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ABSTRACT Antennas with a massive amount of elements at one end are among 5G mobile communication
key technologies for which spectral efficiency is enhanced by serving many users in parallel over tailored
minimally interfering beams. This requires channel models that characterize the propagation environment
in both azimuth and elevation. Additionally, the channel model has to capture spatial correlation effects
among closely located positions, knowing that the propagation characteristics change gradually over the
network area. In order to simulate mobile users or advanced beamforming strategies based on user location or
angular information, it is crucial that spatial consistency is included in the applied channel models. This paper
introduces a novel model for spatial consistency that is applicable to all prevalent geometry-based stochastic
channel models. We provide a detailed explanation of the model and analyze its statistical properties and
show its behavior when applied to the 3GPP 3D channel model as an example. To validate our model,
we perform extensive ray-tracing simulations and show that our model is in a very good agreement with
the statistical channel properties from ray-tracing. Following hypothesis testing over obtained ray-tracing
statistics, we are able to parametrize our model for various 3GPP scenarios under LOS and NLOS
propagation conditions. Finally, complementary aspects such as simulation complexity are discussed and
a guideline on model implementation is provided.

INDEX TERMS Channel models, spatial consistency, correlation, massive MIMO, user mobility,
beam-tracking, beamforming, 3GPP 3D channel model, simulations.

I. INTRODUCTION
An important aspect inmobile communication systems devel-
opment is performance evaluation of new technologies and
novel contributions. In this regard, International Telecom-
munications Union- Radiocommunications Sector (ITU-R)
defined of a global standard for the 4th generation (4G) of
mobile communication systemswith requirements defined by
International Mobile Telecommunications (IMT)-Advanced.
Similarly, with IMT-2020, the overall roadmap for the devel-
opment of 5th generation (5G) of mobile communication
systems is established. In both cases, IMT-Advanced and
IMT-2020 systems, a specified set of requirements has
to be fulfilled [1]. These requirements include analytical
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verifications by conducting numerical calculations (i.e.,
of peak spectral efficiency, latency and handover interrup-
tion times), and performance evaluation by link-level and
system-level simulations [2]. With simulations playing a cru-
cial role, this brings the need for accurate and realistic models
to be used in simulation tools. In the context of massive
multiple input multiple output (MIMO) [3]–[5], a major issue
is, to utilize realistic channel models that characterize the
propagation environment in both azimuth and elevation and
are capable of accurately predicting the performance of such
systems.

A. SURVEY ON EXISTING CHANNEL MODELS
There exist several types of channel models that are suitable
for different applications. Following the specific approach
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FIGURE 1. Scattering concept in 3D double-directional channel models. The figure illustrates the propagation considering two clusters,
each resolvable into a number of paths. Elevation and azimuth angles at the base station and the user are denoted as θ and φ,
respectively.

of modeling, channels models are classified into two large
categories: analytical and physical models [6]. The analytical
models describe the channel in a mathematical way without
explicitly considering the wave propagation properties. The
effects of the wave propagation in the random scattering envi-
ronment are rather condensed in statistical distributions of the
channel coefficients. An example of analytical models is the
well known Kronecker channel model used to characterize
the correlation in-between transmit antennas and in-between
receive antennas [7].

Physical models describe the channel between transmit-
ter and receiver based on the electromagnetic properties of
the environment. Physical models can again be categorized
in three major groups, based on the modeling approach:
stochastic models, deterministic models and geometry-based
stochastic models. While in the case of stochastic models
the physical channel parameters (e.g., power delay profile,
angular profile) are determined in a completely stochastic
way by prescribing probability distribution functions with-
out assuming an underlying geometry, deterministic mod-
els completely depend on the geometry of the environment.
Examples of stochastic models specified by 3rd Generation
Partnership Project (3GPP) are Typical Urban, Pedestrian A
and B, Vehicular A and B [8], whereas deterministic models
are mostly represented by ray-tracing techniques [9].

As indicated by its name, in between these two models
stands the geometry-based stochastic channel model. Here
the location of scatterers is not explicitly specified. Instead
multipaths are characterized with delay, power and direction
of rays, generated as a result of a random scattering environ-
ment. Such parameters are determined by means of statisti-
cal distributions that are parametrized from measurements.
This model allows the separation of antenna parameters from
propagation parameters, thus is convenient for the evaluation
of massive MIMO systems and is frequently adopted by

standardization bodies such as the 3GPP and International
Telecommunications Union (ITU).

1) GEOMETRY-BASED STOCHASTIC CHANNEL MODEL
The concept of a geometry-based stochastic channel model
for a link between a transmitter and a receiver is shown
in Fig. 1, where scattering regions, referred to as clusters,
are represented by large circles comprising several scattering
objects. Each cluster contains several rays and the number of
clusters and rays varies for different scenarios and propaga-
tion conditions.

The stochastic part of the model is determined by two
levels of randomness: (a)

1) Large-scale parameters (LSPs): define parameters such
as the root mean square (RMS) delay spread, angular
spread of departure- and arrival in azimuth and eleva-
tion, shadow fading and K-Ricean factor, which mostly
change prominently over larger distances (i.e., larger
than several wavelengths). In a multi-link scenario,
correlation properties that describe variations of LSPs
over distance have to be considered. That is, the LSPs
of two user links towards the same base station (BS)
would experience correlations that are proportional to
the relative distance between the two users. Commonly,
this is achieved by considering the LSPs as correlated
multivariate random process [10].

