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Abstract

In this thesis we consider the two-dimensional Keller—Segel model with a superlinear
production term. This means we investigate the following nonlinear system of partial
differential equations

ny = div(Vn — nV.S)
Sy = AS +5An+n*— S

in a domain €2 and times ¢ > 0, with homogeneous Neumann boundary conditions
Vn-vr=VS§-v=_0

on the parabolic boundary 952, t > 0; and initial conditions (0, -) = ng(+), ¥S(0,-) =
¥So(+) in Q.

Our goal is to prove that weak solutions to this problem exist globally in time
(Section 3) and that solutions are bounded for all time (Section 4). To this end we
rely heavily on the use of Bochner and Sobolev spaces (see Section 2). Our main
strategy involves an implicit Euler discretization in time, and adding regularizing
4-th order terms. In the end we apply compactness arguments to justify the limit
of vanishing regularization and discretization parameters.

For the global boundedness result, we perform a change of variables and make use of
elliptic and parabolic regularity theorems to derive the necessary estimates. Under
additional regularity assumptions we also show that smooth solutions exist based
on a bootstrapping argument (Section 4).

We conclude by proving that solutions are unique, i.e., under suitable regularity
assumptions on solutions we prove that at most one solution can exist. This is done
separately for either the parabolic-parabolic or parabolic-elliptic model (Section 5).
In the Appendix (Section 6) we comprise theorems and lemmata used in this thesis,
in applicable form and unified notation.
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Kurzzusammenfassung

In dieser Arbeit geht es um das zweidimensionale Keller—Segel-Modell, wobei wir
einen superlinearen Produktionsterm erlauben. Das bedeutet, dass wir das folgende
nichtlineare System partieller Differentialgleichungen betrachten

ny = div(Vn — nV.S)
Sy = AS +5An+n*— S

in einem Gebiet (2 und Zeiten ¢ > 0. Wir verwenden aukerdem homogene Neumann-
Randbedingungen

Vn-v=VS-v=0

fiir den parabolischen Rand 0f2, ¢ > 0. Damit das Problem vollstédndig ist, stellen
wir noch die Anfangsbedingungen n(0,-) = ng(-), vS(0,-) = vSo(-) in .

Das Ziel dieser Arbeit ist, zu zeigen, dass schwache Losungen dieses Systems ex-
istieren — und zwar fiir alle Zeiten (Section 3). Des Weiteren zeigen wir, dass fiir
das parabolisch-elliptische System (7 = 0) Losungen beschrinkt bleiben (Section 4).
Dabei ist unsere Hauptherangehensweise, dass wir die funktionalanalytischen Eigen-
schaften von Bochner— und Sobolev-R&umen (siehe Section 2) ausnutzen, wodurch
wir Kompaktheitsresultate anwenden kénnen. Wir 16sen ein approximierendes Prob-
lem, bei dem wir das implizite Euler—Verfahren fiir die Zeitableitung verwenden; und
zusatzlich regularisierende Terme vierter Ordnung hinzufiigen. Zum Schluss argu-
mentieren wir mit schwacher und starker Kompaktheit, um so den Grenzwert fiir
verschwindende Regularisierungs— und Diskretisierungsparameter zu rechtfertigen.

Um zu zeigen, dass Losungen global beschrinkt sind, verwenden wir eine Vari-
ablentransformation und stiitzen uns auf Regularitétsresulate fiir parabolische und
elliptische Gleichungen, um die notwendigen Abschitzungen zu erhalten. Unter
einer zusitzlichen Regularitdtsannahme an die Daten zeigen wir, dass glatte Losun-
gen existieren. Dafiir verwenden wir Bootstrapping (Section 4).

Zum Schluss zeigen wir noch Eindeutigkeit der Losungen. Konkret heifft das, dass
unter gewissen Regularititsannahmen an Loésungen nur hochstens eine Losung ex-
istieren kann. Fiir den Beweis unterscheiden wir zwischen dem parabolisch-parabo-
lischen und parabolisch-elliptischen Modell (Section 5).

Im Anhang (Section 6) sind die wichtigsten Sitze und Lemmata aufgelistet, die wir
verwenden, in der Form, in der wir sie brauchen, und in entsprechender Notation.
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1 Introduction

1.1 Chemotaxis and its role in science

In this thesis we consider a system of partial differential equations which model
chemotaxis. Chemotaxis describes the directed movement of cells based on chemical
gradients, i.e., if there is more of a chemical substance at a certain point, then cells
are attracted (or repelled) by it and will move in response. In our model the specific
substance is also produced by the cells themselves.

This phenomenon can be observed, e.g., in slime mold (a general term for various
organisms that can live as single cells as well as form multicellular structures), see
[17]. In order to communicate between cells they will produce a certain chemoat-
tractant which will attract more cells. This can be used for reproductive purposes.
After reproduction, cells might use a similar, but opposite, mechanism to disperse
again, governed by chemotaxis. Thus, chemotaxis models play an important role in
biomechanics.

It has also been suggested that chemotaxis is of great importance when studying
cancer cells. The idea is that single cancer cells are not as harmful as clusters which
may migrate through the body and form metastases [4]. An understanding of how
such cells form aggregates based on chemoattractants is thus also important in the
study of breast cancer.

1.2 History and derivation of the model

The name of the (Patlak—)Keller-Segel model goes back to the works of Clifford
Patlak [22] in 1953, and Evelyn Keller and Lee Segel [17] in 1969. In his work,
Patlak considers applications of multi particle random walks where movement is
driven by not necessarily independent randomness, in order to derive partial dif-
ferential equations describing the number of particles at a given point and time.
During his derivation there are many assumptions on certain effects being negli-
gible (like particles’ interaction with each other, or slow changes of quantities —
which justifies truncation in Taylor series), but, as the author points out himself,
for some real life experiments his equations did not predict the actual behaviour
correctly. These errors were attributed to certain (non-mathematical) assumptions
in the derivation which did not apply to the given experiment — such as the motion
of solvents surrounding particles or movement induced by heat. So his work still
laid the foundation for future research.

Later on, Keller and Segel wrote a paper [17] on the aggregation of amoebae, where
chemotactic interaction is induced by acrasin (a chemical messenger). In their work
the authors derive a model for movement of cells driven by chemotaxis, i.e., the
cells are attracted (or repelled) by the chemotactic agent. Additionally, the cells
themselves produce this agent. The authors then derive a coupled system of partial
differential equations which models the densities (as opposed to numbers) of cells
and the chemical. They even include another factor of a second chemical dissolving
the messenger agent. Their main finding is that (under certain conditions) cells will
refrain from a uniform distribution over a given area, and instead start aggregating.
This is remarkable because one would intuitively think that having no gradients in
density at all would be a stable steady state of the system, i.e., with everything

9
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spread out equally there would be no need for movement.

The first rigorous derivation of the Patlak—Keller—Segel equations via an interacting
stochastic many-particle system was done by Stevens [24] in 2000. In her work
she considers a finite number of bacteria and particles of a chemical substance in
R? whose movement is governed by a stochastic differential equation each. The
chemical particles are merely driven by Brownian motion, whereas the bacteria’s
equations also include a drift term depending on the chemical. It is then shown that
(under suitable renormalization), as the number of bacteria and particles goes to
infinity, the system converges to a continuous one, where the solution functions are
then densities of the respective particles.

For a comprehensive summary of different works on the Patlak—Keller—Segel model
we refer to [14], where also various approaches and findings are presented in a suc-
cinct way and readily prepared for anyone who wants to look up existing results on
the topic.

1.3 Physical interpretation of the equations

The stochastic many-particle approach [24] suggests the following interpretation of
the terms appearing in the equations. For the general system

ny = div(pVn — x(n, S)nV.Ss), )

S =nAS + p(n, S)n —v(n, S)S
the function n(x,t) describes the density of cells (bacteria, amoebiae, etc.) at a point
x at time t; the function S(z,t) describes the density of the chemical substance. For
the given functions we have

e x(n,S) is the chemotactic sensitivity of the cells, i.e., how strongly they are
attracted (or repelled) by the chemical,

e [3(n,S) is the production rate of the chemical, e.g., if it depends on S, this could
mean that cells will not (or will particularly) produce more of the chemical if
there already is a certain amount of it,

e 7(n,S) is the decay rate of the chemical, i.e., for example how fast the chemical
dissolves or evaporates, or it could be absorbed by cells.

The remaining non-negative parameters

e 1 is a measure of how strong the cell diffusion is, i.e., the bigger p is, the
stronger the diffusion, which means that cells will tend to drift away from
each other and spread out,

e 7 is the corresponding diffusion coefficient for the chemical density.

In our particular model, we take y = 1, 5 = n® !, v = 1, and the diffusion parame-
ters are =7 = 1. This means that the cells’ (amount of) reaction to the chemical
does not depend on the actual amount of the chemical (but just on a difference of
it, a gradient of it) or the amount of cells; they will always be attracted to where
more of the chemical is.

10



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

The superlinear production term n® describes that, based on the number of cells
at a point, much more of the chemical is produced by more cells (i.e., by a higher
density of cells). In particular, this will encourage already crowded cells to produce
even more of the chemical, which will attract even more new cells, which will in turn
increase the production even further.

The decay rate v = 1 here means that the chemical density will decrease “exponen-
tially”, i.e., the higher the density, the faster the decrease; if the density is already
low, then its decrease rate is also lower. It would decrease exponentially if there were
no cells (then the production term vanishes) and the chemical were distributed evenly
(then the diffusion term vanishes); in this case the second equation would simplify to
the ordinary differential equation S’(t) = —S(t), with the solution S(t) = S(0)e "

Our particular model also includes another term dAn in the second equation. This
cross-diffusion term models (arbitrarily small, due to § > 0,) diffusion effects for the
chemical based on the amount of cells, i.e, the more cells there are, the more the
chemical will spread out (and away) from the crowded area. In total our system
reads

ny = div(Vn —nVS)
vS; = AS +0An+n* — S

in ,¢ > 0. The domain (2 is thought of as a (bounded) container or box where the
cells and chemical move. Since we consider a two-dimensional domain, one can think
of a very thin layer like on a microscope slide or Petri dish. The parameter v > 0
is a measure of the different time scales for the cell movement and the distribution
of the chemical [13]. For v = 1 the system is called the parabolic-parabolic model,
whereas for v = 0 it is the parabolic-elliptic model.

We also need boundary conditions for the equations. It makes sense to take homo-
geneous Neumann conditions

Vn-v=VS§S-v=0 on 0€2,t > 0,

which means that nothing exits or enters the container (or slide).

1.4 Problems with the classical formulation of the equations

The rich mathematical features of the equations come with some downside as well.
While in one spatial dimension solutions will remain bounded for all times (if the
initial function is bounded) [8], in higher dimensions finite time blow-up can occur.
This means that cells crowd and chemoattractant production outgrows the diffusion
effects, which leads to the cell density to grow to infinity. This would mean that
arbitrarily many cells aggregate in single points!. However, this is not desirable from
a physical or biological point of view. Thus, several ways to prevent overcrowding
have been suggested and investigated in the literature. Also, precise conditions for
finite time blow-up and its prevention have been explored. A critical value is the
total number of cells, which does not change over time, and is given by

M= [ mayde = [ nta.0)d.

1This will (under certain assumptions) be in the form of several Dirac point measures [8].

11
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In two dimensions, if the mass exceeds 87 and the initial distribution is concentrated
enough, i.e., if

/Quo(:)s) |z da

is sufficiently small, then there exist solutions which blow up in finite time [20];
meaning, if the initial distribution is heavily centred around x = 0, then cells will
crowd there. On the other hand, if M < 87, then solutions exist globally in time
and remain bounded. If M/ = 87 and Q2 = R?, then a global solution exists which
might become unbounded for ¢t — oo [8].

For dimensions three and higher (for 2 = R?), under the assumption that for some
7o € RY the quantity

/]Rd up(x) |z — ao|* da

is sufficiently small, there exists a solution (to the parabolic-elliptic system) which
blows up in finite time [14]. Thus, the search for bounded solutions turns out to be
much more involved for higher dimensions.

In the paper by S. Hittmeir and A. Jiingel [13] they considered the two-dimensional
case with the additional §An cross-diffusion term and showed that solutions exist
globally (with a linear production term) in the parabolic-parabolic model, and that
solutions are bounded for the parabolic-elliptic model.

We shall continue their investigations, but with superlinear production n® for 1 <
« < 3/2, which also covers the linear case from [13]. Our results include global
solutions for the parabolic-parabolic model, and solutions which do not blow up in
finite time (but might blow up as ¢ — o) in the parabolic-elliptic model.

1.5 Possible ways to avoid finite time blow-up

As described in the previous section, solutions might blow up after a finite time,
which leads to the question of how to modify or restrict the original model to prevent
this behaviour. In the literature a whole lot of ways have been suggested. These
include

e modifying the chemotactic sensitivity by

— a volume-filling effect? [5], i.e., upon reaching a certain threshold cells
will no longer be drawn to the chemical, and attraction will decrease
with rising cell density.

— lower powers in the sensitivity® [15], i.e., cells are in general less strongly
drawn to the chemical.

— a non-local gradient* which describes that cells only sense the chemical
over a certain (finite) distance [12].

e changing the cell diffusion

2This would be x(n, s) = (1 — n) in the parabolic-elliptic version of (1).
3This would be x(n,S) = n?~! in (1) for some p < 2, where d is the spatial dimension.
4This would be replacing VS in x(n,S)nVS in (1) by a particular integral.

12
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— by degenerate diffusion® [19, 18, 6], i.e., larger amounts of cells will in-
crease the diffusive effects even further.

— taking n, = div(n(1 — n)V(n — S)) as the first equation in (1) [5], thus
combining the volume filling effect for the chemotactic sensitivity with
the same for the cell diffusion.

e introducing death of cells® [25]

e cross-diffusion” [13, 16], i.e., aggregation of either the cells or chemical also
leads to dispersion of the other (and not just itself).

In this thesis we will choose the last approach.

1.6 Novelty of the results

Our approach of adding a cross-diffusion term to the Keller-Segel model yields global
existence of solutions for superlinear production. This is particularly remarkable
because in [26] the author shows that (at least for 2 being a ball) the critical
exponent for the production term is o = %, meaning that for lower values bounded
global solutions exist, whereas for bigger values there exist solutions (with arbitrary
initial cell mass) which blow up in finite time.

However, since we consider a two-dimensional model our critical exponent would
be o = 1. In [13] it was shown that for « = 1 bounded global solutions (to the
parabolic-elliptic model) exist, and global (potentially unbounded) solutions exist
for the parabolic-parabolic model.

In this thesis we further expand on this result and prove existence for production
terms of order less than g This stresses the regularizing effect of cross-diffusion,
where we need to re-emphasize that this method works for any 6 > 0, i.e., arbitrarily

small cross-diffusion.

