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Abstract

This work discusses the application of manifold stabilization to industrial robots
with a focus on human-robot collaboration. Manifold stabilization aims at stabiliz-
ing submanifolds defined in the output space of a dynamical system without any a
priori time parametrization. A robot is typically operating in a three-dimensional
Euclidean space and thus the stabilization of the end-effector on a path (one-
dimensional submanifold) or a surface (two-dimensional submanifold) together
with the regulation of the orientation are of particular interest. This special types
of manifold stabilization are denoted as path following control (PFC) and surface
following control (SFC), respectively.

Novel PFC and SFC approaches for fully actuated manipulators and elastic
joint robots in three-dimensional space are proposed. The presented approaches
can handle open, closed, and intersecting manifolds parametrized as regular
paths or surfaces (e.g., splines) and are based on input-output linearization.
The controllers transform the nonlinear robot dynamics into a linear system
with decoupled dynamics for the orientation and in tangential and transversal
direction with respect to a path or surface. A feasible neighborhood of the
path or surface is defined for which a diffeomorphism can be found that maps
the generalized coordinates (joint coordinates) to tangential, transversal, and
rotational coordinates. A parallel transport frame is used for the design of the
PFC, which not only allows to directly cope with paths having zero curvature, but
also drastically simplifies the PFC law compared to existing approaches known
from literature, which typically rely on the Frenet-Serret frame. In SFC, the
special choice of the coordinate transformation ensures that the two tangential
states locally represent physically interpretable lengths in orthogonal directions.
These properties of the presented PFC and SFC approaches make them highly
suitable for industrial robotic applications. In particular a combination of PFC
and SFC strategies with compliance control opens up new possibilities for the
systematic design of robot operation in contact with the environment and for
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human-robot collaboration.
Moreover, it is shown that a large number of virtual fixtures can be systemat-

ically generated with the proposed PFC and SFC approaches. Virtual fixtures
denote control algorithms that restrict the workspace of a manipulator in physical
human-robot interaction tasks, e.g., hand-guiding operation. The presented PFC
and SFC approaches allow to independently define the dynamics in tangential
and transversal direction to a path or surface in a physically interpretable manner.
This feature enables to systematically generate numerous different constraint
types like guidance and forbidden region virtual fixtures, hard and soft constraints
as well as static and dynamic virtual fixtures and their combinations. This is in
contrast to the existing approaches known from literature, which usually cover
only few different virtual fixture types. The paths and the surfaces can be defined
by splines allowing for a high flexibility to represent different geometries.

Apart from a number of simulation studies, experimental results on the
DELTA robot Festo EXPT-45 and on the 6-axis industrial robot Comau Racer
1.4 demonstrate the feasibility of the proposed concepts. Amongst others, a
semi-automation production use case is shown, where the mounting pins of a
heavy plate that is carried by the robot have to be inserted into tight-fitting
boreholes by a human operator.



Kurzzusammenfassung

Diese Arbeit beschäftigt sich mit der Stabilisierung von Mannigfaltigkeiten für
Industrieroboteranwendungen, wobei der Schwerpunkt auf die Mensch-Roboter
Kooperation gelegt wird. Bei der Stabilisierung von Mannigfaltigkeiten werden
Submannigfaltigkeiten, welche im Ausgangsraum eines dynamischen Systems
definiert sind, ohne festgelegte Zeitparametrierung stabilisiert. Ein Roboter ope-
riert typischerweise in einem dreidimensionalen Euklidischen Raum weshalb die
Stabilisierung des Endeffektors entlang eines Pfades (eindimensionale Submannig-
faltigkeit) und auf Flächen (zweidimensionale Submannigfaltigkeit) gemeinsam
mit der Regelung der Orientierung von besonderem Interesse sind. Diese speziellen
Formen der Stabilisierung von Mannigfaltigkeiten werden als Pfadfolgeregelung
(Englisch Path Following Control, PFC) und Flächenfolgeregelung (Englisch Sur-
face Following Control, SFC) bezeichnet.

In dieser Arbeit werden neuartige Pfad- und Flächenfolgeregelungskonzepte
für vollaktuierte Manipulatoren und Roboter mit elastischen Gelenken vorgestellt.
Die Regelungskonzepte basieren auf der Eingangs-/Ausgangslinearisierung und
verwenden reguläre Pfade oder Flächen in parametrierter Darstellung (z.B. Spli-
nes), welche offen, geschlossen oder selbst schneidend sein können. Die Pfad- und
Flächenfolgeregelungen transformieren die nichtlineare Dynamik eines Roboters
in ein lineares System mit entkoppelter Dynamik für die Orientierung und in
tangentialer und transversaler Richtung in Bezug auf einen Pfad oder eine Flä-
che. Es wird eine zulässige Umgebung um den Pfad bzw. die Fläche angegeben,
in welcher ein Diffeomorphismus gefunden werden kann, der die generalisierten
Koordinaten (Gelenkkoordinaten) auf die tangentialen und transversalen Koor-
dinaten sowie die Orientierungskoordinaten abbildet. Bei der Pfadfolgeregelung
wird ein mitbewegtes Koordinatensystem verwendet, welches auf dem Prinzip des
Paralleltransportes beruht. Dadurch ist es im Gegensatz zu den in der Literatur
üblicherweise verwendeten Koordinatensystemen, welche auf den Frenet-Serret
Gleichungen beruhen, kein Problem, Kurven mit Krümmung null zu verwenden
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und zusätzlich vereinfacht sich das resultierende Regelgesetz deutlich. Die spezielle
Wahl der Koordinatentransformation bei der Flächenfolgeregelung gewährleistet,
dass die beiden tangentialen Zustände lokal physikalisch interpretierbare Längen
in orthogonalen Richtungen darstellen. Aufgrund dieser Eigenschaften sind die
vorgestellten Pfad- und Flächenfolgeregelungskonzepte sehr gut für industrielle
Roboteranwendungen geeignet. Insbesondere eine Kombination der Pfad- und
Flächenfolgeregelungen mit einer Nachgiebigkeitsregelung eröffnet neue Möglich-
keiten für den systematischen Entwurf von Robotikaufgaben im Kontakt mit der
Umgebung und für die Mensch-Roboter Kooperation.

Ein weiterer Teil der Arbeit ist der virtuellen Beschränkung des Arbeitsraumes
eines Roboters bei einer Mensch-Roboter Kooperation unter Verwendung der prä-
sentierten Pfad- und Flächenfolgeregelungskonzepte gewidmet. Diese Regelungs-
konzepte erlauben es, die Dynamik entkoppelt in tangentialer und transversaler
Richtung bezüglich eines Pfad oder einer Fläche und in einer physikalisch interpre-
tierbaren Art und Weise festzulegen. Dadurch können viele unterschiedliche Arten
von virtuellen Arbeitsraumbeschränkungen systematisch implementiert werden.
Dies inkludiert Beschränkungen entlang einer Mannigfaltigkeit oder Beschränkung
innerhalb eines zulässigen Raumes, harte oder nachgiebige Beschränkungen, sowie
statische oder zeitvariante Beschränkungen und deren Kombinationen. Das ist
auch der Unterschied zu den bestehenden Arbeiten in der Literatur, die typischer-
weise nur die Implementierung von wenigen unterschiedlichen Arten von virtuellen
Beschränkungen ermöglichen. Die Pfade und Flächen der vorgestellten Regelungs-
konzepte können mit Splines definiert werden, wodurch eine hohe Flexibilität
gewährleistet ist und beliebige Geometrien approximiert werden können.

Neben einer Vielzahl von Simulationsstudien wird die Brauchbarkeit der
vorgestellten Konzepte anhand von experimentellen Ergebnissen an dem DELTA
Roboter Festo EXPT-45 und an dem 6-achsigen Industrieroboter Comau Racer
1.4 demonstriert. Unter anderem wird eine Roboteranwendung gezeigt, bei der
die Befestigungsstifte einer schweren, vom Roboter gehaltenen Platte durch einen
menschlichen Bediener in eng sitzende Bohrlöcher eingefügt werden.
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The following list presents acronyms, notation, and symbols used in this work.
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TTC trajectory tracking control
WLSE weighted least squares estimation

General Notation
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t time
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CHAPTER 1

Introduction

Industrial robots are re-programmable and multi-functional manipulators. They
are widespread across different industries with a worldwide operational stock of
over 1.8 million industrial robots in 2016 and they aim at increasing productivity
and precision as well as minimizing costs [1]. The vast majority of industrial
robots perform repetitive tasks in known environments like welding, painting, car
body or electronics assembly and material handling [2, 3]. In these repetitive tasks,
the motion of the robot is usually preprogrammed (or planned at the beginning of
the motion considering input of vision sensors) with a fixed time parametrization.
Classical trajectory tracking control is well suited for this type of motions [3–9].
However, classical trajectory tracking control is not suitable for applications in a
changing environment or where the robot collaborates with humans. Manifold
stabilization is one approach to avoid a fixed preprogrammed time parametrization
of the robot’s motion and, therefore, expands the possible types of applications.

1.1 Manifold stabilization
Manifold stabilization, which is a generalization of set point stabilization, aims at
stabilizing submanifolds such as paths and surfaces defined in the output space of
a dynamical system without any a priori time parametrization. Early work in this
field was done by Samson [10] and Banaszuk and Hauser [11]. Based on the work
of Banaszuk and Hauser and using input-output feedback linearization, Nielsen
and Maggiore introduced the so called Transverse Feedback Linearization (TFL)
for input-affine systems in [12, 13]. In TFL, a controlled invariant submanifold
of the state space is stabilized. If the system fulfills some sufficient conditions
formulated in [13], the dynamics transversal to the submanifold can be linearized
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2 1. Introduction

via static state feedback. A manifold stabilization approach for quadratic flat
systems was introduced in [14], where not only the dynamics transversal to the
submanifold are linearized, but also the dynamics in tangential direction, which
simplifies the tangential control design. The approaches presented in [12–14]
require an implicit representation of the submanifold to be stabilized.