2) Small-scale parameters (SSPs): characterize the actual
multipath components by means of delay, power and
angular values. The principle of generating multipath
components follows a random scattering environment
determined by several distributions and statistics of
correlated LSPs. For instance, an exponential delay
distribution with a specific RMS delay spread derived
from correlated LSPs is commonly applied to deter-
mine the multipath delays.
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Widely used geometry-based stochastic channel models are
the 3GPP-Spatial Channel Model (SCM) specified in study
item 3GPP TR25996 and the Wireless World Initiative New
Radio (WINNER) channel model [10]. While these models
are only defined for the azimuth dimension, an extension to
3D modeling including also the elevation angle was provided
first, in the WINNER+ model and later, in the 3GPP 3D
channel model [11].

B. SPATIAL CONSISTENCY
In geometry-based stochastic channel models, the relative
distance between all simulated nodes (i.e. users and base
stations) is very important. The channel parameters such as
pathloss, LSPs and SSPs have to reflect a correlation that
is proportional to this relative distance. For example, two
closely located users are bound to experience similar channel
propagation effects, because they share almost the same scat-
terers and are on a similar distance with respect to the base
station. We refer to this similarity in propagation effects as
spatial correlation or spatial consistency. In particular, spatial
consistency for geometry-based stochastic channel models
is essential for various applications in the context of full
dimension (FD)-MIMO, beam forming and beam tracking
strategies that make use of angular information or user loca-
tion [12], [13].

While on the one hand, the geometry related parameters
such as path loss incorporate spatial consistency, on the other
hand, stochastic parameters do not provide any relation to the
geometry. Therefore it is crucial to additionally attain spatial
consistency for the stochastic parameters such as LSPs and
SSPs. While this has been done for LSPs (see [10]), the SSPs
lack any spatial correlation. In the SSPs generation proce-
dure of geometry-based stochastic channel models, random
variables are assigned independently to each spatial position.
Therefore, irrespective of any prior correlation in terms of
LSPs and path loss, the lack of correlation in SSPs results
in a completely inconsistent channel behavior.

To introduce spatial consistency in SSPs, in the
WINNER II model two approaches are proposed [10]. The
first one is based on the cluster death-birth process and
recently has been resolved in the quasi deterministic radio
channel generator (QuaDRiGa) model [14]. The second
approach is based on the appearance and disappearance of
multipath components, according to a Markov process. Since
for its application, the parameters have not yet been extracted
from measurements, this approach was never adjusted. Dif-
ferently, in the COST 2100 channel model, a global set of
scatterers is shared by all users through so-called visibility
regions [15]. Even though this type of channelmodel supports
spatial consistency, it is currently not widely accepted due
to its high complexity and its limited support on propa-
gation scenarios. Additionally, the few existing scenarios
are parametrized only for a small range of carrier frequen-
cies [16]. Furthermore, according to [17], this model is
not suitable to be used with large antenna arrays since the

spatial variation that comes with large antenna arrays is not
considered by this model.

Recently, the 3GPP in the study item TR38901 specified
a new 3D radio channel model, feasible for frequencies of
future mobile networks ranging from 0.5 to 100GHz, that
accounts also for spatial consistency. However, the spatial
consistencymodel as described in [18][Sec. 7.6.3], is not very
explicit and leaves room for various interpretations. In partic-
ular, the spatial correlation is only defined as a 2-dimensional
(2D) random process based on the parameter-specific de-
correlation distances. Further details on what a 2D random
process represents, are still missing and up to this writing,
there is no openly available implementation of this method,
nor results that show its behavior.

Concurrently, in our work presented in [19], [20] we have
studied modeling of spatial consistency for geometry-based
stochastic channel models. The proposed model for correlat-
ing SSPs indicates a high correlation over distance and a satu-
ration in terms of correlation, where after approximately 30m
distance the model exhibits the same correlation regardless of
the input parameters applied. In a further investigation in our
work [21], by performing ray-tracing simulations, it is shown
that abrupt changes of channel parameters occur, are realistic
and reflect the changes in geometry of surrounding objects
along the propagation path, and thus have to be included in
the modeling of spatial consistency. We therefore carefully
further develop our modeling approach and provide a detailed
description together with a statistical validation and a full
parametrization of our spatial consistency model for SSPs.

C. OUR CONTRIBUTIONS
In this work we propose a model that enhances the
geometry-based stochastic channel models with spatial con-
sistency. As representative of the geometry-based stochastic
channel models, we select the standardized 3GPP 3D channel
model specified in [18][Sec. 7.5]. The proposed enhance-
ment model for spatial consistency is characterized by a sin-
gle parameter, the de-correlation distance, which represents
the geometrical resolution of independent random variables.
Within such a resolution, random variables preserve correla-
tion in space. This correlation is further analyzed and approx-
imated by a function that resembles its correlation properties,
when applied to random variables. In order to validate the
behavior of the model, we utilize a ray-tracing tool for the
reason that it is by design spatially consistent. However,
to allow for a fair comparison of a stochastic model with a
determinsitic one, it is necessary to simulate many ray-tracing
scenarios that share certain characteristics (i.e., building den-
sity, average building height, average street width, etc.) and
obtain statistical measures. Therefore, extensive ray-tracing
simulations are performed in this paper. To make the analysis
even more significant, real environments are reproduced in
3D considering the data from OpenStreetMap. These envi-
ronments are then utilized in ray-tracing. Considering the
obtained statistics from ray-tracing, a comparision with spa-
tial consistencymodel applied to the 3GPP 3D channel model
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FIGURE 2. Procedure of generating channel coefficients for geometry-based stochastic channel models, example of the 3GPP 3D
channel model including necessary extensions to add spatial consistency, as indicated with blue and red color boxes.

is conducted. Next, we introduce a full parametrization of the
proposed spatial consistency model by applying a hypothesis
testing approach and utilizing Fisher’s z-transfromation. The
parametrization encompasses all 3GPP scenarios such as
urban macro cell (UMa), urban micro cell (UMi) and rural
macro cell (RMa), and is provided for both line-of-sight
(LOS) and non line-of-sight (NLOS) propagation condition.

