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Abstract

Consider a pair (X,Y ) of random variables that have both a continuous law. It is well known
that there is a sequence of bijections (Fn)n such that Fn(X) is distributed like Y and the pairs
(X,Fn(X)) converge to (X,Y ) in distribution. The aim of this thesis is to prove an analogous
statement for stochastic processes with finitely many time steps.

We consider processes X = (X1, . . . , XN ) and Y = (Y1, . . . , YN ), which are compatible in the
following sense: For all t the random variable (Y1, . . . , Yt) is conditionally independent of X given
(X1, . . . , Xt), and conversely (X1, . . . , Xt) is independent of Y given (Y1, . . . , Yt), as well.

A mapping F from the path space of X to the path space of Y is called adapted if the t-th
component of F (x1, . . . , xN ) only depends on x1, . . . , xt. A bijection F is called biadapted if
both F and F−1 are adapted.

The aim of this thesis is to show that (under suitable regularity assumptions) there are biadapted
mappings Fn from the path sapce of X to the path space of Y s.t. Fn(X) is distributed like Y
and (X,Fn(X)) converges to (X,Y ) in distribution.

The joint distribution of processes X and Y that satisfy the compatibility assumption mentioned
above are exactly the bicausal couplings. Therefore, the claim is equivalent to the fact that
bicausal Monge couplings are dense in the set of bicausal couplings with fixed marginals w.r.t.
weak convergence of probability measures, i.e. testing against continuous bounded functions.
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Kurzfassung

Sei (X,Y ) ein Paar von Zufallsvariablen mit stetiger Verteilung. Es ist bekannt, dass eine Folge
von Bijektionen (Fn)n existiert, sodass Fn(X) wie Y verteilt ist, und die Tupel (X,Fn(X)) in
Verteilung gegen (X,Y ) konvergieren. Das Ziel dieser Arbeit ist es, eine analoge Aussage für
stochastische Prozesse mit endlich vielen Zeitschritten zu beweisen.

Dazu betrachten wir Prozesse X = (X1, . . . , XN ) und Y = (Y1, . . . , YN ), die im folgenden Sinne
kompatibel sind: Für jedes t ist (Y1, . . . , Yt) unabhängig von X gegeben (X1, . . . , Xt), und auch
umgekehrt: (X1, . . . , Xt) ist unabhängig von Y gegeben (Y1, . . . , Yt).

Eine Abbildung F vom Pfadraum von X in den Pfadraum von Y heißt adaptiert, falls die t-
te Komponente von F (x1, . . . , XN ) lediglich von x1, . . . , xt abhängt. Eine Abbildung F heißt
biadaptiert, falls F bijektiv ist und F und F−1 beide adaptiert sind.

Das Zeil der Arbeit ist es zu zeigen, dass es (unter gewissen Regularitätsbedingungen) biadap-
tierte Abbildungen Fn vom Pfadraum von X in den Pfadraum von Y gibt, sodass Fn(X) wie Y
verteilt ist und (X,Fn(X)) in Verteilung gegen (X,Y ) konvergiert.

Die gemeinsamen Verteilungen von Prozessen X und Y mit obiger Kompatibilitätseigenschaft
sind genau die bikausalen Kopplungen von X und Y . Die obige Aussage ist also äquiva-
lent dazu, dass bei festgehaltenen Marginalien die bikausalen Monge-Kopplungen dicht in den
bikausalen Kopplungen liegen, und zwar bezüglich schwacher Konvergenz durch Testen gegen
stetige beschränkte Funktionen.
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Introduction

The first chapter of this theses covers the static case. In Section 1.1 basic definitions and results
from optimal transport are recalled very briefly, for detailed introduction to optimal transport
the reader is referred to [9] and [10]. Afterwards, we prove the following result (see Theorem
1.20), which was already established in [4, Proposition A.3]:

If µ is a continuous probability on the Polish space X and ν a continuous probability on the
Polish space Y , then the set of couplings between µ and ν, which are supported on the graph
of a bijection are, is dense in the set of couplings between µ and ν w.r.t. weak convergence, i.e.
testing against continuous bonded functions.

We give a new proof of this result, which has the advantage that it can be extended to prove
the time-depended version in Chapter 2. This proof crucially relies on the representation of a
coupling π between µ and ν as a coupling 
π between µ⊗ λ and ν ⊗ λ, which is supported on the
graph of a bijection T : X → Y (Theorem 1.15).

In the second chapter we prove a time dependent version of this result. We consider the laws
of stochastic processes with values in a Polish space (say R) and N time steps, i.e. probabil-
ity measures on RN . The goal is to prove that (under certain regularity assumptions on the
marginals) any coupling π between probability measures µ and ν on RN , that respects the time
structure, can be approximated by couplings between µ and ν that are supported by the graph
of a bijection that respects the time structure.

We have to clarify what “respecting the time structure” means. For mappings this is the notion
of adaptedness: A mapping T : RN → RN is adapted if, for any t ≤ N , there are mappings
Tt : Rt → R such that T (x1, . . . , xN ) = (T1(x1), . . . , TN (x1, . . . , xN )). So, one just needs to know
(x1, . . . , xt) in order to calculate the first t components of T (x1, . . . , xN ).

For couplings causality is the right notion of “respecting the time structure”. That is basically
a relaxation of adaptedness: A coupling π is causal if one only needs to know (x1, . . . , xt) in
order to calculate πx1,...,xN (B) for sets B ⊆ RN ×RN that only depend on the first t coordinates
in y-direction (i.e. that are measureable w.r.t. the σ-algebra that is generated by the mapping
RN × RN → Rt : (x1, . . . , xN , y1, . . . , yN )  → (y1, . . . yt)).

A bijection T is called biadapted if T and T−1 are both adapted and a coupling π is bicausal if
it is causal by itself and causal if we exchange the x- and y-coordinates. See Section 2.1 and 2.2
for more details.

Now we have explained the terms to state the main Theorem 2.26 more precisely: Let µ and ν
be probability measures on RN (satisfying some regularity conditions) and let π be a bicausal
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coupling between µ and ν. Then there is a sequence of biadapted mappings (Tn)n that push µ
to ν such that the couplings µ ◦ (id, Tn)

−1 weakly converge to π.

In order to prove the results of this thesis rigorously without getting lost in technical details,
some measurability aspects were postponed to the Appendix.

Notation

Polish spaces and standard Borel spaces will be denoted with capital letters, such as X or Y .
Collections of subsets of them (e.g. topologies or σ-algebras) will be denoted by calligraphic
letters such as B or T . The power set of X will be denoted by 2X .

We will always equip the spaces X and Y with the Borel σ-algebra generated by their Polish
topology. P(X) denotes the set of Borel probability measures on X. Probability measures are
denoted with small Greek letters such as µ, ν and π. λ always denotes the Lebesgue measure
on [0, 1]. For a measure µ on (some subset of) R we denote its distribution function as Fµ, i.e.
Fµ(t) := µ((−∞, t]) and its inverse distribution function (or quantile function) as F−1

µ .

The measurability of mapping is always to be understood w.r.t. the Borel σ-algebra. Given a
measurable mapping f : X → Y and measure µ ∈ P(X), we denote the pushforward of µ under
f as f∗µ, i.e. f∗µ(A) := µ(f−1(A)) for all A ⊆ Y Borel. For a further mapping g : Y → Z we
define g∗f∗µ := g∗(f∗µ) = (g ◦ f)∗µ to avoid unnecessary brackets.

We equip P(X) with the weak convergence by testing against continuous bounded functions, i.e.

µn ⇀ µ : ⇐⇒ ∀f : X → R continuous and bounded:

�
fdµn →

�
fdµ.

A probability space is a triple (Ω,F ,P), where Ω is a set, F is a σ-algebra on Ω and P ∈ P(Ω).
A random variable is a measurable function from Ω to a Polish space. We will denote random
variables with sans serif letters to avoid conflicting notations, e.g. X and Y.

The law of a random variable X, denoted by L(X), is the probability measure X∗P. We write
X ∼ µ for L(X) = µ and X ∼ Y for L(X) = L(Y).
A kernel from Z to X is a function π : Z → P(X). We denote the probability measure π(z)
as πz. We introduce a similar notation for functions: Given a function F : Z ×X → Y (which
can also be seen as a function F : Z → Y X) and z ∈ Z we define the function F z : X → Y as
F z(x) = F (z, x).

For spaces X and Y we introduce the function e : X × Y → Y × X : (x, y)  → (y, x), i.e. e
exchanges the order of X and Y .

For more details the reader may consult the appendix.
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Chapter 1

The static case

1.1 Introduction to optimal transport

This section gives a very brief introduction to the optimal transport problem, for detailed intro-
duction to optimal transport the reader is referred to [9] and [10].

The aim of optimal transport is to transport a given distribution µ on a Polish space X to
another given distribution ν on a Polish space Y in the cheapest way with respect to a given cost
function. The most natural way to clarify what is meant by “transport µ to ν” is considering
mappings T : X → Y that push µ to ν. This leads to the Monge transport problem

inf

��
c(x, T (x))dµ(x) : T : X → Y s.t. T∗µ = ν

�
,

where c : X × Y → R is a given cost function.

It turned out that a relaxed version of this problem is more accessible to analytic techniques.
Here the transport mappings T : X → Y s.t. T∗µ = ν are replaced by couplings (also called
transport plans):

Definition 1.1. Let µ ∈ P(X) and ν ∈ P(Y ). The set of couplings between µ and ν is defined
as

Cpl(µ, ν) := {π ∈ P(X × Y ) : prX∗π = µ, prY ∗π = ν}.

This leads to the socalled Kantrovich transport problem:

Definition 1.2. Let c : X × Y → R a cost function. Then Kantorovich problem is

inf

��
c(x, y)π(dx, dy) : π ∈ Cpl(µ, ν)

�
.

A first and crucial oberservation is that transport mappings are special cases of couplings: In
fact, if T∗µ = ν, then π := (id, T )∗µ ∈ Cpl(µ, ν) and

�
c(x, y)dπ(x, y) =

�
c(x, T (x))dµ(x), so

the Kantrovich problem is indeed are relaxation of the Monge problem. We introduce a notation
for those couplings that are “induced” by a map:
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Definition 1.3. Let µ ∈ P(X) and ν ∈ P(Y ). The set of Monge couplings between µ and ν is
defined as

Cpl0(µ, ν) := {(id, T )∗µ : T : X → Y measureable, T∗µ = ν}.
Remark 1.4. One can easily see that π ∈ Cpl(µ, ν) is a Monge coupling if and only if its regular
disintegration π(dx, dy) = µ(dx)πx(dy) has the property that πx is µ-a.s. a Dirac measure. So,
one can interpret the relaxation from mappings to couplings as introducing some randomization:
Instead of deterministically prescribing that a point x is transported to some point T (x), we
prescribe a probability distribution of its target, namely πx.

We want to prove the existence of minimizes for the Kanatrovich problem because this gives a
good intuition for the topic and the lemmas we need for this proof will be needed in other parts
of the thesis as well.

We first observe that the set of couplings with fixed marginals is compact w.r.t. weak convergence
of probability measures:

Proposition 1.5. Cpl(µ, ν) is compact w.r.t. weak convergence of probability measures.

Proof. Since the mappings π  → prX∗π and π  → prY ∗π are both continuous by Lemma A.44,
the set Cpl(µ, ν) is closed.

We show tightness to conclude compactness with Prokhorov's Theorem A.21. For ε > 0 there
exist compact set KX ⊆ X and KY ⊆ Y s.t. µ(Kc

X) < ε/2 and ν(Kc
Y ) < ε/2. Then for any

π ∈ Cpl(µ, ν):

π((KX ×KY )
c) ≤ π(Kc

X × Y ) + π(X ×Kc
Y ) = µ(Kc

X) + ν(Kc
Y ) < ε.

For a continuous bounded function f : X → R the mapping µ  → �
fdµ is per definition

continuous w.r.t. weak convergence. The following lemma generalizes this fact a bit:

Lemma 1.6. Let f : X → R be lower semi continuous and bounded from below. Then

P(X) → R : µ  →
�

fdµ

is lower semi continuous.

Proof. We first show that there a continuous bounded functions fk s.t. f = supk fk. To that
end, let d be a compatible metric for X. Then the functions

fk(x) :=
	
inf
y∈X

(f(y) + kd(x, y))
�
∧ k

are k-Lipschitz and bounded (from above by k and from below by the lower bound of f). Obvi-
ously, fk(x) ≤ f(x), so it suffices to show supk fk(x) ≥ f(x).

For k > f(x) pick yk ∈ X s.t.

f(yk) + kd(x, yk) ≤ fk(x) + 1/k.

Then

d(x, yk) ≤ 1

k

	
fk(x) +

1

k
− f(yk)

�
≤ 1

k

	
f(x) + 1 + | inf

y∈X
f(y)|

�
→ 0,
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so yk → x. Since f is l.s.c. and by the definition of yk we have

f(x) ≤ lim inf
k

f(yk) ≤ lim inf
k

fk(x) + 1/k ≤ sup
k

fk(x).

Hence, for all k ∈ N: �
fkdµ = lim inf

n

�
fkdµn ≤ lim inf

n

�
fdµn

and by using dominated convergence in the limit k → ∞�
fdµ = lim

k

�
fkdµ ≤ lim inf

n

�
fdµn.

These two lemmas are already enough to prove the existence of minimizers:

Theorem 1.7. Let c : X × Y → R be lower semi-continuous and bounded from below. If

inf
π∈Cpl(µ,ν)

�
cdπ < ∞,

there exists a minimizer in the Kantorovich problem.

Proof. For n ∈ N let πn ∈ Cpl(µ, ν) s.t.�
cdπn ≤ inf

π∈Cpl(µ,ν)

�
cdπ +

1

n
.

By Proposition 1.5 there exists a subsequence (πnk
)k converging weakly to some π ∈ Cpl(µ, ν).

By Lemma 1.6 we have�
cdπ ≤ lim inf

n

�
cdπn ≤ lim inf

n
inf

π∈Cpl(µ,ν)

�
cdπ +

1

n
= inf

π∈Cpl(µ,ν)

�
cdπ.

To close this section, we want to mention how the optimal transport problem can be used to
define a metric on the set of probability measures. This metric is called Wasserstein distance.

Definition 1.8. Let X be a Polish space and d be a compatible metric. For p ∈ [1,∞) let
Pp(X) be the set of all µ ∈ P(X) s.t.

�
d(x, x0)

p < ∞ for some (and therefore any) x0 ∈ X. For
µ, ν ∈ Pp(X) define

Wp(µ, ν) := inf

��
d(x, y)pπ(dx, dy) : π ∈ Cpl(µ, ν)

�1/p

It is a very interesting and useful fact that the Wasserstein distance metrizes the weak convergence
of probability measures:
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Theorem 1.9 ([9, Theorem 7.12], [10, Theorem 6.18]). Let X be a Polish space, d be a compatible
metric and p ∈ [1,∞). Then for any sequence (µn)n in Pp(X) and µ ∈ Pp(X) the following are
equivalent:

(i) Wp(µn, µ) → 0

(ii) µn ⇀ ν and
�
d(x0, x)

pdµn(x) →
�
d(x0, x)

pdµ for some (and therefore any) x0 ∈ X.

Moreover, Wp is complete and therefore a compatible metric for the Polish space Pp(X).

In particular, if d is a bounded metric, then Pp(X) = P(X) and Wp metricizes the weak conver-
gence of probability measures.

1.2 Representation of couplings between µ and ν as bijective
Monge couplings between µ⊗ λ and ν ⊗ λ

In some sense, Monge couplings are simpler than general couplings. In this section we will
consider Monge couplings, which are inducted by bijections.

Definition 1.10. For µ ∈ P(X) and ν ∈ P(Y ) we define the set of Monge couplings supported
on the graph of a bijection:

Cpl00(µ, ν) := {(id, T )∗µ : T : X → Y bimeasureable, T∗µ = ν}.

