =1 k(9 ke) 

> Art DD AL 
t=l'"+1k=1 k=k’+1 

Along the lines of Step 3, one concludes that 

1-1 kb) k(Ü) 
>N Ab+ Y AbSAh. (4.46) 

£=0'+1 k=1 k=k'+1 

Step 6. In any case, (4.44)-(4.46) prove for all (¢, k") € Q that 

N Am N A S AL ~Af. 
(L,k)EQ (L,k)EQ 

(£,6)> (¢ k) (£.k)> (¢ k) 

This concludes the proof of (4.38). N 

Proof of Theorem 17 under the assumption (C2). The proof is split into two steps. 

Step 1. From [CFPP14, Lemma 4.9], we recall the following implication for sequences 
(An)nen, In R>o and constants C > 0: Assume that 

> a, < Cay forall N € Np. 

n=N-+1 

Then, for NE No, it holds that 

,% An < 5 ran = on 

n=N-+1 n=N-+1 
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Inductively, it follows that 

(1+ 071" > a, < > Amtan=) An for allN,m E No. 

n=N+m n=N+1 n=N 

We thus conclude that 

anim < (1+ a-hem > An < C)(1+ C’_l)_mozN for all N,m ee No. 

Step 2. Since the index set Q is linearly ordered with respect to the total step counter 

I(,-)|, Lemma 21 and Step 1 imply that 

Ab < On gl FEN Ab for all (6,k),(O,k') € Q with (¢, k) > (£, k), 

where Ojin = 1 + Osum and gin = 1/(1+C5},). This concludes the proof. 
Om 

4.6.3 Optimal convergence rates of the quasi-error 

The second main theorem states optimal convergence rates of the quasi-error (4.19) with 

respect to the overall computational costs. As usual in this context (see, e.g., [CFPP14]), 

the result requires that the adaptivity parameters 0 < 9 < 1 and Actr > 0 are sufficiently 

small. With the following definition, we then get Theorem 23. 
  

Definition 22. For N E No, let T(N) be the set of all refinements T of To with 

#T — #To < N. 

Then, for given s > 0, define 

“a. := N+1)° inf “u, opt (US € R>o U : 4.47 Kae sup ( +1) ee (e = gl + Mopt (Wöpı)) € Ro U {00} (4.47) 

  

  

Theorem 23. Suppose (C1) or (C2) as well as (R1)-(R3) and (Al)-(A4). Define 

1— ctr 
. . . 

Gl if (C2) is valid, 

Aopt = 
(4.48) 

der a/2 otherwise. 
IetrUstab 

Let 0 <0 <1 and 0 < Actr < Aopt 0 such that 

0 + )\ctr/)\opt 2 )—1/2 4.4 1 . Actr/Aopt <(1 + Cal )” ( 9) rel 0<6 .= 
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Let s>0. Then, there exist Copt, Copt > 0 such that 

Cop ala. < sup (4T — 4T+ 1)7 Af 
"‚k')E 

< sw | D #7) ab < Ce maxtlua.ad) 
REQ N (4 peo 

(L.k)<(¢ k") 

(4.50) 

where ||\u*|\a, is defined in (4.47). The constant Cop, > 0 depends only on Cosa = L/a, 

Cson, Cstab, Crel, #70, and s, and, if £ < w or ngo(ui) = 0 for some (od +1,0) € Q, 

additionally on £ or lu respectively. The constant Cop: > 0 depends only on Ustab, (red; 

Orels Oimesh» 1 — Actr/Aopt, Omarks Ole Clin, Hin, #To, and s. 
  

  

Remark 24. The following comments underline the importance of the latter result: 

e By definition (4.47), it holds that ||u*||a, < © if and only if the quasi-error (for the 
exact discrete solutions) converges at least with algebraic rate s > O along a sequence 

of optimal meshes. 

o If all steps of Algorithm 15 can be performed at linear costs O(#Tr), then the sum 

> # 
(L,k)EQ 

(Uk)<(l,k’) 

is proportional to the overall computational work (resp. the overall computational time 

spent) to perform the |(C',k’)|-th step of the adaptive loop, since each adaptive step 

depends on the full adaptive history. Note that the computation of, e.g., all residual 

error indicators in Step (c) of Algorithm 15 as well as as the local mesh-refinement 

by, e.g., newest verter bisection can be done at linear costs. The same applies to, 

e.g., one step of PCG with an optimal additive Schwarz preconditioner in Step (b) of 

Algorithm 15. For the Dörfler marking (4.17) in Step (ii) of Algorithm 15, we refer 
to [Ste07] for an algorithm with linear cost and Cmark = 2 as well as to the recent 

algorithm from [PP20] with linear cost and even Cmark = 1. 

oe The interpretation of (4.50) thus is that the quasi-error for the computed discrete 

solutions us decays with rate s with respect to the overall computational costs (as well 

as the degrees of freedom) if and only if rate s is possible with respect to the degrees 

of freedom (for the exact discrete solutions on optimal meshes). 

e Since s > O is arbitrary, the proposed algorithm will asymptotically regain the best 

possible convergence behavior, even with respect to Ihe computational costs. 

e Prior works (see, e.g., [Ste07, BMS10, CG12, GHPS18]) proved linear convergence of 

the quasi-error only for those steps, where mesh-refinement takes place. Unlike this, 

we prove linear convergence (4.24) for the full sequence of discrete approximations, 

i.e., independently of the algorithmic decision for mesh-refinement or one step of the 

discrete solver. 
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e In usual applications, the quasi-error Af (i.e., error plus estimator) is equivalent to 

the so-called total error fi.e., error plus data oscillations) as well as to the estimator 

alone. Therefore, the approximability ||\u*||a, in (4-47) can equivalently be defined 
through the total error (see, e.g., [Sie07, OKNS08, CN12, FFP14]) or the estimator 

(see, e.g., [ÜFPP1}]) instead of the quasi-error (used in (4.47)). The overall result 
will be the same. 

  

4.6.4 Proof of Theorem 23 (optimal convergence rates) 

Recall ||u*||a, from (4.47) and the set T(N) = {T € refine(Ty : #7 — #7To < N}. Then, 
the following lemma proves the first inequality in (4.50). 
  

Lemma 25. Suppose (R1) as well as (Al)-(A3). Let s>0. Then, it holds that 

Iu*llas < Com sup (HT - #To+ 1)°A, (4.51) 
(L,k)EQ 

where Copt > 0 depends only on Ccea = L/, Coon, Cstab, Crel, #70, and s, and, if £ < oo 

Or 1, (u4,) = 0 for some (lo +1,0) € Q, additionally on £ or lo respectively. 
  

Proof. The proof is split into three steps. First, we recall Lemma 22 from [BHP17]: Let 

Te € T and 7, € refine(7,). Then, it holds that 

#To/#Te < #To HT HIS<SHT. (4.52) 

Step 1. In this step, we consider the pathological cases that £ < oo or 7, (ur, ) = 0 for some 

(£o+1,0) € ©. In the first case, Corollary 18 gives that u* = uj as well asng(uj) = 0. From 

Proposition 16 and Lemma 11, we know that the latter implies ur, = u* = uy . Hence, with 

¢ := { or ¢' := {; respectively, we obtain that 

* S : * * * ua, = sup (N +1 inf u” —Uu + Nopt (U Ialla. = sup (N HD)", inf, Che uud 4 Mole) 
= max N +1)” min uw* — ugl| + ne(uy))- RN HD" min (] + 7.(u%)) 

The term N + 1 within the maximum can be estimated by 

(R1) , 
N+1<#T-#n < (Cu -V)#R. 

The C&a lemma (4.12) and (A1)-(A3) give that ||u* —- wi] S ||w* — uöl|| and 7e(us) S (u) 
(see, e.g., [UFPP14, Lemma 3.5|). Altogether, we thus arrive at 

alla. < (e = wol + no(ug)).- (4.53) 

Step 2. Next, we consider the generic case that £ = x and nu.) >0Ofor all lo € No. 

Algorithm 15 yields that #7, > x as  — x. Thus, we can argue analogously to the 
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proof of [ÜFPP14, Theorem 4.1]: Let N € No. Choose the maximal £ € No such that 
#To— #To+ 1 < N. Then, 7; € T(N). The choice of N guarantees that 

N+1 < #Tpa—#To+1 

(4.52) 
< Fe 

(Ri) (4.54) 

< Oson #7 

(4.52) 

< Uson #7 (#7 #7 + 1). 

This leads to 

(N +1)° Be (M — well + 7e(u)) SCHTE- #76 + Y°l|u* — uZll + me(uy)). 

Taking the supremum over all Ne No, we conclude that 

Iulla, S sup (#7¢ = #7To + D) (llw* = ug ll + me(uf)).- (4.55) 
ENo 

Step 3. With stability (Al) and the C&a lemma (4.12), we see for all (£,0) € Q that 

(Al) 0 0 

IIu” = will +ne(ug) < llw® —wzll + llug — ugll + neug) 

< 2 ]|u* — gl + e — gl + e (up) 
(4.12) . . 

Ss |< ugl|| + melur) 
= AY. 

With (4.53) and (4.55), we thus obtain that 

lu o, S sup (#Te— #To+ 1)° (lw* — v/l + ne(wy)) 
(£,0)eQ 

< sup (AT - #T +1)’ AR. 
(L,k)EQ 

This concludes the proof. [ 

To prove the converse estimate, we need the so-called comparison lemma for the error 

estimator of the exact discrete solution u7 € A}, i.e., Lemma 4.14 from [CFPP14]. 
  

Lemma 26. Suppose (R1)-(R2) and (Al)-(A4). Let 0 < 9’ < don = (1+ 02, C2,) 7. 

Then, there exist constants C},Ca > O such that for alls > O with ||w*|a, < © and all 
Te € T, there exists a subset R, TC Te which satisfies that 

AR< OS u (4.56) 
and the Dörfler marking criterion 

0'ne (1) < ne(Re, 1) (4.57) 

The constants C1,Co depend only on the constants of (Al)-(A4A). [ 
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Proof of Theorem 23. The proof is split into six steps. 

Step 1. It holds that 

sup (#Ty — #To+ 1)° Ab < sup ( > #7) Ab. 
(0 ,kN)EQO (0 ,kN)EQ (L,k)EQ 

(UR)<(l',k') 

Hence, in accordance with Lemma 25, it only remains to prove that 

sup ( > #7) Al < max { [|u*]|a,, AQ} (4.58) 

WRDEQ N (1keo 
(RISK) 

Without loss of generality, we may assume that ||w*||a, < ©. 
Step 2. Provided that (£+1,0) € Q (and as a consequence that k(£) < ©) Lemma 14(i)& (iii) 

and the stopping criterion (4.16) of Algorithm 15 prove that 

Lemma 14(i) _ 

dl(“?a U’%) < Ietr d(u7, ur ) 

Lemma 14(iii) q 
ctr k k-1 

< ———dl(uy, vy ) 

  

B 1 — Getr 

(4.16) detr k 
< Actr 7). = 1 g ct 776(“@) 

Under (C2), this leads to 

k k 
Ir = ug | = Aus, wy) 

< Getr   k 

Actr Ne(Ug) (4.59a) 1 — Getr 

(4.48) k 

Under (C1), this leads to 

(4.9) 
* k x .k 

lu ul < v2/adlus,u,) 

< ala L Acır ne(up) (4.59b) 
1 — detr 

(4.48) 1 k 
< Osap Actr/ Aopt ne (ur). 

  

Step 3. With Step 2, we see that 

L (A1) . m 459) . L 
ne(ug) < nelug) + Ostan ||ue —wgll < me(ug) + Actr/Aopt me(uy), 

N (A1) k x k (4.59) k k 

neu) < neluy) + Ostan Ir = ug | << melug) + Acır/Aopı e () 

With 0 < Actr/Aopt < 1, this guarantees for all (Ü+ 1,0) € Q the equivalence 

(1 Acır/Aopı) Neluz) <meluf) < (1 + Acır/Aopı) Nelun). (4.60) 
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Step 4. Let R, C Ty be the subset from Lemma 26 with 0’ from (4.49). Note that 

(Al) 
(Re, ur) < Re, ur) + Ostab Ilur — Uy ||| o (4.61) 

< rg (R;, u) + Actr/ Aopt ne(un). 

This proves that 

„. (460) 
(1 - Actr/ Aopt) 0 775(“’@) < 9 776(“@) 

(4.57) 

(4. 61) 
< Un (Rp, ub) + Actr/ Aopt 7 (up). 

The choice of 0’ in (4.49) gives that 9 = (1— Actr/Aopt) #° — Actr/Aopt- Thus, we obtain that 

4.49 (4.62) 
0 775(“’%) = ) ((1 = Actr/ Aopt.) 0 — Actr/Aopt) ne(ur) < e(R;, un). 

Hence, R, satisfies the Dörfler marking criterion (4.17) used in Algorithm 15(ii). By 
(quasi-)minimality of M, in Algorithm 15(iii), we infer that 

14.56) (49 1/s ky— BMESERE Sell nid TE eV 
Nested iteration guarantees that u), |, = ur. Thus, reliability (4.20) and (A1)-(A2) lead to 

(4.20) 
mu) = A, 

= Il — ug + melurrı) 

> |[u* — ug Il + 41 (upy) 

= Aryı- 

Overall, we derive that 

#Me S il neu) Su A) forall ((41,00€ Q. (4.68) 
The hidden constant depends only on Csiab, Gred, Crel, 1 — Actr/Aopts Cmark, Chep, and 5. 

Step 5. For (£,k) e @ with 75; # To, Step 4 and the closure estimate (R3) lead to 

(R 3) £—1 (4 £ .63) 

HT - EI +ISET-#T < IHM s wi Das)". 
n=>0 

Replacing ||u*||a, with max{||u*||a,, AQ}, the overall estimate trivially holds for 7; = To. 
We thus have derived that 

£ 

#To — #7T0+ 1 < max{||u*[|a,, AGH/* D (A ~H* 
n=0 

< max{||u*(|a,, AP D (AF)TV® forall (L k) € Q, 
(¢ ,k')EQ 

(&'K") < (k) 
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where the hidden constant depends only on Osab, Greds rel» Omesh; 1 — Actr/Aopts Cmarks 

' 1» AY, and s. Finally, we employ linear convergence (4.24) to bound the latter sum by 
means of the geometric series 

Do an 
4.24) < ls . o 

< aa DR 
(¢ k"eQ (¢ ke 

(&'K")<(£,k) (&' k") <(¢k) 

CH < AT (AK=VS, 

1 - Yin 

Combining the latter two estimates, we see that 

#TE - #70 +1 S maxt|u*]la,, AdP (AN)? forall (&,R)eQ, (4.64) 

where the hidden constant depends only on Ostab, @red, Orel» Omark; 1 — Actr/Aopt, Cmark; 

C/.1, Clin, In, Ay, and s. 

Step 6. Let ((',k’) € Q. Together with Step 5, the geometric series proves that 

(4.52) 

> #ITn< EN Y, H#Ti—#To+1) 
(4,k)eQ (L,k)EQ 

(é,kz)g(é’,k:’) 
(e’k)g(el’k/) 

> * A0 1/s IN: ~1/s 

< maxflulla, ar ST (ah) 
(L,k)EQ 
(k)< (¢ k") 

(4.24) i Ben ar nn 

<S maxt|u la, ap aa TRIER 
(L,k)EQ 

(Lk)<( ,k') 

1/s 

< a maxt|u]la., Ag (AR). 
" Ylin 

Rearranging this estimate, we end up with 

5 ! s (5 #7) AY S max{la. A3 
(el’k;/)GQ (e’k)eg 

(k)< (¢'K") 

where the hidden constant depends only on Ostab, @red; Crel; Cmesh, 1 — Actr/Aopt, Cmark; 

C’ 1, Clin, Yin, Ad, #70, and s. This concludes the proof. O 
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4.7 AFEM for linear elliptic PDE with optimal PCG solver 

We present our first setting which fits in the abstract framework of Section 4.2-4.6. 

Model problem 

We consider the elliptic boundary value problem (4.1) 

—divA(Vu*) = f in Q 

w* =0 onI :=09Q, 

where 0 C R® is a bounded Lipschitz domain with d € {2,3}, and f € L%*(Q) is a given 
load. Recall the corresponding variational formulation (4.2): Given a load f € L?(9), find 
u* € H = H}(Q) such that 

(AuX , V) sy = / A(Vu*) - Vodx = / fu de =: (F,v)yyxu forall v e H. 
Q Q 

We assume that A: L?(Q)? — L?(Q)? has the given form 

A(WV) = [z A(z)v(z)] for ve 1220), 

where A e W1®(Q)d*d is symmetric and uniformly positive definite. The choice of 
Ww!*(Q) as the domain of A instead of L”°(Q) is only necessary to ensure that the residual 
error indicators (4.69) are well-defined. 

We define the potential P: HU(O)— R via 

1 
P(v) = 5 [Av -Vuvdz for all v € Hy(Q). (4.65) 

Then, it holds that 

. P(w+tv) — P(w) . JoAV(w +tv) - V(w + tv) dz — [, AVw - Vw dx 
1530 t a 2t 
tER teR 

. Jo2AVw - V(tv) + AV (tv) - V(tv) dz 
— lim 

t—0 2t 
teR 

1 
= lim [ AVw- Vv+-AVv-V(tv) de 

ande ’ 

  

  

:/AVw-Vvda: 
0 

— (Au? , v)auxH 

Hence, assumption (O3) is satisfied. 
We equip FH4(N) with the scalar product 

(v, w) = Jar: - Vo de (4.66) 

and the induced norm ||v|]? := (v, v). Then, the assumptions (O1)-(O2) are satisfied with 
a=1=L. 
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Triangulation and mesh-refinement 

Let 70 be a conforming initial triangulation of © into simplices T € Tu. We use newest 

vertex bisection for the mesh-refinement refine(-) such that the axioms (R1)-(R3) are 
satisfied, cf. Section 3.6. In this section, we define the local mesh-width function as 

helr := kı(T) := diam(T) foralTe7T;, 

which is equivalent to the definition of Section 3.1. For anode z € 7;, we additionally define 

the mesh-width 

he(z) := max diam(T). 
4 

T<we(z) 

It holds that 

he(T) < hy(2) S he(T) forall ze Nyand T € T; with z € T, (4.67) 

where the hidden constant depends only on Y-shape regularity. 

Discretization 

For 7, € T, we use the corresponding ansatz space 

Ar:={veC{9) : vr =OandvlreP!foralTe Tr}, (4.68) 

i.e., the space of all continuous piecewise first degree polynomials that vanish on the bound- 

ary I' = 0Q. 

Error estimator 

Next, we define the weighted-residual error indicators (see, e.g., [AO11, Ver13]). For all 
T € T; and v, € A, define the error indicators y(T, vr)” as 

ne(T, ve)? := |T| | f + div (AVon)||rzeny + [TV [AV oe: n]|22orno); (4.69) 

where [-] denotes the usual jump of piecewise continuous functions across element interfaces, 

and n is the outer normal vector of the considered element. It is well-known that the 

resulting error estimator satisfies the axioms (A1)-(A4), see, e.g., [UFPP14, Section 6.1] 
and the references therein. 

Galerkin system 

With the usual Lagrangian basis {ng.1,...,me,n} < Ar of X, we define the Galerkin matrix 

M; via 

N 
My = </ AV - Ve, de) . e IR{NXN, 

Q i,j= 
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as well as the right-hand side, 

by = ( l ne; de) ERN 

corresponding to (4.8). Hence, the coefficient vector x$ € R” of the solution uy = 

DM 1 X7 l@] ne,; is the unique solution of the linear system 

M;, x) = b,. (4.70) 

Preconditioned conjugate gradient method (PCG) for the Galerkin system 

Finally, we introduce the iteration function ®, : A, — X; for Step (i) of Algorithm 15 as 

one step of the preconditioned conjugated gradient method (PCG): Given an initial guess 

x) € RY, PCG approximates the solution xf € RY of (4.70). 
Let P, € RY*' be an arbitrary symmetric positive definite preconditioner and define 

M, := P, '*Mmp, "/ 

as well as 

Bg = Pe_l/ng. 

Now, instead of solving the linear system (4.70), the PCG iteration considers the precondi- 
tioned system 

M, X = by (4.71) 

and formally applies the conjugate gradient method (CG, cf. [GVL13, Algorithm 11.3.2]) 
to (4.71) with the given initial guess x). Note that x7 and X are connected via 

x; = P, x}. 

Also, the iterates x} € RY of PCG (for P;, My, by, and the initial guess x") and the iterates 

x of CG (for M,, b,, and the initial guess x) := p// *x0) are formally linked by 

k _p-1/2-k 

see [GVL13, Section 11.5]. 
Let v, € A, with coefficient vector y, € R”. Then, there holds the elementary identity 

loell® = ye - Myye = |yelag, - (4.72) 

In addition, for ¥, € RY and y, € RY such that y, = pP," 2 y+, direct computation yields 

that 

el, > Ye Miıyı 

= (P, "y0) - P M PPy 
=Yy Mgy 

(4.73) 
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Hence, [GVL13, Theorem 11.3.3] for CG (applied to M,, by, X)) yields the following 
lemma for PCG (which follows from the implicit steepest decent property of CG). 
  

Lemma 27. Let M,,P, € RY*N be symmetric and positive definite, b, € RY, x) = 

M,' b,, and x ER“. Suppose the lo-condition number estimate 

conda(P, '’? M, pP, < Clalg- (4.74) 

Then, the iterates x’; of the PCG algorithm satisfy the contraction property 

5 — xE lan, < Gpeg X — X5, for all k € Ny, (4.75) 

where gpeg = (1 —1/Cye)V/? < 1. N 
  

  

Remark 28. Each step of PCG has the following computational costs: 

e O(N) costs for vector operations (e.g., assignment, addition, scalar product), 

e computation of one matric-vector product with M;,, 

e computation of one matric-vector product with P,'. 

  

Optimal preconditioner 

We suppose that the employed preconditioners P, are optimal. This means that the con- 

stant Cs > 0 of Lemma 27 depends only on the coeflicient matrix A, the initial mesh 79, 

and the polynomial degree p. One example of such an optimal preconditioner is the mul- 

tilevel additive Schwarz preconditioner from Section 4.7.1, see also, e.g., [|WC06, SMPZOß, 

XCH10, ONX12]. We stress that the product of P, with one vector can be realized in linear 
complexity O(N). 

Hence, to fit the framework of the main results from Section 4.6, at least one of the 

contraction properties (C1)—(C2) has to be fulfilled: From the contraction property (4.75) 
and the identity (4.72), it follows that 

k1 (4:72) k 
law | = 8% m 

(4.75) 
k 

< Goes Ix7 — Xy Im, 

(4.72) 
=" gpcg ||ur — url] 

Hence, there holds the contraction property (C2) with ger := Qpeg = (1- 1/Ca1e)’?. 
From (4.65)-(4.66), it directly follows that 

1 
IE(v) — E(w)| = 5 lw —v||* forallv,we HN). 

Thus, the norm contraction property (C2) is equivalent to the energy contraction prop- 
erty (C1). Altogether, the main results from Section 4.6 apply to the present setting and the 

linear convergence (4.24) from Theorem 17 holds even for arbitrary A¢;; > 0and 0 < 6 <1 

in Algorithm 15. 
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4.7.1 Optimal multilevel additive Schwarz preconditioner 

In this section, we propose a multilevel additive Schwarz preconditioner for the arising 

Galerkin matrix and prove its optimality in the sense that the condition number of the 

additive Schwarz matrix is uniformly bounded. 

Multilevel additive Schwarz preconditioner 

In order to define the additive Schwarz preconditioner, we introduce the set of vertices N, 

for ¢ € Ny via 

No = No 

as well as 

Ny =Ny \ N1 U {z EN NNy = we(2) & wg_l(z)} for ¢ > 1. 

Hence, N; is the set of new vertices and their direct neighbors in the mesh 7;. Additionally, 

we define the corresponding subspaces 

X = Spafl{fie,z ı ze N} 

as well as 

Ay, := span{n,2}- 

Then, for allO < L and with N, := #N,, the local multilevel diagonal preconditioner is 

given by 

L 

P, =) ID, (L), (4.76) 
=0 

where the appearing matrices are defined as follows: 

oe D,! ERYXN: is a diagonal matrix with entries 

on, My (j,5)) O if 2 € N, DY (i k) = (M, 3 J 

¢ )0’ ) {O otherwise, 

where d,;;, is the usual Kronecker delta. Hence, for all degrees of freedom in N;, the 

corresponding diagonal elements of D;! are the inverse diagonal entries of M,. 

o I, ce RYrXN is the matrix representation of the embedding operator Z,: Ay — Ar. 

Instead of solving the linear system 

Mıxı =bı, 

we instead consider the preconditioned linear system 

P,Mıxr = Prb;. 
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Optimal cost of matrix-vector multiplication 

Let +! E Re+1XN? denote the matrix representation of the embedding operator from A, _ı 

to X,. Then, it holds that 

_ 1L L—1 £+1 
u, =1_| I’: . 

Hence, we can rewrite the preconditioner P, from (4.76) as follows 

L —~ 

P,=) LD, (1) 
(=0 

=1, D)) .+ D (T )T+ D 

Using this representation, we can evaluate the matrix-vector multiplication with the pre- 

conditioner P; with the following algorithm. 

  

L-1 Algorithm 29 (Evaluation of y = P;x). Input: y:=x € R”r, matrices aus var , 
ID’. auxiliary memory yo ER" ,...,yn ER‘. 

(i) For =L,...,1 do: 

Yo D;! y 

y «— L)'y 
End for 

(i) yo +— Dy'y 

(ii) For £=0,...,L-1do: 

y«— LMy 

y-y+tyai 

End for 

Output: y=Pıx. 
  

In order to analyze the computational costs of Algorithm 29, we first note that N, consists 

only of newly created nodes and some of its neighbours. This yields that 

Ne := #Nı < O(Ne - Ne) = CHN \ Ne), 

where the constant C > 0 depends only on shape regularity. Since the matrices D;! have 

only O(Ny — Ny_1) non-zero entries, the overall storage requirements are 

L 

O(No + (Ne - Ne-1)) = O(Nt). 
/=1 
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The same holds for the evaluations )_,x as wellas (L_,)'x. All values of x with indices 

corresponding to nodes in N; remain unchanged during the evaluation and we hence only 

need O(N;ı1-N;) many arithmetic operations. Summing up all operations in Algorithm 29, 
we then end up with linear complexity O(N;) for the evaluation of the preconditioner P;. 

Optimal condition number 

The following theorem is the main result of this section. 
  

Theorem 30. The minimal and maximal eigenvalues of P,M;, satisfy 

C < Amin(PıMı) and Amax(PıMr) < C, (4.77) 

where the constants c,CÜ > O depend only on ), d, the initial triangulation To, and the 

diffusion coefficient A. In particular, it holds that 

IN
 

condm, (PıM;) < (4.78) 

i.e., the condition number of the preconditioned matrix Py My is L-independently bounded 

and therefrom the multilevel diagonal scaling preconditioner PL is optimal. 
  

4.7.2 Auxiliary results 

Level function and uniform mesh-refinement 

In this section, we define the level function level;(-) as well as the sequence of uniformly 

refined triangulations 7, and collect some technical results. 

To this end, we first define the generation gen(7T) € N, of an element T. Let TE 7, be 
an element of the triangulation 7, and Ty € To the unique ancestor element of the initial 

triangulation 70 such that T C Ton. Then, the generation of T is defined by 

_ lostIT]/|To]) gen(T) := 1o8(1/2) E No, 

i.e., |T| = 278®(T)|To| and gen(T) returns the number of bisections to generate T from Tn. 
Based on the generation, we now define for each node z € N; the level 

levely(2) := [max{gen(T)/d : T € T, with T C wy(2)}], (4.79) 

where |-| denotes the Gaussian ceil function, i.e., [2] := min{n € Ny : 2 < n} for z > 0. 
Next, let ze N, and k € No. We define the index set 

Kr(z) := {¢e{0,1,....L} : z € N, and levely(z) = kt, (4.80) 

which describes in how many sets N, with levely(z) = k a given node z € N, appears. The 
following lemma from [|WC06, Lemma 3.1] proves that the cardinality of this set can be 
uniformely bounded. 
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Lemma 31. /t holds that 

4K1(2) < C  for all z € Ny, and k € Ny, (4.81) 

where the constant C' > 0 depends only on To. [] 
  

The sequence of uniform triangulations T is defined as follows: Let 76 — 70. For m2]1, 

the mesh Im is obtained by uniformely refining the mesh Tm- 1, l.e., every element T € Tin 1 

is successively bisected into 2 many son elements T’ € Tı with measure |7’| = 2"@|T|, 
cf. [Ste08, Theorem 2.1]. With N, denoting the set of all nodes of 7,,, we define the local 
mesh-width 

ho := maxho(T) and Rn = Ing for allm >1. (4.82) 
TeTo 

From |Ste08, Section 4], we get the equivalence 

IT| = hu(T)* = diam(T)? ~ 278T)  forall T € Ty, 

where the implicit constants depend only on 70 and d. Hence, it holds that 

mn 

B, = 2 "Ry = 278D/ ~ diam(T) for all T € T,, andm> 0. 

  

Lemma 32. Let z € N, and m := level(2). Then, it holds that z € N, as well as 
N, € An = SUTm ). Additionally, there holds the equivalence 

chm <hr(z) < C hm, (4.83) 

where h,(z) := max {diam(T) : TE T,2z € T} and the constants c,CÜ > 0 depend only on 

the initial triangulation To. 
  

Proof. For Te T, and Te 7; with TC wy(z), it holds that 

gen(T) = md > gen(T). (4.84) 

Now, let 2’ € wy(2) NNy and T € T; with T C wy(2) such that 2’ € T. Let Ty € To be 

the unique ancestor of T. From (4.84), it follows that there exists a T € 7,, such that 
TCTCTandzeN„NT. Hence, it holds for all nodes 2’ € we(z) NNy that 2/ € N 

and consequently 7, € An. To see (4.83), recall the definition (4.79) of m = levely(z), i.e., 
there exists 7’ € 7; with T’ C wy(z) such that 

gen(T") + 1 > md = gen(T) > gen(T"). 

Therefore, it holds that 

diam(T) = diam(T’) > diam(T) for all T € T,, and T C wy(2). 

This implies the equivalence (4.83). O 
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Let I: L’(9) An denote the L?-orthogonal projection onto Kon — S! In . g 0 
  

Lemma 33. For all v € H} (), it holds that 

> hm |v — Hnvllizo) < Cnorm HUH?{l(Q)v (4.85) 
m=0 

where the constant Oyorm > 0 depends only on D and the initial triangulation To. 
  

Proof. Let we H}(9). It follows from the orthogonality of the L?-projection that 

N N 

I Ir - ra )wlliaoy — || I Hr - Ur-ı)wlli2.o) 
k= Ao (4.86) 

= ||Iyw — Howll72(0, 

= (1 = Ho)w||F2(qy — (1 — Un )wlli2oy- 

Taking the limit N — oo, we hence get that 

e = Tow||Z20) = Y IA - Ik-nwliao) forallwe Hy(0),  (4.87) 
k=1 

since the last term in (4.87) converges to 0 for N — x. From [Xu96, Theorem 4.32] follows 
that 

I - Howllinoy = Ir I - Ik wlliao,  for all w € Hy(Q). (4.88) 
k=1 

With w :=v — I„v, and 1,Hnv = fimin{m’n}v, we get that 

o — AmvlZaoy = lwllzan) = | - Howldan, 
(487) o= a 

=7 (I — T )wll72 — (4.89) 

=), Ik Ik ollieny: 
k=m-+1 

With the definition (4.82) of hy,, we infer that 

k—1 N N k-1 N N 

hpl =hy? Y 22" < hy? 2%k =12 (4.90) 
m=0 m=0 
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Combining (4.89)-(4.90), changing the order of summation, and exploiting (4.88), we derive 
that 

SN ~ ABI) IL U 
> ho |0 = Imvllizoy = Z Z hm (Hr — T —1)0| 220 
m=0 m=0 k=m-+1 

oo k-1 

= B | (T = Tl 1) 720 
k=1m=0 

(4.90) S~ L~ ~ 
<Y b (I U )v] 720 

k=1 
(4.88) 
= ||v - Hovllino, 

S HUH%{l(Q)a 

where the last inequality follows from the H!-stability of the L?-orthogonal projection Io, 
cf. [CT87, BPS02, Car02]. This concludes the proof. O 

The patches &¥ (z) corresponding to the uniformly refined mesh 7,, are defined analo- 
gously to the patches wf (2). 