At the end of this article we discuss a few complemen-
tary aspects of the model, such as simulation complexity
and frequency impact on spatial correlation. Additionally,
we provide a general step-wise procedure on how to imple-
ment the channel model with spatial consistency, supporting
the ease of implementation in 5G-and beyond simulation
tools.

D. ORGANIZATION AND NOTATION
This paper is organized as follows. In Section II we describe
the proposedmodel for spatial consistency. The systemmodel
for statistical evaluation together with simulation results are
shown in Section III. The model parametrization is pre-
sented in Section IV and in Section V additional aspects
of modeling are analyzed. Finally, conclusions are drawn in
Section VI.

1) NOTATION
Correlated random variables are denoted by .̃. Rounding a
real value to the next larger integer is denoted by the ceiling
symbol d.e. The covariance measure is denoted by Cov and
variance is denoted by Var. The notation U({−1, 1}) denotes
a uniform distribution on the discrete set {−1, 1}. A uniform
distribution on the interval (a, b) is expressed by U(a, b) and
a normal distribution with meanµ and variance σ 2 is denoted
by N (µ, σ 2).

II. SPATIAL CONSISTENCY MODEL
Geometry-based stochastic channel models follow a
step-wise procedure for generation of the channel impulse
response that is common for both WINNER and 3GPP
3D models. It starts with defining the scenario, network
layout and antenna parameters, to continue with pathloss
calculation, correlated LSPs and a multi-step SSP generation
that results in the final channel impulse response. Fig. 2
illustrates the extended version of this stepwise procedure
accounting for spatial consistency. Two additional steps are
introduced, first in assigning spatially correlated propagation
conditions i.e., LOS/NLOS and indoor/outdoor state, and
second, in spatially correlated SSPs, as denoted in Fig. 2 with
the blue and red color boxes, respectively.

The correlated propagation condition is part of our work
in [19] where a detailed explanation can be found. In the
following we address the problem of spatial consistency
for SSPs.

A. CORRELATION MODEL
As discussed in Section I-A, SSPs are drawn from several
distributions. For instance, in the 3GPP 3D channel model,
inverse Gaussian and inverse Laplacian are used to model
angles of arrival and departure for azimuth and elevation,
whereas multipath delays follow an exponential distribution.
Additionally, several random variables are introduced either
as input to the prescribed distribution functions or as addi-
tional components. Table 1 lists the random variables for the
generation of SSPs according to the 3GPP 3D channel model
in [11] and [18].

To introduce spatial correlation in SSPs, we propose a
correlation model that applies to all random variables utilized
in the SSPs. As indicated in Fig. 2 by the red box, the random
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TABLE 1. Random variables used in SSP as specified in the 3GPP 3D
channel model [11], [18].

variables are correlated separately before the actual SSP
generation. This means that the spatio-temporal properties
of the model will be inserted by pre-calculating all random
variables for all user locations and moving user trajectories,
and these are utilized correspondingly in the consecutive SSP
generation steps. The proposed correlation model conists of
three steps that are described in the following.

1) Generate a matrix W with its elements being indepen-
dent random variables according to tabulated distribu-
tions from Table 1, e.g., wi,j ∼ N (µ, σ 2). In relation to
the geometry, matrix W represents a grid of indepen-
dent and uncorrelated random variables that is aligned
with the scenario geometry, respectively with user posi-
tions in the horizontal plane. Therefore, the size of
matrix W is determined by the geometry of user loca-
tions. This is illustrated in Fig. 3, where gray circles
represent entries of matrixW, whereas colored squares
denote user locations. For K user locations given in
Cartesian coordinates, (x1, y1), (x2, y2), . . . , (xK , yK ),
the size J × I of matrixW is determined in x-direction
as

I=
⌈
|min (x1, x2, . . . , xK )−max (x1, x2, . . . , xK )|

1d
+1
⌉
,

(1)

and in y-direction as

J=
⌈
|min (y1, y2, . . . , yK )−max (y1, y2, . . . , yK )|

1d
+1
⌉
.

(2)

The parameter 1d represents the geometrical reso-
lution that comes with matrix W and indicates the
range in which random variables are independently
generated. We will refer to 1d as de-correlation dis-
tance in the rest of the paper. It should be noted
that 1d is a statistical parameter and does not repre-
sent the actual distance in meters as for example the
well-known model in [22]. Choosing different values
of 1d , the model yields different correlation levels of
channel parameters.

2) For each user location, the four neighboring entries of
matrix W are determined. The mapping functions for
x and y directions that define the right outermost entry
of matrix W for a user location (x, y) on the grid are

FIGURE 3. Independent and randomly distributed variables generated on
a rectangular grid denoted by gray circles. The grid size spans the entire
simulation area and has a fixed resolution, the de-correlation distance
1d . For each user location A, B and C, correlated random variables are
estimated by bilinear interpolation.

defined as

i =
⌈
x −min (x1, x2, . . . , xK )

1d
+ 1

⌉
, (3)

and

j =
⌈
y−min (y1, y2, . . . , yk)

1d
+ 1

⌉
. (4)

The index i represents the ith column of matrixW, and
j represents the jth row.