5This would be replacing Vn in the first equation of (1) by f(n)Vn for some function f.
6This would be adding a g(n) term to the first equation of (1).
"This would be adding An to the second equation and/or AS to the first equation in (1).

13
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2 Notation

2.1 Derivatives

For functions f : I x  — R%, where I C R and 2 C R? both open, we use several
ways to denote different types of derivatives. We always think of such functions as
functions of time and space and will use f(t,z) (or f(x,t)) to denote t € I,z € Q.
Then we use the following notation for time derivatives

o . Of

& :Ezatf:ft-

There is a bigger variety of spacial derivatives, the basic ones being
0 of
f pd =

Ou, f

for the partial derivative in the direction of the i-th canonical basis vector of RY.
For higher order derivatives we use

0? % f
(9:13131’7]0 8%3:8] i Jf i Jf
and
0? 9 9 \
@f = (8957-) f=0F

In partial differential equations it is ubiquitous to use certain symbols for combined
derivatives like the gradient and the divergence (which we assume only ever act
on the spatial components). We shall use the following notation for real-valued
functions f(x,t) € R and vector-valued functions F(z,t) = (Fy,..., Fy)(x,t) € R?

O, f
Vf= : called the gradient,
Oy f
d
OF; :
div F' = 5 called the divergence,
€T;
i=1
d_ g2 f
Af = Z 922 called the Laplacian,
X
=1 2
A’f = A(Af),
m anlj. . . .
D"f = (ﬁ) o<m.<m  the m-tensor of mixed derivatives of order m,
Ox™ - 0xy ) =

S mi=m
D'f =Vf, D?f=Hess f,
Do f =90 g0
for integers m € N U {0} and multi-indices o € (N U {0})%.

15
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The meaning of derivatives

We consider three increasingly general meanings of the above derivatives: the clas-
sical pointwise derivative, the weak LP-derivative, and the distributional derivative.
The classical derivative is well-known to be defined as the limit of difference quo-
tients. In this thesis we will mostly use weak derivatives. Let f € L () and
¢ € C°(Q), then f has a weak derivative if there exists a function g € L{.(Q2) such
that the following equality holds

/fa(b dx=—/g(/)dx Vo € C*(Q),

Jo Ox; Q
and we set 0,,f := ¢g. The distributional derivative is defined as follows. For a
distribution 7" acting on the space C°(Q2), we set (9,,7)(¢) = —T(0,¢) for any
¢ € CX(Q). In particular, any distribution has infinitely many (distributional)
derivatives.

Notationwise we do not distinguish between classical, weak and distributional deriva-
tives. When in doubt, any derivative is first to be understood in a distributional
sense. If the function has enough regularity to admit a weak or classical deriva-
tive, then it is to be understood as such. This seeming ambiguity does not affect
the meaning, because — if they exist — the different types of derivatives coincide;
that is, distributional derivatives are regular distributions that lie in some L”-space
and agree with the weak derivatives almost everywhere, or weak derivatives have a
representative (in their equivalence class of functions that agree almost everywhere)
that is classically differentiable.

2.2 The domain {2

Throughout this thesis we will denote by Q2 a domain in R?, where we use the term
domain for an open, non-empty, connected subset. We will also specify the regularity
of the boundary of 2, denoted 9. If we say that 9Q € C!, then this means that
the boundary can locally be parametrized by continuously differentiable functions.
Similarly, if we say that Q is a Lipschitz domain (or just Lipschitz), then we mean
that 902 € C%! and its boundary can locally be expressed as the image of Lipschitz
continuous functions, and analogously for C*!, k € N.

When dealing with space and time, we shall denote Q7 :=  x (0, 7T) the space-time
cylinder for some 7" € (0, oc].

Upon using the Gaufs-Ostrogradski theorem for multidimensional integration by
parts, we will encounter boundary integrals. In particular, we will need the outer
normal unit vector at any point of the boundary, which we will denote by . The
assumption 92 € C! ensures that such a vector exists at every point of the bound-
ary. Under the weaker assumption 92 € C%! we only get existence almost every-
where (with respect to the lower dimensional Hausdorff-measure) on 052, but this
is enough for integration. (One could require even less, namely that Q has locally
finite perimeter, but this generalization is not of interest in this work.)

2.3 Topology

Let (X,T) be a topological space, that is, X is any set and 7 C P(X) is the
topology on X. We denote

16
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e A the closure of a set A C X w.r.t. T,

e OA the boundary of A.

For spaces with more structure, such as metric spaces, normed spaces or spaces with
a scalar product, we implicitly understand it with the induced topology respectively.
We shall also drop the second argument and refer to X as a topological space, when
there is no ambiguity.

2.4 Convergence

There is a lot of different meanings to arrows (—) in mathematics. We try to always
specify the meaning right before or after any arrows denoting convergence. For our
purposes we need four different types of convergence.

e For a sequence (z,,) in a Banach space (X, ||-||) and € X we denote
x, — 2 (strongly) in X
for norm convergence, i.e., |z, —z| — 0 as n — oc.
o We write
z, — ¢ weakly (in X)

for convergence in the weak topology, i.e., for any v € X' (where X’ denotes
the dual space of X) we have (v, z, —z)x — 0 as a real sequence.

e For a sequence (v,,) in X’ and v € X’ we write
v, =% v weakly* (in X')

for weak*-convergence, i.e., for any x € X we have (v, — v, z)x, — 0 as a real
sequence.

e For a sequence (u,) in some Lebesgue space LP(2; 1) and v € LP(Q; ) (for
some 1 < p < oo and measure u) we write

U, — u a.e. in €
for pointwise convergence almost everywhere, i.e., u,(z) — u(x) pointwise for

all z € Q\N where p(N) = 0.

2.5 Spaces
Lebesgue spaces L?((; p1)

We denote LP(€; 1) the Lebesgue spaces, where 1 < p < oo, € is any set, and p is
a o-finite measure on ). We say that a function f : Q — R% belongs to LP(£2; i) if
it is measurable and its LP-norm is finite, i.e.,

1/p
Il = ([ IF@F an@) ™ forp # o

H.fHLO"(SZ;u) := esssup ‘f(x)’ :
x€2
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As always we shall identify functions that agree pi-a.e. to make |||z, a norm.
We refer to these equivalence classes loosely as just a function in LP(§2; 11).

For p = 2 the space L*({); i1) equipped with the following scalar product is a Hilbert
space

(. 6 1oy = /Q f(@)g(x) du(z).

We shall drop the measure p in the notation if we take the d-dimensional Lebesgue
measure on §) C R? and just write Lr(§2).

Sobolev spaces [*(Q)), W*?(Q), and H*(2)
As a generalization of Lebesgue spaces to include differentiability we define I7%(Q2)
for a domain 2 C R? as the Hilbert space

H*Q) = {f € L*(Q): D*fec L*Q),|a|=0,...,k}

for any integer k& € N U {0}, where the derivatives are to be understood in a dis-
tributional sense. This gives a space of k times weakly differentiable functions. We
equip this space with the scalar product

(f,9) me) = Z (D“f, D"g) 1202

|a| <k

The more general notion are the W*?(Q) spaces, where k € NU{0} and 1 < p < oc.
We set W*?((QQ) as all the functions with finite 1W*?-norm, where

| fllwre@) == ( Z | D17, sz))

|| <k

For p = 2 we get W*2(Q) = II*(2), so we generalize the order of integration. Notice
also that

I fllwep@)~ = Z 1D £ Lo (o)

lal<k

is an equivalent norm.

A different way to generalize the I7%(Q2) spaces is to allow for any kind of values for .
This could be done via extension operators and Fourier-transform, or equivalently
(and more directly for this presentation) by two steps (see [1, Definitions 8.10.6,
8.10.7]). For 0 < o < 1 and arbitrary (2 C R? define

o Ju(z) —u(y)]®
°(Q) .= {u € L*(Q /AXQ T dzdy < oo},
TFY
which is a Hilbert space with the corresponding scalar product

(U, V) oy = (U, V) 200y + /AXQ y))(zgz —v(y)) dz dy.

Ty y|
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And also define H%(Q2) := L*(2). For arbitrary s > 0,s € R, write s = |s| + o for
|s] =:m e NU{0} and 0 < o < 1. Then set

Q) :={ue H™(Q): D*u e H°(Q), |a| =m},

which is a Hilbert space when equipped with the scalar product (for o # 0; in this
case just take the I/™-scalar product)

<u7 U>H5(Q) Z:<U, U>Hm(Q)

> (Du(w) = D*u(y)(D*v(x) = D*o(w)) 4\

) d+2
|a|=m " * 94:;28 “E - y’ 7

The most important use of the H*(2) spaces for us are (compact) embeddings into
other Sobolev spaces. So we will never actually use this definition.

Bochner spaces [7(0,T; X) and W*?(0, T; X)

We will want to distinguish different kinds of regularity of functions in terms of
space or time. We could already define a notion of regularity for space-time by
taking LP(Q2 x (0,T)) (or any other Sobolev space W*P over the same set). Our
goal now is to define a space of functions that allows for different integrability and
differentiability. These are the Bochner spaces. If we have a function f(z,t) :
2 x (0,7) — R we could simply fix one argument and view it as a function in just
the other argument. Then ¢t — u(z,t) is a function-valued function, which takes
values in the space of functions on 2. We could impose regularity assumptions on
this space, and then ask for regularity of the former map with values in that space.
In general, let X be a Banach space. Then « : (0,7) — X is a Banach space-valued
function and we set

PO, T; X)) :={u:(0,T) = X : |u

lullzr.rixy = lu(®)lxllr.m)-

LP(0,T;X) < OO}

In the important case of X = L"({2) the norm can be written as

r , p/r 1/p
LP(0.T;L7(Q)) = (/0 (/Q|u(x,t)| dx) dt)

for p, r # oo, and the usual adaptations for the essential supremum.
Similarly, we define the Sobolev Bochner spaces (we only need X = W (Q) for
0 CRY)

lu

W20, T; W5 () := {u : ||u]

Wha(0.T;Wer () < 00}

i T ; : r p/T 1/p
wllwrrorwer @) = Z (/ ( Z / ‘(%’D“'u(x,t)\ d;z:) dt)
i=0 0 Jo

al<e
with the standard changes for p = oc or » = co. This norm is equivalent to
k T
. r p/r 1/p
.= % (/ (/ & Dou(a, 1) dz)"" ar) "
7=0 Jaj<e 70 @
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k k1 k
C*-spaces, C*"', and (.

The classical notion of continuity and differentiability is captured in the spaces C*
for k£ € NU {0}. Denote by C°(X,Y) the space of continuous functions from any
topological space X to another space Y. For integers k& > 1 denote by C*(X) (with
X C RY) the space of real-valued functions with continuous (classical) derivatives
up to order k; and define

C¥(X) = [ CHX).

Since continuous differentiability is a very strong assumption, a less restraining one
(with similar consequences) is Lipschitz continuity — the space C%!(X). We say a
function f is Lipschitz continuous if there exists a constant L (the Lipschitz constant)
such that for all x,y € X

[f(@) = fW < Llz —yl.

Lipschitz functions are continuous, and more importantly differentiable almost ev-
erywhere (by Rademacher’s theorem); which allows many (not pointwise®) state-
ments about continuously differentiable functions to be generalized to Lipschitz
functions. For higher orders of differentiability k¥ € N, we define C*!(X) as the
space of functions whose derivatives up to order k are Lipschitz continuous.

One problem with C*-functions is that they might still not be integrable (take any
non-zero constant on an infinite measure space like R). One way to work around
this is to assume that functions vanish on most of the space, which leads to the
space of compactly supported functions C*(X). Define the support of a function as
the closure of all points where the function is not equal to zero. Then

CH¥(X):={f € C*X) : supp f is compact in X}

for k € NU {0,00} and X C R? Since already continuous functions are bounded
on compact sets, and the Lebesgue measure of compact sets is finite, this gives any
order of integrability for such functions

Ce(X) S WEP(X)

for any 1 < p < o0.

Embeddings

A very important concept for PDEs is that different spaces of functions can not only
be related by mere set inclusion but rather have some estimates associated to them.
For example, if ) has finite measure then

L®(Q) C I(Q)
for any 1 < p < oc (and Q C RY). Even more, we can relate the norms by

ull Loy < QY7 [ e (0.

8Usually theorems involving integrating derivatives.
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Such an inclusion of spaces is called an embedding, and with a (uniform) estimate
for the respective norms it is called a continuous embedding, denoted by —. More
precisely, if X C Y, then we call the identity operator id : X — Y an embedding of
X in Y, and say that X embeds into Y. If X and Y are normed spaces, we call the
embedding of X in Y continuous if the identity as a linear operator is continuous
(or bounded), i.e., if there exists a constant C such that

ully < Cllulx,
which we denote by
X =Y.

If the identity operator is even compact, then we call the embedding compact ac-
cordingly, which we denote by

X —>—=Y,

or simply by spelling out that X — Y compactly. The theorems concerning em-
bedding of Sobolev spaces (Lemma 20) and compact embeddings therein (Lemma
17 and Lemma 18) can be found in the Appendix.

Dual spaces and duality

For the concept of weak convergence and weak derivatives we need certain dual
spaces. In general, the dual space of a Banach space is given by all linear and
continuous maps on that space with values in R (or C). However, for most spaces
we consider, one can find spaces isomorphic to their dual — that is, a space of
functions and not just functionals. The only ones we need explicitly are those of
Lebesgue spaces [P and Bochner spaces LP(0,T; X), where X is a Banach space.
Denoting isomorphy by ~ and the dual space of X by X', we have

(L7()) = L),

1 1
(LP(0,T; X)) ~ L0,T;X"), where —+—-=1and 1 <p< oo
p g

(note in particular, (L>(2))" % L'(Q) in general). When applying functionals f
from the dual space X' to g € X, we shall use the notation

j(g) = <j7 g>X’7
which corresponds to the similar notation for scalar products in Hilbert spaces (as
suggested by the Riesz representation theorem).
Norms

For a normed space X we denote the norm |[|-|| x. However, we will also use the same
notation for d-tuples and imply any norm on the d-dimensional reals, i.e.,

T

d 1/p
e o= (i)
j=1

Zd
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for 1 < p < oo and the usual modification for p = coc. We generally assume p = 2.
Note, however, that this ambiguity does not cause a problem, because all norms
on R? are equivalent, that is, for any two norms ||-||1,||-|l2 there exist constants
Ci,Cy > 0 such that for all z € R?

Cillzlly < llzlla < Coflz]s.

In such a case we write ||-||; ~ [|*]|2-

2.6 Uses of the modulus ||

It is usually clear from the context what meaning the absolute value bars can or
cannot have. We shall specify.

e For z € R we denote the standard absolute value by |z| € [0, c0).
e For v = (11,...,24) € R? we imply any (finite-dimensional) norm like |z| =

1/p
(Z‘;:l |:z:j|p) , where 1 < p < oo and the usual modification for p = oc.