A robot is typically operating in a three-dimensional Euclidean space and
thus the stabilization of the end-effector on a path (one-dimensional submanifold)
or a surface (two-dimensional submanifold) together with the regulation of the
orientation are of particular interest. Manifold stabilization is beneficial compared
to trajectory tracking control when the desired motion of the robot is not known
in advance, e.g., because it is instantaneously defined by an operator or it depends
on environmental changes.

TFL was used in [15] to solve the path following problem for a five degrees-
of-freedom magnetically levitated positioning system. References [16–19] are
concerned with the design of path following controllers for mechanical systems
that can be either under- or fully actuated. It was shown that by applying the
TFL to fully actuated rigid body systems, the tangential subsystem is linearized
as well. The path following controller design method presented in [16–19] requires
both the parametrized and the (closed form) implicit representation of the path.

To find a closed form of the implicit representation of a path or surface can
be a laborious task or even impossible. In robotic applications, the paths and
surfaces can be of arbitrary geometric shape and it is therefore advantageous to
use parametrized representations.

A concept for the design of a path following controller for planar problems using
TFL, which only depends on the parametrized path representation, was proposed
in [20]. In this work, an orthonormal frame with respect to a parametrized curve
is constructed and the first transversal state is chosen as the projection of the
shortest distance to the path onto the normal unit vector.

In three-dimensional Euclidean space, the orthonormal frame with respect to
a path is not unique. A common way to construct orthonormal unit vectors is
given by the Frenet-Serret frame, see, e.g., [21]. The work [22] extends the path
following controller design using the parametric path representation presented in
[20] to the three-dimensional Euclidean space. TFL and the Frenet-Serret frame
are used to handle paths parametrized by splines.

The Frenet-Serret frame can only be uniquely defined at points on the path
where its curvature is nonzero. Moreover, the normal vectors become discontinuous
when passing points with zero curvature, see, e.g., [21]. In [23], the Frenet-Serret
frame was improved by introducing a signed curvature to overcome these drawbacks.
However, in practical applications one might be interested in following a path
with a curvature close to zero. In this case, the Frenet-Serret frame used in [22]
and also the frame proposed in [23] give rise to extremely high changing rates of
the normal vectors leading to a chattering in the control law.

An orthonormal frame with respect to the path, which depends on the idea of
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relatively parallel fields, was proposed by Bishop in [24]. A normal vector field
is said to be relatively parallel along a curve, if its derivative is tangential. This
frame, which is often referred to as parallel transport frame [25], is of class C1 for
regular C2 curves even at points with zero curvature.

A stiff stabilization of the submanifold is unfeasible in applications where the
robot dynamically interacts with the environment by exchanging mechanical work,
e.g. in physical human-robot interaction (pHRI). In this case, the control laws
that stabilize the transformed dynamics in tangential and transversal direction
to the submanifold have to provide a compliant behavior because pure position
control would lead to damages of the robot and/or its environment. A compliant
control law for robots was introduced by Hogan with impedance control in the
1980s, where the robot in the closed-loop system behaves like a virtual mass-
spring-damper system [26]. Pure force control is another approach to establish
compliance developed in the 1980s, which aims at following a predefined contact
force reference. However, damping is difficult to implement in pure force control
due to the typically high measurement noise of force sensors, see, e.g., [27]. Since
then, much research has been conducted regarding contact stability and the
combination of force and position control [28–34].

In position-based impedance control (admittance control), the compliance is
realized by tracking the trajectory of the exponentially stable reference impedance
model using position control in an inner control loop and an impedance control
in the outer loop [29]. As shown in [32], this method is well suited for accurate
positioning in free space as well as for contact situations with rigid environments.
Due to the possibility of using high gains in the inner loop, the position-based
impedance control is rather insensitive to model uncertainties.

1.2 Physical human-robot interaction
Full industrial automation can become very complex and expensive, in particular
in changing environments. This is why a large number of complex production steps
are still performed fully manually by human workers or the manual work is partly
assisted by specially designed manipulators, e.g., when heavy workpieces have to
be handled. The manipulators are usually custom made for one specific task and,
hence, expensive and hardly adaptable to production changes. Semi-automation
can be achieved by collaboration of a robot with a human operator by means of
physical human-robot interaction (pHRI). Thereby, the manipulator is replaced
by a robot, which is programmable and therefore usable in various tasks. In
pHRI, the human and the robot share the same workspace and come in contact
with each other. In industrial semi-automation, pHRI is usually realized by a
so called hand-guiding collaborative operation, which is defined in the technical
specification ISO/TS 15066. Thereby, an operator utilizes a hand-operated device,
e.g., including a force sensor, to guide the motion of a robot without effort and the
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robot carries all the payload. This type of human-robot collaboration combines
the advantages of robots, e.g., strength and endurance, with those of humans,
e.g., sensitivity, using special control algorithms. This not only helps to speed
up the production process but also reduces the worker’s risk for repeated trauma
disorders [35, 36].

Safety is a critical issue in pHRI especially when heavy and stiff industrial
robots are involved. Injuries with very high severity can occur in the case of a
collision between the robot and the human even with active collision detection
and reaction strategies [37, 38]. The safety of the operator can be increased by
limiting the workspace of the robot to a so called restricted space using control
methods like virtual fixtures [39, 40].

Virtual fixtures restrict the workspace of a manipulator by means of control
algorithms. They have been used in hand-guiding cooperative human-robot
tasks in the automobile industry since the late 1990s [41]. Virtual fixtures are
also common in teleoperation and hand-guiding operation in robotically assisted
surgery [40], [42].

Six principal methods to generate virtual fixtures (active constraints) can be
identified in literature [43]; these are (i) simple functions of constraint proximity,
(ii) potential fields, (iii) non-energy storing constraints, (iv) constrained joint
optimization, (v) reference direction fixtures, and (vi) passive constraint enforcing
mechanisms. The virtual fixtures can either be guidance constraints, where
the motion is restricted to a specific manifold like a path, or forbidden-region
constraints, where the motion is free unless a forbidden region is entered [40]. In
both cases, the constraints can be soft or hard. Soft constraints allow for some
deviation while hard constraints limit the motion to the virtual fixture.
(i.) Guidance constraints [44] and forbidden-region constraints [45] can be

generated by simple functions of constraint proximity. Only soft constraints
can be achieved within this approach, because the constraint force vector is
a linear function of the closest distance to the constraint manifold effectively
emulating a spring. In [45], Abbot and Okamura investigated the stability
of the control law for a linear system, where the human operator is modeled
as a linear and time-invariant mass-spring-damper system. They concluded
that the stability of the closed-loop system decreases with an increasing
stiffness of the constraint and the constraint cannot be made arbitrarily
stiff.

(ii.) Potential fields can also be used to establish virtual fixtures, where areas
in the workspace with low potential are attractive and areas with high
potential are repulsive. In [46], the potential field approach was employed
to generate forbidden-region constraints for collision avoidance. At each
point in the workspace, the gradient of the potential field of all sources has
to be calculated to determine the resulting force that pulls the robot away
from the forbidden regions. Also guidance constraints can be generated
using attractive fields resulting in a control law very similar to the method
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of simple functions described above.
(iii.) A non-energy storing constraint was introduced in [47] by using simulated

plasticity, which is modeled as Coulomb friction. The initial collision with
the constraint is thereby stiff until a certain force into the restricted area is
applied. When penetrating the constraint, energy is only dissipated and no
energy is stored. Hence, no force is applied by the control law to recover
the penetration. According to the authors, the non-energy storing feature
can increase the safety for various applications. Some effort was made to
deal with the discontinuity of the plasticity. A virtual proxy is introduced
on which the plasticity takes effect. The proxy is then coupled to the
haptic device or manipulator via a spring and a damper. This reduces the
discontinuity problem but adds some (small) stored potential energy.
Bowyer and Rodriguez y Baena improved this approach significantly in [48–
50]. Friction redirection was introduced to assist the operator in recovering
from penetrations of the constraint. Additionally, their approach allows for
time-variant constraints and they showed that their control law is dissipative
even for combined translational and rotational constraints.

(iv.) Constrained joint optimization is used since the early 1990s to establish
virtual fixtures for surgical robots, which can also be redundant [42]. A
constrained optimization problem is solved to compute the new reference ve-
locities of the joints at each sampling instance. A cost function is minimized
that represents the difference between reference velocities given from the
operator and new reference velocities satisfying the constraints. The con-
straints can include the virtual fixtures as well as mechanical and dynamic
limits of the joints. Linear constraints for point fixtures are given in [42],
which are extended to line and plane fixtures in [51]. With this method,
the constraints are probably not satisfied in between the sampling instants.
Therefore, the sampling intervals have to be relatively short compared to
the maximum velocity of the manipulator. To find optimal solutions that
fulfill nonlinear constraints can be a challenging task. Hence, the numerical
implementation has to be carried out very carefully for each application to
ensure an appropriate and stable behavior.