3) To get the correlated random variable w̃(x, y) for the
corresponding user position (x, y), a bilinear interpola-
tion is applied

w̃(x, y) =
1

(xi − xi−1)(yj − yj−1)
[xi − x x − xi−1]

×

[
wi−1,j−1 wi−1,j
wi,j−1 wi,j

] [
yj − y
y− yj−1

]
, (5)

with wi−1,j−1,wi−1,j,wi,j−1,wi,j being the four neigh-
bouring entries from matrix W.

The same approach can be applied in the scenarios where
both transmitter and receiver are moving, i.e., device-to-
device (D2D) communications. In this case, steps 1), 2) and
3) described above would have to be performed also for
the transmitter side. Based on the specifics of the scenario,
the grid resolution has to be adapted.

B. STATISTICAL PROPERTIES OF THE
CORRELATION MODEL
The correlation and covariance of two random variables
provide second-order measures of the statistical dependence
between these two variables. The correlation coefficient
between two random variables E0,E1 is defined as

ρ(E0,E1) =
Cov(E0,E1)
√
Var(E0)Var(E1)

, (6)

where the maximum and minimum values of the correlation
coefficient are,
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• ρ(E0,E1) = 0 as lower bound when E0,E1 are uncorre-
lated random variables, as covariance Cov(E0,E1) = 0,

• |ρ(E0,E1)| = 1 as upper bound.
Let T ∈ R2 be a set of consecutive locations in Cartesian

coordinates (xk , yk) with k ∈ {0, 1, 2, . . . 150} following a
straight line, similar to our illustration in Fig. 3 for user loca-
tions A,B,C. Now, consider a set of random and independent
variables, E ∼ N (0, 1), distributed in a grid with resolution
1d , as shown in Section II-A. The set of random variables
E can be seen as entries of matrix W from our previous
explanation.

By applying our correlation model described in Section II-
A with steps 1), 2) and 3), a correlated random variable
is assigned to each spatial location, e.g., Ẽ0 is the random
variable at location x0, y0, whereas Ẽk is the random variable
at location xk , yk . We evaluate the behavior of the correlation
model by applying (6), where the correlation coefficient is
calculated between the correlated random variable in the
first location, Ẽ0, and consecutive locations Ẽk , denoted as
ρ
(
Ẽ0, Ẽk

)
. Considering 500 realizations, the correlation ρ

is shown in Fig. 4, denoted by a black dashed line. For two
depicted 1d values, 1d = {20, 60}, the correlation drops to
zero at 1d . As expected, this comes due to the fact that the
random variables are independent at 1d .

FIGURE 4. Correlation of random variables for different values of
de-correlation distance using the correlation coefficient ρ and
approximated correlation function 9(x).

The behaviour of the proposed correlation model can
be approximated as a sum of sinusoids, by applying a
curve-fitting approach. This approximation shows the effect
of correlation in the random variables utilized in the model.
Depending on the 1d value, the sum of sinusoids function
follows

9(x) =


a1 sin

(
b1 (1d)−1 x + c1

)
+

a2 sin
(
b2 (1d)−1 x + c2

)
, 0 ≤ x ≤ 1d

0, x > 1d

(7)

with parameters a1 = 136
125 , b1 =

5
4 , c1 =

37
20 , a2 =

1
16 , b2 =

200
31 and c2 = − 3

4 . Note that the above approximation is only

FIGURE 5. Evolution of multipath characteristics over consecutive spatial
locations.

used to illustrate the behavior of the correlation mode. The
actual SSP correlation follows the procedure as explained in
Section II-A. Fig. 4 shows the approximated correlation func-
tion9(x) denoted by the solid blue line. For both1d values,
there is a good fit between ρ and correlation function 9(x).

III. COMPARING SPATIALLY CORRELATED SSP MODEL
AND RAY-TRACING
The characteristics of multipath components arriving at a
specific location depend on the surrounding environment.
By comparing these characteristics between different spatial
positions, we can obtain insights on how fast the channel
characteristics change due to the surrounding environment.
Let us consider a straight trace with consecutive locations,
(x0, y0) , (x1, y1) , . . . , (xK , yK ), equally separated with dis-
tance d , as illustrated in Fig. 5. The characteristics of
multipath components will evolve with distance. When such
characteristics are described by stochastic models, as in the
case of geometry-based stochastic channel models, it is desir-
able to observe a smooth and correlated behaviour in closely
located positions, something that we can easily observe in
the case of deterministic models, i.e., ray-tracing simulations,
or in the case of measurement data.

