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Abstract 

In this thesis we consider the two-dimensional Keller-Segel model with a superlinear 

production term. This means we investigate the following nonlinear system of partial 

differential equations 

ny = div(Vn — nV.S) 

vs = AS +08An+n"—- 5 

in a domain ©) and times t > 0, with homogeneous Neumann boundary conditions 

Vn-v=VS.v=0 

on the parabolic boundary O0, t > 0; and initial conditions n(0,-) = no(-), y5 (0, :) = 

ySol-) in ®. 

Our goal is to prove that weak solutions to this problem exist globally in time 

(Section 3) and that solutions are bounded for all time (Section 4). To this end we 

rely heavily on the use of Bochner and Sobolev spaces (see Section 2). Our main 

strategy involves an implicit Euler discretization in time, and adding regularizing 

4-th order terms. In the end we apply compactness arguments to justify the limit 

of vanishing regularization and discretization parameters. 

For the global boundedness result, we perform a change of variables and make use of 

elliptic and parabolic regularity theorems to derive the necessary estimates. Under 

additional regularity assumptions we also show that smooth solutions exist based 

on a bootstrapping argument (Section 4). 

We conclude by proving that solutions are unique, i.e., under suitable regularity 

assumptions on solutions we prove that at most one solution can exist. This is done 

separately for either the parabolic-parabolic or parabolic-elliptic model (Section 5). 

In the Appendix (Section 6) we comprise theorems and lemmata used in this thesis, 
in applicable form and unified notation.





Kurzzusammenfassung 

In dieser Arbeit geht es um das zweidimensionale Keller-Segel-Modell, wobei wir 

einen superlinearen Produktionsterm erlauben. Das bedeutet, dass wir das folgende 

nichtlineare System partieller Differentialgleichungen betrachten 

ny = div(Vn — nV.S) 

vs = AS +08An+n"—- 5 

in einem Gebiet ©) und Zeiten t > 0. Wir verwenden außerdem homogene Neumann- 

Randbedingungen 

Vn-v=-VS-v=0 

für den parabolischen Rand O0, ¢ > 0. Damit das Problem vollständig ist, stellen 

wir noch die Anfangsbedingungen n(0,-) = no(), YS(0,-) = YSo(:) in D. 

Das Ziel dieser Arbeit ist, zu zeigen, dass schwache Lösungen dieses Systems ex- 

istieren — und zwar für alle Zeiten (Section 3). Des Weiteren zeigen wir, dass für 
das parabolisch-elliptische System (y = 0) Lösungen beschränkt bleiben (Section 4). 
Dabei ist unsere Hauptherangehensweise, dass wir die funktionalanalytischen Eigen- 

schaften von Bochner- und Sobolev-Räumen (siehe Section 2) ausnutzen, wodurch 
wir Kompaktheitsresultate anwenden können. Wir lösen ein approximierendes Prob- 

lem, bei dem wir das implizite BEuler-Verfahren für die Zeitableitung verwenden; und 

zusätzlich regularisierende Terme vierter Ordnung hinzufügen. Zum Schluss argu- 

mentieren wir mit schwacher und starker Kompaktheit, um so den Grenzwert für 

verschwindende Regularisierungs- und Diskretisierungsparameter zu rechtfertigen. 

Um zu zeigen, dass Lösungen global beschränkt sind, verwenden wir eine Vari- 

ablentransformation und stützen uns auf Regularitätsresulate für parabolische und 

elliptische Gleichungen, um die notwendigen Abschätzungen zu erhalten. Unter 

einer zusätzlichen Regularitätsannahme an die Daten zeigen wir, dass glatte Lösun- 

gen existieren. Dafür verwenden wir Bootstrapping (Section 4). 

Zum Schluss zeigen wir noch Eindeutigkeit der Lösungen. Konkret heißt das, dass 

unter gewissen Regularitätsannahmen an Lösungen nur höchstens eine Lösung ex- 

istieren kann. Für den Beweis unterscheiden wir zwischen dem parabolisch-parabo- 

lischen und parabolisch-elliptischen Modell (Section 5). 
Im Anhang (Section 6) sind die wichtigsten Sätze und Lemmata aufgelistet, die wir 

verwenden, in der Form, in der wir sie brauchen, und in entsprechender Notation.
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1 Introduction 

1.1 Chemotaxis and its role in science 

In this thesis we consider a system of partial differential equations which model 

chemotaxis. Chemotaxis describes the directed movement of cells based on chemical 

gradients, i.e., if there is more of a chemical substance at a certain point, then cells 

are attracted (or repelled) by it and will move in response. In our model the specific 

substance is also produced by the cells themselves. 

This phenomenon can be observed, e.g., in slime mold (a general term for various 

organisms that can live as single cells as well as form multicellular structures), see 

17]. In order to communicate between cells they will produce a certain chemoat- 
tractant which will attract more cells. This can be used for reproductive purposes. 

After reproduction, cells might use a similar, but opposite, mechanism to disperse 

again, governed by chemotaxis. Thus, chemotaxis models play an important role in 

biomechanics. 

It has also been suggested that chemotaxis is of great importance when studying 

cancer cells. The idea is that single cancer cells are not as harmful as clusters which 

may migrate through the body and form metastases [4]. An understanding of how 

such cells form aggregates based on chemoattractants is thus also important in the 

study of breast cancer. 

1.2 History and derivation of the model 

The name of the (Patlak-)Keller-Segel model goes back to the works of Clifford 
Patlak [22] in 1953, and Evelyn Keller and Lee Segel |17] in 1969. In his work, 
Patlak considers applications of multi particle random walks where movement is 

driven by not necessarily independent randomness, in order to derive partial dif- 

ferential equations describing the number of particles at a given point and time. 

During his derivation there are many assumptions on certain effects being negli- 

gible (like particles’ interaction with each other, or slow changes of quantities — 

which justifies truncation in Taylor series), but, as the author points out himself, 

for some real life experiments his equations did not predict the actual behaviour 

correctly. These errors were attributed to certain (non-mathematical) assumptions 

in the derivation which did not apply to the given experiment — such as the motion 

of solvents surrounding particles or movement induced by heat. So his work still 

laid the foundation for future research. 

Later on, Keller and Segel wrote a paper |17| on the aggregation of amoebae, where 

chemotactic interaction is induced by acrasin (a chemical messenger). In their work 
the authors derive a model for movement of cells driven by chemotaxis, i.e., the 

cells are attracted (or repelled) by the chemotactic agent. Additionally, the cells 

themselves produce this agent. The authors then derive a coupled system of partial 

differential equations which models the densities (as opposed to numbers) of cells 

and the chemical. They even include another factor of a second chemical dissolving 

the messenger agent. Their main finding is that (under certain conditions) cells will 

refrain from a uniform distribution over a given area, and instead start aggregating. 

This is remarkable because one would intuitively think that having no gradients in 

density at all would be a stable steady state of the system, i.e., with everything 
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spread out equally there would be no need for movement. 

The first rigorous derivation of the Patlak-Keller-Segel equations via an interacting 

stochastic many-particle system was done by Stevens |24| in 2000. In her work 

she considers a finite number of bacteria and particles of a chemical substance in 

R@ whose movement is governed by a stochastic differential equation each. The 

chemical particles are merely driven by Brownian motion, whereas the bacteria’s 

equations also include a drift term depending on the chemical. It is then shown that 

(under suitable renormalization), as the number of bacteria and particles goes to 

infinity, the system converges to a continuous one, where the solution functions are 

then densities of the respective particles. 

For a comprehensive summary of different works on the Patlak-Keller-Segel model 

we refer to |14], where also various approaches and findings are presented in a suc- 

cinct way and readily prepared for anyone who wants to look up existing results on 

the topic. 

1.3 Physical interpretation of the equations 

The stochastic many-particle approach [24] suggests the following interpretation of 

the terms appearing in the equations. For the general system 

n, = div(uVn — x(n, S)nVS), 1) 

the function n(x, t) describes the density of cells (bacteria, amoebiae, etc.) at a point 

x at time ¢; the function S(z,t) describes the density of the chemical substance. For 

the given functions we have 

e x(n,S) is the chemotactic sensitivity of the cells, i.e., how strongly they are 

attracted (or repelled) by the chemical, 

e 3(n, 5) isthe production rate of the chemical, e.g., ifit depends on S, this could 

mean that cells will not (or will particularly) produce more of the chemical if 
there already is a certain amount of it, 

e y(n, 5) isthe decay rate of the chemical, i.e., for example how fast the chemical 

dissolves or evaporates, or it could be absorbed by cells. 

The remaining non-negative parameters 

e ;1 is a measure of how strong the cell diffusion is, i.e., the bigger 4 is, the 

stronger the diffusion, which means that cells will tend to drift away from 

each other and spread out, 

e nis the corresponding diffusion coefficient for the chemical density. 

In our particular model, we take y = 1, 3 = n® 1, v = 1, and the diffusion parame- 

ters are u =n= 1. This means that the cells’ (amount of) reaction to the chemical 

does not depend on the actual amount of the chemical (but just on a difference of 

it, a gradient of it) or the amount of cells; they will always be attracted to where 

more of the chemical is. 

10



The superlinear production term n“ describes that, based on the number of cells 

at a point, much more of the chemical is produced by more cells (i.e., by a higher 

density of cells). In particular, this will encourage already crowded cells to produce 

even more of the chemical, which will attract even more new cells, which will in turn 

increase the production even further. 

The decay rate y = 1 here means that the chemical density will decrease ”exponen- 

tially”, i.e., the higher the density, the faster the decrease; if the density is already 

low, then its decrease rate is also lower. It would decrease exponentially if there were 

no cells (then the production term vanishes) and the chemical were distributed evenly 

(then the diffusion term vanishes); in this case the second equation would simplify to 

the ordinary differential equation S’(t) = -S$(t), with the solution S(t) = S(0)e. 

Our particular model also includes another term öAn in the second equation. This 

cross-diffusion term models (arbitrarily small, due to ö > 0,) diffusion effects for the 

chemical based on the amount of cells, i.e, the more cells there are, the more the 

chemical will spread out (and away) from the crowded area. In total our system 

reads 

ny = div(Vn — nV.S) 

vs = AS +08An+n"—- 5 

in 2,¢ > 0. The domain 2 is thought of as a (bounded) container or box where the 

cells and chemical move. Since we consider a two-dimensional domain, one can think 

of a very thin layer like on a microscope slide or Petri dish. The parameter y > 0 

is a measure of the different time scales for the cell movement and the distribution 

of the chemical [13]. For y = 1 the system is called the parabolic-parabolic model, 

whereas for Y = 0 it is the parabolic-elliptic model. 

We also need boundary conditions for the equations. It makes sense to take homo- 

geneous Neumann conditions 

Vn-v=VS.v=0 on 0€2,t > 0, 

which means that nothing exits or enters the container (or slide). 

1.4 Problems with the classical formulation of the equations 

The rich mathematical features of the equations come with some downside as well. 

While in one spatial dimension solutions will remain bounded for all times (if the 
initial function is bounded) [8], in higher dimensions finite time blow-up can occur. 
This means that cells crowd and chemoattractant production outgrows the diffusion 

effects, which leads to the cell density to grow to infinity. This would mean that 

arbitrarily many cells aggregate in single points!. However, this is not desirable from 

a physical or biological point of view. Thus, several ways to prevent overcrowding 

have been suggested and investigated in the literature. Also, precise conditions for 

finite time blow-up and its prevention have been explored. A critical value is the 

total number of cells, which does not change over time, and is given by 

M= | mota)da = | ntenar 

1 This will (under certain assumptions) be in the form of several Dirac point measures [8]. 
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In two dimensions, if the mass exceeds 8 and the initial distribution is concentrated 

enough, i.e., if 

| «|? dx 

is sufficiently small, then there exist solutions which blow up in finite time [20]; 

meaning, if the initial distribution is heavily centred around x = 0, then cells will 

crowd there. On the other hand, if M < Sr, then solutions exist globally in time 

and remain bounded. [ M = 8r and =R°, then a global solution exists which 

might become unbounded for t — oo [8]. 
For dimensions three and higher (for N = R®), under the assumption that for some 

to € R® the quantity 

/ wo(z) |z — ol” de 
Re 

is sufficiently small, there exists a solution (to the parabolic-elliptic system) which 

blows up in finite time [14]. Thus, the search for bounded solutions turns out to be 
much more involved for higher dimensions. 

In the paper by S. Hittmeir and A. Jüngel [13] they considered the two-dimensional 
case with the additional öAn cross-diffusion term and showed that solutions exist 

globally (with a linear production term) in the parabolic-parabolic model, and that 

solutions are bounded for the parabolic-elliptic model. 

We shall continue their investigations, but with superlinear production n“ for 1 < 

a < 3/2, which also covers the linear case from [13]. Our results include global 

solutions for the parabolic-parabolic model, and solutions which do not blow up in 

finite time (but might blow up as t — x) in the parabolic-elliptic model. 

1.5 Possible ways to avoid finite time blow-up 

As described in the previous section, solutions might blow up after a finite time, 

which leads to the question of how to modify or restrict the original model to prevent 

this behaviour. In the literature a whole lot of ways have been suggested. These 

include 

e modifying the chemotactic sensitivity by 

— a volume-filling effect? [5], i.e., upon reaching a certain threshold cells 

will no longer be drawn to the chemical, and attraction will decrease 

with rising cell density. 

— lower powers in the sensitivity® [15], i.e., cells are in general less strongly 
drawn to the chemical. 

— a non-local gradient* which describes that cells only sense the chemical 

over a certain (finite) distance [12]. 

e changing the cell diffusion 
  

This would be x(n, s) = (1 -n) in the parabolic-elliptic version of (1). 
®This would be x(n, $) = n?”! in (1) for some p < 3, where d is the spatial dimension. 
This would be replacing VS in x(n, S)nVS in (1) by a particular integral. 
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— by degenerate diffusion® [19, 18, 6], i.e., larger amounts of cells will in- 
crease the diffusive effects even further. 

— taking n, = div(n(l — n)V(n — 5)) as the first equation in (1) [5], thus 
combining the volume filling effect for the chemotactic sensitivity with 

the same for the cell diffusion. 

e introducing death of cells® [25] 

e cross-diffusion’ [13, 16], i.e., aggregation of either the cells or chemical also 

leads to dispersion of the other (and not just itself). 

In this thesis we will choose the last approach. 

1.6 Novelty of the results 

Our approach of adding a cross-diffusion term to the Keller-Segel model yields global 

existence of solutions for superlinear production. This is particularly remarkable 

because in [26] the author shows that (at least for being a ball) the critical 
exponent for the production term is & = 3, meaning that for lower values bounded 

global solutions exist, whereas for bigger values there exist solutions (with arbitrary 

initial cell mass) which blow up in finite time. 