For each z € N, we define 

re(z) := min {gen(T) : Te T-ı with TC wy_,(2)} (4.91) 

as well as 

Ry(2) == [re(2)/d], (4.92) 

where |-| denotes the Gaussian floor function, i.e., |z] := max {n € Ny : z > n}. 
  

Lemma 34. For all z € Ny, there hold (i)-(ii): 

(1) It holds that levely(z) < Ry(z) + C1, where the constant C; > 0 depends only on the 
initial triangulation To. 

(ii) For all Te T-ı with T < w_,(z), there ezists an element Te Try) such that 

TCT. 

(iii) There exists an index n € No, which depends only on the initial triangulation To, such 

that we(z) Cw7_1(2) C ever) (2): 

  

Proof of (i). Let Te 7%, with T C wy(2) such that [gen(T)/d] = level,(z) and let T’ € T,_ı 
with 7’ C w7_,(z) such that |gen(T”)/d| = Ry(z). Let T C Ty € To and T" C T € Ty be 
the corresponding ancestor elements in 70, respectively. Due to y-shape regularity of the 

mesh, there exists a constant C > O which depends only on the initial triangulation 70 such 

that 

log(C) = gen(T') + ——~ _ log(IT|/|To]) _ log(C|T"|/|Tp]) 
log(1/2) a) le?) 
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Therefrom, we get that 

level;(z) = [gen(T)/d] 

log(C) < [gen(T")/d] + 1+ an 

This concludes the proof with Ci :=1+ |; ]- O 

Proof of (ii). Let Te T,-ı with TC wy_,(z). Due to the definition (4.91) of ry(z), it holds 

that gen(T) > ry(z) > |re(z)/d]| = Relz). Since T € Toen(T) and gen(7T) > Ry(z), there 

exists an ancestor element T € Tr.) such that TCT. O 

Proof of (iii). Since the mesh 7; is a refinement of 7, 1, it holds that wy(z) C wy_1(z) C 

wi_1(z). Hence, it only remains to prove the second inclusion wy ;(2) C B o, (. (2)- To 

that end, let Te T;_; with T C w} ,(z). Lemma 34(ii) provides an element T € Tr.) 

such that T CT. Furthermore, it holds that 7' C oh, (2 (2) and hence T C T C (D% (2 ‚(2 2). 

The element T can be rewritten with elements of Tre)4cı the following way. Since the 

  

series 7, is generated by uniform refinement via bisection, the element T gets bisected into 

24C1 many elements T! € Tr, (z2)+c, Such that 

94C] 

U7 
j=1 

Since T € @IQMZ)(,Z), there exists n € N with n < 2¢C1+! guch that T C @]’%fi(z)JrCl. 

Lemma 34(i) yields that levely(z) < Ry(z) + C1 and hence (DEAZHCI (2) C (ngele(z)(z). So 

far, this proves that T C T C Wioyel, (Z)(z), and we conclude that w? ;(2) C Wioyel, (Z)(z). O 

Scott-Zhang projection 

We recall a variant of the Scott-Zhang quasi-interpolation operator, cf. [5790] or [BS02, 
Section 4.8]. For z € Ny, let Ty, € Tr be an element with z € Ty ,. Let 1y, denote the 

(unique) L?(T,,.)-dual basis function with 

bez(2) (2) de = bz, for all 2 € N, 
Tex 

where ö,. denotes the Kronecker delta. Defining the Scott-Zhang operator Je: L*(N) — 

Ss (Tr) by 

Jıv = > 00,2 Yy (z)v(z) de  for all v € L*(Q), 
zeN, Te,z 

we note the following properties, where the constant C' > O depends only on the Y-shape 

regularity of 72: 
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Jı is a linear projection onto S}(T;), i.e., 

vr = ve for allıy € SIT). (4.93) 

Je is locally L?-stable, i.e., for allT € 7, it holds that 

|v — Jev|\r2(r) <C HUHLQ(W(T)) for all v € LQ(Q). 

Je is locally H'-stable, i.e., for all T' € Ty, it holds that 

|V(v — Jev)||r2(r) < C Vol 22(@,(r)) for allv € HD). 

Jı has a local first-order approximation property 

v = Jev 27y < Che(T) |V 120y (ry) for all v € HD). 

The freedom in the choice of the averaging element T7,, can be exploited to ensure 

additional properties. In our case, the choice of Tj, is arbitrary, but we require that 

Tr-1,. = Tıxz € EN Te-ı frallze NM \M C N; _ı. From this choice, it also follows that 

70.2 = M-ı, and Py, = %be-ı, for allze N) \N. Hence, we get that 

(Jy — Ji_1)v(z) =0 for all z € Ny \ N, 

as well as 

(Je — Jı_ı)v € span{ng,: z € N} — A. (4.94) 

  

Lemma 35. For allv € L2(Q) and z € Ny, it holds that 

(Je = Je-1)v(2)| < Jevlz)| + Ye-ıvl2)| 
(4.95) 

< Chy(z) ar? \vllr2&2 9): 

where C' > 0 depends only on y-shape regularity of Tr. 
  

Proof. The first inequality in (4.95) follows from the usual triangle inequality. Hence, it 
only remains to prove the second inequality. [5Z90, Lemma 3.1] states that |[1¢. | Lo (7, ) S 
|T,..|"!. For z € N‘, it holds that Try; < we(z) <w7_,(z). Thus, the first summand in (4.95) 
is bounded by 

)| < l hbe»(w)o(e)] de 
2 

    < HW,Z 

< [7.7 \vllz2@2_,@)) 

1° (1,..) Te: ol 2, (4.96) 

~ hy(2) ™ 0l 2z (o) 
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To bound the second summand in (4.95), we must consider two cases: First, let ze N, N 
Ni_1. Tt holds that |7y .| ~ hi(z) as well as Ty, C wy_1(2) < w7_,(z). Similarly to (4.96), 
we get that 

o) < [ s @@ da 

< o1l nooer, g Tel Wollen... (4.97) 
< Ty, |72 \vllz2@2_,@)) 

Shrl2)"? ol 2z (o) 

Second, let z € N \Nı-ı. Then, due to Y-shape regularity, there exists a uniformly bounded 

number of nodes 21,22,...,2n(2) € Ne-ı such that 

n(z) 

Je—1v(z ZW 1,2 (2 / Vo1, (z) v(z) do. 
Ty —1,z; 

For i € {1,2,...,n(2)}, it again holds that |Ty_1 .,| ~ h¥(2) as well as Ty_1 ., C wy_1(2:) C 
w7_1(z). With the same arguments as for (4.97), it follows that 

IJe-ıv(z all), |the—1,z (x)v(z)| da 
Te- 1,2; 

nz) (4.98) 
Ss» Ti," lol...) 

=1 

< he(z) 2 [0l z2(2 | (2))- 

Combining (4.96)-(4.98), we conclude (4.95). O 

4.7.3 Additive Schwarz operator 

For all z € N}, we define the local orthogonal projections Pı.2: HU9) — X, = span{ng., } 

by 

(Po.v, we.) = (v, wp,) forallwy,e X, 

with the explicit representation 

<< ‚Ne, 2) Py v = MR ne. forallve HIN). (4.99) 

Based on these projections, we define the additive Schwarz operator as 

L 

Or:=), >, Piz: (9) — Ar: (4.100) 
t=0 zeN; 
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Therefore, the multilevel diagonal scaling is a multilevel additive Schwarz method and 

we can use the abstract analysis of these methods. 

The key result reads as follows. 
  

Proposition 36. The operator Q,, is linear and bounded as well as symmetric 

(Qrv, w) = (v, Qrw) for allv, we H4(D) (4.101) 

and satisfies 

cv] < (Qrv, v) < Cv||* for allve Ar. (4.102) 

The constants ¢,C > 0 depend only on (), the initial triangulation To, and the diffusion 

coefficient A. 

While linearity, boundedness, and symmetry of additive Schwarz operators are well-known 

(cf. [GO94, Lemma 2]), we will provide the proof of (4.102) in Section 4.7.5 as well as 
Section 4.7.6. 

  

4.7.4 Proof of Theorem 30 (optimal condition number) 

Let v := vn Xj1L,2; € Ar and w := > YjNL,z; € Xr. From the definition (4.76) of the 

local multilevel diagonal preconditioner, it follows that M,P,M, is symmetric. We define 

the additive Schwarz matrix Q, := PıM;. It then holds that 

(Qrv, w) =(Qrx, y)m, - (4.103) 
Combining the identity (4.103) with (4.102), we see that 

cix, x)m;, = cllvll* < (Qrv, v) = (Qrx, x)m, 
as well as 

(Qrx, x)m;, = (Qrv, v) < Cloll* = C(x, x)m,. 
Due to the symmetry (4.101) and again the identity (4.103), we get that 

(Qrx, y)m, = (Qrv, w) = (v, Qrw) = (x, QLy)m,, 
i.e., Q; is symmetric with respect to (-, -)m,. Now, [TW05, Lemma C.1] or [GVL13, 

Section 8.1] yield the Rayleigh quotient estimates 

Auim(Qr) = min LK XMy 
xeRNz (x, X)M; 
x7#0 

and 

Am X — - 

. (Qu) ER (x, x)m, 
xZ0 

In particular, it follows that 

condm;, (Qr) = 

This concludes the proof. [] 
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Lions’ lemma 

The last lemma we need for the proof of the lower bound in (4.102) is known as Lions’s 

lemma, cf. [Li088, Wid89] and [T’W05, Lemma 2.5]. 
  

Lemma 37 (Lions). Let m € No and v € V, where V is a finite-dimensional Hilbert 

space with scalar product (-, ) and corresponding norm || - ||. Assume that there exists a 
decomposition of V into spaces V; with O <l! <m such that V = Yo V; and orthogonal 

projections P;: V — V; defined by 

(Pıv, we) = (v,we) for all wy € V. 

Define Pas := > ;2 Pe. If there exists a constant C > 0 such that every v € V admits a 

decomposition v =), „ve with vg € Vy that satisfies 

m 

> voll? < C Ioll?, 
£=0 

then it holds that 

lol’ <C (Pasv, v) 

forallveV. [1 
  

4.7.5 Proof of lower bound in Proposition 36 

The proof is split into 5 steps. 

Step 1. With property (4.94) of the Scott-Zhang projection J;, we define the difference 

= (Jo— Je_1)veX, forveX,and0< (<L, (4.104a) 

where J_} := 0. Henceforth, we can rewrite any v € X, using the projection property (4.93) 

of J; as a telescoping series as follows 

L 

v= Jw= (A -JaWw=) (4.104b) 
£=0 

Using the basis representation of v,, we can decompose this further into 

L L 

v— > > %(z)mz =: > > v%, with u, € Ab. (4.104c) 

£=0 ZG/\Nfg t=0 zeN; 

Step 2. Let ze N,. Then, there holds the inverse inequality 

I\V ne: 

which follows from a scaling argument with the hidden constant depending only on y-shape 

regularity of 7;. Combining this inequality with the equivalence (4.83), it holds that 

In. |" s Ve. 12(0)) < U) wel) = ua). 

        L2(we(z)) S he(2) ezl 2w ) 

        12) S el?) " ne: 
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Hence, we get that 

I? = Ing: 1? Bez)? S Re)“ II - IWW)" (4.105) 

Step 3. Let Il := Io for m < 0. From Lemma 34(i), we get that 

Rz 

Hevels(2)-C1V € AR,(z) 

and especially that (Theverd-crv)|r is affine on all Te 7,_ı with TC w7_,(z) as well as 
continuous on the whole patch w7_,(z). In particular, the same holds also on the patch 

w7 (z). Therefore, the projection property (4.93) of the Scott-Zhang operator yields that 

(Jelliever, (2)—c1v) (2) = (Mievet, (2)—c1 v) (2) = (Je—1ievel, (-, V) (2).- 

Together with Lemma 35, this yields that 

(Je - Je—1)v(2)]? = |(Je — Fe Teac) 
> 9 (4.106) 

- he(2)” lv - Hlevelg(z)—C&UHLQ(w?_l(z))' 

Step 4. Combining Step 2 and Step 3, we see that 

|||W,:<:|||2 S hé(z)_Q v — Hlevelfi(z)—clvH%Z(u}%_l(z))' (4.107) 

Using the equivalence hy(z) ~ /h\,level ‚(z) from (4.83), we get that 

L „107) L 9 ~ 2 
22 el S 30 > a)" lo = Thever()-cr v 7202 o) 
=0 2eN, =0 2eN, 

4.83) —~ N 2 

— Z Z hlevelg(z) HU zu Heven)-cıvlli2@2 2) 

t=0 en 

= >” I A le Mm-orolliae 0) 
=0 /=0 ZGNg 

level, (z)=m 

Combining Lemma 34(iii) with the definition (4.80) of K,„(z), we see that 

oo L 

IL me Em-crolieaz ) 
level, (z)=m 

oo L 

ZZ Z }\L;’LQHU_fim—ClvH%Z(@%(Z)) 
m=0 :0 ZG/\V/‘E 

level, (z)=m 

10 > DD Klo m-orvlisonen- 
MO zENT (eK m(z) 
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Lemma 32 states that z € N; with levelg(z) = m is also an element of N. Together with 

the boundedness (4.81) of #K,.(z) from Lemma 31, this yields that 

> > > han |v - Im-arvll2an ce) 
m=0 zeNL teKm(z) 

oo 

=2 2 2 hatlv-Taevlag ) 
MO ZEN; NN LEKm(z) 

(4.81) 

S Z > hm |v - Ina vllizon (23) 

MO zen. Nm 

< > > hm |v - Um-orvlli2on. 2): 

Due to uniform Y-shape regularity of 7, and the definition Il, = Ilo for m < 0, it follows 

that 

„ > hm |v - Im. cvllizan) S Sy hm o — T, cvlli2o) 
m=0 zeNm m=0 

<D hm je - Emvlieoy 
m=0 

8 

Combining the last four estimates, we end up with 

Y Bl < Z ([0 — o220 (4.108) 
e=0 zeN; 

Step 5: Finally, Step 4 together with Lemma 33 and norm equivalence yields that 

L , (4108) = N , (4.104) , , 

SO el Ss Dale Amin S led lold, (4.109) 

for all v € X, and the decomposition u = Yo zen, U, from (4.104c). Due to Lions’s 

lemma (cf. Lemma 37) this guarantees the ellipticity of the additive Schwarz operator Qj, 

from (4.100). 

vl? s (Oro, v) forallve &%, 

which concludes the proof of the lower bound in (4.102). Mi 
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Auxiliary results 

We define the maximal level M := maxzey; slevelr(z) ofallnodes ze N. From Lemma 32, 

it follows that N, C Nur and Ar, < Ay. We rewrite the additive Schwarz operator Q,, as 

L L M 

0= P = G with med VD Pr (au) 
=0 ,c N, m=0 t=0 zeN, 

levely(z)=m 

Then, there holds the following lemma, which is used to prove the strenghtened Cauchy- 

Schwarz inequality (4.118). 
  

Lemma 38. Let 0 < k<m < M and 0 < /¢ < L. For TeT,, € Ak, andzeN; with 

levely(z) = m, it holds that 

/ AVdy: Ve. de < c (a Vor ren lm. 
T 

    
12T); (4.111) 

where the constant C > 0 depends only on the initial triangulation To, and || Al . 
  

Proof. From Lemma 32, we know that ny,, € An Hence, we can decompose ny,; as follows. 

We define vy, 0 € Kon such that vy, o vanishes on OT and is equal to ny,, at the interior nodes 

in T. Let d%,1 = N%,2 — Um,o- Then, it holds that 

/ AV -V, doe = / AV - VU, o dz + / AV - VU, dz. (4.112) 
T T T 

Note that Vug|r is constant, since T € 7A7€ Moreover, note that d%olar = 0. With 

integration by parts and VD, € PV(T), we get for the first summand of (4.112) that 

/ AVD; : V@\m’o dx = -/ div (AVv;) Vm,0 de 

T T (4.113) 
_ / ((div A)VOL) Dn.o de. 

T 

From the Cauchy-Schwarz inequality combined with 1 < (2-(m-M)1/2 7-1 we estimate the 
latter term as follows 

-/ ((div A)VTg) Uy dz < VU 2 () \®m,0 
T 

mn 

    
2 

m (4.114) 
< (2m) 1/2 

    o Y0k 227y 72,2 £2)- 

Hence, it only remains to estimate the second summand of (4.112). We define T,,, := 

UIK eE m: KNÖOT # 0}, cf. Figure 4.1. It then holds that suppd,.,ı < Tm and 

T,| ~ nenn. Again, using the Cauchy-Schwarz inequality, we see that k g g 

/ AVDr : V@\m,l de = AVDr : V@\m,l dx 

T Tm (4.115) 

S IVl 27,0 [ VU     
L2 (Tm)' 
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Figure 4.1: Illustration of the set Tm := U{K € Tm : K NOT # 0} from the proof of 
Lemma 38: The outer triangle (solid lines, pink) represents the element T € Tx, 
while the inner triangles (dashed lines) correspond to all elements K € Tm such 
that TCK. Then, the set Tm is the outer cyan area. 

  

Since & € X, we know that V% is constant on K. This yields that 

- T2 4. 
Vor |Ir2er) = ir IV®klIı2er)   

  
a) (TR \ A116 5 )" 199l (4.116) 

182) (9-(m-k)\ /2 or 
0 (a9) / IVl L2(7y- 

The remaining term ||V®m,1||z2(7,.) is estimated by an inverse estimate 

IVOmallıea) S fm |ömallıze) < hm’ Imgzllı2en- (4.117) 

Combining (4.112)-(4.117), we finally get that 

| AV, - Vg dz S (27 2R oy el oy 

This concludes the proof. 

  

0 

Now, we are able to prove the following strenghtened Cauchy-Schwarz inequality. 

Lemma 39. For all 0 <k <m < M, it holds that 

(B, Qumie) < C V2™ ISl Bel] for all %, 0: € Ar, (4.118) 

where C > 0 depends only on. Q, the initial triangulation To, || Alloo, and Y-shape regularity 
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Proof. The proof is split into three steps. 

Step 1: Define q := 2"V/? and let ze N, with 0O<k < m = levely(z). Then, Lemma 38, 

the Cauchy-Schwarz inequality, and the Friedrichs inequality yield that 

(1) = DL / AV -V, do 
KERN“ 

(4.111) R 
S @R D IV L2l 

KeTx 
    L2(K) 

    

m—k 7 — o <q" R VO 2y 76,2l L2 (0) 
o~ 

-kT—1 
q" " hy,     2kl 1722211 £2 (coe 2 

sg" bt 1Bk diam(we(2)) || Ve,     

  

      

  

L2 (we(2)) 

o ¢ g T B e 2 

= ¢ [Tl .2 - 

Summing up, we have that 

(ne) Sg" rl ne; || for all z € N; with k <m = levely(z) | (4.119) 

where the hidden constant depends only on 70 and A. 

Step 2: Next, we show that 

L 

>. %  IPerönll< löill, (4.120) 
t=0 zeN; 

level, (z)=m       
where the hidden constant depends only on 709 and y-shape regularity. The representa- 

tion (4.99), the Cauchy-Schwarz inequality, and Lemma 34(iii) yield that 

(4.99) |(@x , ne.2)| 
IPe-well = —TT ne: || 

< Nkl () 
Lemma 34(iii) N 

< lwkllzn (2)- 

Recall the set K,(z) from (4.80) 

Kr(z) = {¢€{0,1,...,L} : z € N, and level,(z) = kt. 

From Lemma 31, we know that sup;en, #Kı(2) <C(T) < © for allz € N, with a constant 

C(T0) > 0 depending only on the initial mesh 79. Hence, from the last inequality and shape 
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regularity of the mesh T,, it follows that 

L 

a Pel=- Y. Y Perl 
=0 zeN, ZEN NA m 6K m (2) 

levely(z)=m 

< Y .% Ile 
zENLNA m leKm(z) 

(4.81) 

< ), lürlorc 
zeNm 

= well. 

Step 3: Since P, wy € Xy, = span{ne .}, there exists Ay, € R such that Py Wi = A¢ .70 »- 

Based on the previous steps, the definition of Q, m shows that 

L 

(ED DD (kr, Przir) 
t=0 zeN; 

level, (z)=m 

L 

- >_ A,2| (dr; 770,2) 

£=0 ZGJ\Nfg 

level, (z)=m 

4.119) (4. L 
m—k =~ 

S AR > > IAz,z| In. | 
t=0 zeN; 

level, (z)=m 

L 
—k Fa in 

=" Y Y Pl 
€:0 ZG./’\V/‘Q 

level, (z)=m 

(4.120) . 
Ss "or Merl. 

This concludes the proof. O 

  

Remark 40. Due to the self-adjointness of the orthogonal projections Py ., we know that 

(OL.m', ) is a symmetric bilinear form on A, for k < m. By definition (4.110) of QLm, 
it holds that 

L L 

(QLmd, v) = > > (Przv, v) = > > IP. :vl]” >0 for allv € Kr. 

(=0 zeN; e=0 zeN; 

level, (z)=m level, (z)=m 

Hence, (Q%-, -) is even positive semi-definite. As a consequence, there holds the Cauchy- 
Schwarz inequality 

(QLmv, w) < (Qrmv, V)2 (QLmw, w)Y?  for all v,w € X}, (4.121) 
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4.7.6 Proof of upper bound in Proposition 36 

First, we define the Galerkin projection G,,: H! (2) — X, with respect to the scalar product 

(-, ) via 

(Gmd, Em) = (v, Gm) for all @y, € An. 

With G_; := 0, we can rewrite G,v as a telescoping sum, i.e., Gm = (Gr — @k_l). Let 

ve X C Aır. It holds that Guv = . 

Since OL mv € Au, cf. Lemma 32, the representation (4.110), the symmetry of (-, -), 
and the Cauchy-Schwarz inequality (4.121) yield that 

(Qrv, v) = > (Qrmv, v) M
=
 

3 1 

<< QL,mU ) G\mv» 

= 
3 1 

(QLmv, (Gk — Gr_1)v) M-
 

Ms
 
IM

: 

(QrLmv, V)2 (QLm (G — Gr1)v, (G — Gr_1)v) /2. 

= 
) oO
 il oO
 

Next, we use the strenghtened Cauchy-Schwarz inequality (4.118) with (9x — Gk-ı)v € A 
and get that 

M m 

> (Qrmv, v)*? (QrLm(Gr — Gr—1)v, (G — Gr_1)v)'/? 
m=0 k=0 

(a) Mom Br N 
<V 0SS e B0, )V el 

m=0 k=0 

M m 

OH IL" Om od? Klar I-)v, od”, 
m=0 k=0 

where C' > 0 is the constant from the strenghtened Cauchy-Schwarz inequality. With ¢ > 0, 

which will be fixed later, we use the following variant of the Young inequality 

& 
ab< za +5 for all a,b € R. 
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We get that 

M m 

¢ Z Z 2m) (9, v VY2 (G — Ger)v, v/ 

m=0 k=0 

M m 5 

¢SS Ao, . ) 
m=0 k=0 

M m 5-1 

C Y Y 2 (G~ Ge1)v, dv). 
m=0 k=0 

The inner sum over k of the first double sum can be bounded by Y ;-2 ("=k/4 < 

Ira 2 = ı K < oo. Together with changing the summation order in the second sum, 

we see that 

M m 
ö 

(Qrv, v) Z Z (m WRz (Qrmv, v) 
m=0 k=0 

M m ol He DDr u - Go.) 
m=0 k=0 

x M 

<CKz 1 (Qr.mv, v) 

5-1 M M N 

TZZ —(m— k)/4 gk_gkz—l)vav» 

k=0 m=k 

- -1 X 
SCKgmz::O«QLmU v) + C K 7}; ((Gr - Gk-ı)v, v) 

5 ML X 
= CK 5 (Quv, v) + CK —— (D (Gk — Gr-1)v, v) 

k=0 

st 

_cK° 5 (@ıv, v) + C K — (v, v). 
2 

Let ö<2(CK)!. Then, it holds that 

(Qrv,v) < (1—C’Kg) ck kw, v) 

= (1 -ORS) CR’ ol? 
Hence, there holds the upper bound in (4.102). 
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4.7.7 Numerical experiments 

In this section, we provide numerical experiments that underpin the theoretical findings of 

Section 4.6, where we employ F!-conforming lowest-order FEM in 2D. For ease of notation, 

we define X := Actı for this section. We present an example for AFEM with optimal PCG 

solver, cf. Section 4.7, and compare the performance of Algorithm 15 for 

e different geometries, i.e., the domain D C R? is either the Z-shaped domain or the 

L-shaped domain, cf. Figure 4.2, 

e different values of A € {1,10°9°,10=1,...,10=*}, 

e different values of 9 € {0.05,0.1,0.15,..., 1}, 

where 9 = 1 corresponds to uniform mesh-refinement. 

We consider the following Poisson problem with homogeneous Dirichlet boundary conditions 

-Au=1 in Q, 
(4.122) 

w =0 onI :=09Q, 

for both geometries from Figure 4.2. As preconditioner for the PCG solver, we use the 

multilevel additive Schwarz preconditioner of Section 4.7.1 which is optimal, cf. Theorem 30. 

Poisson problem (4.122) on Z-shaped domain 

In Figure 4.3, we compare Algorithm 15 for different values of 0 and A, and uniform mesh- 

refinement on the Z-shaped domain, cf. Figure 4.2. To this end, the error estimator ne(u,) 

of the last step of the PCG solver is plotted over the number of elements. Recall that 

ne(uy) o~ At according to Proposition 16. We see that uniform mesh-refinement leads 

to the suboptimal rate of convergence O(N 7/7), while Algorithm 15 regains the optimal 
rate of convergence O(N -\/2). This empirically confirms Theorem 23. The latter rate of 
convergence appears to be even robust with respect to 9 € {0.1,0.3,...,0.9} as well as 

A€ {1,107, ..., 1074}, 
In Figure 4.4, we aim to underpin that Algorithm 15 has the optimal rate of convergence 

with respect to the computational complexity. To this end, we plot the error estimator 

ng(u%) of the last step of the PCG solver over the cumulative sum Ip an<(u,n) Fe. In ac- 

cordance with Theorem 23, we observe again the optimal order O(( Dr ay<i.) #Te) -1/ 2). 
In Figure 4.5, we take a look at the number of PCG iterations. We observe that a larger 

value of X or a smaller value of 0 lead to a smaller number of PCQG iterations. Nonetheless, 

in each case, this number stays uniformly bounded. 

Summing up so far, we see 

e that Algorithm 15 appears to be robust with respect to the choice of 9 and A, cf. Fig- 

ure 4.3, 

e that a larger value of X leads to less computational cost and a smaller value of 9 leads 

to higher computational cost, cf. Figure 4.4, and, 
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Figure 4.2: Z-shaped domain Q C R? with initial mesh 76 (top) and L-shaped domain 
QCR? with initial mesh 79 (bottom).
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Figure 4.3: Example from Section 4.7.7 (Poisson problem on Z-shaped domain): Error es- 

timator ne(uk) of the last step of the PCG solver with respect to the number of 

elements N of the mesh Tz for 0 = 0.5 and A € {1,101,...,10?} (top) as well 
as for A= 10°? and 6 € {0.1,0.3,...,0.9} (bottom).
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Figure 4.4: Example from Section 4.7.7 (Poisson problem on Z-shaped domain): Error esti- 

mator ne(uk) ofthe last step ofthe PCG solver with respect to the overall compu- 

tational cost expressed as the cumulative sum Ye r)<(e,n) # Te for 0 = 0.5 and 
A {1,10=!,...,10=} (top) as well as for A= 10”? and 0 € {0.1,0.3,...,0.9} 
(bottom).
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Figure 4.5: Example from Section 4.7.7 (Poisson problem on Z-shaped domain): Number 
of PCG iterations with respect to the number of elements N for 0 = 0.5 and 
Ace {1,10=!,...,10=} (top) as well as for A= 10”? and 0 € {0.1,0.3,...,0.9} 
(bottom). 
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Figure 4.6: Example from Section 4.7.7 (Poisson problem on Z-shaped domain): Overall 

computational cost Ye, K< () #Ty such that ne(u,) < 7 for given precision 

r= 102, X e {1,107°°,...,10°*}, and 9 € {0.05,0.1,...,0.95}. 
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e that a larger value of \ as well as a smaller value of 6 lead to fewer PCG iterations, 

cf. Figure 4.5. 

Hence, the question arises, how to choose 9 and X in order to mimize the overall computa- 

tional cost to reach a given bound r > 0 for the error estimator, i.e., such that ne(us) <T. 

In Figure 4.6, we compare the computational cost to reach the precision r = 10°? for 

A€ {1,107%% ...,107%} and 6 € {0.05,0.1,...,0.95}. As a result, we get that the best 
choice is A = 10°? and 9 = 0.7. For the overall computational cost it then holds that 

> H T = 4034040, 

(€' k)< (k) 

where ur is the first approximation such that ne(uy) <1072 

Poisson problem (4.122) on L-shaped domain 

In Figure 4.7, we compare Algorithm 15 for different values of # and A, and uniform mesh- 

refinement on the L-shaped domain, cf. Figure 4.2. To this end, the error estimator ng(u%) 
of the last step of the PCG solver is plotted over the number of elements. Recall that 

ng(uf) o~ At according to Proposition 16. We see that uniform mesh-refinement leads to 

the suboptimal rate of convergence O(N -\/3), while Algorithm 15 regains the optimal rate 
of convergence O(N -\/2). Again, this empirically confirms Theorem 23. The latter rate 
of convergence appears to be even robust with respect to 9 € {0.1,0.3,...,0.9} as well as 

A€ {1,107, ..., 1074}, 
In Figure 4.8, the error estimator ng(u%) of the last step of the PCG solver is plotted over 

the cumulative sum Z(e',k:')g(e,@ #Tp. In accordance with Theorem 23, we observe again 

the optimal order Ole.) #7) ?). 
In Figure 4.9, we take a look at the number of PCG iterations. We observe that a larger 

value of X or a smaller value of d lead to a smaller number of PCG iterations. Nonetheless, 

in each case, this number stays uniformly bounded. 

As for the Z-shaped domain, we see 

e that Algorithm 15 appears to be robust with respect to the choice of 9 and A, cf. Fig- 

ure 4.3, 

e that a larger value of X leads to less computational cost and a smaller value of 9 leads 

to higher computational cost, cf. Figure 4.4, and, 

e that a larger value of \ as well as a smaller value of 6 lead to fewer PCG iterations, 

cf. Figure 4.5. 

In Figure 4.10, we compare the computational cost to reach the precision r = 10° for 

A€ {1,107%% ...,107%} and 6 € {0.05,0.1,...,0.95}. As a result, we get that the best 
choice is A = 10°? and 9 = 0.8. For the overall computational cost it then holds that 

> #Te = 2832761, 
(,K)<(C,Kk) 

where ur is the first approximation such that ne(uy) <1072 
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Example from Section 1.7.7 (Poisson problem on Z-shaped domain): Error es- 
timator ne(ue) of the last step of the PCG solver with respect to the number of 
elements N of the mesh Te for 0 = 0.5 and A € {1,1071,...,10%} (top) as well 
as for A= 10? and 9 € {0.1,0.3,...,0.9} (bottom).  
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4.8 AFEM for quasi-linear elliptic PDE with strongly 

monotone nonlinearity 

The second setting which we introduce in this chapter and which fits into the abstract 

framework of Section 4.2-Section 4.6 is AFEM for a boundary value problem with a strongly 

monotone nonlinearity. 