(v.) In [52], reference direction fixtures were introduced to establish constrained
hand-guided operation. The input force of an operator is thereby projected
onto the tangential direction or onto the tangential plane of the constraint
manifold and is used as velocity reference for the servo controllers. This
restricts the motion of the robot parallel to the manifold. The constraint
can be made soft by adding a fraction of the operators force orthogonal to
the manifold in the control law. When the robot is off the manifold, the
direction of the force projection is modified to guide the operator towards
the manifold. A stability analysis is carried out for the simple case of a linear
two-dimensional manipulator. However, even in this case, stability can only
be proven when the robot is exactly on the manifold. Castillo-Cruces and
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Wahrburg [53] added a proportional error term in the control law to make
the manifold attractive and also extended the algorithm to six degrees of
freedom.

(vi.) In passive constraint enforcing mechanisms, the actuation force is applied
by a human operator and the control architecture is only able to limit or
redirect the motion. Therefore, these mechanisms are naturally safer than
actively driven methods but their applicability is very limited and they
are not suitable for teleoperation. An algorithm to achieve hard guidance
constraints on a curve for wheeled passive robots was introduced in [54].
This concept was extended to active manipulators in [39] using continuously
variable transmissions (CVT). With these CVTs the ratios of the angular
velocities of the manipulator’s joints are controlled such that only one
degree of freedom is left for the end-effector that satisfies the guidance
constraints. However, the control law is not defined for zero velocity and
becomes ill-conditioned when the velocity is orthogonal to the curve.

The methods described above to establish virtual fixtures typically neglect the
dynamics of the manipulators and consider only the kinematics. This is the main
reason why, in general, closed-loop stability cannot be proven. One exception
is the work in [45], where a linear dynamic system is considered and a proof of
stability is given.

1.3 Goal and overview of this work
The purpose of this work is to present a novel, simple and efficient manifold
stabilization approach for industrial robots and to combine it with compliance
control. Thereby, arbitrary parametrized paths (one-dimensional manifolds) and
surfaces (two-dimensional manifolds) can be handled. The combination of the
manifold stabilization approach with compliance control allows to separately
define the impedance in tangential and orthogonal direction to the manifold.
With this approach, a large number of different virtual fixtures for pHRI can be
systematically generated.

The proposed path following control approach (PFC) is based on input-output
linearization and can handle open, closed, and intersecting paths in the three-
dimensional space parametrized as regular smooth curves, which is in contrast to
most of the existing works, cf. Section 1.1. Using a parallel transport frame for the
design of the path following controller not only allows to directly cope with paths
having zero curvature, it also drastically simplifies the path following control law
compared to, e.g., [22]. The PFC approach is adapted to design controllers that
stabilize parametrized, regular, and smooth surfaces, which extends the works [13,
14], where an implicit representation is required. This so called surface following
control (SFC) linearizes and transforms the dynamics of a (nonlinear) system into
two orthogonal directions in the tangential plane and the orthogonal direction
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onto the surface.
The systematic generation of a large number of virtual fixtures by a combination

of PFC/SFC with compliance control is presented; i.e., guidance or forbidden-
region virtual fixtures that can either be soft or hard and the constraints can
also be time variant. The behavior along and away from the virtual fixtures can,
thereby, be defined in a physically interpretable manner. Additionally, in contrast
to the approaches mentioned in Section 1.2, the PFC/SFC approach allows to
systematically prove the closed-loop stability.

The remainder of this work is organized as follows: Chapter 2 summarizes the
basics for the mathematical modeling of the industrial robots considered in this
work. This comprises, the kinematics, the dynamics and the dynamic parameter
estimation for serial and parallel robots.

A novel PFC approach for fully actuated manipulators as well as for elastic
joint robots is introduced in Chapter 3. This includes the path assumptions, the
control objectives, the orthonormal frame, and the projection operator, which are
presented in Section 3.1 - 3.4. The coordinate transformation and the stabilization
of the linearized system for fully actuated manipulators as well as for elastic joint
robots are presented in Section 3.5 and Section 3.6. Section 3.7 gives insights into
the implementation of the PFC on a digital computer and Section 3.8 presents the
application of the proposed PFC approach to a DELTA robot with three linear
drives and to a six-axis industrial robot.

Chapter 4 is devoted to the SFC approach for fully actuated manipulators
as well as for elastic joint robots. The control objectives, the moving frame,
and the projection operator are introduced in Section 4.1 - 4.4. The coordinate
transformation and the stabilization of the linearized system for fully actuated
manipulators are presented in Section 4.5 and for elastic joint robots in Section 4.6.
In Section 4.7, some implementation issues are considered. Applications of the
proposed SFC approach to a DELTA robot and to a six-axis industrial robot are
given in Section 4.8.

The systematic generation of virtual fixtures for pHRI using PFC and SFC is
introduced in Chapter 5. In Section 5.1, it is described in detail how guidance and
forbidden region virtual fixtures with either soft or hard constraints and static
or dynamic virtual fixtures are generated and which control laws are required
for each case. Four experiments on a six-axis industrial robot are presented in
Section 5.2 for a validation of the approach. Section 5.3 shows the application of
the virtual fixture approach to a semi-automated production use-case, where a
plate is picked up from a magazine, handled to a frame and assembled into the
frame using a human-robot collaboration.

Finally, Chapter 6 concludes this work and gives an outlook on future research
topics.





CHAPTER 2

Basics of the Mathematical Modeling of Industrial Robots

Modeling of industrial robots has been an important research area in the last 30
years. A lot of specialized scientific journals, conferences and textbooks deal with
this topic. This chapter summarizes some relevant basics of the vast literature
regarding kinematics [3–5, 55, 56], dynamics [3–5, 55–59], and dynamic parameter
identification [5, 60–65]

Mathematical models are crucial to understand and control the behavior of
physical systems like robots. Robots consist of links that are connected by joints,
which are usually of revolute or prismatic type and driven by actuators. In this
work, it is assumed that the robot’s links are rigid bodies and that the actuators
are realized as electric motors with rotating rotors. The mathematical modeling
of manipulators can be subdivided into kinematics and dynamics.

Kinematics describes the motion of bodies and ignores the forces and torques
that cause the motion. In robotics, the direct kinematics describes the geometric
relation between the joint space (i.e. coordinates of the joints qJ) and the
operational space (i.e. position yt and orientation yr of the end-effector)

y =
[
yt
yr

]
= h(qJ) . (2.1)

Literature regarding kinematics differentiate between serial and parallel manip-
ulators. The links of serial manipulators form an open kinematic chain and
universal approaches to derive the direct kinematics as well as the manipulator
Jacobian, which describes the differential kinematics, are available [3, 4]. Parallel
manipulators consist of a closed kinematic chain. With this type of manipulators,
the direct kinematics is in general complex to obtain, and it is not guaranteed
that an algebraic expression even exists [55, 56].

9
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Dynamics describe the relation between (generalized) forces and the resulting
motion and are in robotics usually formulated in the joint space. Two different
methods to derive the dynamic equations are common, i.e., the Euler-Lagrange
and the Newton-Euler formulation. The Euler-Lagrange formulation offers a
conceptually simple and systematic approach to derive the model based on the
kinetic and potential energy and is utilized in this work. The Newton-Euler
approach, which is based on the balance of all forces acting on a rigid body, yields
the model in recursive form and is often used for numerical calculation.

Two different types of robots are used for the experiments throughout this
work, i.e., a DELTA robot consisting of a closed kinematic chain with three
translational degrees of freedom of the type Festo EXPT-45 and a six-axis serial
robot with revolute joints of the type Comau Racer 1.4. Their mathematical
models are derived and explained in detail in this chapter.

2.1 Kinematics of serial manipulators
This section is concerned with the derivation of the direct and inverse kinematics
as well as the manipulator Jacobian of the industrial robot Comau Racer 1.4.

2.1.1 Direct kinematics
The direct kinematics determines the position and orientation (pose) of the end-
effector as a function of the joint coordinates. This can be done in a systematic
and simple way by using the homogeneous transformation

Hj
i =

[
Rj
i dji

0 1

]
. (2.2)

The transformation Hj
i combines rotations and translations from the coordinate

system j to the coordinate system i, with the orthogonal rotation matrix Rj
i to

transform a vector expressed in j to the coordinate system i and dji is the vector
from the origin of i to the origin of j expressed in i. The transformation from a
coordinate system k to the coordinate system i is given by

Hk
i = Hj

iHk
j . (2.3)

Pure rotations by the angle φ about the local axis i ∈ {x, y, z} are denoted by
HRi,φ and pure translations in direction of the local axis i by length s are denoted
by HT i,s.

The Denavit-Hartenberg (DH) convention has become the standard for the
description of the geometry of industrial robots. Thereby, two rotations and two
translations represent the four homogeneous transformations for each joint i and
can be written as

Hi
i−1 = HRz,θiHTz,diHTx,aiHRx,αi , (2.4)
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with the parameters θi, ai, di, and αi. The zi-axis coincides with the axis of
joint i+ 1. Hence, θi is the variable (coordinate) for rotational joints and di for
prismatic joints.

The direct kinematics of a rigid robot manipulator with N joints can then
easily be calculated in the form

Hdk = HN
0 = H1

0H2
1. . .HN

N−1

[
I [xN,T , yN,T , zN,T ]T
0 1

]
=
[
Re yt
0 1

]
, (2.5)

with the end-effector position yt = dN0 = Hdk[1 . . . 3, 4] expressed in the inertial
frame (0, x0, y0, z0) and the orientation Re = RN

0 = Hdk[1 . . . 3, 1 . . . 3], where
[xN,T , yN,T , zN,T ]T is the tool offset defined in the end-effector frame (N, xN , yN , zN ).