However, since we consider a two-dimensional model our critical exponent would 

be «a = 1. In [13] it was shown that for & = 1 bounded global solutions (to the 
parabolic-elliptic model) exist, and global (potentially unbounded) solutions exist 

for the parabolic-parabolic model. 

In this thesis we further expand on this result and prove existence for production 

terms of order less than 2. This stresses the regularizing effect of cross-diffusion, 

where we need to re-emphasize that this method works for any ö > 0, i.e., arbitrarily 

small cross-diffusion. 

  

5This would be replacing Vn in the first equation of (1) by f(n)Vn for some function f. 
6This would be adding a g(n) term to the first equation of (1). 
"This would be adding An to the second equation and/or AS to the first equation in (1). 

13



14



2 Notation 

2.1 Derivatives 

For functions f: 1x Q — R“%, where IC Rand 0 C R® both open, we use several 

ways to denote different types of derivatives. We always think of such functions as 

functions of time and space and will use f(t,z) (or f(z,t)) to denote t € I, x € (. 

Then we use the following notation for time derivatives 

0 of 
Mar of = . 

There is a bigger variety of spacial derivatives, the basic ones being 

0 of 
    nf 

for the partial derivative in the direction of the i-th canonical basis vector of R°. 

For higher order derivatives we use 

    

  

8 92 f 
8331833]‘]0 02,0%; ’ Jf ’ Jf 

and 

0? 0 \2 

gzl = (g5 S =0t 
In partial differential equations it is ubiquitous to use certain symbols for combined 

derivatives like the gradient and the divergence (which we assume only ever act 

on the spatial components). We shall use the following notation for real-valued 

functions f(z,t) € R and vector-valued functions F'(z,t) = (Fy,..., Fy)(x,t) € R? 

  

O, f 
Vf= called the gradient, 

Of 

OF, 
divF = 2 3 called the divergence, 

4 5 f 

Af = 5 called the Laplacian, 
— Or: 

A’f=A(A), 
o f : .. 

D"f = m) o<m:<m the m-tensor of mixed derivatives of order m, 
02) 00," T in 

>; u=m 

D'f=\Vf, D°f = Hess f, 

DO = o8 O 
for integers m € NU {0} and multi-indices a € (N U {0}. 
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The meaning of derivatives 

We consider three increasingly general meanings of the above derivatives: the clas- 

sical pointwise derivative, the weak LP-derivative, and the distributional derivative. 

The classical derivative is well-known to be defined as the limit of difference quo- 

tients. In this thesis we will mostly use weak derivatives. Let f € L .(Q) and 
¢ € C(Q), then f has a weak derivative if there exists a function g € L;,.(€2) such 

that the following equality holds 

I: de = - | soda Vo € C(9), 
0" 0z 0 

and we set 0,,f := g. The distributional derivative is defined as follows. For a 
distribution 7’ acting on the space CX(N), we set (0,,T)(&) = -T(0,,®) for any 
® e CX(2). In particular, any distribution has infinitely many (distributional) 

derivatives. 

  

Notationwise we do not distinguish between classical, weak and distributional deriva- 

tives. When in doubt, any derivative is first to be understood in a distributional 

sense. If the function has enough regularity to admit a weak or classical deriva- 

tive, then it is to be understood as such. This seeming ambiguity does not affect 

the meaning, because — if they exist — the different types of derivatives coincide; 

that is, distributional derivatives are regular distributions that lie in some LP-space 

and agree with the weak derivatives almost everywhere, or weak derivatives have a 

representative (in their equivalence class of functions that agree almost everywhere) 

that is classically differentiable. 

2.2 The domain {? 

Throughout this thesis we will denote by a domain in R®, where we use the term 

domain for an open, non-empty, connected subset. We will also specify the regularity 

of the boundary of 2, denoted O0. If we say that HN € C!, then this means that 

the boundary can locally be parametrized by continuously differentiable functions. 

Similarly, if we say that 0 is a Lipschitz domain (or just Lipschitz), then we mean 

that ON e C®! and its boundary can locally be expressed as the image of Lipschitz 

continuous functions, and analogously for C"!,k EN. 

When dealing with space and time, we shall denote 27 := Nx (0, T') the space-time 

cylinder for some T € (0, oo]. 

Upon using the Gauß-Ostrogradski theorem for multidimensional integration by 

parts, we will encounter boundary integrals. In particular, we will need the outer 

normal unit vector at any point of the boundary, which we will denote by v. The 

assumption 92 € C! ensures that such a vector exists at every point of the bound- 

ary. Under the weaker assumption IN € CO! we only get existence almost every- 

where (with respect to the lower dimensional Hausdorff-measure) on O0, but this 
is enough for integration. (One could require even less, namely that © has locally 

finite perimeter, but this generalization is not of interest in this work.) 

2.3 Topology 

Let (X,7) be a topological space, that is, X is any set and 7 < P(X) is the 

topology on X. We denote 
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e Athe closure of a set A C X w.r.t. T, 

e OA the boundary of A. 

For spaces with more structure, such as metric spaces, normed spaces or spaces with 

a scalar product, we implicitly understand it with the induced topology respectively. 

We shall also drop the second argument and refer to X as a topological space, when 

there is no ambiguity. 

2.4 Convergence 

There is a lot of different meanings to arrows (—) in mathematics. We try to always 

specify the meaning right before or after any arrows denoting convergence. For our 

purposes we need four different types of convergence. 

e For a sequence (x) in a Banach space (X, ||-||) and x € X we denote 

z, — x (strongly) in X 

for norm convergence, i.e., ||z, — x| >20 asn — x. 

oe \We write 

%,— x weakly (in X) 

for convergence in the weak topology, i.e., for any v € X’ (where X’ denotes 

the dual space of X) we have (v, x, — x)x’ — 0 as a real sequence. 

e For a sequence (v„) in X’ and v € X’ we write 

v, =" v weakly* (in X) 

for weak*-convergence, i.e., for any x € X we have (v, — v, x)x» — 0 as a real 

sequence. 

e For a sequence (w„) in some Lebesgue space IP(N; u) and u € LP(9; u) (for 
some 1 < p< oo and measure 1) we write 

U, — u aeinN 

for pointwise convergence almost everywhere, i.e., u,(z) — u(x) pointwise for 

allx eD\N where u(N)=0. 

2.5 Spaces 

Lebesgue spaces IP(Q; u) 

We denote LP(Q; u) the Lebesgue spaces, where 1<p< oo, (l is any set, and u is 

a o-finite measure on ©). We say that a function f : Q — R belongs to LP(Q; u) if 

it is measurable and its ZP-norm is finite, i.e., 

1/p Il = (OP Aut)" forp 2 oc 
[f 1| 220 (@) := esssup [ f(z)]. 

zen 
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As always we shall identify functions that agree ‚ı-a.e. to make ||-||7>(o;., a norm. 
We refer to these equivalence classes loosely as just a function in LP(9; u). 

For p = 2 the space L?(N; 1) equipped with the following scalar product is a Hilbert 

space 

(fg) 120) = | Staat ) due). 

We shall drop the measure u in the notation if we take the d-dimensional Lebesgue 

measure on DC R®, and just write LP(9). 

Sobolev spaces H*(N), W*"P(Q), and H°(9) 

As a generalization of Lebesgue spaces to include differentiability we define *(®) 

for a domain N C R® as the Hilbert space 

H*(9):={feL1?(9): D*fe1?(9), |a|=0,...,k} 

for any integer k € N U {0}, where the derivatives are to be understood in a dis- 
tributional sense. This gives a space of k times weakly differentiable functions. We 

equip this space with the scalar product 

(f, I) mr9) = > (D°f, D°g)12(9)- 

lal<k 

The more general notion are the W®P(Q)) spaces, where k € NU{0} and 1 < p < co. 
We set W®P(Q) as all the functions with finite W""-norm, where 

le = (DA) 
|| <k 

For p = 2 we get W"?(N) = H*(Q), so we generalize the order of integration. Notice 

also that 

IFlweroy.n = > ID" Foo) 

lal<k 

is an equivalent norm. 

A different way to generalize the /F(N) spaces is to allow for any kind of values for k. 

This could be done via extension operators and Fourier-transform, or equivalently 

(and more directly for this presentation) by two steps (see [1, Definitions 8.10.6, 
8.10.7]). For 0 < co < 1 and arbitrary D < R® define 

- ul) = ul H°(9) == {u € L*(Q /AXQ - a dedy< oo}, 

TFyY 

which is a Hilbert space with the corresponding scalar product 

(u, v) (0) = (u, v )22(0) + Mh. m u) dz dy.   
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And also define H°(Q) := L?(Q)). For arbitrary s > 0,s € R, write s = |s| + o for 
|s] ==m € NU{0} and 0 < o < 1. Then set 

H*(Q) :={ue H™(Q): D e HD), |a| = m}, 

which is a Hilbert space when equipped with the scalar product (for o # 0; in this 

case just take the /I”-scalar product) 

(u, v) Hs(9) "=(U, V) um(g) 

b5 [, D) = D D) DU) a, 
= y| 7 
  

lae|=m ty 

The most important use of the F*(N) spaces for us are (compact) embeddings into 

other Sobolev spaces. So we will never actually use this definition. 

Bochner spaces I/P(0,T; X) and W*r(0,T; X) 

We will want to distinguish different kinds of regularity of functions in terms of 

space or time. We could already define a notion of regularity for space-time by 

taking LP(N x (0,T)) (or any other Sobolev space W*P over the same set). Our 
goal now is to define a space of functions that allows for different integrability and 

differentiability. These are the Bochner spaces. If we have a function f(x,t) : 

Nx (0,7) > R we could simply fix one argument and view it as a function in just 

the other argument. Then t > u(t,t) is a function-valued function, which takes 

values in the space of functions on ©). We could impose regularity assumptions on 

this space, and then ask for regularity of the former map with values in that space. 

In general, let X be a Banach space. Then u: (0,T) — X is a Banach space-valued 

function and we set 

IP(0,T;X):={u:(0,T)> X: |ulıo,r.x) < 00} 

ul := |lu)IIx Iron: 

In the important case of X = L’() the norm can be written as 

T r p/r 1/p 
|l e o, 707 (02)) = (/ (/ |u(z, b)) de) dt) 

0 Q 

for p,r # oo, and the usual adaptations for the essential supremum. 

Similarly, we define the Sobolev Bochner spaces (we only need X = W°"(9) for 
Q C RY 

W20, T; WO (Q)) = {u : |ullwrsorwer @)y < oo} 
k T . r p/r 1/p 

\ullwe»o,r:wer (0) =) (/ (I [japan de) dt) 

j=0 lal<e 

with the standard changes for p = © or r = oo. This norm is equivalent to 

all. = 3 3 (/OT (/Q 8 D*u(x, 1) de)" ar)”. 
=0 Ja] <t 
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k k1 k C"-spaces, C*"', and C. 

The classical notion of continuity and differentiability is captured in the spaces C* 

for k € NU {0}. Denote by C°(X,Y") the space of continuous functions from any 
topological space X to another space Y. For integers k > 1 denote by C*(X) (with 

X CR) the space of real-valued functions with continuous (classical) derivatives 

up to order k; and define 

CX:= CHR). 

Since continuous differentiability is a very strong assumption, a less restraining one 

(with similar consequences) is Lipschitz continuity — the space C"'!(X). We say a 

function f is Lipschitz continuous if there exists a constant L (the Lipschitz constant) 

such that for allx,ye X 

[f(z) fW)lstieyl. 

Lipschitz functions are continuous, and more importantly differentiable almost ev- 

erywhere (by Rademacher’s theorem); which allows many (not pointwise®) state- 
ments about continuously differentiable functions to be generalized to Lipschitz 

functions. For higher orders of differentiability k € N, we define C®!(X) as the 
space of functions whose derivatives up to order k are Lipschitz continuous. 

One problem with C*-functions is that they might still not be integrable (take any 

non-zero constant on an infinite measure space like R). One way to work around 

this is to assume that functions vanish on most of the space, which leads to the 

space of compactly supported functions C*(X). Define the support of a function as 

the closure of all points where the function is not equal to zero. Then 

CHX):= {fe C(X): supp f is compact in X} 

for k € NU {0,00} and X C R. Since already continuous functions are bounded 
on compact sets, and the Lebesgue measure of compact sets is finite, this gives any 

order of integrability for such functions 

Ce(X) S WHP(X) 

for any 1 < p < . 

Embeddings 

A very important concept for PDEs is that different spaces of functions can not only 

be related by mere set inclusion but rather have some estimates associated to them. 

For example, if ©) has finite measure then 

L=(0) < 170) 
for any 1 < p < oo (and N C R®). Even more, we can relate the norms by 

1 

ullıo, < IR Jullı=oo- 
  

8Usually theorems involving integrating derivatives. y g g g 
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Such an inclusion of spaces is called an embedding, and with a (uniform) estimate 

for the respective norms it is called a continuous embedding, denoted by —. More 

precisely, if X C Y, then we call the identity operator id : X — Y an embedding of 

X in Y, and say that X embeds into Y. If X and Y are normed spaces, we call the 

embedding of X in Y continuous if the identity as a linear operator is continuous 

(or bounded), i.e., if there exists a constant C’ such that 

lully < Cllullx, 

which we denote by 

X =Y. 

If the identity operator is even compact, then we call the embedding compact ac- 

cordingly, which we denote by 

X ==Y, 

or simply by spelling out that X — Y compactly. The theorems concerning em- 

bedding of Sobolev spaces (Lemma 20) and compact embeddings therein (Lemma, 

17 and Lemma 18) can be found in the Appendix. 

Dual spaces and duality 

For the concept of weak convergence and weak derivatives we need certain dual 

spaces. In general, the dual space of a Banach space is given by all linear and 

continuous maps on that space with values in R (or C). However, for most spaces 

we consider, one can find spaces isomorphic to their dual - that is, a space of 

functions and not just functionals. The only ones we need explicitly are those of 

Lebesgue spaces LP and Bochner spaces LP(0,T; X), where X is a Banach space. 

Denoting isomorphy by > and the dual space of X by X’, we have 

DO) EL), 
1 1 

(IP(0,T;X)) > L%(0,T;X’), where —+—=1and 1 <p < oo 
p 4q 

(note in particular, (L>(Q)) 2 L'() in general). When applying functionals f 
from the dual space X’ to ¢ € X, we shall use the notation 

f(g) =: f, gx, 

which corresponds to the similar notation for scalar products in Hilbert spaces (as 

suggested by the Riesz representation theorem). 