A. DETERMINISTIC MODEL - RAY TRACING
We take advantage of a flexible ray-tracing simulator from
[23], [24] and consider it as a reference to compare with
our model for spatial consistency. Since we are interested to
specifically observe the behaviour of small-scale parameters
such as angles of arrival in azimuth and elevation, simulations
with ray-tracing are advantageous because all the multipath
characteristics are calculated and delivered as output. In con-
trary, when performing measurements, these parameters need
to be estimated. Another advantage of a ray-tracing tool is that
various scenarios and an unlimited number of realizations can
be considered, without additional effort, except the computa-
tional one.
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Ray-tracing applies as input a three-dimensional represen-
tation of the scenario, where the geometry and materials are
carefully modeled. We employ the 3D modeling software
from [25] to model various scenarios, such as urban and rural
environments. To make the simulations even more realistic,
we are able to reproduce three-dimensional environments
by getting the data from OpenStreetMap [26]. Examples of
such environment representations are given in Fig. 6. For
urban scenarios, we consider parts of European cities such as
Vienna, Rome and Budapest. For the rural scenario, regions
in the neighbourhood of Krems in Austria and Padova in Italy
are considered. Since the data from OpenStreetMap provide
the geometry information only in 2D, the building height
information is added afterwards based on average building
height parameter in compliance with the data from the 3GPP
3D channel model [11], [18]. Depending on the scenario,
various materials such as toughened glass, cement brick, red
brick, metal, oak wood, marble, granite, rubber, rough tiles
etc., are considered [27]. The electromagnetic permittivity
and permeability of the applied materials is then handled by
the ray-tracing simulator.

FIGURE 6. Example of scenarios used in ray-tracing simulations. Different
material types are denoted by different colours. Figure (a) illustrates an
example of base station location indicated by the magenta triangle, and
user trace with consecutive locations is indicated by the white circles.

B. STATISTICAL EVALUATION
To measure the changes in all existing multipath compo-
nents between spatial locations, we employ the correlation

coefficient. Since in the SSP model, characterization of mul-
tipath components follows a stepwise generation of multi-
paths starting with delays, followed by multipath powers and
next multipath angles, we will focus our analysis on the
angular characteristics at the receiver, i.e., azimuth of arrival
(AoA) and elevation of arrival (EoA). In this way we are
able to examine the accumulated impact of our correlation
model applied to multipath delays, powers and angles (see
Appendix for more details).

Since AoA and EoA are characterized by circular distri-
butions, we consider the circular correlation coefficient [28]
to determine the correlation between two data sets of angular
variables, i.e., α0 and αk at two different locations,

ρk=

∑M
m=1 sin

(
αm,0 − A0

)
sin
(
αm,k − Ak

)√∑M
m=1 sin

2 (αm,0 − A0)√∑M
m=1 sin

2 (αm,k − Ak) ,
(8)

with angular sample means

A0 = tan−1
∑M

m=1 sin
(
αm,0

)∑M
m=1 cos

(
αm,0

) , (9)

and

Ak = tan−1
∑M

m=1 sin
(
αm,k

)∑M
m=1 cos

(
αm,k

) . (10)

In this case, the variable M represents the total number of
multipaths at a given spatial position, parameter α denotes the
multipath angle (AoA or EoA), whereas the subscripts 0 and
k denote the respective spatial positions under observation
(see Fig. 5).

C. SIMULATION RESULTS
We choose three scenarios according to the 3GPP 3D channel
model in [18]:

1) UMa - an urban environment with base station antenna
height hBS = 25m,

2) UMi street canyon - an urban environment with base
station antenna height hBS = 10m,

3) RMa - an rural environment with base station antenna
height hBS = 35m.

Considering the implementation of the 3GPP 3D model from
theVienna LTE-A system-level simulator [29], [30], we apply
ourmodel for spatial consistency as described in Section II-A.
A detailed description emphasizing implementation aspects
is given in the Appendix. For each of the three scenarios,
we consider a single omni-directional antenna at both trans-
mitter and receiver. We consider a single base station and
a user trace with spatial positions following a straight line
on the horizontal plane. The inter-snapshot distance, denoted
in Fig. 5 by distance parameter d , is set to 1m. A total
of 300 realizations for each scenario are conducted, varying
the base station and user trace positions in each realization.

On the other side, we perform ray tracing simulations
following the approach described in Section III-A. Individual
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FIGURE 7. Correlation coefficient of the 3GPP UMa scenario, considering the spatial consistency model with different values of
de-correlation distance 1d and results from ray-tracing.

environments are created, representing a similar geometry as
the ones considered in 3GPP UMa, UMi and RMa scenarios.
Parameters such as average building height are considered,
to meet the specifics from 3GPP [18][Table 7.4.1-1]. Sim-
ilarly as in the 3D model case, a single base station and
a straight user trace are assumed with various locations in
each realization. For each of the two urban scenarios we
simulate 70 realizations (traces). In the rural scenario case
where the size of the scenario is in the range of 2 km× 3 km,
ray-tracing simulations become very extensive, therefore at
our best we carry out a total of 20 realizations. A carrier
frequency of 2GHz is considered for both ray-tracing and
3GPP 3D channelmodel simulations. Specifically, poor chan-
nel conditions such as snow, heavy rain, fog, etc., are not
considered in our work as they are also not part of the current
modeling in 3GPP. With higher operational frequencies, they
may however become more important to consider. All three
propagation mechanisms are assumed: reflection, scattering
and diffraction. Since we want to analyze the spatial consis-
tency of multipath components, the direct path in the case of
LOS is excluded from our analysis.