A relation R ⊆ X × Y is the graph of a bijection from X to Y if and only if R is the graph of a
mapping from X to Y and the inverse relation R−1 ⊆ Y ×X the graph of a mapping from Y to
X. The same is true for couplings:

Lemma 1.11. π ∈ Cpl00(µ, ν) if and only if π ∈ Cpl0(µ, ν) and e∗π ∈ Cpl0(ν, µ).

Proof. Assume that π ∈ Cpl0(µ, ν) and e∗π ∈ Cpl0(ν, µ), i.e. there exist Borel mappings S :
X → Y and T : Y → X such that π = (id, S)∗µ and e∗π = (id, T )∗ν. By Theorem A.13 the
sets graph(S) and graph−1(T ) := {(T (y), y) : y ∈ Y } are both Borel. Clearly, π(graph(S)) = 1
and π(graph−1(T )) = 1. Hence, R := graph(S) ∩ graph−1(T ) is Borel and π(R) = 1. Moreover,
R is the graph of a bijection between prX(R) and prY (R). It is easy to see that prX(R) =
(id, S)−1(graph−1(T )) and prY (R) = (id, T )−1(graph−1(S)), so prX(R) and prY (R) are both
Borel. Hence, R : prX(R) → prY (R) is a Borel isomorphism by Theorem A.13. By Theorem
A.14 there exists a Borel isomorphism G : X \ prX(R) → Y \ prY (R). Then the mapping

F : X → Y : x  →
�
R(x) x ∈ prX(R)

G(x) x /∈ prX(R)

is a Borel ismorphism satisfying π = (id, F )∗µ.

The main goal of Chapter 1 is to show that those couplings are dense in Cpl(µ, ν) if the marginals
µ and ν are both continuous. A crucial step in the proof of this will be a representation of a
coupling π ∈ Cpl(µ, ν) by a coupling 
π ∈ Cpl00(µ⊗ λ, ν ⊗ λ). By “representation” we mean that
we can recover π from 
π by projecting from X × [0, 1] × Y × [0, 1] onto X × Y . Precisely, the
aim of this section is to prove the following statement:
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Theorem 1.12. Let X and Y be standard Borel spaces, µ ∈ P(X), ν ∈ P(Y ) and let π ∈
Cpl(µ, ν). Then there exists some measurable bijection T : X × [0, 1] → Y × [0, 1] satisfying the
following properties:

(i) T∗(µ⊗ λ) = ν ⊗ λ

(ii) If prXY : X × [0, 1]× Y × [0, 1] → X × Y denotes the projection and 
π := (id, T )(µ⊗ λ), it
holds prXY (
π) = π.

Remark 1.13 (see also [5, Lemma 3.22]). Since the proof of this is quite technical, we consider
an easier problem, namely to represent a coupling π ∈ Cpl(µ, ν) by a Monge coupling 
π ∈
Cpl(µ ⊗ λ, ν) in a way s.t. we can recover π from 
π when projecting from X × [0, 1] × Y onto
X × Y .

In Remark 1.4 we have argued that general couplings are in some sense a randomized version
of Monge couplings. So, the idea is to add an additional coordinate, which is distributed as λ
and realizes that randomization. By Theorem A.14 we can assume that X = Y = [0, 1]. Define
the mapping T (x, u) := F−1

πx (u). Clearly, T (x, ·)∗λ = πx. If f : X × Y → R is a measureable
function, we see that�
f(x, y)d(id, T )∗(µ⊗ λ) =

�
f(x, F−1

πx (u))dλ(u)dµ(x) =

�
f(x, y)dπx(y)dµ(x) =

�
f(x, y)dπ(x, y),

so prXY ∗T∗(µ⊗ λ) = π and hence T∗(µ⊗ λ) ∈ Cpl(µ⊗ λ, ν).

If π = (id, T )∗µ ∈ Cpl(µ, ν) is a Monge coupling, the conditional probabilities w.r.t. the first
coordinate are Dirac measures (i.e. πx = δT (x)), however the conditional probabilities w.r.t. the
second coordinate do not need to be Dirac, unless the Monge mapping is injective. So, in some
sense a Monge coupling can still contain randomness (given some y ∈ Y one can in general not
determine “from which x the mass in y came”).

Hence, it is reasonable that a representation with Monge couplings supported on the graph of a
bijection will in general need more randomization. The following easy example shows that this
is in fact true:

Expample 1.14. Let X = Y = [0, 1], µ = λ, ν = δ0 and π = λ ⊗ δ0. Assume that there is a
bijection T : X × [0, 1] → Y s.t. 
π = (id, T )∗λ2 ∈ Cpl(µ⊗ λ, ν) = Cpl(λ2, δ0). Then, on the one
hand T−1({0}) has to contain exactly one element, on the other hand λ2(T−1({0})) = 1, which
is a contradiction.

The idea for the proof of the representation of π ∈ Cpl(µ, ν) as a coupling 
π ∈ Cpl00(µ⊗λ, ν⊗λ)
is to consider the following mapping:

T : X × [0, 1] → Y × [0, 1] : (x, u)  → (y, v), where y = F−1
πx (u), v = Fπy (x).

As in Remark 1.13, we calculate y given some x and the randomization u as y = F−1
πx (u). For the

definition of v we observe that it is the randomization variable that belongs to the Y -component
and that we already have a prescribed value for y. So, we have to ask: “given y and knowing that
the result of our calculation is x, what is the suitable value for the randomization?” Therefore,
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v should satisfy x = F−1
πy (v), so v = Fπy (x). Moreover, it is easy to check that the mapping1

S : Y × [0, 1] → X × [0, 1] : (y, v)  → (x, u), where x = F−1
πy (v), u = Fπx(y)

is the inverse of T , in particular T is a bijection.

This fact (as well as the last step in the motivation of the definition of T ) crucially depend on the
fact that the mappings Fπx and Fπy are all bijective. This is only possible for couplings π, whose
conditional probabilities πx and πy are all non-atomic. Since this is no reasonable assumption on
couplings (it in fails many important cases), we will have to use a somewhat more sophisticated
construction to overcome this issue.

Moreover, we will prove a more general, parameterized version of this theorem in order to avoid
measureability issues in Chapter 2. This proof relies on Corollary A.41, which is proven in the
appendix.

Theorem 1.15. Let X,Y, Z be standard Borel spaces and π a kernel from Z to X × Y . Let µ
denote the kernel from Z to X defined by µz := prX∗π

z and denote ν be the kernel from Z to Y
defined by νz := prY ∗π

z. (i.e. πz ∈ Cpl(µz, νz) for all z ∈ Z.)

Then there exists a Borel measurable mapping T : Z ×X × [0, 1] → Y × [0, 1] s.t. for all z ∈ Z
the mappings T z : X × [0, 1] → Y × [0, 1] : (x, u)  → T (z, x, u) are Borel isomorphisms satisfying

(i) T z∗(µz ⊗ λ) = νz ⊗ λ

(ii) prXY ∗(id, T
z)∗(µz ⊗ λ) = πz.

Proof. By Corollary A.41 there exits a measureable mapping

G : (Z ×X)× Y × [0, 1] → [0, 1]2

s.t. for all (z, x) ∈ Z × X the mapping Gz,x := G(z, x, ·) : Y × [0, 1] → [0, 1]2 is a Borel
isomorphism satisfying Gz,x

∗ (πz,x ⊗ λ) = λ2.

Again by Corollary A.41, there exits a measureable mapping

H : (Z × Y )×X × [0, 1] → [0, 1]2

s.t. for all (z, y) ∈ Z × Y the mapping Hz,y := H(z, y, ·) : X × [0, 1] → [0, 1]2 is a Borel
isomorphism satisfying Hz,y

∗ (πz,y ⊗ λ) = λ2.

Consider the mapping S : Z × X × [0, 1]3 → Y × [0, 1]3 defined by S(z, x1, x2, u1, u2) =
(y1, y2, v1, v2), where

(y1, y2) = (Gz,x1)−1(u1, u2) (v1, v2) = Hz,y1(x1, x2).

Clearly, S is Borel. For z ∈ Z we denote Sz := S(z, ·) : X × [0, 1]3 → Y × [0, 1]3.

Our aim is to show that for all z ∈ Z the mapping Sz is a Borel isomorphism satisfying

1One has to be careful when reading the definition of S: Basically, S is the same mapping as T but for the
coupling e∗π ∈ Cpl(ν, µ), where e(x, y) := (y, x). Hence, the F−1

πy in definition of S are the quantile functions of
π conditioned on some y ∈ Y , i.e. we do not have just changed the names of the variables x and y when defining
an inverse function, in fact we disintegrate w.r.t. to another coordinate as in the definition of T .
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(i) Sz∗(µz ⊗ λ3) = νz ⊗ λ3

(ii) prXY ∗(id, S
z)∗(µz ⊗ λ3) = πz.

In order to prove the injectivity of Sz, let (x1, x2, u1, u2) ̸= (x̄1, x̄2, ū1, ū2) be given. We have to
show that (y1, y2, v1, v2) := Sz(x1, x2, u1, u2) and (ȳ1, ȳ2, v̄1, v̄2) := Sz(x̄1, x̄2, ū1, ū2) are different.
In the case (y1, y2) ̸= (ȳ1, ȳ2) there is nothing to prove, so we may assume (y1, y2) = (ȳ1, ȳ2). We
distinguish two cases:

Case 1: x1 = x̄1. This implies (Gz,x1)−1 = (Gz,x̄1)−1 and by the injectivity of this mapping we
get (u1, u2) = (ū1, ū2). Since (x1, x2, u1, u2) ̸= (x̄1, x̄2, ū1, ū2) this implies x2 ̸= x̄2 and by the
injectivity of Hz,y1 this implies (v1, v2) ̸= (v̄1, v̄2).

Case 2: x1 ̸= x̄1. Then by the injectivity of Hz,y1 again (v1, v2) ̸= (v̄1, v̄2).

For proving the surjecitvity, let (y1, y2, v1, v2) be given. By the surjectivity of Hz,y1 there are
(x1, x2) such that Hz,y1(x1, x2) = (v1, v2). Now, by the surjectivity of (Gz,x1)−1, there exists
(u1, u2) such that (Gz,x1)−1(u1, u2) = (y1, y2).

We have shown that Sz is a Borel measurable bijection and by Theorem A.13 it is a Borel
isomorphism.

Property (i). Let f : Y × [0, 1]3 be measurable function. Then it holds�
f(y1, y2,v1, v2)dS

z
∗(µ

z ⊗ λ3)(y1, y2, v1, v2) =

=

�
f((Gz,x1)−1(u1, u2), H(z, prY ((G

z,x1)−1(u1, u2)), x1, x2))d(µ
z ⊗ λ3)(x1, x2, u1, u2)

=

�
f(y1, y2, H

z,y1(x1, x2)) d(G
z,x1)−1

∗ λ2(y1, y2)� �� �
=d(πz,x1⊗λ)(y1,y2)

d(µz ⊗ λ)(x1, x2)

=

�
f(y1, y2, H

z,y1(x1, x2)) dπ
z,x1(y1)dµ

z(x1)� �� �
=dπz(x1,y1)

=dπz,y1 (x1)dν
z(y1)

dλ2(x2, y2)

=

�
f(y1, y2, H

z,y1(x1, x2))dπ
z,y1(x1)dλ(x2)dν

z(y1)dλ(y2)

=

�
f(y1, y2, v1, v2) dH

z,y1∗ (πz,y1 ⊗ λ)(v1, v2)� �� �
=dλ2(v1,v2)

dνz(y1)dλ(y2)

=

�
f(y1, y2, v1, v2)d(ν

z ⊗ λ3)(y1, y2, v1, v2),

which yields Sz(µz ⊗ λ3) = νz ⊗ λ3.

Property (ii). Note that (prX ◦ (Gz,x1)−1)∗λ2 = πz,x1 and that

prXY ◦ (id[0,1]4 , Sz) : X × [0, 1]3 → X × Y : (x1, x2, u1, u2)  → (x1, prY ((G
z,x1)−1(u1, u2))).
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Hence, for any measurable function f : X × Y → R we have�
f(x1, y1)dprXY ∗(id[0,1]4 , S

z)∗(µz ⊗ λ3)(x1, y1) =

=

�
f(x1, prY ((G

z,x1)−1(u1, u2)))dµ
z(x1)dλ

3(x2, u1, u2)

=

�
f(x1, y1) d(G

z,x1)−1
∗ λ2(u1, u2)� �� �

=dπz,x1 (y1)dλ(y2)

dµz(x1)

=

�
f(x1, y1)dπ

z,x1(y1)dµ
z(x1)

=

�
f(x1, y1)dπ

z(x1, y1),

which shows that prXY ∗(idX×[0,1]3 , S
z)∗(µz ⊗ λ3) = πz.

By Theorem A.19 there exits a Borel isomorphism h : [0, 1] → [0, 1]3 satisfying h∗λ = λ3. Define2

T := (idY × h−1) ◦ S ◦ (idZ × idX × h) : Z ×X × [0, 1] → Y × [0, 1]

Clearly, T is measurable as composition. For z ∈ Z it holds T z = (idY × h−1) ◦ Sz ◦ (idX × h),
so T z is a Borel isomorphism as composition of Borel isomorphisms.

Moreover, it holds

T z
∗ (µ

z ⊗ λ) = (idY × h−1)∗Sz
∗(idX × h)∗(µz ⊗ λ) = (idY × h−1)∗Sz

∗(µ⊗ λ3)

= (idY × h−1)∗(νz ⊗ λ3) = νz ⊗ λ.

Denote 
π := (id, T )∗(µ⊗λ). In order to check that �πz = (id, T z)∗(µz⊗λ) satisfies prXY ∗�πz = πz,
observe that

(idX×[0,1], T ) = ((idX × h−1), (idY × h−1)) ◦ (idX×[0,1]3 , S) ◦ (idX × h)

and therefore
prXY ◦ (idX×[0,1], T ) = prXY ◦ (idX×[0,1]3 , S) ◦ (idX × h),

where prXY denotes on the left hand side the projection X × [0, 1]× Y × [0, 1] → X × Y and on
the right hand side the projection X × [0, 1]3 × Y × [0, 1]3 → X × Y .

Using this, we see that

prXY ∗�πz = prXY ∗(idX×[0,1], T
z)∗(µz ⊗ λ) = prXY ∗(idX×[0,1]3 , S

z)∗(idX × h)∗(µz ⊗ λ)

= prXY ∗(idX×[0,1]3 , S
z)∗(µz ⊗ λ3) = πz,

which shows that T has all the desired properties.

We close this section with an example that shows that this representation is not unique:

Expample 1.16. Let X = Y = [0, 1], µ = ν = λ and π = λ2. Then T (x, u) := (u, x) and
S(u, x) := (u, 1−x) are both representation of π. It is easy to check that T∗(µ⊗λ) = T∗λ2 = λ2

and prXY ◦ (id, T )(x, u) = (x, u), so prXY ∗(id, T )∗(µ ⊗ λ) = prXY ∗(id, T )∗λ
2 = λ2 = π. Since

the mapping x  → 1 − x pushes λ to λ, one can easily see that S is a suitable representation as
well.

2To clarify the notation: For f : A → B and g : A → C we define (f, g) : A → B × C : a �→ (f(a), g(a)). For
f : A → B and g : C → D we define f × g : A× C → B ×D : (a, c) �→ (f(a), g(c)).
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1.3 Denseness of couplings supported by the graph of a bi-

jection

The aim of this section is to prove that Cpl00(µ, ν) is dense in Cpl(µ, ν) if µ and ν are continuous
measures. For that purpose, we need to approximate a given coupling π ∈ Cpl(µ, ν) by a sequence
(πn)n in Cpl00(µ, ν).