Norms 

For a normed space X we denote the norm ||-|| x. However, we will also use the same 
notation for d-tuples and imply any norm on the d-dimensional reals, i.e., 

L1 
d v 1/p 

Il: Ir = (Dill) 
j=1 

Ld 
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for 1<p< oo and the usual modification for p = ©. We generally assume p = 2. 

Note, however, that this ambiguity does not cause a problem, because all norms 

on R? are equivalent, that is, for any two norms ||-||ı,|-||g there exist constants 
C,Ca > 0 such that for all z € R? 

G|ellı < |e|a £ ol 

In such a case we write |-||ı = ||-|>. 

2.6 Uses of the modulus |-| 

It is usually clear from the context what meaning the absolute value bars can or 

cannot have. We shall specify. 

e For v € R we denote the standard absolute value by |x| € [0, ©). 

e For x = (Xı,...,x4) € R® we imply any (finite-dimensional) norm like |x| = 
1/p 

(Si 2, ) ‚ where 1 < p < oo and the usual modification for p = x. 

Since all of these are equivalent (see Section 2.5), we could choose any, but we 

usually assume p = 2. 

e For a = (ay,...,ay) € (NU{0})? a multi-index, we denote |a| = Di, a; the 
order of «a. 

e For a Lebesgue measurable set A C R we denote |A| the (d-dimensional) 
Lebesgue measure of A. 

2.7 Other notation 

Upon integrating a function on a set ©), we may want to specify a subset that depends 

on that function. For a more concise notation we write, for example, 

DS ren: 0O<Fa)} 
which would imply 

fdax >0. 
[0</] 

Another helpful tool are indicator functions 1, for a set A. 

1, ifze A 
1 — ’ ’ 

alz) b itz ¢ A 

If the need arises to emphasize that a function f is constant (and not just takes a 

certain value at some point), we will write f = c for a constant c; meaning that 

f(x) =cfor all x. 

Throughout this thesis we will encounter many different constants, which are not 

important by themselves. We will call them all C’ and their value might change from 

one line to the next. Usually they do not carry any dependence on parameters. If 

they do and it is necessary to keep track, we shall denote this by either a subscript 

Cs or function arguments C'(ö) (in this case, the constants would depend on 6). We 
might, however, drop this additional information in the next line as to make the 

presentation more succinct. 
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3 Existence for superlinear growth in 2D 
  

Theorem 1. For time horizon T > 0, a bounded Lipschitz domain N, and 

parameters 6 > 0, v € {0,1}, 1 < «a < 3/2; and functions ng > 0 with 

nologno € L!(D), and Sy € L?(N), the system 

nı = div(Vn - nVS) (2) 

y% = AS +6An+n®— 5 (3) 

in D,t>0, with boundary conditions 

Vn-v=VS-v=0 on 09,1 >0 (4) 

and initial conditions 

n(,0)=no, S(-,0) =Sy ind. (5) 

admits a weak solution (n, S) such that 

nlogn € L*(0,T; L!(9)), vn e L*(0,T; H'(9)), 

n € L?(0,T;W"\(0)), ne L#*(0,T;w"*®(9)), 
S € L*0,T; H'(Q)), ~S & L*(0,T,1L*(9)), 

n, € L0, T; (Wh*(Q))), ~S, € LY3(0,T; (WH(Q))). 

Additionally, 

n" € L*(0,T; H'(Q)) forany 0 < pu<1/4, 

Vlogn € L*(0,T; L*(Q)) if logng € L'(Q).     
  

3.1 Outline of the proof 

To solve this system, we fix a time horizon 7’ and prove existence up to this (arbi- 

trary) finite time to get local in time solutions. The proof uses an implicit Euler 

discretization with parameter 7 := = > 0 (for some integer K) to deal with irreg- 
ular time behaviour. We can solve the resulting elliptic system by means of the 

Leray-Schauder fixed point theorem (Section 3.2.2), where we show existence in a 

linearized system using the Lax-Milgram lemma (Section 3.2.1). To achieve the 

necessary coercivity (in H*(2)) we introduce regularizing terms 

—e(A?y + ye’’?) and e div(|Vy|” Vy) in the first equation, 

where we define 

y = dlogn. 

In order to get the necessary estimates to pass to the limit (e,r) — (0,0), we find an 

entropy functional, which we can bound uniformly (Section 3.3.1). We conclude by 

weak compactness both by the Rellich-Kondrachov theorem and the Aubin-Lions 
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lemma (Section 3.3.2). These give enough regularity to pass to the limit even in the 

non-linear terms. 

The proof follows very closely the one in [13]. 

3.2 Existence in the regularized implicit Euler discretization 

Consider the recursive system 

— —div [ D(yx)V 
T (V(Sk - Skz—l)) v ( (u) % 

(in + ran.) =E + ayy /o 
0 € ur/d _ I 

with boundary conditions 

Vye v =VAy,-v=VS,-v=0 on 0, (7) 

where the diffusion matrix is given by 

Ss leur/d  _eyr/d 

D(yr) = ( eyr/ö 1 ' 

For given (yx_1, Sk_1) we shall prove existence of the next step (yx, S,). This is made 

precise in the following theorem. 

(8) 

  

Theorem 2. Let y;_ı be a function such that exp(yr-ı/6) € L!(D), and let 

1 € L?(N). Then there exists a solution (y., S,) € H’(D) x H!(D) of the 
above recursive system (6)-(8).     
  

Proof. 3.2.1 Lax-Milgram lemma 

We want to use the Lax-Milgram lemma; so we fix some arguments to get a linear 

system. Let (9,5) € H’’*(N) x L?(D) be fixed to get the new linear problem 

a((y,S),(z,R)) = F(z,R) forall (y,5),(z,R) € H*(Q) x H'(Q), (9) 

where the bilinear form a is given by 

9, (I) -D- (TE) ar 
+ | (AyAz +6” \vgl” Vy-Vz+ ye’/?z) de + / SRdx 

Q Q 

(10) 

and the functional F is 

1 e3/® — eyk—1/6 z ay/ö 

F(z, R) := -/ ) (5) de+|e Rd«. (11) 

The first task is to check that both of them are actually well-defined. Notice the 

Sobolev embedding 

je H’*0) > L*(9) (12) 
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for 7/4 > d/2 = 1. This LX-bound ensures that even exponentiation still gives 

L®(Q) coefficients. A simple Hölder-inequality checks the first integral in a. In the 

second integral the first term is bounded by Cauchy-Schwarz, the third by, again, 

the LX-bound and a Hölder inequality; its second term can be estimated by Hölder’s 

inequality and the Sobolev embeddings H?(0) > W!*(Q) and HN) > Ww"*(9) 
for2=d <3 

_ı2 _ / Va? vy: vz| de < |Voll2aojllVullasollVzll 
< al. |Vylıo|Vz|2o 

< Alalwıaolivlao|zlaro 

< Claliraolyllaso|zlazo- 

The last integral is bounded by Cauchy-Schwarz. Thus, a is well-defined and obvi- 

ously linear. 

The functional F is checked similarly by Hölder’s inequality. Here one uses e’? € 

L*°(N) (and z € L?(N)) or evr-/® € L1(0) (and ze H?’(N) > L*(N)); or ev? € 
L*(9) (and R e L?(9)); or S, Sg € L?(D) (and R e L?(9)). Also F is clearly 
linear. 

The next step is to show continuity of both functions. For a we argue as above 

lau, 5),(z B))| <IV (2 leo | D@ =@ |V | 4 )220 R S 

+ 8(HAQHLZ(Q)HAZHLZ(Q) +6 ||vg] Vy- Vz| o 

+llyll 2@l e@ 2l @) + 1] 2@ IRl 2@ 

<[ID@) @l (z, R) || (v, S) Lz 

+e(llyll w2 |2l a2 + 0 Cll o 19l 2 2] 1200 

+ Je |< 1yl 2@y 121l 2()) + 11220 |Rlıo: 

where the terms not depending on y,S,z, R are bounded, and all the norms of 

y,S,z, R appear in the right form and can all be bounded in H?’(9) x H!(9). 
For F we find 

1 
IF(z,R)| < (le Iso zllı2o + Bes ere 

+Y||S - S-1llıe || Rllızy) + eo | Rllızo) 
1 ) 

< -( Q12 19| oo (e || 21 2y + 11€8 |1 Cll2 | 20 

+ (1822 + I Sk-1ll 2@ |1 Bl z2e)) + €Y || 2 | Rl 22 (02 

which gives continuity since 7 > 0 is fixed. 
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The last property to verify is coercivity of a 

et le) 
+: | (a0 +6 |V5|° |Vyl + ey? da + Is da 

= /95—169/5 |Vyl’ + |VS]" da 

+: | (a0 +62 v7] |vyl + ey? de + Is da 

— IS, + | sa’ + (ö1ev? +.6” \v5l”) |Vyl + ep? de 

> ||S|iro,) + minfe, 6” exp(— |7l o) /9), exp(—||Fl| Lo (0)/9) } 

' (HAQH%Q(Q) + HV?JH%Z(Q) + HyH%Z(Q)) 

> |S|inoy + Cllyllz @ 
> min{1,C} (IS ro) + vll); 

where the constant C' > 0 is positive because y € L*(N), thus its exponential is 

strictly positive, and C also includes a norm equivalence factor from 

ul, > lAullizoy + |Vullizo) + |ullizo) 

by Lemma 12. By the Lax-Milgram lemma (Lemma 13), for fixed (3, 5) &e H’*(Q)x 
L?*(Q) we derive the existence of a unique solution (y, S) € H*(Q) x H'(Q). 

3.2.2 Leray-Schauder 

We shall next employ the Leray-Schauder fixed point theorem (Lemma 14). Thus, 

define the solution operator 

B: H74Q) x L*(Q) x [0,1] — II*(Q) x (0) 

(g7g70-) H (y7S)7 

where (y, S) is the solution to the linear problem 

a((y,5), (2, R)) = oF(z, R) (13) 

for fixed (7, 5). We need to first check continuity of B. Let (#,, Sy, 0,) — (%,5,0) in 

H7*(Q) x L*(Q) x [0, 1] be a converging sequence. From this convergence we deduce 
boundedness in the respective spaces. Denote (Yn, Sp) the corresponding (unique) 

solutions, i.e., (Yn; In) = B(ÜUn, Sn, On): Asa consequence of the Lax-Milgram lemma, 

(Corollary 13.1) we get the uniform (in n) bound 

[un ae) + Salon, S €. 

Restricting to a subsequence we get weak convergence 

Yp, — Y iD H?(9) 

S,,. — Sin H'(9) 
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for some functions (y,S) € H?(N) x I!(Q) by the Eberlein-Smuljan theorem 
(Lemma 15). Together with the strong convergence of (Y,, S,,0n), this allows us 

to pass to the limit in the corresponding weak formulation (13) and find that 
(y,5) = B(9,5,c) is the solution of our limit — which is almost the continuity 

we want, since we showed this only up to a subsequence. However, we could do the 

very same line of arguments with an arbitrary subsequence X, to get a converging 

subsubsequence Xy, - Since the linear problem’s solution is unique this implies that 

any limit of any subsubsequence must coincide. A general fact in topological spaces 

(Lemma 16) yields that already the whole sequence converges (to the same limit). 

Thus, B is continuous. 

To show that B is a compact operator consider the following 

a B id 

(7, 8,0) = (y,9) > (y, 5) 
H % L2 x[0,1] = H? x H' —— H7* x L*, 

where H'(Q) — L*(2) is compact by the Rellich-Kondrachov theorem (Lemma 
17), and for the compact embedding H?(0) > H’/*(Q) see Lemma 18. Since 
concatenating a compact map with a continuous one preserves compactness, B is 

compact. 

We readily check that B(Y, S,0) = (0,0) for any (7, 5) since (0,0) is a solution and, 

by uniqueness, is the only one. 

Lastly, we need to uniformly bound any potential fixed points of B, i.e., we need a 

uniform constant C’ such that whenever B(y, S,o) = (y, 5), we have 

IWW 5) ||mr/e0yx1200) < C. 

We can assume o # 0. Take (z,R) = (1,0) as a test function in (13), which is 
a suitable test function since N is bounded and the gradients vanish (in particular 
they vanish on the boundary). 

1 
= | ver ao=0(-- | (er en) ar) 

0 T Jo 

/ey/‘sdaz:—g—T yey/‘sdaz—i—/ey’f—l/‘sdaz 
Q 0 Jo Q o 

< —@/(ey/‘s—l)dx—i—/ey’f—l/édx 
g Ja Q 

IN
 ö 

ro IN] + [emulsan, 

g 9 

where we used the inequality ze” > e” — 1 (for z R by Taylor). This recursion 

(w.r.t. k) we can solve (y=yı) 

era <a + | eöar 
Q a Q 

So e¥/? € L*(Q) uniformly in t (or k equivalently). 
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Now take (z, R) = (y, S) as a test function to get 

1 
o( _ - / (eu? — ea My tylS- H1)Sde+ / e/ S de) 

T Jo Q 
T 

— vy D(y) - vy de+e [ (Ay? +57 |vyl + Ye ’de+ | S*dx 
o\VS VS 0 0 ’ 

(15) 

thus, 
- 

g /( vr Ra Ny+ty(S— S_,)S de + / vu. D(y) - vy dr 

+ | (An) +52 |Vy + er dr + / 5” dı = | ew/dS de. 
0 0 0 

We now estimate the right hand side. Using Hölder’s inequality for some r € (1,0) 

to be varied later; the Gagliardo-Nirenberg inequality (Lemma 19), and Sobolev 

embedding H!(N) > LP(9) for any p < x, we get (with 1/p+1/r =1) 

Lese < er ||S|| ern) = le | Tre 

_ 2a 

<clSIno (cl! ale); 

where # is given b’’ 0 =1- —. We will need to include o in the end, so we rewrite 

this and use Young’s inequality (Lemma 21) 

a o a(l-0 
0/96 v S dx < CHSHHl(Q)Hey/(%)H?{le(sz)aHey/éHLg(Q)) 

(1 1 
< 281"V 3 oy + Clalle’* + al Tine 

where ¢ satisfies'® 

I 1 1_, 
wm 4 2 

so £ = 1 —a — L. Applying this estimate to the right hand side of (16) and noticing q 

/ te |Vyl de = “| 
0 0 

we find 

112 
ey/(%)vy_ 

20     
dı = “| |Vev/ 20 de, 

9 

o 2 
—/Qy(ey/‘s—eyk—l)—i—vS(S—Sk_l)daz—i—llcS/Q‘Vey/(%)‘ da:—i—HSqul(Q) T 

(|| Ay 2oy + / 52 |Vylt + Pe de) 
9 

a(l1—6 1 < 0231”3 0y + a"Clle” + oz line 
a(l—0 1 

< 25““3y/(26)“?{1(9) + A + > Slim; 
  

Here we need the assumption a > 1/r. 
10Here we need the assumption a € [1/r, 1/2 + 1/r]. 
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where we can absorb the first and third term on the right hand side by the left hand 

side to conclude 

1 
g/y(ey/‘s—(fizy’f—l/‘s)—i—vS(S—Sk;_1)da:—|—25/ ‘Vey/(%)f da:—i—iHSqul(Q) 
T Jo 

(17) 
a(l—0 —|—5(HAyH%Q(Q)—|—/ 2\Vy|* +y ey/édaj) a1C/| ee, 

Now, define the real convex function 

o(x) = z(logz — 1). (18) 

By convexity we get d(x) — d(z) < d’(z)(x — z) for any x, 2z > 0. Thus, 

¢(ey/5) _ &(er-1/®) < o(eV/?) (e9"? _ eyr-1/d) 

eV0(y )8 — 1) — er 1/61) < ylöler? — err-ı®) 

/ yleH!d — evr-ı/d) dx > | &(eH!?) — ler’) dr. 