In the case of three rotational degrees of freedom, a minimal representation
of the orientation can be obtained by three parameters like the Euler angles
φ = [ϕ, ϑ, ψ]T. All minimal representations suffer from representation singularities,
which have to be taken into account. The ZYZ Euler angle definition

RZY Z(φ) = Rz,ϕRy,ϑRz,ψ =



cϕcϑcψ − sϕsψ −cϕcϑsψ − sϕcψ cϕsϑ
sϕcϑcψ + cϕsψ −sϕcϑsψ + cϕcψ sϕsϑ
−sϑcψ sϑsψ cϑ


 (2.6)

is widely used in robotics with representation singularities at ϑ = iπ and i ∈ Z,
where sα and cα are abbreviations for sinα and cosα, respectively and Rj,α,
j ∈ {x, y, z}, is the rotation matrix for rotations through the angle α with respect
to the (local) j-axis. Another common convention is the ZYX Euler angle definition

RZY X(φ) = Rz,ϕRy,ϑRx,ψ =



cϕcϑ cϕsϑsψ − sϕcψ cϕsϑcψ + sϕsψ
sϕcϑ sϕsϑsψ + cϕcψ sϕsϑcψ − cϕsψ
−sϑ cϑsψ cϑcψ


 , (2.7)

with representation singularities at ϑ = π/2 + iπ and i ∈ Z. The inverse problem
is to determine the Euler angles φ(R) corresponding to a given rotation matrix

R =



r11 r12 r13
r21 r22 r23
r31 r32 r33


 .

For example ϕ = atan2(r23, r13) holds for the ZYZ Euler angle definition under
the assumption that |r13|+ |r23| > 0, cf. (2.6). See, e.g., [3] for the calculation of
the remaining Euler angles.

The direct kinematics h(·) can then be defined as

y =
[

yt
φe(Re)

]
= h(qJ) , (2.8)
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with yt and Re according to (2.5), the Euler angles of the end-effector φe, and the
vector of the joint coordinates qJ ∈ RN . Note that the orientation in the three
dimensional space can also be represented by four parameters, e.g. quaternions,
that are free from representation singularities, but are not considered in this work.

The Comau Racer 1.4 consists of six rotational joints, hence N = 6. Its
schematic and the coordinate systems in DH convention are depicted in Fig. 2.1
and Tab. 2.1, respectively. Inserting the robot’s DH parameters of Tab. 2.1 into
(2.5) with the joint coordinates qT

J = [θ1, . . . , θ6] and using (2.8) immediately
yields the direct kinematics y = hCR(qJ) ∈ R6.

Table 2.1: DH parameters of the Comau Racer 1.4.
i di ai αi
1 0.43m 0.15m π

2
2 0 0.59m 0
3 0 0.13m π

2

i di ai αi
4 0.684m 0 −π

2
5 0 0 π

2
6 0.1m 0 0

2.1.2 Inverse kinematics
The inverse kinematics deals with the determination of the joint coordinates qJ as a
function of the end-effector position and orientation (pose). It is more complex than
the direct kinematics problem, because the equations to be solved are nonlinear,
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Figure 2.1: Schematic of the Comau Racer 1.4.
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multiple solutions might exist, and there might be no admissible solutions for
some poses. No general approach exists to derive the inverse kinematics for
serial manipulators. Thus in this work, only the specific class of six-axis serial
manipulators with rotational joints and a spherical wrist will be considered. The
Comau Racer 1.4 is part of this specific manipulator class. A spherical wrist
implies that the rotation axes of the last three joints intersect at a single point
(wrist center point). Therefore, the position and orientation problem can be
considered separately and solved in three steps.

First, the position of the wrist center point (WCP) is calculated based on the
orientation and geometry of the last link with

yWCP = yt −Re




x6T
y6T

z6T + d6


 (2.9)

and the tool offset [x6,T , y6,T , z6,T ]T. Second, the geometric approach in [4] is used
to determine the first three joint angles, which is based on the position of the
WCP. In this work, the inverse kinematics is only given for one configuration of
the robot, which is used throughout the experiments. For more details on the
derivation and the inverse kinematics for different robot configurations, the reader
is referred to [4]. The coordinate of the first joint θ1 can be determined by the x-
and y-component of yT

WCP = [yWCP,x, yWCP,y, yWCP,z] with

θ1 = atan2(yWCP,y, yWCP,x) , (2.10a)

because the axes of the second and third joint are horizontal. Equation (2.10a)
is undefined for yWCP,x = yWCP,y = 0 and the manipulator is then in a singular
configuration. The determination of θ2 and θ3 is reduced to a planar problem that
can be solved with the law of cosines. For the elbow up configuration, the angles
are given by

θ2 = arctan
(sik
rik

)
+ atan2

(
bik cos(θ3 + γik), a2 + bik sin(θ3 + γik)

)
(2.10b)

and

θ3 = atan2
(√

1− c2
ik, cik

)
− γik −

π

2 , (2.10c)

with rik =
√
y2
WCP,x + y2

WCP,y − a1, sik = yWCP,z − d1, bik =
√
a2

3 + d2
4, γik =

arctan(a3/d4), and cik = (a2
2 + b2

3 − r2
ik − s2

ik)/(2a2b3).
Third, the last three joint angles result from the orientation between the third link
and the end-effector R6

3, which is the upper left 3× 3-matrix of the homogeneous
transformation H6

3 = H4
3H5

4H6
5. Hence, solving the equation R6

3 = (R3
0)TRe yields

for 0 < θ5 < π, see, e.g., [4]

θ4 = atan2(R6
3[2, 3],R6

3[1, 3]) , (2.10d)
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θ5 = arctan
(√

R6
3[1, 3]2 + R6

3[2, 3]2,R6
3[3, 3]

)
, (2.10e)

θ6 = atan2(R6
3[3, 2],−R6

3[3, 1]) , (2.10f)

where R6
3[i, j] denotes the element in i-th row and j-th column of the matrix

R6
3 = (R3

0)TRe. If θ5 = kπ, k ∈ Z, the axes of the joints four and six (z3 and z5)
are collinear, the matrix elements R6

3[1, 3], R6
3[2, 3], R6

3[3, 1], and R6
3[3, 2] equal

to zero, and θ4 as well as θ6 are undefined. Hence, θ5 = kπ, k ∈ Z, is another
singular configuration.

2.1.3 Manipulator Jacobian
The manipulator (geometric) Jacobian Jg describes the relationship between the
joint space velocities q̇J ∈ RN and the velocities in the operational space with

[
ẏt
ωe

]
=
[
Jt
Jω

]
q̇J = Jgq̇J . (2.11)

In (2.11), q̇J contains the time derivatives of the joint coordinates, i.e. θ̇i or
ḋi, respectively, for i = 1, . . . , N , and ωe is the angular velocity vector of the
end-effector expressed in the inertial frame (0, x0, y0, z0). The cross product of
the unit vector of one rotation axis with the vector to the end-effector describes
the translational velocity of the end-effector that is caused by the movement of
the joint rotating about this axis. Therefore, the translational Jacobian can be
calculated as, see, e.g., [3]

Jt = [jt,1 jt,2 . . . jt,N ] , (2.12)

with the 3× 1 vectors
jt,i = e0

z,i−1 × (dN0 − di−1
0 ) , (2.13)

where e0
z,k is the unit vector of the z-axis of the frame k expressed in the inertial

frame (last column of Rk
0).

The rotational Jacobian can simply be defined as

Jω = [e0
z,0 e0

z,1 . . . e0
z,N−1] , (2.14)

with
ωe = Jωq̇J .

The 6×6 manipulator Jacobian Jg for the Comau Racer 1.4 can then be calculated
by (2.12) and (2.14) for N = 6 and qT

J = [θ1, θ2, . . . , θ6] using (2.5) with the DH
parameters of Tab. 2.1.

The orientation of the end-effector is often represented in Euler angles φe.
With the transformation

ωe = Tiφ̇e , (2.15)
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a relationship between the angular velocities ωe and the time derivative of the
Euler angles φ̇e is given, where i represents the Euler angle definition, e.g., i =ZYZ
or i =ZYX according to (2.6) or (2.7), respectively. Hence, the velocities of the
operational space with minimal orientation representation is given by

ẏ =
[
ẏt
φ̇e

]
= Jaq̇J , (2.16)

with the so called analytical Jacobian

Ja =
[
I 0
0 T−1

i

] [
Jt
Jω

]
. (2.17)

For the ZYZ representation (2.6), the angular velocities ωT
e = [ωe,x, ωe,y, ωe,z]

resulting from each Euler angle derivative are given by, see [3]

ωe(ϕ̇) = ϕ̇[0, 0, 1]T ,
ωe(ϑ̇) = ϑ̇[− sinϕ, cosϕ, 0]T ,
ωe(ψ̇) = ψ̇[cosϕ sinϑ, sinϕ sinϑ, cosϑ]T ,

(2.18)

and, therefore, the matrix TZY Z reads as

TZY Z =




0 − sinϕ cosϕ sinϑ
0 cosϕ sinϕ sinϑ
1 0 cosϑ


 , (2.19)

with the determinant det(TZY Z) = − sin(ϑ). Hence, matrix TZY Z is singular at
the representation singularities ϑ = kπ, k ∈ Z. The angular velocities resulting
from each ZYX Euler angle derivative are given by

ωe(ϕ̇) = ϕ̇[0, 0, 1]T ,
ωe(ϑ̇) = ϑ̇[− sinϕ, cosϕ, 0]T ,
ωe(ψ̇) = ψ̇[cosϕ cosϑ, sinϕ cosϑ,− sinϑ]T .