Since all of these are equivalent (see Section 2.5), we could choose any, but we
usually assume p = 2.

e Fora = (ay,...,ay) € (NU{0})? a multi-index, we denote |a| = 2?21 «; the
order of a.

e For a Lebesgue measurable set A C R? we denote |A| the (d-dimensional)
Lebesgue measure of A.

2.7 Other notation

Upon integrating a function on a set 2, we may want to specify a subset that depends
on that function. For a more concise notation we write, for example,

D<fl:={reQ: 0< f(x)},
which would imply

fdxz > 0.
[0</s]

Another helpful tool are indicator functions 1 4 for a set A.

1, ifzeA
l — ) 7
a(®) {0, itz ¢ A

If the need arises to emphasize that a function f is constant (and not just takes a
certain value at some point), we will write f = ¢ for a constant ¢; meaning that
f(z) = cfor all .

Throughout this thesis we will encounter many different constants, which are not
important by themselves. We will call them all C' and their value might change from
one line to the next. Usually they do not carry any dependence on parameters. If
they do and it is necessary to keep track, we shall denote this by either a subscript
Cjs or function arguments C(0) (in this case, the constants would depend on J). We
might, however, drop this additional information in the next line as to make the
presentation more succinct.
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3 Existence for superlinear growth in 2D

Theorem 1. For time horizon T > 0, a bounded Lipschitz domain 2, and
parameters 6 > 0, v € {0,1}, 1 < «a < 3/2; and functions nyg > 0 with
nglogng € L*(Q), and Sy € L*(Q), the system

ny = div(Vn — nVS) (2)
7Sy =AS +0An+n*— S (3)

in Q,t > 0, with boundary conditions

Vn-v=VS-v=0 on 092,t >0 (4)
and initial conditions

n(-,0) =mng, S(-,0) =~5 in Q. (5)
admits a weak solution (n,S) such that

nlogn € L=(0,T; L(Q)), +/n € L*(0,T; H'()),

n e L*0,T;WH(Q)), ne LY30,T; W'*3(Q)),

S e L*0,T; H'(Q)), ~S € L®0,T;L*2Q)),

ny € LY0,T; W2 (Q))), ~S; € LY3(0,T; (W (Q))).

Additionally,

nt € L*(0,T; H'(Q)) for any 0 < < 1/4,
Viegn € L*(0,T; L*(Q)) if logng € L*(Q).

3.1 Outline of the proof

To solve this system, we fix a time horizon 7" and prove existence up to this (arbi-
trary) finite time to get local in time solutions. The proof uses an implicit Euler
discretization with parameter 7 := % > 0 (for some integer K) to deal with irreg-
ular time behaviour. We can solve the resulting elliptic system by means of the
Leray—Schauder fixed point theorem (Section 3.2.2), where we show existence in a
linearized system using the Lax-Milgram lemma (Section 3.2.1). To achieve the
necessary coercivity (in H%(Q2)) we introduce regularizing terms

—(A%y + ye¥/?) and e div(|Vy|® Vy) in the first equation,
where we define
y:=dlogn.
In order to get the necessary estimates to pass to the limit (¢, 7) — (0,0), we find an

entropy functional, which we can bound uniformly (Section 3.3.1). We conclude by
weak compactness both by the Rellich-Kondrachov theorem and the Aubin-Lions
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lemma (Section 3.3.2). These give enough regularity to pass to the limit even in the
non-linear terms.

The proof follows very closely the one in [13].

3.2 Existence in the regularized implicit Euler discretization
Consider the recursive system

]_ eyk/6 — eyk—l/(s . yk>>

— —div | D(yx)V

T (’V(Sk — Skl)) v ( () (Sk

6
(=A% + 672 div(|Vys|® Vi) — yeett/? 0 (6)
=¢ 0 + /s _ G,

with boundary conditions
Vys-v=VAy,-v=VS,-v=0 on 09, (7)

where the diffusion matrix is given by

o= ("o )

For given (yx_1, Sk—1) we shall prove existence of the next step (yx, Sx). This is made
precise in the following theorem.

(8)

Theorem 2. Let yi_1 be a function such that exp(yx_1/0) € L*(2), and let
Si_1 € L*(Q)). Then there ezists a solution (yi, Si) € H*(Q) x HY(Q) of the
above recursive system (6)-(8).

Proof. 3.2.1 Lax—Milgram lemma

We want to use the Lax—Milgram lemma; so we fix some arguments to get a linear
system. Let (7,5) € H/4(Q) x L*(Q) be fixed to get the new linear problem

a((y,S), (z,R)) = F(z,R) for all (y,5),(z, R) € H*(2) x H'(), 9)

where the bilinear form a is given by

s m):= [ (§ R) D) (§4) 4o

+5/ (AyAz + 672 |Vy|* Vy - Vz + ye¥/?2) dx+/SRdx
Ja Q

(10)

and the functional F is

1 ey/6 _eyk—l/(S z ay/s
F(z,R) := —;/Q (W(g—3k1)> : (R) dx—lr/Qe Rdz. (11)

The first task is to check that both of them are actually well-defined. Notice the
Sobolev embedding

g e H'4Q) — L*(Q) (12)
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for 7/4 > d/2 = 1. This L*-bound ensures that even exponentiation still gives
L>(Q) coefficients. A simple Holder-inequality checks the first integral in a. In the
second integral the first term is bounded by Cauchy-Schwarz, the third by, again,
the L>°-bound and a Holder inequality; its second term can be estimated by Holder’s
inequality and the Sobolev embeddings H2(2) — W4(Q) and H7/*(Q) — W*(Q)
for2=d<3

/QHV@/IQVy V| do < [|VllLao) I VY@l V2l e

< [9lHra@ |Vl @IVl s
< Cllglirae [yl 2@l 2] 220
< Ol s gen |9l 2 2] 120

The last integral is bounded by Cauchy-Schwarz. Thus, a is well-defined and obvi-
ously linear.

The functional F is checked similarly by Holder’s inequality. Here one uses e?/? €
L>®(Q) (and z € L*(Q)) or e¥—1/% € L}(Q) (and z € H*(Q) — L>(Q)); or e*¥/? €
L>(Q) (and R € L*(Q)); or S,Sk_1 € L*(Q) (and R € L*(Q)). Also F is clearly
linear.

The next step is to show continuity of both functions. For a we argue as above

. * |
al(3 50 B <19 7)oy | D@ o |9 () o
+ 5(||Ay||L?(Q)HAZHL2(Q) + 672 Vy* Vy - Vel e

+ [yl 2y lle?” || Loyl 2l z2cy) + 1] z2) | Bl L2y
<[D@)| L@l (2 B) 2@ [y S| 10
+5(H?/HH2(Q)

w2t 5720“??“%7/4(9)H?JHHQ(Q)HZHHQ(Q)

+ (€7 | ooy 2o 122 () + IS 2@ 1B ] 220
where the terms not depending on y, S, z, R are bounded, and all the norms of

vy, S, z, R appear in the right form and can all be bounded in H?(2) x H* ().
For F' we find

1, , .
IF( )] < = (1€ 0y 2l 2oy + €% r oyl 2 o0y

+ 7918 = Secall 2@ | Bl r2iey) + 1€ || ool | Rl 20y

IN

]' Y 1,
;( Q' 16972 oo || 21 2y + 1€ 22y Cll 2] 20)

+ (181220 + I1Sk-1ll2@) 1Rl z2ey) + 1€ 2@l Rll 2o

which gives continuity since 7 > 0 is fixed.
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The last property to verify is coercivity of a

s wsn = [ (98)- (o 707)(S4) e
+5/Q(Ay)2+5‘2 IVg[* |[Vy|* 4 e¥/%y? dx+/952 da
_ /Q 57168 Wy + [VSP da
+5A(Ay)2+5_2 IVa* |Vy|* + e¥/%? dx%—/QS2 dx
= [|S|[3 0y + /Qe(Ay)Q + (67 42672 |V ) | Vy|* + e¥0y? dw

> 11310y + min{e, 67 exp(— 7] <) /8), exp(— |7l 1 (2/0)}
1Ay + 1Vl + 9] 220)

> ||Slzn @) + Cllylliee

> IIliIl{l,C}(HSH?JI(Q) + HZ/H%W(Q))7

where the constant C' > 0 is positive because y € L>(£2), thus its exponential is
strictly positive, and C' also includes a norm equivalence factor from

HUH?{Q(Q) ~ HAU‘&2(Q) + HVUHiQ(Q) + HUH%Q(Q)

by Lemma 12. By the Lax-Milgram lemma (Lemma, 13), for fixed (7, S) € H™/4(Q) x
L*(€2) we derive the existence of a unique solution (y, S) € H*(Q) x H'(Q).

3.2.2 Leray—Schauder

We shall next employ the Leray—Schauder fixed point theorem (Lemma 14). Thus,
define the solution operator

B: H74Q) x LX(Q) x [0,1] = H*(Q) x ()
(277 S? J) '_) (y7 S)’
where (y, S) is the solution to the linear problem
al(y,9), (. R)) = oF (2, R) (13)

for fixed (7, S). We need to first check continuity of B. Let (#,,S,,0,) — (7,5, 0) in
H7*(Q) x L*(22) x [0, 1] be a converging sequence. From this convergence we deduce
boundedness in the respective spaces. Denote (y,,, S,,) the corresponding (unique)
solutions, i.e., (Y, Sn) = B(7n, Sn, 0,). As a consequence of the Lax—Milgram lemma
(Corollary 13.1) we get the uniform (in n) bound

Yl 20y + [|Snll a1y < C.
Restricting to a subsequence we get weak convergence

Yp, — Y In HZ(Q)
Sy, = Sin I]l(Q)

26



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

for some functions (y,5) € H2() x HY(Q) by the Eberlein-Smuljan theorem
(Lemma 15). Together with the strong convergence of (7, S,,c,), this allows us
to pass to the limit in the corresponding weak formulation (13) and find that
(y,S) = B(#,S,0) is the solution of our limit — which is almost the continuity
we want, since we showed this only up to a subsequence. However, we could do the
very same line of arguments with an arbitrary subsequence X, to get a converging
subsubsequence Xy, - Since the linear problem’s solution is unique this implies that
any limit of any subsubsequence must coincide. A general fact in topological spaces
(Lemma 16) yields that already the whole sequence converges (to the same limit).
Thus, B is continuous.

To show that B is a compact operator consider the following

_ 7 B id
(7, S,0) = (y,9) = (y,9)
H7* % L2 % [0,1] = H? x H* —— H"* x 2,

where H'(Q) — L?(Q) is compact by the Rellich-Kondrachov theorem (Lemma
17), and for the compact embedding [?(Q)) — H7/4(Q) see Lemma 18. Since
concatenating a compact map with a continuous one preserves compactness, B is
compact.

We readily check that B(y,S,0) = (0,0) for any (3, S) since (0, 0) is a solution and,
by uniqueness, is the only one.

Lastly, we need to uniformly bound any potential fixed points of B, i.e., we need a
uniform constant C' such that whenever B(y, S, o) = (y,S), we have

Iy, S) HH7/4(sz)xL2(sz) <C.

We can assume o # 0. Take (z,R) = (1,0) as a test function in (13), which is
a suitable test function since 2 is bounded and the gradients vanish (in particular
they vanish on the boundary).

i 1 _ i
e/ ye¥/? do = a( - = / (ey/‘5 — ey’f—l/‘))dm)
Q T Ja
/ e¥? dx = 7 yey/ddx+/ eV=1/% dg
Q 0 Q

00 Jq
< _@ /(ey/5_ 1) dx_i_/eykl/(sdx
g Jo Q

IN

)
e 1| + / eVe-1/9 4,
o Q

where we used the inequality xze” > e” — 1 (for x € R by Taylor). This recursion
(w.r.t. k) we can solve (y =yy)

/ey/édxgk@mH/erx
Q g Q

T
< =0 || + / e¥/% d.
a JO

So e¥/4 ¢ LY(Q) uniformly in ¢ (or k equivalently).
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Now take (z, R) = (y,S) as a test function to get

a( — % /(ey/‘S — ey"‘l/é)y—ﬁ—v(s — Si1)Sdx + / e”y/‘sSd:z:>
JO Q
-
_ Vyy\ (Vy s o 4, 2 \
_/Q(VS) D(y) <VS> dx"‘ng(A?J) + 07| Vy|" +ye dx+QQS dz,

(15)
thus,

;/Q(ey/é_eyk_l/g)y+7(5_5k_1)5dx+/£)(gg)T.D(y)- (g@ dw i~

—l—a/(Ay)2—|—5_2|Vy|4—|—y2€y/5d:1:—|—fS2 da::a/eo‘y/éde.
Jo 0 Jo

We now estimate the right hand side. Using Hélder’s inequality for some r € (1, 00)
to be varied later; the Gagliardo—Nirenberg inequality (Lemma 19), and Sobolev
embedding H*(Q2) — LP(Q) for any p < oo, we get (with 1/p+1/r = 1)

/ eV/0S dg < ||e*v/?]
0

_ 20
SCHSHHl(Q)(CH@y/(%)H?fl(g)”ey/(%)“bfm) ’

@ ISlr@) = €730 0 1S ooy

where 6 is given by® § = 1 — é We will need to include o in the end, so we rewrite
this and use Young’s inequality (Lemma 21)

o [ S e < Sl iy | 381
Q
o 1
< 281173 oy + Clol IS + 15
where ¢ satisfies!?