0 0 

For the second term in (17) by convexity of x > x? we get 

25(5-.)29°- 5, 

[es- Sg_1)Sdx > = 5 ı[8- S; | de. 

These two estimates suggest the following ”energy” 

Ey := / dle/®) + 52 der, 2 
where y; := y, S, := S to unify future considerations. We can now further estimate 

(17) to get 

J ?0(/9¢(eyk/5)_¢(eyk_1/5) 55 

1 _ «(1-9 + 51813 o) + (12920 + / Verde) <a g 

— (52 _ 8% dr) )+2 / ver" dr 

and rewrite in terms of the energy 

|vev/@ dr 

a(l—0 35Sy + 3180l + | 5° 1vult + Pen) <a le 
(19) 

In particular, since most terms on the left hand side are non-negative, we can use 

(14) to get the estimate 

(Er - Bun) Sole 

LE, — Er1) <o c( 12| + / eyo/® de) 

' : u 
< Mac (ei Q| + / eyo/d de) 

0 
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We want a uniform (in o) estimate of the right hand side, so we need the exponent 

of o to be non-negative. This is satisfied if 

<g-1-0all-Ma=all--)-1 

or in terms of & we need 

a2 

N
S
 

w
m
|
 

Under this assumption, we can uniformly estimate the right hand side of (20). This 

gives one estimate for the discrete time-derivative of the energy functional. The 

other direction is immediate from 

Eu = | tms) + Ltd > | oe") dr > IR] minöle) = - IQ]. 
0 20 0 zeR 

thus (Er — Ek:—l) > —2 ‘Q‘ /T. 

Now we can go back to (19) to get the uniform estimate 

| |Ver/®d | de + Sn + e(||Aylii2(o) + / 5°? |Vyl" + Ye’? de) 31 

< Calle, — — (Ex - Hi) <cC. 2 

This argument works for any such (fixed) r € (1,00). Taking the union of all possible 
ranges for a 

Sa < I, ={aeR: + 

=< 
|
~
 1 2 1 

-,anda>--<}, 
r r 2 

we get back our assumption (as illustrated by Figure 1) 

3 
I <a< -, > 0a 5 

where (for this particular calculation) we could take values a € (0,3/2). This 
computation is to be understood in the following way: for any value of a € [1,3/2), 

take any fixed r such that a € /.., and repeat the above computation. The estimates 

are very much not uniform in r or «. 

2.5 

2 

1.5 

1 

0.5 

    

    
0 05 1 15 2 25 3 35 4 45 —5—56—6 65 7 

Figure 1: Values of r against possible values of & with critical point at (1,3/2). 
Constraints as functions of r, admissible pairs (r, «&) depicted as the shaded area. 
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To conclude the fixed point estimate we only need to control some norm of y. We 

already have bounded the second and first derivatives, but need to make sure that 

zero-th order polynomials do not break the estimate; because we want to argue by 

norm equivalence. To do so, take the test function (e”’°,0) in (13) 

LHS = / 3 Ve  ($tev/ Vy — VS) dx 

+e | Anl — %e‘y/‘sAy + - |vy[’ e -v/) de 

+ e | 5° IVyl’Vy- (- SVye_y/‘s) + yedev/? dx 

- | -5° Vyl’ +671Vy - VS da 

+8 | el - 51 Ay)? + 6? Ay |Vy|? — 6° Ivy?) +yde 

1 
RHS :a(——/l—eyk—l/é_y/édQZ), 

T Ja 

and reorder 

—5/ydaz: —5_2/ Vy|* da:—i—g/ 1- eu W/ dr 
Q Q T Jo 

1 
— i/ 6_9/5((Ay)2 — 0 Ay |[Vy|* + 672 |Vy|4> dz + —/ VS Vydz 

J O 0 Q 

1 £ 3 
< — — = -y/ö _ 2\2 | D62 4 < [ra lo ((Av vu) +56” |Vyl' ) de 

1 
—i——/VS-Vyda: 

|Q| /. —HVSHLz(Q)HVyHL2(Q) 

We want to introduce the L'-norm into the energy estimate (21). So we apply the 

above to find 

9l = / _ydet? / yda 
Q [y>0] 

|T| | 
< 2 2 = 5( H Sl o||Vvlı ®) 2 yas, 

[y>0] 

/ ydı= / ydı-+ / ydr 
[y>0] [0<y<1] [y>1] 

/ 1dz + / ey/‘S dt 

> 

< 014 [ W ev der, 
2 

where we estimate 

so 

0 
lyllzre < 5(|T_| ‘HVSHL2<Q>HV?JHL2<Q>> +20] +2 | Wear 
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Applying the energy estimate (21), we find (with Young’s inequality) 

3 1 
HVSHL2(Q)HV?JHL2(Q) <V QCHV?JHLZ(Q) < Z(V 20)4/3 + ZHV@H%(Q) 

< 1(3(20)2/3 + 5—20) <C 
— 4 e /T 7 

which allows us to uniformly bound (again with (21) for the last term) 

1,9 1~ e < 1 +46) #210] 4 20 <c. 
We put everything into the energy estimate (21) 

1 

¢z 25/ je dz + 215] + (1A 120 +/5_2|Vy|4+y269/5da:) 

m
 

> 58Il (@) + el AyllZz) + 8° Volle, + (vll) -C)- 

DO
 

Another Young’s inequality 

2 Ivyl |vyl’ € 4 v 
2 = -1 < +1 _ A IVyll 720 YN /Veda IE (—— /e /e) dx = 5 vylli @ T >= 

gives 

€] 1 _ 
¢ > —HSH%{l(Q) + SHA?JH%Z(Q) + 20 Q(HV?JH%2(Q) -.)+ Iylliio, - € 

2 2E 
1 . _ 

> > Slim + min{s, 26°, 1} (| Aylli2oy + |Vyllizoy + 1Y 710)) — C- 

We conclude by norm equivalence in H” (Lemma 12). The desired solution is then 
given by the Leray-Schauder fixed point theorem. [1 

Now we have shown the existence of time discrete solutions, i.e., for a fixed time 

span ((k - 1)r,kr|, k € N, there exists a solution (y.,$,) € H?*(Q) x HD), 
which is constant as a function of time. From the implicit Euler scheme we ex- 

pect these piecewise-constant functions to approximate the exact solution of the 

limiting parabolic equation where 7 — 0 and the difference quotient becomes a 

differential. 

Putting together the solutions from Theorem 2, we define y'”°(x,t) := y«(x) for 

t € ((k - Dr,kr] for fixed r > 0; S”(x,t) := S.(x) and n"(x,t) := n,(z) = 
exp(y;(xz)/6) analogously. With the discrete time derivative (D,f)(t) := (f(t) — 
f(t - r))/r we can formulate the equations solved by (n”, S(")) 

D,n” = div(Vn” —nDvs™) 
22 

_ 8(AQy(T) _ 52 div(‘Vy(T) ‘2 vy + nm), (22) 

yD,S”) = AS") + 5An + (ne — S”) (23) 

with boundary conditions 

Vn.v= VAy).v=VSN.v=0. (24) 
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3.3 Passing to the limit (e,r) — (0,0) 

Our goal is to pass to the limit (e,r) — (0,0). For this, we need uniform (in e and 
r) estimates in order to use compactness arguments to be able to extract a limiting 

function, which also solves the desired equation. 

3.3.1 Uniform estimates 

We shall summarize some intermediate results in the following Lemma 

  

Lemma 3. The following bounds hold with a constant C independent ofe,r 

In!” log n” || 2 (0,7:21(9)) + | vn IIz2go,r;r (2)) + 5” |220,7;.#1(0)) = C 

(25) 

VEellAy”|r2or) + VEI VYT | 1aor + VElYW VRO || 120, < C 
(26) 

In | 20wy + 17| Larso mawrassiy < C 
(27)   where Ir :=N2x(0,T).   

  

Proof. Step 1: Proof of (25). We start with the estimate from (14), rewritten in 
terms of n 

1kl L1y < €T0 Q| + [[nol| 11, (28) 

which holds for all k. We assumed the norm on the right hand side to be bounded 

and restrict £ < 1, so we can bound it uniformly (in k) by a constant. 
We plug this estimate into the energy estimate (19) to get a recursion 

1 1 
(Er - Er-ı)+ 2|vVmelli2o, + 2_5“5113“%[1(9) 

< - a(1-09 
+ ; (Asien) + / 6” IVyr|‘ + ypedr/® dx) < All <C 

0 

Expanding this recursion in terms of k (which corresponds to integrating in time 

from 0 to kr), we arrive at 

k k 

EV let | Siline 
- j=1 

+ = > (lAy;l|i2o, + I IVy;|° + yresal? dz) < ktC + Ey < TC + Ey. 

= (29) 

Since most terms on the left hand side are non-negative, this implies 

E, < TC + E,, 
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where we assumed the initial energy Fo to be bounded. Recalling the definition of 

the energy, this bounds 

Er, = / n, (log NE — 1) + _g2 dr , 2 

from above. For the first estimate for n,. log, we further consider 

/ N, log nn, dx = [ ng log ng da + / n„, log n, dx 

2 [rx21] [0<n,<1] 

1 
2/|nklognk| de | In; log n; | du | —- de 

Q [0<n,<1] [0o<n,<1]l € 

> [|ng 1 < 

From the non-negativity of n, (as an exponential) we also get 

near = Im dz. 
0 0 

€] v 
724 10g”kHL1(Q) - 27 - (HnOHLl(Q) + eoT |Q|) + 2_5“8113“%2(9) 

Now we arrive at 

< / ng log ng dx — / ng dx + lHSkH%z(Q) <TC + Ey, 

which can be rewritten to bound 
N 

Ins lognellrıo) + 55 |Sk iso) 

uniformly in k, i.e., in L*(0,T), which gives the first bound (and also bounds 

Y5 € L*(0,T; 12(9))). 
The other bounds in the first inequality (25) follow more directly from (29), once 
one notices that the time-integral of a piecewise constant function gives precisely 

the sums with a weight Tr. Arguing as in the proof of Theorem 2, we can bound FE 

from below and deduce a uniform bound for the aforementioned non-negative terms 

on the left hand side of (29). This already gives 

|VVn9| ori) + |S”|rorunoy < C. 

For the actual H!-bound for Vn”), we still need to check its L?-norm. However, 

IV a | 720r:120)) = Hn(T)HLl(O,T;Ll(Q)) < THn(T)HLOO(O,T;Ll(Q))a 

which we already bounded. This concludes the first inequality (25). 
Step 2: Proof of (26). The second inequality follows similarly from (29). We 
have 

K 

ET > 1As;lii2o, = SHAU(T)H%Z(QT) < 
=1 
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so taking square roots on both sides gives the first estimate in (26). Analogously 
one gets the L?-norm of the gradient with the fourth-root. The last term comes 

from 

K K 
ellyv nis) = Er > \wer®y de=er > / ven! de. 

j=1 j=1 

This concludes the second inequality (26). 

Step 3: Proof of (27). The third inequality can be derived from the previous 

two. For ||[Vn!™| 1207.11() consider 

1 11 o 
2 n(T) 

v nn) =   

(where n(”? > 0 as an exponential of a bounded function) in 

T 

(A H%Q(O,T;Ll(Q)) = / 12V IV V) io, dt 
0 

T 

<4 / VAT [TV 2y i 

< Alva 2oy L0 [TV 2500 
= 4\\”(7) HLOO(O,T;Ll(Q)) |VvnW 120), 

where we used the Cauchy-Schwarz inequality and Hölder’s inequality. The last 

factor is uniformly bounded from the first inequality (25). For the other norm 
notice 

In” log nz) — / 

[n(T) >e] 

> [ mm 
[In >e] 

> |n'" zu) — |@le 

In” log n dx +/ In” log n dx 
[0<n(T) <] 

for (almost) allte (0,7). Thus, 

In" |=or.10)) < In” log n) | T=(.r.11(0)) + In e<C 

or 

IV 2201y < C. 

We estimate n(™ in 2?(0, T; L!(0)) by equation (28), i.e., 

K 

In” Iiz0.r.210)) =T ZH”J' H%l(sz) 
J=1 

< T(||noll ey + 6T 2] 
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This shows the L?(0,T;W'!(Q))-estimate. By Sobolev embedding W"!(0) — 
L?*(Q) in two dimensions, this also gives an L?(®r)-bound; which we can use in 

vn vs, = 2lVnVVn®| so, 

< 2|vn@ || Vn ion) 
7) 11/2 < Clin er: 

This finishes the proof. [ 

The next estimate concerns the discrete time derivatives. 

  

Lemma 4. For any n > O there exists a constant C independent ofe and T 

such that 

| D,n” IInıo,r.(a2+n (2))’) + y|| DS |22730,7.(w1.409)) < C (30)     
  

Proof. Fix n > 0 and let d € L*(0,T; H”*"(9)). By Sobolev embedding H**" — 
W'®, this gives d € LX(0,T; W1:*°(N9)). Testing with ¢ we have 

di 
  

T 

/0 ‘<D7n(7), O) (2 ()Y 

T 
:/ ‘(div(Vn(T) _n(T)VS(T)) 

0 
2% Ar (r Ak 

— 5(A2y(7) — 6 ’ div(|Vy! | Vi )) + yn! )) , @) 2y | di 
  

T 

</ | vn vorn "vs". Vodzla 

Q 0 - , 

+e / | / - Ay Ad - 6 |vy N vym.vo- On "ode|dt, 
0 Q 

which we bound by Hölder’s inequality 

<|Vn || 230, ||Völlorn) + In” on ||VS "ion |Völr-or) 

+ 2 (|| Ay | 2m | Adlon) + Ivy 30 Voller 

+ |y vn 2@ VRO || Lo | @l Lo ) - 

where all terms in n(7, S(7) () have already been uniformly bounded in Lemma 3. 