(2.20)

Hence, matrix TZY X is given by

TZY X =




0 − sinϕ cosϕ cosϑ
0 cosϕ sinϕ cosϑ
1 0 − sinϑ


 , (2.21)

with det(TZY X) = − cos(ϑ) and singular points at the representation singularities
ϑ = π/2 + kπ, k ∈ Z. The time derivative of a rotation matrix R reads as, see,
e.g., [3]

Ṙ = S(ω)R , (2.22)
with the angular velocity ω of the frame R with respect to the reference frame
and the skew-symmetric matrix operator S(·), which performs the cross product
S(a)b = a × b.
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2.2 Kinematics of a DELTA robot

In this work, the robot Festo EXPT-45 is used for experiments, which is a
DELTA robot with three translational degrees of freedom introduced in [66].
No universal approach exists to solve the direct kinematics problem for parallel
manipulators and analytic expressions only exist for special cases [56]. Hence, this
section is concerned only with this special type of parallel robot.

The kinematics of a DELTA robot with rotary drives are discussed in, e.g., [55,
67–69]. However, the Festo EXPT-45 features linear drives (prismatic joints)
and its kinematics is derived in the following. Fig. 2.2 shows a schematic diagram
of the considered DELTA robot with linear drives. A DELTA robot has three
translational and no rotational degrees of freedom. The robot basically consistsreplacemen

xE

yE

zE

x0

y0

z0

q1q2

q3

lBC

ψ3

A1

A2

A3

B1

B2

B3

C1

C2

C3

P

0

E

(1)

(2)

(3)

(4)

(5)

Figure 2.2: Schematic diagram of the DELTA robot Festo EXPT-45 with linear
drives. [70] c© 2017 IEEE
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of a base plate (1), the end-effector plate (5), three parallelogram arms (4), and
three electric linear drives (2). The linear drives are symmetrically arranged.
They are mounted at the points Ai, i = 1, 2, 3, at the base plate and at a common
joint point P . The three parallelogram arms are fixed to the slides of the linear
drives at Bi, i = 1, 2, 3, and the end-effector plate at the points Ci, i = 1, 2, 3.
The rods of the parallelogram (4), with length lBC , are on both sides attached
via ball joints (3). The angles ψi, i = 1, 2, 3, denote the orthogonal shears in
each parallelogram plane, i.e., the reduction of the initially right angle of the
parallelograms. The inertial coordinate system is given by (0, x0, y0, z0) with the
center of area of the base plate 0 as origin and the x0-axis pointing from 0 to
A1. A second coordinate system is defined by (E, xE, yE, zE) with the center of
area of the end-effector plate E as origin. The coordinate systems are not rotated
against each other. The position of the slides Bi with respect to Ai along the
segment AiP serve as generalized coordinates qi, i = 1, 2, 3. Hence, the vector
of generalized coordinates reads as qT = qT

J = [q1, q2, q3] ∈ R3. The end-effector
position yT

t = [yx, yy, yz] ∈ R3 is defined as the vector from the origin 0 to E
expressed in the inertial coordinate system. In Fig. 2.3, the dimensions of one
single robot arm are shown. The coordinate systems (0, x0i, y0i, z0i), i = 1, 2, 3,
are introduced, which are equal to the inertial frame (0, x0, y0, z0) rotated by an
angle α1i with respect to the z0-axis, where α11 = 0 rad, α12 = 2π/3 rad, and
α13 = 4π/3 rad. Moreover, the distances 0P = hP , ECi = lEC , and 0Ai = lA and
the angles φi, i = 1, 2, 3 are introduced. The parameters of the Festo EXPT-45
are listed in Tab. 2.2, where ms,i, i = 1, 2, 3, denotes the mass of a single slide,
mp the mass of a pair of rods, me the mass of the end-effector plate, and ml the
load mass.

Table 2.2: Nominal model parameters of the Festo EXPT-45.
Symbol Value Unit Symbol Value Unit
lBC 0.5 m ms,i 1.0 kg
lA 0.416 m me 1.0 kg
lEC 0.06 m mp 0.15 kg
hP 0.325 m ml 0.7 kg

2.2.1 Direct and inverse kinematics
Unique solutions for the direct and inverse kinematics are derived based on the
approach of [67]. According to Fig. 2.2 and Fig. 2.3, the end-effector position in
the coordinate systems (0, x0i, y0i, z0i) is given by

−−→
(0E)0i =

−−−→
(0Ai)0i +

−−−−→
(AiBi)0i +

−−−−→
(BiCi)0i +

−−−→
(CiE)0i , (2.23)
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Figure 2.3: Single arm of the DELTA robot Festo EXPT-45 with linear drives.

with
−−→
(0E)0i = RT

z,α1i
yt,
−−−→
(0Ai)0i = lAexi,

−−−−→
(AiBi)0i = qikD(hPezi−lAexi),

−−−−→
(BiCi)0i =

lBCRT
y,φi

RT
x,ψi

ezi, and
−−−→
(CiE)0i = lECexi. Herein, kD = 1/

√
l2A + h2

P and eji,
j ∈ {x, y, z}, i ∈ {1, 2, 3}, denote the Cartesian orthonormal unit vectors in the
frame (0, x0i, y0i, z0i). Solving (2.23) for

−−−−→
(BiCi)0i, squaring, and adding the rows

allows to eliminate the angles φi and ψi and to derive the quadratic equation

y2
x + y2

y + y2
z + diyx + eiyy + fiyz + gi = 0 , (2.24)

where

di = 2(qikDlA − l) cos(α1i), ei = 2(qikDlA − l) sin(α1i),
fi = −2qikDhP , gi = q2

i − l2BC + l2 − 2qikDlAl,

with l = lA − lEC . By subtracting (2.24) for i = 1 from (2.24) for i = 2 and i = 3,
respectively, the quadratic parts of the components of yt are eliminated and the
components yx and yy can be expressed as

yx = yza1 + b1

d
and yy = yza2 + b2

d
, (2.25)
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with

a1 = e1(f2 − f3) + e2(f3 − f1) + e3(f1 − f2)
b1 = e1(g2 − g3) + e2(g3 − g1) + e3(g1 − g2)
a2 = d1(f3 − f2) + d2(f1 − f3) + d3(f2 − f1)
b2 = d1(g3 − g2) + d2(g1 − g3) + d3(g2 − g1)
d = d1(e2 − e3) + d2(e3 − e1) + d3(e1 − e2).

By inserting (2.25) into (2.24) for i = 1, we get a quadratic equation for yz.
Because of the construction of the robot yz > hP holds and the unique solution of
this quadratic equation is given by

yz =
−c1 +

√
c2

1 − 4c2c0

2c2
, (2.26)

with

c2 = a2
1 + a2

2
d2 + 1

c1 = 2a1b1 + a2b2

d2 + a1d1 + a2e1

d
+ f1

c0 = b2
1 + b2

2
d2 − b1d1 + b2e1

d
+ g1.

The equations (2.25) and (2.26) represent the unique solution of the direct kine-
matics yt = hD(q). Moreover, since (2.24) is a quadratic function of qi and
0 ≤ qi <

√
l2A + h2

P holds, solving for qi yields

qi = −c1,i

2 −
√(

c1,i

2

)2
− c0,i , (2.27)

with

c1,i = 2kD
(
lA(yx,0i − l)− hPyz

)

c0,i = y2
x + y2

y + y2
z − 2lyx,0i + l2 − l2BC ,

(2.28)

l = lA − lEC , and yx,0i = cos (α1i)yx + sin (α1i)yy. Hence, the inverse kinematics
q = h−1

D (yt) is given by (2.27).

2.2.2 Manipulator Jacobian
The vector −−→BiCi in the frame (0, x0, y0, z0) reads as

wi =
−−−−→
(BiCi)0 = qici − lRz0,α1iexi + yt, (2.29)
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with unit vector ci = kD
−−−→
(PAi)0 = kDRz0,α1i(lAexi−hPezi). The vector (2.29) has

constant length lBC and, thus, has to fulfill the constraint

wT
i wi − l2BC = 0. (2.30)

Taking the time derivative of (2.30) yields

wT
i ẇi = 0, where ẇi = q̇ici + ẏt. (2.31)

In matrix notation, (2.31) reads as

W(q,yt)ẏt + P(q,yt)q̇ = 0 , (2.32)

with matrices WT(q,yt) = [w1,w2,w3] and P(q,yt) = diag
(
[wT

1 c1,wT
2 c2,wT

3 c3]
)
.

The matrices W and P are nonsingular as long as not at least two rods, or vectors−−→
BiCi, are parallel. This is normally prevented due to limitations of the movement
range of the slides. The nonsingular manipulator Jacobian of the DELTA robot
with linear drives is, thus, obtained from (2.32) as

JD(q) = ∂hD
∂q = −

(
W−1(q,yt)P(q,yt)

)∣∣∣
yt=hD(q)

. (2.33)

2.3 Friction effects
Friction occurs between two surfaces in contact. Numerous different more or less
complex methods exist to model these effects. The friction effects can play a
dominant role in mechanical systems like robots that are driven by electric motors
with gears or hydraulic and pneumatic cylinders and the compensation of friction
may be required for high precision and high performance motion control [71].

In control applications, two different types of friction models are typically
used, namely static and dynamic models. For static models, a static relationship
between the actual velocity and the friction force is employed. Coulomb and
viscous friction as well as stick-slip effects can be covered [72]. Dynamic models
contain one or more states and can additionally model the elastic/plastic pre-
sliding motion, which occurs at small displacements, as well as effects at varying
velocities [72]. Generally, dynamic models require more parameters than static
ones and the dynamic parameters are often hard to identify. One of the most
common dynamic friction model is the so called LuGre model, which includes
the Stribeck effect as well as rate dependent friction phenomena like varying
break-away force and frictional lag and can be parametrized by six variables [73].
At constant velocities the static and dynamic friction models are equivalent.