Based on (8), the correlation coefficient is estimated for
AoA and EoA. For each of the scenarios, UMa, UMi and
RMa, the LOS and NLOS propagation is investigated sep-
arately. For the UMa scenario, we consider a trace length of

150m with a distance of 1m between consecutive snapshots
(inter-snapshot distance). The simulation results of averaged
correlation coefficient are shown in Fig. 7. We notice that
there are differences in correlation between AoA and EoA,
and in general a higher correlation is observed in eleva-
tion compared to azimuth. This comes from the fact that
angles in elevation are more confined in space, which is also
reflected in a smaller angular spread. The same is true for
ray-tracing and 3GPP 3D model with spatial consistency and
we see a good agreement between the two cases. As expected,
increasing 1d in our model, yields a higher correlation,
whereas the correlation is always zero in the case of 3GPP
3D model without spatial correlation. We notice also that
there are differences between LOS and NLOS, captured by
both 3GPP 3D model and ray-tracing statistics. The results
in terms of correlation coefficient for the UMi scenario are
shown in Fig. 8, considering a trace length of 100m. Similarly
as in the UMa case, we observe good agreement between
our model for spatial consistency and ray-tracing except for
the AoA angle in LOS, where we notice a higher correla-
tion revealed by ray-tracing statistics when compared to our
model. When looking at our model for spatial consistency,
we see that even for very high values of 1d the increase
in correlation is not that noticeable. One would have to
apply very-large values of 1d in order to introduce a higher
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FIGURE 8. Correlation coefficient of the 3GPP UMi scenario, considering the spatial consistency model with different values of
de-correlation distance 1d and results from ray-tracing.

correlation matching the one from ray-tracing statistics, but a
1d on the range of kilometers is not realistic for system-level
simulations. On the other hand, this behaviour of the 3GPP
3D channel model reflects the statistics of the overall chan-
nel model, including correlated LSPs where the azimuth
angles in LOS follow a smaller correlation over distance
(see [11][Tab. 7.5-6 Part-1]).

The results for the RMa scenario, wherewe consider a trace
length of 150m, are given in Fig. 9. As excepted, we observe
a very high correlation in the statistics from ray-tracing.
This is due to the fact that the number of scatterers is very
small in rural environments compared to urban, andmultipath
components change very slowly over distance. Furthermore,
the distances to the BS are in the range of 0.2 − 3 km,
in accordance with the 3GPP description which specifies
an inter-site distance of 5 km. Such large distances, imply
a smaller variation on the elevation angle, where the EoA
becomes very close to the LOS angle. On the other hand,
with our model for spatial consistency, we observe that higher
de-correlation values need to be applied in order to reflect this
behaviour.

IV. MODEL PARAMETRIZATION
A. HYPOTHESIS TESTING
In order to find the corresponding value of de-correlation dis-
tance,1d , such that the evaluated correlation is closest to the
correlation revealed from ray-tracing statistics, we employ

binary hypothesis testing. For a comparison between the cor-
relation coefficients of our model for various values of 1d ,
denoted by ρ(3D), with that of ray tracing denoted as ρ(RT),
the binary hypothesis problem is mathematically defined as,

H0,c : ρ
(3D)
k,c = ρ

(RT)
k H1,c : ρ

(3D)
k,c 6= ρ

(RT)
k . (11)

We denote by subscript k , the corresponding receiver spatial
position or snapshot along a trace as explained in the previous
section, whereas subscript c denotes the actual1d applied to
the 3GPP 3D channel model.

In order to compare the sample correlation coefficients,
we first apply Fisher’s z-transformation [31],

FT
(
ρ
(3D)
k,c

)
=

1
2
ln

(
1+ ρ(3D)k,c

1− ρ(3D)k,c

)
(12)

and

FT
(
ρ
(RT)
k

)
=

1
2
ln

(
1+ ρ(RT)k

1− ρ(RT)k

)
(13)

where FT(·) is the approximate variance-stabilizing transfor-
mation which transforms the respective ρ(3D)k,c and ρ(RT)k to z-
scores,

zk,c =
FT
(
ρ
(3D)
k,c

)
− FT

(
ρ
(RT)
k

)
√

1
n(3D)−3

+
1

n(RT)−3

(14)
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FIGURE 9. Correlation coefficient of the 3GPP RMa scenario, considering the spatial consistency model with different values of
de-correlation distance 1d and results from ray-tracing.

with n(3D) and n(RT) being sample sizes of respective models.
Because the correlation coefficient is bounded, its distribution
for highly correlated variables or barely correlated ones is
strongly skewed. Therefore, Fisher’s z-transformation trans-
forms a skewed distribution into a normal distribution. This
transformation ensures to select the de-correlation distance
from 3GPP 3D model ρ(3D)k,c which gives the most simi-
lar correlation to that of ray tracing statistics ρ(RT)k , while
being sensitive to both variance and mean in detecting sim-
ilarities/changes. In this way, based on rejection rates of
hypotheses, the parameter under investigation, 1d , can be
parametrized.

The evaluation of similarity between ρ(3D)k,c and ρ(RT)k is
based on p-values, while the rejection rate is performed based
on a significance level α = 0.05. The rejection rates for each
1d denoted with c, can be expressed as,

Rc =
P
(
reject H0,c|ρk,c

)
P
(
acceptH0,c|ρk,c

)
+ P

(
reject H0,c|ρk,c

) . (15)

Finally, according to the lowest rejection rate,

1d .
= argmin

c
Rc, (16)

the actual 1d is determined.