We, thus, get 

<c(2lVollan + |Völlr<en + |Adllzzan + lollsan)) 
<c(e]Völlar) + löllrwrarı<en + |ölzoruzen + Olöllen) 
<c (öli=orwı=e + löllsors2en) 

which finally can be bounded by the above Sobolev embedding H?+" > W!® and 
the continuous embedding H**" —> H*, by C||ö|| 1» ,r:1r2+n(0))- 

36



For the other estimate let d € L?(0, T; W''*(N)). Similarly as before, we have 

  

T 

a= | | - 75% vo-5vn9 vo 
0 Q 

+ (np - STDedzx| dt, 

T 

/ (D,59, Hwısoy 
0 

which we bound by 

< |VS | 120)||Völlızer) + 8|VR|wson|Völier 
T 

+/ emo dz dt + |57 20 |0/l L2020 
0 

All norms of S'") and n‘”) are bounded by Lemma 3, and the corresponding norms 

of ¢ and V& can all be estimated above by C||¢|| 40, 7.w1.4()). The last remaining 
integral is estimated by Hölder’s inequality 

In ollsen < || @y 8]l oty 
< () | asoruoylelsserıse (31) 

< N Gsasso 1o C 0l o sy, 

where the norm of n(”) is bounded by Lemma 3 (namely the L?(Qr)-estimate) if 
a < %, which is satisfied with our assumptions on «a. This concludes this proof. U] 

3.3.2 Compactness 

The bounds from Lemma 3 and Lemma 4 together with the Aubin-Lions-Dubinskil 

Lemma (see [7, Lemma A.2.]) allow us to extract subsequences (which are not 
relabeled), such that!! 

n) > n strongly in 1?(0,T,1P(0)) Vp<2 

Ss» 4 S strongly in 1?(0,T;L%(0)) Vg<& 

with the convergence also almost everywhere by the ”inverse dominated convergence 

theorem” (Lemma 22). Additionally, from the Eberlein-Smuljan theorem (Lemma, 
15) we also have the weak convergences 

Vn‘) = Vn weakly in L*?(0,T; L*?(9)) 

VS) = VS weakly in 2?(0,T; 1?(9)). 

Note also that the non-negativity of n(”) as an exponential implies (by the pointwise 

a.e. convergence) the non-negativity of the limit function n."? 
We would like to use this convergence to pass to the limit (e,r) — (0,0), however, 

we cannot yet infer that n VS) — nVS weakly in L!(0,T; L!(0)) because we 
  

For n|”) take WI1 > LP <> (H?+) and note that the embedding W':! <> LP is compact for 
p < 2 in two dimensions. 

For S) take HI > L1 > (W%#)’/, with compact embedding IT! > L4 for any q < © in two 
dimensions. 

12 This means that the cell density does not become negative (at least a.e.), which is very rea- 

sonable from a modelling point of view. 
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are missing the limiting case p = 2 in the strong convergence of n”. Luckily, with 

the additional n(” logn'”)-bound from Lemma 3 we can squeeze out the necessary 

convergence. 

  

Lemma 5. Let X CR? be a bounded Lipschitz domain, let T > 0, and s > 0. 

Assume a sequence (u.) > 0 satisfies the uniform bound 

| v/uell 20,01 (@) + ||te log e[| oo 0,7:21 ()) + |1Osue || L1 0,755 )yy < €, 

then, up to a subsequence, one has the strong convergence 

u.— u strongly in L*(0,T; L*(Q2)).     
  

The proof of this Lemma can be found in [2]. Applying the Lemma we now get the 
weak convergence n VS) A nVS weakly in L!(0,T; L}(9)). 
The next step is to show that the regularizing e-terms actually vanish with these 

convergences, i.e., morally speaking, that the functions do not ”outgrow” the factor 

e as € — 0. Let thus be d € L*(0,T; H?(NQ)), and consider by Lemma 3 

T 

</ (Ay — 6? div(|Vy [ vy9) + nn, ®) (H2(Q)) di) 

0 

T 

=2| / / AyN Ad +57 |vyO|" vyN.Vo+yNInNddr di) 
0 2 

< (Ay lonlölermen + Ve Vollzanr 

+ ||y PVn) 220m) ||V Rn” ||ror) löllsen) 

(26) 26 

<e Collier.) + C5 "Volle +E’C vn |onllollsen 
<C(e'? + Y0l o209, 

where we used the uniform LQ(QT)—bound for n(™. Letting ¢ — 0 implies the weak 

convergence 

8(A2y(7) — div(‘Vy(T)‘Q vym)+ In) — 0 weakly in L*?(0,T; (H?(9))) 

as — 0, and uniformly in r > 0. Taking the limit (e,r) — (0,0) in the equation 
for D,n(”) we get (together with the above (weak) convergences) that 

D,n” = div(Vn-nVS) weakly in 21(0,T;(H?*"(9))). 

Identifying the limit of D_n”), which converges to the distributional time derivative 

of n in the sense of distributions, we conclude 

n, = div(Vn —nVS) in L!(0,T,(H’"(9))). 

However, we can expand the space where the equality holds to L!(0, T;(wW'*(9))) 
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by a density argument and 

T T 
/ (div(Vn - nV), 6) wı=y ai) — / Im .Vo-nVS:-Vodrdt 

0 o Jo 
T 

S/ [V L) Vel L@y + (|17 L2 | VS L2y | VO Loy di 
0 

< [IVallLien IVell @) + 122200 VS| 2@ Vol e @r) 
< |nl Lo, rwr@p 1)l o oo @)y + 10l L2 1S 220, () [|@]] oo (0.7 150 (02)) 
Lemma 3 

Cl@| oo (0.1 (02)) 

which gives the regularity n, € L1(0, T; (W1*(9))'). 
Taking limits in the equation for D,S("), we immediately have weak convergence for 

the linear terms AS"), An”) and S in L2(0,T; (H*(Q))') or L?(0,T; L*(9)) (for 
any q < 00) respectively. For the production term we have again 

T 

/ emo dz dt < (|| aass o 1o |0 Lo () 
0 

< Cln 2@ 6l 1o 

for « < 3/2 as in (31). By the above line of arguments we get 

VS, = AS +6An+n*-5$ in LY3(0,T; (WH(Q))"). 

Lastly, we need continuity in time for the initial data to make sense. Since (D,n”) 

is bounded in W(0,T; (W"*(©))’) which embeds into C’([0, 7]; (W*(9))'), we 
have n(-,0) = no in (W1*°(N))’. And analogously, we have S(-,0) = So in the sense 
of (W149) (Gfy #0; if v = 0, we do not have this initial condition). 

This concludes the existence proof. [1 

3.4 Regularity 

We have already shown: If nologno € L!(D) and Sy € L?(N), then there exists a 

solution (n, S) with the following regularity 

nlogn € L*>(0,T; LY(Q)), vn e 1?(0,T; H'(9)), 

n € 1?(0,T,W"!(9)), ne L#?(0,T,W1*(9)), 
Se L*0, T, H'(Q)), 5 e L”*(0,T;1?(9)), 

n, € L!(0,T;(w*(9))), 8, € L°(0,T;(wW'*(9))). 

We can get even more regularity: 
  

Lemma 6. Under the assumptions of Theorem 1 one has 

n" € L?(0,T,H'(9)) for any0 <yu< 1/4. 

If one further assumes log. € L!(N), then also 

Vlogn € L?(0,T,L’(9)).     
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Proof. We go back to the section before the limit (e,r) — (0,0) and find uniform 

bounds (in e and r) for n(”? which will carry over to the limiting function n. Let 
0 < 8 < 1/2 and test (22) with (n')P1 

T T 

/ / Do ()31 — / / Un V()P £ n TS L ()P 
0 2 0 Q 

—=(Ay AR ) + 52 V) Ty V(D)) + D (0)7) dadt 

We rephrase the derivatives of n(™) 

vn] _ my vn“, 

Vi V(7)) = (8 = 1)(n 
Ten), = An R, 

nV (mn )P=1) = (8 - 1) (nn 

               

to find 

4 T 5 
— (1 — VY (r)\8/2 2, — (1 — v (1) (r)\8-2 drd TE > >| h On ardt 

and thus 

1-9 = I / Dunn) drdt 

+[ I nm). VSdxdt 

T 

Le / / AyOA (™)) 4572 [Ty O Ty V(@) + Om) ardt, 
0 2 

(32) 

9? 

where we now estimate each integral on the right separately. For the first integral 

notice that f(x) := x” is concave so (by reversing the inequality for convex functions 

we had for (18)) we have f(x) — f(z) > f’(z)(x — z), which gives 

T K 
/ / D,n (nF dedt = > / (ng — np_y)n da 

0o Jo 1/0 

K 
1 1 

< — / nn) ‚de = een — no(x)” da. 52 ), 3) 
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We only need to bound (n'”)? e L*(0,T; L!(N)) now, so 

1) ey = / (my? de 

= / (n dx + / (NY dx 
[0<n(7)<1] [1<n(™)] 

<100+ [ (1) do 
0 

= |Q| + / (nV? dr +/ (nV? dr 
[0<n(T)<e] [e<n(7)] 

< Q|+ e|Q] +/ In" logn”| dx, 
0 

which gives the bound 

()P L o.rsp1 () < 19 + €] + [ log || L o711 (0y) < C 

uniformly by (25). The next integral can be split by the Cauchy—Schwarz inequality 
and Young’s inequality into 

g T T 1 T 1 T | [me - vs" ara < z1v Mann + gs 
0 

where we already know that S( e L?(0,T; H!(9)) uniformly by Lemma 3. So we 

only need to check the first norm on the right hand side here. Notice 

Vin yPy|" = Bm )2B-2 Inf = 2(n() "1 (n(")28-1 Inf 

and use the real inequality 22°"! < na"! + C(ß8,n) for all > 0,2 > 0, which we 
prove in the Appendix (Lemma 23), to get 

V() < | nn)! +C(8,n)), 

which we rewrite using 

  
IV yP)| — Un], VVn (7) in ya |V(n (™)) ‘ 

to conclude 

\V((n“))fi)‘ §477W (T) 3/2) |" +C(B ‚n)4ß? vVn ) 
    

Integrating gives the estimate 

Hv((”(T))B)H%Z(QT) < 4n|[V((n or +08, n)45° |Vvn( I iear )" 

Here, the last term is bounded by Lemma 3 and the other term can be absorbed 

into the left hand side of (32) if we choose n > 0 appropriately small (for fixed 9). 
For the last integral in (32) we, again, rewrite derivatives in terms of 3™ 

o N 1, et o An) = Av’ BD/5 — (=) (n B (AAN, 
0 

V(n Ph = na 
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to find 

T 

-/ / AyTAln Pr) + 6572 Ivy vy V((n)1) dz dt 

0 Q 
T N 1 

_ vol, a1 AN | y (( > )(n IV NT Ay ) 

_1 52 [Ty Py BT(n(T))B_1Vy(T) Ardt 

1 — T —1 _ s . 9) / Ian") + nn Ivy 672 vy ) dad 
0 Q 

_ e(1 - p) . go1( /1 (r) —1 (r)|2\2 

+(1- Ey ay) de.dt 

<0 

as a sum of two squares. Now, there is only one term left to estimate 

T T 
5/ / An) dedt = | em logn) dedt, 

0o Jo 0o Jo 

which we bound using the inequality'? 

x” log <C(1+ 332) 

to get 

T T 
5/ / y (MY dedt < | / C(1+ (n'™)?) dz dt 

0o Jo 0o Jo 

= esc(T O1 + In zo) 

< eoC 

as a consequence of Lemma 3. We have now proven that 

IV aan SC 
is uniformly bounded. For the full H'(N)-norm we quickly check 

I = 1007|200 

= // (n)? dz dt + // (n'™)? da dt 
[n(T)<1] [n(T)>1] 

< QT + |Vn@ | or) 

<[QT + CllvnDr2qy <C 

where the last uniform bound is also a consequence of Lemma 3. This concludes the 

first regularity result with u = 3/2. 
  

. . . . 2 . . . . 

13To see its validity consider Gel as cz — ©. Since this goes to infinity, we get some xP log] 

xo such that for allx > xo we have l+ x? > x log «| (i.e., with C = 1). For the rest set 

C := max{maxp,..] xPlogx,1}, which is finite because x? log x is continuous. 
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  For the second bound, use the test function n = v/ (which is fine, because 

n(M >0 a.e.) in (22) to get 

1 
/ / Dyl —— dz dt = / / -Vn) va tn) VS). Vz Zu 

- g(AymAfi +6 a vy v— +y)dedt, 
nn” n\” 

which we rewrite using 

o b _ 1 
nn (nM)2 

and rearrange to get 

Vn(T) 

= [ / VL ana 

-/ [pw n a 5 Vn dedt 
n n 

1 
+/ / 5(Ay(7)A— +6 Ivy vy . V——) + ydıdt, 

0 O nn) nn) 

(33) 

Vn, Vy' = 5 Vn(T) 

which we will bound term by term. First, 

T K K 
D,n® N 

/ " dxdt:Ej/—”’“ = | 
0 Jan” ala Mk 1 /0 

141—33< 

      

where we now apply the inequality — log z for z > 0 two times (and with 

opposite signs) and get 

T K D._n(™ 
/ / D dedt < Z/lognk—lognk_l dz dt 

0 Jan” 1 /0 

= / logn‘(z,T) — logno(x) da 
0 

  

< / n(T)(a:,T) — 1 —logng(z)de < C, 
0 

which is bounded because n”? € L%(0,T; L!(0)) uniformly (by the n{” log”)-bound 
in the same space from Lemma 3), and our additional assumption logny, € L'(Q). 

The next integral is estimated by the Cauchy-Schwarz inequality and Young’s in- 

equality 

T 

I I: —_ vo. Vn) dedt = / / 
0 Q 

1 T 

< > vs‘ or) + |Vy‘ Maar 
m | 

14Consider f(x) := 1- x + logz. Taking derivatives we get f’(x) = -1+1/x. Wanting to 
find its maximum we get that x = 1 is the only critical point. Checking the second derivative we 

find f”’(1) = -1l so we have a (local) maximum at this point. The function value at this point 
is f({1) = 0. Now consider lim, f(x) = -x by e.g. de I'Hospital, and lim,_,o+ f(z) = —o0 
because of the logarithm, to check potential boundary extrema. 