In this work, a simple static friction model of the form

τf (v) = fcsign(v) + fvv (2.34)
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is used, with the relative (angular) velocity v between the two surfaces in contact,
the Coulomb friction parameter fc, the viscous friction parameter fv, and the
signum function sign(v).

Friction parameters depend on normal forces, temperature, lubrication condi-
tion, wear of the bearings and gear, etc. and are, thus, changing during operation.
Hence, on-line parameter adaptation is advantageous to improve the quality of
friction compensation. In Appendix A, an observer for the Coulomb and viscous
friction parameters based on the generalized momentum is presented.

2.4 Dynamics
The Euler-Lagrange equations for a system consisting of m generalized coordinates
are given by

d
dt
∂L

∂q̇i
− ∂L

∂qi
= τi , i = 1, . . . ,m , (2.35)

with the Lagrangian L = T−V , where T denotes the kinetic energy, V the potential
energy, and τi is the generalized force acting on the generalized coordinate qi.
Provided that the potential energy V is only a function of qT = [q1, q2, . . . , qm]
and the kinetic energy can be expressed as T = 1

2 q̇TD(q)q̇, which is the case for
manipulators with rigid links, the Euler-Lagrange equations can be written in
vector form as

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ , (2.36)
with the generalized forces τT = [τ1, τ2, . . . , τm]. In (2.36), D(q) ∈ Rm×m denotes
the symmetric positive definite generalized mass matrix, C(q, q̇)q̇ ∈ Rm represents
the centrifugal and Coriolis forces, and g(q) ∈ Rm is the vector of potential forces.

The Christoffel symbols of the first kind are defined as

cijk = 1
2

(
∂dkj
∂qi

+ ∂dki
∂qj
− ∂dij
∂qk

)
, (2.37)

where dij is the (i, j)th element of the mass matrix D(q). The (k, j)th element of
the Coriolis matrix C(q, q̇) is then given by

C[k, j] =
m∑

i=1
cijkq̇i . (2.38)

Due to the symmetry of D(q) and the definition of C(q, q̇) with (2.38), the matrix

N(q, q̇) = Ḋ(q)− 2C(q, q̇) (2.39)

is skew-symmetric, cf., e.g., [3]. Hence, the notable relationship

Ḋ(q) = CT(q, q̇) + C(q, q̇) (2.40)
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holds.
In robotics, it is beneficial to subdivide the generalized forces into drive forces

τd ∈ Rm, friction forces τf(q̇) ∈ Rm, and contact forces with the environment
τext ∈ Rm, hence, τ = τd − τf(q̇) + τext. Using the static friction model (2.34),
the generalized friction force reads as

τf (q̇) = Fcsign(q̇) + Fvq̇ , (2.41)

where Fc = diag(fc), fT
c = [fc,1, fc,2, . . . , fc,m], Fv = diag(fv), fT

v = [fv,1, fv,2, . . . ,
fv,m]. The dynamics (2.36) can then be rewritten as

D(q)q̈ + n(q, q̇) = τd + τext , (2.42)

with n(q, q̇) = C(q, q̇)q̇ + g(q) + τf (q̇). Although τd ∈ Rm holds, note that the
degree of actuation of the manipulators considered in this work is equal to the
number of joints N . Hence, τd contains N independent applied generalized forces.

Parallel manipulators are subject to holonomic constraints due to the closed
kinematic chain. The equations of motion of a system with holonomic constraints
fh(q) = 0, see, e.g., (2.30) for the DELTA robot, are given by, cf. [57],

D(q)q̈ + C(q, q̇)q̇ + g(q) + ΓT
h (q)λ = τ , (2.43)

with Γh(q) = ∂fh(q)
∂q and the Lagrange multipliers λ.

2.4.1 Kinetic energy
The kinetic energy stored in each body is a function of its translational and
angular velocity. In robotics, the moving bodies are the links and the actuators
and the total kinetic energy is given by

T =
N∑

i=1
TL,i + TM,i , (2.44)

where TL,i denotes the kinetic energy of link i and TM,i of actuator i, i = 1, . . . , N .
The translational component of the kinetic energy for a single link i is given

by
TL,t,i = 1

2mL,iṗT
L,c,iṗL,c,i , (2.45)

with the link mass mL,i and the vector to the center of mass pL,c,i expressed in
the inertial frame. The rotational part is calculated by

TL,r,i = 1
2ω

T
i Ri

0ĪL,i
(
Ri

0

)T
ωi , (2.46)

where ωi is the angular velocity of link i expressed in the inertial frame and ĪL,i
represents the inertia tensor of link i with respect to its center of mass expressed
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in the body-fixed coordinate frame of link i. Hence, Ri
0ĪL,i (Ri

0)T is the inertia
tensor of link i transformed to the inertial frame by the rotation matrix Ri

0. Since
the kinetic energy of the links is expressed in the form TL = 1

2 q̇T
JDL(qJ)q̇J , with

the joint coordinates qJ as a subset of the generalized coordinates q, ṗL,c,i and
ωi have to be replaced by the joint velocities q̇J . With the translational Jacobian
Jt,c,i = ∂pL,c,i/∂qJ of the center of mass of link i, we obtain

TL,t,i = 1
2mL,iq̇T

J JT
t,c,iJt,c,iq̇J (2.47)

and with the rotational Jacobian of link i, see also (2.14),

Jω,i = [e0
z,0 . . . e0

z,i−1 03×N−i] (2.48)

the rotational kinetic energy follows as

TL,r,i = 1
2 q̇T

J JT
ω,iRi

0ĪL,i
(
Ri

0

)T
Jω,iq̇J . (2.49)

The kinetic energy of all links can then be written as

TL = 1
2 q̇T

JDL(qJ)q̇J , (2.50)

with the positive definite mass matrix

DL(qJ) =
N∑

i=1
mL,iJT

t,c,iJt,c,i + JT
ω,iRi

0ĪL,i
(
Ri

0

)T
Jω,i . (2.51)

In this work, it is assumed that the contribution of the kinetic energy of the stator
of the actuator i (the fixed part) is included in the kinetic energy TL,j of the link
j on which actuator i is located. Thus, only the kinetic energy of the rotor of the
actuators is considered in the following.

The kinetic energy of rotor i, i = 1, . . . , N , is given by

TM,i = 1
2mM,iṗT

M,c,iṗM,c,i + 1
2ω

T
M,iR

M,i
0 ĪM,i

(
RM,i

0

)T
ωM,i , (2.52)

with the rotor mass mM,i, the vector to the center of mass pM,c,i expressed in the
inertial frame, the angular velocity ωM,i, the inertia tensor of the rotor ĪM,i, and
the rotation matrix from the motor frame to the inertial frame RM,i

0 .
For the actuators it is assumed that the center of mass of the rotor is located

on the rotation axis, the z-axis of the rotor frame corresponds to the rotation axis,
and the rotor is axially symmetric. Hence, the position of the center of mass pM,c,i

of rotor i is independent of its rotation angle and the inertia tensor of the rotor i
is given by the diagonal matrix ĪM,i = diag

(
[IM,xx,i, IM,yy,i, IM,zz,i]

)
. The vector

pM,c,i then only depends on the joint coordinates qJ , the relation ṗM,c,i = Jt,M,iq̇J ,



24 2. Basics of the Mathematical Modeling of Industrial Robots

with the Jacobian Jt,M,i = ∂pM,c,i/∂qJ holds, and the translational kinetic energy
of of rotor i follows as

TM,t,i = 1
2mM,iq̇T

J JT
t,M,iJt,M,iq̇J . (2.53)

The calculation of the rotational kinetic energy of the rotors as a function of q
and q̇ depends on which link j the motor i is connected to and if the transmissions
(gears) are rigid or elastic. This will be discussed in more detail in the following
sections.

2.4.2 Potential energy
In this work, the potential energy caused by gravity is given by

Vg =
N∑

i=1
mL,igT

e pL,c,i +mM,igT
e pM,c,i , (2.54)

with ge = [0, 0, g]T and the gravitational acceleration g always pointing in negative
z0-direction. Potential energy can also be stored in springs, e.g., elastic joints,
and reads as

Vs,nl =
s∫

s0

fs(s̃)ds̃ , (2.55)

with the relaxed spring length s0 and the elastic force fs(s) as a function of the
length s. For elastic joint robots, the elasticity between the motors and the links
is usually modeled as a linear spring using fs(s) = ks(s − s0), with the spring
constant ks [7, 9]. The displacement of the spring for joint i is then given by
the difference between the joint and the motor coordinate qJ,i − qM,i. Hence, the
stored energy in the elastic joints follows as

Vs = 1
2(qJ − qM)TKs(qJ − qM) , (2.56)

with the vector of the link coordinates qJ , the vector of the motor coordinates
at the output side qM , and the diagonal, positive definite stiffness matrix Ks =
diag ([ks,1, ks,2, . . . , ks,N ]). The sum of the gravitational energy Vg and elastic
energy Vs gives the total potential energy V = Vg + Vs. The vector of the
generalized forces caused by the potential energy is then computed as

gT = ∂V

∂q . (2.57)