To that end, we use the representation of π as 
π = (id, T )∗(µ ⊗ λ) ∈ Cpl00(µ ⊗ λ, ν ⊗ λ) from
the previous section. Then we choose sequences of partitions (with mesh converging to zero) of
the spaces X and Y (Theorem A.45) and bijections between X and X × [0, 1] (and respectively
between Y and Y × [0, 1]), which are compatible with these partitions (Proposition 1.19). In the
proof of Theorem 1.20 we show that the concatenation of these compatible bijections and T is a
suitable approximating sequence.

For a partition M of a metric space X we define its mesh as ||M|| := supM∈M diam(M). The
following proposition that is proven in the appendix ensures the existence of a suitable sequence
of partitions.

Proposition 1.17. Let X be a Polish space and d be a compatible metric. Then there exists a
sequence (Mn)n∈N of partitions of X that consist of at most countably many Borel subsets of X
satisfying limn→∞ ||Mn|| = 0.

Proof. See Theorem A.45 and Remark A.46.

The following condition for weak convergence is convenient for proving the convergence of the
approximating sequence that we construct in the proof of Theorem 1.20.

Lemma 1.18. Let X be a Polish space and d a compatible metric. For each n ∈ N let Mn be
a partition of X consisting of at most countably many Borel sets such that limn→∞ ||Mn|| = 0.
Let µn, µ ∈ P(X) be satisfying µn(M) = µ(M) for all M ∈ Mn. Then µn → µ weakly.

Proof. For n ∈ N consider the coupling

πn :=
�

M∈Mn

1

µ(M)
µn|M ⊗ µ|M .

If || · || denotes the total variation norm, we see that�
M∈Mn

####µn|M ⊗ µ|M
µ(M)

#### =
�

M∈Mn

µn(M) = µn(X) = 1,

so the sum in the definition of πn converges absolutely w.r.t. the totalvariation norm, hence the
sum converges w.r.t. weak convergence as well. Since the pushforward w.r.t. a continous function
is continuous w.r.t. weak convergence it holds

prX∗πn =
�

M∈Mn

prX∗
µn|M ⊗ µ|M

µ(M)
=

�
M∈Mn

µn|M = µn
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and since µn(M) = µ(M) for all M ∈ Mn it holds prY ∗πn = µ as well. By replacing d by
d(x, y) := max{d(x, y), 1} we can assume that d is bounded. For estimating the Wasserstein
distance of µn and µ using the coupling πn, note that πn(M ×M) = µ(M) for all M ∈ Mn. It
holds

W1(µn, µ) ≤
�

d dπn ≤
�

M∈Mn

�
d dπn ≤

�
M∈Mn

diam(M)πn(M ×M)

≤ sup
M∈Mn

diam(M)
�

M∈Mn

µ(M) = sup
M∈Mn

diam(M) → 0,

which implies µn ⇀ µ by Theorem 1.9.

The following proposition is (up to a few technicalities) a consequence of the isomorphism theorem
for measures (Theorem A.19), which states that for any two continuous probabilities measures,
there exists a bijection that pushes the first measures to the second. A detailed proof can be
found in the appendix.

Proposition 1.19. Let X be a Polish space, M be an at most countable partition of X consisting
of Borel sets and µ ∈ P(X) be continuous. Then there exists a Borel isomorphism ΦM

µ : X →
X × [0, 1] such that for all M ∈ M it holds (ΦM

µ )∗(µ|M ) = (µ|M )⊗ λ.

Proof. See appendix.

Now we are ready to prove the main theorem of this section:

Theorem 1.20. Let X,Y be standard Borel spaces, let µ ∈ P(X) and ν ∈ P(Y ) be both con-
tinuous. Then couplings supported by the graph of a bijective function are dense in Cpl(µ, ν),
i.e.

Cpl(µ, ν) = Cpl00(µ, ν).

Proof. By Proposition 1.5 the set Cpl(µ, ν) is closed, so it suffices to show that any π ∈ Cpl(µ, ν)
can be approximated by a sequence πn ∈ Cpl00(µ, ν) w.r.t. weak convergence.

According to Theorem 1.12 there exists a coupling 
π = (id, T )∗(µ⊗λ) ∈ Cpl00(µ⊗λ, ν⊗λ) such
that

(i) T∗(µ⊗ λ) = ν ⊗ λ,

(ii) prXY ∗
π = π.

Let (An)n∈N and (Bn)n∈N be sequences of partitions of X and Y consisting of countably many
Borel sets and satisfying limn→∞ ||An|| = 0 and limn→∞ ||Bn|| = 0. According to Proposition
1.19, for any n ∈ N there exist bijections Φn : X → X × [0, 1] and Ψn : Y → Y × [0, 1] such that

(iii) Φn∗(µ|A) = (µ|A)⊗ λ for all A ∈ An

(iv) Ψn∗(ν|B) = (ν|B)⊗ λ for all B ∈ Bn

17



For n ∈ N define the mapping

Tn := Ψ−1
n ◦ T ◦ Φn : X → Y.

It is easy to see that Tn is bijective and satisfies Tn∗µ = ν. We need to check that πn :=
(id, Tn)∗µ ⇀ π. Note that An ⊗ Bn := {A × B : A ∈ An, B ∈ Bn} are partitions of X × Y
consisting of countably many Borel sets satisfying limn→∞ ||An ⊗ Bn|| = 0. Hence, by Lemma
1.18 it suffices to show for all n ∈ N:

∀A ∈ An ∀B ∈ Bn : πn(A×B) = π(A×B).

This is a consequence of the properties (i) to (iv) of the mappings Φn,Ψn and T :

πn(A×B) = µ(A ∩ T−1
n (B)) = µ|A((Φ−1

n ◦ T−1 ◦Ψn)(B))
(iii)
= (µ|A ⊗ λ)(T−1(Ψn(B)))

= (µ⊗ λ)(A× [0, 1] ∩ T−1(Ψn(B)))
(i)
= (ν ⊗ λ)(T (A× [0, 1]) ∩Ψn(B))

= (ν ⊗ λ)(Ψn(Ψ
−1
n (T (A× [0, 1])) ∩B)) = Ψn∗(ν ⊗ λ)(Ψ−1

n (T (A× [0, 1])) ∩B)

= ν|B(Ψ−1
n (T (A× [0, 1])))

(iv)
= (ν|B ⊗ λ)(T (A× [0, 1]))

= (ν ⊗ λ)(T (A× [0, 1]) ∩B × [0, 1]) = (id, T−1)∗(ν ⊗ λ)(A× [0, 1]×B × [0, 1])

= 
π(A× [0, 1]×B × [0, 1])
(ii)
= π(A×B)

1.4 Discussion of the result

Remark 1.21. It is well known that Cpl0(µ, ν) is dense in Cpl(µ, ν) if µ is continuous. We can
prove this result with little effort using the tools that we have developed so far. The proof can be
carried out exactly as the proof of Theorem 1.20 with one important exception: The existence
of the bijections Ψn : Y → Y × [0, 1] that push ν to ν ⊗ λ (and are compatible with the given
partition) fails. However, if we just replace Ψ−1

n by prY : Y × [0, 1] → Y in the definition of the
mappings Tn, the only property of Tn that we loose is its injectivity. Hence, we have constructed
a sequence of mappings Tn that push µ to ν s.t. (id, Tn)∗µ converges to the given coupling π.

An immediate consequence of Theorem 1.20 is that the optimal transport problem yields the
same value if we restrict ourselves to Monge couplings or even to Monge couplings, which are
supported by the graph of a bijection:

Corollary 1.22. Let µ ∈ P(X), ν ∈ P(Y ) be continuous and c : X × Y → R be continuous and
bounded. Then

inf
π∈Cpl(µ,ν)

�
c(x, y)π(dx, dy) = inf

π∈Cpl0(µ,ν)

�
c(x, y)π(dx, dy) = inf

π∈Cpl00(µ,ν)

�
c(x, y)π(dx, dy).

Proof. We can assume that infπ∈Cpl(µ,ν)
�
c(x, y)π(dx, dy) < ∞ (otherwise the claim is trivial)

and, clearly, it suffices to prove

inf
π∈Cpl00(µ,ν)

�
c(x, y)π(dx, dy) ≤ inf

π∈Cpl(µ,ν)

�
c(x, y)π(dx, dy).
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By Theorem 1.7 there exits π ∈ Cpl(µ, ν) s.t.�
cdπ = inf

π∈Cpl(µ,ν)

�
c(x, y)π(dx, dy).

By Theorem 1.20 there exists a sequence πn ∈ Cpl00(µ, ν) s.t. πn ⇀ π and by the definition of
weak convergence we have

lim
n

�
cdπn =

�
cdπ = inf

π∈Cpl(µ,ν)

�
c(x, y)π(dx, dy).

Remark 1.23. Theorem 1.7 states that the infimum in inf{� cdπ : π ∈ Cpl(µ, ν)} is attained.
We want to discuss under which assumptions the infima in inf{� cdπ : π ∈ Cpl0(µ, ν)} and
inf{� cdπ : π ∈ Cpl00(µ, ν)} are attained.

We first discuss an example, where the infimum is not attained that was given in [8, Section 1.4].
Let X = Y = [−1, 1] × [0, 1] and for t ∈ [−1, 1] denote ft : [0, 1] → [−1, 1] × [0, 1] : y  → (t, y).
Consider the continuous measures µ := f0∗λ and ν := 1

2 (f−1∗λ + f1∗λ) and the cost function
c(x, y) = |x− y|.
Since dist(supp(µ), supp(ν)) = 1, every transportplan has at least cost 1, so inf{� cdπ : π ∈
Cpl(µ, ν)} ≥ 1. The coupling dπ(x, y) = dλ(x)dπx(y), where πx = 1

2 (δ(0,1) + δ(0,−1)) shows that
inf{� cdπ : π ∈ Cpl(µ, ν)} = 1 and Corollary 1.22 implies inf{� cdπ : π ∈ Cpl0(µ, ν)} = 1.

Assume that π = (id, T )∗µ is a Monge coupling with cost 1, i.e.
� |x − T (x)|dµ = 1. Due

to dist(supp(µ), supp(ν)) = 1 it holds |x − T (x)| ≥ 1, hence |x − T (x)| = 1 for µ-almost all
x, which implies that T (0, y) ∈ {(−1, y), (1, y)} for λ-almost all y. Clearly, the sets M± :=
{(0, y) : T (0, y) = (±1, y)} are disjoint, their union has full measures and it holds T∗µ({−1} ×
M− ∪ {1} × M+) = 1. However, since ν({−1} × A) = ν({1} × A) for all A ⊆ [0, 1], it holds
ν({−1} ×M− ∪ {1} ×M+) =

1
2 , which is a contradiction to T∗µ = ν.

Since Cpl00(µ, ν) ⊆ Cpl0(µ, ν) and inf{� cdπ : π ∈ Cpl00(µ, ν)} = inf{� cdπ : π ∈ Cpl0(µ, ν)} by
Corollary 1.22, this example implies that in general the infimum in inf{� cdπ : π ∈ Cpl00(µ, ν)}
is not attained, as well.

However, Brenier's Theorem (see e.g. [9, Theorem 2.12]) states that for X = Rn and µ absolutely
continuous w.r.t. Lebesgue and c(x, y) = |x− y|2 there exists a unique minimizer for inf{� cdπ :
π ∈ Cpl(µ, ν)} and that this minimizer is a Monge coupling.

This has the following consequence in the case that µ and ν are both absolutely continuous:
Denote e(x, y) := (y, x). Since the cost is symmetric, π is the minimizer in the transport problem
from µ to ν if and only if e∗π is the minimizer in the transport problem from ν to µ. Hence,
for the minimizer π of inf{� cdπ : π ∈ Cpl(µ, ν)} both π and e∗π are Monge couplings, i.e.
π ∈ Cpl00(µ, ν). Therefore, the infimum in inf{� cdπ : π ∈ Cpl00(µ, ν)} is attained in this case.

In particular, one can restrict to couplings supported on the graph of bijections, when calculating
the Wasserstein distance of two probability measures:

Corollary 1.24. Let (X, d) a Polish space and p ∈ [1,∞). Then

Wp(µ, ν) = inf

��
d(x, y)p : π ∈ Cpl00(µ, ν)

�1/p
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Proof. This is a immediate consequence of Corollary 1.22.

In the remaining part of this section, we show that the assumption that µ and ν are continuous
is (except for a trivial case) necessary. To avoid tedious case distinctions, we assume for the rest
of this section that X and Y are both uncountable (and have therefore cardinality continuum,
cf. Theorem A.6). First, we give a necessary and sufficient condition for the existence of at least
one coupling that is supported by the of graph of a bijection.

Proposition 1.25. The following are equivalent for µ ∈ P(X) and ν ∈ P(Y ):

(i) There exists a Borel isomorphism f : X → Y s.t. f∗µ = ν.

(ii) There exists injective sequences (xn)n∈N in X and (yn)n∈N in Y s.t. µ({xn}) = ν({yn}) for
all n ∈ N and for all x ∈ X ′ := X \ {xn : n ∈ N} and all y ∈ Y ′ := Y \ {yn : n ∈ N} it
holds µ({x}) = ν({y}) = 0.

Proof. (i) =⇒ (ii): Since µ has at most countably many atoms there exists the desired sequence
(xn)n∈N. Since f is bijective, the sequence defined by yn := f(xn) is again injective and has
the property ν({yn}) = µ(f−1({yn})) = µ({xn}). If y ∈ Y ', it holds f−1(y) ∈ X ′ and therefore
ν({y}) = µ(f−1({y})) = 0.

(ii) =⇒ (i): Clearly, µ|X′ and ν|Y ′ are continuous measures on the standard Borel spaces X ′

and Y ′. By Theorem A.19 there exits a Borel isomorpism g : X ′ → Y ′ s.t. g∗µ|X′ = ν|Y ′ . It is
easy to see that

f : X → Y : x  →
�
g(x) x ∈ X ′

yn x = xn

has the desired properties.

Using this, we achieve a necessary and sufficient condition on the marginals for the denseness of
couplings supported by the graph a bijection.

Theorem 1.26. Let X,Y be Polish spaces and µ ∈ P(X), ν ∈ P(Y ). Then Cpl00(µ, ν) is dense
in Cpl(µ, ν) if and only if one of the followings statements is true:

(i) µ and ν are both continuous measures

(ii) µ and ν are both Dirac measures.

Proof. Assume that there are µ and ν, which do not satisfy (i) or (ii), s.t. Cpl00(µ, ν) is dense in
Cpl(µ, ν). In particular, there exists a Borel isomorphism pushing µ to ν. Hence, by Proposition
1.25 there exist sequences (xn)n∈N and (yn)n∈N s.t. µ({xn}) = ν({yn}) for all n ∈ N and for all
x ∈ X \{xn : n ∈ N} and all y ∈ Y \{yn : n ∈ N} it holds µ({x}) = ν({y}) = 0. We assume wlog
that µ({xn}) is decreasing and set α := µ({x1}). Since µ is not continuous, we have α > 0 and
therefore µ({xn : n ∈ N}) < ∞ implies that k := max{n : µ({xn}) = α} is finite. We distinguish
two cases:

Case 1: kα = 1. Then µ = 1
k

�k
i=1 δxi

and ν = 1
k

�k
i=1 δyi

, where k ≥ 2 because µ and ν are
assumed not to be Dirac measures. Then Cpl00(µ, ν) is finite and therefore closed, but it does
not contain µ⊗ ν.
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Case 2: kα < 1. The set A := {(xi, yj) : i, j ∈ {1, . . . , k}} is finite and therefore closed. Any
π ∈ Cpl00(µ, ν) satisfies π(A) = kα because any bijection pushing µ to ν is in particular a
bijection of the atoms of µ with mass α to the atoms of ν with mass α. Since mass cannot
escape from closed sets in weak limits, any coupling π in the weak closure of Cpl00(µ, ν) satisfies
π(A) ≥ kα. However, (µ⊗ ν)(A) = (kα)2 < kα.

To close this section we give an explicit example of a sequence of couplings supported on graphs
of bijections that approximate a given coupling.