  

43



where the first term is bounded by Lemma 3 and the second term can be absorbed 

by the left hand side of (33). The third integral in (33) we rewrite sin 

    

  

1 1 
52 (7) _ 1 __N,0N —_— _$-1 y” 

Ne | m an Vmt a) 
to get 

T 1 ) 2 1 
g/ /Ay(T)A—JrcS_ vy vy V— dedt de () () 

e [T 1 
:——/ ae 1 |vy 9“ —) +5 yo“ dd 

Ay 87 |7y |? )? £+ 2 Ay ’) ah (653 vy ) —|—4(Ay )?) da dt 

The last term remaining can quickly be estimated by Lemma 3 and 
T T 

/ I” dedt = | oem" de. dt 
o Jao o Jo 

T 
§55/ m dx dt 

o Jo 

= 55Hn(7)HL1(QT) = eöl|v nr 

< eöllvn | Teo,r.um): 

This bounds 

|V logn||120r) 
uniformly and concludes the proof. [ 

Remark. The exponent bound a < % ıs almost optimal when looking for entropy 

solutions. If one considers equation (16) with 0 = 1 and taking the limit (e,rT) — 
(0,0), fü.e., testing the equation with the function (n, S) itself), then one needs 

/ n"Sdr 
0 

to exist. The highest regularity (for the parabolic-parabolic model; for the parabolic- 

elliptic model we can show even more cf. Section 4) we got in the end is 

Se L*(0,T.12?(9))NL?(0,T;H'(9)),  ne L*0,T; L*Q)). 

By the Gagliardo—Nirenberg inequality L* C ' N L? with 0 = 5 we get 

IS < CUIS It 1S ]ty 
This implies that S € L*(0,T; L*(Q)) by 

)1/2 1/2 
ISIlzaornsiy < CIUISm@ ISl 2@) s = ClUSTm @S 20 | 2o 

< cs}? L* (0,T,L2(9)) IS 7%. T,H\(9))' 

For n“S to be in L!(Qr) we thus need n® € L*®?(Qr), or, in terms of n, that n € 
L#P3(Qr). The highest value of a such that L**/? C L?(Qr) is precisely a = 3/2. 
Hence, we cannot expect to get existence for parameter values higher than « = 3/2, 

although the edge case itself might be possible. 
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4 Regularity for the parabolic-elliptic model 

In Section 3 we have already proven the existence of solutions even in the case y = (0), 

which is called the parabolic-elliptic model. However, we can achieve much better 

regularity. This is the goal of this section. In particular, we will show that solutions 

are in fact bounded, which naturally comes with the requirement that the initial 

datum!® is bounded as well. 

  

Theorem 7. Let T > 0,6 > 0,a € [1,3/2), and Q C R? be a bounded domain 

with boundary 92 € C'!. Assume that O < no € LX(D). Then there exists a 

weak solution (n, S) to the parabolic-elliptic system 

n, = div(Vn — nVS) (34) 

0=AS+6An+n®—- 5 (35) 

on Qr := Q x (0,T), with Neumann boundary conditions 

Vn-v=VS:-v=0 ond,t>0 

and initial condition 

n(-,0) =mng ind. 

Additionally, solutions have the following regularity 

n € L*(0,T; H'(Q)), ne L*(Or), (36) 

Se 1?(0,T;H'(9)), SeL”(9r), (37) 

S+.ön e LX(0,T;W"*(9)) (38) 

in addition to the ones described in Section 3.4 (withy = 0).     
  

Proof. The proof uses a change of variables v := S+ön, which leads to the quasilinear 

system 

ny = div((1 + dn)Vn — nVv) (39) 

0=Av+n®—v+dn (40) 

with boundary conditions 

Vn-v=Vv v=( 

and the same initial condition n(-,0) = no. The existence of solutions is still guar- 

anteed by Section 3. In order to prove the additional regularity we will go back 

into the proof, namely we look at the implicit Euler discretization with parameter 

r >0 (for the time derivative) and also add regularizing e-terms (e > 0) to the first 

  

15Note that in the parabolic-elliptic case we only have an initial condition on n, and not on S. 
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equation (39). This yields the recursive system (where y = ölogn, y. = öÖlogn;) 

1 

(41) 
— 5(A2yk 6 div(|Vye|” Vyr)+ Yen) 

0 =Av,. + ny — vk + ÖNK, (42) 

where the weak formulation is given by 

1 
— / (ng — ng_1)pde :/ —(1+6n)Vng - Vo+n Vor: Vodz 

- 8/ AypAp + 672 |[Vyl* Vi - Vo + yanıp da 
0 

0 :/ —Vug - VI + nid — vt + dngd do (44) 
0 

for all ¢ € H*(Q2) and ¥ € H(Q). If we can find estimates uniform in ¢ and 7, they 
will also apply to the limit (e,r) — (0,0) (which exists by Section 3). 

Step 1: (n,,vx) € H?(D) x H!(Q). By Theorem 2, for given n,_ı € L!(N) we 
deduce the existence of (yr, 5,) € H?(N) x H!(D). We shall rephrase this in terms 
of regularity for n, and vy, namely (n;,v,) € H*(2) x H!(N). To see this we notice 

that y, = Ölogn, € H?(D) implies 

1 1 1 
logn, € L?(9), „Vr e L*(Q), —— |Vn.] + „Ar e L*(Q). 

k 

By the Sobolev embedding H?’(9) — L*X(9), we also find 0 < C;, < n; < 

exp(||yx|l L=@)/9), and n, € LX(N). This LX-bound gives n, € L*(N). The other 
terms can be estimated by 

1 1 

Vel L2 = Il | ——— Var) < Inkl || —Vrel\r2o); 
Iren (0) ng 

and by the triangle inequality 

1 
[ AR L2(0) < anHLoo(Q>Hn—kA”kHL2(Q> 

1 1 , 1 , 
< |ne|| =) (| — An — = [Vl | r2e0) + |1 |VrR||l220)) 

< C(k) 4+ C(k)Crl [ Vel 1a g0y, 

which we estimate by Sobolev embedding H?(Q2) — WP(Q) for any p < oo, espe- 

cially y, € Wh4(Q) and Vy, € L*(Q). Noting Vy = %Vnk we get 

Ö 1 
|Vl pa) < SHWHL%(Q)H_vnszL‘*(Q)v 

Nr 

which is bounded, and finally implies n, € H?(D). Since v, = S,+ön, and the right 

hand side is the sum of functions in (at least) H'(Q2), we conclude that vo; € H(9). 
Step 2: v, > 0. For future estimates we would like v;, to have a distinct sign. 

Denote u” the negative part of u, that is u” := min{u,0} < 0. By the Stampacchia, 
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lemma (Lemma 24) v, € H'(Q) implies v, € H'(Q?) with Vv, = 1}, <oV, so we 
use it as a test function in (44) 

ve da = | mug = (00)? +ömnur <0 
0 0 

because n; > 0), so v, = cin ©} for some constant ¢ < 0. We would like to conclude k 
v, = 0. Consider equation (42) as an equation for v;, with given n, € L*(9) 

Av, + v = n. + ÖNK, 

so the right hand side is an L*-function, in particular it is L?. With the Neumann 

boundary conditions, we can deduce by elliptic regularity [11, Theorem 2.4.2.7] (here 
we need IN € C'"!) that v, € W2%(Q). By Sobolev embedding W?2(Q) — C°(Q), 
we get that either vy = c or that v, = 0. In the first case, by equation (42) this 
would give 0 >c=n% + ön, >20. So, in fact, v, = 0 and thus v, > 0. 

Step 3: n € L?(0,T; H'(9)). So far, we only showed regularity for each time step 

(i.e., for fixed k with bounds potentially depending on k). In the end we also want 

regularity in time. Take the test function p = y,/d = logn; in (43) to get 

1 
— / (ng — ng_1)logng dz = / —(1+ 6ny)Vng - V(log ng) + ni Vg - Vllogn,) dx 

0 0 
T 

—8/ AypA(yr/6) + 672 Vel VyrV (yR/8) + yana/ öde, 
Q 

which we rewrite as 

  
1 

Un. 

2 [mm Dlogmede+ [+ 5m)! | 

0 T 0 Nk 

dı = / Vv;- Vn, da 
0 

£ = [Kam +52 vol‘ + e 
2 

In order to get rid of the mixed term Vv; - Vn., we test the second equation (44) 
withd = n; 

0= / —Vu, - Vny + net + nz, — Yun, dt 
0 

and add them up 

dx   
1 

O 

_/(”kz—nk—l)lognkdaz—
i—/(l—i—cmk)' g | 

Q T 0 Nk 

£ 
=75 Jan +9 [Val + yana da + / ne + öng — veny da 

0 Q 

< / ne + ön.dı, 
0 

where we used v;,n; > 0. We want to estimate the left hand side; one could try 

to use the higher order terms on the right hand side to get more regularity or make 

the estimate easier. However, we need estimates uniform in e, so we unfortunately 

cannot use these terms. Instead, we shall use the Gagliardo-Nirenberg inequality 
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and absorb some parts into the left hand side. First, we estimate the left hand 

side by using the convexity of ¢(x) = z(logz — 1) as for (18), and then estimate 
(1+ön,) > ön, in the second integral, 

1 
— / ne(logng — 1) — ng_1(logng_1 — 1) dz + 5/ |Vnk;|2 dr < I" atl 4 ong du. 

0 0 0 
T 

The worst term on the right hand side is n?*' which we need to estimate!®. But 
first, we estimate the square term nz, into the first by 

5 172 
a—1 

Ol i@y < 172 Lasnragy [Q1" 7 = [Inl[Farigy 10" ut 

by Young’s inequality. So we need to estimate O||n. || © Using the Gagliardo- 

Nirenberg inequality!” Ze+*!(9) € H*(2) N LY(Q) with 0 =1- —. we get 

a+1 a+1 

anHLa+1(Q) (CanHHl(Q)anHLl(Q)) = Cllnellz ol Lo 

Since we only have the I7'-seminorm on the left hand side, we split up the /! norm 

here, and use the equivalence of norms on finite-dimensional spaces (here with a 

constant 2°?) to get 

o a/2 
Alm | 5ol @) = C VIRl 20y + Irellizo) NIl Lo 

< CO([[Vng| G20y + 1l F2g0)) 7kl 210 
= CV. rel) + Olli |mellııo, 

where we apply Young’s inequality with 6/2 and p = 2 to get'® 

. Ö 
Olvaullzelllao = zlVralizo + &allreliso) 

where ¢ = (1-2/a)"! € (1,00). Applying the same inequality (with a different ”e”) 
to the other term gives 

Ieliin <  Vreldao + CanHLl(Q) + Ina li2oy: 

Hence, we can absorb the first term on the right hand side, and then solve the 

recursion w.r.t. k (i.e., integrating in time) to get (with the same notation as in 
Section 3, i.e., n”) is a piecewise-constant-in-time function with piecewise values ) 

/Qn(T)(t)(logn(T)() l)de+< [ [mot dıxds 

< Alm ewaro) + Ina l720.1:1200) + | motos no — 1)dı 

  

16 This line of arguments needs & > 1. However, it is not necessary: For smaller values of « one 
could do the same calculation the other way around and estimate everything into the (much nicer) 
nz? term. 

!7Here we only need @ > 0. 
18Here we only ned 0<«a<2. 
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for any O0 <t <T, where we can increase the right hand side by setting t = T and 

then preserve the estimate when doing the same in the second integral on the left 

hand side. Since the right hand side and also the first term on the left hand side 

are uniformly bounded by Lemma 3 (or see Section 3.4), and our assumptions on 

no, we conclude that (after taking limits (e,r) — (0,0)) 

Vn € L*(0,T; L*(Q)). 

But since we already know (as a consequence of Lemma 3) that n € L?(0,T; L*(Q)), 

we can conclude 

n € 1?(0,T; H'(9)). 

Step 4: n e L*(0, T; L?(N)). We argue similarly as in the previous step. Test the 

first equation (43) with 2 = nı. 

1 
= [io — NK) de + ja + ön,) |Vn.|” de = / nE Vg - Vg dz 

Q Q Q 
T 

—5/ Ay Any + 572 |Vyk;|2 Vi, - Vg + ypng da, 
Q 

where we rewrite most derivatives of n; in terms of vy, as 

1 1 5 1 
Vnk = gnkVnk, An; = 2 |Vy;| + zrAyk 

to get 

1 ) 1 , 
— | (ng —ng_1)ngde + [ (14+dng) |[Vng|” de = | =V - V(ng)de 
T Jo 0 Q2 

€ 
5 / nx((Ayr)” +87" Ay |V ya]? + 8° |Vyel? ) de - | yanz, de. 

0 0 

Again, we want to get rid of the mixed term Vv - V(n%), so we test the second 

equation (44) with ¥ = n% /2 

1 I 1 Ö 
0= /Q—§Vvk -V (ng) + EU — JUNE + 5% dx 

and add them together 

1 1 1 J 
fon — ng_1)ng dz + /(1 + ong) |Vnk;|2 dz = / net? — on, + —nd da 

TJo Q a2 2 2 

£ 
5 / n,((Ayr)” + 6 Ay [V + 6° |Vyk:|4) dx — 5/ yrny, da. 

0 0 

Two calculations are needed to further estimate this appropriately: 

0< (Ay +5" |Vye|)” = (Ayn)? +25" Ay [ Vel + 677 [Vl 

so for the second integral on the right hand side 

-((Ayı)“ + 0 Ay [ Vil + 072 |Vyk:|4) < — ((Aykz)Q +6 |Vye|“ ) <0, 

D
O
 

| 
—
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and 

9 
= N |Vn,.|” , 

3/2, |? 
  

which gives (together with the analogous estimates on the left hand side as before) 

1 1 
| zt - n;_, dx—i——/‘v 3/2 

T Jo 

The second integral on the right hand side does not have a sign, but can still be 

bounded (¢ < 1) 

  
d </ —(n O‘+2—|—5n,€)daz—5/yknidaz. 

0 

5/ —ykn%daz:d/ —nilogn,dr <ef [ max —z*logzdr < 5|Q| 
0 0 0 2€[0,00) 

The first integral on the right hand side can again be condensed into one term with 

the worse exponent. So it remains to estimate 

o 3/2 112(@+2)/3 Cllrell§2:) = Cllmg sen: 

which we do by extensive use of the Gagliardo-Nirenberg inequality!? L+2/3(N) C 

3/2,,2(@+2)/3 3/2 3/2 2(a+2)/3 er < (Cl eI 1) 
3/21(2a41)/3 3/2 = Ol ne, mr In: 

which we expand to get the H!-seminorm again 

3/2 2a+1)/3 3/2 3/2,,(2a+1)/3 3/2 < CIV I no + elnr ee Im Io: 

Applying Young’s inequality with 2 and p = 6/(2a + 1) gives” 

20 3/2 3/2 ,16/(5-2& 3/21(2a+1)/3 3/2 TI + Te I: 

We will absorb the first term into the original left hand side. The other terms need 

more treatment. Using the Gagliardo-Nirenberg inequality for 

| ne 2a) __ — |In 2 

L1(9) "ll 237200) 

into H'(N)NL!(D) with 0 = 3 gives 

3/216/(5—2« 3/(5—2« 6/(5—2« 215550, < Cllmellriay ™ Il 456", 
where we apply Young’s inequality again with p = = to get?! 