SO % =1 —a— 1. Applying this estimate to the right hand side of (16) and noticing

/ eV |\ Vyl da =48 /
Jo Ja

we find

e L[ :
(iy/(Z(S)vyz_d dfl; = 45/ ‘V(iy/(Z(S) ‘2 d[
Q

;/ y(ey/é _ eyk_1)_|_ys(s _ Sk.,l)da: +45/ ‘Vey/(%)‘z de + HSH%U(Q)
0 JQ

(| Ay 2y + / 572 [Vl + 2 d)
< 020[|e?/ |31 ) + 10|31 ) + —HSH%n -

(1-0
< 26]|ev/ ||H )t a'Clle U/(SHHI(Q - HSHIII(Q

9Here we need the assumption o > 1/r.
10Here we need the assumption « € [1/r,1/2+ 1/r].
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where we can absorb the first and third term on the right hand side by the left hand
side to conclude

1
;/ y(e¥/® — e¥e-1/ 41N S(S — S y)da + 25/ \Vey/(z‘s)f dz + §||SH§11(Q)
Q o ‘

(17)
e (| Ay 220+ / 02 |Vy|* + 12 dz) < 07Ce |3 )

Now, define the real convex function
o(x) == z(logx — 1). (18)
By convexity we get ¢(z) — ¢(z) < ¢'(z)(x — z) for any x, z > 0. Thus,

¢(ey/5) — pe¥e1/0) < @/ (e¥/0) (¥ — e¥r-1/?)
eV (y/d — 1) — e =131 /6 — 1) < y/S(e¥/® — e¥r-1/%)

/ y(eV/® — evr-1/%y dg > 5/ d(e¥/%) — p(e¥+=1/%) du.
Q Q

For the second term in (17) by convexity of = — z* we get

25(S — S_1) > S* - S;
7/@—&1WM21/§—$4M.
Jo 2 Jg
These two estimates suggest the following “energy”
Ey = / P(e¥/%) + lS,? dz,
Q 20 °

where y; := y, Sk := S to unify future considerations. We can now further estimate
(17) to get

d
—J(/ P(e¥/%) — p(eve—1/%) 4 (S,¢ S? ) dl —|— 20 / ‘V v/ M)‘
T O 24
1 _ a(l-6
+ §HSH§{1(£2) +5(||A@/HL2(Q) + /95 |V!/| + 3/265y/6 d:z:) < (TqCHCy/&HLl(Q))q
and rewrite in terms of the energy

2
dx

g
—(Ek—Ek1)+2/ ‘VG
T JQ

1 112 g 2 _ 4 C ; a(l—0
+ 2_5||*5||;{1(52) + E(HA@/HZQ(SZ) +/Q5 2| Vylt + et dz) < angey/(;HLg(sz))q
(19)

In particular, since most terms on the left hand side are non-negative, we can use
(14) to get the estimate

(m_Ekﬁ<ﬂmwmb Da

1 ) a(1-0)
(Ek—Ek 1) ol IC(g—lgu—f—/eyo/éd”E) !
Q

-
20)

a(1-0) (
< aq_l_"(l_ﬁ)qC(aTd 1 + / evo/? d:):) !

JQ
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We want a uniform (in o) estimate of the right hand side, so we need the exponent
of o to be non-negative. This is satisfied if

0<g—1-al-0)g=q(l—=)-1,
or in terms of @ we need

a >

<IN
DN | —

Under this assumption, we can uniformly estimate the right hand side of (20). This
gives one estimate for the discrete time-derivative of the energy functional. The
other direction is immediate from

E, = / P(e¥ /%) + lS,f dz > / B(e¥ /%) dz > |Q min ¢(z) = — 9],
Q 20 Q z€R

thus %(Ek — Ekfl) > —2 |Q| /7'.

Now we can go back to (19) to get the uniform estimate

, 2 1 _ ,
20 ]Vey/(%)’ dz + 5“5“%11(9) + 5(HA?J||%2(Q) + / 02 |Vy|* + yPev’ da)
Q Q (21)
/61— o
< Cotllev || gy — ~(Bx — Exa) < C.
This argument works for any such (fixed) r € (1, 00). Taking the union of all possible
ranges for «

| =

1 1 2 1
I. = R: <a< 4= P ——
- ={a € )_oz_2+7_,anda_r 2},

-

we get back our assumption (as illustrated by Figure 1)
3
1<a< =
Sa<g,

where (for this particular calculation) we could take values o € (0,3/2). This
computation is to be understood in the following way: for any value of « € [1,3/2),
take any fixed  such that o € I, and repeat the above computation. The estimates
are very much not uniform in 7 or «.

25

0 05 1 15 2 25 3 35 4 45 —5—b5 6 65 7 _

Figure 1: Values of r against possible values of o with critical point at (1,3/2).
Constraints as functions of r, admissible pairs (7, «) depicted as the shaded area.
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To conclude the fixed point estimate we only need to control some norm of y. We
already have bounded the second and first derivatives, but need to make sure that
zero-th order polynomials do not break the estimate; because we want to argue by
norm equivalence. To do so, take the test function (e=%/% 0) in (13)

1
LIS :/ _Svye*y/fS . (5716y/5vy - ey/SVS) dz
Q

/QAy(—%e y/5Ay+ = |VylPev?) da
+ 5/95_2 Vy|> Vy - (- gVye_y/‘s) + ye¥/Pe ¥ dg
- /Q —52 |Vy|2 + 6 'Vy - VSdx
+e /Qe_y/‘s( — 5N AY)? + 672 Ay VY|P =673 ]Vy]4) +ydz
RHS =0’( — %/Q 1— ey""l/(s_y/‘sdx),

and reorder

/ydx——(S 2/|Vy| de 4+ — /l—e@"’”_y)/‘sdx

5/€ y/5 (Ay)? =0 Ay [Vy|* + 672 |Vy|* )d:r+5/VS Vydz

_ —y/d _ 252,
_T/me 5/9 ((Ay— 55 V9P + 2572 vyl ) do

1
+—/VS-Vyd:1:

IQI
— —||V5HL2 @IVyll2@

We want to introduce the L'-norm into the energy estimate (21). So we apply the
above to find

Nyl Z/—ydx-l-Q/ ydzx
Q [y>0]

IQI
< e — 2 2 ;
<2 (B 4+ 2198l ollize) +2 [ yde,

[y>0]

/ ydr = / ydx + / ydx
[y>0] [0<y<1] [y>1]
/ 1dx + / ey/é dz
[y>1]

< |Q|+/ 2ev/9 A,

where we estimate

SO

1/1Q
”y”wmﬁg('?’ —HVSHmm HVUHLQ(S2>+2‘Q|+2/ 20019 4.
Q
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Applying the energy estimate (21), we find (with Young’s inequality)
3 1
IVSL2 VYl L20) £ V2C||Vyl|L2(0) < Z(V 20)*° + ZHvyHL}ﬂ(Q)
< 1(3(20)2/3 - 5—20) <C
— 4 e T
which allows us to uniformly bound (again with (21) for the last term)

Y)
[yl < (lTl + C) +2(Q|+2C < C.

£
We put everything into the energy estimate (21)

C 22 / 8¢/ @D[" da + 1S 310 + (I AY 720 + / 572 |Vyl* + yPer’ do)
Q

—_

> SN + el AyllZe@) + 20 Vyllza) + (lylLre) — €.

[\

Another Young’s inequality

,
T Vyl* 1]
IVoliney = | T 1VEde < [ S50+ 1/0)do = SI 9l + 52
gives
C>ls2 Ayl3 202 (|| Vyl? _ yl|21 0y — C*
_2H 2110 + el Ayl 2200y + (I Yl720) 28)+HyHL1(Q)

1 . _
> §HSH%{1(Q) +min{e, 2072, 1} (| Ay 720y + VYl 720) + [9]l71(0)) — C-

We conclude by norm equivalence in H? (Lemma 12). The desired solution is then
given by the Leray—Schauder fixed point theorem. O

Now we have shown the existence of time discrete solutions, i.e., for a fixed time
span ((k — 1)1, k7], k € N, there exists a solution (v, Sk) € H?*(Q) x H'(Q),
which is constant as a function of time. From the implicit Euler scheme we ex-
pect these piecewise-constant functions to approximate the exact solution of the
limiting parabolic equation where 7 — 0 and the difference quotient becomes a
differential.
Putting together the solutions from Theorem 2, we define ¥ (z,t) := y(x
c ((k — 1)1, k7] for fixed 7 > 0; S (x,t) := Sp(x) and n'7(x,1) = ny(z) =
exp(yx(z)/d) analogously. With the discrete time derivative (D.f)(t) := (f(t) —
f(t —7))/7 we can formulate the equations solved by (n(”, (7))

D,n™ = div(Vn'" — nMvs)

A (22)
—e(A%™ — 52 div ‘Vy(ﬂ ‘2 Vy™) +ynl?),
¥D.ST = AST £ 5ARD 4 (nM)e — ) (23)
with boundary conditions
VnD v =VAyD .y =vSD .y =. (24)
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3.3 Passing to the limit (¢,7) — (0,0)

Our goal is to pass to the limit (¢,7) — (0,0). For this, we need uniform (in ¢ and
7) estimates in order to use compactness arguments to be able to extract a limiting
function, which also solves the desired equation.

3.3.1 Uniform estimates

We shall summarize some intermediate results in the following Lemma

Lemma 3. The following bounds hold with a constant C' independent of €, T

||n(T) log n(T)HLOO(O,T;Ll(Q)) + || v n(T)HL?(o,T;HI(Q)) + ||S(T)HL2(O,T;H1(Q)) <C

(25)
\/EHA:U(T)HLQ(QT) + \4/5\|V2J(T)HL4(QT) +Velly'v n || 2@ < C
(26)

1m0 mwr@y + 107l parsorwrassiay < C
(27)

where Qr 1= Q x (0,7).

Proof. Step 1: Proof of (25). We start with the estimate from (14), rewritten in
terms of n

[l < 709 + [noll Ly, (28)

which holds for all k. We assumed the norm on the right hand side to be bounded
and restrict ¢ < 1, so we can bound it uniformly (in %) by a constant.
We plug this estimate into the energy estimate (19) to get a recursion

1 . 1 .
—(Bx = Ev1) + 2| Vi) + 551kl
9 « [
+ = (189G + / 072 [Vunl* + yer? da) < Cllnil3ie)" < C.

Expanding this recursion in terms of k& (which corresponds to integrating in time
from 0 to k1), we arrive at

Ek:+2TZHV\/_H12<m+ 52\\5\\H1
7=1

ET . ' /s
+ = Z 1Ay 117200 + / 02 |Vy;|* + y3e¥/P da) < ktC + Ey < TC + E.
1 Q
(29)
Since most terms on the left hand side are non-negative, this implies

E, < TC + E,,
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where we assumed the initial energy Ej to be bounded. Recalling the definition of
the energy, this bounds

Ey, = / ni(logng — 1) + lS;f da
Jo 20

from above. For the first estimate for nylogn, we further consider

/ ny logng de = / ng logng da + / ng logng do
Q [nk,Zl] [0<7’Lk<1]

1
> / |ng log ng| da — / |ng log ng| da + / —Zdx
Q J[0<ng,<1] Jo<ny,<1] e

Q
> ||y log ng || 1) — 2%.

From the non-negativity of n; (as an exponential) we also get
/nkdx:/ |ng| de.
Ja Q

Q2 gl
et losy — 20 — (Il sy + 07 1921) + 2 Sellfe

Now we arrive at

< / ng log ng, do — / n dr + lHSkH%z(Q) <TC + E,
Q Q 20
which can be rewritten to bound
Y
([ Log mug[| 1oy + %HSkH%Q(Q)

uniformly in k, i.e., in L>(0,7T), which gives the first bound (and also bounds
vS € L*°(0,T; L*(2))).

The other bounds in the first inequality (25) follow more directly from (29), once
one notices that the time-integral of a piecewise constant function gives precisely
the sums with a weight 7. Arguing as in the proof of Theorem 2, we can bound Fj,
from below and deduce a uniform bound for the aforementioned non-negative terms
on the left hand side of (29). This already gives

IV VRO 20120y + 17

2o @) < C.

For the actual I7'-bound for vn(7), we still need to check its L?*-norm. However,

LY0,T:L1 () S THn(T)HLOO(o,T;Ll ()

1Y n(7)||i2(o,T;L2(Q)) = [|nt"

which we already bounded. This concludes the first inequality (25).
Step 2: Proof of (26). The second inequality follows similarly from (29). We
have

K

&7 ZHAZI/]'H%Q(Q) = 5HAZ/(T)

j=1

%Q(QT) < C?
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so taking square roots on both sides gives the first estimate in (26). Analogously
one gets the Li-norm of the gradient with the fourth-root. The last term comes
from

K K
VIO gy = e Y [ (e e =er 3 [ yensoan
i=1 =t

This concludes the second inequality (26).
Step 3: Proof of (27). The third inequality can be derived from the previous
two. For ||vn<T)||L2(07T;L1(Q)) consider

1

1 A\,
2/n()

V ’]’L(T) =

(where n(”) > 0 as an exponential of a bounded function) in
T
an(T)H%Q(O,T;Ll(Q)) = /0 12V V) H%l(ﬂ) de

T
<4 [ VAT a)| TV 220
0
<AV 720yl IV VRO 220,
= 4|07 L o720 | V VR H%%QT):

where we used the Cauchy—Schwarz inequality and Hoélder’s inequality. The last
factor is uniformly bounded from the first inequality (25). For the other norm
notice

Hn(r) log ”(T)HLl(Q) = /

[n(") Ze]

> / In®]
[n(M>¢]

> [|nD | i) — 19 e

‘n(T) logn(ﬂ‘ d:1:+/ ‘n“) lognM| dz
[0<n(M <e]

for (almost) all ¢ € (0,7"). Thus,
||”(T)||L°°(O,T;L1(Q)) < H’”f(T) log ’”'(T)HLOO(O,T;LI(Q)) +[Qe<C
or
IV 2 0z @y < C.

We estimate n(™ in L2(0,7T; L(£2)) by equation (28), i.e.,

K

Hn(T)H%Q(O,T;Ll(SZ)) =T ZH”jH%l(Q)
j=1

S T(HTLOHLl(Q) —+ 5T ’Ql)z
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This shows the L?(0,T; W'((2))-estimate. By Sobolev embedding W'!(Q) —
L?(£2) in two dimensions, this also gives an L?({)7)-bound; which we can use in
an(T)||L4/3(QT) =2[|VnOVVO|| a0,
< 2Vn| s V'] 2o

)111/2
< ClIn |50,
This finishes the proof. O

The next estimate concerns the discrete time derivatives.