B. RESULTS
The parametrization model considering hypothesis testing
explained above is applied on the statistical data from
simulations as conferred in Section III-C. For the 3GPP
3D model with our spatial correlation model, we apply a
large range of values for de-correlation distance, 1d =
{5, 10, 15, . . . , 500}. From (14) and (15), the length of the
trace considered for both 3D model and ray-tracing is impor-
tant and affects the rejection rates. Therefore, it is important to
select a length that is meaningful with respect to the scenario,
i.e., for the UMi case where the inter-base station distance is
no larger than 200m according to 3GPP, we depict a trace
length of 50m for NLOS and a trace length of 40m for
LOS, meaning that ρk is considered for k = 1, 2, . . . 50 and
k = 1, 2, . . . 40, respectively. In this way, by focusing on the
correlation properties in shorter-range distances, we increase
the accuracy of parametrization and obtain the 1d values
that are closest to the observed ray-tracing behaviour. For the
UMa scenario, we select k = 1, 2, . . . 100 for NLOS and
k = 1, 2, . . . 50 for LOS. For the RMa case, k = 1, 2, . . . 150
is considered for both LOS and NLOS. The derived rejection
rates for a selected range of 1d values are given in Table 2.
In general we can notice that for UMa and UMi scenario,
the rejection rates go as low as around 0.01-0.1, meaning that
statistics are matching with a very high confidence. In the
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TABLE 2. Rejection rates for different de-correlation distances for AoA and EoA in LOS and NLOS considering three 3GPP scenarios of UMa, UMi and RMa.

RMa scenario, we observe higher rejection rates, in particular
for the elevation case, reflecting the difference caused by
the very high correlation in ray-tracing statistics. Following
(16), 1d values with lowest rejection rates are presented
in Table 3. We can see that in most of the scenarios, there is
more than a single value of 1d that give the lowest rejection
rates, therefore using any value from the given range is valid
statistically. Our model for spatial consistency with the values
presented in Table 3 is applicable to the 3GPP TR36873 and
TR38901 channel models for simulating various scenarios
such as UMa, UMi and RMa.

V. COMPLEMENTARY ASPECTS
A. COMPUTATIONAL COMPLEXITY
In this section, we show the additional complexity of spatial
consistency model in terms of simulation run time. We con-
sider the implementation from [30], [32] of the 3GPP 3D
model with parameters as specified in [18]. All simulations
are carried out on the same hardware, an Intel(R) Core(TM)
i7-3930K CPU@3.20 GHz, equipped with 64 GB of RAM.

The UMa scenario comprising of a single base station and
a user trace with K snapshots is considered, with the chan-
nel impulse response calculated for each snapshot. At both
transmitter and receiver we consider a single omni-directional
antenna. We vary the number of snapshots for channel calcu-
lation by choosing K = {50, 100, 200, 300, 400, 500} snap-
shots. The simulation results in terms of run time measured
in seconds are provided in Fig. 10. The results reveal that
the runtime scales approximately linearly with the number of
snapshots K for the reason that the channel impulse response
is generated for each snapshot location. A slight increase in
terms of simulation runtime is observed when introducing

FIGURE 10. Simulation run time of 3GPP TR38901 channel model with
and without spatial consistency over number of snapshots K .

the spatial consistency model, compared to the case without
spatial consistency. This is due to the bilinear interpolation
that needs to be performed for each snapshot location and
turns out to be around 4% when K = 50 and goes up to 16%
for K = 500. Further, we see that the value of de-correlation
distance 1d parameter from our model does not impact the
simulation run time, as indicated in Fig. 10. This stems from
the fact that for the same number of snapshots, with a higher
value of1d we only generate less random variables, however
the same amount of computations is performed in order to
get the correlated random variables for every user location or
snapshot.

Most importantly, our method for spatial consistency
enables to parallelize the SSP generation over spatial
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TABLE 3. Values of de-correlation distances (1d ) based on lowest rejection rates.

positions or user locations, and thus allows to further enhance
the computational efficiency of 5G system level tools such as
the one in [33].

B. CORRELATION OF ANGULAR SIGN
As mentioned in the introduction of this paper, among ran-
dom variables that need to be correlated is also the angu-
lar sign, a variable that introduces a positive or negative
sign to the angular direction of each multipath component.
In the spatial consistency model from 3GPP from [18][Sec.
7.6.3.1], it is specified that this parameter, referred to as
cluster specific sign, should be kept unchanged per sim-
ulation drop even if user position changes during simu-
lation. This means, if the AoA for the first five clusters
is e.g., {−20◦, 85◦,−130◦, 50◦, 165◦}, after user location
is updated, the AoA for the first five clusters will be
{−25◦, 80◦,−125◦, 55◦, 160◦}, assuming here a variation of
±5◦ for the purpose of an easier explanation. In this way,
the first five clusters are always coming from similar direc-
tions while the absolute value of the angle will change in
accordance with the de-correlation distance. In our work,
the angular sign parameter is also correlated according to the
correlation model described in Section II-A. Considering the
correlation model described in Section II-A, we provide a
comparison between the case of fixing the angular sign and
the one proposed in this work, where the angular sign has
to be correlated and updated over moving user positions (see
Appendix), depending on the 1d value. Fig. 11 shows this
behavior in terms of AoA correlation coefficient, where the
correlation drops to zero at the applied 1d when the angular
sign is correlated. For the case of keeping a fixed angular
sign, the results reveal a higher correlation over consecutive
spatial locations. Therefore, fixing any random parameter
during one simulation regardless of the user changing its
location, is also not a realistic assumption and will lead to
the other extreme of introducing a very high correlation.

C. FREQUENCY IMPACT ON SPATIAL CORRELATION
To examine the impact of carrier frequency on spatial corre-
lation, we perform simulations with ray-tracing considering
two carrier frequencies: 2GHz, 28GHz. Fig. 12 shows the
results in term of correlation coefficient for UMi scenario
in LOS for both AoA and EoA. Under an omni-directional
antenna at both receiver and transmitter, there are no signifi-
cant differences in the correlation when changing the carrier
frequency. This is in agreement with findings from [34],
where no changes in correlation were found between 2GHz

FIGURE 11. Comparison of correlation coefficient for AoA when fixing the
angular sign for a moving user.