Expample 1.27. Let X = Y = [0, 1], µ = ν = λ and π = λ2. Following the construction in the
proof of Theorem 1.20 we need a bijection T : [0, 1]2 → [0, 1]2 such that T∗(µ ⊗ λ) = ν ⊗ λ and
prXY ∗(id, T )∗(µ⊗ λ) = π. A suitable choice is T (x, u) := (u, x), because T∗(µ⊗ λ) = T∗λ2 = λ2

and prXY ◦ (id, T )(x, u) = (x, u), so prXY ∗(id, T )∗(µ⊗ λ) = prXY ∗(id, T )∗λ
2 = λ2 = π.

Moreover, we need a sequence (Mn)n of partitions of [0, 1] (having the properties stated in
Proposition 1.17) and bijections Φn : [0, 1] → [0, 1]2 that Φn∗(λ|M ) = λ|M ⊗ λ for all M ∈ Mn.
We choose the partitions

Mn := {[0, 2−n], . . . , (k · 2−n, (k + 1) · 2−n], . . . , ((2n − 1) · 2−n, 1]}.

We will define the bijections Φn by using dyadic expansions, which are uniquely defined up
to λ-nullsets, which we will ignore in this example. Hence 0, x1x2x3 . . . denote the number
x =

�∞
i=1 xi2

−i, where xi will always be elements of {0, 1}.
Clearly, the mapping

Φn :

�
[0, 1] → [0, 1]2

0, x1x2x3 . . .  → (0, x1 . . . xnx2n+1 . . . x3nx4n+1 . . . ; 0, xn+1 . . . x2nx3n+1 . . . x4nx5n+1 . . . )

is a bijection with inverse

Φ−1
n :

�
[0, 1]2 → [0, 1]

(0, x1x2x3 . . . ; 0, y1y2y3 . . .)  → 0, x1 . . . xny1 . . . ynxn+1 . . . x2nyn+1 . . . y2nx3n . . .

and it is straight forward to check that Φn pushes λ|[k2−n,(k+1)2−n] to λ|[k2−n,(k+1)2−n]⊗λ for all
k < 2n.

In the proof of Theorem 1.20 we see that the mappings

Tn := Φ−1
n ◦ T ◦ Φn

have the desired properties. It is easy to calculate this composition explicitly:

Tn :

�
[0, 1] → [0, 1]

0, x1x2x3  → 0, xn+1 . . . x2nx1 . . . xnx3n+1 . . . x4nx2n+1 . . . x3nx5n+1 . . .

In other words, the mapping Tn acts on some x ∈ [0, 1] as follows: For all k > 0 swap the
(2k − 1)-th and the (2k)-th digits of x in its expansion w.r.t. the base 2n.
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Figure 1.1: Plots of the functions Tn.

1.5 Results in probabilistic notation

In the section we state the important results from this chapter in probabilistic notation. We
start this section with elementary observations:

Cpl(µ, ν) is set of joint laws of random variables X ∼ µ and Y ∼ ν: Given π ∈ Cpl(µ, ν), the
random variables prX and prY on the probability space (X × Y,BX ⊗ BY , π) have the desired
properties. Conversely, given some Borel probabilty space (Ω,F ,P), anX-valued random variable
X ∼ µ and a Y -valued random variable Y ∼ ν it holds, L(X,Y) = (X,Y)∗P ∈ Cpl(µ, ν).

The Monge couplings correspond to pairs of random variables of the form (X, F (X)).

The representation of couplings from Section 1.2 written in probabilistic notation looks as follows:

Corollary 1.28. Let X be an X-valued and Y be an Y -valued random variable. Then there exists
a bimeasurable mapping F : X × [0, 1] → Y × [0, 1] such that for any uniform random variable U
independent of X and any uniform random variable V independent of Y it holds:

(i) F (X,U) ∼ (Y,V)

(ii) (X, F1(X,U)) ∼ (X,Y),

where F1 denotes the first comment of F , i.e. prY ◦ F .

Proof. This is a consequence of Theorem 1.12.

The version of this representation for kernels (Theorem 1.15) corresponds to a version of the
previous corollary with conditional probabilities:

Corollary 1.29. Let X be a X-valued, Y be a Y -valued and Z be a Z-valued random variable.
Then there exists a measurable bijection F : Z×X× [0, 1] → Y × [0, 1] such that for any uniform
random variable U conditionally independent of X given Z and any uniform random variable V
conditionally independent of Y given Z it holds a.s.:

(i) P(F (Z,X,U) ∈ B|Z) = P((Y,V) ∈ B|Z) ∀B ⊆ Y × [0, 1] Borel
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(ii) P((X, F1(Z,X,U)) ∈ B|Z) = P((X,Y) ∈ B|Z) ∀B ⊆ X × Y Borel

Proof. By Theorem A.27 there exists a kernel π from Z to X × Y such that L(Z)-a.s. it holds

P((X,Y) ∈ A|Z = z) = πz(A) A ⊆ X × Y Borel,

i.e. πz = L((X,Y)|Z = z). Denote µz := prX∗π
x = L(X|Z = z) and νz := prY ∗π

x = L(Y|Z = z).
By Theorem 1.15 there exists a Borel measurable mapping F : Z × X × [0, 1] → Y × [0, 1]
s.t. for all z ∈ Z the mappings F (z, ·) : X × [0, 1] → Y × [0, 1] : (x, u)  → F (z, x, u) are Borel
isomorphisms satisfying

(a) F (z, ·)∗(µz ⊗ λ) = νz ⊗ λ

(b) prXY ∗(id, F (z, ·))∗(µz ⊗ λ) = πz.

It is easy to see, that (a) implies (i) and (b) implies (ii).

Convergence of random variables in distribution is equivalent to weak convergence of their laws.
Therefore, the denseness result from Section 1.3 corresponds to the following result for random
variables:

Corollary 1.30. Let X be an X-valued and Y be an Y -valued random variable. Then there exist
measurable bijections Fn : X → Y such that F (X) ∼ Y and (X, Fn(X)) converges to (X,Y) in
distribution.

Proof. This is an immediate consequence of Theorem 1.20.
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Chapter 2

The time dependent case

The aim of this chapter is to extend the results to finitely many time steps. For clearly, we could
just apply our results from Chapter 1 to measures on the path space, but we aim a construction
that respects the arrow of time: Given measures µ and ν on path spaces of processes with finitely
many times steps (say RN ), we want to approximate a given coupling with Monge couplings
supported on the graph of bijections F : RN → RN , which satisfy the following property:
For t ≤ N , the t-th component of F (x1, . . . , xN ) does only depend on (x1, . . . , xt) and the t-
th component of F−1(y1, . . . , yN ) does only depend on (y1, . . . , yt). Such mappings are called
biadapted, see Definitions 2.5 and 2.14 for details.

The main result of this thesis is that (under certain regularity assumptions on the marginals)
such an approximation is possible if and only if the coupling is a so-called bicausal coupling, see
Theorem 2.26.

In the first two sections of this chapter, we explain what causal and bicausal couplings are.
Afterwards, we extend our techniques from Chapter 1 to the time dependent case, which enables
to prove our main Theorem 2.26 in an analogue way as we have proven the denseness of couplings
supported on the graph of bijections in Theorem 1.20.

Before we start, we need to introduce some notation for this chapter: N ∈ N will always be the
number of time steps that we consider. X1 . . . , XN , Y1, . . . , YN are always Polish spaces.�N

i=1 Xi will be the path space of the first process, whose law will be denoted by µ and
�N

i=1 Yi

will be the path space of the second process, whose law will be denoted by ν.

For 1 ≤ s < t ≤ N we introduce the abbreviation Xs:t :=
�t

i=s Xi. We use the same abbreviation
for elements of Xs:t, i.e. (xs, xs+1, . . . , xt) =: xs:t, and for subsets, i.e. As×As+1×· · ·×At =: As:t

for Ai ⊆ Xi. We use X as a shorthand for X1:N . For the Y -component we use analogous
notations.

For t ≤ N define FX
t as the σ-algebra on X × Y generated by the projections X × Y → X1:t :

(x, y)  → x1:t (and FY
t respectively).

Let µ ∈ P(X). Then by Theorem A.24 we can decompose µ as µ(dx) = µ1(dx1)µ
x1(dx2:N ),
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where µ1 ∈ P(X1) and x1  → µx1 is a kernel from X1 to X2:N . Iterating this yields

µ(dx) = µ1(dx1)µ
x1(dx2) · · ·µx1:N−1(dxN ),

i.e. µ1 ∈ P(X1) and for all t < N there are kernels x1:t  → µx1:t from X1:t to Xt+1.

2.1 Causal couplings

We start with a quick motivation for causal transport. For ε ≥ 0 consider the measures µε :=
1
2 (δ(ε,1) + δ(−ε,−1)) ∈ P(R2). It is easy to see that W1(µε, µ0) = ε, so µε converges to µ0 w.r.t.
Wasserstein.

However, if we consider µε as the law of a real-valued stochastic process with two timesteps,
the natures of µ0 and µε for ε > 0 are totally different. For the case ε = 0 the corresponding
process is a martingale that starts at 0 and is +1 or −1 in the second step, whereas for ε > 0 the
corresponding process is deterministic. Hence, Wasserstein convergence of the laws, is a “bad”
notion of convergence for laws of stochastic processes.

Now the idea is to restrict in the definition of the Wasserstein distance to couplings that “re-
spect the time structure” in order to get a metric that induces a stronger topology that reflects
properties of stochastic processes better.

The following definition clarifies what is meant by coupling that “respect the time structure”.

Definition 2.1. Let µ ∈ P(X) and ν ∈ P(Y ). A coupling π ∈ Cpl(µ, ν) is called causal if for
any t < N and B ∈ FY

t the mapping X ∋ x  → πx(B) is FX
t -measurable. We denote the set of

causal couplings between µ and ν as Cplc(µ, ν).

This condition is obviously equivalent to saying that for any t < N the mapping X → P(Y1:t) :
x  → prY1:t∗π is measurable. The following proposition gives equivalent conditions for causality:

Proposition 2.2 ([2, Proposition 2.3]). For µ ∈ P(X), ν ∈ P(Y ) and π ∈ P(X × Y ) the
following are equivalent:

(i) π ∈ Cplc(µ, ν)

(ii) π ∈ Cpl(µ, ν) and for all t < N : FX
N is conditionally independent of FY

t given FX
t

(iii) When decomposing

π(dx, dy) = π1(dx1, dy1)π
x1,y1(dx2, dy2) · · ·πx1:N−1,y1:N−1(dxN , dyN )

it holds

(a) π1 ∈ Cpl(pr1∗µ, pr1∗ν)

(b) for all t < N and π-almost all x1:t, y1:t : prX∗π
x1:t,y1:t = µx1:t

(c) for all t < N and ν-almost all y1:t : πy1:t(dyt+1) = νy1:t(dyt+1).

(iv) π ∈ Cpl(µ, ν) and for all t ≤ N , ht ∈ Cb(Y1:t) and g ∈ Cb(X) it holds�
ht(y1:t)

	
g(x1:N )−

�
g(x1:t, x̄t+1:N )µx1:t(dx̄t+1:N )

�
dπ = 0.
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Proof. (i) =⇒ (ii): Let π ∈ Cplc(µ, ν) and fix t < N . By Lemma A.43 this implies πx1:N (B) =

πx1:t(B) a.s. for all B ∈ FY
t . Since FX

t ⊆ FX
N this implies for all B ∈ FY

t that1 πFX
t ,FX

N (B) =

πFX
N (B) = πFX

t (B). Now Proposition A.30 yields the conditional independence of FX
N and FY

t

given FX
t .

(ii) =⇒ (i): It is easy to see that one can read the proof of (i) =⇒ (ii) in the converse direction
as well.

(ii) =⇒ (iii): Fix t < N . It is clear that π ∈ Cpl(µ, ν) implies (a) and (c). Since FY
t is condi-

tionally independent of FY
t given FX

t Proposition A.30 (and Remark A.31) yields πFX
t ,FY

t (B) =

πFX
t (B) for all B ∈ FX

N . This implies prX∗(π
x1:t,y1:t) = prX∗(π

x1:t) = µx1:t a.s.

(iii) =⇒ (ii): Clearly, (a) and (b) imply prX∗π = µ, whereas (a) and (c) imply prY ∗π = ν. For

t < N condition (b) implies πFX
t ,FY

t (B) = πFX
t (B) for all B ∈ FX

N , which implies the conditional
independence of FX

N and FY
t given FX

t by Proposition A.30.

(i) ⇐⇒ (iv)2: Let π ∈ Cpl(µ, ν). Clearly π ∈ Cplc(µ, ν) if and only if for all t < N the mapping
x  → prY1:t∗π : X → P(Y1:t) is FX

t -measurable, which is by Proposition A.17 equivalent to the

FX
t -measurability of the functions ϕh(x1:N ) :=

�
ht(y1:t)dπ

x1:N , where ht ∈ Cb(Y1:t).

Fix some ht ∈ Cb(Y1:t). Observe that ϕh = EFX
N

π [ht]. Therefore, ϕh is FX
t -measurable if and

only if

(id− EFX
t

π )EFX
N

π ht = 0.

Since this is clearly FX
N -measurable and by the density of Cb(X) in L2(X,FX

N , µ) this is equivalent
to

∀g ∈ Cb(X) : Eµ[g(id− EFX
t

π )EFX
N

π ht] = 0.

Since g(id− EFX
t

π )EFX
N

π ht is F
X
N -measurable and µ = prX∗π we can replace the Eµ by Eπ. Since

FX
t and FX

N are orthogonal projections, (id−EFX
t

π )EFX
N

π is selfadjoint, so the latter is equivalent
to

∀g ∈ Cb(X) : Eπ[((id− EFX
t

π )EFX
N

π g)ht] = 0.

Since g is FX
N -measurable, g = EFX

N
π g, so the latter expression is exactly the integral in condition

(iv).

We give examples of causal couplings. First we return to the measure µε from the motivating
example and consider the optimal coupling between µε and µ0 for the Euclidean cost.

Expample 2.3. For ε > 0 consider the measures

µ =
1

2

�
δ(ε,1) + δ(−ε,−1)

�
ν =

1

2

�
δ(0,1) + δ(0,−1)

�
π =

1

2

�
δ(ε,1,0,1) + δ(−ε,−1,0,−1)

�
.

1the following notations mean conditional probabilities of the measure π w.r.t. the σ-fields denoted in the
upper indizies

2This part of the proof uses many properties of condtional expectations stated in Theorem A.26, without
explicitly referring to them.
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Clearly, π ∈ Cpl(µ, ν). If we decompose the measures

µ1 =
1

2
(δε + δ−ε) µ±ε = δ±1

ν1 = δ0 ν0 =
1

2
(δ1 + δ−1)

π1 =
1

2

�
δ(ε,0) + δ(−ε,0)

�
π±ε,0 = δ(±1,±1),

we see that π ∈ Cplc(µ, ν). However, if we exchange the roles of µ and ν, we obtain a coupling
that is not causal: e∗π ∈ Cpl(ν, µ) \ Cplc(ν, µ).
Expample 2.4. Let µ ∈ P(X) and ν ∈ P(Y ) be arbitrary. We show that the product measure
π := µ⊗ ν is causal between µ and ν.

To keep the notation simple, we just prove the case N = 2. We consider the decompositions

µ(dx) = µ1(dx1)µ
x1(dx2), ν(dy) = ν1(dy1)µ

y1(dy2), π(dx, dy) = π1(dx1, dy1)π
x1,y1(dx2, dy2).

It is clear that π1 = µ1 ⊗ ν1. Therefore, by Proposition 2.2 it suffices to show

πx1,...,xt,y1,...,yt = µx1,...,xt ⊗ νy1,...,yt a.s.