Lemma 4. For any n > 0 there exists a constant C' independent of ¢ and T
such that

H DTn(T) HLI(O,T;(HQ"'" (Q))/) + ’YHDTS(T) HL4/3 (O,T;(W’lv‘l(ﬂ))’) S C (30)

Proof. Fix n > 0 and let ¢ € L>(0,T; I*™(Q)). By Sobolev embedding H?*"" —
Whee this gives ¢ € L>(0,T; Wh>(§2)). Testing with ¢ we have

dt

T
/ ‘<D w7, @) rzn@y
0
T
= / ‘(diV(Vn(T) AV
Jo

— 5(A2y<7) — 52 div(‘Vy(T) \2 vy + y(T)n(T)) , @) 2y | dt

T
< / ‘ / —Vn® Ve +nIVSD . Ve dx‘ dt
Q
O T ; 2
+ 6/ ‘ / ~Ay DA — 572 ‘Vym‘ Vy ™ Ve — yDne dx‘ dt,
o Ja

which we bound by Hélder’s inequality

<V | @I Vel La@r) + 1107 [ 2@ IV ST 2@ IV 8| 1 @)
+ e (1A 20 1A 2y + 021 VY D 340y | VOl 320

+ [[yOVRO| 2@ VRO Lo |0l 1a@ay )+

where all terms in n(7, S y(7) have already been uniformly bounded in Lemma 3.
We, thus, get

<C (2196l 200 + IVl (@) + |A0lz20r) + [9ll1500) )
SC(CHV¢||L°O(QT) + |9l L o.rwroc @) + 10l 20,122 (02)) + C\WHLO@(%))
<C(I6ll=ormreiay + l8lr=orm ),

which finally can be bounded by the above Sobolev embedding 727" — W* and
the continuous embedding H*™" — H? by C||¢|| o (0,1;m2-1(52))-
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For the other estimate let ¢ € L*(0,7; W'*(Q2)). Similarly as before, we have

T
dt:/ /—VS(T)-qu—an(")-ng
0 Q

+ (nM)2p — ST dz| dt,

T
7/ ‘<DTS(T)7¢>(EV1’4(Q))’
0

which we bound by

< VS 2 I VO 222y + 5||Vn<”||L4/s<QT)HV¢HL4<QT>
T
+/ /Q\(n“))%\ da dt + (|57 20 |6 22020 -
0 -

All norms of S and n(” are bounded by Lemma 3, and the corresponding norms
of ¢ and V¢ can all be estimated above by C/||¢|| 40, r;w1.4()). The last remaining
integral is estimated by Holder’s inequality

()| iy < I a0l @) 2.1y
< () N Lo s o |61 s 0.2 ) (31)
< Hn(T HL40¢/3 0,T;L%(£2)) CH¢‘|L4 0,T;Wwt 4(Q))

where the norm of n(™ is bounded by Lemma 3 (namely the L?(Qr)-estimate) if
a < %, which is satisfied with our assumptions on «. This concludes this proof. [l

3.3.2 Compactness

The bounds from Lemma 3 and Lemma 4 together with the Aubin—-Lions—Dubinskii
Lemma (see [7, Lemma A.2.]) allow us to extract subsequences (which are not
relabeled), such that!!

n'™ —n  strongly in L?(0,7; LP(Q)) Vp < 2
S — S strongly in L*(0,T; L)) Vg < oo
with the convergence also almost everywhere by the "inverse dominated convergence
theorem” (Lemma 22). Additionally, from the Eberlein-Smuljan theorem (Lemma
15) we also have the weak convergences
Vn(D — Vn  weakly in L*3(0,T; L*3(Q))
VS ~ VS  weakly in L2(0,T; L*(Q)).
Note also that the non-negativity of n{™) as an exponential implies (by the pointwise
a.e. convergence) the non-negativity of the limit function 7n.!2

We would like to use this convergence to pass to the limit (¢,7) — (0,0), however,
we cannot yet infer that nWVS(™ — nVS weakly in L'(0,T; L*(2)) because we

UFor n(7) take Wl < LP < (II?>*")’ and note that the embedding W' < LP is compact for
p < 2 in two dimensions.
For S(™) take H'! < L7 — (W'*)’| with compact embedding H! — L7 for any ¢ < oo in two
dimensions.

12This means that the cell density does not become negative (at least a.e.), which is very rea-
sonable from a modelling point of view.
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are missing the limiting case p = 2 in the strong convergence of n(7). Luckily, with
the additional n(”) logn(”-bound from Lemma 3 we can squeeze out the necessary
convergence.

-

Lemma 5. Let Q) C R? be a bounded Lipschitz domain, let T > 0, and s > 0.
Assume a sequence (u.) > 0 satisfies the uniform bound

Iv/ttell 2205010y + ltte 10g tel| oo qo,rmr () + 10suel| i o3 (ro () < €
then, up to a subsequence, one has the strong convergence

u. — u  strongly in L*(0,T; L*(Q)).

The proof of this Lemma can be found in [2]. Applying the Lemma we now get the
weak convergence n'”' VS — nVS weakly in L*(0,T; L*(Q)).

The next step is to show that the regularizing s-terms actually vanish with these
convergences, i.e., morally speaking, that the functions do not "outgrow” the factor
¢ as € — 0. Let thus be ¢ € L*(0,T; I1*(2)), and consider by Lemma 3

T
JO
g 2
J0 Q

Sé‘(HAZ/(T) 2@ |0l 20,200y + 62 IVY D a0y VOl Lo

+ [y VD 2o VRO | L3, |6

L4(QT)>

(26)
< V209|202 + £VECT V|| Layy + € 2CIVRD || Lagan |6 Lo

<C(e'2 4o

L4(0,T;H?%(2))»

where we used the uniform L?(Q7)-bound for n{™. Letting ¢ — 0 implies the weak
convergence

e(A%y" — div(\vw\? Vy'™) +yn) =0 weakly in L*3(0, T; (H*())")

as ¢ — 0, and uniformly in 7 > 0. Taking the limit (¢,7) — (0,0) in the equation
for D.n{” we get (together with the above (weak) convergences) that

D,n™ — div(Vn — nVS) weakly in L*(0, T; (II*71(Q))).

Identifying the limit of D, n(”), which converges to the distributional time derivative
of n in the sense of distributions, we conclude

n; = div(Vn —nVS) in L'(0,T; (H*™(Q))).
However, we can expand the space where the equality holds to L!(0, T'; (W1>(Q))")
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by a density argument and

T T
’ / (div(Vn — nVS), )iy dt‘ _ ‘f /Vn Ve —nVS - Vodrdt
JO 0 Q

T
< / [Vl L@ Voll ey + (17l 2y | VS 22(0) | VO ooy dE
Jo

< [1Vallpion Vol L) + [l 2@ VSl 220) [ VO L (0)
< [[nllzrorwra@p ol weorwre @) + 17l L2 1] 220751 @)) || Loo (0,701 (2))

Lemma 3

Cl|@ Lo (0, mswr0 (02,

which gives the regularity n, € L' (0, T; (W1 (Q))).

Taking limits in the equation for D,S("), we immediately have weak convergence for
the linear terms AS(™ | An(™ and S in L2(0,T; (H*(Q))) or L*(0,T; L4(R)) (for
any ¢ < oo) respectively. For the production term we have again

T
/ /Q’(”(T))ad)‘ dzdt < HnmHLM/-?(O,T;L@(Q))H(/>HL4(0,T;LOO(Q))
0 .
< Cl[n' 2@ |6ll a0, s
for « < 3/2 as in (31). By the above line of arguments we get
7S, = AS + 6An+n®— S in LY3(0,T; (W' (Q))").

Lastly, we need continuity in time for the initial data to make sense. Since (D,n(")
is bounded in W(0,T; (W>°(€2))") which embeds into C°([0, T]; (W1>(Q))), we
have n(-,0) = ng in (W1>*(Q)). And analogously, we have S(-,0) = S; in the sense
of (Wh4(Q)) (if v # 0; if v = 0, we do not have this initial condition).

This concludes the existence proof. O

3.4 Regularity

We have already shown: If nglogng € L'(Q2) and Sy € L*(Q), then there exists a
solution (n,S) with the following regularity

nlogn € L*(0,T; LY(Q)), +/n € L*(0,T; H'()),

n € L*0,T;WH(Q)), ne L*30,T;WH/3(Q)),

S e L*0,T; H'(Q)), ~S e L>(0,T; L*(%)),

n, € LNO,T; (Wh(Q))), ~S, € L*3(0,T; (W'(Q))).

We can get even more regularity:

Lemma 6. Under the assumptions of Theorem 1 one has
nt € L*(0,T; H'(Q)) for any 0 < pu < 1/4.
If one further assumes logng € L'(Q), then also

Vlogn € L*(0,T; L*()).
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Proof. We go back to the section before the limit (£,7) — (0,0) and find uniform
bounds (in ¢ and 7) for (") which will carry over to the limiting function n. Let
0 < 3 < 1/2 and test (22) with (n(7))#~1

//DnT) (7))? f/ —Vn) V(DY) £ nOVSD . v ((n)P1)

—5(Ay DA((n)P1) 4572 V( y™) ‘ vy V() + y(T)(n(T))ﬁ> da dt.

We rephrase the derivatives of n(7)

[\

?

V(PR = Z )= [vn)?

V™ V((nD) ) = (8 - 1)) [vn[7,
V((n)?) = By vnt,
nIV (™)1 = (8 — 1)(n)1vnD)

to find

4 2112 T 2 2
FU= DIV ey = (1= ) / / V] (n™)P dedt
o Jo

and thus

T
4 1= 8)|V((n ")) |20 = DTn(T) n(MYP=1 dz dt
L2(Q7)

>
/ / )Y . VS da dt

+5/ /Az DAY 45~ vy (T‘ Vy V()P 4y ) dx dt,
(32)

where we now estimate each integral on the right separately. For the first integral
notice that f(x) := z” is concave so (by reversing the inequality for convex functions
we had for (18)) we have f(z) — f(z) > f'(z)(xz — z), which gives

T K
/ /DTn(r)(n(r))ﬂ—l dz dt = Z /(nk — 1) /3 1
Jo Ja — Jo
1 — 1
<= Z/ np —nl_ dz = —/(nm(x,T))ﬁ — ng(x)? dz.
B = Jo B Ja
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We only need to bound (n(”)? € L>(0,T; L'()) now, so

1) | r gy = / (n™)? da

= / (n™? dx + / (n™)? dx
[0<n(m)<1] [1<n(™)]
< |9|+/(n<f>)1/2dx
Q

= |Q| + / (ntHY2 Az + / (n™)Y2 dz
[o<n(T <e] Jle<n(™)]

<1Q|+ €9 +/ ‘n(T) logn(T)‘ dz,
0

which gives the bound
1) [l 0.y < 19 + € |Qf + [T log n| 0.1y < C

uniformly by (25). The next integral can be split by the Cauchy—Schwarz inequality
and Young’s inequality into

T T T 1 T 1 YT
| [ 959 drar < IV o + 51957 o,

where we already know that S(7 € L2(0,T; II'(Q)) uniformly by Lemma 3. So we
only need to check the first norm on the right hand side here. Notice

V(™))" = 82002 |[vn®)|* = g2(n) ()21 | wn)|’

and use the real inequality 2*~! < n2®~1 + C(8,n) for all n > 0,2 > 0, which we
prove in the Appendix (Lemma 23), to get

V(D)) < B VO () (e ™)+ C(8,m)),

which we rewrite using

2
V(Y1) = /i (nYP-2 |y ‘v\/_‘ W) V()

to conclude

V(n™)%)] < 40| V()| + (8, m)48?

Integrating gives the estimate
||V((n(7))5)\|i2(9,1,) < dn[|V((n T))ﬂm)”Ll(szl +C(8, )45 HVV HL2 Q)

Here, the last term is bounded by Lemma 3 and the other term can be absorbed
into the left hand side of (32) if we choose 1 > 0 appropriately small (for fixed /).
For the last integral in (32) we, again, rewrite derivatives in terms of y(™
(My8-1y _ A B-1/0 _ (B= 1)2 My8-1 [y 2 4 P 1
A((n'7)h) = Ae —( 5 ()P vy + —
Sy B—1 )
V((n(M)5-1) = - (n()P~1vy ™

(n(T))ﬁflAy(T)y
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to find

/ / AyD A 4+ 672 |vyD P vy - V(0 da de

_1 2 -1
:g/ /Ay(T) _) (n(r))ﬁ1‘Vy(r)2_|_5T(n(r))/31Ay(T))
+6 Z\Vyﬂ\ vy . 55 1( NIy dz dt
€ 1_ T T T
:_T/o /Q (Ay ) 5 Ay( ‘Vy( ‘ +4- Z‘Vy )‘ )dxdt
6(1_6) T 1 T T
=—T/O/Q (G- DAy + 57 9y )

+(1- W)(Aym)ﬂ dz dt
<0

as a sum of two squares. Now, there is only one term left to estimate

/ / (n T) Pdrdt = 55/ / ) Blognm dx dt,

which we bound using the inequality!?

‘azﬁ logx‘ <C(1 +x2)

8// 7 (n() dxdt<£5// (14 (n)?) dx dt
0

=e6C (T Q] + [nt )||L2(QT )
< eoC

to get

as a consequence of Lemma 3. We have now proven that
IV((n)2) 12000y < ©
is uniformly bounded. For the full H*(2)-norm we quickly check

1) 2y = 1) 21

= / / (nt™)% dz dt + / / (n'™)? dz dt
[n(M<1] [n(T)>1]

< QT + |V || 1o,
<1QIT + C|IVn®| 2,y < C

where the last uniform bound is also a consequence of Lemma 3. This concludes the
first regularity result with u = 3/2.

13To see its validity consider % as ¥ — oo. Since this goes to infinity, we get some

zo such that for all x > xo we have 1 + 22 > |2flogz| (ie., with C = 1). For the rest set
C := max{max|g ;) = #logx, 1}, which is finite because 2 log = is continuous.
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For the second bound, use the test function n(lT) = v/ (which is fine, because

n( >0 a.e.) in (22) to get

T
1
/ /D n\" d:z:dt / /—Vn(T)-V nIvsm . v —
0 n() n(T

— S(Ay“)A% + 072 ‘Vy(T)‘Q vy - V? + y) dx dt,
n n

which we rewrite using

1 1 1
- - = () _ §
vn(T) = CR)E Vn, Vy' = e

and rearrange to get

vn(™
52|V 2 = //—‘drdf

/ /D ) — drdt+/ /—vsﬂ Vnl™ da dt
ol

1
o Jo ny ny
(33)

\V,

which we will bound term by term. First,

K
D, n(7 Mg — Mg 14 /
dz dt = / dx =

B _x<

where we now apply the inequality —logx for x > 0 two times (and with

opposite signs) and get

T , K
D.n™
/ / dedt < Z / log ng — logng_y dedt
o Jo n — Jo

= / log n'™ (z,T) — log ng(x) dz
0

§/ n'(x,T) — 1 —logne(x)dz < C,
0

which is bounded because n(”) € L>(0,T; L*(Q2)) uniformly (by the n(") log'”-bound
in the same space from Lemma 3), and our additional assumption logng € L'(().
The next integral is estimated by the Cauchy—Schwarz inequality and Young’s in-
equality

T 1 T
/ / ( )VS(T) -VnD dzdt = / / vs) . Vy(T)(S*l
o Jom’ 0o Jao

1 T
< §HVS( N2 +

=195 a0,

1 Consider f(x) := 1 — z + logz. Taking derivatives we get f'(z) = —1 + 1/x. Wanting to
find its maximum we get that x = 1 is the only critical point. Checking the second derivative we
find f”(1) = —1 so we have a (local) maximum at this point. The function value at this point
is f(1) = 0. Now consider lim, ., f(z) = —oco by e.g. de 'Hospital, and lim, ,o~ f(z) = —o0
because of the logarithm, to check potential boundary extrema.
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where the first term is bounded by Lemma 3 and the second term can be absorbed

by the left hand side of (33). The third integral in (33) we rewrite using
L _ 52 v, L _s1 L Ay® L _ 51l g,m

to get

T
1 1
5/ /Ay(T)AT—i-é_Q‘Vy(T)]QVy(T) Vs dzdt
o Jo nit nit

T
1 1 1
:—5/ fAy(T)(—Ay(T) — 5wy f —=) + 62 vy — dedt
0 Jo Ja n n(7) n(m)
T
£ 1 1 252 3
S —((zay™ — 67 |wy™ Z(Ay™)?) deat
=[] (G =5 )+ G da
<0.
The last term remaining can quickly be estimated by Lemma 3 and
T T
e/ / y M dadt = 55/ / log n'™ dz dt
0 Jo Jo Ja
T
Ssé/ /\nm dz dt
o Jo
= 55””(T)HL1(QT) = &d||v ”(T)|\%2(QT)
< edl|v n(T)H%Q(O,T;Hl(Q))'
This bounds
IV log n|| 20y
uniformly and concludes the proof. (I