12/(7—-4Aa < nel + la 2G4 
  

19Here we need x > —4. 
?0Here we need a < 2. 
?!Here we would need « < %, but the concluding argument would still work for « = 7 without 

Young’s inequality. 

w 
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The last term is treated similarly. Using the Gagliardo-Nirenberg inequality for 

3/211(2a+1)/3 2a+1)/3 Ile = al 

into H'(N)NL!(D) with 0 = 3 gives 

3/2 ,,(2«+1)/2 200+1)/3 200+1)/6 [ 2150 < Cllmel Sy ll 

And once more for 

3/2 3/2 Im lin = el e 

into H'(N)NL!(D) with 0 = 3 gives 

3/2 1/2 1%l sy < Cllnall gt oy el 21 . 

Putting these two together gives 

3/21(2a+1)/3 3/2 2a+1)/3+1/2 2a@+7)/6 

Alle I Mao scale lie . 

Since the exponent of the H!(N)-term is less or equal than 2 for a < 1 we can use 

Young’s inequality?? to get 

3/21(2a+1)/3 3/2 da+14) /(T—4a Anl 1 ey < il oy + Cllnell gy /7. 

In total, we can estimate the critical term on the right hand side 

2 
C/ngwda: §—5/ ‘V(nifl) 

0 9 Jo 
12 /(7—4a Aa+14)/(7 4a + le el 

2 

  

where the first term can be absorbed by the original left hand side, and the other 

terms will be uniformly bounded after integrating w.r.t. t (by Lemma 3). Finally, 

this gives 

1 25 f' 1 _/(n(T))Q(t) dz + zu / vn 3)" deds < C+ = / nd du, 
2 Jo I Jo Ja 2 Jo 

where the constant on the right hand side does not depend on t, r or e. We conclude 

n € LX(0,T; L?(9)) 

by taking the limit (e,r) — (0,0). 
Step 5: ne LX(0,T; L?(N)). We test the first equation (43) with g = n? 

1 
— / (g — ng—1)ni da + ja + 0ng)Vny - V(n}) de = / n,Vvr - V(nz) da 

0 0 T 0 

—8/ AypA(ng) + 8° |Vye|" Vyr - V(ng) + yan, dir, 
Q 

  

?2Here we need a < 7, but the concluding argument would still work for « = I without Young’s 
inequality. 
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which we rewrite similarly as in the last step 

1 2 
— Li - m A)n,.de+2 / (1+ 5. |Vn.|” dı = ah Vor: V(n))d« 
TJo 0 

2 
—8/ ni(g(Ayk) IVykI Ay, +5 — Vyul‘ + yon) dı. 

0 

To get rid of the mixed term we use d = an), in (44) 

2 013 24 20 , 0 = ) Vor: V(ni)+ 3N~ gkt o de. 

Summing up gives us 

1 
ann (non wo dz 
T Jo Q 

DE 
=-2 ni((Am)? + + 1 Aut (Vyal‘ ) da 28 | nblognida 

2 
+ < 5 / net? nur + Ond.de, 

Q0 

where the first integral on the right hand side can be written as a square, the second 

integral is bounded above by ö =, and the last integral can be estimated by the worst 

exponent. The left hand side is estimated as before, to get 

11 
3 - n, 1 de+< | ve? de<c+c | mit"dn. 
T Q 

We estimate the right hand side by Gagliardo-Nirenberg in H'(Q) N L'(Q) with 
9__ atl 

a+3 

+3jet3 = (a+3)/2 < 6] 2 DV? 
Ink L1(9) In nallie+sr20) oY) anHE(Q) 

and Young’s inequality” 

8/(3—« a IV ED + Ola” + Olmelih, meld (2) (2) 

where we only need to estimate the L*(N)-norm because all the other terms can 

be absorbed or will be uniformly bounded after integrating in time. By Gagliardo- 

Nirenberg in H'(Q2) N L*(2) with 6 = 1 

o a+1)/2 a+1)/2 

I <A ll mel ©) ©) (©) 

and potentially Young’s inequality?* 

200+2) / (3—« 

< Cllnill oy + Cllngl gy . 
  

23Here we need a < 3. 
24Here we need a <3. 
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With all the uniform bounds from previous steps and Lemma 3 we get (after inte- 

grating in time) 

1 ! 1 _/(n<7>)3(t)dx+§/ / KOT de<c+z | mbar 
3 Q 4 0 Q 3 Q 

We conclude 

n € L0, T; L3(Q)). 

Step 6: v € L>(0,T; Wh>(Q)). Consider now the elliptic equation 

Au) + u") = (n)* + ön\) € L0, T; L¥*(Q)), 

where the bound for the right hand side is uniform in &, 7. By elliptic regularity [11, 

Theorem 2.4.2.7] (where we need 90 € C*!) we conclude 

vu) € LX(0,T;W2/°(9)), 

where the bound is uniform in e and r as well. By Sobolev embedding W**+"(9) > 
W1®(9) for any n > 0, we conclude® 

ve L®(0,T;WI*°(9)). 

Step 7: n € LX(Nr). We use the regularity of v and the following Lemma 

  

Lemma 8. Let C R? be a bounded domain with 892 e C"!, T>0, w € 
L*(9),6>0, and Ve L*X(0,T;W1*(9)). Then there exists a unique weak 
solution u to 

u — div((1 + du)Vu) = —-div(uVV) 

with boundary condition 

(1+du)Vu-uVV)-v=0 0nO09,t>0, 

and initial condition u(-,0) = uo in D. Additionally, there exists a constant 

C > 0 depending on and |VV||r>(o,) such that 

HUHLoo(QT) < C maxfl, \wollzony}-     
  

The proof is done in |13, Proposition 4.1]. Setting V = v gives the desired regularity 

n € L*(Or) due to equation (39). 

We conclude the proof by $S = vu — dn € L>®(Qr). O 

Remark. For the proof of Theorem 7 to work we used o € [1, 5), which were the val- 

ues where we could show existence in Section 3. On its own the upper bound can po- 

tentially be increased to atleast a < I if one goes for more steps of L*(0, T; LF(Q))- 

bounds forn with k = 4,5,... similarly to the ones already done, before using elliptic 

regularity. 
  

25Here we need a < 3. 
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It is possible to show even classical differentiability of solutions, provided that the 

initial datum and the domain are smooth enough. 
  

Theorem 9. Let CR? be a bounded and smooth domain (i.e., its boundary 

satisfies O0 € C”®). Assume further that ng € C?*’(D) for some y € (0,1). 
Under the additional assumptions of Theorem 7, solutions (of the parabolic- 

elliptic model from Theorem 7) are smooth, i.e., 

n,S € C((0,T] x ).     
  

The proof relies on the Schauder fixed-point theorem to prove some initial regu- 

larity, which is then further improved by elliptic and parabolic regularity results. 

Bootstrapping yields the desired regularity. We refer the reader to |16, Proof of 

Theorem 2] for the precise arguments and references. 

Sketch of Proof. Consider the set 

K:={necC0,T]xQ): 0<n <R, |nllgwzaqoryxa < M}, 

where C**( A, B) means differentiability (or Hölder continuity) of degree a in A and 
degree bin B. The constants R, M > 0 have to be determined later on. Forne K 

we apply elliptic regularity in the equation 

AÄAv+tv=öon-+n“ 

with homogeneous Neumann boundary conditions. Thus, we find that the solution 

satisfies v € C°([0, T]; W*?(Q)) for any p < oc. Sobolev embedding gives W“? — 
CD). Setting h := NnVv gives a continuous function. Plugging it into 

n, = div((1+ ön)Vn-h) 

with homogeneous Neumann boundary conditions, implies n € C?/%7([0,T] x Q). 

Redoing this procedure gives v € C’/??([0,T] x ), and thus h € C"/27([0,T] x Q), 

son € CY2([0,T] x ©). Now it can be shown that n € K for suitable R, M > 0. 
By Schauder’s fixed-point theorem we deduce this regularity, upon which we now 

proceed. 

By elliptic regularity we get that v e C'*([0,T] x D). We then set f := div(nVv) € 
C+1([0,T] x Q) and consider the linear equation 

u — Au - div(nVu) = f 

with homogeneous Neumann boundary conditions. This solution satisfies u € 

C1*+7/2247(10, T] x Q) (and by uniqueness u = n). This extends the regularity of f 
further such that f e C!/2+7([0,T] x Q). By parabolic regularity we conclude 
u e C??P([0,T] x 9). And we could repeat this process arbitrarily long to finally 
deduce 

n € C((0,T] x Q)), v e C®((0,T] x Q). 

Clearly S = v — én € C=((0,T] x Q) is also smooth. Note that we need to exclude 
differentiability up to ¢ = 0 because we did not assume the initial datum to be 

smooth enough. If we did, then regularity would hold on [0,7] x . ] 
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5 Uniqueness of solutions 

Considering weak solutions instead of classical solutions allowed us to more eas- 

ily prove the existence of solutions because we considered a much bigger space of 

functions. However, this might have been at the cost of uniqueness, i.e., the weaker 

requirements could allow several different functions to satisfy the equations, although 

only a single classical solution would exist. In this section we shall prove that (under 

additional regularity assumptions on solutions) we still keep unique solvability. 

5.1 The parabolic-parabolic model 

For technical reasons we will need to restrict the cross-diffusion parameter ö to be 

small enough. However, this bound does not affect the more interesting range of 

ö < 1 potentially going to 0 (which is a limit we do not consider here). 
  

Theorem 10. Let N < R@, d > 2 be a bounded Lipschitz domain, and let 

a > 1. Assume that any solution (n, S) of 

ny = div(Vn — nV.S) 

= AS+6An+n®—S 

in ,t>0 with boundary conditions 

Vn-v=VS.v=0 

on ON, > 0, and initial conditions n(-,0) = no, 5(-,0) = So (with no, So € 

L?(©)) satisfies the uniform a priori estimates $S € LX(0,T;W'*(Q)) and 
ne L*(Nr). Ifthere existse € (0,1) andy > 1 such that 

(Inlle=an + 760” — 
4(1 —¢) - 
  

for some do > 0, then the above equations possess at most one solution (n, S) 

for any ö < oo.     
  

Proof. Consider solutions (nı, Sı), (na, $2). We look at the difference of the weak 

equations solved by these functions 

t t 

/ (({nı — na), ) ds +/ m — nıVSı — Vna + n3V 5): Vpdreds =0 
0 o Jo 

and 

t t 

/ (51 — Sg)t, 19> ds + / ws. + oVnı - VS - 5Vn2) -V + (5, - 52)19 dx ds 

0 0 JO 

t 
-/ Ir -nswaras 

0 Jo 

Taking ¢ = nı - na and ¥ = (51 — 55) for Y from our assumption, and adding the 

two equations, we get (notice that (nı — n2)(0) = 0, because they satisfy the same 
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initial conditions; also (S} — 52)(0) = 0) 

1 Y 

5 Im = nelliay ) + z151 - Sallıay®) + 1V (1 = n2)llz2q,) 
+Y||V(Sı - Se) aan + Y||Sı = Sall 220, 

t 

= / /(mVSl — nV 52) . V(nı - ns) + y(n? - ng‘)(Sl — SQ) 

0 JO 

—|—75V(n1 — ns) . V(Sl — SQ) di ds. 

We call the left hand side LH S and shall estimate the right hand side. Applying 

the Cauchy-Schwarz inequality we get 

[ |mvs: — nV 55) V{nı — na) dxds 
0 

< |nı VSı - n2V 52] 120) ||V (nı — ne) 220); 

where we estimate the first factor by triangle inequality and Hölder 

Inı VS, - n2V52HL2(Qt) 

< In lien |V(Sı - Sa) ion + [V S2ll e @i Im = nal 200 

The next term we estimate by the mean value theorem?® and Young’s inequality 

t 

| [er ws - Sards <Halalicta,m - nallzmliS - Sala 
0 Q 

< Ca, ImlIa=en)|Inı - nelZun, + 151 - Selen. 
where n (and later on S, too) denotes any solution, and their LX-norm denotes the 

uniform bound which we assumed. 

Lastly, applying Cauchy-Schwarz to the last remaining term, we can summarize 

LHS <(|n|ı=@r) + Y6) |V (Sı - Sa) 22, ||V (mı — 12) || 220 
+ IVS| @ ling — nall 2|V (01 < ne) |\r20,,) 

+ Cllny — nalli20, + |Sı - Sallieo, 

Urlısey + y6)” 
- 4(1 —¢) 

+el|V(n1 — n9) 1720, + C(&, VS| o @) I — nallizo, 

+ Ollnı = 2|72, + 151 = Sa2ll 720, 

IV(S1 = S2)l 120 + (1 = )1V (1 — 1) 120 

By our assumptions on Y (notice that the left hand side of the inequality for ~ 

is increasing in 6, i.e., if it holds for one do, it holds for any 0 < § < &), the 

gradient terms can be absorbed by the left hand side. After potentially estimating 

the remaining non-negative terms on the left hand side, we find (after expanding 

the L?(N,)-norm) 

In = na]: HH ||Sı = Sall 220y (2) 
t t 

< C(/ Hm — na|72(0, ds 4r/ 151 — Sz||i2o, ds). 

0 0 
  

26Here we need that a > 1 instead of « > 0. 
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Applying the Gronwall lemma, we conclude 

Inı = na|ia, + YISı = Salliaoy se (ni — nalliz(0) + YlSı - Sallizoy(0)) 
— 0, 

which concludes the proof. [1 

Remark. A possible choice of öo,&,y is to take any e € (0,1), set 

(nlıeon) +1” 
4(1 —¢) 

and take du = >. In particular, any 

4 
oo < 77— 

(Inllze@r) + 1)2 

works. 

5.2 The parabolic-elliptic model 

For the parabolic-elliptic model we consider the transformed system with v := S+ön 

as in Section 4 and show uniqueness for it. One problem then is that we need to deal 

with the quasilinearity. We do this by the so-called dual method or H!-method; 

where we use a very specific test function solving an elliptic equation. 