FIGURE 12. Correlation coefficient of AoA and EoA for 2 GHz and 28 GHz
from ray-tracing simulations.

and 28GHz and that the same value of de-correlation distance
as that of 2GHz can be used in millimeter-wave frequency
band.

VI. CONCLUSION AND FUTURE WORK
Spatial consistency in channel models is very important,
especially in massive-MIMO scenarios and beamforming
strategies where angular information can be useful. In this
work we describe a model that introduces spatial consis-
tency to geometry-based stochastic channel models such as
the 3GPP 3D channel model. To acquire a better under-
standing on spatial consistency, we consider ray-tracing to
perform simulations following realistic scenarios fromOpen-
StreetMap. Considering the circular correlation coefficient as
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a statistical measure, we show that our model for spatial con-
sistency is in good agreement with the statistical behaviour
revealed from ray-tracing. Employing binary hypothesis test-
ing we are able to parametrize our model with respect to
the ray-tracing correlation based on the lowest rejection rates
from hypothesis testing. We extract the model parameter of
de-correlation distance for urban and rural scenarios depend-
ing on the propagation condition (LOS and NLOS) and
antenna height, applicable to standardized models such as
3GPP 3D channel model.

The proposed spatial consistency model applies only in the
horizontal plane, while in the vertical plane no correlation is
assumed, i.e., users on different floors are uncorrelated. This
follows the approach utilized in geometry-based stochastic
channel models, where for users on different floors no cor-
relation is considered for the generation of LSPs. Never-
theless, a further investigation and a better understanding
of spatial correlation in vertical domain is important in the
future. In particular, for geometry-based stochastic channel
models, a correlation model for LSPs in vertical domain is
a prerequisite for introducing spatial correlation in SSPs.
In this regard, the proposed model above can be enhanced
to 3D, by extending the 2D grid into cubes and updating the
interpolation method. Then, new values for1d in the vertical
domain have to be determined.

As the 3GPP 3D channel model includes a broad range
of frequencies, from 0.5 to 100GHz, the enhancement with
spatial consistency with our proposed model is parametrized
for a frequency range between 2−28GHz. Our future work is
directed towards spatial consistency investigations for higher
frequency ranges.

APPENDIX
SPATIALLY CORRELATED SMALL-SCALE PARAMETERS
After obtaining the correlated random variables for each
user location as described in Section II-A considering the
de-correlation distances from Table 3, the SSP stepwise pro-
cedure as given in [11], [18] starting from Step 5, is modified
as follows:

Step 5: Cluster delays;

τn = −rτσDS ln (p̃n(x, y)) , (17)

where rτ is the delay distribution proportionality factor, n =
1, 2, . . . ,N denotes the cluster index and variable p̃n(x, y) is
the correlated random variable obtained by bilinear interpo-
lation of P ∼ U(0, 1).

Step 6: Cluster powers:

Pn = exp
(
−τn

rτ − 1
rτσDS

)
10
−q̃n(x,y)

10 , (18)

where q̃n(x, y) is the correlated random variable obtained by
bilinear interpolation of Q ∼ N (0, ζ 2), with ζ being the
variance of shadowing term.

Step 7: Arrival- and departure angles for azimuth (φ) and
elevation (θ ):

φn,AoA = r̃n(x, y)φ′n,AoA + s̃n(x, y)+ φLOS,AoA, (19)

and

θn,EoA = t̃n(x, y)θ ′k,EoA + ũn(x, y)+ θLOS,EoA, (20)

where r̃n(x, y) and t̃n(x, y) are correlated random variables
drawn after the bilinear interpolation of U({−1, 1}). Since the
generation of azimuth and elevation angles is done indepen-
dently, we distinguish between r̃n(x, y) and t̃n(x, y). The com-
ponent s̃n(x, y) in azimuth angle generation denotes the cor-
related random variable obtained by bilinear interpolation of
S ∼ N (0, σ 2

ASA) that introduces angular variation. Similarly,
for elevation case, ũn(x, y) is the correlated random variable
after interpolation ofU ∼ N (0, σ 2

ESA). The third term in each
of the equations, φLOS,AoA and θLOS,EoA, represents the angle
of the LOS link between transmitter and receiver location for
azimuth- and elevation respectively. The parameters φ′n,AoA
and θ ′n,EoA are defined with respective functions from [11]
[Eq. 7.3-9a and Eq. 7.3-14] for azimuth and elevation.

Step 8: Coupling of rays within a cluster for both azimuth
and elevation:

The random coupling between arrival and departure angles
is kept fixed during one simulation.

Step 9: Cross polarization power ratios:

κn,m = 10
ṽx,y
10 , (21)

where ṽx,y is the correlated random variable drawn from
the distribution V ∼ N (µXPR, σ

2
XPR). The cross polariza-

tion ratio is specific for each cluster and ray within cluster,
as denoted by indices n and m, respectively, therefore matrix
V will have four dimensions, I × J × N ×M .
Step 10: Draw initial phases:

ϕn,m = z̃(x, y), (22)

where z̃(x, y) is the correlated random variable drawn from
Z ∼ U(−π, π). Initial phase is specific for each cluster and
ray within the cluster.

For the correlation of random variables used in this model,
except for the variables defining the elevation angle, the val-
ues of 1d parameter for azimuth angle have to be applied.
For the elevation angle, random variables of cluster angular
sign and angular variation have to follow the 1d parameter
for elevation, as presented in Table 3.
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