Remark. The exponent bound o < % s almost optimal when looking for entropy

solutions. If one considers equation (16) with 0 = 1 and taking the limit (¢,7) —
(0,0), (i.e., testing the equation with the function (n,S) itself), then one needs

/ n*S dx
0

to exist. The highest reqularity (for the parabolic-parabolic model; for the parabolic-
elliptic model we can show even more cf. Section 4) we got in the end is

S e L>®(0,T; LA(Q) N L*0,T; H'()),  ne L*0,T; L*Q)).
By the Gagliardo—Nirenberg inequality L* C H' N L* with § = 5 we get
1/2 1/2
81122y < CISIIE oIS | ey
This implies that S € L*(0,T; L*(Q)) by
p 1/2
11| zs0zs @) < ClUISIm @ISl z2@)lzser = ClISIm@ 1Sl z2@) o
11/2 111/2
< OllSH g o220 191 220701 ()

For n®S to be in L'(Qr) we thus need n® € L*3(Q7), or, in terms of n, that n €
L*/3(Qr). The highest value of o such that L3 C L*(Qr) is precisely a = 3/2.
Hence, we cannot expect to get eristence for parameter values higher than o = 3/2,
although the edge case itself might be possible.
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4 Regularity for the parabolic-elliptic model

In Section 3 we have already proven the existence of solutions even in the case v = 0,
which is called the parabolic-elliptic model. However, we can achieve much better
regularity. This is the goal of this section. In particular, we will show that solutions
are in fact bounded, which naturally comes with the requirement that the initial
datum?'® is bounded as well.

-

Theorem 7. Let T > 0,0 > 0,a € [1,3/2), and Q2 C R? be a bounded domain
with boundary 00 € C™'. Assume that 0 < ng € L>(Q2). Then there exists a
weak solution (n,S) to the parabolic-elliptic system

n, = div(Vn — nV>S) (34)
0=AS +6An+n*—9 (35)

on Qr :=Q x (0,T), with Neumann boundary conditions
Vn-v=VS-v=0 ondQt>0
and initial condition
n(-,0) =mny in Q.

Additionally, solutions have the following reqularity

n € L2(0,T; HY(Q)), n € L®(Qyr), (36)
S e L*0,T; H'(Q)), SeL>Qr), (37)
S+ dn € L=(0,T; Wh=(Q)) (38)

in addition to the ones described in Section 8.4 (with v =0).

Proof. The proof uses a change of variables v := S+0n, which leads to the quasilinear
system

ny = div((1 + dn)Vn — nVo) (39)
O0=Av+n*—v+n (40)

with boundary conditions

Vn-v=Vv-v=_0
and the same initial condition n(-,0) = ny. The existence of solutions is still guar-
anteed by Section 3. In order to prove the additional regularity we will go back

into the proof, namely we look at the implicit Euler discretization with parameter
7 > 0 (for the time derivative) and also add regularizing e-terms (¢ > 0) to the first

15Note that in the parabolic-elliptic case we only have an initial condition on n, and not on S.
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equation (39). This yields the recursive system (where y = d logn, y,, = d log ny)

1
;(nk — ng_1) =div((1 + dng) Vg — np V)

(41)
— e(Aka — 62 div(|Vyk]2 Vi) + yknk)
0 =Avk + nZ‘ — U + 5nk, (42)
where the weak formulation is given by
1

- / (ng —ng—1)pde :/ —(1+dng)Vny - Vo +ng Vg - Vo do

T Jao Q (43)
— 6/ Ay Ap + 52 ]Vyk|2 Vi - Vo + ypnpp de
Q
0 :/ Vg - VU +ngd — vpd + ongd da (44)
0

for all o € H?*(Q2) and ¥ € H*(2). If we can find estimates uniform in ¢ and 7, they
will also apply to the limit (,7) — (0,0) (which exists by Section 3).

Step 1: (ng,ve) € H*(Q2) x H*(N2). By Theorem 2, for given ny_; € L*(Q2) we
deduce the existence of (yg, Si) € H*(2) x H'(S2). We shall rephrase this in terms
of regularity for n; and vy, namely (ng, vy) € H*(Q) x H(2). To see this we notice
that y;, = dlogn;, € H?(2) implies

1 1 1

logng € L*(Q), —Vny, € LX(Q), —— |[Vm|* + —Any € LA(Q).
ng ng T

By the Sobolev embedding H?*(Q) — L>(Q), we also find 0 < C, < ny <

exp(||yxllLe=()/9), and ng € L>(Q). This L>-bound gives n; € L*(Q?). The other

terms can be estimated by

1 1

Vel L2 ) = [l Lo @) Vgl r2@) < H”’kHL“’(Q)HEvnknlﬁ(ﬂ)a

||”k||L<>°(Q)
and by the triangle inequality

1
[ Angl 20 < anHLm(sz)Hn—kAnkHLm)

1 1 ) 1 ,
< ngl oo (| — Ane — = 1Vl | 220 + | = [Vl || 20

< C(k) 4 C(k)Crl Vgl 70y,

which we estimate by Sobolev embedding H?*(Q)) — W_’LP(Q) for any p < oo, espe-
cially y, € W*(Q) and Vy, € L4(€2). Noting Vi = %V'n,k we get

1 )
[ Vng|lagy < SHWHLOO(Q)\|fv’7'lkx\|L4(Q)7
T

which is bounded, and finally implies n;, € H?*(Q). Since vj, = Sj, +dny, and the right
hand side is the sum of functions in (at least) I7'(Q2), we conclude that v, € I1'(().
Step 2: v, > 0. For future estimates we would like v, to have a distinct sign.
Denote v~ the negative part of u, that is ©~ := min{u,0} < 0. By the Stampacchia
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lemma (Lemma 24) v, € H'(Q?) implies v, € H'(Q2) with Vo, = 1y, <o) Vg, so we
use it as a test function in (44)

/‘VU,:Q d:pz/n‘,:vk_—(vk_)2+5nkv,; <0
Q Q

because n; > 0), so v; = cin €2 for some constant ¢ < 0. We would like to conclude
k
v, = 0. Consider equation (42) as an equation for v with given n; € L>(2)

—Avk + Vi = ng -+ 5nk,

so the right hand side is an L>°-function, in particular it is L?. With the Neumann
boundary conditions, we can deduce by elliptic regularity [11, Theorem 2.4.2.7] (here
we need 9Q € C'1) that v, € W22(Q). By Sobolev embedding W?22(Q) — C°(Q),
we get that either vy = c or that v, = 0. In the first case, by equation (42) this
would give 0 > ¢ = nf + dny > 0. So, in fact, v, =0 and thus v, > 0.

Step 3: n € L*(0,T; H'(Q)). So far, we only showed regularity for each time step
(i.e., for fixed k& with bounds potentially depending on k). In the end we also want
regularity in time. Take the test function ¢ = y;/0 = logny in (43) to get

1
- / (ng — ng—1) logng de = / —(1 4 0ng)Vny - V(logng) + ng Vg - V(logng) dz
Q

T Q

—5/ AyeA(y /) + 72 Vyl* VyeV (yi /) + ying/d dz,
Q

which we rewrite as

1 . 2
- / (ng — ng_1)logng der + / (1 + onyg) [V dz = / Vo - Vg dz
0 0

T Q un

~2 [0+ 07Vl + e
Q

In order to get rid of the mixed term Vuy - Vny, we test the second equation (44)
with ¥ = n,

0= —Vui - Vg + 08 4+ 6n2 — vgny da
k k
JQ

and add them up

1 |V
- /('n,k. — ng_1)logng dx + /(1 + dny) dx
T Jo Jo ng
€ ' .
=5 (Ay)? + 072 |Vyk.|4 + ypng da + / n%“ + 6n; — vpny da
Ja 0

g/ng+1+5nidfc,
0

where we used vg,n; > 0. We want to estimate the left hand side; one could try
to use the higher order terms on the right hand side to get more regularity or make
the estimate easier. However, we need estimates uniform in &, so we unfortunately
cannot use these terms. Instead, we shall use the Gagliardo-Nirenberg inequality
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and absorb some parts into the left hand side. First, we estimate the left hand
side by using the convexity of ¢(z) = z(logz — 1) as for (18), and then estimate
(1 + dng) > dny in the second integral,

1
- / ng(logng — 1) — ng_q(logng—y — 1) de + 5/ ]Vnk|2 dr < / ngtt 4+ 6 da.
) Q

T Q
The worst term on the right hand side is n{™" which we need to estimate's. But

first, we estimate the square term n? into the first by

. . 1
a—1 a—1 o
Ollnkl i) < In*llzesnra@y 1077 = IR Far o) 1A < Slnllfihg +C
by Young’s inequality. So we need to estimate C anH?ﬂl @) Using the Gagliardo-
Nirenberg inequality!” L™ (Q) C HY(Q) N LY(Q) with § = 1 — —— we get

a+1

a+1
Ikl 54 gy < (Cllnells ol 538)

= Cllnellz o) Il e

Since we only have the I7'-seminorm on the left hand side, we split up the /! norm
here, and use the equivalence of norms on finite-dimensional spaces (here with a
constant 2%/2) to get

o . af2
CllnellF @y lnall iy = C (I Vrel7z@) + el 72@)) ™ Inell o)
< C([Vnrl 20y + [l 220y) a2

= OVl 22y Il L) + Clinel 22 oy [l 21,
where we apply Young’s inequality with 0/2 and p = % to get!®
«@ 5 2 q
ClIVIEl|Za [Inellzie) < 51VAklza @) + €0 @llnglLiq),

where ¢ = (1 —2/a)™! € (1,00). Applying the same inequality (with a different ”<”)
to the other term gives

Il 7oz gy < ZHVWHLz(g + Cllnel1 51 gy + Inkl22(0)-

Hence, we can absorb the first term on the right hand side, and then solve the
recursion w.r.t. £ (i.e., integrating in time) to get (with the same notation as in
Section 3, i.e., n(7) is a piecewise-constant-in-time function with piecewise values ng)

/'H,(T)()(logn (t) —1)dz + = //‘Vn T)‘ drds
) 0

< CH/”'(T)HqLoo(o,L;Ll(Q)) + ||n7‘~'||%2(0,L;L2(Q) + /Q'n,o(l()g ng — 1) dx

16This line of arguments needs o > 1. However, it is not necessary: For smaller values of o one
could do the same calculation the other way around and estimate everything into the (much nicer)
n% term.

"Here we only need « > 0.

18Here we only need 0 < o < 2.
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for any 0 < ¢t < T, where we can increase the right hand side by setting ¢ = T" and
then preserve the estimate when doing the same in the second integral on the left
hand side. Since the right hand side and also the first term on the left hand side
are uniformly bounded by Lemma 3 (or see Section 3.4), and our assumptions on
ng, we conclude that (after taking limits (¢,7) — (0,0))

Vn € L*(0,T; L*(Q)).

But since we already know (as a consequence of Lemma 3) that n € L?(0,T; L*(Q)),
we can conclude

n € L*(0,T; HY(Q)).

Step 4: n € L>(0,T; L*(Q2)). We argue similarly as in the previous step. Test the
first equation (43) with ¢ = ny,

1
- / (ng — nge—1)ng dz + /(1 + ong) |Vnk|2 dr = / nE Vi - Vg dz
0 0

T Q

—5/ AyeAnyg + 672 | Vye|* Ve - Ving + yn? dar,
Q
where we rewrite most derivatives of ny in terms of y; as

1
VTLk B —nkVnk, A?’Lk = nkAyk

5 5,)nk|Vyk] +

)
to get

1 1
— /(nk — ng_1)ny do + /(1 + 0ng) [Vng|* dz = / §Vvk - V(n2)dx
0 Ja Q

T.

nk((Ayk)2 + 07 Ay [V * + 672 |Vyk|4) de — 5/ ypng d.
0

5

)
Again, we want to get rid of the mixed term Vv - V(n2), so we test the second
equation (44) with ¥ = n2/2

1 2y, L Loy 0
0= /Q —§V’0k. Vi) + §nz+ B §7Jk"1é + §’ﬂ/z dx

and add them together

1

1 . . 1 . 0
z /('n,k — ng_1)ng do + /(1 + dny) |V'n,k|z dr = / T — —yni + —ni da

g nk((Ayk.)2 + 0 Ay |Vys]® + 672 |Vyk.|4) dx — e/ yrng da.

Q

Two calculations are needed to further estimate this appropriately:
0 < (Ag+ 6" [Vyal*)* = (Aye)® + 20 Ays [Vgel* + 677 [Vl

so for the second integral on the right hand side

—((Aye)® + 0 Ay [V + 672 V| ') < ((Ayk) +0 2 Vylt) <0

l\DI»—t
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and
9

2
‘V(niﬂ)‘ = an |Vnk’2 )

which gives (together with the analogous estimates on the left hand side as before)
1 I 3/2 o2 3 2

— 5(77% —ni ,)dx -|- — ‘V d < (nk +dny)dx —e | yen; de.
T Jo Q

The second integral on the right hand side does not have a sign, but can still be
bounded (¢ < 1)

5/ —yknidxzadf —nZ log nyg dz <55/ H[loaX —2*log zdx < 5|Q|
Q Q 2€[0,00)

The first integral on the right hand side can again be condensed into one term with
the worse exponent. So it remains to estimate

2 +2)/3
Clinell§ a0y = Cllnd* 3542 0y

which we do by extensive use of the Gagliardo-Nirenberg inequality'® LX+2/3(Q) C

) 3 2 a+2)/3 3/2 3/2 (a+2)/3
Clm 15520 ) < (Cl sy In [ aley)”
3/2)1(2a4+1)/3 3/2
= Ol |15y s,

which we expand to get the I/'-seminorm again

3/2 2a+1)/3 3/2 3/21(2a+1)/3 3/2
< IV I Ly + Cllg 2l Gagy 10 20

Applying Young’s inequality with 2 and p = 6/(2a + 1) gives®

20 3/2 vy 3/2116/(5—2a) 3/212a+1)/3 _3/2
< IV 220 + Ol 174G ™ + Clin gyl 1100

L) L2(Q)

We will absorb the first term into the original left hand side. The other terms need
more treatment. Using the Gagliardo-Nirenberg inequality for

|| 3/2H6/5 200) H H9/5 20v)
Nl Mkl p3/2(0)

into ['(Q) N L'(Q) with 6 = 3 gives

3/26/(5—2a) 3/(5—2a 6/(5—2«
229052 < C 30852 | 52

where we apply Young’s inequality again with p = % to get?!