Model problem 

We consider the following boundary value problem 

div (ae, |vu*(@))VvuX@))= Fa) in, 
u(x) =0 on I'p, (4.123) 

w(z, |Vu*(2)]?) Opu*(z) = g(x) on Tv, 

where 0 C R@ is a bounded Lipschitz domain with d € {2,3} and polytopal boundary 

T = 80, and given f € L?(N), g € L?(T) as well as a scalar nonlinearity 1: Q x R>o — 
R. Let the boundary T’ be split into relatively open and disjoint Dirichlet and Neumann 

boundaries Tp,T’x such that |[T'p| > 0 and I = T'p UT . The scalar nonlinearity ‚ı satisfies 
the following properties (N1)-(N4) with generic constants Yı, Ya, Yı, Y2, Zu, Zu > 0, which 
have already been considered in [GMZ12, GHPS18]: 

(N1) boundedness of u(z,t): There exist constants 1,y > 0 such that 

v < p(z,t) <~y forallz e Qandt>0. 

(N2) boundedness of u(z,t) + 2tZu(z,t): For x € Q, the function u(z,-) is con- 
tinuously differentiable, i.e., 1u(z,:) € C!(R>o, R) and there exist constants %1,72 > 0 

such that 

- d ~ 
v < p(z,t) + QtE,u(a:,t) <7y forallze Qandt>0. 

(N3) Lipschitz-continuity of u(z,t) in x: There exists a constant L, > 0 such that 

lul&,t)- uy,t)| <L.&-yl foralz,yeNandt>0. 

(N4) Lipschitz-continuity of tZu(z, t) in x: There exists a constant L, > 0 such 
that 

d d ~ 
|ta,u(a:,t) — era] < L,lxr—y| forall z,y € Qandt>0. 
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Weak formulation 

The weak formulation of (4.123) reads as follows: Find v € H,(Q) := {w € HY(Q) : w = 
O on Tp} such that 

/ (2, |Vu*(2)|?) Vu*- Vode = / fvdx +/ guds for all v € I} (). (4.124) 
0 0 r N 

With respect to the abstract framework of Section 4.2, we take H = HY(9), K = R, 

and (-, -) = (V-, V-) with corresponding norm |[|v|| = ||Vv||z2(0)- We obtain (4.7) with 

operators 

(Aw, v)yrxu = Lee |Vw(z2)|?) Vw(z)- Vo(z) de, (4.1252) 

Fi) = | Sedr+ | gu ds (4.125b) 

for allv,w € H. We recall from [GHPS18, Proposition 8.2] that (N1)-(N2) implies that 

A is strongly monotone (with « := %ı) and Lipschitz continuous (with L := %), and 
that there exists a potential P: HI(N) — R, i.e., there hold (O1)-(O3) with & = %ı and 
L = %. The assumptions (N3)-(N4) are required to prove the well-posedness and the 

properties (A1)-(A4) of the residual a posteriori error estimator. 

Triangulation and mesh-refinement 

Let 70 be a conforming initial triangulation of 0 into simplices T € 70. As the refinement 

strategy refine(-), we employ newest vertex bisection such that the axioms (R1)-(R3) are 
fulfilled, cf. Section 3.6. 

Discretization 

For 7, € T, we consider the lowest-order FEM space 

Xp:={veC@Q) :v|lr € P(T) forall T € T;} N HLH(Q), (4.126) 

i.e., the space of all continuous piecewise affine functions that vanish on the boundary 

' = 00. 

Error estimator 

For all elements T € 7, and discrete functions v, € &), we define the weighted-residual error 

indicators, cf., e.g., [GMZ12, GHPS18]) via 

ne(T,ve)? =|T1 || f + div (-, Vo ) Vo) | zery + TI | [, [Voal?) Voo - 1| 120700) 

+ [TV Ig - aC, |Vvel?) Vo - 1| 20700 ) (4.127) 

where [-] denotes the usual jump of piecewise continuous functions across element interfaces, 

and n is the outer normal vector of the considered element. Due to assumption (N3) on the 

nonlinearity z(-,-), the presented error indicators are well-defined. 
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While reliability (A3) and discrete reliability (A4) are proved as in the linear case; cf., 

e.g., [UKNS08] for the linear case and [GMZ12, Theorem 3.3 and 3.4] for the present non- 
linear setting, the verification of stability (Al) and reduction (A2) requires the validity of 
an appropriate inverse estimate. For scalar nonlinearities and under the assumptions (N1)- 

(N4), the latter is proved in [GMZ12, Lemma 3.7]. Using this inverse estimate, the proof 
of (A1)-(A2) follows as for the linear case, cf., e.g., [EKNS08] for the linear case or [GMZ12, 
Section 3.3] for scalar nonlinearities. 

Zarantonello iteration 

Since the nonlinear system (4.8) can hardly be solved exactly, we use the Zarantonello 

iteration, also called Banach-Picard iteration, as iteration function ®,: A, — A, for Step (i) 

of Algorithm 15: Recall that the Riesz mapping Iy: H > W, Iyw+ (-, w)) is an isometric 
isomorphism, cf. [Yos80, Chapter III.6] and let I»: Xy — A, Ieve > (-, ve) denote the 

discrete Riesz operator. Additionally, let A,: X, — A, and Fy: Ay — R be the restrictions 

of A and F respectively to the discrete space A,. Then, define 

- % I (A — Fy). (4.128) 

Given uf € X,, we thus compute the discrete iterate jr = ©,(uf) as follows: 

Py Xy — Xy, v vy 

(i) Solve the linear system (vr, we) = (Auf — F, v)auxw for all u € Ar. 

(ii) Define upt! = u) - wur. 

In explicit terms, the computation of one step of the iteration requires only the solution of 

one (discretized) Poisson equation with homogeneous Dirichlet data. Then, ®, satisfies the 

norm contraction (C2) with ¢%, =1- a?/L?, cf., e.g., [GHPS18, Section 3.2] and it holds 
that 

. (4.9) T, . 9 

E(@elve)) — E(ug) = zZ | — Pe(w)] 

(C2) L . 
< 5 G Id < voll 

(4.9) L 9 

< a Ietr (Ev) u E(ur))- 

In this case, the additional validity of (C1) with the modified constant £ q,, follows from 
an additional condition on L/a involving the golden ratio, namely 

L L « L 145 
0<Zg2 == -~ <1 = =< 
_ozqm a L a 2 

Moreover, with the same arguments, (Öl) guarantees that 

x 1.618. (4.129)   

L 
I = wol" < Z gar Ind = well”. 

Hence, the condition (4.129) even yields equivalence of (Cl) and (C2) (but with different 
contraction constants getr)- 

Altogether, the present setting fits into the abstract framework of Section 4.2 and the 

main results from Section 4.6 apply to it. 
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4.8.1 Numerical experiments 

In this section, we provide numerical experiments that again underpin the theoretical find- 

ings of Section 4.6. For ease of notation, we define X := Act, for this section. We present 

two examples for AFEM for strongly monotone nonlinearities, cf. Section 4.8, one with 

homogeneous Dirichlet boundary conditions on the L-shaped domain and the second with 

mixed boundary conditions on the Z-shaped domain, cf. Figure 4.11 where the Dirichlet 

boundary I'p is marked by a thick pink line. We compare the performance of Algorithm 15 

for 

e different values of A € {1,10°9°,10=1,...,10=*}, 

e different values of 9 € {0.05,0.1,0.15,..., 1}, 

where 9 = 1 corresponds to uniform mesh-refinement. 

Homogeneous problem on L-shaped domain 

We consider the boundary value problem 

—div (u(-, |Vu*)Vu*) =1 inQ, 
L (4.130) 

u =0 onl, 

where the scalar nonlinearity 4: 2 x Roo > R is defined by 

In(1+ |Vu*]? 
ulz, |[Vur?) =1+ Int + Vu) (4.131) 

1-+|Vur]? 

Then, (N1)-(N4) hold with a = Yı = 0.9582898017 and L = Ya = 1.542343818. 
In Figure 4.12, we compare Algorithm 15 for different values of # and X, and uniform 

mesh-refinement. To this end, the error estimator ne(uy) of the last step of the Zarantonello 
iteration is plotted over the number of elements. We see that uniform mesh-refinement leads 

to the suboptimal rate of convergence O(N-\/3) for the L-shaped domain. Algorithm 15 
regains the optimal rate of convergence O(N -\/2), independently of the actual choice of # € 

{0.1,0.3,...,0.9} and X € {1,10”1,...,10°*}. Since ne(uy) ~ A%, this again empirically 

confirms Theorem 23. 

In Figure 4.13, we plot the estimator ne(us) of the last step of the Zarantonello iteration 
over the cumulative sum I) <(l,k) #Tp. As predicted in Theorem 23, we observe that 

Algorithm 15 regains the optimal order of convergence O(( Dr an<ieh) #Te) *) with 
respect to the computational complexity. The rate seems to be independent of the values 

of A or 6. 

In Figure 4.14, we take a look at the number of Zarantonello iterations. Similarly to 

the number of PCG iterations in Figure 4.5 and Figure 4.9, we observe that that a larger 

value of A or a smaller value of # lead to less iterations, while the number stays uniformly 

bounded in each case. 

In Figure 4.15, we compare the computational cost to reach the precision r = 10° for 

A € {1,107%% ...,107%} and 6 € {0.05,0.1,...,0.95}. As a result, we get that the best 
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15 

  

  

      
  

-1 -0.5 0 0.5 1 

Figure 4.11: Z-shaped domain Q C R? with initial mesh 75 (top) and L-shaped domain 
Q C R? with initial mesh 7% (bottom), where Tp is marked by a thick pink 
line.



4 Adaptive FEM for second-order elliptic systeıns of partial differential equations 

L-shaped domain 

  

           

  

  

  

      

mt 

-©- unif,A=1 

L3 
< 
& 
= 
2 
B 
£ F 
B F -0-9=05,X=1 
8 —9=05, = 10"! " 
g FE -9=05,X= 10 Bar 

| —9=0.5, A = 10°? o 1 
| 9 = 0.5, = 10-4 O(N~1/2) 

W0 Eu nn e nd u ul 
10! 10? 10% 10% 10° 106 107 

number of elements N 

mt 

L3 
< ] 
& 
= 
2 
B 
£ 1 
B ] 
8 
= 
2 
8 

: O2) 
10T Eu u a i     
  

10! 10? 10% 10% 10° 106 107 

number of elements N 

Figure 4.12: Example from Section 4.8.1 (Homogeneous problem on L-shaped domain): 
Error estimator neue) of the last step of the Zarantonello iteration with 
respect to the number of elements N of the mesh 7 for 8 = 0.5 and 

A € {1,10=!,...,10=%} (top) as well as for A= 10”? and 0 € {0.1,0.3,...,0.9} 
(bottom). 
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Figure 4.13: Example from Section 4.8.1 (Homogeneous problem on Z-shaped domain): 
Error estimator neue) of the last step of the Zarantonello iteration with 
respect to the overall computational cost expressed as the cumulative sum 

Veranysn) #Te for 0 = 0.5 and A € {1,10=1,...,10=2} (top) as well as for 

A= 10? and 9 € {0.1,0.3,...,0.9} (bottom). 
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Figure 4.14: Example from Section 4.8.1 (Homogeneous problem on Z-shaped domain): 
Number of Zarantonello iterations with respect to the number of elements 

N for 6 = 0.5 and A € {1,1071,...,10=%} (top) as well as for A = 10”? and 
9 e {0.1,0.3,...,0.9} (bottom). 
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Figure 4.15: Example from Section 4.8.1 (Homogeneous problem on L-shaped domain): 

Overall computational cost Ip wy<(o,g) #7e such that ne(u,) < Tr for given 

precision r = 10°?, A € {1,10°°°,...,10”*}, and 9 € 10.05, 0.1,...,0.95}. 
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choice is A = 1 and 6 = 0.75. For the overall computational cost it then holds that 

> H Ty = 1531423, 

(€' k)< (k) 

where ur is the first approximation such that ne(uy) < 1072, 

Experiment with known solution on Z-shaped domain 

We consider the Z-shaped domain 0 < R? from Figure 4.11 (top) and the boundary value 

problem (4.123) 

div (u(2,|Vu*(@)|)VvuX@))= Fa) in, 
u(z) = 0 on I'p, 

w(z, |Vur(z)]?) Opu*(z) = g(z) on I'y, 

where the scalar nonlinearity 4: 2 x Roo > R is defined by 

1 

VI+t 

This leads to (N1)—(N4) with « =4; =2 and L =7, = 3. 

We prescribe the solution u* in polar coordinates (x, y) = 7(cos ¢, sin ¢) with ¢ € (—m, 7) 

by 

  p(z,t) =1+ (4.132) 

w*(z,y) = r° cos(B @), (4.133) 

where 3 = 4/7 and compute f and g in (4.123) accordingly. We note that u* has a generic 
singularity at the re-entrant corner (z,y) = (0,0). 

In Figure 4.16, we compare Algorithm 15 for different values of 9 and X, and uniform 

mesh-refinement. To this end, the error estimator ne(uy) of the last step of the Zarantonello 
iteration is plotted over the number of elements. We see that uniform mesh-refinement leads 

to the suboptimal rate of convergence O(N -?/7) for the Z-shaped domain. Algorithm 15 
regains the optimal rate of convergence O(N-\/2), independently of the actual choice of 

9 € {0.1,0.3,...,0.9} and X € {1,10°!,...,10”*}. Since ne(u,) ~ Af, this once again 

empirically underpins Theorem 23. 

In Figure 4.17, we plot the estimator ne(us) of the last step of the Zarantonello iteration 
over the cumulative sum ek) <(L,k) #Tp. As predicted in Theorem 23, we observe that 

Algorithm 15 regains the optimal order of convergence O(( Dr an<ieh) #Te) *) with 
respect to the computational complexity, while the rate seems to be independent of the 

values of X or 6. 

In Figure 4.18, we take a look at the number of Zarantonello iterations. As in Figure 4.14, 

we observe that that a larger value of X or a smaller value of 6 lead to less iterations, while 

the number stays uniformly bounded in each case. 

92



4.8 AFEM for quasi-linear elliptic PDE with strongly monotone nonlinearity 
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Figure 4.16: Example from Section 4.8.1 (Experiment with known solution on Z-shaped 

domain): Error estimator neu) of the last step of the Zarantonello iteration 
with respect to the number of elements N of the mesh 7 for 6 = 0.5 and 

A e {1,107},...,10=%} (top) as well as for A = 10”? and 0 € {0.1,0.3,...,0.9} 
(bottom). 
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Example from Section 4.8.1 (Experiment with known solution on Z-shaped 
domain): Error estimator neu) of the last step of the Zarantonello iteration 
with respect to the overall computational cost expressed as the cumulative sum 

Deswy<ien) #Te for 0 = 0.5 and A € {1,10-1,...,10-4} (top) as well as for 

A = 10? and 0 € {0.1,0.3,...,0.9} (bottom).
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Figure 4.19: Example from Section 4.8.1 (Experiment with known solution on Z-shaped 

domain): Overall computational cost I wy<(,x, #Te such that ne(us) < 

T for given precision 7 = 3:10, X € {1,1070°,...,10°*}, and 9 ¢ 
{0.05,0.1,...,0.95}. 
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In Figure 4.19, we compare the computational cost to reach the precision r = 3: 10°? 

for A € {1,10°0°,...,10°*} and 9 € {0.05,0.1,...,0.95}. As a result, we get that the best 
choice is A = 1 and 6 = 0.75. For the overall computational cost it then holds that 

> #Te = 5439636, 

(¢ K< (k) 

where ur is the first approximation such that ne(uy) < 3-1072. 
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5 Fully adaptive algorithm for AFEM for 

nonlinear operators 

5.1 Introduction 

In Chapter 4, we considered adaptive finite element methods for second-order elliptic PDEs 

where the arising discrete systems are not solved exactly. We showed that both AFEM for 

linear elliptic PDEs in combination with an optimal PÜG solver for the Galerkin system, 

cf. Section 4.7, as well as AFEM for certain nonlinear elliptic PDEs in combination with 

the Zarantonello iteration, cf. Section 4.8, fit in the abstract framework of Algorithm 15. 

The idea of this chapter, which is based on [HPSV21], is to combine these two settings into 

one fully adaptive algorithm. 

Let DC R@ with d>1 be a bounded Lipschitz domain with polytopal boundary. Given 

f € L?*(Q) and a nonlinear operator A: R’ — R, we then aim to numerically approximate 

the weak solution u* € HA(N) of the nonlinear boundary value problem 

—div A(Vu*) = f in Q, 

v =0 on. 

To this end, we propose an adaptive algorithm of the type 
  

| estimate total error and its components 

I (5.2) 

advance algebra/advance linearization/mark and refine mesh elements 

  

  

      

which monitors and adequately stops the iterative linearization and the linear algebraic 

solver as well as steers the local mesh-refinement. The goal of this chapter is to perform a 

rigorous mathematical analysis of this algorithm in terms of convergence and quasi-optimal 

computational cost. 

5.1.1 Finite element approximation and Banach-Picard iteration 

Suppose that the nonlinearity A in (5.1) is Lipschitz-continuous (with constant L > 0) 
and strongly monotone (with constant & > 0), see Section 5.2 for details. Then, the 

main theorem on monotone operators yields the existence and uniqueness of the weak 

solution u* € HA(D), see, e.g., [7ei90, Theorem 25.B]. Given a triangulation 7% of Q, 

the lowest-order finite element method (FEM) for problem (5.1) reads as follows: Find 
use A := {vs € C(D) : velr is affine for all TE 7, and v.|an =0} C Hd(D) such that 

(A(Vu}), Vue)a = (f, ve)o for all ve € X,. (5.3) 
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The discrete solution us € X, again exists and is unique, but (5.3) corresponds to a nonlinear 

discrete system which can typically only be solved inezxacily. 

The most straightforward algorithm for iterative linearization of (5.3) stems from the 
proof of the main theorem on monotone operators which is constructive and relies on the 

Banach fixed point theorem: Define the (nonlinear) operator ®, : X, — X, by 

a - 5 [(ATw), Voo = (F,ve] (64) 
for all w,,ve € Xo. Note that (5.4) corresponds to a discrete Poisson problem and hence 
®,(w.) € Ar is well-defined. Then, it holds that 

IV (us - D.(we)) 229) < gpic |V (ug — w-)HLZ(Q) (5.5) 

(V®,(w.), Vue)a = (Vw. , Vve)a 

with 

gpic:= (1 -a®/IP)V? <1, 

see, e.g., [Z7ei90, Section 25.4]. Based on the contraction ®,, the Banach-Picard iteration 

starts from an arbitrary discrete initial guess and applies ®, inductively to generate a se- 

quence of discrete functions which hence converge towards us. Note that the computation 

of ®,(wn) by means of the discrete variational formulation (5.4) corresponds to the so- 
lution of a (generically large) linear discrete system with symmetric and positive definite 
matrix that does not change during the iterations. As mentioned before, we now suppose 

that also (5.4) is solved ineractly by means of a contractive iterative algebraic solver (with 
contraction factor Qals < 1), e.g., PCG with optimal preconditioner, see, e.g., [OT14]. 

5.1.2 Fully adaptive algorithm 

In our approach, we compute a sequence of discrete approximations un 3 of u* that have an 

index £ for the mesh-refinement, an index k for the Banach-Picard linearization iteration, 

and an index 7 for the algebraic solver iteration. 

First, we design a stopping criterion for the algebraic solver such that, at linearization 

step £ — 1 € No on the mesh 7;, we stop for some index j € N. At the next linearization 

step k € N, the arising linear system reads as follows: - 

Find u” € A, such that, for all v, € Ay, 

a 1,5 5.6 
(Vulz’*, Voo = (Vu I Vu)o 73 KAava =), Voya-(f,; vu)o]; (5.6) 

k—1,j 
with uniquely defined but not computed exact solution u” = — Blu, 2) and computed 

iterates u, %3 that approximate un” . Note that (5.6) is a perturbed Banach-Picard iteration 
. 1,j 

since it starts from the available u, ”, typically not equal to the unavailable u 1x 

Second, we design a stopping criterion for the perturbed Banach-Picard iteration at some 

index k, producing a discrete approximation un: 

Finally, we locally refine the triangulation 7; on the basis of the Dörfler marking criterion 

for the local contributions of the residual error estimator nu” =), and, to lower the compu- 

tational effort, employ nested iteration in that the continuation on the new triangulation 
k,j 

Te+ı is started with the initial guess u, Y = = U, "~ 1 
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5.1.3 State of the art 

Solving the linear system (5.6) inexactly gives rise to the so-called “inexact Newton method”, 

see, e.g., in [Deu91, EW94] and the references therein. Under appropriate conditions, these 

can asymptotically preserve the convergence speed of the “exact” Newton method. However, 

these approaches only focus on the finite-dimensional system of nonlinear algebraic equa- 

tions of the form (5.3) but do not take into account the continuous problem (5.1), which is 
our central issue here. 

Solving the nonlinear algebraic systems (5.3) “exactly” (up to machine precision), only 
the discretization error is left. Then, convergence and optimal decay rates of the error 

IV(u* us) ||r2(n) with respect to the degrees of freedom of FEM adapting the approxima- 
tion space (mesh) were obtained in [Vee02, DK08, BDK12, GMZ12], following the seminal 
contributions |Dör96, MNS00, BDDO4, Ste07, CKNS08] for linear problems. We also re- 

fer to [ÜFPP14] for a general framework of convergence of adaptive FEM with optimal 
convergence rates. 

Solving only the linear algebraic systems (5.6) “exactly” but (5.3) inexactly leaves the 
discretization and linearization errors. Such a setting has been considered in, e.g., [CS07, 

EAEV11], where reliable (guaranteed) and efficient a posteriori error estimates were derived. 

Adaptive algorithms aiming at a balance of the linearization and discretization errors were 

proposed and their optimal performance was observed numerically, see, e.g., |BDMS15, 

BCL15, CW17, HW1B8]. Later, theoretical proofs of plain convergence (without rates) were 

given in [GMZ11, HW20b], where [HW2Ob] builds on the unified framework of [HW20a] 
encompassing also the Kafanov and (damped) Newton linearizations in addition to the 

Banach-Picard linearization (5.6). 

The works [GHPS18, GHPS21], ef. Chapter 4, considered that the linear systems (5.6) are 

solved exactly at linear cost (so that ur = uIZ’* with j(£,k) = O(1) in the present notation), 
as in the seminal work |Ste07] for the Poisson model problem and in [CG12] for an adaptive 
Laplace eigenvalue computation. Under this so-called realistic assumption on the algebraic 

solver, [GHPS18] proved that the overall strategy leads to optimal convergence rates with 

respect to the number of degrees of freedom as well as to almost optimal convergence rates 

with respect to the overall computational cost. The latter means that, if the total error 

converges with rate s > 0 with respect to the degrees of freedom, then, for alle > 0, it also 

converges with rate s— e > 0 with respect to the overall computational cost. The proof 

of [GHPS18] was based on proving first that the estimator ne(u2”) for the final Picard 
iterates decays with optimal rate s and second that the number of Picard iterates satisfies 

k() <1-+log|1 + mes ”)]. This logarithmic bound then led to the bound s — 
for the convergence rate with respect to the overall computational cost. 

As shown in Chapter 4, we have improved the latter result in [GHPS21] and proved 

optimal computational cost (i.e., e = 0), still relying on the assumption that the discrete 

Poisson problem (5.6) is solved exactly at linear cost. The core idea of the new proof follows 
ideas from adaptive Uzawa FEM for the Stokes model problem [KS08, DFFGP19]. However, 
besides the nonlinearity, the structural difference is that the adaptive Uzawa FEM employs 

an outer iteration on the continuous level (i.e., we first linearize and then discretize), while 

the approach of [ÜW17, GHPS18, HW20a, HW20b, GHPS21] is first to discretize and then 

to linearize. 
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As in the present setting, the “adaptive inexact Newton method” in [EV13] takes into 
account all discretization, linearization, and algebraic error components, see also [CPV14, 

DPVY15] and [Pol16] for regularizations on coarse meshes ensuring well-posedness of the 
discrete systems in Newton-like linearizations. The goal of this chapter is to perform a 

rigorous mathematical analysis of such algorithms in terms of convergence and optimal 

decay rate of the error with respect to computational cost. 

We stress that such results have already been derived for adaptive wavelet discretiza- 

tions [ÜDDO3, Stel4] which provide inherent control of the residual error in terms of the 
wavelet coefficients, while the present analysis for standard finite element discretizations 

has to rely on the local information of appropriate a posteriori error estimators. Also, 

while the present analysis is closely related to that of [GHPS21], we stress that both 

works [|GHPS18, GHPS21] focused only on linearization and discretization, while here, we 
also include the innermost algebraic loop into the adaptive algorithm. In particular, the 

technical challenges in the present analysis are much more involved than in [GHPS21] due 
to the coupling of the two nested inexact solvers. 

5.1.4 Main results and outline 

Similarly to Chapter 4, the sequential nature of the fully adaptive algorithm of Section 5.1.2 

gives rise to an index set 

Q:= {(£,k,j) € Ny : discrete approximation ulz’j is computed by the algorithm} 

together with an ordering 

(6, k) < OK) uf is computed earlier than u”. 

Our first main result, formulated in Theorem 45 below, proves that the proposed adaptive 

strategy is contractive after some amount of steps and linearly convergent in the sense of 

AT <a TAT AS gor all (0, k, )] < |(€, K, 5, (5.7) 

where Cj;n > Land 0 < qin < l are generic constants and Ay? is an appropriate quasi-error 

quantity involving the error ||V (u* — un )IIr2(0) as well as the error estimator ne(uy” ). 
Second, we prove the optimal error decay rate with respect to the number of degrees of 

freedom added with respect to the initial mesh in the sense that 

sup (HET - #To +)’ A)’ < (5.8) 
(L,k,j)EQ 

whenever u* is approximable at algebraic rate s > 0, see Theorem 49 below for the details. 

Finally, estimate (5.7) appears to be also the key argument to prove our most eminent result, 

namely the optimal error decay rate with respect to the overall computational cost of the 

fully adaptive algorithm which steers the mesh-refinement, the perturbed Banach-Picard 

linearization, and the algebraic solver. In short, this reads 

sup ( > #7) AT < 00 (5.9) 
(kJ )EQ (U,k,j)EQ 

(L)< (K 5" 
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whenever u* is approximable at algebraic rate s > 0; see Theorem 53 below for the details. 

We stress that under realistic assumptions the sum in (5.9) is indeed proportional to the 

overall computational cost invested into the fully adaptive numerical approximation of (5.1), 

if the cost of all procedures like matrix and right-hand-side assembly, one algebraic solver 

step, evaluation of the involved a posteriori error estimates, marking, and local adaptive 

mesh refinement is proportional to the number of mesh elements in 7; (i.e., the number of 

degrees of freedom). 
The remainder of this section is organised as follows. In Section 5.2, we introduce the 

abstract setting for our algorithm as well as the requirements on mesh-refinement, error 

estimator, and algebraic solver, before we state the fully adaptive algorithm in Section 5.2.5. 

In Section 5.3, we then state the aforementioned main results, i.e., linear convergence of the 

quasi-error in each step of the adaptive algorithm (Section 5.3.4), optimal convergence rates 

of the quasi-error with respect to the number of degrees of freedom (Section 5.3.6), as well as 

optimal convergence rates of the quasi-error with respect to the overall computational cost 

of the fully adaptive algorithm (Section 5.3.7). Finally, numerical experiments in Section 5.4 
underline the theoretical findings. 

5.2 Adaptive algorithm 

In this section, we introduce an abstract setting, in which all our results will be formulated, 

define the exact weak and finite elements solutions, introduce our requirements on mesh- 

refinement, error estimator, and algebraic solver, state our adaptive algorithm, and present 

our main results, including some discussions. 

5.2.1 Abstract setting 

Let A be a Hilbert space over Ke {R,C} with scalar product (-, -), corresponding norm 

Il - |], and dual space #’ (with canonical operator norm || - ||”). Let the operator A: H — H’ 
satisfy (O1)-(O3) from Section 4.2 with potential P:H — K, i.e., we suppose that the 

operator A is strongly monotone and Lipschitz-continuous, i.e., 

a ||w - v||? < Re (Aw - Av, w—v)yoyy and ||Aw - Avul’ < L||w- v|| (5.10) 

for allv, we H, where0 <a < Lare generic real constants and P is Gäteaux-differentiable 

with derivative A := dP: H — H/, i.e., there holds that 

P(w + tv) — P(w) 
(Aw , V)3 %y = lim for all v,w € H. 

t—0 
teR 

Given a linear and continuous functional F € H’, the main theorem on monotone opera- 

tors [Zei90, Section 25.4] yields existence and uniqueness of the solution u* € H of 

(Au*, VHS H = F(v) for all v € H. (5.11) 

The result actually holds true for any closed subspace X,  H, which also gives rise to a 

unique u} € X, such that 

(Aus, Ve) x H = F(v.) for all v, € X. (5.12) 
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Finally, with the energy functional € := Re (P — F), it holds that 

a * |12 * L * )12 
5 llve = ul < Eve) = Elu) SZ love well” for all v, € A, (5.13) 

see, e.g., [GHPS18, Lemma 5.1]. In particular, u* € AH is the unique minimizer of the 

minimization problem 

E(u*) = min Ev) (5.14) 

as well as u) € X is the unique minimizer of the minimization problem 

E(w) = min E(v.). (5.15) 
Ve EXNe 

As in Section 4.2, it follows from (5.10)-(5.12) that the present setting guarantees the 
Céa lemma 

|u* — us || < Ocea ||u* — ve|| for allv. EX, with COcea := L/a. (5.16) 

5.2.2 Mesh-refinement 

We briefly recall some definitions of the mesh-refinement from Section 3.4. Let 7, be a 

conforming simplicial mesh of Q, i.e., a partition of Q into compact simplices T such that 

Urer, T = Q and such that the intersection of two different simplices is either empty or 

their common vertex, edge, or face. 

We assume that refine(-) is a fixed mesh-refinement strategy, e.g., newest vertex bisec- 
tion, cf. Section 3.6. 

We write 7, = refine(7,,.M,) for the coarsest one-level refinement of 7,, where all 
marked elements M, C 7, have been refined, i.e., M. < 7.\75. We write 7, € refine(T,), 
if 7, can be obtained by finitely many steps of one-level refinement (with appropriate, yet 

arbitrary marked elements in each step). We define T := refine(70) as the set of all meshes 
which can be generated from the initial simplicial mesh 79 of 2 by use of refine(-). 

Finally, we associate to each 7, € T a corresponding finite-dimensional subspace X, S H, 

where we suppose that X, C A, whenever 7,,7, € T with 7, € refine(7,). 

For newest vertex bisection, we refer to Section 3.6 for the validity of (R1)-(R3) as well 

as Section 3.7 for other refinement strategies. 

5.2.3 Error estimator 

For each mesh 7, € T, suppose that we can compute refinement indicators 

Ne(T,ve) >0 forall T € T, and all ve € A,. (5.17) 

We denote 

1/2 
Ne(Ve, de) := ( > ne(T, 2.) for all Ve C Te (5.18) 

TEVe 
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and abbreviate 7.(v.) := ne (Te,vs). Analogously to Section 4.3, we assume the azioms of 

adaptivity (Al)-(A4) from [CFPP14] for all 7. € T and all 7, € refine(7,) with generic 
constants Cap; Oreı > 0, and O0 < Gred < 1. We stress that the exact discrete solutions us 

(and uf respectively) in (A3)-(A4) will never be computed but are only auxiliary quantities 
for the analysis. 

We refer to Section 5.4 below for precise assumptions on the nonlinearity A(-) of prob- 

lem (5.1) such that the standard residual error estimator satisfies (A1)-(A4) for lowest-order 
Courant finite elements, see also Section 5.4.1-5.4.2. 

5.2.4 Algebraic solver 

For given linear and continuous functionals G € H’, we consider linear systems of algebraic 

equations of the type 

(%,w)=Glw) for all we € X, (5.19) 

with unique (but not computed) exact solution v} € X,. We suppose here that we have at 

hand a contractive iterative algebraic solver for problems of the form (5.19). More precisely, 
let v0 € X, be an initial guess and let the solver produce a sequence vl € X,, 7 > 1. Then, 

we suppose that there exists a generic constant 0 < qalg < 1 such that 

lve = vill < quig llvs — w7 for all j > 1. (5.20) 

Examples for such solvers are suitably preconditioned conjugate gradients or multigrid, see, 

e.g., Olshanskii and Tyrtyshnikov [OT14] and the references therein. 