For all f : X × Y → R bounded and measurable it holds�
fdπ =

�
f(x1, x2, y1, y2)dµ(x1, x2)dν(y1, y2)

=

�
f(x1, x2, y1, y2)dµ

x1(x2)dµ1(x1)dν
y1(y2)dν1(y1)

=

�
f(x1, x2, y1, y2) dµ

x1(x2)dν
y1(y2)� �� �

=dµx1⊗νy1 (x2,y2)

dµ1(x1)dν1(y1)� �� �
=dπ1(x1,y1)

,

which implies dπx1y1 = dµx1 ⊗ dνy1 a.s. by the uniqueness of the disintegration.

We have introduced a notion of couplings that respect the time structure. For mappings it is
much simpler to find an appropriate definition:

Definition 2.5. A map T : X → Y is called adaped if for all t ≤ N there exits measureable
functions Tt : X1:t → Yt such that

T (x1:N ) = (T1(x), T2(x1:2), . . . , TN (x1:N )).

The term adapted is due to the fact that T is adapted if and only if Tt is FX
t -measurable for all

t ≤ N . The following lemma states that these two notions of “respecting time struce” fit together,
namely a Monge coupling is causal if and only if it is supported by an adapted mapping.

Lemma 2.6.

Cplc(µ, ν) ∩ Cpl0(µ, ν) = {(id, T )∗µ : T adapted , T∗µ = ν}

Proof. Let dπ = dδT (x)dµ(x), where T∗µ = ν, be causal and fix t ≤ N . Then for all B ∈ FY
t ,

the mapping
ϕB : x  → δT (x)(B)
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is FX
t measurable. Since T−1(B) = ϕ−1

B ({1}), this implies that T is FX
t -FY

t -measurable. Hence,
prY1:t

◦ T is FX
t -measurable. By Lemma A.43 this implies that there is a measurable function Tt : X1:t → Y1:t s.t. prY1:t

◦ T =  Tt ◦ prX1:t
. Set Tt := prYt

◦  Tt.

Conversely, let dπ = dδT (x)dµ(x), where T is adapted and satisfies T∗µ = ν. For t < N and
B ∈ FY

t we need to show that ϕB is FX
t -measurable. Since ϕB only takes the values 0 and 1,

it suffices to show that ϕ−1
B ({1}) ∈ FX

t . Indeed, B = pr−1
Y1:t

(B′) for some measurable B′ ⊆ Y1:t

and ϕ−1
B ({1}) = T−1(B) = (prY1:t

◦ T )−1(B′) ∈ FX
t , since prY1:t

◦ T is FX
t -measurable.

The following proposition is the key argument for the existence of minimizes in the socalled
causal transport problem.

Proposition 2.7 ([3, Theorem 3.1]). Cplc(µ, ν) is weakly compact.

Proof. Denote TX the topology on X and TY the topology on Y . The mappings

X1 ∋ x1  → µx1 ∈ P(X2:N )

X1:2 ∋ x1:2  → µx1:2 ∈ P(X3:N )

...

X1:N−1 ∋ (x1:N−1)  → µx1:N−1 ∈ P(XN )

are all Borel. By Theorem A.9 there exists a Polish topology T ′
X ⊇ TX s.t. these mappings are

continuous from (X, T ′
X) to P(Xt:N ) and (X, T ′

X) has the same Borel sets as (X, TX).

Denote V1 the topology on P(X × Y ) generated by testing against TX × TY -continuous and
bounded functions and V2 the topology on P(X × Y ) generated by testing against T ′

X × TY -
continuous and bounded functions. Since the functions appearing in Proposition 2.2 (iii) are
V2-continuous, Cplc(µ, ν) is V2-closed. Since Cplc(µ, ν) is tight, it is V2-compact by Prokhorov's
Theorem A.21 and therefore in particular V1-compact.

As for the ordinary optimal transport problem, we can prove the existence of minimizes for the
so-called causal transport problem:

Theorem 2.8. Let c : X × Y → R be lower semi-continuous and bounded from below. If

inf
π∈Cplc(µ,ν)

�
cdπ < ∞,

this infimum is attained

Proof. The proof is completely analogously to the proof of Theorem 1.7, replacing Proposition
2.7 with Proposition 1.5.
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2.2 Bicausal couplings

Loosely speaking, a bicausal coupling is a coupling that is causal in both directions:

Definition 2.9. A causal coupling π ∈ Cplc(µ, ν) is called bicausal if e∗π ∈ Cplc(ν, µ).

Expample 2.10. Clearly, the calculation in Example 2.4 shows that the product coupling is
bicausal. The coupling considered in Example 2.3 is not bicausal.

We will derive a few facts about bicausal couplings from the corresponding facts about causal
couplings. First, we derive a necessary and sufficient criterion for bicausality which will be crucial
later on.

Proposition 2.11 ([2, Proposition 5.1]). Let µ ∈ P(X), ν ∈ P(Y ) and π ∈ P(X × Y ). Then
the following are equivalent:

(i) π ∈ Cplbc(µ, ν)

(ii) When decomposing

π(dx, dy) = π1(dx1, dy1)π
x1,y1(dx2, dy2) · · ·πx1:N−1,y1:N−1(dxN , dyN )

it holds

(a) π1 ∈ Cpl(pr1∗µ, pr1∗ν)

(b) for all t < N and π-almost all (x1:t, y1:t) : πx1:t,y1:t ∈ Cpl(µx1:t , νy1:t).

Proof. (i) =⇒ (ii): This is an immediate consequence of (i) =⇒ (iii) (a) and (b) in Proposition
2.2 applied to π and e∗π.

(ii) =⇒ (i): Clearly, (ii) implies that π and e∗π both satisfy the conditions stated in Proposition
2.2 (iii), which implies that π ∈ Cplc(µ, ν) and e∗π ∈ Cplc(ν, µ).

As for causal couplings the set of bicausal couplings is compact, which implies the existence of
minimizers to the bicausal transport problem.

Corollary 2.12. Cplbc(µ, ν) is weakly compact.

Proof. This is an immediate consequence of Proposition 2.7 (and Lemma A.44).

Theorem 2.13. Let c : X × Y → R be lower semi-continuous and bounded from below. If

inf
π∈Cplc(µ,ν)

�
cdπ < ∞,

this infimum is attained.

Proof. The proof is completely analogously to the proof of Theorem 1.7, replacing Corollary 2.12
with Proposition 1.5.
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The analogue of bicausility for mappings is the following:

Definition 2.14. A map T : X → Y is called biadapted if it is bijective and T , T−1 are both
adapted.

Corollary 2.15.

Cplbc(µ, ν) ∩ Cpl00(µ, ν) = {(id, T )∗µ : T biadapted , T∗µ = ν}

Proof. This is an immediate consequence of Lemma 2.6.

We close this section with inductive characterizations of bicausality and biadaptedness, which
will be helpful in the next sections.

Lemma 2.16. Let µ ∈ P(X), ν ∈ P(Y ) and π ∈ Cpl(µ, ν). Then π ∈ Cplbc(µ, ν) if and
only if, when decomposing π as dπ(x, y) = dπ1(x1, y1)dπ

x1,y1(x2:N , y2:N ), one has πx1,y1 ∈
Cplbc(µ

x1 , νy1) for π1-almost all (x1, y1).

Proof. This is an immediate consequence of Proposition 2.11.

Lemma 2.17. Let T1 : X1 → Y1 be a bijection and let S : X1 ×X2:N → Y2:N be a measurable
mapping such that for all x1 ∈ X1 the mapping Sx1 : X2:N → Y2:N : x2:N  → T (x1, x2:N ) is
biadapted.

Then the mapping
T : X1:N → Y1:N : x1:N  → (T1(x1), S

x1(x2:N ))

is biadapted.

Proof. It is clear that T is adapted and it is easy to check that it is injective and surjective.
Therefore, there exits F := T−1 and it suffices to show that F is adapted. To that end, we
denote

F (y1:N ) = (F1(y1:N ), F2:N (y1:N ))

For each y1:N it holds

y1:N = T (F (y1:N )) = (T1(F1(y1:N )), SF1(y1:N )(F2:N (y1:N ))). (2.1)

This implies y1 = T1(F1(y1:N )) and since T1 is bijective this yields T−1
1 (y1) = F1(y1:N ); in

particular, F1 depends only on y1. Moreover, (2.1) implies y2:N = SF1(y1)(F2:N (y1:N )). Since
SF1(y1) is bijective, this implies

(SF1(y1))−1(y2:N ) = F2:N (y1:N )

and since SF1(y1) is assumed to by biadapted, there exists Ft : Y1:t → Xt measureable s.t.

F2:N (y1:N ) = (F2(y1:2), . . . , FN (y1:N )).

At the end of this section we briefly explain how to define the socalled adapted Wasserstein
distance.
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Definition 2.18. Let X1, . . . , XN be Polish spaces with compatible metrics d1, . . . , dN . Then
the adapted Wasserstein distance of two measures µ and ν ∈ P(X) is defined as

AW(µ, ν) := inf

�� N�
i=1

di(xi, yi)dπ(x, y) : π ∈ Cplbc(µ, ν)

�
.

We show that the measures µε mentioned in the motivating example at the beginning of Section
2.1 do not converge to µ0 w.r.t. the adapted Wasserstein distance.

Expample 2.19. For ε > 0 consider the measures

µ =
1

2

�
δ(ε,1) + δ(−ε,−1)

�
ν =

1

2

�
δ(0,1) + δ(0,−1)

�
.

We show that µ ⊗ ν is the only bicausal couplings between µ and ν. Let π ∈ Cplbc(µ, ν) and
decompose it as dπ(x, y) = dπ1(x1, y2)dπ

x1,y1(x2, y2). By Proposition 2.2 it holds

π1 ∈ Cpl(µ1, ν1) = Cpl

�
1

2
(δε + δ−ε) , δ0

�
=

�
1

2

�
δ(ε,0) + δ(−ε,0)

��
π±ε,0 ∈ Cpl(µx1 , νy1) = Cpl

�
δ±1,

1

2
(δ1 + δ−1)

�
=

�
1

2

�
δ(±1,1) + δ(±1,−1)

��
Hence, π = 1

4

�
δ(ε,1,0,1) + δ(ε,1,0,−1) + δ(−ε,−1,0,1) + δ(−ε,−1,0,−1)

�
= µ⊗ ν, which shows that

AW(µ, ν) =

� �
|x1 − y1|+ |x2 − y2|

�
dπ =

1

4

�
ε+

�
4 + ε2 +

�
4 + ε2 + ε

�
≥ 1,

hence µε does not converge top µ0 w.r.t. the adapted Wasserstein distance.

2.3 Time dependent version of the representation of cou-

plings

The aim is of this chapter is to prove a time dependent version of the representation of a coupling
π ∈ Cpl(µ, ν) as a bijective Monge coupling 
π ∈ Cpl00(µ⊗λ, ν⊗λ). More concretely, we want to
represent a bicausal coupling π by a coupling 
π, which is supported on the graph of a biadapted
mapping.

To this end, we will have to add an additional coordinate for randomization in each time step in
the X- and Y -component. To keep notations short, we introduce the following abbreviations:


Xt := Xt × [0, 1], 
X1:t :=

t�
i=1


Xi, 
X := 
X1:N . (2.2)

We will not always be careful about the ordering of the spaces Xt and [0, 1] in the definition

of 
X1:t as product of those spaces. Instead of this, we agree to use consistent letters to name
elements of those spaces unambiguously: Elements of 
Xt are always called (xt, ut), where xt ∈ Xt

and ut ∈ [0, 1].
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Therefore, ((x1, u1), . . . , (xt, ut)) denotes the same element of 
X1:t as (x1, . . . , xt, u1, . . . , ut) does,

and the latter is often abbreviated as (x1:t, u1:t). When evaluating functions f : 
X1:t → R, we
use the same convention, i.e. f(x1:t, u1:t) := f(x1, . . . , xt, u1, . . . , ut) := f((x1, u1), . . . , (xt, ut)).

prX will always denote the projection 
X1:t → X1:t : (x1:t, u1:t)  → x1:t.

If µ ∈ P(X), we define 
µ ∈ P( 
X) as µ⊗ λN , when 
X is regarded as (
�N

t=1 Xt)× [0, 1]N , i.e. for

f : 
X → R we define �
fd
µ :=

�
f(x1:N , u1:N )dµ(x1:N )dλ(u1:N ).

We use the same convention for the Y -component, where elements of 
Yt are called (yt, vt) with
yt ∈ Yt and vt ∈ [0, 1], etc.

The terms (bi)adapted and (bi)causal are always meant to be understood as the ordering of

the spaces in (2.2) suggests: In each time-step we consider the spaces 
Xt = Xt × [0, 1] and
Yt = Yt × [0, 1]. Loosely speaking, in (not before or after) each time step we “add” one unit
interval in the X-component and one unit interval in the Y -component. Explicitly, a mapping
T : 
X → 
Y is adapted if for all t ≤ N there exists mappings Tt : 
X1:t → 
Yt s.t. T (x1:N , u1N ) =
(T1(x1, u1), . . . , TN (x1:N , u1:N )).

Using this notation, we can formulate the main theorem of this section:

Theorem 2.20. Let µ ∈ P(X), ν ∈ P(Y ) and π ∈ Cplbc(µ, ν) be given. Then there exists a

biadapted mapping T : 
X → 
Y satisfying

(i) T∗
µ = 
ν, or equivalently: 
π := (id, T )∗
µ ∈ Cplbc(
µ, 
ν)
(ii) prX×Y ∗
π = π.

We will prove this theorem by induction on the number of time steps. In order to avoid measur-
ability issues in the induction step, we proof a slightly more general version of Theorem 2.20.

Theorem 2.21. Let Z be a further Polish space and let kernels µ from Z to X, ν from Z to Y
and π from Z to X × Y be given. Assume that πz ∈ Cplbc(µ

z, νz) for all z ∈ Z.

Then there exists a measurable mapping T : Z × 
X → 
Y such that for all z ∈ Z the mappings
T z : 
X → 
Y : (x1:N , u1:N )  → T (z, x1:N , u1:N ) are Borel isomorphisms satisfying

(i) T z∗�µz = �νz, or equivalently: �πz := (id, T z)∗�µz ∈ Cplbc(�µz,�νz)
(ii) prX×Y ∗�πz = πz.

Proof. For one timestep (i.e. X = X1, Y = Y1) bicausality is a trivial condition and biadapted
is equivalent to bijective. Therefore, Theorem 1.15 is exactly the claim for one timestep.

Assume that we have already proven Theorem 2.21 for N − 1 time steps. Let µ be a kernel from
Z to X1:N , ν be a kernel from Z to Y1:N and π be a kernel from Z to X1:N × Y1:N satisfying
πz ∈ Cplbc(µ

z, νz) for all z ∈ Z.
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For each z ∈ Z we can decompose µz, νz and πz as

dµz = dµx1,zdµz
1 dνz = dνy1,zd1ν

z dπz = dπx1,y1,zdπz
1 .

and by Lemma 2.16 it holds πx1,y1,z ∈ Cplbc(µ
x1,z, νy1,z).

By the induction hypothesis, there exists a mapping

S : (X1 × Y1 × Z)× 
X2:N → 
Y2:N

such that for all (x1, y1, z) ∈ X1 × Y1 × Z the mapping Sx1,y1,z : X2:N → Y2N : (x2:N , y2:N )  →
S(x1, y1, z, x2:N , y2:N ) is a Borel isomorphism satisfying3

• Sx1,y1,z∗�µx1,z = �νy1,z

• prXY ∗ �πx1,y1,z = πx1,y1,z, where �πx1,y1,z := (id, Sx1,y1,z)∗�µx1,z

Moreover, by Theorem 1.15 there exists a measurable mapping

T1 : Z × 
X1 → 
Y1

such that for all z ∈ Z, the mapping T z
1 : 
X1 → 
Y1 : (x1, u1)  → T1(z, x1, u1) is a Borel

isomorphism satisfying T z
1 ∗�µz

1 = �νz1 and prXY ∗(id, T
z
1 )∗�µz

1 = πz
1 .