12/(7—4«
< [l 21y + Cllma |2

9Here we need o > —4.

20Here we need o < 5.

2l Here we would need o < %, but the concluding argument would still work for o = % without
Young’s inequality.

ol
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The last term is treated similarly. Using the Gagliardo-Nirenberg inequality for

|| 3/2H 2a+1)/3

= [|nk]| gy
L2(D) Tk

into H'(Q) N L'(2) with 6 = 2 gives

3/21(2a+1)/2 (2a+1)/3 200+1
I 2| < Clml 55 ) | gy
And once more for
3/2 3/2
1| 1) = I\nkl\Lé/2(m

into [1*(€2) N L*(£2) with 6 = 1 gives

3/2 1/2
Iy ey < Clinll gy sl @)

Putting these two together gives

uQQO{lu 32
Clnd?|| Gt 0!

(2(1+l /3+1/2 H H (2a+7
L2(Q) Mg

[k Mlere) < Clinell L1(%)

Since the exponent of the H 1(Q)—term is less or equal than 2 for o < i we can use
Young’s inequality?? to get

CHng/QH (204+1)/3,3/2 4a+14)/(7 da)

L2(Q)

I 2y < lInellz ) + Clin

In total, we can estimate the critical term on the right hand side

C/nk“dr< /‘v 3/2 dflr+2||nk|\?{1(9

(4a+14) /(T—4a)
(©) )

+Cllne| 25, + Clin

where the first term can be absorbed by the original left hand side, and the other
terms will be uniformly bounded after integrating w.r.t. ¢ (by Lemma 3). Finally,
this gives

1 A
—/(H(T 2 (t) dx + —/ / IV (( ((n™ 3/2)‘ deds <C+ = /né dz,
2 Jo 0 2 Ja

where the constant on the right hand side does not depend on ¢, 7 or . We conclude
n € L*(0,T; L*(2))

by taking the limit (¢,7) — (0,0).

Step 5: n € L>°(0,T; L*(Q2)). We test the first equation (43) with ¢ = n?

1 . .
- /(n;C — ng_1)ngdz + /(1 + 0n)Vny - V(i) do = / ngVuy, - V(ni)d
0

T 0 Q

_5/ Ay Amg) + 677 [Vl Vi - V(03) + g da,
Q

22Here we need o < g, but the concluding argument would still work for « = E without Young’s
inequality.
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which we rewrite similarly as in the last step

1 . 2
—/(nk —ng_y)nidz + 2 / (1 + omg)ng |Vnk|2 dr = = / Vg - V(n}) da
T Ja Q 3 Ja
2 4 2
_5/ ni (E(Ayk)z + 52 |V3/k:’2 Ay + 5 ’Vyk|4 + yknk) dx.
Q

To get rid of the mixed term we use ¥ = 2n} in (44)

2 2 20
0= /Q —ng V(ni) + 3% s gn%vk + gni dz.

Summing up gives us

1
- /(nk—nk_l)ni dr + 2 / (1+ 5nk)nk |Vnk|2 dz
0 0
2e 3
==5 n; ((Ayk) ]Vyk| Ay -1— |Vyk] ) dz —ed [ nylogngdx
Q 0

2
+ 5 / n{ — niog + ong d,
3 Ja

where the first integral on the right hand side can be written as a square, the second
integral is bounded above by o é, and the last integral can be estimated by the worst
exponent. The left hand side is estimated as before, to get

11
B/nk ni_ dz+ = /‘Vnk dx<C’+C’/ ot dg.
n
We estimate the right hand side by Gagliardo-Nirenberg in H*(Q2) N L*(Q2) with
g = atl
a+3

a+3)/2 ()/12
ey < ClngllSe)

In 55y = Il i) Il

and Young’s inequality??

) . 8/(3—a a
SZHV(ni)HL2 +C||m||L/2(Q >+C|\nk|\Lf§))HM||L2<Q

where we only need to estimate the L*(2)-norm because all the other terms can
be absorbed or will be uniformly bounded after integrating in time. By Gagliardo-
Nirenberg in H'(2) N L*(Q) with 6§ = 3

+1)/2 +1)/2
Inill3ty < Cllmellfz ey lnel Sxa)

and potentially Young’s inequality?*

2a+2
< CllnilFiy + Clmal| 2/,

23Here we need o < 3.
24Here we need « < 3.
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With all the uniform bounds from previous steps and Lemma 3 we get (after inte-
grating in time)

%/Q(n<f>)3(t)dx+§/ot/g\V((n“))Q)

We conclude

2 1 3
de <C+ - [ nyda.
3 Ja

n € L>(0,T; L*(Q)).
Step 6: v € L>(0,T; W1>(Q)). Consider now the elliptic equation
—Av™ 4™ = (Y 15 € L(0, T; L¥*(Q)),

where the bound for the right hand side is uniform in ¢, 7. By elliptic regularity [11,
Theorem 2.4.2.7] (where we need 92 € C'') we conclude

o™ e L0, T; W3/*(Q)),

where the bound is uniform in ¢ and 7 as well. By Sobolev embedding W2(Q)) —
Wt>(Q) for any n > 0, we conclude®

v € L0, T; Wh=(Q)).

Step 7: n € L*(Qr). We use the regularity of v and the following Lemma

Lemma 8. Let Q C R? be a bounded domain with 0Q € C*, T > 0, uy €
L>(Q), 6 >0, and V € L*>(0,T; W->*(Q)). Then there exists a unique weak
solution u to

up — div((1 4 du)Vu) = — div(uVV)
with boundary condition
(14 0u)Vu—uVV)-v=0 ondQ,t>0,

and initial condition u(-,0) = ug in Q. Additionally, there ezists a constant
C > 0 depending on Q and ||VV||L=(q,) such that

[l @) < Cmax{l, [[uollLe(o)}-

The proof is done in [13, Proposition 4.1]. Setting V' = v gives the desired regularity
n € L>®(Qr) due to equation (39).

We conclude the proof by S = v — dn € L>({r). O

Remark. For the proof of Theorem 7 to work we used o € |1, %), which were the val-
ues where we could show existence in Section 3. On its own the upper bound can po-
tentially be increased to at least o < % if one goes for more steps of L>°(0,T; L*(2))-
bounds for n with k = 4,5, ... similarly to the ones already done, before using elliptic

reqularity.

*Here we need o < 3.
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It is possible to show even classical differentiability of solutions, provided that the
initial datum and the domain are smooth enough.

Theorem 9. Let Q C R? be a bounded and smooth domain (i.e., its boundary
satisfies O € C*®). Assume further that ng € C**(Q) for some v € (0,1).
Under the additional assumptions of Theorem 7, solutions (of the parabolic-
elliptic model from Theorem 7) are smooth, i.e.,

n,S € C>((0,T] x Q).

The proof relies on the Schauder fixed-point theorem to prove some initial regu-
larity, which is then further improved by elliptic and parabolic regularity results.
Bootstrapping yields the desired regularity. We refer the reader to [16, Proof of
Theorem 2] for the precise arguments and references.

Sketch of Proof. Consider the set
K:={neC0,T]xQ): 0<a <R, |n]lgrvzaqorym < M}

where C%?( A, B) means differentiability (or Holder continuity) of degree a in A and
degree b in B. The constants R, M > 0 have to be determined later on. For n € K
we apply elliptic regularity in the equation

—Av+v=4n+n"

with homogeneous Neumann boundary conditions. Thus, we find that the solution
satisfies v € CO([0, T]; W??(€2)) for any p < co. Sobolev embedding gives W*? <
CY(Q). Setting h := nVv gives a continuous function. Plugging it into

ny = div((1 + dn)Vn — h)

with homogeneous Neumann boundary conditions, implies n € C/27([0,7] x Q).
Redoing this procedure gives v € C7/22([0, T] x Q), and thus h € C?/27([0,T] x Q),
son € CH([0,T] x Q). Now it can be shown that n € K for suitable R, M > 0.
By Schauder’s fixed-point theorem we deduce this regularity, upon which we now
proceed.

By elliptic regularity we get that v € C**([0,T] x Q). We then set f := div(nVv) €
CHL([0,T] x ) and consider the linear equation

u; — Au — div(nVu) = f

with homogeneous Neumann boundary conditions. This solution satisfies u €
C/2277(10, T] x Q) (and by uniqueness u = n). This extends the regularity of f
further such that f € C'*/21%7(]0, 7] x Q). By parabolic regularity we conclude
u € C*7([0,T] x Q). And we could repeat this process arbitrarily long to finally
deduce

n € C™((0,T] x Q)), veC™((0,T] x Q).

Clearly S = v — dn € C=((0,T] x Q) is also smooth. Note that we need to exclude
differentiability up to ¢ = 0 because we did not assume the initial datum to be
smooth enough. If we did, then regularity would hold on [0, 7] x €. O
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5 Uniqueness of solutions

Considering weak solutions instead of classical solutions allowed us to more eas-
ily prove the existence of solutions because we considered a much bigger space of
functions. However, this might have been at the cost of uniqueness, i.e., the weaker
requirements could allow several different functions to satisfy the equations, although
only a single classical solution would exist. In this section we shall prove that (under
additional regularity assumptions on solutions) we still keep unique solvability.

5.1 The parabolic-parabolic model

For technical reasons we will need to restrict the cross-diffusion parameter § to be
small enough. However, this bound does not affect the more interesting range of
d < 1 potentially going to 0 (which is a limit we do not consider here).

7~

Theorem 10. Let Q@ C RY d > 2 be a bounded Lipschitz domain, and let
a > 1. Assume that any solution (n,S) of

ny = div(Vn — nV.S)
Sy =AS+6An+n*—S

in Q,t > 0 with boundary conditions

Vn.-v=VS.-v=0
on 0Q,t > 0, and initial conditions n(-,0) = ng, S(-,0) = Sy (with ng, So €
L?(Q)) satisfies the uniform a priori estimates S € L*>(0,T; Wh>(Q)) and
n € L>®(Qr). If there exists € € (0,1) and v > 1 such that

([|n]] Lo (@ry + 700)? <~
41 —¢) -

for some 0y > 0, then the above equations possess at most one solution (n,S)
for any o < .

Proof. Consider solutions (n1,51), (n2,52). We look at the difference of the weak
equations solved by these functions

it "
/ ((ny —na)t, @) ds + / /(Vm — VS — Vng +nyVSy) - Vodrds =0
0 o Jo
and

ot "t
/ <(S1 — Sg)t, ’19> ds + / /(VSl + 5Vn1 - VSQ - 5Vn2) -V + (Sl - Sz)lg dx ds
0 0 JQ

¢
= / / (n —ng ) dads.
JO JQ

Taking ¢ = n; — ny and ¥ = y(S; — Ss) for v from our assumption, and adding the
two equations, we get (notice that (n; — ny)(0) = 0, because they satisfy the same
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initial conditions; also (S; — S5)(0) = 0)

1 Y
5l = n2li20) (1) + 1151 = SallZz() (1) + [V (m1 = n2) 72,

IV (S1 = S2) 720 + Y111 = S2ll72(0)

t
= / /(mVSl — TLQVSQ) . V(m — 77,2) + "/(TL? — ng)(Sl — Sz)
0 JOQ
+’75V(7’Ll — TLQ) . V(Sl — SQ) dx ds.

We call the left hand side LHS and shall estimate the right hand side. Applying
the Cauchy—-Schwarz inequality we get

/Ot /Q(mVSl —naVSs) - V(ny — ny)dads
< VST = na VS| 20y [V (n1 — n2)| 2200
where we estimate the first factor by triangle inequality and Holder
||n1V51 - nQVSZHL?(Qt)
< lnallzoe@nl[V (ST = S2)ll 2200 + IV S2 1 olIn1 — nall L2y

The next term we estimate by the mean value theorem? and Young’s inequality

t
| [t = n)(1 = 52) deds < valnlda, lm = mallsollSi = Sellen
0 Q
< €, 0 [l =) Ims = ey + 1195 = Sl

where n (and later on S, too) denotes any solution, and their L>°-norm denotes the
uniform bound which we assumed.
Lastly, applying Cauchy—Schwarz to the last remaining term, we can summarize

LHS <(|Inllz=@qp) + 70) IV (St = S2)llz2(0n |V (n1 = n2) [l 2(020)
+ IVS[rop) [ — nall 2@ |V (1 — n2)|[ 20y
+ Cllny — n2||%2(szf,) + 151 — SQH%Q(szt)
<(||”||L°°(Qt) +70)?
- 4(1 —¢)
+ e[ V(1 = na)|| 7200, + Cle, [ VS~ @) In1 = nall 720,
+ Cllny — ”2‘&2@) + |51 — 52“%2(9,,)-

IV(S1 = S2)ll 120 + (1= &)V (1 = ma)l[72(0

By our assumptions on v (notice that the left hand side of the inequality for
is increasing in 0, i.e., if it holds for one dy, it holds for any 0 < 6 < d), the
gradient terms can be absorbed by the left hand side. After potentially estimating
the remaining non-negative terms on the left hand side, we find (after expanding
the L*(2;)-norm)

171 = n2||72() (1) +7]1S1 = Sal[ 720y (2)

nt ¢
< C(/ 1 = na |72y ds +7/ 151 = Sallz2 () ds).-
0 0

26Here we need that « > 1 instead of o > 0.
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Applying the Gronwall lemma, we conclude

1 = n2)| 720y + V191 = S2ll 72y < €T (1 — nall 720y (0) + 7111 = Sal| 720 (0))
—0,

which concludes the proof. O
Remark. A possible choice of 0y, ¢, is to take any € (0,1), set

([ Lo py + 1)°
4(1 —¢)

and take 69 = % In particular, any

4
([[f[ 2o (p) + 1)

0y <

works.

5.2 The parabolic-elliptic model

For the parabolic-elliptic model we consider the transformed system with v := S+dn
as in Section 4 and show uniqueness for it. One problem then is that we need to deal
with the quasilinearity. We do this by the so-called dual method or H~'-method;
where we use a very specific test function solving an elliptic equation.

~

Theorem 11. Let Q@ C RY d > 2 be a bounded Lipschitz domain, and let
a>1,0>0. Assume that any solution (n,v) of

ny = div((1 + 6n)Vn — V)
0=Av+n*—v+dn

with boundary conditions
Vn-v=Vv-v=_0
and initial condition n(-,0) = ng (with ng € L*(Q)) satisfies the uniform

a priori estimates n € L>®(Qr), v € L>®(0,T;Wh>(Q)). Then the above
equations admit at most one solution (n,v).