5.2.5 Adaptive algorithm 

For the numerical approximation of problem (5.11), we consider an adaptive algorithm which 

steers mesh-refinement with index £, a (perturbed) contractive Banach-Picard iteration with 

index k, and a contractive algebraic solver with index j. On each step (£,k, j), it yields an 

approximation un € A to the unique but unavailable u; € X, on the mesh 7; defined by 

(Auz , vy = Flve) for all vy € A (5.21) 

Reporting for the summary of notation to Table 5.1, the algorithm reads as follows: 
  

Algorithm 41. Input: Initial mesh Ty and initial guess uw = ug’i € Xy, parameters 

0<0<1,0<Aig <1, 0<Apic, and 1 < Cyark, counters { =k = 5 = 0. 

Adaptive loop: Iterate the following steps (i)-(vi): (adaptive mesh-refinement loop) 

(i) Repeat the following steps (a)-(c): (linearization loop) 

(a) Define u = u and update counters k:=k+1 as well as j :=Q. 

(b) Repeat the following steps (1)—(111): (algebraic solver loop) 
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counter discrete solution 

available unavailable 

running stopping running stopping exact 

mesh l L uzl un” u; from (5.21) 
k,j k,j 

linearization k k up 2 un” un” from (5.22) 
] ; ; k,j kl algebraic solver J J Uy u, 
  

Table 5.1: Counters and discrete solutions in Algorithm 41. 

(I) Update counter j:=j +1. 

(II) Consider the problem of finding 

un € A, such that, for all v, € A, 

x k-1,5 k—1,j (5.22) 
(u, vd = lu "ud z(Auy "Fon 

and do one step of the algebraic solver applied to (5.22) starting from u, 
. . k,j . . k,x 

which yields u,” (an approximation to u,’ ). 

III) Compute the local indicators u(T, un for all TE Tr. 
£ 

Until Juf? — uf? ) < Aug [ne(uf?) + Jluf? — 2. (5.23) 
(c) Define j := j(£, k) := j. 

Until [un u I < Arienelu)). (5.24) 

(ii) Define k := k(¢) := k. 

(ii) If nur”) = 0, then set l:= l and enit. 

(iv) Determine a set M, < T; with up to the multiplicative constant Oynark minimal cardi- 

nality such that u L 
One(1i,”) < oM, u, ™). (5.25) 

. 0,5 k.j 
(v) Generate Trxrı := refine(Ty, My) and define U = Uy = Uy 

(vi) Update counters ¢ :=(+ 1, k:=0, and j := 0 and continue with (i). 

Output: Sequence of discrete solutions ulg’j and corresponding error estimators ng(ulz’j ). 
  

  

Remark 42. Some remarks in order to explain the nature of Algorithm /1: 
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e The innermost loop, Algorithm /1(i)(b), steers the algebraic solver. Note that the 

eract solution un” of (5.22) is not computed but only approximated by the computed 

iterates ulg’j . For the linear system (5.22), the contraction assumption (5.20) reads as 

k, ku k, kji—1 : b — I < gang Muh * — a5 for all j > 1. (5.26) 
Then, the triangle inequality implies that 

1 qalg &, k.j ki kl k, ki 
T — u, = w | < I uw | S (+ gs) |” uw |. (5-27) 

alg 

kj-1 
¢ Hence, the term |||ulzj —u || provides a means to estimate the algebraic error 

IIu}* — ww]. In particular, the approzimation un is accepted and the algebraic 

solver is stopped if the algebraic error estimate In)” — ulz’j_1||| is, up to the threshold 
. j j k—1,j . ., 

Aalg, below the estimate on the sum ng(ulg’J) + |||ulzj — L of the discretization and 
k—1 

linearization error, see (5.23). Since Ih" — ulg’0||| = Id" — u, ||, the stopping 
criterion (5.23) would always terminate the algebraic solver at the first step j =1 if 

Aalig was chosen greater or equal to 1 which motivates the restriction Azıg <1. 

e The middle loop, Algorithm }1(i), steers the linearization by means of the (perturbed) 
. . . k.j k—1,j . 

Banach-Picard iteration. Lemma // below shows that the term ||u, L u, || esti- 
. "gr kg . 

mates the linearization error ||u; — u, "||. Note that, a priori, only the non-perturbed 
Banach-Picard iteration corresponding to the (unavailable) exact solve of (5.22) yield- 

ing u” would lead to the contraction 

ui - u] < gie lui u, | for all (6,k,0)e Q withk >1, (5.28) 

where 0 < gpie := (1- a?/L?)VY? < 1 and Q the index set defined in (5.29). The 

approximation un is accepted and the linearization is stopped if the linearization 
k,j k=1j, . : . 

error estimate |||uel —u, || is, up to the threshold Apic, below the discretization 
k 

error estimate neu, 7), see (5.24) (here Apic < 1 is not necessary). 

e Finally, the outermost adaptive loop steers the local adaptive mesh-refinement. To this 

end, the Dörfler marking criterion (5.25) from [Dör96] is employed to mark elements 
k, . . - 

T € My for refinement, unless ng(uzl) = 0, in which case Proposition /3 below 
. . k, . . . 

ensures that the approximation Un coincides with the exact solution u* of (5.11). 

e In a practical implementation, Algorithm /1 has to be complemented by appropriate 

stopping criteria in all of the loops so that the computation is terminated if un € Xy 

is a sufficiently accurate approximation of u*. This can be done with the help of the 

reliable a posteriori error estimates summarized in Proposition 43 below. 
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5.2.6 Index set O for the triple loop 

To analyze the asymptotic convergence behavior of Algorithm 41, we define the index set 

Q:= {(£,k,j) € N} : index triple (£,k,j) is used in Algorithm 41}. (5.29) 

Since Algorithm 41 is sequential, the index set © is naturally ordered. For indices (¢, k, j), 

(¢, K, j") € Q, we write 

k,5) < (K, 5 ges (£,k,j) appears earlier in Algorithm 41 than (£',k’, 5’). (5.30) 

With this order, we can define 

(4, k)] = #{ (0K, ") € Q= (0K, 5) < (&K, 4)}, 

which is the total step number of Algorithm 41. We make the following definitions, which 

are consistent with that of Algorithm 41, and additionally define j(£,0) := 0: 

£:=sup{leNo : (0,0,0)E Q} E No U {oo}, 

k(¢) :=sup{k € Ny : (£,k,0) € Q} END U {oo} if (£,0,0) € Q, 

j k) :==sup{je Ny : ({,k,j) € Q} e NoU{oo} if ((,k,0) € Q. 

Generically, it holds that £ = x, i.e., infinitely many steps of mesh-refinement take place. 

However, our analysis also covers the cases that either the k-loop (linearization) or the 

j-loop (algebraic solver) does not terminate, i.e., 

k(f) =00 if £<oo resp. j(L k) =oc if £<ooand k({) < oo, 

L 
or that the exact solution u* is hit at Step (iii) of Algorithm 41 (note that ne(uy”) =0 

implies u* = Un by virtue of Proposition 43 below). To abbreviate notation, we make the 

following convention: If the mesh index £ € Ny is clear from the context, we simply write 

k:= k(l), e.g., un = uf(e)’j. Similarly, we simply write j := j(£,k), e.g., ur = u 

Note that there in particular holds u = un = u” for all (¢,0,0) € Q with £ > 
1. Hence, these approximate solutions are indexed three times. This is our notational 

choice that will not be harmful for what follows. Alternatively, one could only index the 

approximate solutions that appear on Step (i)(b)(II) of Algorithm 41. 

5.3 Main results 

5.3.1 Reliabilty estimates of Algorithm 41 

Our first proposition provides computable upper bounds for the energy error ||ı* — un | of 

of Algorithm 41 at any step (£,k,j) € ©. In particular, we note that the 
L 

stopping criteria (5.23)-(5.24) ensure reliability of neu, ”) for the final perturbed Banach- 

the iterates u 

. . k,j 
Picard iterates u g 
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Proposition 43 (Reliability at various stages of Algorithm 41). Suppose (Al) 
and (A3). Then, for all (L,k,j) € ©, it holds that 

u 3-1 
14 I -w” | 

if 0<k<EW{)and0<j<jLk), 
nelug”) + |” — 

u 1,3 
Iu* — ul] < Ch I meta + nu if O<K< Kt) and 5 = j(k), (5.31) 

kg . . . e if k=k(l) and j = j(£,k), 
lu) if k=0and!>O. 

The constant Cl >00 depends only on Urea, Cstab, Galg, Aalg, Pic; and Apic- 
  

The proof ist postponed to Section 5.3.2, because we first need some auxiliary results for 

Algorithm 41. 

Observations on Algorithm 41 

First, we collect some elementary observations on Algorithm 41 in what concerns nested 

iteration and stopping criteria. The given initial value of Algorithm 41 reads 

un u = un" € Ab. (5.32) 

If (£,0,0)€ Q with £ > 1, then 
L 

u” = un = ur = un e Ar_1 < A. (5.33) 

If (£,k,0) € Q, then the initial guess for the algebraic solver reads 

uw for £ =0, 

0 = u fk=0andl>1, (5.34) 
uw 2 ifk>0, 

i.e., the algebraic solver employs nested iteration. The stopping criterion (5.23) of Algo- 

rithm 41 guarantees that j(¢,k) > 1 if k > 0 and, for all (¢, k, j) € 9, it holds that 

kj  kgj—1 k,j kj k-1j oo. I I < Arte [md + lu] fors=äleh), (5.35) 
k, ] k, j—1 k, } k, j „n 1,3 - . I > Aue [nel 4 lubd g ) for 5 < g6 k), (5.36) 

i.e., the algebraic error estimate |||ulz”7 — U, nd !| only drops below the discretization plus 
linearization error estimate at the stopping. iteration j = j({, k). 

The final iterates u 2 of the algebraic solver are used to obtain the perturbed Banach- 

Picard iterates u - for k > 0, see (5.22). The stopping criterion (5.24) of Algorithm 41 
guarantees that k(£) > 1 and, for all (£,k,j) € 9, it holds that 

1; ki 

u u, I < Arieneluy”) for k= k(l), (5.37) 
k,j k—1,7 k,j 

g™ =g 2l > Arionelu”) for k< kl), (5.38) 
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k, ] k_la ] . . . 
i.e., the linearization error estimate ||u, Lo u, || only drops below the discretization error 
estimate at the stopping iteration k = k(l). 

Contraction of the perturbed Banach-Picard iteration 

Assumption (5.20) immediately implies the algebraic solver contraction (5.26) and relia- 

bility (5.27) of the algebraic error estimate II} — ww]. Similarly, one step of the 
non-perturbed Banach-Picard iteration (5.22) (i.e., with an exact algebraic solve of prob- 

lem (5.22) with the datum u leads to contraction (5.28) and consequently to the 
reliability 

  
1 — gp; k, k, k—1,j k—1,5 

— Jr ww < I -w IS 1+ gpic) u | (5.39) 
1C 

k—1,j 
of the unavailable linearization error estimate |||u];* — u, ||. As our first result, we now 
show that, for sufficiently small stopping parameters 0 < Ayı; in (5.23), we also get that the 
perturbed Banach-Picard iteration is a contraction. 

Recall that u; € A, is the (unavailable) exact discrete solution given by (5.21), that 

un € A, is the (unavailable) exact linearization solution given by (5.22), and that un? € X, 

is the computed solution for which the algebraic solver is stopped, see (5.23) (and (5.35)- 
(5.36) respectively) for the stopping criterion. 
  

Lemma 44. There exists Ale > 0 only depending on gas and gpic such that 

  Qalg * 

Pic FT 1 
/ o Qalg 8 

1_Qa1g alg 

Moreover, for all stopping parameters 0 < Ayıg < 1 and 0 < Apic from (5.23)-(5.24) such 

that O < Aaıg + Aalg/APic < Ang it holds that 

x ki x k—1,j 
Id << gpic llug —w, | for all 1 <k < k(0). (5.41) 

This also implies that 

/ 

1 gpie 
/ 

Pic 

k, ] ka.] k_la] k—1, ] 

II < ww < I =y =< (14 apie) llug —wy - (5.42)   

  

Proof. Clearly, (5.42) follows from (5.41) by the triangle inequality as in (5.27) and (5.39). 
Moreover, (5.40) is obvious for sufficiently small A%,,, since gpic = (1 — o?/L*)V? < 1 
from (5.28) and 0 < gas < 1 is fixed from (5.20). To see (5.41), first note that 

k,j k, k, k,j 

II - u] < I - well + I” W|] 
(5.28) k-1,j Lk k.j 

< gpie ||u7 — u, ||+ |||Ue’* -% |; 
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where the first term corresponds to the unperturbed Banach-Picard iteration (5.22) and 

the second to the algebraic error. Second, note that, since 1 < k < k(¢), 

  

  

  

    

  

kr kn ZI gal ki Kiel I ul < en | 
— Galg 

(5.35) gay u 1,5 
< 7 U g [ ey ) + I — =] 

— Galg 

(5.38) Ga] k,j k—1,j 
< 1 — (Aaıg + Aalg/APic) |ü, — Up = 

— Galg 

Gal k,j k—1,5 

=7 — — (Nalg + Aatg/Apic) [ Nug — w "I+ lug —w, N: 
Galg 

Combining the latter estimates with the assumption Azıg + Aalg/Apic < Aue we see that 

k, j q l En 1,5 q l k, ] 

ud — u || < (arie + —— Ai) iu | Ag | — u |. 
1— alg 1— alg 

If 0 < A}, is sufficiently small, it follows for all 1 < k < k(¢) that 

Galg * 

k,j qpic + T Jals “ alg u 15 
Ir — u, "|| < Eli kp || 

1— Galg alg 

N 1, 
= gpicllu; — - 

This concludes the proof. [ 

5.3.2 Proof of Proposition 43 (reliability estimates) 

We are now ready to prove the estimates (5.31). 

Proof of Proposition /3. First, let ({,k,j) € Q with 0 < k < k({) and 0 < j < j(£, k). 

Due to stability (A1), reliability (A3), and the contraction properties (5.27) resp. (5.39), it 
holds that 

I* = ll < M = ) + Id - ) 
(A3) 
SCH + llup — | 
Al) 
< neluy”) + Id - un | 

3 k:’. 

< ne(uy?) + flug — wg™ ) 4 fup™ — up? (5.43) 
(5.39) , . 

k, k, k—-1,5 k, 
<s nel) + |” u, e — ) 

k.j k,j u 1,5 k,j 
< neu, )+ |||Ue ’ I+ 2 |||u — Uy || 

(5.27) ui . 
k, k, I 3 s 1 

S me(uy?) + |” - II + I” - ww Ol. 
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This proves (5.31) for the case O<k<k(l) andO<j<j(£,k). 
If j = j(£,k), we can improve this estimate using the stopping criterion (5.35) which 

yields that 

ki I a 
I," 1 Ss uw) + lu wu N. (5.44) 

Combined with (5.43), this proves (5.31) for j = j(¢,k). If additionally k = k(£), the 
stopping criterion (5.37) and the previous estimate (5.44) provide that 

ki I Ki I 
= —w,= I Ss nelwy™) + lw,™ =, =l S mew,™), (5.45) 

which proves (5.31) for this case. Finally, for £ = 0, £ > 0 and hence j = j = 0, it directly 
follows from nested iteration (5.33) and the previous case k = k(£-1) resp. j = j(£-1,k) 

that 

* 0,0 * k.j k,j 
II" — u, || = e’ =, 5 1S me—1 (=) (5.46) 

This concludes the proof. [] 

5.3.3 Linear convergence of the quasi-error 

The first main theorem states linear convergence in each step of the adaptive algorithm, 

i.e., algebraic solver or linearization or mesh-refinement. 
  

Theorem 45 (linear convergence). Suppose (Al)-(A3). Then, ihere exist A}. Apı. > 0 

such that for arbitrary 0 < 0, Aaıs, APic with 

0<0<L1, 

0 < Aag <1, 

0 < Aaig + )\alg/)\Pic < Ale and, 

0< )\pic/e < )\Eic, 

there exist constants Cin > 1 and 0 < qin < 1 such that the quasi-error 

kg .__ k.j k, k.j k,j 
A, = |[u* — Uy I+ e, *— Uy + ne(u, 7, (5.47) 

composed of the overall error, the algebraic error, and the error estimator, is linearly con- 

vergent in the sense of 

Ab < Clin NEN Ay? (5.48) 

for all (0, k,5), (0 K ) € Qwith (¢',K',j') > (¢, k,j). The constants Ci and qin depend 

only on Crel, Cstab, Gred, 9, Galg, )\algy qPic; APic, @, and L. 
  

Note that A 7 = A7 when (¢, K, 5') = (¢, k, j), and then (5.48) holds with equality 
k' -/ k . k' -/ k . 

for Cjin = 1. There are other cases where u,” = u,” and where u,” = u,” together ¢ ¢ ¢ ¢ 
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with Ty = 7Ty, and consequently ne (u?) = ng(uf’j ), related to our notational choice for 

Q in (5.29) that also indexes nested iterates. The case with ¢ = ¢ arises for instance when 

j=34,3 =0,and K =k + 1, see Step (i)(a) of Algorithm 41. Note, however, that in 

such a situation, typically un, 4 un” , and consequently Ab =+ Ay? . A situation where 

Ah, 7 - Ab” for (¢ K',j") # (£,k,j) can nevertheless also appear, and is covered in (5.48). 

For instance, in the above example, when j= 5,57’ = 0, ¥’ = k + 1, and ¢/ = ¢, and where 
ki __  kx * kj kx k! x k', % . 

moreover u,” = u, = u; (so that u,” = u,” = u,” = u,” = uj), Algorithm 41 performs 

only one step of the algebraic solver on the linearization step k’, so that Cjin = 1/Qıin leads 

to equality in (5.48) where now |(¢, k', 7)) —|(¢, k,7)| = 1. 
In order to prove Theorem 45, we first introduce an auxiliary adaptive algorithm which 

we employ to prove a certain summability property of the quasi-error, before we prove linear 

convergence in Section 45. 

An auxiliary adaptive algorithm 

Due to Lemma 44, the iterates u = are contractive in the index k. Consequently, Algo- 

rithm 41 fits into the framework of [GHPS18] upon defining u, from [GHPS18] as uy := u,” ni 
for the case where k(l) < x and j(l,k) < ©, i.e., both the algebraic and the lineariza- 
tion solvers are stopped by (5.23)-(5.24) on the mesh T:. Note that the assumption 
(£+n+1,0,0) € © below ensures this for all meshes 7% with 0 < ¢ < ¢+ n. Then, 

we can rewrite [GHPS18, Lemma 4.9, equation (4.10)] and [GHPS18, Theorem 5.3, equa- 
tion 62 5)] in the current setting to conclude two important properties: First, the estimators 

k,j 
ng(ue -) available at Step (iv) of Algorithm 41 are, up to a constant, equivalent to the esti- 
mators ne(uy) corresponding to the unavailable exact linearization u7 of (5.21). And second, 

k,j 
the estimators ng(ue =) are linearly convergent. 
  

Lemma 46 ([GHPS18, Lemma 4.9, Theorem 5.3]). Recall A}, > 0 and 0 < gp;. <1 

from Lemma 4. Define 

1 — gb. * Pic „ie —g 
Fie q%iccstab 

and note that it depends only on gpic, Qalg, and Csan- Then, for allO < 9, Aziz, Apic with 

0<P<IT, 

0 < Aag <1, 

0 < Aalg + Aalg/Apic < AL 

0 < Apic/0 < Apicı 

alg; and, 

and all (£,k,j)€ Q@ with k < oo and j < x, it holds that 

(1 = Apie/Abie) nelup) <neluf) < (1 + Arie/Abie) nel”). (5-49) 

Moreover, there exist Camps > O and < ganps <1 such that 

ern (U) < Cups danps Ne(u, >) forall(+n+1,0,0)€ Q. (5.50) 
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The constants Ocups and gqcups depend only on L, o, Cyel, Ustab, Ired, Galg, 074 pic, 98 
well as on the adaptivily paramelters 0, Aaıg, and Apic- [] 
  

As aresult of Lemma 46 and Proposition 43, we get the following lemma for the quasi-error 

of (5.47) on stopping indices k(¢), j(¢, k). Please note that when £ < x, the summation 
below only goes to £-1, as the arguments rely on (5.50) which needs finite stopping indices 

k(£) and j(£,k) on each mesh T7,. 

  

Lemma 47. Suppose that 0 < Aajg+ Aaıg/APic < Alıg (from Lemma //) as well as 0 < 0 < 1 

and 0 < Apic/0 < A}, (from Lemma /6). With the convention { —1 = oo if £ = x, there 
holds summability 

-1 
kJj k.j / , > A <CAyn forall (UK, §) € Q, (5.51) 

=041 

where C' > 0 depends only on L, a, Orel; Üstab; Ored; d, Galg, QPic> Aalg; and APic- 
  

Proof. Define Ak: — ||u* - u, | + neu“ =) as the sum of overall error plus error estimator. 

In comparison with (5.47), Ak omits the algebraic error term but is only defined for the 

algebraic stopping indices j(£,k). With Proposition 43 and the linear convergence (5.50), 
we get that - 

1 63) I x; (5:50) 
A& < ( ) < a 

> en > e\t ne( Tr 5 denps S 
0=t +1 0=t +1 0=t +1 

Let (,k,j) € Q. By definition (5.47), it holds that 

hd mi o At = e = g+ ™ = gl 4+ e (i) = A 4+ i — 
Moreover, note that 

k,x ) Ea] Ea]_l 

II” wel < ua” — up || 
(5.35) ku 1y 
< ne(upt) + Mrz U | 

(5.37) ; 
S ne(un) 

< AL 

This proves the equivalence IN ~ AL „ for all (Ü,k,j) € @ and concludes the proof. 

5.3.4 Proof of Theorem 45 (linear convergence) 

This section is dedicated to the proof of Theorem 45. The core is the following lemma that 

extends Lemma 47 to our setting with the triple indices. 
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Lemma 48. Suppose that 0 < Aaıg+ Aalg/APic < Ale (from Lemma //) as well as 0 < 0 < 1 

and 0 < Apic/0 < A&,. (from Lemma /6). Then, there ezists Csym > 0 such that 

Do A <CumAh” forall (0K, 5) € Q (5.52) 
(L,k,j)EQ 
(k. 3)> (K 57) 

The constant Csu depends only on Crei, Ustabs Iredı 0, dalg; Aalgs Pic, APic, a, and L. 
  

Proof. Step 1. We prove that 

  

a7 = g — g+ g™ =+ me(ug?) = ApT for all (£,k,j) € Q.| (8.53)       

Note that Ay» and Ay only differ in the first term, where the overall error is replaced by 

the (inexact) linearization error. According to the C&a lemma (5.16), it holds that 

u g 6.16) cn 
s * s * * * ) 3 

Ir = ul S It ug lau S uw Ss Ar”. o 

This implies that Ay < Alz’j . To see the converse inequality, note that 

I = || < |Ia* - wol + Id - WW” || 
(A3) 

k,j 
< neu) + flug — ug” | 

m k.j * k.j S neu”) + ur ug“ | 
< AyT. 

This proves Ay < Ay and concludes this step. 

Step 2. We prove some auxiliary estimates. First, we prove that the algebraic error 

II — ulz’j ~!Y| dominates the modified total error AIE’J , before the algebraic stopping cri- 
terion (5.23) is reached, i.e., 

  

Ay? < Jlup™ — wu] for all (4,k,j) € Qwith k> 1and 1 <j<j(6,k).| (5.54) 
      

To this end, note that 

k.j k, k.j k, k, k.j Id - ll + eg” = w7 < ler u + 2 Me” - we] 
(5.39) 

k, k—1,5 k, k,j 
s ww + ey = | 

k, k, j k, j k_l"l 

< 2 |” we” u | 
(5.27) k-1,j 

k,j kj-l k.j 
s I” u +” <-w N. o 
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Since 1<,j<j(£,k), we obtain from the latter equation that 

A, = |Iuf "+ || ul tele ’) 
k,j sl J SH neu”) 

(5.36) k,j j-l 
a — w7 

(5.27) 
k, kj—1 

Ss I" ww” |. 

This proves (5.54). 

Second, we consider the use of nested iteration when passing to the next perturbed 

Banach-Picard step. We prove that 

  

    
  

  

u u] <A, 7 forall (6,%,0)e Qwithk > 1, (5.55) 

To this end, simply note that 

- (5.34) k: 15, 039 k: 1,5 k-1 
I" -w| II, NS ey - Il <A, 

This proves (5.55). 

Third, we prove that 

AV < AR forall (0K, j) € Q, (5.56) 
      

related to the algebraic error contraction. Note that k = 0 implies j = 0, so that (5.56) 

trivially holds for k = O0 with equality. Let now k > 1. We first consider the last but one 

algebraic iteration step j = j(£,k)—-1>0. There holds that 

k,j k,j 

A, = — ||u7 — Uy _||| + IIui - ue _||| + ne(u,” -) 

Ka 1 1 kj-1 
< lup - I+ II} I + nelu, 2) + 2]ju u u, || 

AD) Ki kj—1 
S A, - |||u£ TUT I 

(5.27) 
k,j— 1 k,5—1 

Ss Ar Hl” | 

~ A \ 

This proves (5.56) for j = j(£,k)—-1> 0. Note that this argument also applies when j =1. 

IEO<j< j(£,k) — 2, then we employ the last estimate and (5.54) to obtain that 

(5.54) 
k,j k,j—1 k, k,j— 2 

Au, SA,” S |||u£*— 

(5 26) L . 
| kr uw || <A,” 

also using that gas < 1. This concludes the proof of (5.56). 
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Fourth, we prove that the linearization error ||u; — u ||| dominates the modified total 

error A, 2, before the linearization stopping criterion (5.24) is reached, i.e., 

  

  
AS li Hl forall (5) Q with 1< k < k(0), 5:57)   
  

To see this, note that 1 < k < k(¢) yields that 

AyL = g — g 2 e — g )+ ey ) 

ee) 

ea en a Heu) 

neu) 

rl 
(5.42) 

u 1,5 

Ss I u, L 

where we employ Lemma 44 and hence require 0 < Azıs + Aalg/APpic to be sufficiently small. 

This proves (5.57). 

Fifth, we consider the use of nested iteration when refining the mesh. We prove that 

  

  AV < () < AR forall (4K, j) € Q. (5.58)   
  

To this end, note that 

Y . . o kg OI0 SC) k.j 
le - walls le - elle — w50 S I - Wal S mil): (5.59) 

Next, recall from (5.33) that u” = ug’i = un. From (Al) used on non-refined mesh 
elements and (A2) used on refined mesh elements, we hence conclude that 

od 0,5 0,7 
== flug —wp =l A+ neu,” 
(5.33) k,j k,3 

Id - u | + mel) 
(5.59) ki 
S M- u rt nelunn) 

’ k,j k,j 

Ta Tu) + Tun) 
(Al) 
< M- (u tn (Te INT +tnlT\ Ti un 2) 

(A2) 
< M- (u tl INT tm. ı(Te- \Tun 2) 

= nl). 
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This proves (5.58). 

Sixth, we prove that 

APL < AT for all ı SA, orall (£,k,j) € Q, (5.60)   
    

  
related to the linearization error contraction. We first consider k = k(¢) —1 > 0. Note that 

k, k—-1, ] E_la ] (5.28) 2 1, k— Li 

I" g A< g — g g =y S Wk~ <A, (5.61) 

Hence, the triangle inequality leads to 

k.j k.j 
¢ - ue W+ eu) 

kj kj 
A7 = g — wy =+ [l 

E 1,5 un 1,35 Ks 
< ||u7 — )+ Yo I+ 2 e, e u | + ne(u,”) 

56) 5 k 

S A, + ur? - fr 2] + nun 2) 

Al) 15 k- 
SA, "+ I — u, 2] 

(5:42) oy 

SA, "+ | - tr 2] 

<2AF M 

This proves (5.60) for k = k(¢) — 1. Note that the same argument also applies when k = 1 
FO<k<k(l) — 2, then 

k,j k—1,j (5.57) k-2,j x k,j 
A, SA, Ss u -w it ur —u, || SA, o 

also using that gp,. < 1. This concludes the proof of (5.60) 
Seventh, we consider the use of nested iteration when passing to the next perturbed 

  
    

  

Banach-Picard step. We prove that 

AP <A, 7 forall (6,%,0) € Q with k > 1. (5.62) 

Using (5.55) and recalling the definition u, 0 — u 2 ‚it holds that 

ki ED) 4y 
P R O ) SAH 

k,0 k: 1,5 
Ay = |Iuf - 2+ Ny 

which is the claim (5.62). 
Step 3. This step collects auxiliary estimates following from the geometric series and 

. First, with the the contraction properties of the linearization and the algebraic solver 

convention j(£,k) — 1 = oo when j(£,k) = oo, it holds that 

  ItE,k)—1 

ul < AN” for all (¢,k,4) € Q with k> 1. (5.63) k,j k, Das 
jei+tl     
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This follows immediately from 

k,j k,x 3-1 

Dass Ver u 
jeitl jeitl 

(5.26) x 
< g™ u |||an1g 

k, ki 
Ss |" wi 

Analogously, with the convention that k(£)—1 = x when k(£) = x, the contraction (5.41) 
of the perturbed Banach-Picard iteration leads to 

  

KO-1 g u 
S A Sl l< A forall (4i)) € Q (5.64) 

k=i+1       

This follows immediately from 

k(0)—1 ; (5.57) k()—1 k: . 

> Pi S D g - 1 
k=i+1 k=i+1 

(5.41) oo. oo 

¥ k- 

S I - wlld_ (ie) 
k=1 

] 
S llui = wll 

With the analogous convention £ — 1 = co when £ = oo, we finally prove that 

  

1 | 
S AL S AT forall(i,k,s)eQ. (5.65) 

f=i+1l       

This follows from Step 1 and 

(5.53) 4 (5:51) k,~(5.53) k.j 3 A S s A 
f=i+1 =i+1 

Step 4. From now on, let (,k’,j’) € © be arbitrary. Suppose first that £ = x, i.e., 
both algebraic and linearization solvers terminate at some finite values k(¢) for all £ > 0 and 

j(¢, k) for all £ > 0 and all k& < k(¢), whereas infinitely many steps of mesh-refinement take 
place. By the definition of our index set Q in (5.29) (which in particular features nested 
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iterates), it holds that 

© k(b) j(&k) 

an (wur an)) 
(L,k,j)eQ (=041 k=1 j=1 

(£:k.7)>(¢".k".5") 

k() J(¢ k) J k") 

PN SRVU D B VA (569 
k=k'+1 i=1 j=§"+1 

oo k() J(Lk) k() ,k) J k") 

S DD AT Y DA Y Ay 
=0 +1k=1 j=1 k=k’+1 j=1 J=7'+1 

where we have employed estimates (5.58) and (5.62) in order to start all the summations 
from k=1 and j = 1. 

We consider the three summands in (5.66) separately. For the first sum, we infer that 

k, ? k, DIL SD Darauf 
(=0'+1k=1 j=1 (=041 k=1 

(5.55) o EO .y 

Ss» AHA, ) 
(=041 k=1 

MO) 
sy (a Han) 
Een 

(5.64) © . . 