2.4.3 Equations of motion of serial manipulators with rigid
transmissions

Rigid transmissions have a constant velocity relationship between link i and rotor
i, which reads as q̇J,i = kr,iγ̇M,i, with the gear reduction ratio kr,i and γ̇M,i as
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the angular velocity of rotor i. For fully actuated serial manipulators with rigid
transmissions, m = N holds and the generalized coordinates are usually chosen as
the joint coordinates, i.e., q = qJ . Since the angular velocity of rotor j connected
to link i is given by ωM,j = ωi+ 1

kr,j
q̇je0

z,M,j = Jω,iq̇+ 1
kr,j
q̇jRi

0eiz,M,j, the rotational
kinetic energy follows as

TM,r,j = 1
2 q̇TJT

ω,iR
M,j
0 ĪM,j

(
RM,j

0

)T
Jω,iq̇ + 1

2k2
r,j

q̇2
j IM,zz,j

+ 1
kr,j

q̇jIM,zz,j

(
Ri

0eiz,M,j

)T
Jω,iq̇ ,

(2.58)

where RM,j
0 ĪM,j

(
RM,j

0

)T
is the inertia tensor of rotor j transformed to the inertial

frame by the rotation matrix RM,j
0 = Ri

0R
M,j
i , RM,j

i is the constant rotation
matrix from the frame of rotor j to the frame of link i, the unit vector eiz,M,j

is the last column of RM,j
i , and Jω,i is given by (2.48). The last term in (2.58)

represents coupling effects between the rotor and the link motion.
The rotor-link configuration of the Comau Racer 1.4 is given in Tab. 2.3 and

its total kinetic energy can be written as, see (2.47), (2.49), (2.53), and (2.58)

TC = 1
2 q̇T

( 6∑

i=1
mL,iJT

t,c,iJt,c,i +mM,iJT
t,M,iJt,M,i + JT

ω,iRi
0ĪL,i

(
Ri

0

)T
Jω,i

)
q̇

+
6∑

i=1
TM,r,i = 1

2 q̇TD(q)q̇ .

(2.59)

Hence, the equations of motion for the Comau Racer 1.4 are given by (2.42),
with D from (2.59), C from (2.38), τf from (2.41), and g according to (2.57),
where Vs = 0.

The output y ∈ Rn is a function of the joint coordinates qJ = q and is given
by

y =
[
yt
yr

]
=
[
ht(q)
hr(q)

]
= h(q) , (2.60)

with the end-effector position yt ∈ Rnt and orientation yr ∈ Rnr in some minimal
representation of the rotation matrix Re of the direct kinematics (2.5). In the case
of dim(yr) = nr = 3, yr is represented by the Euler angles φe of Re according
to (2.6) or (2.7), respectively, and the output y is given by the direct kinematics
(2.8). Thus, the output function h(q) is smooth as long as no representation
singularities occur. The output dimension is given by dim(y) = n = nt + nr,
where n = N holds for fully actuated manipulators like the Comau Racer 1.4,
with nt = nr = 3.
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Table 2.3: Rotor-link configuration of the Comau Racer 1.4.
rotor j fixed to link i RM,j

i

1 1




1 0 0
0 −1 0
0 0 −1




2 1




1 0 0
0 0 −1
0 1 0




3 3




0 −1 0
1 0 0
0 0 1




4 3




1 0 0
0 0 1
0 −1 0




5 4




1 0 0
0 0 1
0 −1 0




6 5




1 0 0
0 0 −1
0 1 0




2.4.4 Equations of motion of serial manipulators with elas-
tic joints

The model for stiff joints is not accurate enough when the rotors and links of a
manipulator are elastically coupled. In this case, the rotors and the links have
to be modeled as separate rigid bodies that are coupled via an elastic element,
typically modeled as a linear spring. Hence, the m = 2N generalized coordinates
can be chosen as qT = [qT

J ,qT
M ], with the joint coordinates qJ ∈ RN and the

motor coordinates at the output side qM ∈ RN , where q̇M,i = kr,iγ̇M,i. The energy
stored in the elastic joints is given by (2.56) and the joint viscosity is modeled
by τjv = Kd(q̇J − q̇M) with the constant, diagonal, and positive definite matrix
Kd = diag ([kd,1, kd,2, . . . , kd,N ]).

For an elastic joint robot, the angular velocity of rotor j connected to link i is
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given by
ωM,j = ωi + 1

kr,j
q̇M,je0

z,M,j = Jω,iq̇J + 1
kr,j

q̇M,jRi
0eiz,M,j (2.61)

and the rotational kinetic energy of rotor j follows as

TeM,r,j(qJ , q̇J , q̇M) = 1
2 q̇T

J JT
ω,iR

M,j
0 ĪM,j

(
RM,j

0

)T
Jω,iq̇J + 1

2k2
r,j

q̇2
M,jIM,zz,j

+ 1
kr,j

q̇M,jIM,zz,j

(
Ri

0eiz,M,j

)T
Jω,iq̇J .

(2.62)

The total kinetic energy of an elastic joint robot can be written as, see (2.47),
(2.49), (2.53), and (2.62)

TE = 1
2 q̇T

J

( 6∑

i=1
mL,iJT

t,c,iJt,c,i +mM,iJT
t,M,iJt,M,i + JT

ω,iRi
0ĪL,i

(
Ri

0

)T
Jω,i

)
q̇J

+
6∑

i=1
TeM,r,i =

[
q̇J
q̇M

]T [DE(qJ) U(qJ)
UT(qJ) DM

] [
q̇J
q̇M

]
= 1

2 q̇TD(qJ)q̇ ,

(2.63)

where DM = diag([k−2
r,1IM,zz,1, k

−2
r,2IM,zz,2, . . . , k

−2
r,NIM,zz,N ]) ∈ RN×N denotes the

motor inertia diagonal matrix and the upper triangle matrix U(qJ) ∈ RN×N takes
into account the motor/link inertia couplings, cf. [74], [75]. Using (2.63), (2.38),
and (2.57), the dynamics of the elastic joint robot in matrix form (2.36) follow as,
see [74], [75],

[
DE(qJ) U(qJ)
UT(qJ) DM

]

︸ ︷︷ ︸
D(qJ )

[
q̈J
q̈M

]
+
[
CE(qJ , q̇J) C1(qJ , q̇J)
C2(qJ , q̇J) 0

]

︸ ︷︷ ︸
C(qJ ,q̇J )

[
q̇J
q̇M

]

+
[
gL(qJ) + Ks(qJ − qM)
−Ks(qJ − qM)

]

︸ ︷︷ ︸
g(q)

+
[

Kd(q̇J − q̇M)
−Kd(q̇J − q̇M)

]
+
[
τf,J(q̇J)
τf,M(q̇M)

]

︸ ︷︷ ︸
τf (q̇)

=
[
τext
τd

]
,

(2.64)

with the generalized friction forces τf,J ∈ RN and τf,M ∈ RN modeled by (2.41),
the generalized forces of the motors τd ∈ RN , and the generalized external forces
τext ∈ RN . The gravitation forces gL(qJ) ∈ RN are the same as for the rigid body
model. The Coriolis matrices C1(qJ , q̇J) ∈ RN×N and C2(qJ , q̇J) ∈ RN×N also
result from the motor/link inertia couplings, see [74], [75].

System (2.64) can be simplified by neglecting the motor/link inertia couplings
given by the last term in (2.62), which implies U = 0 and C1 = C2 = 0, cf. [7].
The resulting simplified system is given by

DE(qJ)q̈J + nE(qJ , q̇J) = τJ + τext (2.65a)
DM q̈M + τf,M(q̇M) = τd − τJ , (2.65b)
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with
nE(qJ , q̇J) = CE(qJ , q̇J)q̇J + gL(qJ) + τf,J(q̇J)

and the joint forces

τJ = Ks(qM − qJ) + Kd(q̇M − q̇J) , (2.66)

where Ks > 0 and Kd > 0. If the viscosity of the joints is negligibly small, Kd = 0
holds, and the joint forces are given by

τJ = Ks(qM − qJ) . (2.67)

2.4.5 Equations of motion of the Delta robot
The mass of the rods is small in comparison to the other moving parts. As
proposed in [69], the rods are modeled as two point masses, where 2/3 of the
mass is added to the slide and 1/3 to the end-effector. Thus, the effective mass
of each slide is given by mq,i = ms,i + 2/3mp, i = 1, 2, 3. The effective mass of
the end-effector reads as my = me +ml +mp. The nominal mass parameters of
the Festo EXPT-45 are listed in Tab. 2.2, where mq,1 = mq,2 = mq,3 = mq,i.
Hence, the constant mass matrices are given by Dq = diag([mq,1,mq,2,mq,3]) and
Dy = myI. The kinetic energy reads as

T = 1
2
(
q̇TDqq̇ + ẏT

t Dyẏt
)

(2.68)

and the potential energy of the system takes the form

V = −
(
myyz + hpkD(mq,1q1 +mq,2q2 +mq,3q3)

)
g , (2.69)

with the gravitational acceleration g. The forward kinematics are rearranged and
the holonomic constraint, see also (2.43),

fh,c(q,yt) = yt − hD(q) = 0 (2.70)

is introduced. Since there are no mixed terms in T and V , application of the
Lagrange formalism with holonomic constraints (2.43) results in the equations of
motion, which can be written as

Dqq̈ + gq(q) + ΓT
h,q(q)λ = τd − τf (q̇)

Dyÿt + gy(yt) + ΓT
h,y(yt)λ = τy ,

(2.71)

with the Lagrange multipliers λT = [λ1, λ2, λ3], the gravitational forces gT
q (q) =

∂V/∂q and gT
y (yt) = ∂V/∂yt, linear drive forces τT

d = [τd,1, τd,2, τd,3], the friction
forces τf (q̇), and external end-effector forces τT

y = [τy,1, τy,2, τy,3]. The equations
(2.71) are coupled by the holonomic constraint (2.70), Γh,q(q) = ∂fh,c/∂q =



2.4. Dynamics 29

−JD(q), see also (2.33), and Γh,y(yt) = ∂fh,c/∂yt = I3×3. Eliminating the
Lagrange multipliers λ and using the time derivative of (2.33) yields the rigid
body dynamics (2.42) with the symmetric positive definite generalized mass matrix

D(q) = Dq + JT
D(q)DyJD(q) , (2.72a)

the Coriolis matrix
C(q, q̇) = JT

D(q)DyJ̇D(q, q̇) , (2.72b)
the vector of potential forces

g(q) = gq(q) + JT
D(q)gy ◦ hD(q) , (2.72c)

and the vector of generalized external forces

τext = JT
D(q)τy . (2.72d)

Hence, this model of the DELTA robot constitutes a fully actuated manipulator.