  

Theorem 11. Let N < R@, d > 2 be a bounded Lipschitz domain, and let 

a>1,6>0. Assume that any solution (n,v) of 

n, = div((1+ ön)Vn — Vv) 

0=Avu+n” —-v+ön 

with boundary conditions 

Vn-v=Vv-v=0 

and initial condition n(-,0) = no (with no € L?’(N)) satisfies the uniform 
a priori estimates n € LX(Qr), v € L*X(0,T;W'*(9)). Then the above 

equations admit at most one solution (n,v).     
  

Proof. Let (nı,vı) and (n»,v2) be two solutions. We take the difference of their 

respective weak equations and get 

[io — n2)¢, ) ds 
t 

+ [ / (((1+ $n1)Vnı - nıVvı) — ((1 + 6n2) Vg — naVan)) - Ve dsdz = 0. 
o Jo 
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Consider the following elliptic problem (for any ¢ > 0) 

Ay = Nı Na in 

Vo:-v=0 on O0 

rar =0 
0 

where we need the last equation for uniqueness. By the Lax-Milgram lemma 

(using the Poincar&-Wirtinger inequality) this problem admits a unique solution 

o € L*X(0,T; H'(9)). We shall employ it as a test function. Notice that (in the 
sense of distributions at least) (nı — n2)ı = -Ayı; and p(t = 0) = 0 because 

(n1 —n2)(0) =0 and ¢ = 0 is a (and thus the only) solution. 

In order to deal with the quasilinear terms we use an auxiliary function 

" Ö 
b(n) := / l+özdze=n+ 5m Vb(n) = (1+ ön)Vn. 

0 

Now, after integrating by parts 
1 t 

> |Vellizoy(®) +/ vom) — b(na))- Vopdiıds 
0 
t 

= / eva — naVva)- Vpdıds, 
0o Jo 

gives 

1 ) ! Velen) + | [ @m) = bna)) s = ) dais 
0 

t 

= / eva — naV va) Ve drds. 
0o Jo 

We can expand the b-term 

[ Je — b({ns))(nı — na) dads 

- [ je m) + (m — n3)(nı — na) deds 

> |nı - nalli2o,- 

Now, we consider the second equation. We take the difference of the equations 

solved by the two solutions, and test with d = (v1 — vy) 

IV (v1 = v2) || 2200,y + |vı - vallize,) 

— [ | — n5)(vı — v2) + Ölnı — na)(vı — va) de ds. 

Adding the two equations (after estimating), where we scale the one with p by a 

factor of Y for some Y > 0 to be determined later on, we get 
. 
S IVl (1) +vlm = nallzay + V(1 = v2)ll72@y + o1 = vallizon 

t 

:’y/ eva — ngvvg) . Vo dr ds (45) 
0 Q 

—1—/: Im — n5)(vı — va) + Ölnı — Na)(vı — va) dıds, 
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where we shall estimate the right hand side. The last term can be estimated by the 

Cauchy-Schwarz inequality and Young’s inequality 

t 
1 

/ / d(nı — na) (vı — vs) dx ds < 52“”1 — na|72(0,) + „lei — valliza,)- 

0 Jo 

The second to last term can be treated with the mean value theorem 

t 

| [er nen - 09 ars < Int - nllezmoller = vallızcn 
0o Jo 

< aln| <a, mi -nellızen vn = vall 220 
o 1 

< (alla so) mi — nellizo., + „lei - valli2o,)- 

The last remaining term can be treated with the triangle inequality as in the proof 

for the parabolic-parabolic model 

¢ 
7/ eva — naVva)- Vpdıds 

o Jo 
<ylnı Vvı = na Vsl 200 || Vel 2@ 

<Yl @IV (01 = va)lr2@0) + VU] (@ Ina = 12l 200 | Vel 20 
1 1 

< 51V = w)lizy + 5lm = n2llizo,) + CO Il [Voll i) [Vl iz, 

All the terms on the right hand side of (45) can be absorbed by the left hand 
side, provided that 7 > (ala, + 6%. For convenience we choose v = 

(aln|i=o,,)” +6° +1. This way, we keep the norm of nı — na on the left hand side. 
After absorbing and estimating some non-negative terms on the left hand side, we 

get 

t N 

2 Veldao) <C | 1Vl ds 
0 

By the Gronwall lemma we conclude that 

Vo =0 for a.e.t. 

Going back to the estimate after absorbing terms from the right hand side, but 

before neglecting additional non-negative terms on the left hand side, we get 

1 1 
Hnl — 712“%2(@) + ve - UQ)H%Q(Qt) + 5“”1 - U2H%Z(Qt) < 0. 

Since this holds for any ¢, the proof is done. 
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6 Appendix 

  

Lemma 12 (Norm equivalence in H?(N)). Let N < IR? be a bounded Lipschitz 
domain. Consider the space 

Y i={ueH*(Q): Vu-v=0 on 0} 

Then the following norms are equivalent on Y 

lullfre@) == D |P*ulieo,. 

  
jal<2 

ul; := |Aullizo) + |Vullizoy + |ullizoy; 

ul: := |Auliso, + |Vulizoy + lellisoy-   
  

Proof. For |-||zr2(0) — |||» we only need to consider second order derivatives. Argue 
by density and consider ve YNC*(D) 

d d 

_ > / v(0,u): V(d,,u) da 

_ > | (00,0 (V(0,0) ) ds - / (0, ) A0, u) da 

— —/QVU-A(Vu)da: = —/QVU-V(Au)da: 

Q 

so these are in fact equal. 

For ||| (0) > ||‘\\x, we consider two inequalities. Since (} is bounded we get 

ul, SR lullieo; 

which gives one direction. For the other one consider the Sobolev embedding 

H*?(9) > L!(9) (for any dimension). This gives 

ul. < |Aulli2o + Velo, + Clulinoy s A + O)lali < Oluli2e- 
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Lemma 13 (Lax-Milgram). /9, Theorem 1 in Chapter 6.2.1] Let H be a real 
Hilbert space. Assume that 

a: Hx HR 

ıs a bilinear map, which is continuous, i.e., there exists a constant a > O such 

that 

alu,v)| < allullalola Vu,ve H, 

and also coercive, i.e., there exists a constant 3 > O such that 

Bllull < a(u,w) Yu € H. 

Let F : H — Robea continuous linear functional on H. Then there exists a 

unique element ue I such that 

a(u,v)=F(v) wEeH, 

i.e., a unique solution to the problem a(-,v) = F(v).     
  

Corollary 13.1 (Lax-Milgram). With the notation of Lemma 13 the unique solution 

u € H satisfies the bound 

Cr 
B ) 

where Cr is the continuity constant of F, i.e., 

lulla < 

IFo)|<Crlolle Yo e I 

Proof. If u = 0, the bound holds. Otherwise, by coercivity, the fact that u is a 

solution (and u € H is an admissible test function), and the continuity of F', one 

gets 

Bllullzy < latu, u)| = |F(u)| < Crllulli- 

Dividing by ||u||zr and rearranging concludes the proof. O 
  

Lemma 14 (Leray-Schauder fixed point theorem). /10, Theorem 11.6] Let 
X be a Banach space and let B be a compact mapping 

B:Xx[0,1] = X 

such that B(u,0) = 0 for all u € X. Suppose there exists a constant M such 

that 

lullx <M 

for any potential "fixed points” (u,o) € X x [0,1] satisfying B(u,0) = u. 

Then the mapping u B(u,1) has a fixed point.     
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Lemma 15 (Eberlein-Smuljan). /27, Theorem 21.D] Each bounded sequence 
in a reflexive Banach space has a weakly convergent subsequence. 
  

  

Lemma 16 (Convergence from Subsubsequences). Let (X, 7) be a topological 

space, and (£n)nen @ sequence in X. Assume that every subsequence of (x) 

has a subsubseguence, which all converge to a common limit x € X, then the 

original sequence converges to that limit x.     
  

Proof. By contradiction: Assume that x, x, l.e., 

U € T with x € U such that VYN e Ndn > N : z, ¢ U. 

Define 

K:N—= N, N—min{n >N : z, ¢ U}, 

which is well-defined by the above assumption. Now define a strictly increasing 

mapping inductively by?’ 

{:N— N, 

{5(0) = K(0), 
n-+1):=min{jeranK: j > {(n)}. 

This induces the subsequence (£y(n))nen. Notice that any such element lies outside 

of U. Ifthere were a convergent subsubsequence of (£y(n) nen, then there would have 

to be an index N € N such that Vn > N we would have zu, € U, but this is a 

contradiction, because no such element is in U. [1 

  

Lemma 17 (Rellich-Kondrachov theorem). [1, Theorem 8.11.4] Let X < R° 
be a bounded domain with Lipschitz boundary, and m € NU {0}. Then the 

embedding H™(Q) — H™(R) is compact. 
  

  

Lemma 18 (Compact embeddings). [1, Theorem 8.11.5, Theorem 8.11.6] 
For bounded domains Q C RY with Lipschitz boundary and OÖ < sı < Sa, the 

following embedding is dense and compact 

H®(2) >> H°(2). 

Under the same assumptions on (), let 1 < p < oo and 0 < s < sy such that 

S > %, then the following embedding is compact 

w”r(9) >> WPD).     
  

  

?7 This construction makes sure that we do not need any kind of axiom of choice. We fully rely 

on the well-ordering of N. 
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Lemma 19 (Gagliardo-Nirenberg inequality). Let N < R® be a bounded Lip- 
schitz domain. Let m € N\{0} be a positive integer, 1 < p,q,r < ©, and 

0 <6 <1, such that 

1 1 m 
- — — 1-9 Eat 

1 

r q 

with two special cases: 

1. If rm < d and q = x, then one needs to assume that u € LI(Q) for 

some q > 0. 

2. If 1 <r <oo and m — % is a non-negative integer, then one needs to 

restrict 0 < 6 < 1. 

Under these assumptions the following inequality holds with a constant C in- 

dependent of u 

lull oy < Cllullym el pagey- (46)     
  

Proof. For any k£ € N and 1 < p < oo there exists an extension operator 

E - WFP(Q) — WFP(RY) 

which is linear and bounded (see [23, Theorem 4]). Using the Gagliardo-Nirenberg 
inequality on R® (see [21, Theorem p. 125]), we get 

\ullzeo, < | Pullıoers) < Cor |D* (Eure Eule) 

< Cox EulldmsaolEulloda, < CnConlullenolulich, 

  

Lemma 20 (Sobolev embedding). /1, Theorem 8.12.4 and Remark 8.12.4] 
Let N < R® be a bounded Lipschitz domain, and 1 < p < oo, m € NU {0}. 

Then the following continuous embedding holds 

Wme(Q) — LUQ) 

o ifl-2>0,thenl<qg<q witht=1-1 

'if%—%:O,then1§q<007 

'if%—%<0,then1§q§oo_ 

Moreover, form—g =k + o with k = ms e NU{0},0 < o <1 the 
continuous embedding holds 

Wme(Q) < Ch (1), 

where C*° denotes a Hölder space: functions with continuous derivatives up 

to order k, and k-th order derivatives are Hölder continuous with exponent o.     
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Lemma 21 (Young inequality with e). Leta>0O andb>0. If1<p,gq<x 

are such that , + r = 1, then for anye > one has 

1 
ab < ea? + — —— 

gp@/Ppga/p 
b! = ea’ + C(e)b.     

  

Proof. The standard Young inequality shows 

MP? 1 — —1 p q ab = (aM)(bM) < 5 a —i—qub.   

Choosing M = »/pe then gives the statement. [1 

  

Lemma 22 (Inverse dominated convergence theorem). [3, Theorem 4.9] Let 
1 < p < om. Let (f„) be a sequence in LP and f € LP, for some o-finite 

measure on a set 0. If |fn - f||ır > 0 as n — ©, then there exists a 
subsequence (f„,) and a function h € LP such that 

1. fn,(2) > f(x) a.e. on, 

2. | fu. ()] < h(x) Vk, a.e. on. 
  

  

Lemma 23 (Some elementary inequality). For any 0 < 8 < 1/2 andn > 0 
there exists a constant C(3,1) such that for all x > 0 the inequality 

TI < na! +C(B,n) 

holds.     
  

Proof. Consider 

28-1 
T o+ 

= x? ua 0, 

ap 
  

so there exists zo = zo(P,n) such that for allO < x < ıxo one has 2 <nor 

equivalently 2?°~! < nz®~!. On the other hand 

  

1-28 727% 
na? +7 — 00, 

so there exists x, = xı(P,n) such that for all x > x, one has nette? >1 

or equivalently 22°~! < ne?! +1. This settles the edge cases. For the remaining 
”middle part” set 

C(8,n) := max{ max a°°’1,1}, 
x€[xo,x1] 

which is finite because x?®"! is continuous on the compact set [xo, 21] < (0,©). O 
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Lemma 24 (Stampacchia). Let 2 C R@ be a bounded Lipschitz domain. Let 

G : R — R be a Lipschitz function, and p € (1,0). 

o Ifuec WhP(Q), then G(u) € W'2(Q). 

  o If additionally G’ has a finite number of discontinuities, then >-G(u) = 

G’ (u)g—gz almost everywhere in €.     
  

Proof. Let (u,) € C*°(N) be a sequence converging to u strongly in W'?(N). Then 
G(u,„) is a bounded sequence in W'P(Q), since by Rademacher’s theorem G’ exists 
almost everywhere and is bounded in LX (N). Since p € (1,00) the space W'P(Q) is 
reflexive. Thus, there exists a weakly convergent subsequence G(u,,) and a function 

v € WHP(Q) such that G(u„,) — v in W!P(D). Because G(u„,) — G(u) in the sense 
of distributions, we conclude G(u) = ve W!P(Q) by identifying the limits. 

For the second part let first G € C'{R), and again u, — u in W!(Q). Then for 
any test function ¢ € C°(Q) 

06 . ou, Lege de = - | tu) ge ode 

and we can pass to the limit n — oo by inverse dominated convergence. Thus, the 

distributional derivative of G(u) is equal to G’ (u)Zu in ZP(N). In particular, they 
coincide almost everywhere. For the general case, denote ¢; € R the points where 

G’ is discontinuous. Since there are only finitely many points (in particular they do 

not have an accumulation point) we can write 

N 
1+ H,. 

G/:F/—f—g Oéj I 

=1 2 

  

with F’ continuous, the shifted Heavyside function H,,(t) = sign(t — t;), and some 
real numbers a;; which corresponds to adding (or subtracting) a jump height of 

a; at the point t,. We note that F € C'(R), which we treated already. The last 
remaining part is /,,, but this is precisely the weak derivative of the absolute value 

|t —t;]. Thus, approximating it by differentiable functions t > vt?-+ e proves the 

claim. [ 

Corollary 24.1. In particular, for functions f,g e W'(N) for p € (1,00) it holds 

F+s+lf-9l 5 ew'r(9). max{f,g} = 
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