We define the mapping

T : Z × 
X → 
Y : (z, x1:N , u1:N )  → (T z
1 (x1, u1), S

x1,prX(T z
1 (x1,u1))(x2:N , u2:N ))

We have to check that T has the desired properties:

Clearly, T is measurable as composition. Fix z ∈ Z. The mapping T z is biadapted by Lemma
2.17.

In order to check that T∗�µz = �νz, we consider an arbitrary measurable function f : 
Y → R. We
achieve by using the properties Sx1,y1,z∗�µx1,z = �νy1,z and T z

1 ∗�µz
1 = �νz1�

f(y1:N , v1:N )dT z
∗ �µz(y1:N , v1:N ) =

=

�
f(T z

1 (x1, u1), S
x1,prX(T z

1 (x1,u1))(x2:N , u2:N ))d�µx1,z(x2:N , u2:N )d�µz
1(x1, u1)

=

�
f(T z

1 (x1, u1), y2:N , v2:N ) dSx1,prX(T z
1 (x1,u1))∗�µx1,z(y2:N , v2:N )� �� �

=dνprX◦T z
1 (x1,u1),z
�

(y2:N ,v2:N )

)d�µz
1(x1, u1)

=

�
f(y1:N , v1:N )d�νy1,z(y2:N , v2:N )dT z

1 ∗�µz
1(y1, v1)

=

�
f(y1:N , v1:N )d�νz(y1:N , v1:N ),

3As the notation given at the beginning of this section suggests �µx1,z is defined via�
fd�µx1,z :=

�
f(x2:N , u2:N )dµx1,z(x2:N )dλN−1(u2:N )
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i.e. T z
∗ �µz = 
νz.

It remains to show that π̂ := (id, T )∗
µ satisfies prXY ∗
π = π. Using this and the properties

prXY ∗ �πx1,y1,z = πx1,y1,z and prXY ∗(id, T
z
1 )∗�µz

1 = πz
1 we obtain for any measurable function

f : X × Y → R:�
f(x1:N , y1:N )dprXY ∗�πz(x1:N , y1:N ) =

=

�
f(prXY ◦ (id, T z)(x1:N , u1:N ))d�µx1,z(x2:N , u2:N )d�µz

1(x1, u1)

=

�
f(prXY ((id, T

z
1 )(x1, u1)), prXY ((id, S

x1,prX◦T z
1 (x1,u1),z)(x2:N , u2:N ))

d�µx1,z(x2:N , u2:N )d�µz
1(x1, u1)

=

�
f(prXY ((id, T1)(x1, u1)), x2:N , y2:N )dπx1,y1,z(x2:N , y2:N )dµ̄(x1)dλ(u1)

=

�
f(x1:N , y1:N )dπx1,y1,z(x2:N , y2:N )dπz

1(x1, y1)

=

�
f(x1:N , y1:N )dπ(x1:N , y1:N ),

which yields the desired result prXY ∗�πz = πz.

2.4 Denseness of biadapted mappings in the set of bicausal

couplings

Analogously to Section 1.3 we use the representation of a bicausal coupling π ∈ Cpl(µ, ν) as
coupling 
π = (id, T )∗(µ⊗λ) ∈ Cpl00(µ⊗λ, ν⊗λ) to prove the denseness of couplings supported
on the graph of biadapted mappings among bicausal couplings.

First, we state the regularity assumption on the marginals, which is essential for our proof:

Assumption 2.22. Let µ ∈ P(X1:N ). We say µ satisfies Assumption 2.22 if µ has a disintegra-
tion

dµ(x1:N ) = dµ1(x1)dµ
x1(x2) · · · dµx1:N−1(xN )

such that µ1 is continuous and for all t < N and x1:t ∈ X1:t the measure µx1:t is continuous.

Remark 2.23. LetXt = R for t ∈ {1, . . . , N}. If µ ∈ P(X1:N ) = P(RN ) is absolutely continuous
w.r.t. Lebesgue measure, it satisfies Assumption 2.22.

The part of the proof of the main theorem, where this assumption is crucial, is the following
proposition:

Proposition 2.24. For t ∈ {1, . . . , N} let Mt be an at most countable partition of Xt consisting
of Borel sets. Let µ ∈ P(X) be satisfying Assumption 2.22.

Then there exists a biadapted mapping ΦM
µ : X → 
X s.t. for all (M1, . . . ,MN ) ∈ M1×· · ·×MN

one has ΦM
µ ∗(µ|M1:N

) = µ|M1:N
⊗ λ.
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We want to prove this propostion by induction on the number of time steps. In order to avoid
measurability issues in the induction step, we have to prove a slightly stronger claim:

Proposition 2.25. Let Z be a further Polish space and for t ∈ {1, . . . , N} let Mt be an at most
countable partition of Xt consisting of Borel sets. Let µ be a kernel from Z to X s.t. µz satisfies
Assumption 2.22 for all z ∈ Z.

Then there exists a measurable mapping ΦM
µ : Z × X → 
X s.t. for all z ∈ Z the mapping

ΦM,z
µ := ΦM

µ (z, ·) : X → 
X is a biadapted mapping satisfying the following property: For all

(M1, . . . ,MN ) ∈ M1 × · · · ×MN it holds ΦM,z
µ ∗(µ

z|M1:N
) = µz|M1:N

�

.

Proof. We prove this Proposition by induction on N :

The claim is true for N = 1 by proposition A.42. Assume that the claim is true for N − 1. Let
µ ∈ P(X1:N ) satisfying Assumption 2.22 and decompose it as

dµ(x1:N ) = dµ1(x1)dµ
x1(x2:N )

By the induction hypothesis there exists a measurable mapping

Ψ : (Z ×X1)×X2:N → 
X2:N

s.t. for all (z, x1) ∈ Z × X1 the mapping Ψz,x1 := Ψ(z, x1, ·) : X2:N → 
X2:N is a biadapted

mapping satisfying Ψz,x1∗(µz,x1 |M2:N
) = µz,x1 |M2:N

�

.

By Proposition A.42 there exists a measurable mapping

Φ1 : Z ×X1 → �X1

s.t. for all z ∈ Z the mapping Φz
1 := Φ1(z, ·) : X1 → �X1 is a Borel isomorphism satisfying

Φz
1∗(µ

z
1|M1

) = �µz
1|M1

for all M1 ∈ M1.

Consider the mapping

ΦM
µ : Z ×X → 
X : (z, x1:N )  → (Φz

1(x1),Ψ
z,x1(x2:N )).

Clearly, ΦM
µ is measurable as concatenation and for all z ∈ Z the map ΦM,z

µ is biadapted by

Lemma 2.17. For all (M1, . . . ,MN ) ∈ M1 × · · · ×MN and f : �M1:N → R measurable it holds�
f(x1:N , u1:N )dΦM,z

µ ∗(µ
z|M1:N

) =

=

�
M1

�
M2:N

f(Φz
1(x1),Ψ

z,x1(x2:N ))dµz,x1(x2:N )dµz
1(x1)

=

�
M1

�
M2:N

f(Φz
1(x1), x2:N , u2:N ) dΨz,x1∗(µz,x1 |M2:N

)(x2:N , u2:N )� �� �
=dµz,x1 |M2:N

�

(x2:N ,u2:N )

dµz
1(x1)

=

�
M1

�
M2:N

f(x1, u1, x2:N , u2:N )dµz,x1 |M2:N
(x2:N , u2:N )dΦz

1∗(µ
z
1|M1

)(x1, u1)

=

�
f(x1:N , u1:N )dµz|M1:N

�

,

which yields ΦM,z
µ ∗(µ

z|M1:N
) = µz|M1:N

�

.
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Now we have provided all tools to prove the main theorem of this thesis. The structure of the
upcoming proof is completely analogue to the proof of Theorem 1.20.

Theorem 2.26. Let µ ∈ P(X) and ν ∈ P(Y ) both satisfy Assumption 2.22. Then the set of
couplings between µ and ν supported by the graph of a biadapted mapping are dense among the
bicausal couplings between µ and ν w.r.t. weak convergence, i.e.

Cplbc(µ, ν) = {(id, T )∗µ : T : X → Y biadapted, satisfying T∗µ = ν}.

Proof. By Corollary 2.12 the set Cplbc(µ, ν) is closed, so it suffices to show that any π ∈
Cplbc(µ, ν) can be approximated by a sequence πn ∈ Cpl00(µ, ν) ∩ Cplbc(µ, ν) w.r.t. weak con-
vergence.

According to Theorem 2.20 there exists a coupling 
π = (id, T )∗
µ ∈ Cpl00(
µ, 
ν) such that

(i) T∗
µ = 
ν
(ii) prXY ∗
π = π.

For t ∈ {1, . . . , N} let (At
n)n∈N and (Bt

n)n∈N be sequences of partitions of Xt and Yt consisting of
countably many Borel sets and satisfying limn→∞ ||At

n|| = 0 and limn→∞ ||Bt
n|| = 0. According

to Proposition 2.24, for all n ∈ N there exist biadapted mappings Φn : X → 
X and Ψn : Y → 
Y
such that

(iii) Φn∗(µ|A1:N
) = �µ|A1:N

for all At ∈ At
n

(iv) Ψn∗(µ|B1:N
) = �ν|B1:N

for all Bt ∈ Bt
n.

For n ∈ N define the mapping

Tn := Ψ−1
n ◦ T ◦ Φn : X → Y.

Tn is biadapted as composition of biadapted mappings and satisfies Tn∗µ = ν. We need to check
that πn := (id, Tn)∗µ ⇀ π. Note that Mn := {A1:N × B1:N : At ∈ At

n, Bt ∈ Bt
n} are partitions

of X × Y consisting of countably many Borel sets satisfying limn→∞ ||Mn|| = 0. Hence, by
Lemma 1.18 it suffices to show for all n ∈ N:

πn(A1:N ×B1:N ) = π(A1:N ×B1:N ) for all At ∈ At
n, Bt ∈ Bt

n

This is a consequence of the properties (i) to (iv) of the mappings Φn,Ψn and T , as the following
calculation, where were denote A := A1:N and B := B1:N shows:

πn(A×B) = µ(A ∩ T−1
n (B)) = µ|A((Φ−1

n ◦ T−1 ◦Ψn)(B))
(iii)
= (µ|A ⊗ λ)(T−1(Ψn(B)))

= (µ⊗ λ)(A× [0, 1] ∩ T−1(Ψn(B)))
(i)
= (ν ⊗ λ)(T (A× [0, 1]) ∩Ψn(B))

= (ν ⊗ λ)(Ψn(Ψ
−1
n (T (A× [0, 1])) ∩B)) = Ψn∗(ν ⊗ λ)(Ψ−1

n (T (A× [0, 1])) ∩B)

= ν|B(Ψ−1
n (T (A× [0, 1])))

(iv)
= (ν|B ⊗ λ)(T (A× [0, 1]))

= (ν ⊗ λ)(T (A× [0, 1]) ∩B × [0, 1]) = (id, T−1)∗(ν ⊗ λ)(A× [0, 1]×B × [0, 1])

= 
π(A× [0, 1]×B × [0, 1])
(ii)
= π(A×B)
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2.5 Discussion

In [3] a version of the result for causal couplings was shown, i.e. causal couplings supported on
the graph of adapted mappings are dense in the set of causal couplings with fixed marginals. It
was sufficient to require continuity assumptions for the first timestep of the x-marginal.

Since bicauslity is causality in both directions, it is clear that we will need the same assumption
for the y-marginal as well. However, the assumptions in Theorem 2.26 are much stronger than
that.

We give an example that these stronger assumptions than continuity of the x- and y- marginals
in the first timestep are necessary.

Expample 2.27. Let N = 2 and X1 = X2 = Y1 = Y2 = [0, 1]. Consider the measures
µ = λ⊗ δ0 ∈ P(X1 ×X2) and ν = λ2 ∈ P(Y1 × Y2).

Since µ and ν are both continuous measures, couplings between µ and ν supported on the graphs
of bijections are dense in Cpl(µ, ν), see Theorem 1.20. We show that there are no bicausal
couplings between µ and ν that are supported on the graph a bijection.

Assume that there exists a π ∈ Cplbc(µ, ν)∩Cpl00(µ, ν) and decompose it as dπ(x1, x2, y1, y2) =
dπ1(x1, y2)dπ

x1,y1(x2, y2). By Lemma 2.16 it holds πx1,y1 ∈ Cpl00(µ
x1 , νy1) for π1-almost all

(x1, y1). However, for all x1, y1 it holds Cpl00(µ
x1 , νy1) = Cpl00(δ0, λ) = ∅. Therefore, such a π

cannot exist and Cplbc(µ, ν) ∩ Cpl00(µ, ν) is empty.

However, there is a sequence (Tn)n of adapted mappings pushing µ to ν such that (id, Tn)∗µ ⇀ π:
By Theorem 1.20 there is a sequence (Fn)n such that Fn∗λ = λ2 and (id, Fn)∗λ ⇀ λ3. Then
Tn(x1, x2) := Fn(x1) has the desired properties.

There are also cases, where Cplbc(µ, ν) ∩Cpl00(µ, ν) is not empty, but the assertion of Theorem
2.26 is still wrong:

Expample 2.28. Let N = 2 and X1 = X2 = Y1 = Y2 = [0, 1]. Consider the measure
dµ(x1, x2) = dµ1(x1)dµ

x1(x2), where µ1 := λ and µx1 := (1− x1)δ0 + x1δ1. Set ν := µ.

We claim that Cplbc(µ, ν) ∩ Cpl00(µ, ν) = {(id, id)∗µ}. Clearly, (id, id)∗µ ∈ Cplbc(µ, ν) ∩
Cpl00(µ, ν). Consider an arbitrary π ∈ Cplbc(µ, ν) ∩ Cpl00(µ, ν). By Lemma 2.16 it holds
πx1,y1 ∈ Cpl00(µ

x1 , νy1) for π1-almost all (x1, y1). Note that π1({(1/2, 1/2)}) ≤ π1({1/2} ×
[0, 1]) = λ({1/2}) = 0 for all π1 ∈ Cpl(µ1, ν1) = Cpl(λ, λ), so we can neglect the point (1/2, 1/2)
from now on. It holds

Cpl00(µ
x1 , νy1) = Cpl00((1−x1)δ0+x1δ1, (1−y1)δ0+y1δ1) =

�
{(1− x1)δ(0,0) + x1δ(1,1)} x1 = y1

∅ x1 ̸= y1

This implies supp(π1) ⊆ ∆ := {(x1, x1) : x1 ∈ [0, 1]}. By using that (A × B) ∩∆ = {(x1, x1) :
x1 ∈ A ∩B} = ((A ∩B)× [0, 1]) ∩∆ this yields

π1(A×B) = π1((A ∩B)× [0, 1]) = λ(A ∩B) = λ((id, id)−1(A×B)) = (id, id)∗(A×B),

so π1 = (id, id)∗λ. Hence,

dπ(x1, x2, y1, y2) = d(id, id)∗λ(x1, y1)d((1−x1)δ(0,0)+x1δ(1,1))(x2, y2) = d(id, id)∗µ(x1, x2, y1, y2).
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So, Cplbc(µ, ν)∩Cpl00(µ, ν) = {(id, id)∗µ} and therefore also its closure is just {(id, id)∗µ}, which
does not contain the bicausal coupling µ⊗ ν.

To close this section, we state the consequences of Theorem 2.26 for the bicausal transport
problem and for the adapted Wasserstein distance.

Corollary 2.29. Let µ ∈ P(X) and ν ∈ P(Y ) satisfy Assumption 2.22 and c : X × Y → R be
continuous and bounded. Then it holds

inf

��
cdπ : π ∈ Cpl00(µ, ν)

�
= inf

��
c(x, T (x))dµ(x) : T biadapted s.t. T∗µ = ν

�
.