<=» (Alta) 
(=t4+1 (5.67) 

(5.58) X 

< (A 
(=041 

A—’J + 5 Au! 
t=l'+1 
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If k’ = k(Ü'), the second sum in the bound (5.66) disappears. If k’ < k(l’), we infer that 

ke) OR (5.03) k() 

SN AR ST ST (A b — u) 
k=41 j=1 k=k’+1 

(5.55) KO k.j k-1,j < > (Ay + A, 2) 

k=k’+1 

k() 

<A£’J+ Z Au! (5.68) 

k=k'+1 

(5.64) 4 
< AL LAyt 

650 Wu 

09) AR 

If 5/ = j(¢, k'), the third sum in the bound (5.66) disappears. If j* < j(¢', k), we infer that 

J(e k") = , . (5.63) s , ., (6.56) ,,. 
Da ra < AR (5.69) 

jest 
Summing up (5.66)-(5.69), we see that, provided that £ = oo 
  

S A} < ALY provided that £ = oo 
(L,k,5)e 

(£,k,5)> (K 5")       

Step 5. Suppose that £ < and k(£) = ©, i.e., for the mesh 7;, the linearization loop 

does not terminate. Moreover, let  < £. Then, it holds as in (5.66) that 

oo J&k) k() 3(6:k) ke) 3¢ k) 3K . 
> A’J<ZZA’J+ZZZA’”+Z DEE 

(L,k,j)EQ k=1 j=1 (=041 k=1 j=1 k=k'+1 j=1 je Hl 

(Lhg)> (0 K ) 
(5.70) 

We argue as before to see that 

u kW on, 

> 3> A s A 
(='+1k=1 j=1 

ki) Sk) (5.68) (5.68) ,, 
DNA Ss Ah”, and, (5.71) 

k=k’'+1 j=1 

I, , 6659) v 
oA Say” 

j=3'+1 
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It only remains to estimate 

oo 3% k) 

> DAY 
k=1 j5=1 

Altogether, we hence obtain that 

(5.6 

< Z (A2 4 Jluf™ — ub0)) 

(5.72) 

  

> 
(Lk, i)EQ 

(£k,3)> (K 5")   

k.j kg’ 
AUS Ar provided that ¢/ < £ < oo and k(f) = x. 

    

Step 6. Suppose that £ < oo and k(£) = 00, i.e., for the mesh 7;, the linearization loop 

does not terminate, and moreover, (= £. Arguing as in (5.72) and (5.69), it holds that 

  

2 As 
(L,k,j)EQ 
(k. 3)> (K 57)   

I ,k) ik) 
Na YT AR <A (5.73) 

k=k'+1 j=1 =741 

    

Step 7. Suppose that £ < oo, where k(£) < oo and hence j({, k) = oo, i.e., the linear 

solver does not terminate for the linearization step k(£). Suppose moreover ¢ < £. Then, 
it holds that 

> 
(£,k,5)€Q 

(£,k,5)> (K 5") 

k()-13(&k) 

SL DHL IIM 
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(=0'+1k=1 j=1 

(5.74) 

ke) k) 3 ,k’) 

+ 3 Y AT AN. 
k=k'+1 j=1 jej Hl
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We argue as before to see that 

—1 k(b) S(&k) 

Ina 
(=0 +1k=1 j=1 

Z Z AkI < a 7' and, 
k=k'+1 j=1 

(P! 1 

LK) (5.69 (6569) ,, k! k',g’ 

DAS Ay”. 
Jet 

For the first sum in (5.74), we get that 

x . (5.63) (5.55) . (5.67) 
k, k—1, K g 

Ar S M-’ <A S AR (5.75) 

Hence, it only remains to estimate the second sum in (5.74), which can be treated analo- 

gously to (5.72) in Step 5 by Ab, ” . This proves that 

k(2)-13(&;k) ED g 
> a S Ay”. 
k=1 j=1 

Altogether, we obtain that 

  

S° AR <A provided that £ < £ < oo, k(l) < 00, and j(£ k) = oo 
(L,k,j)EQ 
(k. 3)> (K 57)     
  

Step 8. Suppose that £ < oo, where k(£) < oo and hence j(£, k) = oo, i.e., the linear 

solver does not terminate for the linearization step k(£). Suppose moreover ¢ = £ but 

k" < k(¢'). Then, it holds that 

k(£)—1 4(¢' k) 3 ,k’) 

> A’“"<ZA—”+ BEDIENT ED DEZ] (5.76) 
(Ü,k,j)EQ k=k'+1 j=1 j=j'+1 

(£k,5)> (K 5") 

We argue as before to see that 

S Ak U A 
j:l 

Z Z Ay? < Ay”, and, 
k=k’'+1 j=1 

I EN 
DAS an”. 

3=j+l 
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Hence, we obtain that 
  

> Akisab provided that = € < 0o, K < kl) < 00, and j(£, k) = oo. 
(U,k,j)EQ 
(k. 3)> (K 57)       

Step 9. Suppose that £ < oo, where k(£) < oo and hence j({, k) = oo, i.e., the linear 

solver does not terminate for the linearization step k(£). Suppose ¢ = £ and k' = Ek(¢). 
Then, it holds that 
  

Y. A= > Ar < air. (5.77) 
(Ü,k,j)EQ J=7'+1 
(k. 3)> (K 57)       

Step 10. Suppose that £, k(£), j(£,k(£)) < © and that Algorithm 41 finished on Step (iii) 

when neu) = = 0. From (5.31), we see that ne(uy) = = ( implies u* = = uw, i.e., the exact 
solution was found. Moreover, through the stopping criteria (5.24) and (5.23), we see that 

Tr B = "_ u so that (5.42) gives uz = un and finally (5.22) gives ug” = u 

Thus Ay? =0. 
Let £ <£. Then, as in (5.70), 

A KK) AR) 3K 

S AR S AE S A Dar 
(L,k,j)EQ k=1 j=1 (=t/+1 k=1 j=1 k=k/+1 j=1 j=4'+1 

(£,k.3)> (€K' ,5") 

Here, the last three terms are estimated as in (5.71), whereas for the first one, we can 

proceed as in (5.72), crucially noting that the last summand Au! - is zero. 

If € = £, three cases are possible. The first case is ¥’ < k. Then 

k(e k) 3 (€' K" 

S OMTE Y X A Y Al 
(¢,k.5)EQ k=k'+1 j=1 J=j'+1 

(£.k.5)> (¢ K" 5") 

which is controlled as in (5.71). The second case is k’ = k but 5’ < j, where directly 

) se, k") u (5.63) o 

J J J Da 
(L,k,J)EQ Jj=j'+1 

(L.k,3)> (K" ,5") 

k' . 
. . . 

again using A,, 7 — (. Finally, in the third case, ¥ = k and j' = j, the sum is void. 
Altogether 

  

Do ansa 
(Lk. eo (5.78) 

(&,kS)>(E,k',5’)       
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also holds in this case. 

Step 11. Combining Steps 4-10 that cover all possible runs of Algorithm 41 with Step 1, 

we finally see that 

5.33 1 (653 ” Ah ( 2» y Ay < Ab N > Ah, 5 for all 0K, 5 e Q. 

(L,k,j)EQ (Lk,j)EQ 
(L,k,s)>(,K’,5’) (&,k > ,K',5’) 

This concludes the proof of (5.52). ] 

Proof of Theorem /5. The proof is split into two steps. 

Step 1. For the convenience of the reader, we recall an argument from the proof 

of [CFPP14, Lemma 4.9]: For M € NU {oc}, let C > 0 and «,, > 0 satisfy that 

M 
> an <Can forallNENo with N <min{M, oo}. 

n=N-+1 

Then, 

Z An < Z tan Ya for llNENo. 

n=N-+1 n=N-+1 

Inductively, it follows for all N,m € Ny with N +m < min{M +1,00} that 

1‘|‘C Z An S 5 tan Yan 

n=N-+m n=N-+1 

We thus conclude for all N,m € Ny with N 4+ m < min{M + 1,00} that 

M 
aN1m < Z a, < (14 C71 ’”Zang (14+C)(1+CH ™ay. 

n=N-+m = 

Step 2. Since the index set O is linearly ordered with respect to the total step counter 

I(, -, )], Lemma 48 and Step 1 imply that 

K.’ |(€" K" 3D =1(kd)| A Koj 
Ay < Clin Yin A, 

for all (£,k,j),(0,k',j') € Q with (0,K', 5) > (6, k,j), where Cijn = 1+ Cum and g = 
Csum/(Csum + 1). This concludes the proof. 7 

5.3.5 Optimal convergence rates of the quasi-error 

The second main result states optimal decay rate of the quasi-error Ay? of (5.47) (and 

consequently of the total error ||u* — un |) in terms of the number of degrees of freedom 
added in the space A, with respect to Abo. More precisely, the result states that if the 
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unknown weak solution u of (5.11) can be approximated at algebraic decay rate s with 

respect to the number of mesh elements added in the refinement of 75 (plus one) for a 
best-possible mesh, then Algorithm 41 achieves the same decay rate s with respect to the 

number of elements actually added in Algorithm 41, (#Tr — #T0 + 1), up to a generic 

multiplicative constant. The proof of the following Theorem 49 is given in Section 5.3.6. 
  

Theorem 49 (optimal decay rate wrt. degrees of freedom). Suppose (Al)-(A4) 
and (R1)-(R3). Recall A}, Apı. > 0 from Theorem 45. Let 

Cpic := qpic/(1 — gpic) > 0, 

Calg = Qalg/(l - Qalg) >0, and, 

Bopt, = (1 + CrapCre) ™ rel 

Then, there exists 0* such that for all O0 < 0, Ayıs, Apic with 

0 < 0 < min{l, 0"}, 

0 < Aag <1, 

0 < Ayıg + Asıg/APic < Adıg; Und, 

0 < Apic/0 < APy, 

it holds that 

0 + C1stab (a + CPic)CalgAalg + [Epic + (1 + OPic)CalgAalg Arie) 

0<@:= 
1 — Apic /Apie 
  

< 90pt7 (5.79) 

where the constant * > 0 depends only on Cstab, Pic, and Qaig- Lets > 0 and define 

g, = N+1) inf  nope(ul,)) € RyoU , 5.80 Ita. = sup ((V+1)°inf Monnlunpı)) © Ro U {00} (5.80) 

where Nopt (Up) 78 the error estimator corresponding to the exact solution of (5.12) with 

respect to ihe mesh Top and 

T(N):={T €T : #T —#To < N}. 

Then, there ezist Copt, Copt > O such that 

Cop |W*||a, < „a (HT - #To + 1)°Ap7 < Copy max{||u*|la,, Ay }. (5.81) 
L,k,ji)eQ 

The constant Cop. > 0 depends only on Ocea = L/Q, Cstab, Crels Oson, #70, S, and, if £ < oo, 

additionally on £. The constant Cop > 0 depends only on Ostab, Crels Omarks L- APic/Apics 

Cosa = L/a, Ca Omesh» Clin; in, #70, and s. The maximum in the right inequality is 

only needed if£=0. If! > 1, the marimum max{ ||uw*||A., Au} can be replaced by |u*||a,- 
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Remark 50. Note that AU ® can be arbitrarily bad due to a bad initial guess uw . However, 

\u*||a, as well as the constant Cop: are independent of the initial guess, so Ihat the upper 

bound in (5.81) cannot avoid max{||u*| 4., Au} for the case € = 0. Such a phenomenon 
does not ‚appear at later stages, since the stopping criteria (5.23) and (5.24) ensure that, 

though un = does not in general coincide with vy, it is sufficiently accurate. If one restricts 

the indices to (L,k,j) € @ with > 1, then the upper bound in (5.81) may omit Au . 
  

5.3.6 Proof of Theorem 49 (optimal convergence rates) 

Lower bound in (5.81) 

The first result of this section proves the left inequality in (5.81): 
  

Lemma 51. Suppose (R1) as well as (Al), (A2), and (A4). Lets >O and assume |u*|a, > 
0. Then, it holds that 

ua. < con sup (#To - HT + l)AhT, (5.82) 
(0 ,k',j’)EQ 

where the constant Cop > 0 depends only on Cosa = L/@, Cstab, Crel, Oson, #70, 5, and, if 

L<&, addıtionally on (. 
  

Proof. The proof is split into three steps. First, we recall from |[BHP17, Lemma 22] that 

HTSHETSHT- HT AHI<SHT forall T € T and all T; € refine(Ts). (5.83) 

Step 1. We consider the three non-generic cases with £ < x. First, let k(£) < ©, and 

j(£, k) < oo. Then, Algorithm 41 was terminated in Step (iii) with ng(ue =) = 0. Due to the 
Céa lemma (5.16) and Proposition 43, it follows that 

m 619) ki (5.31) k.j 
lo* —will S ul S melu;”) = 0 o o 

k,x k.j 
and hence u* = uj = u;” = u, - and (u) =0. 

Second, let k(£) < © but j(@,k) = ©, i.e., the algebraic solver does not stop. According 
to Theorem 45, it holds that 

k,3 k,j k,x k, k, . 
Ay" = |[u* — wg” || + | - ug | + neu )o0 as jo. 

Hence, ‚due to the uniqueness of the limit and the C&a lemma (5.16), we obtain that u* = 

ug = up”. From stability (Al), it follows that 

(Al) 
k, k, . 

<a) S mg )+ lu >0 as jo m. 

Hence, we see that ng(uf) = ne(u v) = 0. 
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Finally, let k(£) = ©, i.e., the linearization solver does not stop. Analogously to the 

previous case, we obtain that 

ku ku ke ku A, = | u, + |” u | ) 40 as kom. 

With the Ca lemma (5.16), this leads to 

. ko (5:16) . b 
0 < || — U[||| < (1+ Cosa) — u | 0 as kw. 

Hence, we get that u* = u,. Again, stability (A1) yields that nu(uz) = 0. 
In any case, £ < oo implies that ||u* — w7 || + ne(uj) = 0 and hence that 

u“ = su <N+1S inf ur ) Wlan [ED () 

The term N +1 within the supremum can be estimated by 

(R1) 
N+1<#n-#n < (Cu-N#nN. 

Moreover, (Al), (A2), and (A4) yield quasi-monotonicity Nopt (Up) S No(ug) (see, e.g., 
[|ÜFPP14, Lemma 3.5]). Altogether, we thus arrive at 

u" la, Sm(uo) < Sup (#To — #To + 1) np (uz). (5.84) 
0 

Step 2. We consider the generic case that £ = oo and lu”) > 0 for all / € Nj. 

Algorithm 41 then guarantees that #7, > x as £ — oo. Thus, we can argue analogously 

to the proof of [ÜFPP14, Theorem 4.1]: Let N € N. Choose the maximal €’ € No such that 
#Tp -— #7 +1 < N. Then, 7» € T(N). The choice of N guarantees that 

N+1<#Ten - #hHrl 
(5.83) 

# T 1 

< Uson #Te 

(5.83) 

< Cson# To (HT — #7 + 1). 

(5.85) 

This leads to 

(N +1)°_inf o () S (70— #T0-+ 1) () 

and we immediately see that this also holds for N = 0 with ¢/ = 0. Taking the supremum 

over all N € Ny, we conclude that 

u"|la, S zup (HT — #To + 1)’ne (Wr). (5.86) 
"END 
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Step 3. With stability (Al) and the C&a lemma (5.16), we see for all (£',0,0) € Q that 

an) 0,0 0,0 
ne(up) S ur ug |+me(ug ) 

0,0 0,0 
< |Iu” — gl + Nu” - ug || + 10 (™) 

6-18) * 0,0 0,0 
Sl =l e (wy) 

< AP 

With (5.84) and (5.86), we thus obtain that 

Iu*||a, S . sup re - #76 +1)’ ne (up) 
"0,0)€ 

< sup (#Tr = HT, + 1)° Au, 

(¢ .k,5)€Q 

This concludes the proof. [] 

Upper bound in (5.81) 

To prove the right inequality in (5.81), we need the comparison lemma from |CFPP14, 
Lemma 4.14] for the error estimator of the exact discrete solution u, € A. 
  

Lemma 52. Suppose (R1)-(R2) as well as (Al), (A2), and (A4). Let 0 < 6" < opt := 
(1+02,,C2)) : Then, there exist constants Cı,Ca > 0 such that for alls > 0 with 

0<|w||a, <& and all T, ET, there exists R, < T; which satisfies 

FR< CE nu", (5.87) 
as well as the Dörfler marking criterion 

nl) <elRe, ur). (5.88) 

The constants C1,C2 depend only on CUstap and CUrel- U 
  

We are now ready to prove the right inequality in (5.81), which is the main result of 
Theorem 49: 

Proof of Theorem 9. The proof is split into four steps. Without loss of generality, we 

may assume that ||w*||a, < ©. 
Step 1. Due to the assumptions Ayıg + Aaıg/APic < A}, (from Lemma 44) and Apic/0 < alg 

Ap;. (from Lemma 46), we get that Aug < Afjg APic < Aljg Apic 9- Hence, it holds that 

0 + Ustab (a + OPic)CalgAalg + [Epic + (1 + OPpic)CalgAalg Abi) 

1 — Apic /Apie 

0 + Ostab (a + Cpic) Calg Ny Apicd + [OPic + (1 + OPic)CalgAdigAPieh| Afifi) 
1-9 

0 =   

<   
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which converges to 0 as 0 > 0. As a consequence, (5.79) holds for sufficiently small 6. 

Clearly, the parameters Azıg, APic,# > 0 can be chosen such that all assumptions are 

fulfilled. First, choose 9 > 0 such that 0 < 9 < min{1,0*}. Then, choose Apj. > 0 such 

that 0 < Apic/0 < Ap;.. Finally, choose 0 < Ayıs < 1 such that Ayıg + Aaıg/APic < Alle: 

Step 2. Recall that Opice = grie/(l - qpic) and Ozie = Yais/(1 — Qaig). Provided that 
(£+1,0,0) € 9, it follows from the contraction properties (5.27) as well as (5.39), and the 
stopping criteria (5.35) as well as (5.37) that 

un: nr 
I <l = g+ g - 

(5.39) k T 1,5 k u 

< Opie lub” - u, it I" - ww] 
kr I k-1j 

< (14 Cpio) flug™ — Ue ||| + Cpic |||“e u | 

Ir - 

. k.j—1 j k—1,5 
< (1 + Opic)C alg I — Uy~ ;L I + Opic I ur - | 

(5.35) k.j k—1,j 
< (1 + OPic)CalgAalg 7 (u, ’) + [Cpic + (1 + Opic)OnigAaıg| I. - UZ ll” 

(5.37) Ks 
< (a + OPic)CalgAalg + [Cpic + (1 + CPic)CalgAatg| Apie )ne(i ) 

(5.79) = (U = ApiefApie) - Pneu”). 

Step 3. Let Ry C 7; be the subset from Lemma 52 with 6’ from (5.79). From Step 2, 
we obtain that 

o AD k.j 
ne(Re,up) < W(Re,ue )+Cstablllw u, || u (5.89) 

< e(Ry, u 2) + (eo — Apie/Apje) — 0) neu). 

With the equivalence (5.49), Lemma 52, and estimate (5.89), we see that 

1 x k,j. 8-49) , 

(1 Apic/Apic) e (™) < Oneluz) 

(5.88) 

< (Re, ur) 
(5.89) | ) o 

< (Re, u) + + (01 — Apic/Apic) — 9) neu”). 

Thus, we are led to 

k.j ki 
deu) <me(Ru, ug ). 

Hence, R, satisfies the Dörfler marking criterion (5.25) used in Algorithm 41. By the 

(quasi-)minimality of My, in (5.25), we infer that 

(5.87) /s 64 Y s 
My SHRe S ll neu) > Hu In. o 
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Recall from (5.34) that ur “ = “’e . Thus, (5.58) and the equivalence (5.53) lead to 

. (5.58) . kg _1/4 0 «_q1 /s (5:53) s 
nel, *) Y S (A@a) Vs ¥ (Ae+1) Y 

Overall, we end up with 

#M, S we] Ay) forall (+ 1,0,0) € Q. (5.90) 

The hidden constant depends only on Ostab; Crel, Omark; 1 — Apic/Apic, Ccsa = L/a, 

and s. 

Step 4. With linear convergence (5.48) and the geometric series, we see that 

NK —1/s 0 AFP —1/s 1/s (ERS IERF | 
> ( 7 ) S ( ¢ ) > (An ) 

_(ERI)EQ _(Ekj)eQ (5.91) 
(e’k’.])g(e’k’]) (e’k’.])g(e’k’]) 

S (a7 

rel 

with hidden constants depending only on Cjin; qun, and s. For (£,k,j) € Q such that 

(£+1,0,0) € Q and such that 7; £ 70, Step 3 and the closure estimate (R3) lead to 

FhR-#Fh+le#Tn- #7 
(R3) & 1 

< > #M; 

t=0 

(5.90) 

< u H”SZ< as 
t=0 

* 1/s 7{;,’\7 — S ul 0 A)” 
ERIEO 
(L,ks)<(K,‚) 

EM) e ki1 
Sl ar)”. 

Replacing ||u*||a, with max{||u*|a,, AU}, the overall estimate trivially holds for 7, = To. 
This proves that 

max{|u|la,A0h  if(@+1,0,0)E Qandl>0, 
5.92 

Iu*|la.. if (¢+1,0,0) € Qand ¢ > 1. (5.92) 
(HT -#T +1) AN < | 

It remains to consider the cases where (£,k,j) € © but (£+1,0,0) € O, as well as the case 

Tr: = To. In the first case, it holds that 1 < ¢ = £ < x, and one of the cases discussed in 

detail in Step 1 of Lemma 51 arises. 

First, let 2<2=2<o. Sineel-1>1and (£,0,0) € ©, (5.92) shows that 

HT #Tn + 1A. < |uilla.. 
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Moreover, Lemma 48 leads to A, nd < A"J Therefore, we obtain from (5.85) that 

#To — #To + 1 < Coon#To(#Te—1 — #To + 1). (5.93) 

Altogether, (5.92) holds for this case as well. 
Second, let / = £ = 1. Then, we can rely on the inequality 

. (5.93) 
ENT -HT +1) A” < (Con#T)’ Al” 

y 
Ss Au 

(5.47) k.J k,j 
=7 e ug ll + Ir” = a2+ 0 1) 

520 k] ki _ „hun kj 
S a = wol + Ir = wol + Io — II + mo”) 
G2 . ki kJ kj 
Sl — gl + s — g+ g — a2+ 10 (i) (5.94) 

(5.42) ki ki Ki; 

Ss I wol + Io = ww + Mo) 
(5.24) . . k.j 

S et =gl + no(up™) 
(Ga9) . 

S et = ugll + no(ug) 
a3 
S no(ug) 

< |w*|la.- 

Thus, (5.92) holds for this case as well. 
Finally, let £=£=0. Then, linear convergence (5.48) proves that 

I 
NEN (5.95) 

Hence, (5.92) also holds for this case, and we conclude the proof of (5.81) O 

5.3.7 Optimal computational complexity 

Our last main result states that Algorithm 41 drives the quasi-error down at each possible 

rate s not only with respect to the number of degrees of freedom added in the space A} 

in comparison with Xo, but actually also with respect to the overall computational cost 

expressed as a cumulated sum of the number of degrees of freedom. This is an important 

improvement of Theorem 49. More precisely, under the same conditions as above, i.e., 

if the unknown weak solution u of (5.11) can be approximated at algebraic decay rate s 
with respect to the number of mesh elements added in the refinement of 79 (plus one), 
then Algorithm 41 generates a sequence of triple-(£, k, j)-indexed approximations (mesh, 

linearization, algebraic solver) such that the quasi-error decays at rate s with respect to the 

overall algorithmic cost expressed as the sum of the number of simplices #7; over all steps 

(L,k,j) € Q effectuated by Algorithm 41. 
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Theorem 53 (optimal decay rate wrt. overall computational cost). Let the assump- 

tions of Theorem 49 be verified. Then 

Copt [0l < o Q< > #72) Ay 
/’ /,j’ € ku co 

en (5.96) 
0,0 < Ch, max" |la. 00}.   

The maximum in the right inequality is only needed if £ = 0. If { > 1, the maximum 

maxf||u*||a., Au} can be replaced by ||u*||a,. While con > 0 is the constant of Theorem 49, 

the constant CO}, > 0 reads CO}. := (#T0)° Copt Chin (1 — TE 
  

  

Remark 54. Analogously to the comments after Theorem 49, the upper estimate in (5.96) 

cannot avoid maxf||u*||a., Ag" } for the case ! =! = 0. As above, if one restricts the 
indices to (U,k’, 5), (&,k,j) € © with (,0 > 1, then the upper bound in (5.96) may omit 
An. 

Note that for any reasonable algebraic solver on mesh Ty, the cost of its one step is pro- 

portional to #T;. This also holds true for matrix and right-hand-side assembly in (5.22), 

evaluation of the residual estimators ne(uy” ), Dörfler marking, and local adaptive mesh 

refinement by, e.g., newest vertex bisection, while the cost of evaluation of the stopping 

criteria (5.23) and (5.24) is of O(l1). Thus, the sum in (5.96) is indeed proportional to 
the overall computational cost invested into the numerical approximation of (5.1) by Algo- 

rıthm 41. 
  

Proof of Theorem 53. Note that #Tu — #%y5,; +1 = 1< #7 for ¢/ = 0 and #Tp — 

#To+ 1 < #Tp for ¢ > 0, so that the left inequality in (5.96) immediately follows from 
the left inequality in (5.81). In order to prove the upper bound in (5.96), let (¢, %', j') € Q. 
Employing the right inequality in (5.81) (cf. (5.92)), the geometric series proves that 

(5.83) 
Y #T < #T D> #Te—#To+1) 

(L,k,5)EQ (AN 
(eakaj)g(elak/aj,) (eakaj)g(elak/aj,) 

(522) Cl/s * AO’O 1/s Akz,j —1/s 
= Flo opt maxq ||u las; 0 } > ( /¢ ) 

(Lk, i)EQ 
(£.k.5)<(£' K" ,5") 

5.48 0,0 A 
opt Clin 17 maxt |u*]la.,Ao } (Au )°. 

lin 

Rearranging this estimate, we end up with 

S 

]{3/,', 0,0 uw (| 2 #n) art Small], 
EIIEO N (ke 21 

(Lk,g)<(¢' K .5") 
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where the hidden constant depends only on Cstab, Crel, Omark; L— Apic/Apıc, Cosa = L/, 

' 15 Oinesh, Clin; Yin, #7o, and s. This proves the right inequality in (5.96). O rel? 

5.4 Numerical experiments 

In this section, we present numerical experiments in 2D to underpin our theoretical findings. 

We compare the performance of Algorithm 41 for 

e different values of A\, € {1079°,1071, 10715 ... 1074}, 

e different values of Apje € {1,107, 1071, ..., 1074}, 

e different values of 9 € {0.05,0.1,0.15,...,1}, 

As model problems serve nonlinear boundary value problems which arise, e.g., from nonlin- 

ear material laws in magnetostatic computations, where the mesh-refinement is steered by 

newest vertex bisection. 

As an algebraic solver for the linear problems arising from the Banach-Picard iteration, 

we use PCG with an optimal multilevel additive Schwarz preconditioner, cf. [Fühl4, Sec- 

tion 7.4.1] and Section 4.7.1 respectively, i.e., the condition number of the preconditioned 

system is uniformly bounded. 

Model problem 

Analogously to Section 4.8, let Q C R@ with d > 2 be a bounded Lipschitz domain with 

polytopal boundary T = 09. We again suppose that the boundary T' is split into relatively 

open and disjoint Dirichlet and Neumann boundaries I'p,I'y <T with |Tp| > 0, i.e., 

T=TpUTfx. While the numerical experiments in Section 5.4.3-5.4.4 only consider d = 2, 
we stress that this model problem is covered by the abstract theory for any d > 2. For 

fe L?(D) and ge L?(T), find u* such that: 

—div (u(z, | Vu*(2)|)Vu*(2)) = f(z) in, 
* 0 on FD, (5.97) 

u(z,|Vu*(2)|?) nu*(x) = g(x) on Tv, 

where the scalar nonlinearity u: x R>o — R satisfies the properties (N1)-(N4) from 
Section 4.8. For the sake of completeness, we recall these properties in detail: 

(N1) boundedness of u(z,t): There exist constants Yı,’ya > 0 such that 

v < p(z,t) <o forallz € Qandt > 0. 

(N2) boundedness of u(z,t) + 2tZu(z, t): ForxeQ, the function u(z,-) is contin- 

uously differentiable, i.e., u(x,-) € C*(R>p,R) and there exist constants 71,72 > 0 

such that 

_ d > 
Yı <ulz,t) + MT lR,t) <7y forallze Qandt>0. 
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(N3) Lipschitz-continuity of u(&,t) in x: There exists a constant L,, > O such that 

lul&,t)- uy,t)| <L.&-yl foralz,yeNandt>0. 

(N4) Lipschitz-continuity of tZu(z, t) in x: There exists a constant L, > 0 such 
that 

d d ~ 
|ta,u(a:,t) — ta,u(y,tfl < L,lxr—y| forall z,y € Qandt>0. 

5.4.1 Weak formulation 

The weak formulation of (5.97) reads as follows: Find u e HL(0) := {we H\(0) : w = 
O on Tp} such that 

/ (x, |Vu*(2)|”) Vu* - Vode = / fvdx +/ guds for all v € I} (). (5.98) 
0 Q r N 

With respect to the abstract framework of Section 5.2.1, we take H = H},(Q2), K = R, and 

() =(V-, V) with ||vo|| = ||Vovllz2(o)- We obtain (5.11) with operators 

(Au , V) <y = /Q,u(a:, |Vw(z)|%) Vw(z)- Vo(z) da, (5.99a) 

F(z)):/vad;tH—/F guds (5.99b) 

for all v, w € H. We again recall from [GHPS18, Proposition 8.2] that (N1)-(N2) implies 
that A is strongly monotone (with « := %ı) and Lipschitz continuous (with L := %), so 
that (5.97) fits into the setting of Section 5.2.1. Moreover, (N3)-(N4) are required to prove 
the well-posedness and the properties (A1)-(A4) of the residual a posteriori error estimator. 

5.4.2 Discretization and a posteriori error estimator 

Let 70 be a conforming initial triangulation of © into simplices 7 € 70. For each , ET, 

consider the lowest-order FEM space 

Hı:= [ve CP) : v|r = O and vlr €e P'(T) for al Te Ta). (5.100) 

As in Section 4.8, cf. [GMZ12, Section 3.2], we define for all Te T; and all v, € H,, the 

corresponding weighted residual error indicators 

ne(T, 00)? := ITS + div (al, |Voel?)Voo) leer, 

+ |TIY [ae Vor )Von) alllyzoraoy: 

where |-] denotes the usual jump of discrete functions across element interfaces, and n is 

the outer normal vector of the considered element. 

Due to (N3), the error estimator is well-posed, since the nonlinearity u(x,t) is Lipschitz 

continuous in x. Then, reliability (A3) and discrete reliability (A4) are proved as in the 
linear case, see, e.g., [ÜKNS08] for the linear case or [GMZ12, Theorem 3.3] and [GMZ12, 
Theorem 3.4], respectively, for strongly monotone nonlinearities. 

(5.101) 
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15 

  

  

        

-1 -0.5 0 0.5 1 

Figure 5.1: Z-shaped domain Q C R? with initial mesh 75 (top) and Z-shaped domain 
@CR? with initial mesh 79 (bottom), where Tp is marked by a thick pink line. 
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5.4.3 Experiment with known solution on Z-shaped domain 

We consider the Z-shaped domain N C R? from Figure 5.1 (top) with mixed boundary 
conditions and the nonlinear problem (5.97) with 

1 

V14 [Vur(z)? 

This leads to the bounds a =2 and L=3 in (5.10). We prescribe the solution u* in polar 

coordinates (21,X%2) = r(cos&,sin&) with &e (-r,r) by 

la, Vu) = 2+ 

u*(x1,22) = r” cos(ßE£), (5.102) 

with 8 = 4/7 and compute f and g in (5.97) accordingly. We note that u* has a generic 

singularity at the re-entrant corner (z,y) = (0,0). 
In Figure 5.2, we compare uniform mesh-refinement (9 = 1) to adaptive mesh-refinement 

(0 < d < 1) for different values of Ayıg and Apic- We plot the error estimator nur”) 
over the number of elements N := #75. First (top), we fix 9 = 0.5, Apic = 1072, and 

choose Azıg € {101,102,10,10”}. We see that uniform mesh-refinement leads to 
the suboptimal rate of convergence O(N -?/7), whereas Algorithm 41 with adaptive mesh- 
refinement regains the optimal rate of convergence O(N -V/2), independently of the actual 

choice of Azıg- We observe the very same if we fix 0 = 0.5, Ayıg = 10”?, and choose 

Apic € {1,10°1,10”7,10”°, 107%} (middle), or, if we fix Aaig = Apic = 10°? and vary 
6 € {0.1,0.3,0.5,0.7,0.9} (bottom). Since we know from Proposition 43 and the estimate 

ke iy O kG kge1 
g™ —w, = S M= —w,= |l 

(5.35) b i bl 
S ne(uy”) + -Ww | 

(5.37) b 
Ss nelu,) 

that lu”) ~ Af’i, this empirically underpins Theorem 49. 