Proof. Let (ny,v1) and (ng2,vs) be two solutions. We take the difference of their
respective weak equations and get

/ (1 — o)) ds

L
+ / / (1L +0n1)Vng — niVor) — (1 4 0n2)Vng — noVus)) - Ve dsdaz = 0.
Jo Ja
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Consider the following elliptic problem (for any ¢ > 0)
—Ap=ny—ny in
Veo-v=>0 on 0f2

/godx=0,
Q

where we need the last equation for uniqueness. By the Lax—Milgram lemma
(using the Poincaré-—Wirtinger inequality) this problem admits a unique solution
© € L0, T; H*(2)). We shall employ it as a test function. Notice that (in the
sense of distributions at least) (n; — n2), = —Agy; and ¢(t = 0) = 0 because
(n1 —n2)(0) = 0 and ¢ = 0 is a (and thus the only) solution.

In order to deal with the quasilinear terms we use an auxiliary function
" d
b(n) = / 1+dzdz=n+ 5712, Vb(n) = (14 én)Vn.
Jo
Now, after integrating by parts

—HWHLQ @t / /v (n1) — b(ny)) - Vo da ds

= / /(anvl —nyVug) - Vo drds,
0o Jo

gives
_||V90||L2(Q / / nl - b ?12 )(771 —772) dxz ds

= / /(anvl —nyVuy) - Ve dzds.
0o Jo

We can expand the b-term

[ [tton) = b = s

L
4
= / /(m —ny)? + 5(71,% —n3)(ny — ny)drds
0 Jo

> [[n1 = nalliz,-

Now, we consider the second equation. We take the difference of the equations
solved by the two solutions, and test with ¥ = (v; — vg)

IV (01 = v2) 20 + lor = 2]l

¢
= / /('n,‘f —n3)(vy — v2) + 0(ny — na2)(v1 — v9) da ds.
Jo Ja

Adding the two equations (after estimating), where we scale the one with ¢ by a
factor of v for some ~ > 0 to be determined later on, we get

Y
§|\V90|\%2(sz)(t) +7llna — n2\|i2(szf) + [|V(v1 — Uz)H%?(szg + [lor — U2Hi2(szf)
t
:7/ /(val —ngVuy) - Vpdads (45)

/ / (nf —n5)(v1 —va2) + (1 — n2)(v1 — va) dards,
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where we shall estimate the right hand side. The last term can be estimated by the
Cauchy—Schwarz inequality and Young’s inequality

t
1
/ Ld(nl - TLQ)(Ul - Ug) dx ds < 62Hn1 - nQH%Q(Qt) + ZH’Ul — 'UQH%Q(QQ.
0

The second to last term can be treated with the mean value theorem

t
| [ =00 = wa) s < g = n8llo0 o1 = val0
0 JO
< OL’H”H%;;(QT)HW - n2||L2(Qt)HU1 - U2HL2(Qt)
. 1
< (OéH”HLool(QT))QH”l — nalT20, + ZHUl — vall72(0y-

The last remaining term can be treated with the triangle inequality as in the proof
for the parabolic-parabolic model

¢
~y / /(anvl —neVuy) - Vpdrds
Jo Ja

< ylln Vo = na Vs 20 | Vel L2
< (Il e |V (01 = v2)| £20) + | VO Loyl In1 = 12l 22000) [ Vel 2200)

1 1
< IV = w)liz@,) + 5l = n2liz, + CO lIn e, [ Vol ) Vel 72

All the terms on the right hand side of (45) can be absorbed by the left hand
side, provided that v > (aHnH%;l(QT))Q + 62, For convenience we choose v =
(O‘H”H%QQT))Z + 6%+ 1. This way, we keep the norm of n; —ns on the left hand side.
After absorbing and estimating some non-negative terms on the left hand side, we
get

t
B y
2Vl < € [ 1Vl ds.
By the Gronwall lemma we conclude that
V=0 fora.e.t.

Going back to the estimate after absorbing terms from the right hand side, but
before neglecting additional non-negative terms on the left hand side, we get

U1 — UQH%Q(SZt) <0.

1 1
[n1 — nzHi‘Z(m) . §HV(U1 N 'UQ)H%Q(Qt) t3

Since this holds for any ¢, the proof is done.

99



“jaylolgig usipn N1 1e wud ul ajgerene si sisay) syl Jo uoisian [euibuo pasoidde ay |
JeqgbBnyian yaylolqig usipy NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ apjonipab ausiqoldde aiqg

qny a8pajMmous| JNoA

Srayrolqie

60



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

6 Appendix

Lemma 12 (Norm equivalence in [12(f2)). Let Q C R? be a bounded Lipschitz
domain. Consider the space

Y :={uel*Q): Vu-v=0 on dQ}.

Then the following norms are equivalent on 'Y

lellzray = D 1Dl Z2c),

o] <2
[ully = 1 AullZa0) + I VullZag) + llul T2,
lulls = llAullZ2) + Vel Lz + lulZi g

Proof. For ||| z2() ~ |||+ we only need to consider second order derivatives. Argue
by density and consider v € Y N C>(Q)

Z\\(%ﬁmju\\m @ = Z / (02,00, u) (0,00, u) dv

3,j=1 3,j=1"

—Z/v Dy u) - V(0 u) da
— Z /a Q(axju)(V(amju) -v)ds — / (D0, u) A (D, 0) Az

/Vu A(Vu)dx /Vu V(Au)dz
= /sz AuvAudz = HAuHig(m,
so these are in fact equal.
For ||| g2y ~ ||-||+« we consider two inequalities. Since 2 is bounded we get
lullZ ) < 190 [ullZ2),

which gives one direction. For the other one consider the Sobolev embedding
H?(Q) — L'(Q) (for any dimension). This gives

lull?, < 12wz + VulLzg) + Cllullizg < 1+ Ollully < Cllullisg).
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Lemma 13 (Lax-Milgram). [9, Theorem 1 in Chapter 6.2.1] Let H be a real
Hilbert space. Assume that

a: Hx H—-R

s a bilinear map, which is continuous, i.e., there exists a constant o > 0 such
that

la(w, v)| < allullullvlla Vu,ve H,
and also coercive, i.e., there exists a constant 3 > 0 such that
Bllull?3 < a(u,u) Yu€ H.

Let F: H — R be a continuous linear functional on H. Then there exists a
unique element u € H such that

a(u,v) = F(v) Yv e H,

i.e., a unique solution to the problem a(-,v) = F(v).

Corollary 13.1 (Lax-Milgram). With the notation of Lemma 18 the unique solution

u € H satisfies the bound

Cr
ullg < —,
lella < =3

where Cr s the continuity constant of F, i.e.,

|F(v)| < Crllvllp Vo€ H.

Proof. If uw = 0, the bound holds. Otherwise, by coercivity, the fact that « is a
solution (and v € H is an admissible test function), and the continuity of F', one

gets

Bllullz < la(u,u)| = |F(u)| < Cr

||z

Dividing by ||u||y and rearranging concludes the proof.

Lemma 14 (Leray—Schauder fixed point theorem). [10, Theorem 11.6] Let
X be a Banach space and let B be a compact mapping

B:X x[0,1] > X

such that B(u,0) = 0 for all u € X. Suppose there exists a constant M such
that

|u||lx < M

for any potential “fized points” (u,0) € X x [0,1] satisfying B(u,c) = u.
Then the mapping u — B(u, 1) has a fized point.
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Lemma 15 (Eberlein-Smuljan). /27, Theorem 21.D] Each bounded sequence
in a reflexive Banach space has a weakly convergent subsequence.

Lemma 16 (Convergence from Subsubsequences). Let (X, T) be a topological
space, and (Z,)nen @ sequence in X. Assume that every subsequence of ()
has a subsubsequence, which all converge to a common limit x € X, then the
original sequence converges to that limit x.

Proof. By contradiction: Assume that z,, 4 z, i.e.,
AU € T with z € U such that VYN e NIn > N: z, ¢ U.
Define
K:N— N, N—min{n>N: z, ¢ U},

which is well-defined by the above assumption. Now define a strictly increasing
mapping inductively by?’

{:N— N,
{5(0) = K(0),

{(n+1):=min{j cran K : j > {(n)}.

This induces the subsequence (Ll?g(n))neN. Notice that any such element lies outside
of U. If there were a convergent subsubsequence of (:z:g(n))neN, then there would have
to be an index N € N such that Vn > N we would have z,) € U, but this is a
contradiction, because no such element is in U. Il

Lemma 17 (Rellich-Kondrachov theorem). [1, Theorem 8.11.4] Let Q) C R?
be a bounded domain with Lipschitz boundary, and m € N U {0}. Then the
embedding H™(Q) — H™(Q) is compact.

Lemma 18 (Compact embeddings). [1, Theorem 8.11.5, Theorem 8.11.6]
For bounded domains Q@ C R with Lipschitz boundary and 0 < s; < s9, the
following embedding is dense and compact

H*(Q) —— H* ().

Under the same assumptions on €2, let 1 < p < oo and 0 < s1 < sy such that
Sg > %, then the following embedding is compact

We2P(Q) —— W3P(Q).

2"This construction makes sure that we do not need any kind of axiom of choice. We fully rely
on the well-ordering of N.
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\.

Lemma 19 (Gagliardo-Nirenberg inequality). Let Q C R? be a bounded Lip-
schitz domain. Let m € N\{0} be a positive integer, 1 < p,q,r < oo, and
0 <6 <1, such that

with two special cases:
1. If rm < d and q = oo, then one needs to assume that u € Li(Q) for
some q > 0.
d

2. If 1 <r < oo and m — % is a non-negative integer, then one needs to
restrict 0 < 6 < 1.

Under these assumptions the following inequality holds with a constant C in-
dependent of u

lull 2oy < Cllullwmr@ el izt (46)

Proof. For any k € N and 1 < p < oo there exists an extension operator

which is linear and bounded (see [23, Theorem 4|). Using the Gagliardo—Nirenberg

E:WEP(Q) — WFP(RY)

inequality on R? (see [21, Theorem p. 125]), we get

lull oy < 1Bl oy < Can||D™ ()| oy | Bull o,

< Con | Bullyymr ey | Bl 2 aa) < CCon|[ulliym.r oy lull 7).

Lemma 20 (Sobolev embedding). [1, Theorem 8.12.4 and Remark 8.12.4]
Let Q C R? be a bounded Lipschitz domain, and 1 < p < oo, m € NU {0}.
Then the following continuous embedding holds

W™mP(Q) — LY(Q)
o z'f%—%>0,then1§q§q* withql—*:
o if]l)—%:(),thenlgq<oo,
° zf——%<0,then1§q§oo.

Moreover, form—;i7 =k+o withk = Lm—gj e NU{0},0 <o <1 the
continuous embedding holds

W™P(Q) — C*7(Q),

where C*° denotes a Hélder space: functions with continuous derivatives up
to order k, and k-th order derivatives are Holder continuous with exponent o.
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are such that % - % =1, then for any € > 0 one has

ab <ed? + ———
qp/Ped/p

Lemma 21 (Young inequality with ). Leta > 0 and b > 0. If 1 < p,q < o

b = ed? + C(e)b.

Proof. The standard Young inequality shows

MP 1
— -1 P
ab = (aM)(bM ™) < p a +qu

Choosing M = y¢/pe then gives the statement.

be.

subsequence (f,,) and a function h € LP such that
1. fo.(x) = f(x) a.e. on Q,
2. | fu. ()| < h(z) VE, a.e. on Q.

Lemma 22 (Inverse dominated convergence theorem). [8, Theorem 4.9] Let
1 < p < oo. Let (f,) be a sequence in LP and f € LP, for some o-finite
measure on a set Q. If ||f, — flloe — 0 as n — oo, then there exists a

27 <+ C(B,n)

holds.

Lemma 23 (Some elementary inequality). For any 0 < S < 1/2 andn > 0
there exists a constant C(83,n) such that for all x > 0 the inequality

Proof. Consider

28-1
€T o, +
_ Zlfﬂ z—0 . 0

xf—1 ’

so there exists xzy =
equivalently 2%°~! < nzf~1. On the other hand

1-28 00

771‘7/3 +x — 00,

xo(B,n) such that for all 0 < x < zy one has

26-1
xz l
2B—1 <7 or

so there exists z; = x1(3,n) such that for all z > x; one has nz =% + 2% > 1
or equivalently x2°~1 < na®~! 4+ 1. This settles the edge cases. For the remaining

“middle part” set

C(B,n) := max{ max z*°7' 1},

z€[zo,71]

which is finite because 22’7 is continuous on the compact set [zg, 71] C (0,00). O
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Lemma 24 (Stampacchia). Let Q C R be a bounded Lipschitz domain. Let
G : R — R be a Lipschitz function, and p € (1, 00).

o Ifue WHP(Q), then G(u) € W'2(Q).

o If additionally G’ has a finite number of discontinuities, then a(;’:iG(u.) =

G’ (u)a%“ almost everywhere in €.

Proof. Let (u,) € C*(2) be a sequence converging to u strongly in W'?({2). Then
G(u,) is a bounded sequence in W'?(Q), since by Rademacher’s theorem G’ exists
almost everywhere and is bounded in L>((2). Since p € (1, 00) the space W'?(Q) is
reflexive. Thus, there exists a weakly convergent subsequence G(u,, ) and a function
v € WH(Q) such that G(u,,) — v in W'?(Q). Because G(u,) — G(u) in the sense
of distributions, we conclude G(u) = v € W'?(Q) by identifying the limits.

For the second part let first G € C*'(R), and again w,, — u in W?(Q). Then for
any test function ¢ € C°(Q)

op . rrOtn
/Q G<u”)6—xi de = —(/QG (wn) 8xi¢dil?;

and we can pass to the limit n — oo by inverse dominated convergence. Thus, the
distributional derivative of G(u) is equal to G’ (U)BS_Z in L2(Q2). In particular, they
coincide almost everywhere. For the general case, denote ¢; € R the points where
G’ is discontinuous. Since there are only finitely many points (in particular they do
not have an accumulation point) we can write

N
S 1+ H,

G/:F/+ Oéj 5 =,
j=1

with I continuous, the shifted Heavyside function H, (t) = sign(t — t;), and some
real numbers «;; which corresponds to adding (or subtracting) a jump height of
«; at the point ¢;. We note that F' € C'(R), which we treated already. The last
remaining part is f1;,, but this is precisely the weak derivative of the absolute value
|t — t;|. Thus, approximating it by differentiable functions ¢t — +/t? 4+ ¢ proves the
claim. O

Corollary 24.1. In particular, for functions f,g € W'P(Q) for p € (1,00) it holds

f+rg+|f—g|

1P Q).
5 e Wr(Q)

max{f, g} =
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