Proof. We can assume that infπ∈Cplbc(µ,ν)
�
c(x, y)π(dx, dy) < ∞ (otherwise the claim is trivial).

By Theorem 2.13, in this case there exits π ∈ Cpl(µ, ν) s.t.�
cdπ = inf

π∈Cpl(µ,ν)

�
c(x, y)π(dx, dy).

By Theorem 2.26 there exists a sequence πn ∈ Cpl00(µ, ν) s.t. πn ⇀ π and by Lemma 1.6

lim
n

�
cdπn =

�
cdπ = inf

π∈Cpl(µ,ν)

�
c(x, y)π(dx, dy).

Corollary 2.30. Let µ, ν ∈ P(X) satisfy Assumption 2.22. Then it holds

AW(µ, ν) = inf

��
d(x, T (x))dµ(x) : T biadapted s.t. T∗µ = ν

�
.

2.6 Results in probabilistic notation

In this section we state the main results of this chapter in probabilistic notion.

Theorem 2.31. Consider the discrete time processes X = (X1, . . . ,XN ) and Y = (Y1, . . . ,YN ),
where Xt takes values in Xt and Yt that values in Yt, which satisfy the following properties

• For all t ≤ N : FY
t and FX

N are independent given FX
t

• For all t ≤ N : FX
t and FY

N are independent given FY
t

Then there exists a biadapted mapping F = (F1, . . . , FN ) : 
X → 
Y satisfying

(i) If U1, . . . ,UN are mutually independent uniformly distributed random variables indepen-
dent of X and V1, . . . ,VN are mutually independent uniformly distributed random variables
independent of Y, the process Z defined as

Zt := Ft(X1,U1, . . . ,Xt,Ut)

satisfies
Z ∼ (Y1,V1,Y2,V2, . . . ,YN ,VN ).
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(ii) The process W, which is defined as the projections of the Y -compensates of the process Z,
satisfies (X,W) ∼ (X,Y).

Theorem 2.32. Consider the discrete-time processes X = (X1, . . . ,XN ) and Y = (Y1, . . . ,YN ),
where Xt takes values in Xt and Yt that values in Yt, which satsify the following properties

• For all t ≤ N : FY
t and FX

N are independent given FX
t

• For all t ≤ N : FX
t and FY

N are independent given FY
t

• For all t ≤ N : the law of Xt given X1 = x1, . . . ,Xt−1 = xt−1 is a.s. continuous

• For all t ≤ N : the law of Yt given Y1 = y1, . . . ,Yt−1 = yt−1 is a.s. continuous

Then there exists a sequence (F k)k∈N of biadapted functions F k : X → Y satisfying F k(X) ∼ Y,
such that (X, F k(X)) converges to (X,Y) in distribution for k → ∞.

Proof. This is a consequence of Theorem 2.26.
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Appendix A

A.1 Preliminaries from topology and descriptive set theory

This section is a brief introduction to Polish spaces and a few aspects of descriptive set theory,
for a detailed introduction on these topics the reader is refereed to [6, Chapters 1 and 2].

Definition A.1. A topological space (X, T ) is a Polish space if

• X is seperable, i.e. there is a countable dense subset of X

• X is completely metrizable, i.e. there exits a metric d, which is complete and induces the
topology T .

A metric d having these properties is called a compatible metric.

We collect some important facts about Polish spaces:

Recall that a subset of a topological space is Gδ if and only if it is the countable intersection of
open sets. Closed subsets of metric spaces are Gδ.

Theorem A.2 ([6, Theorem 4.14]). X is a Polish space if and only if it is homeomorphic to a
Gδ-subset of the Hilbertcube, that is [0, 1]N equipped with the product topology.

Definition A.3. Let X be a topological space. A point x ∈ X is an isolated point if {x} is
open. Otherwise, it is a limit point of X. The space X is called dense-in-itself if all x ∈ X are
limit points of X. A ⊆ X is perfect if it is closed in X and dense-in-itself w.r.t. the subspace
topology.

Theorem A.4 (Cantor-Bendixson, [6, Theorem 6.4]). Let X be a Polish space. Then X can be
uniquely written as X = P ∪ C, where P is a perfect set and C is at most countable and open.

Theorem A.5 ([6, Theorem 6.2]). Any non-empty perfect Polish space contains a homeomorphic
copy of {0, 1}N.

An immediate consequence of the last three theorems is:

Theorem A.6. Any uncountable Polish space contains a homeomorphic copy of {0, 1}N and has
cardinality 2ℵ0 .
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Proof. Write X = P ∪C, where P is perfect and C is at most countable. Since X is uncountable,
P is not empty, so it contains a homeomorphic copy of {0, 1}N and X has at least cardinality
2ℵ0 . Theorem A.2 implies that X has at most cardinality 2ℵ0 .

A measurable space (X,A) is a set X with a σ-algebra A ⊆ 2X .

If (X,AX) and (Y,AY ) are measurable spaces, a mapping f : X → Y is called measurable if for
all A ∈ AX we have f−1(A) ∈ AY . (X,AX) and (Y,AY ) are called isomorphic if there exists a
bijection f : X → Y s.t. f and f−1 are both measureable.

If (X, T ) is topological space the Borel-σ-algebra on X is the smallest σ-algebra on X containing
all open subsets of X.

Definition A.7. A measureable space (X,A) is called standard Borel space if it is isomorphic
to a Polish space Y equipped with the Borel-σ-algebra. A bijection f between two standard
Borel spaces s.t. f and f−1 are both Borel is called Borel isomorphism.

Theorem A.8 ([6, Theorem 13.1]). Let (X, T ) be a Polish space and B ⊆ X be Borel. Then
there is a Polish topology TB ⊇ T s.t. B is clopen in TB and B(T ) = B(TB).
Theorem A.9 ([6, Theorem 13.11]). Let (X, T ) be a Polish space, Y be a second countable space
and f : X → Y be Borel measurable. Then there exists a Polish topology Tf ⊇ T such that f is
Tf -continuous and B(Tf ) = B(T ).

Theorem A.10. A measureable space (X,A) is a standard Borel space if and only if it is
isomorphic to a Borel subset of a Polish space.

Proof. Let (X,A) be isomorphic to a Borel subset B of the Polish space (Y, T ). By Theorem
A.8, there exists a Polish topology TB ⊇ T s.t. B is clopen in TB and B(T ) = B(TB). As open
subset of (Y, TB), the space (B, TB |B) is again Polish and has the same Borelsets a (B, T |B).
Corollary A.11. Every uncountable standard Borel space contains a homeomorphic copy of
{0, 1}N and has therefore cardinality 2ℵ0 .

Theorem A.12 (Borel Cantor Bernstein Schröder). Let X,Y be standard Borel spaces, f :
X → Y and g : Y → X be Borel injections. Then there are Borel sets A ⊆ X and B ⊆ Y s.t.
f(A) = Y \B and g(B) = X \A. In particular, the mapping

h : X → Y : x  →
�
f(x) x ∈ A

g−1(x) x ̸∈ A

is a Borel isomorphism from X to Y .

Theorem A.13 ([6, Theorem 14.12]). Let X, Y be standard Borel spaces and f : X → Y a
mapping. Then f is Borel if and only if graph(f) is Borel.

In particular, if f : X → Y is Borel and bijective, then f is a Borel isomphism (i.e. f−1 is
measureable).

Theorem A.14 ([6, Theorem 15.6], Borel isomorphism Theorem). Let X,Y be standard Borel
spaces. Then X and Y are Borel isomorphic if and only if they have the same cardinality.
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Corollary A.15. Let X be a standard Borel space. Then X is Borel isomorphic to exactly one
of the following standard Borel spaces:

• {1, . . . , n} with the σ-algebra 2{1,...,n} for some n ∈ N

• N with the σ-algebra 2N

• [0, 1] with the Borel-σ-algebra induced by the standard topology

A.2 Probability measures on Polish spaces

Let X be topological space. A Borel measure is a measure defined on the Borel-σ-algebra of
X. We denote the space of Borel probability measures with P(X). We equip P(X) with the
topology of the weak convergence of probability measures, i.e. a sequence (µn)n in P(X) converges
to µ ∈ P(X) if and only if for any f : X → R continuous and bounded

�
fdµn → �

fdµ.

Theorem A.16. If X is Polish, then P(X) is Polish.

We give equivalent characterizations for the Borel-σ-algebra on P(X):

Proposition A.17. The the Borel-σ-algebra on P(X) is

• the σ-algebra generated by the mappings µ  → �
fdµ, where f varies over all bounded real-

valued Borel functions

• the σ-algebra generated by the mappings µ  → �
fdµ, where f varies over all real-valued

continuous bounded functions

• the σ-algebra generated by the mappings µ  → µ(B), where B varies over all Borel subsets
of X

Definition A.18. Let X be a standard Borel space and µ ∈ P(X). µ is continuous if for all
x ∈ X : µ({x}) = 0. We denote the set of continuous probability measures on X as Pc(X).

An immediate consequence of this definition is that all countable sets are null sets for continuous
measures. Therefore, Corollary A.11 yields that Pc(X) ̸= ∅ implies that X has cardinality
contiuum.

Note that the pushforward of a continuous measure under a bijection is again a continous measure.

Theorem A.19 ([6, Theorem 17.41], Isomorphism theorem for measures). Let X be a standard
Borel space and µ ∈ Pc(X). Then there is a Borel isomorphism f : X → [0, 1] s.t. f∗µ = λ,
where λ denotes the Lebesgue measure on [0, 1].

This obviously implies: If X and Y are standard Borel spaces, µ ∈ Pc(X), ν ∈ Pc(Y ), then there
exists a Borel isomorphism f : X → Y s.t. f∗µ = ν.

We close this section with a crucial compactness criterion for the spaces of probability measures.

Definition A.20. M ⊆ P(X) is called tight if for any ε > 0 there exists a compact set K ⊆ X
s.t. for all µ ∈ M it holds µ(Kc) < ε.

Theorem A.21 (Prokhorov). M ⊆ P(X) is relatively compact if and only if it is tight.
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A.3 Disintegration and kernels

In this section we briefly discussion conditioning and kernels. The most important measure
theoretic definition in this context is the following:

Definition A.22. Let X and Y be standard Borel spaces. A kernel from X to Y is a Borel
measurable mapping from X to P(Y ).

Using Proposition A.17 we see that this is equivalent to the following conditions, which are often
stated as the definition of a kernel:

Definition A.23 (Alternative definition for kernels). Let X and Y be standard Borel spaces.
A kernel from X to Y is a mapping π : X × BY → [0, 1] such that

• ∀x ∈ X : π(x, ·) is a probability measure on Y ,

• ∀B ∈ BY : x  → π(x,B) is Borel measurable.

The following theorem can be regarded as a generalization of Fubini's theorem to measures on a
product space that are not necessarily of product structure.

Theorem A.24 ([6, Example 17.35], Measure disintegration Theorem I). Let X and Y be
standard Borel spaces and π ∈ P(X × Y ). Then there exists a Borel measurable mapping X ∋
x  → πx ∈ P(Y ) such that

• πx({x} × Y ) = 1 for prX∗π-almost all x ∈ X

•

�
fdπ =

� 
�
fdπx

�
dprX∗π(x) for all f : X → R bounded and Borel.

Moreover, the mapping x  → πx is prX∗π-a.s. unique.

A more general case is the following:

Theorem A.25 ([6, Example 17.35], Measure disintegration Theorem II). Let X and Y be
standard Borel spaces, f : X → Y be Borel. Let µ ∈ P(X) and ν := f∗µ ∈ P(Y ). Then there
exists a Borel measurable mapping Y ∋ y  → µy ∈ P(X) such that

• µy(f−1({y})) = 1 for ν-almost all y ∈ Y

•

�
fdµ =

� 
�
fdµy

�
dν(y) for all f : X → R bounded and Borel.

Moreover, the mapping y  → µy is ν-a.s. unique.

The probabilistic perspective of this is conditioning, which we introduce here very briefly:

Fix a probability space (Ω,F ,P). If G ⊆ F is a sub-σ-algebra, L2(Ω,G,P|G) is a closed subspace
of L2(Ω,F ,P). Therefore there exists an orthogonal projection EG [ · ] := E[ · |G] : L2(Ω,F ,P) →
L2(Ω,G,P|G). One can extend this operator uniquely to an operator EG : L1(Ω,F ,P) →
L1(Ω,G,P|G):
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Theorem A.26 ([5, Theorem 6.1], Existence and properties of conditional expectation). Let G ⊆
F be a sub-σ-field. Then there exits a unique linear operator EG : L1(Ω,F ,P) → L1(Ω,G,P|G)
such that

(i) E[(EGX)1A] = E[X1A] for all X ∈ L1(Ω,F ,P), A ∈ G

This operator has the following properties:

(ii) X ≥ 0 =⇒ EGX ≥ 0

(iii) E|EGX| ≤ E|X|
(iv) 0 ≤ Xn ↗ X =⇒ EGXn ↗ EGX

(v) EG(XY) = XEGY if X is G-measurable

(vi) E[XEGY] = E[YEGX] = E[(EGX)(EGY)]

(vii) EGEHX = EGX

If X,Y are random variables, G ⊆ F a σ-algebra and A a Borel set, we define EYX := E[X|Y] :=
E[X|σ(Y)]. Moreover, we define PG(X ∈ A) := P[X ∈ A|G] := EG [1A] and PY(X ∈ A) := P(X ∈
A|Y) := P(X ∈ A|σ(Y)).
Theorem A.27 ([5, Theorem 6.3], conditional distribution). Let X be a standard Borel space, Y
be a measurable space, X be an X-valued random variable and Y be a Y -valued random variable.
Then there exits a kernel µ from Y to X satisfying

P(X ∈ B|Y) = µ(Y, B) B ⊆ X Borel

on a set with full measure w.r.t L(Y). This kernel is L(Y)-a.s. unique.
Remark A.28. Theorem A.25 and A.27 are basically the same statement, but first is in measure
theoretic notation and the second is in probabilistic notation.

We briefly discuss conditional independence.

Definition A.29. Let G1, . . . ,Gn,H ⊆ F be σ-algebras. G1, . . .Gn are conditionally independent
given H if and only if

PH
�

n�
i=1

Gi

�
=

n�
i=1

PH(Gi) for all Gi ∈ Gi.

Proposition A.30 ([5, Proposition 6.8]). Let G1,G2,H ⊆ F be σ-algebras. Then G1 is condi-
tionally independent of G2 given H if and only if for all G2 ∈ G2 it holds PG1,H(G2) = PH(G2).

Remark A.31. It is interesting to observe that conditional independence is a symmetric con-
dition (in G1 and G2), but the equivalent condition given in Proposition A.30 is not symmetric.
This yields the equivalence

[∀G2 ∈ G2 : PG1,H(G2) = PH(G2)] ⇐⇒ [∀G1 ∈ G1 : PG2,H(G1) = PH(G1)],

which is essentially the reason why the conditions (i) and (iii) in Proposition 2.2 are equivalent.
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A.4 An isomorphism theorem for kernels

The isomorphism theorem for measures (Theorem A.14) states that for any continuous measure
on a standard Borel space X, there exists a bijection f : X → [0, 1] s.t. f∗µ = λ. The main goal
of this section is to prove a parameterized version of that: If π is a kernel from X to Y then
there exists a Borel isomorphism f : X × Y → X × [0, 1] such that f lets the x-component fixed
and for all x ∈ X the mapping f(x, ·) pushes πx to λ.

Using the axiom of choice, one could choose for all x ∈ X a Borel ismorphism fx that pushes
πx to λ and define f(x, y) := (x, fx(y)). However, there is no reason why this function f
is measurable. Therefore, we repeat the construction given in the proof of the isomorphism
theorem for measures given in [6, Theorem 17.41] in a way that is uniform for all x. A key role
for this plays Theorem 2.4 from [7] because it ensures the existence of Borel isomorphisms that
let the x-coordinate fixed under suitable conditions. We will first clarify what this means exactly:

For a set A ⊆ X × Y and x ∈ X we define the x-section of A as Ax := {y ∈ Y : (x, y) ∈ A}.
Definition A.32. LetX,Y and Z be standard Borel spaces and let B ⊆ X×Y be Borel. A Borel
parametrization of B is a Borel isomorphism f : X × Z → B satisfying f({x} × Z) = {x} ×Bx

for all x ∈ X.