In Figure 5.3, analogously to Figure 5.2, we choose different combinations of 0, Ayız, and 

Apic- We plot the error estimator ne (u, L ) over the cumulative sum ob, Wk) HTr. 

Independently of the choice of 6, Ayıg, and Apic, we observe the optimal order of conver- 

gence O(( u, k)< K ) #72)_1/ 2) with respect to the overall computational complexity 

in accordance with Theorem 53. 
In Figure 5.4, we also consider the total number of PCG iterations cumulated over all 

Picard steps on the given mesh for different combinations of 0, Ayıg, and Apic- We observe 

that independently of the choice of these parameters, the total number of PCG iterations 

stays uniformly bounded. Additionally, we see that for larger values of Ayıs and Apic, a8 

well as for smaller values of 8, the total number of PÜG iterations is smaller. 

In contrast to the the previous Chapters 4-6, where the corresponding algorithms steer the 

adaptive mesh-refinement and either incorporated an iterative linearization or an algebraic 

solver, our proposed Algorithm 41 combines these two concepts. Hence, to try to analyze 
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Figure 5.2: Example from Section 5.4.3 (Experiment with known solution on Z-shaped do- o 
main): Error estimator ne(uy”) on mesh Te, perturbed Banach-Picard iteration 
k, and PCG step 5 of Algorithm 41 with respect to the number of elements N 

of the mesh 7 for various parameters 6, Apic, and Aalg- 
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overall computational cost X<z ) #Te 

  Example from Section 5.1.3 (Experiment with known solution on Z-shaped do- 
a 

main): Error estimator ne(uy” ) on mesh Te, perturbed Banach-Picard iter- 
ation k’, and PCG step 5; of Algorithm 41 with respect to the overall cost 

expressed as the cumulative sum Dex j)<(e,',jr) #Te for various parameters 6, 

Apic; and Ayıg. 
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Figure 5.4: Example from Section 5.4.3 (Experiment with known solution on Z-shaped do- 
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main): Number of PCG iterations wrt. the number of elements N = #Tr 
for & = 0.5, Apie = 10°2, and Aaıg € {1071,...,107%} (top), for 8 = 0.5, 
Aalg = 1072, and Apic € {1,10-1,...,10%} (middle), and for Agıg = Apic = 10”? 
and 6 € {0.1,0 ,0.9} (bottom). 

 



5.4 Numerical experiments 
  

what the best choice of the three parameters 0, Azıg, and Apic could be, we have to vary 

them all. First, we prescribe a precision 7 = 3 - 1072 and vary 6 € {0.2,0.4,0.6,0.8}, 
Aalg € {1071,1071° ... 1074}, and Apic € {1,107%°,1071,...,107%}. Figure 5.5 then 
shows the computational cost expressed in terms of the cumulative sum u, k)< (04 §) #7 

to reach the given precision 7. It seems that a smaller value of Ayıg Or Apic leads to more 

computational cost to reach the same precision, independently of the choice of 6. 

In Figure 5.6 (top), we vary 9 e 10.05,0.1,0.15,...,0.9} and only print the correspond- 

ing best choices of Ay, € {1071,10715, ... 1074} and Apice € {1,10=0,10-1,...,10*} 
together with the minimal overall computational cost to reach the given precision. As a 

result, we see that the overall best choice in terms of computational cost to reach the given 

precision 7 = 3- 1072 is = 0.7, Aag = 1071, and Apic = 10”° with 

> HT; = 25058328 

(uk, S)<CE Ks) 

where ur is the first approximation such that ne(u,) < 3-1072. We also observe that the 

worst possible choice is d = 0.05, Ayıg = 10°, and Apie = 10°*. With these parame- 
ters it takes more than 1000 times the computational cost to reach the same precision in 

comparison to the best choice. 

5.4.4 Experiment with unknown solution 

We consider the L-shaped domain 0 C R? from Figure 5.1 (bottom) and the nonlinear 
problem (5.97) with Tp =T and constant right-hand side f = 1 where w(-, -) is given by 

(2, |Vu*(2)|?) := 1 + arctan(|Vu*(x)]?). 

Then, according to [UÜW17, Example 1], there hold (N1)-(N4) with @ = land L x= 

1+973/2+ r/3, while the exact solution is unknown. 
In Figure 5.7, we again test Algorithm 41 with varying 6, Aaıg, and Apic- We plot the 

error estimator nur”) over the number of elements N := #7r. Uniform mesh-refinement 
leads to the suboptimal rate of convergence O(N -\/3), whereas Algorithm 41 with adaptive 

mesh-refinement regains the optimal rate of convergence O(N-V/?). Again, this empirically 
confirms Theorem 49. The latter rate of convergence even appears to be robust with respect 

to d, Aalg; and Apic- 

In Figure 5.8, we plot the estimator ny (un, L ) over the cumulative sum u, k)< K ) #7. 

Independently of the choice of the parameters 0, Ayız, and Apic, we observe the optimal or- 

der of convergence O(( D (k)< ) #Tr) U *) with respect to the overall computational 

cost, which empirically underpins Theorem 53. 

In Figure 5.9, we finally consider the total number of PCG iterations cumulated over all 

Picard steps on the given mesh. We observe that independently of the choice of 6, Azıg, and 

Apic, the total number of PCG iterations stays uniformly bounded. Additionally, we see 

that for larger values of Ayıs and Apic, as well as for smaller values of 6, the total number 

of PÜG iterations is smaller. 
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5 Fully adaptive algorithm for AFEM for nonlinear operators 
  

  
Figure 5.5: Example from Section 5.4.3 (Experiment with known solution on Z-shaped do- 

main): Overall computational cost I 7x j)<(e, vn) #7. such that ne(u ) <T 

for given precision 7 = 3: 102, Ayıg € {101,101°,...,10?}, and Apıe € 
{1,10°03,10=!,...,10°*}. 
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Figure 5.7: Example from Section 5.4.4 (Experiment with unknown solution on Z-shaped 
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i 
domain): Error estimator n[(uz”l) on mesh Tg, perturbed Banach-Picard itera- 
tion k, and PCG step j of Algorithm 41 with respect to the number of elements 

N of the mesh 72 for various parameters , Apic, and Aalg- 
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Figure 5.8: Example from Section 5.4.4 (Experiment with unknown solution on L-shaped 
W 

domain): Error estimator ne(ug” ) on mesh Te, perturbed Banach-Picard it- 
eration k’, and PCG step 5 of Algorithm 41 with respect to the overall cost 

expressed as the cumulative sum Y5 i< (e 1) # Te for various parameters 0, 

Apic, and Aaıg- 
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Figure 5.9: Example from Section 5.4.4 (Experiment with unknown solution on Z-shaped 
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domain): Number of PCG iterations wrt. the number of elements N := #7 
for 0 = 0.5, Apie = 10°2, and Aaıg € {1071,...,107%} (top), for 8 = 0.5, 
Aalg = 1072, and Apic € {1,10-1,...,102} (middle), and for Agıg = Apic = 10”? 
and 6 € {0.1,0 ,0.9} (bottom). 

 



5.4 Numerical experiments 
  

In Figure 5.10, we again compare the computational cost of Algorithm 41 to reach the 

given precision 7 = 10°? for various 0, Aalg, and Apic. Also in this experiment, it seems that 

a smaller value of Ayıs Or Apic leads to more computational cost to reach the same precision, 

independently of the choice of 6. 

In Figure 5.6 (bottom), we vary 0 € 10.05, 0.1,0.15,...,0.9} and print the corresponding 

best and worst choices of Ayıg € {101,101°,...,10”*} and Apice € {1, 100, 10=1,...,10”*} 
respectively, together with the overall computational cost to reach the given precision. As a 

result, we see that the overall best choice in terms of computational cost to reach the given 

precision r = 10°? is 6 = 0.7, Ayıg = 10°1, and Apic = 1 with 

> HT; = 25058328 

(uk, S)<CE Ks) 

where ur is the first approximation such that ne(uy) < 107. We also observe that the worst 

possible choice is d = 0.9, Azıg = 10%, and Ap;c = 10°. With these parameters it takes 

more than 200 times the computational cost to reach the same precision in comparison to 

the best choice. Independently of 0, the worst choice of Azıg and Api. is always Azıg = APic = 

1074, 
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Figure 5.10: Example from Section 5.4.3 (Experiment with known solution on Z-shaped 

domain): Overall computational cost I,  »<(w 4 ;) #T¢ such that ne(u ) <T 

for given precision 7 = 3 - 1072, Ay € {10”1,10=1°,...,10*}, and Apı. € 
{1,10°03,10=,...,10°*}. 
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6 Adaptive BEM for elliptic fırst-kind 

integral equations with optimal PCG 

solver 

6.1 Introduction 

In this chapter, which is based on [Y3FS:%], we consider the boundary element method 

(BEM) subject to elliptic first-kind integral equations. We introduce our adaptive algorithm 
which steers both the adaptive mesh-refinement as well as the termination of the precon- 

ditioned conjugate gradient method (PCG) with optimal preconditioner, i.e., an inexact 
solver for the arising Galerkin system. The main results are then convergence with optimal 

algebraic rates as well as almost optimal computational complexity. 

6.1.1 State of the art 

In the last decade, the mathematical understanding of adaptive mesh-refinement, has ma- 

tured. We refer to [5 s, NG BEHRH, Mel IINNSES, FTP la] for some milestones for 

adaptive finite element methods for second-order linear eiptic equations, [ £, FRAPFLY 

FERKTIE, FFKTEN, A i?] for adaptive BEM, and [ÜY Fi] for a general framework of 

rate-optimality of „daptive mesh-refining algorithms. The interplay between adaptive mesh- 

refinement, optimal convergence rates, and inexact solvers has been addressed and analyzed 

for adaptive FEM for linear problems in [::&?, A3.4:513, A112], for eigenvalue problems 

in [12], and recently also for strongly monotone nonlinearities in [= HP ni In particu- 
lar, all available results for adaptive BEM [i:: EKMPIZ, ERIK, PIC IS, AFYO IT] 
assume that the arising Galerkin system Ax x = bg is solved exactly. Instead, we omit 

the latter assumption and analyze an adaptive algorithm which steers both the local mesh- 

refinement and the iterations of an inexact PCG solver. 

In principle, it is known [‘Ü! , Section 7] that convergence and optimal convergence 
rates are preserved if the linear system is solved inexactly, but with suflicient accuracy. 

The aim now is to guarantee the latter by incorporating an appropriate stopping criterion 

for the PCG solver into the adaptive algorithm. Moreover, to prove that the proposed 

algorithm does not only lead to optimal algebraic convergence rates, but also to (almost) 

optimal computational cost, we provide an appropriate symmetric and positive definite 

preconditioner P, € RY*“ such that 

  

e first, the matrix-vector products with P7' can be computed at linear cost and 

-1/2 1/2 
AP, 

-1/2 

e second, the system matrix P, of the preconditioned linear system 

U2z P,'?A,P, -P,'”p, (6.1) 
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has a uniformly bounded condition number which is independent of the mesh 7,. 

Then, x = pP,” x solves the original system A,x7 = b,. To that end, we exploit the 

multilevel structure of adaptively generated meshes in the framework of additive Schwarz 

methods. For hyper-singular integral equations, such a multilevel additive Schwarz pre- 

conditioner has been proposed and analyzed in [FFPS17a, FMPR15] for d = 2,3 and for 
weakly-singular integral equations in [FFPS17b] for d = 2. In particular, were able to close 
this gap by analyzing an optimal additive Schwarz preconditioner for weakly-singular inte- 

gral equations for d = 3. Besides, we refer to |SvV20] for optimal preconditioning in Hilbert 
spaces of negative order. We note that the proofs of |[FFPS17a, FFPS17b] do not transfer 
to weakly-singular integral equations for d = 3. Instead, we build on recent results for finite 

element discretizations [HWZ12, AGS16] which are then transferred to the present BEM 
setting by use of an abstract concept from |Osw99]. 

6.1.2 Outline 

Section 6.2 introduces the functional analytic framework and fixes the necessary notation. 

In Section 6.3, we introduce the weakly-singular integral equation which serves as our model 

problem and give a short introduction to BEM, before we state our adaptive algorithm in 

Section 6.4 which steers the local mesh-refinement as well as the stopping of the PCG 

iteration. Section 6.5 states our main results. In Section 6.5.1, we define a local multilevel 

additive Schwarz preconditioner (6.36) for a sequence of locally refined meshes. Theorem 60 

states that the (2-condition number of the preconditioned systems is uniformly bounded for 

all these meshes, i.e., the preconditioner is optimal. Theorem 68 proves 

that the overall error in the energy norm can be controlled a posteriori, 

that the quasi-error (which consists of energy norm error plus error estimator) is linearly 

convergent in each step of the adaptive algorithm (i.e., independent of whether the 

algorithm decides for local mesh-refinement or for one step of the PCG iteration), 

that the quasi-error even decays with optimal rate (i.e., with each possible algebraic 

rate) with respect to the degrees of freedom, i.e., Algorithm 57 is rate optimal in the 

sense of, e.g., [Ste07, CKNS08, FKMP13, CFPP14]. 

Finally, Section 6.5.5 considers the computational cost. Under realistic assumptions on the 

treatment of the arising discrete integral operators, Corollary 78 states that the quasi-error 

converges at almost optimal rate (i.e., with rate s-e for any & > O ifrate s > 0 is possible for 

the exact Galerkin solution) with respect to computational cost, i.e., Algorithm 57 requires 

almost optimal computational time. Section 6.6 shows that our main results also apply to 

the hyper-singular integral equation. The final Section 6.7 underpins the theoretical findings 

by some 2D and 3D experiments. 
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6.2 Preliminaries and notation 

6.2.1 Boundary integral operators and functional analytic setting 

Let N ¢ R@ with d = 2,3 be a bounded Lipschitz domain with boundary T := 09. We 
consider the usual Laplace problem 

-Au=0 ind (6.2) 

with appropriate boundary conditions, i.e., Dirichlet or Neumann boundary conditions on 

the boundary T', where either u or the normal derivative O„nu respectively are given on T. 

Solutions to these problems can be represented via potentials which are closely related to 

the fundamental solution G(-) of the Laplace operator, i.e., 

— = log |2| for d =2 an ’ 

= L1 for d = 3. im I] 

For smooth solutions u € C?(T) of (6.2), there holds the following representation formula, 
cf. [5511, Theorem 3.1.6], 

u(x) = / G(z —y) Onyuly) dsy — / Ideale yuly)ds, foralzen, (6.3) 
r r 

where Ö,„(,) 18 the normal derivative with respect to y € I'. Hence, depending on the given 

boundary conditions, the unknown quantity is either O„u or u. 

First, we define the single-layer potential $ for d € L!(T) by 

(So)(z) := je@ -y)d(y)ds, for allxe R’\T, 

as well as the double-layer potential D for d € L!(T) by 

(Dö)(x) := Junste - y)o(y)ds, for allxe R@\T. 

Recalling the Sobolev spaces on the boundary from Section 2.3 and Section 2.4, these 

potentials give rise to bounded linear operators 

Ss: HV?+s(T)  HL.(R®) and D: HY**(I) — HL_(RY) (6.4) 

with -1/2 <s< 1/2, where IT} (RS) is the space of I/!-functions with compact support, 

cf. [SS11, Theorem 3.1.16, Remark 3.1.18]. 
Recalling the trace operators Yi", 6*' as well as the normal derivative operators it, 

¥t from Section 2.5, [5S11, Theorem 3.3.1] shows that 

wSd= 180 and "Dy =Dy (6.5) 

Thereof, we omit the superscript for ease of notation and define the following linear and 

continuous boundary integral operators: 
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e single-layer operator 

v: HV2+s ep) 4 HV>*sT) with Vo:=YoSo (6.6) 

e double-layer operator 

K: ım?2*s(p) > HV?*(T) with Kg:= Sab"D + X D)g (6.7) 

e adjoint double-layer operator 

K': HY203(0) —» g~ YV25()  with  K'¢ := —%qus + A8 Se  (6.8) 

e hyper-singular operator 

w: HY>*sD) + m V2*(D) with Woo= —y D (6.9) 

Some important properties of these operators are summerized in the following remark 

and we refer to [VMcL00, SS11] for further details and proofs. 
  

Remark 55. Let -1/2 <s<1/2 andT <C O0 be a (relatively) open and connected subset. 

o The single-layer operator V from (6.6) is a bounded linear operator which is even an 

isomorphism for -1/2 < s < 1/2. For d = 2, this requires that the domain ) is 

sufficiently small, i.e., diam(Q) < 1, which can always be ensured by scaling of. For 

s=(, the operator V ıs even symmetric and elliptic. 

e The hyper-singular operator W from (6.9) is a bounded linear operator which is even 

an isomorphism for -1/2 <s < 1/2. Fors=(, the operator W is symmetric and 

(since T is connected) positive semi-definite with kernel being the constant functions. 

Hence, for U C O0, the operator W is an elliptic isomorphism. 

  

For ease of presentation, the main part of this chapter focuses on the so-called weakly- 

singular integral equation which corresponds to Dirichlet boundary conditions, i.e., u = g 

on T for a given function ge H'/?(T). Due to the representation formula (6.3), we know 
that the solution u is given in terms of the trace of u on I’ as well as the normal derivative 

Onu on T. This normal derivative & := Önu is given by Symm’s integral equation 

1 
Vo= (K+ §Id)g onT, (6.10) 

where Id is the usual identity operator. 

However, we restrict ourself to an indirect formulation, where the solution u of the Dirich- 

let problem is given in terms of the single-layer potential 

u=>59, 

where ¢ is the solution of 

Vo=g onl. 
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6.3 Model problem and boundary element method (BEM) 

Let N C R® be a bounded Lipschitz domain with d € {2,3} and polyhedral boundary O0. 

Let TC O0 be a (relatively) open and connected subset. Given f :T —R, we seek the 

density &*: T — R of the weakly-singular integral equation 

(Vo) (z) = /FG(SU —y)¢*(y)dy = f(z) forall z €T. (6.11) 

From Remark 55 follows that, for s = 0, the operator V is even symmetric and elliptic, i.e., 

(6, 6) = [ (Vo)) v)de  forall oe In) (6.12) 
defines a scalar product and ||&]]? := (¢, &) is an equivalent norm on I-\/?(T). For a 
given right-hand side f € HV/?(T), the weakly-singular integral equation (6.11) can thus 
equivalently be reformulated as 

(e, 0) = (f,¢) forally e H *T). (6.13) 

In particular, the Lax-Milgram theorem proves existence and uniqueness of the solution 

d* e H1/2(T) to (6.13). 
Given a mesh 7, of T, we employ a lowest-order Galerkin boundary element method 

(BEM) to compute a 7,.-piecewise constant function d% € PP(T,), where PP(T,) is defined 

by 

PT.) = {w. T >R : VT €Ty vol|ris constant}. (6.14) 

Note that PI(T,) c L?(T) c H1/2(T). Hence, the weakly-singular integral equation (6.11) 
can be reformulated for the lowest-order space PP(T,) as 

/ (VER) (E) velz) de = / F2) de(x)dz for all d. € P(T.), (6.15) 
r r 

which again can be written equivalently as 

(62; be) = (F, We) for all g € P°(T5). (6.16) 

Therefore, the Lax-Milgram theorem proves existence and uniqueness of the discrete solu- 

tion ¢F € PU(T,). 
With the numbering 7, = {T},..., Ty}, consider the standard basis Ixej :3j=1l.... ‚N} 

of PP(T,) consisting of characteristic functions xe,; of T; € T.. We make the ansatz 

N 

= I xelklxex (6.17) 
k=1 

with coeflicient vector 

xt = (x#[1],...,x{[N]) ER”. 
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> m Zn 
Figure 6.1: For newest vertex bisection (NVB) in 2D, each triangle T € T has one reference edge, 

indicated by the double line (left). Bisection of T' is achieved by halving the reference 
edge (middle). The reference edges of the sons are always opposite to the new vertex. 

Recursive application of this refinement rule leads to conforming triangulations. 

  

  

Then, the Galerkin formulation (6.15) is equivalent to the linear system 

A,x, — b, (6.18) 

with 

AdiH = [ (Vxen@de, bulil = | Felde 

where the matrix A, € RY*¥ is positive definite and symmetric. For a given initial 

triangulation 70, we consider an adaptive mesh-refinement strategy of the type 

    

| solve I | estimate |—| mark I—| refine | (6.19)     

which generates a sequence 7; of successively refined triangulations 7; for all£ € No. We 

note that the condition number of the Galerkin matrix A, from (6.18) depends on the 
number of elements of 7,, as well as the minimal and maximal diameter. T'herefore, the 

step requires an efficient preconditioner as well as an appropriate iterative solver. 

6.3.1 Mesh-refinement 

We briefly recall some definitions for boundary meshes and mesh-refinement from Section 3.2 

and Section 3.4 respectively in the context of this chapter. 

2D BEM 

For d = 2, a mesh 7, of T is a partition into non-degenerate compact line segments. It is 

called Y-shape regular, if 

max Ihr/hr T, T € Ty with TNT' # (Z)} < . (6.20) 

Here, hr := diam(T')) > 0 denotes the Euclidean diameter of T', i.e., the length of the line 
segment. 

We employ the extended bisection algorithm from [AFF 13], cf. Section 3.5. For a mesh 
7o and a subset M, C 7%, let 75 := refine(7,,.M,) be the coarsest mesh such that all 

marked elements T € M, have been refined, i.e., Mo C To\75. We write 7, € refine(7,), if 
there exists n € No, conforming triangulations 7y, ..., 7, and corresponding sets of marked 

elements M;, < 7; such that 

Te - To; 
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Tj+1 = refine(7;, M;) forall j =0,...,n — 1, 

To = Tn, 

i.e., 70 is obtained from 7, by finitely many steps of refinement. Note that the extended 

1D bisection, i.e., Algorithm 9, guarantees, in particular, that all 7, € refine(7,) are 
uniformly Y-shape regular, where y depends only on 7,, cf. Section 3.5. 

3D BEM 

For d = 3, a mesh 7, of I’ is a conforming triangulation into non-degenerate compact surface 

triangles. In particular, we avoid hanging nodes. To ease the presentation, we suppose that 

the elements T € 7, are flat. For a Y-shape regular triangulation, it holds that 

diam(7') 
max <y, (6.21) 

cf. Lemma 8. Here, diam(T') denotes the Euclidean diameter of T and hr := |T|'/? with 
|T| being the two-dimensional surface measure. Note that Y-shape regularity implies that 

hr < diam(T) <Yyhr and hence excludes anisotropic elements. 
For 3D BEM, we employ 2D newest vertex bisection (NVB) to refine triangulations locally, 

cf. Section 3.6 for details and Figure 6.1 for an illustration. For a mesh 7, and M, C Ts, 

we employ the same notation 7; := refine(7,, M,) and 7, € refine(7,) respectively as 
for d= 2. 

6.3.2 A posteriori BEM error control 

For 1) € PI(T,) and U, < T,, define 

Ne(Ue, be)” =, NelT, be)”, (6.22) 
TEUe 

where 

ne(T, be) = hr|Vr(f-Vo)lizn fralTeT. (6.23) 

Here Vr(-) denotes the arclength derivative for d = 2 resp. the surface gradient for d = 3. 
To abbreviate notation, let ne (de) := ne(Te, be). Ede = $% is the discrete solution to (6.16), 

then there holds the reliability estimate (i.e., the global upper bound) 

Io" — @5l < Creime(93), (6.24) 
where Cy.ı > 0 depends only on I’ and Y-shape regularity of 7T,, cf. [CS95, Car97] for d = 2 
and [CMS01] for d = 3 respectively. Provided that ¢* € L?(T"), the following weak efficiency 

6% — @51+ 10(63) < Car ||nı? (&* - 9) 12a (6.25) 
has recently been proved in [AFF'17], where Cor > 0 depends only on T and Y-shape 

regulartiy of 7%. We note that the weighted L?-norm on the right-hand side of (6.25) is 
only slightly stronger than || - || = || - || -1/ (n), 80 that one empirically observes Ne (%) < 

ll¢ — @5l in practice, cf. [CS95, Car97, CMS01]. In certain situations (e.g., weakly-singular 
integral formulation of the interior 2D Dirichlet problem), one can rigorously prove the 

latter (strong) efficiency estimate up to higher-order data oscillations, cf [AFF* 13]. 
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6.3.3 Preconditioned conjugate gradient method (PCG) for the Galerkin 
system 

Suppose that P., A, € R”* are symmetric and positive definite matrices. Given b, € R 
and an initial guess x), PCG (see [GVL13, Algorithm 11.5.1]) aims to approximate the 

solution x{ € R“ to (6.18). We note that each step of PCG has the following computational 
costs: 

e O(N) cost for vector operations (e.g., assignment, addition, scalar product), 

e computation of one matrix-vector product with A,, 

e computation of one matrix-vector product with P, 1. 

Let x$ € R“ be the solution to (6.1) and recall that xt = P, 1% x). We note that PCG 
formally applies the conjugate gradient method (CG, see [GVL13, Algorithm 11.3.2]) for 

the matrix A, := Ps /?AsP2"” and the right-hand side be = P, /?bs. The iterates 
xK ER" of PCG (applied to P., A., b., and the initial guess x°) and the iterates x® of 

CG (applied to As, b., and the initial guess x0 :=P, 12 xÜ) are formally linked by 

k_P, ash. 
x, - [ 2) 

see [GVL13, Section 11.5]. Moreover, for all y, € RY and y, = P, L/ there holds that 

m 2 . =~ o~ 

HYOHA. = Yo Adye 

= (P.%y.) - P, 
= Ye- AoY. 

-1/2 -1/2.91/2 
A,P. P.y. (6.26) 

=: ||yella.- 

Consequently, [GVL13, Theorem 11.3.3] for CG (applied to As, be, X 0) yields the following 
lemma for PCG (which follows from the implicit steepest decent approach of CG). 
  

Lemma 56. Let A,,P. € RY*N be symmetric and positive definite, b. € RY, xt := 

A7'b,, and x¥ € RY. Suppose the lo-condition number estimate 

-1/2 
condz(P, AP: < Chlg- (6.27) 

Then, the iterates x" of the PCG algorithm satisfy the contraction property 

s — x¢M la. < gpes |Rd -xella. for all k € Ny, (6.28) 

where Gpeg := (1 — 1/Caig)V/? < 1. N 
  

If the matrix A, € RV*Y stems from the Galerkin discretization (6.18) for 7, = 
{Ty,..., Ty}, thereis a one-to-one correspondence of vectors y, € R” and discrete functions 

Ve € PU(T,) via 

N 

be = > yelil Xe,j; 

j=1 
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where x. ; is the usual characteristic function of T,; € T.. Let ¢% € PY(T,) denote the 
discrete function corresponding to the PCG iterate x“ € R”, while the Galerkin solution 

¢% € P°(T,) of (6.16) corresponds to x$ = A, !b,. We note the elementary identity 

los - sl = ar) Al x) = RR -Rela.- (6.29) 

6.3.4 Optimal preconditioners 

We say that P, is an optimal preconditioner, if Cyig > 1 in the £>-condition number esti- 

mate (6.27) depends only on 7-shape regularity of 7, and the initial mesh 79 (and is hence 
essentially independent of the mesh 7,). 

6.4 Adaptive algorıthm 

Next, we introduce the following adaptive algorithm which is driven by the weighted-residual 

error estimator (6.22). We note that Algorithm 57 as well as the following results are 

independent of the precise preconditioning strategy as long as the employed preconditioners 

are optimal, cf. Section 6.3.4. 
  

Algorithm 57. Input: Initial conforming mesh To ofT, initial guess ¢) := 0, adaptivity 

parameters 0 <@ <1, Acı > 0, and Umark > 0, optimal preconditioning strategy P; for all 

Te € refine(Ty), counters ¢ := 0 =: k. 
Adaptive Loop: Iterate the following Steps (i)-(v): 

(i) Repeat the following steps (a)-(c): 

(a) Update the counter (L,k) > (l,k+1). 

(b) Do one step of the PCG algorithm with the optimal preconditioner P; to obtain 

dF € PI(T,) from oe e PT). 

(c) Compute the local contributions 1y(T, %) of the error estimator for allT € Tr. 

Until ef - |< As meld). (6.30) 

(ii) Define k := k(¢) := k. 

(iii) Determine a set My C Ty with up to the multiplicative constant Cmark minimal cardi- 

nality such that 

0 10(5) < me(My, ¢5). (6.31) 

(iv) Generate Ty;ı := refine(T,, My) and define d),, := or. 

(v) Update the counter (£,k) > (£+1,0) and continue with (i). 
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Output: Sequences of successively refined triangulations Ty, discrete solutions oh, and cor- 

responding error estimators ne(6#), for all £ >0 and k > 0. 
  

  

Remark 58. The choice Acır = O0 corresponds to the case that the Galerkin system (6.16) 

is solved exactly, 1.e., Ber — d5. Then, optimal convergence of Algorithm 57 has already 

been proved in [FKMP13, Gan13, AFF' 13, FFK' 14] for weakly-singular integral equations 

and [Gan13, FFK' 15] for hyper-singular integral equations. The choice 0 = 1 will gener- 

ically lead to uniform mesh-refinement, where for each mesh all elements Mı; = Tr are 

refined in Step (iv) of Algorithm 57. Instead, small 0 < 0 < 1, will lead to highly adapted 

meshes. 

Let Q := {(£,k) € Ny x Ny : index (¢, k) is used in Algorithm 57} be the set of all index 
pairs which appear at some point in Algorithm 57. It holds that (0,0) € Q. Moreover, for 

¢,k € Ny, it holds that 

  

e for /> 1, (£,0) € Q implies that ({ —1,0) € Q, 

e for k> 1, ({,k) € Q implies that (¢/,k —1) € Q. 

If ¢ is clear from the context, we abbreviate k := k(l), e.g., rn = gb%(e). In particular, it 

holds that or = 6 +1. Since PCG (like any Krylov method) provides the exact solution 
after at most #7; steps, it follows that 1 < k(¢) < co. Finally, we define the ordering 

. . / 

namen) Pral . Gheo 
Moreover, let 

@) =" o . IISO<R, (6.32) 
HO,K)EQ: (,k) <(L,k) and k'<k(O)}, ifl>0ork>0, 

be the total number of PCG iterations until the computation of oh . Note that ¢ > ¢ and 

(¢, k")| = |(¢, k)| imply that ¢ = ¢4 1, k = k(¢), and ¥’ = 0 and hence ¢}, = ¢F. 

6.5 Main results 

In this section, we show the main results of this chapter, i.e., first, we introduce an additive 

Schwarz preconditioner and prove its optimality in the sense of Section 6.3.4, and secondly, 

we prove optimal convergence rates with respect to the degrees of freedom of Algorithm 57 

as well as almost optimal computational complexity. 

6.5.1 Optimal additive Schwarz preconditioner 

We consider multilevel additive Schwarz preconditioners that build on the adaptive mesh- 

hierarchy. 

Let &, denote the set of all nodes (d = 2) and edges (d = 3) respectively of the mesh 
Te which do not belong to the relative boundary OT. Only for T = O0, E, contains all 
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nodes resp. edges of 7,. For E € &,, let T*,T” € 7, denote the two unique elements with 

T*NT” =E. We define the Haar-type function 2.5 € PP(T,) (associated to FE € &,) by 

Ve E|T = a forT =T, (6.33) 

where |E| := 1 for d = 2 and |E| := diam(E) for d= 3. Note that 

Den CE PIT):= {ve PIT) : Je& 9}. (6.34) 

For d = 3, we additionally suppose that the orientation of each edge E is arbitrary but 

fixed. We choose TF € T, such that 97" and E C OT* have the same orientation. 
Given a mesh 70, suppose that 7, is a sequence of locally refined meshes, i.e., for all 

¢ € Ny, there exists a set My, < 7; such that 7;.1 = refine(7,, M;,). Then, define 

E = Er\Er-1 U IE e & : supp(pe,E) S supp(Y1-1,E) } for al£>1, 

which consist of new (interior) nodes/edges plus some of their neighbours. We note the 
following subspace decomposition which is, in general, not direct. 
  

Lemma 59. With X, := P’(T,) and X, p := span{y. g}, it holds that 

L 

Xp=Xo+> > Xyp forallLeN,. (6.35) 
e=1 Be£} 

[l 

Additive Schwarz preconditioners are based on (not necessarily direct) subspace decom- 

positions. Following the standard theory (see, e.g., [TW05, Chapter 2]), (6.35) yields a 

(local multilevel) preconditioner. To provide its matrix formulation, let I; , € RHFTIKHTE) 

be the matrix representation of the canonical embedding PI(T,) > PI(T;) for k <L, i.e., 

  

#Tk #Te 

> xeli] XR,i = > x] xei forallx; € RFTr and xy := l..xr € R#7Te. 

i=1 i=1 

Let H, e R(#Tox@FEe) denote the matrix that represents Haar-type functions, i.e., 

FTe 

Pu, = > Hıli,jlxei for all E; € &ı. 
=1 

Since only two coefficients per column are non-zero, H, is sparse, while I;, is non-sparse 

in general. Finally, define the (non-invertible) diagonal matrix D, € RFEOx FE) by 

Iyae, |” Be&andj=k, 
D;,);r := Y 

( e)Jk {O else. 
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Then, the matrix representation of the preconditioner associated to (6.35) reads 

L 

Pl=To AT+ T, HDHII (6.36) 
¢=1 

For d = 2, the subsequent Theorem 60 is already proved in [FFPS17b, Section III.B] for 

T = O0 and in [Fühl4, Section 6.3] for T G 00. For d = 3, we need the following additional 
assumptions: 

e First, suppose that N C R® is simply connected and T = O0. 

e Second, let 7o be a conforming triangulation of {2 into non-degenerate compact sim- 

plices such that 70 = 7o|r is the induced boundary partition on I'. 

Then, the following theorem is our first main result. 
  

Theorem 60. Under the foregoing assumptions, the preconditioner Pı from (6.36) is op- 

timal, i.e., there holds (6.27), where O’;1; > 1 depends only on! and To, but is independent 

of L € N. 

We stress that the matrix in (6.36) will never be assembled in practice. The PCG al- 

gorithm only needs the action of P7' on a vector. This can be done recursively by using 

the embeddings I, ,+ı which are, in fact, sparse. Up to (storing and) inverting Ao on the 

coarse mesh, the evaluation of P7'x can be done in O(#T,,) operations, see, e.g., [FFPS17a, 

Section 3.1] for a detailed discussion. If the mesh 77, is fine compared to the initial mesh 
To (or if Av is realized with, e.g., H-matrix techniques), then the computational costs and 

storage requirements associated with A, can be neglected. 

  

  

Remark 61. Our proof for d = 3 requires additional assumptions on Q, T = O0, and 

To. As stated above, the case d = 2 allows for a different proof (which, however, does not 

transfer to d= 3) and can thus avoid these assumptionss, see [FFPS17b, Fühl2]. 
  

6.5.2 Proof of Theorem 60 (optimality of additive Schwarz preconditioner) 

As mentioned before, Theorem 60 is already proved for d = 2. Hence, we refer to |[FFPS17b, 
Fühl4] and thus focus only on d = 3 and I’ = O9. Due to our additional assumption, 

To = Tolr is the restriction of a conforming simplicial triangulation 7, of 2 to the boundary 

T. Moreover, 2D NVB refinement of 75 (on the boundary T') is a special case of 3D NVB 
refinement of 75 (in the volume (2) plus restriction to the boundary, see, e.g., [Ste08]. 
Hence, each mesh 7, € T = refine(75) is the restriction of a conforming NVB refinement 
TeT:=ref ine(70), i.e., Te = Telr. Throughout, let T. € T be the coarsest extension of 
TeT. 

Recall that NVB is a binary refinement rule. Therefore, 7, € refine(7,) also implies 
that 7, € ref ine(7.). Finally, we note that all triangulations To € T are uniformly ~-shape 

regular, i.e., 

diam(T) 
max —— < v < oo. 
TeT, |T|1/3 

where v depends only on To. 
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Discrete spaces and extensions 

First, we recall the definition of the curl operator for a sufliciently smooth vector field 

v = (v1, v2, v3) by 

ug _ Ov2 
Oxo 03 

._ | Qv Ouws curlv .=V X v := Das  Dmı 

v2 _ v1 
0x1 Ora 

  

Definition 62. Let v € L?(Q)3. Then, we call curlv := c € L?(N)? the (generalized) curl 

ofv, if there holds that 

/ c-wdr = / v-curlwdz for allwe c* (0), (6.37) 
0 0 

as well as divv := de L?(N) the (generalized) divergence of v, if there holds that 

[war = - | v- vwda for all w € C°(Q). (6.38) 
0 0 

Moreover, we define the space of lowest-order Nédélec elements of first kind ./\/"Dl(%.) by 

NDYT,) := {v € H(curl; Q) : v|x € PY(K)® + PY(K)® x x for all K € T.}, (6.39) 

where 

H(curl; Q) := {v € L*(Q) : curlv € L*(Q)*} (6.40) 

is the space of square integrable vector fields on Q C R3 with square integrable curl and 

corresponding norm 

\olfreun:n) = lellizo,) + leur olliaoy- (6.41) 

Lastly, we define the space of lowest-order Raviart-Thomas elements RTUT.) by 

RT’(T.) == {v € H(div; Q) : vlg € PO(K)?’ + PI(K)x for allKeET.}, (6.42) 

where 

H (div; 0) := {ve L?(9)? : divv € L*(Q)} (6.43) 

is the space of square integrable vector fields on d C R? with square integrable div and 

corresponding norm 

\ollirav.o,) = lellizo, + div ollizoy- (6.44) 
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The argument of our proof of Theorem 60 adapts ideas from [HM12], where a subspace 

decomposition for the lowest-order Nedelec space ND!(T,) (see, e.g., [H7.09]) in H (curl; 9) 
implies a decomposition of the corresponding discrete trace space. While the original idea 

dates back to [Osw99], a nice summary of the argument is found in [HM12, Section 2]. 
  

Remark 63. (i) Our proof is based on the construction of an extension operator from P% (T,) 

to ND\(T.), see Lemma 65 below. It is not clear if such an operator can be constructed for 

the case 1 G 90. 
(ii) In [HJHM15], a subspace decomposition of the lowest-order Raviart-Thomas space 

RTO(T.) (see, e.g., [XCN09]J) in H(div; 0) implies a decomposition of the corresponding 
normal trace space PP(T,). Due to different scaling properties of the Raviart-Thomas basis 

functions (in the H(div; 0) norm) and their normal trace (in the H-\/?(T) norm), this 
argument does not apply ın our case. 
  

Let 7 (resp. N.) denote the set of all edges (resp. all nodes) of 7. € T. For each node 
x € N,, let nex € S1(7.) be the corresponding hat function, i.e., ex is Te-piecewise 

affine and globally continuous with 7ex(y) = 0xy for all x,y € N,. For E € &,, let 

Ue E € J\/’Dl(fi) denote the corresponding Nédélec basis function, i.e., for K € 7, with 

E = conv{x,y} C OK, it holds that 

Ue,E|K = C(no,xvno,y — Ne,yVNex), (6.45) 

where C' > 0 is chosen such that for the path integrals holds that 

/ Us,E ds = IE Öögp for all E,E' € Eu. (6.46) 
E' 

Scaling arguments yield the next lemma. The proof follows the lines of [HM12, Lemma 5.7]. 

  

Lemma 64. For E e £,, recall the Haar function . p € P’(T.) from (6.33). Let u. € 

ND!(T,) denote the corresponding Nedelec basis function, see (6.45). Then, 

    

Pe,5 = curlus,g  nlr (6.47) 

and 

C"||pe,E Iu-1/2(n) < |usEl|H(eun;n) SC \veell#-v2n): (6.48) 

where C > 0 depends only on I! and the Y-shape regularıty of Te. [] 
  

Proof. By using (6.45)-(6.46) we get that e p = curlue g - n|p. Then, continuity of the 

normal trace operator and the fact that the divergence of the curl is zero yield that 

  |Pe,E \1r-1/2(r) S |curl us, 2l (av; 0) 

1/2 
= (HCU_I‘]'U:.,EH%Z(Q) + HleCHrlu.,EH%Q(Q)) / 

= ||curl u-,EHLZ(Q) 

< HU",EHH(CurI;Q)- 
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Furthermore, scaling arguments prove that 

  IH (cur: 0) = |\curl Us,E||L2(9) 

~ |E|1/2 

us, 

~ |E["2 |00 gl L2y 

S HSOO,E   ‘H—l/Q(F)fl 

where we have finally applied an inverse estimate, cf. [HM12, Lemma 5.4]. This concludes 

the proof. O 

The following lemma holds for (simply) connected Lipschitz domains {2 and follows es- 
sentially from [AGS16]. Recall PP(T,) from (6.34). 
  

Lemma 65. There exists a linear operator Es : PO(T,) > ND!\ (Ts) such that 

curl (Eqt)e) - n|r = 1, (6.49) 

as well as 

|Betbell pr(cutsoy < Cllvell -1y for all da € Px(Te). (6.50) 

The constant C > 0 depends only on I! and Yy-shape regularity of Te. 
  

Proof. Let x). € PO(T.). First, [AGS16, Theorem 2.1] provides o. € RT°(T,) with 

oo -nlp =1the, dvo.=0, and |eel|rav:n) S |%elln-1209)- 

Then, [AGS16, Lemma 4.3] provides Esib. := v. € ND!(T.) such that 

curlv.=o. and |velrfeur:n) S el H(div;0)- 

Combining these results, we get that 

curl (Eee) n|r = curlvs -nlr 

= 0" n|r 

= Us, 

as well as 

IBebellercur:0) = \vellzrcun: 0) 

S HUoHH(div;Q) 

< |ellu-en): 
which concludes the proof. [1 
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Abstract additive Schwarz preconditioners 

Let X denote some finite dimensional Hilbert space with norm || - ||» and subspace decom- 

position 

xX=> X, 
i€l 

where 7 is a finite index set. The associated additive Schwarz operator is given by 

S=) SS, 
€T 

where S; is the X-orthogonal projection onto A}, i.e., 

(Six, ri)x = (2,%)x forall x; € X; and all z € X, 

where (-, -)x denotes the scalar product on X. Then, the operator S is positive definite 

and symmetric (with respect to (-, -)x). For x € X, define the multilevel norm 

Iel& o= inf { ) lei :2= dr with; € & for allieT}. (6.51) 
1€l 1€l 

It is proved, e.g., in [Osw94, Theorem 16] that (S"!z,2)x = ||x||%- If there exists a 
constant C' > O such that 

c1llellx <|e||x <C|elx forall x € X, 

then the extreme eigenvalues of S”! (and hence those of S) are bounded (from above and 
below). In particular, the additive Schwarz operator S is optimal in the sense that its 

condition number (ratio of largest and smallest eigenvalues) depends only on C >0. 

Let S denote the matrix representation of $S. Then, the norm equivalence from above 

and the latter observations imply that the condition number of S is bounded. The abstract 

theory on additive Schwarz operators given in [T’WO05, Chapter 2] shows that S has the 
form S = P"!A, where A is the Galerkin matrix of (-, -)x. Therefore, boundedness of the 
condition number of S implies optimality of the preconditioner P-!. 

We shortly discuss the matrix representation (6.36) of the additive Schwarz preconditioner 

L 

Pl=To AT+ T, HDHT 
/=1 

Following [T'W05, Chapter 2], let A; denote the Galerkin matrix of (-, )y restricted to X, 
and let I; denote the matrix that realizes the embedding from X; — X. We consider the 

matrix representation S; of $;: X — A; C A. Let x € X with coordinate vector x, and let 

x; € A; be arbitrary with coordinate vector x;. The defining relation of $;, i.e., 

(Six, zj)x = (2,&)x forall x; € A}, 
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then reads in matrix-vector form as 

x; (A;S;x) = (Lix;) - (Ax) for all coefficient vectors x;, 

or equivalently 

A,S;x = I/ Ax. 

Since A, is invertible, we have that 

S; = A;'TTA. 

Note that the range of the operator S; is X; and correspondingly for the matrix represen- 

tation S;. We therefore apply the embedding I; and obtain the representation 

S=P'A, where P'=) LA'I. 
i€z 

To finally prove (6.36), note that for one-dimensional subspaces X;, A; reduces to the 
diagonal entry of the matrix A. Overall, we thus derive the matrix representation (6.36). 

Subspace decomposition of A'D'(T,) in H(curl; Q) 

The following result is taken from [HWZ12, Theorem 4.1], see also the references therein. 
In particular, we note that their proof requires the assumption that €2 is simply connected. 
  

Proposition 66. Let Y. := ND'(T.), Yo £ := span{ue, 2}, Vox := span{Vrex}, and 

& = (E&\ Er) VIE E E&, : supp ur, S supp W15}, 

Ny = (Ne \Ne-1) U IX ENG : suppnex S SUPP Ne-ı,x}- 

Then, it holds that 

L 
YL=Yo+), ( > Ve+ Yen). (6.52) 

(=1  BeE&r xeN} 

Moreover, it holds that 

"leeren: < lellv. <C llolleru:) for all v € Yy, (6.53) 
where U > 0 depends only on Q) and To. [] 
  

Subspace decomposition of P°(T,) in H~1/2(T) 

It remains to prove the following proposition to conclude the proof of Theorem 60 since then 

we get from the abstract theory that the proposed additive Schwarz operator is optimal. 
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Proposition 67. The multilevel norm || - ||x, associated with the decomposition (6.35) 
satisfies the equivalence 

C Gl < Melle, <C lölla-v2o for all d € P(TL), (6.54) 

where U > 0 depends only on Q) and To. 
  

Proof of lower estimate in (6.54). Let d € P(TL), X, := P’(T;), and X, p := span{y g} 
Lemma 59 shows that we can decompose ı) (not necessarily uniquely) into 

P = o + s (6.55) 

where 

L 

=), 2, ber with do € Ab and den € Aup- 
(=1 EC&} 

Note that X,z C P2(T;). Recall the extension operator E, from Lemma 65. Define 

L 

Vy 1= > > Erde E € VL: (6.56) 

(=1 Ec&} 

Then, due to the linearity of the curl operator and Lemma 65, it follows that 

L 

curl v, - n|p = curl <Z > Erbu,n) -nlr 

(=1 Be£} 
L 

> > curl (Err,s)  nlr 
(=1 Be£} 

L 

No 
t=1 BEE 

x
 

= b, 

and hence the continuity of the trace operator in H (div; 0) yields that 

#12 S |eurl or || acaiv;o) () 

= [Jeurl vy || L2(q) 

< H’U* HH(Curl;Q) 

(6.53) 
S vy 
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Moreover, the triangle inequality, the definition of the multilevel norm ||-||y, , and Lemma 65 
show that 

6112172y S b0l gy + 1 13-z 
< ol + Moll, 

(6.51) , L 
< \tollyr-12(r) + > > Erbe x 

(=1 Be£} 

(6.50) 5 L 

5 HwOHH—l/Z(F) +), > Ir x 

(=1 Be£} 

  

F 
H(curl; ) 

  van): 

Taking the infimum over all possible decompositions (6.55), we derive the lower estimate 
in (6.54) by definition (6.51) of the multilevel norm. O 

Proof of upper estimate in (6.54). Let v € P°(TL). Define vgo := (¢, 1)r/|T'| as the inte- 
gral mean of ¢ over I. Moreover, let 1, := ¥ — go € PO(TL,). Note that 

el =12y < 1l zr-1/2) + Iooll 1720y 
< (1+1/ rr2y) 11 =12y (6.57) 

< bl 12y 
With Lemma 65, choose v = Eyıb, € Y, = ND!(T,). Hence, we get that 

Yy = curlv - n|p 

as well as 

HUHH(CUI"I;Q) Ss Is lla-120n,- (6.58) 

The upper bound in Proposition 66 further provides vo € Yo, ve,E € Vı,g, and vy x € Vi x 

such that 

L 

o=t (X vt 3 v 
t=1  Be&r xEN} 

as well as 

    

L 

2 2 2 
HUOHH(curI;Q) + Z < > ve, Fr (curl; 0) + > \v0x run:o)) 

I=1  Be&r xeN} (6.59) 

(6.53) 
< 2 
~ HUHH(curI;Q)' 

Since vy x € Vix = span{Vnyx} and the curl of the gradient vanishes, we observe that 

curlvg x = 0. 
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Thus, we see that 

d= don + %r 

— oo + curlv nr 

L 

= oo + curlvg - n|p + > > curlvy g - njr 

(=1 Be£} 

L 

= oo + curlvg - n|p + > > curlvy g - nr, 

1=1 Be£} 

where the latter sum reduces to a sum over all HE € E/ (instead of all E € &) due to the 
restriction (-)|r to the boundary. Note that .o := curlvg - n|r € Xy = P°(75) and hence 

Yoo + Yso € Xy. Moreover, it holds that 

oo + soll 717200) S |%oollar-120n, + llcurlvg - n| g-1/2py 

Sl g2y + |\eurl voll za ; 0) (6.60) 

= [l g2y + lleurlvo|[ 22y 

Due to Lemma 64 and v, p € Yy = span{u, g}, it holds that 

wé,E := curl VULE' n|p < ALLE = span{yr,c} 

with 

Ka     Iu-1/2(n) = ||ve,E | Heu; 0) 

We hence see that 

L 

b = (doo +0) +), 2 YuE 

  

  

(=1 Be£} 

with 

, (6.51) , L 5 
I#llps(r; ) < |voo + Wo ll7r-1/2(n) + > > Idee 1-27) 

(=1 Be£} 

(6.60) , , L 5 

IS elz-vzn, + voran: 9) + > > Ik73> |Hfcur 0) 

{=1 BEE, 

(6.59) ) 5 

S elz-ven) + ol Freu: 9) 

(6.58) ) 5 

Sole + Melden 
(6.57) ) 

< Iz 
This concludes the proof. ] 
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6.5.3 Optimal convergence 

In this section we present the first main result for the adaptive Algorithm 57. We note, that 

Algorithm 57 as well as the following theorem are independent of the precise preconditioning 

strategy as long as the employed preconditioners are optimal in the sense of Section 6.3.4. 

First, we recall the index set & of Section 6.4 which is defined by 

Q:={(¢, k) € Ny x Ny : index (£,k) is used in Algorithm 57} 

Then, we get the following theorem. 

  

Theorem 68. The output of Algorithm 57 satisfies the following assertions (a)-(c). 

(a) There exists a constant C*, > 0 such that 

IIö* - sEll < Or (meld) + 1 - (6.61) 
for all (£,k)E Q withk >21. 

There exists a constant CO}, > 0 such that, provided that ¢* € L?(T), it holds that 

* 1/27, % _ nu(oE) < Ci (Me (6 = )l zqry + ok — 671 (6.62) 
for all (£,k)E Q withk >21. 

(b) For arbitrary 0 < 0 < 1 and arbitrary Acır > 0, there exist constants Cy, > 1 and 

0 < qiin < 1 such that the quasi-error 

1/2 
Af = (16" — EN* + ne(9)?) (6.63) 

is linearly convergent in the sense of 

<a (6.64) 
for all (L,k),(O,k')e Q with (U,k’) > (L,k). 

(c) Fors>0, define the approximation class 

gL = N +1)? (D) ). 6.65 167 = sup (( N in (@ )) (6.65) 
#Te—#To<N 

Then, for sufficiently smallO <0 <1andO < Acır 1, cf. Assumption (6.86) below, 
and all s > 0, it holds that 

|¢* |4, < o0 
— (6.66) 

Cop > 0 : S (ER - ER +1)’ A < Cop |6* a, < X: 
L,k)eQd 

The constants 
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(07,05 > 0 depend only on gpcg, I, and the uniform y-shape regularity of T; € 

refine(70), 

e Cin > 1 and 0 < qiin < 1 depend addıtionally only on 9 and Acır, and 

o Copt > 0 depends additionally only on s, To, and AM. 

  

  

Remark 69. By definition, it holds that 

nor) <A, for all (4,k) € Q. 

If QS’; € {97, or}, then there also holds the converse inequality and hence 

(ld) SM. 

To see this, note that oh = 67 and (6.24) prove that 

N< (14 Gene). 

If oN = qfi%, then Theorem 68(a) and the stopping criterion (6.30) of Algorithm 57 prove 

that 

M<(1+ ch)neleh) + le - 67 | 

< (14 C% + Acın) Me(6h). 
  

6.5.4 Proof of Theorem 68 (optimal convergence rates) 

First, we give an abstract analysis in the spirit of [CFPP14], where the precise problem 

and discretization (i.e., Galerkin BEM with piecewise constants for the weakly-singular 

integral equation for the 2D and 3D Laplacian) enter only through certain properties of 

the error estimator. These properties are explicitly stated in the next subsection, before 

we provide general PÜG estimates afterwards. The remaining sections, i.e., the proofs of 

Theorem 68(a)-(c) then only exploit these abstract frameworks. 

Axioms of adaptivity 

In this section, similarly to Section 4.3, we recall some structural properties of the residual 

error estimator (6.22) which have been identified in [ÜFPP14] to be important and sufficient 
for the numerical analysis of Algorithm 57. 

For ease of notation, let 79 be the fixed initial mesh of Algorithm 57. Let T := refine(70) 

be the set of all possible meshes that can be obtained by successively refining 7. 
  

Proposition 70. There exist constants Ust, Ored; Creı > O and 0 < Gred <1 which depend 

only on T and the y-shape regularity, such that the following properties (Al)-(A4) hold: 
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(Al) stability on non-refined element domains: For each mesh 7, € T, all refinements 
T; € refine(7,), arbitrary discrete functions v, € PP(T;) and w. € P’(T,), and an 
arbitrary set Uy C To N T, of non-refined elements, it holds that 

1710 (Ue, Vo) = Ne(Ue, we)| < Ostn ||vo = well. 

(A2) reduction on refined element domains: For each mesh 7, € T, all refinements 
To € refine(7,), arbitrary discrete functions v, € PP(T;) and w, € PP(T,), it holds 
that 

no(To\Te, vo)” < (red Ne(Te\To, we)” + Ored ||vo = well”. 

(A3) reliability: For each mesh 7, € T, the error of the exact discrete solution d% € P(T,) 
of (6.16) is controlled by 

6" — &l < Cre1me(95). 

(AA) discrete reliability: For each mesh 7, € T and all refinements 7; € refine(7,), there 
exists a set R,. C Te with \T, CR... as well as #Re o < Car #(Te\7;) such that 
the difference of d& € PP(T,) and d% € PP(T;) is controlled by 

I®5 = ol < Carl Tle (Ro,oa QS:) 

[l 
  

  

Remark 71. For the proof of Proposition 70, we refer to [FKMP13, FFK' 14]. We only 

note that (A4) already implies (A3) with Ce < Carı in general, cf. [UÜFPP1}, Section 3.3]. 
  

Energy estimates for the PCG solver 

This section collects some auxiliary results which rely on the use of PCG and, in particular, 

PCG with an optimal preconditioner. We first note the following Pythagoras identity. 
  

Lemma 72. Let A,,P. € RY*N be symmetric and positive definite, b, € RY, xt := 

A,'b., x" ER", andx“ ER“ the iterates of the PCG algorithm. 

There holds the Pythagoras identity 

Is - 81? = 165 - HP + IE -Ä? foralike No. (6.67) 
  

Proof. Recall that x% is the solution to (6.1) and xt = p!/ “xk. According to the definition 
of PCG (and CG), it then holds that 

KR -&ela, - min IX Yela 
| ’ he YocKy(As,be,X) : A 
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where 

Kr(As, be, 20) := span{r, A,r0,..., At170} with 70:=b,- A,x 

According to Linear Algebra, x* is the orthogonal projection of x, in Kr(As, b.,: x0) with 

respect to the matrix norm || |x,- From nestedness Kr(As,be,%0) C Kyrı(As,be,X0), it 
thus follows that 

kl? x gel 2 zk+l _ zkı2 
IX xel:, = x 1%, + 1% Xell 7. - 

Hence, together with (6.26) and (6.29), we get that 

oy — ek? "EP 1x5 xt%, 
2 I - = 
= | + IR rk 

ER IR Re, 
“29 ex ht? + ek — ok]? 

which proves (6.67). ] 

The following lemma collects some estimates which follow from the contraction prop- 

erty (6.28) of PCG. 

  

Lemma 73. Algorithm 57 guarantees the following estimates for all ({,k) € Q with k > 1: 

@) 1168 — EI < nee 7 - &5 

(i) IR - er IS (1 + apce) IE - 1 

Gi) eo <A Re) IE N 

) 
. _ k— 

(iv) IE < Bill < pes(1 — apes) IE | 
  

Proof. Combining (6.29) and the contraction property (6.28) of PCG, we get that 

(6.29) k 
1%z — x|, o7 — o£l 

(6.28) . 5 
< Ipcg IX x, "a, 

(6.29) x _ 
en 167 — &5 

which proves (i). Estimate (ii) follows from (i) and the triangle inequality by 

ler - er < 168 - ill + ez — &5l 
o _ 
< (14 gpeg) |IEE - 1. 
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Estimates (iii) follows again from (i) and the triangle inequality by 

ler - "I < 1er - ell+ Mor — &5 
(i) k- k_ gk- < dpeg 107 - 8 14 Mei er ll 

which is equivalent to estimate (iii). The last estimate (iv) follows from 

x (i) N . 
67 - &5l < @ce |IdR - 6 || 

(iii) B 

< Qpcg(l - Qch)_l |||¢Ig - ¢IZ 1||| 

This concludes the proof. O 

Proof of Theorem 68(a) 

With reliability (A3) and stability (A1), we see that for all (£,k) € © it holds that 

llo* — &¢I < 6™ — ol + g — o2l 

(43) * * k 
S nel) + Mor — ¢l 

(AD k * k 
Ss neo) + er - Bell 

With Lemma 73(iv), we hence prove the reliability estimate (6.61), i.e., 

I®* - sell S netoe) + 16 — &l 
73(iv) 

Ss ne) + leer |. 

According to [AFF' 17], it holds that 

1.68) S 1hy"* (0 — &) |2y + I6* - Hl 

< 1Ay (6" — )2y + llo* — Bill + lei - ohll. 

Let G, : I-V/2(T) — PP(T,) be the Galerkin projection. Let Il, : L?(T) — PP(Tz) be the 
L?-orthogonal projection. With the C&a lemma and a duality argument (see, e.g., [CP06, 
Theorem 4.1]), we see for all ı) € L?(T)) that 

1/2 

I - Gulli < (1 =)ol < Hh/ Ul L2(r)- 

Hence, for ¢ = ¢* — ¢F, it follows that 

le* — ill = IL - Go)o*|| 
= 11 = G)(&* - )]] 
< | (& - lien. 
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Combining the latter estimates, we see that 

no) S Ihr (&* - Ehren, + lei - oRll. 

Lemma 73(iv) yields that 

(oh) S IR (6 - Eh | re + ei - 6Äl 
> /2 %k k__ k-1 S (@7 = @)l 2y + o — &l 

and hence concludes the proof of the efficiency estimate (6.62). [ 

Proof of Theorem 68(b) 

The following lemma is the core part of the proof of Theorem 68(b). 
  

Lemma 74. Consider Algorithm 57 for arbitrary parameters0 <9 <1 and Acır > 0. There 

exist constants DO < U,Getr < 1 such that 

AF = undon) + 167 — El? for (.R) € Q 
satisfies, for alll € No, that 

AP < g A} forall0<k<k+1<k (6.68) 

as well as 

AD |< der A fork=0. (6.69) 

Moreover, for all (U ,k’),(£,k) € ©, it holds that 

A < IO o (20) 
provided that (¢ k') > (L, k), K < k({), and k < k(¥). 
The constants 0 < 1, getr < 1 depend only on Acır, 0, pcs, and the constants in (Al)-(A3). 
  

Proof. The proof is split into five steps. 

Step 1. We fix some constants, which are needed below. We note that all these con- 

stants depend on 0 < 9 < 1 and Actr > 0, but do not require any additional constraint. 

First, define 

0 < gest = 1- (1 ed) 9 < 1. (6.71) 

Second, choose v > 0 such that 

(6.71) 
A+Y)gs < 1. (6.72) 

Third, choose u > O0 such that 

-1 2 2 1~ qpeg _2 1 
a (14%) est Can (14 gpeg)” < a. and HA < 9 (6.73) 

174



6.5 Main results 

Fourth, choose e > 0 such that 

  

1 
e(l- Ipcg) +22. 00a (1- Ines) = 3 and 22C,. < (l-e)u. (6.74) 

Fifth, choose x > 0 such that 

(6.72) 1— g2, 
2K ca < (1-(1+Y)s)a and 26 CH CHn < u E. (6.75) 

With (6.73)-(6.75), we finally define 

0 < Getr := max {1 — e, (,u(l +Y) gest + 25 Ch) wiiı-k, 

(m (1+ y) Gest Cab (1+ Qch)2 + Ines + 2k Cfelcgtb)} <L em 

Step 2. Due to reliability (A3), stability (Al), and Lemma 73(iii), it follows that 

lo* — 1" = 1 - S)|Ie* - ei" + € |Io* - Sal 

(A3) * * |11 2 2 *\2 
< (1-e)|I®" - Br" + & Creı nel&r) 

(A1) * * * 
< (1-e)||ö* - El? +22 CH, (mon)? + Ca |I6R - Ei”) 

73(ü ) 
< (1-E)|6* - Sl? +22 CA lei)” 

+2¢ Ca Chy (1 - Ice) Io; — ¢]E|”2 

Step 3. We consider the case k+1 < k(£). The stopping criterion (6.30) of Algorithm 57 
yields that 

nt)? < Auer il. (6.77) 
Moreover, the Pythagoras identity (6.67) implies that 

lei - 1? = 16 - Sell? - or" Sell? 
kg2 k2 k+l k2 (6.78) 

= (1-8) Io — Er" + e Ilör - Bel" IB EI 

Further, we note the Pythagoras identity 

II6* — s2 1" + 1167 < well” = 116" < well“ for all vy € PO(Ty). (6.79) 
Combining (6.77)-(6.79) and applying Lemma 73(iii), we see that 

AP = pne(op T + Io - er IF + ot — 7117 

< (1-8) 165 - oil? + ell6i - oil 

+ (dcr — DEE" = Bill? + lle* — ill? 
73 (i 

) * 

< (1-2) 6 - rl? 

+ (E (1 gpeg) + Ar = Dllgg™ Bill? + 16° - Bill. 
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Step 2 further yields that 

Akt < (1 =) (llof - oh]? + 116° - Eil?) +22 CA meh)? 
+ (e (1- Ipcs) + [DD -1+2 & Ca Chb (1- Ipce) ") Ie;*" - ¢IZ”|2 

Using (6.73)-(6.74), (6.79), and (6.76), we thus see that 

(6.73) (6.74) 

art < (1-6 El +16 - il) + — ) pne(ef)? 
(6.79) k\2 * k2 < (1-e)(unelo) + |I6* - El) 
(6.76) 

< Getr Ab, 

ifk+1<k(l). This concludes the proof of (6.68). 