Loosely speaking, a Borel parametrization is a Borel isomorphism between B and an rectangular
set, which acts within columns (i.e. lets the x-coordinate fixed). Of course, a necessary condition
for the existence of a Borel parametrization is that all x-sections of B have the same cardinality.
We are interested in the case, where X is uncountable and all x-sections of B are uncountable.
The following theorem answers the question under which conditions Borel parametrizations exist.

Theorem A.33 ([7, Theorem 2.4]). Let X and Y be uncountable standard Borel spaces and let
B ⊆ X × Y be a Borel set with uncountable x-sections. Then the following are equivalent

(i) B has a Borel parametrization.

(ii) There is a Borel set M ⊆ B such that for all x ∈ X the set Mx is compact and perfect.

(iii) There exits a kernel from X to Y such that for all x ∈ X the measure µx is continuous and
satisfies µx(Bx) = 1.

Lemma A.34. Let X and Y be Polish spaces, C ⊆ X compact perfect and f : X → Y continuous
and injective. Then f(C) is compact perfect. In particular, homeomorphic copies of compact
perfects sets are compact perfect.

Proof. Clearly, f(C) is compact and hence closed. Assume that f(C) contains an isolated point
y. Then there exits an open neighborhood U of the point y which satisfies f(C)∩ (U \ {y}) = ∅.
Moreover, there exists an (unique) x ∈ C such that f(x) = y. By the continuity of f there exists
an open neighborhood V of the point x such that f(V ) ⊆ U . Since f is injective this implies
f(V \ {x}) ⊆ U \ {y} ⊆ Y \ f(C) and again by the injectivity of f this implies V \ {x} ⊆ X \C.
Hence, x is an isolated point of C, which is a contradiction; so f(C) does not have isolated
points.

Remark A.35. If B ⊆ X×Y is a Borel set with uncountable x-sections, Corollary A.11 implies
that for all x the set Bx contains a homeomorphic copy of {0, 1}N and therefore a compact
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perfect set. Loosely speaking, the assertion (ii) in Theorem A.33 says the these perfect sets can
be chosen in a uniform way.

We recall a few basic facts about the distribution function Fµ(t) := µ([0, t]) of a probability
measure µ on [0, 1]. The distribution function Fµ is increasing and satisfies Fµ(0) = 0, Fµ(1) = 1.
Moreover, it is continuous if and only if µ is continuous. In this case it satisfies Fµ∗µ = λ and
it is easy to see that Fµ is strictly increasing if and only if every non-empty open interval has
positive measure if and only if supp(µ) = [0, 1]. In this case Fµ is a continuous bijection between
the compact Hausdorffspaces [0, 1] and [0, 1], hence a homeomorphism.

The following proposition implies that the function (x, t)  → Fπx(t) is jointly measurable for
kernels π s.t. πx is continuous for all x ∈ X. (Of course the latter assumption is not necessary
for the measurability, but we just need it in that case.)

Proposition A.36 ([1, Lemma 4.51]). Let X,Y and Z be Polish spaces and f : X × Y → Z be
a function such that for all x ∈ X the mapping y  → f(x, y) is continuous and for all y ∈ Y the
mapping x  → f(x, y) is Borel. Then the mapping (x, y)  → f(x, y) is Borel.

Since, we want to construct a bijection the set, where the distribution functions of πx are constant
(hence not injective) are a problem and we will have to modify the function there. First, we
observe that this set is Borel:

Lemma A.37. Let F : X × [0, 1] → [0, 1] a measurable mapping such that for all x ∈ [0, 1] the
mapping t  → F (x, t) is monotone. Then the set

M := {(x, t) ∈ X × [0, 1] : ∃t′ ̸= t : F (x, t) = F (x, t′)}

is Borel and Mx is at most countable for all x ∈ X.

Proof. Denote the diagonal in [0, 1]2 as ∆ and define for n ∈ N the sets

M+
n = {(x, t) ∈ X × [0, (n− 1)/n] : (F (x, t), F (x, t+ 1/n)) ∈ ∆},

M−
n = {(x, t) ∈ X × [1/n, 1] : (F (x, t), F (x, t− 1/n)) ∈ ∆}.

As preimages of ∆ under the measureable mappings (x, t)  → (F (x, t), F (x, t+1/n)) and (x, t)  →
(F (x, t), F (x, t− 1/n)) these sets are obviously Borel. The montonicity of t  → F (x, t) implies

(x, t) ∈ M ⇐⇒ ∃n ∈ N
�
t− 1/n ∈ [0, 1] ∧ F (x, t) = F (x, t− 1/n)

�
∨
�
t+ 1/n ∈ [0, 1] ∧ F (x, t) = F (x, t+ 1/n)

�
,

which shows that M =
"

n∈N(M
+
n ∪M−

n ) . Hence, M is Borel.

Mx is at most countable because the preimage of a point under a monotone mapping is an
interval and [0, 1] can contain at most countably many disjoint non-degenerate intervals.

Proposition A.38. Let X be a dense-in-itself Polish space and π a kernel from X to [0, 1] s.t.
πx is continuous for all x ∈ X. Then there is a Borel set M ⊆ X × [0, 1] such that for all x ∈ X
the set Mx is compact perfect and satisfies πx(Mx) = 0.
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Proof. Let (Un)n∈N be a base of the standard topology of [0, 1]. Since the mappings P([0, 1]) →
[0, 1] : µ  → µ(Un) are Borel by Proposition A.17, the mapping

Φ : P([0, 1]) → {0, 1}N : µ  → (zn)n∈N, where zn =

�
0 µ(Un) > 0

1 µ(Un) = 0

is Borel as well. For n ∈ N define the set An := {z ∈ {0, 1}N : z0 = 0, . . . , zn−1 = 0, zn = 1} and
define A∞ as the set, which only contains the constant zero sequence. Hence, for all n ∈ N∪{∞}
the set An contains exactly the sequences (zk)k∈N that satisfy min{k ∈ N : zk = 1} = n. This
shows that {An : n ∈ N ∪ {∞}} is a partition of {0, 1}N. It is easy to see that all these sets are
closed and therefore Borel.

For n ∈ N∪{∞} define Bn := (Φ◦π)−1(An). (Recall that π is mapping X → P([0, 1]).) Clearly,
the sets Bn, n ∈ N ∪ {∞} are all Borel and form a partition of X. For n ∈ N and x ∈ Bn it
holds Un ⊆ [0, 1] \ supp(πx). For x ∈ B∞ it holds supp(πx) = [0, 1].

For n ∈ N the open set Un contains a nonempty open interval and therefore a non-degenerate
closed interval Cn. Clearly, Cn is compact perfect.

The function
f : B∞ × [0, 1] → B∞ × [0, 1] : (x, t)  → (x, Fπx(t))

is jointly measurable by Proposition A.36 and for all x ∈ B∞ the mapping f(x, ·) is a homeo-
morphism between {x} × [0, 1] and {x} × [0, 1].

Denote C∞ ⊆ [0, 1] the (usual) Cantor set. As isomorphic image of {0, 1}N it is clearly compact
perfect. Define the set

M := f(B∞ × C∞) ∪
!
n∈N

Bn × Cn.

Clearly, M is Borel and any of its x-sections is a homeomorphic image of Cn for some n ∈ N∪{∞}
and therefore compact perfect.

We are now able to state and prove the main theorem of this section.

Theorem A.39. Let X and Y be standard Borel spaces and π a kernel from X to Y s.t. πx is
a continuous probability measure for all x ∈ X. Then there exists a measurable function

G : X × Y → [0, 1]

such that for all x ∈ X the mapping Gx := G(x, ·) : Y → [0, 1] is a Borel ismorphism satisfying
Gx

∗π
x = λ, where λ denotes the Lebesgue measure on [0, 1].

Proof. By the Borel isomorphism Theorem A.14 we can assume that Y = [0, 1]. By Proposition
A.36 the mapping

F : X × [0, 1] → X × [0, 1] : (x, t)  → (x, Fπx(t))

is jointly measurable. By Lemma A.37 the set

N := {(x, t) ∈ X × [0, 1] : ∃t′ ̸= t : F (x, t) = F (x, t′)}
is Borel and Nx is at most countable for all x ∈ X. The set M := F−1(N) is Borel and satisfies
πx(Mx) = πx([F (x, ·)]−1(Nx)) = λ(Nx) = 0 for all x ∈ X. Clearly, F is a bijection between
(X × [0, 1]) \M and (X × [0, 1]) \N .
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By Proposition A.38 there exist Borel sets A,B ⊆ X × [0, 1] such that for all x ∈ X the sets
Ax and Bx are compact perfect and it holds πx(Ax) = 0 and λ(Bx) = 0. This implies that
λ([F (x, ·)](Ax)) = 0 and πx([F (x, ·)]−1(Bx)) = 0.

Consider the sets C := A ∪ F−1(B) ∪ M and D := F (A) ∪ B ∪ N . Then it holds πx(Cx) ≤
πx(Ax) + πx([F (x, ·)]−1(Bx)) + πx(Mx) = 0 and λ(Dx) ≤ λ([F (x, ·)](Ax)) + λ(Bx) + λ(Nx) = 0
for all x ∈ X and F is a bijection between (X × [0, 1]) \ C and (X × [0, 1]) \ D. Moreover,
C and D both satisfy the assumptions of Theorem A.33, so there exist Borel parametrizations
f : X × [0, 1] → C and g : X × [0, 1] → D.

Clearly, the mapping

 G : X × [0, 1] → X × [0, 1] : (x, t)  →
�
F (x, t) t ∈ [0, 1] \ Cx

g(f−1(x, t)) t ∈ Cx

is a Borel parametrization of X × [0, 1]. Denote pr2 the projection on the second component. It

is easy to see that pr2∗  G(x, ·)∗πx = λ for all x ∈ X. Hence, the mapping G := pr2 ◦  G has the
desired properties.

We state two corollaries that will be useful in this thesis.

Corollary A.40. Let X,Y and Z be standard Borel spaces, µ a kernel from Z to X and ν a
kernel from Z to Y s.t. µz and νz are continuous probability measures for all z ∈ Z. Then there
exists a measurable function

G : Z ×X → Y

such that for all z ∈ Z the mapping Gz := G(z, ·) : X → Y is a Borel ismorphism satisfying
Gz

∗µ
z = νz.

Proof. As we see at the end of the proof of Theorem A.39, there are Borel parametrizations F : Z × X → Z × [0, 1] and  H : Z × Y → Z × [0, 1] such that pr2∗  F (x, ·)∗µx = λ and

pr2∗  H(x, ·)∗νx = λ for all z ∈ Z. It is easy to see that G := pr2 ◦  H−1 ◦  F has the desired
properties.

Corollary A.41. Let X and Y be standard Borel spaces and π a kernel from X to Y . Then
there exists a measurable function

G : X × Y × [0, 1] → [0, 1]2

such that for all x ∈ X the mapping Gx := G(x, ·) : Y × [0, 1] → [0, 1]2 is a Borel ismorphism
satisfying Gx

∗(π
x ⊗ λ) = λ2, where λ2 denotes the Lebesgue measure on [0, 1]2.

Proof. Note that πx ⊗ λ is a continuous probability measure on Y × [0, 1] for any πx ∈ P(Y ).
Hence we can apply Theorem A.33 to standard Borel spaces X and Y × [0, 1] and the kernel
(πx ⊗ λ)x∈X .

At the end of this section we prove another technical proposition that we used a few times
throughout this thesis.
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Proposition A.42. Let X and Z be Polish spaces, M be an at most countable partition of X
consisting of Borel sets and µ be a kernel from Z to X s.t. µz is continuous for all z ∈ Z.

Then there exists a measurable mapping Φ : Z ×X → X × [0, 1] s.t. for all z ∈ Z the mapping
Φz := Φ(z, ·) : X → X × [0, 1] is a Borel isomorphism satisfying Φz

∗(µ
z|M ) = (µz|M )⊗ λ for all

M ∈ M.

Proof. Denote M′ := {M ∈ M : M is uncountable} and X ′ :=
"M′. For M ∈ M′ define the

kernel µM from Z to M as

µz
M :=

�
1

µz(M)µ
z|M µz(M) > 0

ρM µz(M) = 0,

where ρM is a fixed continuous probability measure onM (e.g. the pushforward of λ under a Borel
isomorphism between [0, 1] and M that exists by Theorem A.14). By Theorem A.39 there exits a
mapping ΦM : Z×M → M×[0, 1] s.t. for all z ∈ Z the mapping Φz

M := ΦM (z, ·) : M → M×[0, 1]
is a Borel isomorphism pushing µz

M to µz
M ⊗ λ.

Define the mapping

 Φ : Z ×X ′ → X ′ × [0, 1] : (z, x)  → ΦM (z, x), if M is the unique M ∈ M′ s.t. x ∈ M .

Clearly,  Φ is Borel as at most countable case-distinction of Borel maps and satisfies  Φz
∗(µ

z
M ) =

µz
M ⊗ λ for all M ∈ M′.

Now, it remains to modify  Φ on nullsets to get a bijection Φ with the desired properties. By
Proposition A.38 there are Borel sets A ⊆ X and B ⊆ X × [0, 1] such that for all z ∈ Z the sets
Az and Bz are compact perfect and satisfy µz(Az) = 0 and µz ⊗ λ(Bz) = 0.

Define C := A∪ Φ−1(B)∪X \X ′ and D :=  Φ(A)∪B∪Z×(X \X ′)×[0, 1]. Clearly, C and D both
satisfy the assumptions from Theorem A.33, so there exists a Borel isomorphism Ψ : C → D
such that Ψ({z} × Cz) = {z} × Dz for all z ∈ Z. Denote pr : Z × X × [0, 1] → X × [0, 1] the
projection. It is easy to check that the mapping

Φ : Z ×X → X × [0, 1] : (z, x)  →
�
pr( Φ(z, x)) x ∈ X \ Cz

pr(Ψ(z, x)) x ∈ Cz

has the desired properties.

A.5 Miscellaneous

This section contains a few more technical statements that we needed through out this thesis.

Lemma A.43 ([5, Lemma 1.13], Functional representation). Let (X,X ) and (Y,Y) be measurable
spaces and Z be a standard Borel space. Let f : X → Z and g : X → Y be given functions.

f is σ(g)-measurable if and only if there exits a measurable mapping h : Y → Z such that
f = h ◦ g.
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Lemma A.44 ([5, Lemma 4.3]). Let f : X → Y be continuous, then the mapping P(X) →
P(Y ) : µ  → f∗µ is continuous w.r.t. weak convergence.

N<N denotes the set of finite sequences of natural numbers. For s ∈ N<N denote |s| the length
of s. For s1, s2 ∈ N<N let s1s2 be the conactenation of s1 and s2. Let ∅ be the empty sequence.

Theorem A.45 ([6, Theorem 13.9]). Let X be a Polish space and d a compatible metric. Then
there exists a collection (As)s∈N<N of subsets of X, which has the following properties:

(i) As is Borel for all s ∈ N<N

(ii) A∅ = X

(iii) As =
"

i∈N Asi for all s ∈ N<N

(iv) Asi ∩Asj = ∅ for all i ̸= j ∈ N and s ∈ N<N

(v) diam(As) ≤ 2−|s| for all s ∈ N<N \ {∅}
Remark A.46. In particular, for each n ∈ N the collection {As : |s| = n} is an at most
countable bijection of X consisting of Borel sets with diameter at most 2−n. Moreover, the
partition {As : |s| = n+ 1} is a refinement of the partition {As : |s| = n}.
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