Step 4. We use the definition &) = qfi% from Step (iv) of Algorithm 57 to see t 

Ag—i—l = #77£+1(¢2+1)2 + ||&* — der” 
k k 

= una41(dr) + |Id* - Er 1”- 

hat 

(6.80) 

For the first summand of (6.80), we use stability (Al) and reduction (A2). Together with 
the Dörfler marking strategy in Step (iii) of Algorithm 57 and M, < T;\Trıı, we see 

ne+1 (6)? — ng+1(Terı\Te, on)” + ne+1(Terı N Te, $)? 
(A1)—(A2) Ko koo 

< red me(Te\ Terı, 67) + nelTerı N Te, 7) 

— ()2 — (1 — ca) Mu(Te\Tr41, 68)? 
(6.31) ke ) . 

< 77@(¢Z) - (1 — Gred)O ner) 

EN ass nel? 

With this and stability (Al), the Young inequality and Lemma 73(ii) yield that 

(6.81) 

nel) < ges eld)? 
(Al) _ u _ 
< (14Y) des (D2 + (1 4+ 77 gen Cu IE - 05112 

73Gi) . 

< (1+Y) dest ne(&% 2 
_ k—1 

+ (14V) Rest Cain (I + Me) lloy — Er IF 

that 

(6.81) 

(6.82) 

For the second summand of (6.80), we apply the Pythagoras identity (6.79) together with 
Lemma 73(i) and obtain that 

% 6.79 % % % 

™ — o512 LD ot — G2 + ot — o5 
736) x xl? 2 x k—1 12 
< I - Hl + Re IR - N 
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Combining (6.80)-(6.83), we end up with 

k k 

AY 1 = uneHılde) + |d* - Er |” 
k—1 

<u(l+Y)des (dr )- 
_ k—1 

F (L4771 Gest Copy (1 + pc) + Ger) 105 — o 1P + llo* — ¢711° 

Using the same arguments as in Step 2, we get that 

Ad, < (1 +7) dest me(dF)? 
+ (nu (1+ ’Y_l) Gest, Cab (1+ Qch)2 + Ipce) Il® - or]? 

+ (1 R)l6* - Sl? +28 cn +26 ch u eier 1” 
= (n(I+Y) Ges +26 CH) el 2+ (1 — RS - Eil? 

+ (nu (1+ ’Y_l) dest Cab (1+ Qch)2 + Incz +28 Clan) Il - ¢§_1”|2 

(6.76) 
k—1 k—1 

< ot 15(F ) + et 107 — SEN7 A+ ger IE — Er 1 
(6.79) 
—  (etr AST. 

This concludes the proof of (6.69). 

Step 5. Inequality (6.70) follows by induction. This concludes the proof. ] 

Proof of Theorem 68(b). The proof is split into three steps. 

Step 1. Let le N. Recall the Pythagoras identity (6.79). We use stability (Al) and 
the stopping criterion (6.30) of Algorithm 57 to see that 

1 (6.79 _ x _ " % 
AED N? + lei - EP + 1e* - oil? 

(A1) B 

< (68)? + |I6& - o= + ok — SR + Io“ - oil? 
00) k\2 x _ „Kl? * k)2 < mob)? + |lof — SEI? + Io - ©] 

I ak 

With the Pythagoras identity (6.67), we argue similarly to obtain that 

6.79 x x x 
ED nee + 11% - BE? + |I6* - oil]? 

(Al) — — x x x < nl +16 - 67 1? + 1165 - El? + Io’ - il? 
6.67 _ x _ x x 
EI 2 + o — A2 + le - Ei]? 
(6.79) A1 
= 8y 

Hence, it follows that A% ~ Ay. 
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Step 2. For 0 < ¢ < ¢, define k(¢) := k € Ny by 

s k(o) ife<, 

Ir if ¢ =2, 

From Step 1, Lemma 74, and the geometric series (for the sum over k), it follows that 

¢ k(o) e KO-1 

VIA s(Aah)t+). (Ar)! 
/=0 k=0 /=0 k=0 

DI, Er) e Ro CR-DI-IER)| AR — < 14% y° gl“ 1)| WR (Ak h) 1 

=0 k=0 

€ nn 

—1 + YA)" 

/=0 

For k' < k(¢'), inequality (6.70) and the geometric series (for the sum over £) yield that 

¢ (6.70) ¥ 
—_Iı — vk ek; ’ I\ 

DAS TEN (ABI S (AB)! o 

£=0 £=0 

For k’ = k({¢'), inequality (6.70), the geometric series, and Step 1 yield that 

v -1 
k-1\— k—1\— k—1\— DA =g T Yo ar ! 

=0 =0 

(6.70) 

< (14_253 REN) (Ada 

Overall, it follows that 

(AL <(AEY Y forall (¢,F) € Q. (6.84) 

Step 3. For the convenience of the reader, we recall an argument from the proof 

of [CFPP14, Lemma 4.9]: Let s> 0. Let C > 0 and «,, > 0 satisfy that 

Ya, <Cay” for all N € N. 
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Then, it holds that 

N-1 N-1 N 

- Yan < Yo" +tan=)ay'” for all N € N. 

Inductively, it follows that 

N-+m 

(1+0=! "Da Dar 5 forallN,meNo. 

This implies that 

N 

—1/s —1/s 

Ay < ) Kr / 

n=>0 

N-+m 

hm 2 a, ’® 

_ 1/s <(1+C)(1+C 1) " o 
for all N,m € No. This is equivalent to 

an SAHO)A+OT Mar”. 

Step 4. Since the index set © is linearly ordered with respect to the total step counter 

IC,-)|, Step 2 and Step 3 with s = 2 imply the existence of 0 < ¢, < 1 such that 

! kD -6k A Kan? (6.85) 
for all (6,k),(0,k') € Q with (¢,k') > (¢,k). Clearly, it holds that A® = (AF)/2 for all 
(£,k) € Q. This and (6.85) conclude the proof. ] 

Proof of Theorem 68(c) 

As in Chapter 4, the proof of optimal convergence rates requires the assumptions (R1)- 

(R3) on the mesh-refinement strategy. For 3D BEM (with 2D NVB from Section 3.6) 
and 2D BEM (with extended 1D bisection from Section 3.5) these properties are fulfilled, 

cf. Section 3.5 and Section 3.6 respectively. 

Recall the constants Cap > O from (Al) and Carı > O from (A4). Suppose that 0 < 6 <1 

and Actr > 0 are sufficiently small such that 

0 + Actr/Aopt 0.< 0" = < Oo = (14 C2, 2,2 6.86 1 — )\C‘cr/)\opt pt ( stb Ar) ’ ( ) 

where 

Ipcg -1 
Ao t = Ustab — . 

P < 1— qpcg> 
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In particular, it holds that 0 < 9 < Op and 0 < Actr < Aopt- We need the following 

comparison lemma which is found in [ÜFPP14, Lemma 4.14]. 
  

Lemma 75. Suppose (R2), (Al), (A2), and (A4). Recall the assumption (6.86). There 
exist constants C},Ca > O such that for alls > O with ||¢*]|a, < © and alll € Ny, there 
erists Re < Te which satisfies 

#Re < OR (6.87) 
as well as the Dorfler marking criterion 

0" ne(07) < me(Re, 07)- (6.88) 

The constants C1,Co depend only on the constants of (Al), (A2), and (AA). [ 
  

Another lemma, which we need for the proof of Theorem 68(c), shows that the iterates 
dF of Algorithm 57 are close to the exact Galerkin approximation d% € PY(Ty). 

  

Lemma 76. Let 0 < Actr < Aopt- For all E No, it holds that 

* k Gpcg . k 1 * OB < Ar — RE _ Ay - : : 167 = 671l < Acts 77— min {m(%) T o m(@)} (6.89) 

Moreover, there holds equivalence 

(1 Actr/Aopı) Me(d2) < me(öF) < (1 + Acır/Aopı) (D). (6.90) 
  

Proof. Stability (A1) yields that 

* k * k 
Ime(dr) — ne(dp)] < Cstan llog — Sell. 

Therefore, Lemma 73(iv) and the stopping criterion (6.30) of Algorithm 57 imply that 

73(iv) 
k q k k—1 

lol < 7= —llgr —¢¢ |l 
dpcg 

(6.30) 
Ipcg k 

< Acır — — (@ ct Te ,) 

(Al) Ipe * x k 
< Aectr — & (W(W) + Cstab [l07 — ¢Z”|) 

L — gpcg 

  

Since 0 < Actr < Aopt and hence 

  

q 
Actr Ustab = = Actr/ Aopt < 1, 

11— Qpcg 

this yields that 

9pcg 

167 — ol me (ei) g < - 
‘ ¢ 1 — Actr Cstab Em | 

=\ ¢ Ipcg 1 
ctr 

11— Gpcg 11— Actr/Aopt 

  

  

  

ne(97)- 
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Altogether, this proves (6.89). Moreover, with stability (Al), we see that 

x (Al) k x k 

ner) < nmel&g) + Cstan 197 — &7l 
(6.89) L 

< (1 + Actr/ Aopt.) ne.(6,) 

as well as 

k (Al) x x k 

ned) < Neldr) + Cstan |67 — &4l 

(6-89) Actr/Ao t < 1 er op * 
= < FT na) (or) 

1 * 

— 1 _ Actr/ Aopt e(67)- 

This concludes the proof. [ 

The following lemma immediately shows “<=" in (68). 
  

Lemma 77. Suppose (R1). For € € No, let Trrı = refine(7,,M,) with arbitrary, but 

non- empty /\/lg C T; and 1 = — 79. Let Oc No x No be an index set and oh € 730(72) for all 

(L, k) € Q. Let s > 0 and suppose that the corresponding quasi-errors A¥ := (Jlo* - gbe IF + 

() satisfy that 

sup (HR - HT +1) A <o. (6.91) 
(L,k)EO 

Then, it follows that |&*|\a, < ©. 
  

Proof. Due to the Pythagoras identity (6.79) and stability (Al), it holds that 

(AR)? = ||6* — BE]? + Mei)? 
(6.79 ~ ~ ~ 7 9 16* - Br? + di - SEI? + ()2 (6.92) 
(Al) x 

zZ ne(or)” . 

Additionally, [BHP17, Lemma 22] shows that 

H#Te —#To+ 1 < H#To < #To (#Te —#To+1) forall 7, € T. (6.93) 

Given N € Ny, there exists an index ¢ € Ny such that 

#Ti— #To <N < N+ 1< #Tper — #To + 1 
(6.93) _ RD _ (6.93) __ (6.94) 

< #Tew1 S #Te S #Te—#To+ 1 
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With (6.92)-(6.94), it follows that 

(6.94) 
N+1)°_ mi (6) S (#T- 1) ner (N + N (3) S (#Te—#To+ 1) (le) 

HETS-#TO<N 
(6.92) . .~ 

Ss sup (HR -#R+1)’N 
(L,kK)EO 

(6.91) 
< 080. 

Since the upper bound is finite and independent of N, this implies that |&*|a,<x. O 

Proof of Theorem 68(c). With Lemma 77, it only remains to prove the implication 

“>” in (68). The proof is split into three steps, where we suppose that ||$*||a,. < ©: 

Step 1. By Assumption (6.86), Lemma 75 provides a set R, < 7, with (6.87)-(6.88). 
Due to stability (Al) and Ay, = Cs TE, it holds that 

pcg ’ 

  

„(AD . ck 
(Red) < (R, &) + Os |07 — &/l 

(6.89) . . 
< ne(Re, ¢y) + Acte/ Aopt Nel®r)- 

Together with 0”n,(¢}) < ne(Re, ®%), this proves that 

(6.90) 
(1 Actr/Aopı) #" melde) < 0" nei) 

<re(Re,®7) 

< e (Re, QS%) + Actr/ Aopt ne(6%) 

and results in 

Om FE (1 Acır/Aopı)B" — Acır /Aopı) MON <m(Reed. (6:95) 

Hence, R, satisfies the Dörfler marking for rn with parameter 4. By choice of M;, in 

Step (iii) of Algorithm 57, we thus infer that 

(6.95) (6.87) (6.90) 
#Mı S #Rı S ml) 2 ne(¢) Ve for all £ € N, 

The mesh-closure estimate (R3) guarantees that 

(R3) /—1 £—1 

HTo—#To+1 < IV HEMSI nl" forall £ > 0. (6.96) 
j=0 j=0 
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Step 2. For £ = 0, it holds that 1 < (ABS, For £ > 0, we proceed as follows: 

Remark 69 yields that n(67) ~ A. Theorem 68(b) and the geometric series prove that 

t-1 e-1 
k — S k — S 

D (e (AT 
J=0 j=0 

(6.64) £=1 

Combining this with (6.96) and including the estimate for £ = 0, we derive that 

HT HT +1S (N) forallleNo. (6.97) 

Step 3. Arguing as in (6.94) and employing Theorem 68(b), we see that 

(6.97) (6.64) 6.94 

HTE-HTSHL SE YT Tl < (AR )V < (ah 
for all (£,k)e Q with £ >0. Since k(0) < #70 < ©, we hence conclude that 

sup (#%- #%+1)° N <X. 
(L,k)EQ 

This concludes the proof of Theorem 68. O 

6.5.5 Almost optimal computational complexity 

In order to get an efficient implementation, we suppose that we use H?-matrices for the 

efficient treatment of the discrete single-layer integral operator. Then, the storage require- 

ments (and the cost for one matrix-vector multiplication respectively) of an #H?-matrix are 
of order O(Np?), where N is the matrix size and p € N is the local block rank. For 

H2-matrices (unlike H-matrices), these costs are, in particular, independent of a possibly 

unbalanced binary tree which underlies the hierarchical data structure [Hac15]. 
For a mesh 7, € T, we employ the local block rank p = O(log(1+ #7,)) to ensure that 

the matrix compression is asymptotically exact as N = #7. — x, l.e., the error between 

the exact matrix and the H-matrix decays exponentially fast, cf. [Hac15]. We stress that we 

neglect this error in the following and assume that the matrix-vector multiplication (based 

on the H?-matrix) yields the exact matrix-vector product. 

The computational cost for storing A, (as well as for one matrix-vector multiplication) 

is O((#T,) log?(1+#T,)). In an idealized optimal case, the computation of d% is hence (at 
least) of cost O((#Tr) log?(1+ #T.)). 

We consider the computational cost for one step of Algorithm 57: 

e We assume that one step of the PCG algorithm with the employed optimal precon- 

ditioner is of cost O((#Tr) log”(1+ #Tr)), since the evaluation of one matrix-vector 
multiplication with the preconditioner P, can be done in O(#T,), cf. Section 6.5.1. 
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e We assume that we can compute 7,(1),) for any v, € P°(7;) (by means of numerical 

quadrature) with O((#7;)log?(1 + #7T;)) operations. 

e Clearly, the Dörfler marking in Step (iii) can be done in O((#7;) log(1+#7;)) opera- 
tions by sorting. Moreover, for Cinark = 2, Stevenson [Ste07] proposed a realization of 

the Dörfler marking based on binning, which can be performed at linear cost O(#7;). 

e Finally, the mesh-refinement in Step (iv) can be done in linear complexity O(#7;) if 

the data structure is appropriate. 

Overall, one step of Algorithm 57 is thus done in O((#7;) log*(1 4 #7;)) operations. How- 
ever, an adaptive step (£’,k’) € © depends on the full history of previous steps. 

e Hence, the cumulative computational complexity for the adaptive step (¢, k') € Q is 
of order 

oO» #7T)log’(1 + #7). 
(£,k)<(¢' k") 

The following corollary proves that Algorithm 57 does not only lead to convergence of the 

quasi-error A’; with optimal rate with respect to the degrees of freedom (see Theorem 68), 

but also with almost optimal rate with respect to the computational costs. 
  

Corollary 78. For ¢ € Ny, let Tr = refine(7,, m with arbitrary M; < T; and T% — 79. 

Let s > 0 and suppose that the corresponding error estimator 1(&7) converges at rate s with 

respect to the single-step computational cost, i.e., 

sup [(#7e) log’(1+ #T)] Melei) < ©: (6.98) 
lENo 

Suppose that Act: and 0 satisfy the assumptions of Theorem 68(c). Then, the quasi-errors 

Ab generated by Algorithm 57 converge almost at rate s with respect to the cumulative 

computational cost, i.e., 

sup > (#7) log?(1+ en) N, <oo for alle>0. (6.99) 
(¢ k")eQ (0,k)<(0' k") 

  

Proof. For all ö > 0, it holds that 

6.93 BT~ #To 112 4Te < ET) ATI SCHT) forall T T, 
where the hidden constant depends only on ö. From (6.98), it thus follows that 

sup [HT — #T5 + 1] (65) S sup [#T) log?(1 + #7)] (65) < ©. 
LENo LENo 

From Lemma 77, we derive that ||ö*||a. < ©. Hence, Theorem 68(c) yields that 

sup [#Te]" N ~ sup [#Ti— #To+ 1]5 N < 00. (6.100) 
(L,k)EQ (L,k)EQ 
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Let 0O<e< sand choose ö > O such that 

S 
=: 1. 

1+6 
0<s—e=   

This leads to 

(6.100) 

ERNEST SATIN) for all (4,k) € Q. 
From Theorem 68(b) and the geometric series, it follows that 

(6.64) 1/ Ir ’ / 
YoMV S ORTES (AR) for all (¢,F) € Q. 

(£,k)<(¥,K") (k)< (¢ k") 

Combining the last two estimates, we see that 

S #T e+ #T)| T < (M) = (AF) ! for all (¢ K) € Q. 
(LUISE) 

This concludes the proof. [ 

6.6 Hyper-singular integral equation 

In this section, we briefly introduce the setting of the hyper-singular integral equation and 

show that it fits into our abstract framework and that the main results still hold true. 

Given 9: T—R, the hyper-singular integral equation seeks u* :T — R such that 

(Wu*)(z) = ua) / On)G(x —y)u*(y)dy = g(x) forallzeT, (6.101) 

where 0, denotes the normal derivative with the outer unit normal vector n(-) on TC ON. 
Recall from Remark 55 that the hyper-singular integral operator 

w: mV?+sn) > mV2*s(T) 

is a bounded linear operator for all —1/2 < s < 1/2 which is even an isomorphism for 

1/2 < s < 1/2. For s = 0, the operator W is symmetric and positive semi-definite 

with kernel being the constant functions. Hence, for T G 80, the operator W: HV?(T) — 
H-V?(T) is an elliptic isomorphism. Moreover, for T = ON and 

I? (D) = {ve HUT): (p,1)= 04, 

the operator W : H, / 2(F) N 2(F) is an elliptic isomorphism. Therefore, 

( ) (Wu,v), TG O9, 

u (Wu,v)+(u,v), if'=09Q 
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defines a scalar product on HV/?(T), and the induced norm 

Ill := (u, 

is an equivalent norm on HY/?(T). Let ge HV?(T). ET G 99, suppose additionally that 

g € H,?(00). Then, (6.101) admits unique solutions u* € HV2(T) and u* € H4'? (80) 
respectively, such that u* € HV/?(T) is also the unique solution of the variational formulation 

(u*, v) = (g,v) forallv ee HY*I). 

Given a mesh T, of I', let 

SUT,) := {ve HYT):VTET, vlris affine}. 

The Lax-Milgram theorem yields existence and uniqueness of uf € S!(T,) such that 

(u,v)=(g,v) foralv. ec ST). 

With the corresponding weighted-residual error estimator, it holds that 

1/2 

I ul < Cum (mtr), 
TET 

where 

ne(T, us)” = hr |g- Wurlliem: 

cf. [CS95, Car97] for d= 2 and [CMPS04] for d = 3 respectively. 
In [Fiih14, FEFPS17a], optimal additive Schwarz preconditioners are derived for this set- 

ting. Hence, Algorithm 57 can also be used in the present setting. We refer to [FFK" 15, 

Section 3.3] for the fact that the arioms of adaptivity, i.e., (Al)-(A4) from Proposition 70 
remain valid for the hyper-singular integral equation. All other arguments in Section 6.5.4 

rely only on general properties of the PCG algorithm (Section 6.5.4), the properties (Al)- 
(A4), and the Hilbert space setting of || - ||. Overall, this proves that our main results 
(Theorem 68 and Corollary 78) also cover the hyper-singular integral equation. 
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6.7 Numerical experiments 

In this section, we present numerical experiments that underpin our theoretical findings. We 

use lowest-order BEM for direct and indirect formulations in 2D as well as 3D. For ease of 

notation, we define X := Acır for this section. We compare the performance of Algorithm 57 

for 

e different values of A € {1,107 1071 ..., 1074}, 

e different values of 6 € {0.05,0.1,0.15,...,1}, 

where 6§ = 1 corresponds to uniform mesh-refinement. In particular, we monitor the condi- 

tion numbers of the arising BEM systems for diagonal preconditioning [AMT'99], the pro- 
posed additive Schwarz preconditioning from Section 6.5.1, and no preconditioning. The 

2D implementation is based on the MATLAB implementation HILBERT [AEF' 14], while 

the 3D implementation relies on an extension of the BEM++ library [SBA 13]. 

6.7.1 Slit problem in 2D 

Let T := (-1,1) x {0}, cf. Figure 6.2. We consider the weakly-singular integral equation 

Vé=1 ar. (6.102) 

The unique exact solution of (6.102) reads 

x L 2x 
(2,0) := A 

For uniform mesh-refinement, we thus expect a convergence order of O(N~1/2), while the 
optimal rate is O(N 3/2) with respect to the number of elements. 

Figure 6.2 shows the condition numbers for an artificial refinement towards the left end 

point (—1,0) and for Algorithm 57 with A = 10°? and 9 = 0.5. For the proposed additive 

Schwarz preconditioner, we see that the condition number of the preconditioned Galerkin 

matrix stays uniformly bounded in both cases, which underpins Theorem 60. 

In Figure 6.3-6.4, we compare Algorithm 57 for different values for 0 and X as well as 

uniform mesh-refinement. Uniform mesh-refinement leads only to the rate O(N -"/?), while 
adaptivity, independently of the value of 6 and A, regains the optimal rate O(N -®/?). 

In Figure 6.5, we compare the computational cost to reach the precision r = 10°* for 

A€ {1,107%% ...,107%} and 0 € {0.05,0.1,...,0.95}. As a result, we get that the best 
choice is A = 1 and 6 = 0.65. For the overall computational cost it then holds that 

>, (#7) log?(#T2) = 353116.2086, 
(0 ,kN)<(L,k) 

where or is the first approximation such that ne(67) < 10%. 
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Figure 6.2: Example from Section 6.7.1 (Slit problem in 2D): Condition numbers of the pre- 

conditioned and non-preconditioned Galerkin matrix for an artificial refinement 

towards the left end point (top) and for the matrices arising from Algorithm 57 
(bottom). 
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Figure 6.5: Example from Section 6.7.1 (Slit problem in 2D): Overall computational cost 

> k< k) (FTe) log®(#7w) such that ng(gb%) < 7 for given precision 7 = 1074, 

A€ {1,107%5,...,107*}, and 9 € {0.05,0.1,...,0.95}. 
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Figure 6.6: Z-shaped domain Q C R? with initial mesh 76 (top) and Z-shaped domain 
QCR? with initial mesh 76 (bottom). 
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Figure 6.9: Example from Section 6.7.2 (Weakly-singular integral equation on Z-shaped 

domain in 2D): Overall computational cost Ye n)<t,n (HF Te) log? (#T%) such 

that ne(62) < T for given precision r = 10°*, A € {1,1070°,...,10”*}, and 
6 € {0.05,0.1,...,0.95}. 
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6.7.2 Weakly-singular integral equation on Z-shaped domain in 2D 

Let T := O0 be the boundary of the Z-shaped domain with reentrant corner at the origin 

(0,0), cf. Figure 6.6 (top). We consider the weakly-singular integral equation (6.11) with 
the right-hand side f = (K + 1/2)g where K: HY?(T) — HV?(T) is the double-layer 
operator from Section 6.2.1. We note that the weakly-singular integral equation (6.11) is 

then equivalent to the Dirichlet problem 

-Au=0 ind 
u=g onl (6.103) 

We prescribe the exact solution u(xı,x2) in 2D polar coordinates 

(21,22) = r(cos&,singE) with &e (-n,r) 

as follows 

u(z1, 23) := r*7 cos(4&/7). (6.104) 

Then, u admits a generic singularity at the reentrant corner. The exact solution &* of (6.11) 

is just the normal derivative of the solution u. 

We expect a convergence order of O(N -*/7) for uniform mesh-refinement, and the optimal 
rate O(N 3/2) for the adaptive strategy, which is seen in Figure 6.7 for different values of 
6 and A. 

Figure 6.8 shows the condition numbers for an artificial refinement towards the reentrant 

corner as well as the condition numbers for Algorithm 57 with A = 10° and 9 = 0.5. 

In Figure 6.9, we compare the computational cost to reach the precision r = 10% for 

A€ {1,107%% ...,107%} and 6 € {0.05,0.1,...,0.95}. As a result, we get that the best 
choice is A= 1 and 9 = 0.8. For the overall computational cost it then holds that 

> (#70)log?(#Tw) = 105563.4255, 
(0 ,kN)<(L,k) 

where dr is the first approximation such that ne(67) < 10%. 

6.7.3 Hyper-singular integral equation on L-shaped domain in 2D 

Let T := Ö9) be the boundary of the L-shaped domain with reentrant corner at the origin 

(0,0), cf. Figure 6.6 (bottom). We consider the hyper-singular integral equation (6.101) with 
the right-hand side g = (1/2- K’)& where K’: H-V/2(T) > HV/2(T) is the adjoint double- 
layer operator from Section 6.2.1. We note that the hyper-singular integral equation (6.101) 

is then equivalent to the Neumann problem 

-AP=(0 ind 
6.105 

OnP=¢ onT. ( ) 

We prescribe the exact solution P(x1ı,x2) of the Laplace problem in 2D polar coordinates 

(21,22) = r(cos&,singE) with &e (-n,r) 
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L-shaped domain in 2D 
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Figure 6.11: Example from Section 

ations in Algorithm 57 for nested iteration (dashed lines), i.e WW, = 
Step (iv) of Algorithm 57, and naive initial guess (solid lin 

  

We compare a fixed value of 6 = 0.4 and A € {1,10=1,10=?,10=°} (top) as 
198 well as a fixed value of A= 10”? and 9 € {0.2,0.4,0.6,0.8} (bottom). 
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Figure 6.12: Example from Section 6.7.3 (Hyper-singular integral equation on L-shaped 

domain in 2D): Overall computational cost Ye n)<cn FF Te) log (#T%) such 

that ne(uy) < Tr for given precision 7 = 107*, A € {1,107 ..., 107%}, and 
6 € {0.05,0.1,...,0.95). 
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as follows 

P(x1,x22) := r/? cos(2£/3). (6.106) 

Then, & is just the normal derivative of P which has a generic singularity at the reentrant 

corner. The exact solution u* of the hyper-singular integral equation (6.101) is simply the 

restriction of the function P to the boundary I’ minus the integral mean of PonT!. 

We expect a convergence order of O(N -?/3) for uniform mesh-refinement, and the optimal 
rate O(N 3/2) for the adaptive strategy, which is seen in Figure 6.10 for different values of 
6 and A. 

A naive initial guess in Step (iv) of Algorithm 57 (i.e., if ug, ; := 0) leads to a logarithmical 

growth of the number of PCG iterations, whereas for nested iteration u, = ur the number 

of PCG iterations stays uniformly bounded, cf. Figure 6.11. 

In Figure 6.12, we compare the computational cost to reach the precision r = 10% for 

A€ {1,107%% ...,107%} and 6 € {0.05,0.1,...,0.95}. As a result, we get that the best 
choice is A =1 and 9 = 0.7. For the overall computational cost it then holds that 

> (#Tr) log’ (#7) = 90975.1021, 
(0 ,kN)<(L,k) 

where ur is the first approximation such that ne(uy) < 10%, 

6.7.4 Weakly-singular integral equation on L-shaped domain in 3D 

Let T := O0 be the boundary of the [-shaped domain 

Q= (—1,1)3\(]—1,0] x [0,1] x [-1,1]), 

cf. Figure 6.13. We consider the weakly-singular integral equation (6.11) with the right- 

hand side f = (K + 1/2)g where K: HV?(T) — HV?(T)) is the double-layer operator from 
Section 6.2.1. Again, the weakly-singular integral equation (6.11) is then equivalent to the 
Dirichlet problem 

-Au=0 ind 
(6.107) 

u=g oT. 

We prescribe the exact solution u(x1,x2, 23) in 3D cylindrical coordinates 

(21,22,23) = (rcos&,rsin&,x3) with &e(-r,r) 

as follows 

u(x1,22,23) = w3723 cos(2/3 (€ — 7 /4)). (6.108) 

Note that u admits a singularity along the reentrant edge. The exact solution ¢* of (6.11) 

is just the normal derivative of the exact solution u. 

Figure 6.13 shows the condition numbers for (diagonal or additive Schwarz) precondi- 
tioning and no preconditioning for artificial refinements towards one reentrant corner or the 
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L-shaped domain in 3D 
  

  

    

     

    

  
  

  

  

    
   

      

   

  

      
  

10° F F -©- unif., A= 10”? 

En [ | 
= 
u 10716 B 
S F 
< . 

£ r | 3 [ ] 
8 L | 
5 —0-9=02,X= 10° 2 nm 
5 10° 9=04,1= 10° 

[ —r-9=0.6, = 10° >. 1 

| —9=0.8,1= 10° O(N 2/3) >~ 1 
Bl L Lol L Lol L j 1 1 11111 4 

10? 103 10% 105 
number of elements N 

L-shaped domain in 3D P! 

100; -©- unif,A=1 

r ---unif., A\=10"1 
o= [ —-unif., A = 1072 | 
é [ -- unif., A=10° ] = 
S 10-1 F -—- unif., A= 10% | 
Q E 

eo gm) 
7 | e 6=06,A=1 \ en. 1 
5 +9 = 0.6, A = 107! 2 nm 
g 10 2; 0 =06,A=10"2 

[ —+-6=06,A=10"2 >. 1 
[ —=0=061=10"" ON) N | 
Bi rl L ol L ol L 1 1 1 l 4 

10? 103 10% 105 

Figure 6.14: 
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number of elements N 

Example from Section ( 

  

of 9 = 0.6 and A € {1,107',...,107?} (bottom). 

3.7.4 (L-shaped domain in 3D): Estimator convergence 
for fixed values of A = 10-3 and 9 € {0.2,0.4,0.6,0.8} (top) and for fixed value
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reentrant edge as well as the condition numbers of the matrices arising from Algorithm 57 

with A = 10°? and 0 = 0.5. 
In Figure 6.14, we compare Algorithm 57 with different values for 9 and X to uniform 

mesh-refinement. Uniform mesh-refinement leads only to a reduced rate of O(N~1/2), 
while adaptivity, independently of 9 and )\, leads to the improved rate of approximately 

O(N-?/3), While one would expect O(N-%*) for smooth exact solutions &*, this would 
require anisotropic elements along the reentrant edge for the present solution ¢* = hu. 

Since NVB guarantees uniform Y-shape regularity of the meshes, the latter is not possible 

and hence leads to a reduced optimal rate. 

In Figure 6.15, we compare the computational cost to reach the precision r = 10°? for 

A € {1,107%% ...,107%} and 6 € {0.05,0.1,...,0.95}. As a result, we get that the best 
choice is A= 1 and 9 = 0.8. For the overall computational cost it then holds that 

>. (#Te) log?(#Te) = 1067163.4947, 
(0 ,kN)<(L,k) 

where rn is the first approximation such that ne(6%) < 1072 

6.7.5 Computational complexity 

With Figure 6.16-6.17, we aim to underpin the almost optimal computational complexity 

of Algorithm 57 (see Corollary 78). To this end, we plot the error estimator ne(65) over the 
cumulative sums 

> #% 
(&K )<(£,k) 

as well as 

> #Te) log*(#Tw) 
(&K ) <(Lk) 

for 8 = 0.4 and A € {1,1073}. The negative impact of the logarithmic term on the 
(preasymptotic) convergence rate is clearly visible. 
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Figure 6.15: Example from Section 6.7 (L-shaped domain in 3D): Overall computational 

cost Denn (#Te)log’(# To) such that ne(6%) < Tr for given precision 

T=10"2, A€ {1,107%% ..., 107%}, and 9 € {0.05,0.1,...,0.95}. 
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