2.4.6 Base parameter set
The system dynamics (2.36) for manipulators with rigid transmissions are linear
in the dynamic parameter vector %, cf. [3, 4], i.e.

Y(q̈, q̇,q)% = ∂

∂%
(D(q)q̈ + C(q, q̇)q̇ + g(q) + τf (q̇))% = τd (2.73)

holds, where % contains the inertial and friction parameters and τext = 0 is assumed.
The regression matrix Y(q̈, q̇,q) depends on the manipulator’s geometry, which
is considered to be known. Ten inertial parameters exist for each rigid link i.
These are the six entries of the overall inertia matrix Īi of link i including all
rotors connected to link i and transformed into the origin of the coordinate system
(0i, xi, yi, zi), the first moments mipic,i, and the mass mi of the link i including
all masses of the rotors connected to link i, where pic,i denotes the constant
vector to the center of mass defined in the coordinate system (0i, xi, yi, zi), see [3].
Additionally, each drive j depends on three parameters, namely the rotor inertia
IM,zz,j and the two friction parameters fc,j and fv,j, j = 1, . . . , N .

However, not all of these parameters appear in the system equations or
are linear independent [3, 59, 65, 76]. A minimum set of linear independent
inertial parameters that determines the dynamic model completely is called a
base parameter set. This set is not unique but has a well defined dimension. The
system dynamics in the base parameters %b ∈ Rnb can be expressed as

Yb(q̈, q̇,q)%b = τd , (2.74)

with the regression matrix Yb(q̈, q̇,q) ∈ RN×nb .
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Since the DELTA robot features simple dynamics, its base parameter set
can directly be given by %T

b,D = [mq,1,mq,2,mq,3,my, fv,1, fc,1, fv,2, fc,2, fv,3, fc,3],
with the viscous and Coulomb friction parameters fv,i, fc,i, i = 1, 2, 3. The base
parameter set of a six-axis serial manipulator like the Comau Racer 1.4 cannot be
determined just by guessing [77]. Mayeda et al. developed a method to determine
the base parameter set of serial manipulators with rotary joints in an analytic
form, where adjacent joints are either parallel or perpendicular [59]. A short
summary of this method as well as the resulting base parameters for the Comau
Racer 1.4 are given in Appendix B.

2.5 Dynamic parameter identification
For model-based control, a suitable mathematical model of the system has to be
known. The model typically depends on specific parameters, which may have an
extensive influence on the behavior of the system. Therefore, good knowledge of
the parameters is an important aspect.

Robot manufacturers usually not only provide the kinematics but also some
inertial parameters. However, in most cases, not all parameters contained in
the dynamic model, e.g., friction parameters, are included in the data sheets.
Additionally, the given parameters are often derived from CAD drawings and are
not containing certain components of the complete robot, e.g., cables, screws or
custom-made add-ons. Therefore, experimental identification has to be applied to
obtain the required inertial and friction parameters of the robot. The references
[5, 60, 61] give a good overview of the extensive literature concerning this topic.

The system dynamics are linear in the base parameters %b, see (2.74), and are
therefore well suited for the identification procedure, which can be divided into
the following five steps:

1. finding an excitation trajectory that leads to well identifiable parameters;
2. running an experiment and sampling a sufficient number of data points;
3. signal filtering and computation of velocity and acceleration;
4. construction of an overdetermined linear system using the information

matrix;
5. applying a linear regression technique to estimate the base parameters.

The overdetermined linear system is given by

X%b = bτ , (2.75)

with the information matrix

X =




Yb(q̈(t1), q̇(t1),q(t1))
...

Yb(q̈(tK), q̇(tK),q(tK))


 (2.76)
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and

bτ =




τd(t1)
...

τd(tK)


 , (2.77)

where K is the number of sampling points and ti, i = 1, . . . , K, are the correspond-
ing sampling instances. For a reliable estimation of %b, the number of sampling
points K has to be much larger than the number nb of base parameters.

The parameter estimation approach of Swevers et al. [62, 63] is used to identify
the base parameters of the Comau Racer 1.4 and is summarized in the following.
The application to the Comau Racer 1.4 is presented in Appendix C.

2.5.1 Excitation trajectory
The quality of the model identification strongly depends on the chosen excitation
trajectory. This trajectory must ensure that the information matrix X has
full column rank and that all motion constraints of the joint angles, velocities,
accelerations, and the end-effector position are met. Various approaches to
parametrize the excitation trajectories and to find an optimal set of parameters
can be found in literature. A few methods are highlighted in the following.

Armstrong suggested to minimize the condition number or to maximize the
smallest singular value of the information matrix X [64]. Gautier minimized
a linear combination of the condition number and a parameter equilibrating
the values of the elements of the information matrix, with the joint angles and
velocities at discrete time steps as optimization variables [65]. The trajectory is
calculated by interpolating a polynomial between the optimal points. Therefore, it
is not guaranteed that the resulting trajectory satisfies all constraints or minimizes
the condition number.

Swevers et al. use a finite sum of harmonic sine and cosine functions as
excitation trajectory [62, 63]. This method allows to use time-domain data
averaging and analytic calculation of the joint velocities and accelerations in the
frequency domain. They suggest to maximize the determinant of XTX, the so
called d-optimality, which gives slightly better results than the minimization of
the condition number. In the next subsections, this approach is explained in more
detail.

2.5.1.1 Periodic function

The finite Fourier series for each joint i = 1, . . . , N is given by, cf. [62],

qi(t) = qi,0 +
M∑

k=1
(ai,k sin(kωf t) + bi,k cos(kωf t)) , (2.78)

with the fundamental angular frequency ωf , the offset qi,0 and the Fourier coef-
ficients ai,k and bi,k. The fundamental angular frequency ωf is the same for all
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joints and, therefore, the positions, velocities, and accelerations are all periodic
with the period Tf = 2π/ωf . The period Tf has to be an integer multiple of the
sampling time Ts.

When choosing ωf and M some aspects have to be taken into account. With a
lower fundamental frequency ωf a larger part of the workspace can be covered at
the price of a longer measurement time. A larger number of harmonics M leads to
higher accelerations, which are necessary to identify the inertia matrix. However,
the highest frequency of the excitation trajectory should be much smaller than
the resonance frequencies of the robot.

2.5.1.2 Optimization

The Fourier coefficients ai,k and bi,k and the offsets qi,0 are the kν = N(2M + 1)
independent variables for the optimization of the excitation trajectory. The
determinant of the matrix XTX is used as optimization criterion [62]. Several
constraints like the limitations of the positions, velocities, and accelerations of the
joints and the end-effector position of the robot have to be taken into account.
The constrained optimization problem can be written as

ν∗ =arg min
ν∈Rkν

− log det
(
XT(ν)X(ν)

)

s.t. g1(ν) ≤ 0
g2(ν) ≤ 0 ,

(2.79)

where ν = [q1,0, a1,1, b1,1, . . . , qN,0, . . . , aN,M , bN,M ]T ∈ Rkν , g1 summarizes the
joint constraints, and g2 represents the constraints in the robot’s workspace.
The logarithm in (2.79) is used to avoid numerical issues, as the value of the
determinant can get extremely large.

2.5.2 Signal processing
The excitation trajectory is a finite Fourier series. Due to the nonlinearity
of the system, the measured positions may contain different and even more
harmonics than the excitation trajectory. However, the resulting motion is still
periodic with the same period as the exciting trajectory and also band limited
because of the band-limited motion controller. With these properties, an exact
differentiation of the position is possible [62]. Using the discrete Fourier transform,
the measured positions are transformed into the frequency domain and then
filtered by selecting the relevant frequencies. The velocity and acceleration are
calculated by multiplying the spectrum with Iω and −ω2, respectively. Finally,
the spectrum of the filtered position, velocity, and acceleration are transformed
back into the time domain using the inverse discrete Fourier transform.

The measured torques are also periodic with Tf and the signal-to-noise ratio
can be improved by data averaging.
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2.5.3 Parameter estimation
With the signal processing described in Section 2.5.2, the joint positions, velocities,
and accelerations can be considered as nearly noise free. Hence, the information
matrix X is also free of noise and a weighted least-squares estimation (WLSE)
yields the same bias free results as the more complex maximum likelihood es-
timation [62]. The difference between the WLSE and a standard least-squares
approach is that the noise of the torque measurement is taken into account, which
also includes unmodeled periodic effects in the gear transmissions. The regression
matrix and the torques are weighted with the covariance matrix Υ of the actuator
torque measurements. The estimation of the base parameters %b using WLSE is
given by

%̂b =
(
XTΥ−1X

)−1
XTΥ−1bτ . (2.80)





CHAPTER 3

Path Following Control

In this chapter, path following control (PFC) in three-dimensional space for fully
actuated rigid manipulators and elastic joint robots is introduced. The presented
approach can handle open, closed, and intersecting paths parametrized as regular
curves, e.g., splines, and is based on input-output linearization, cf. [78]. In
contrast to [22], the parametrization is split into the position and orientation
parametrization and transversal feedback linearization (TFL) is only applied to the
position parametrization. A parallel transport frame is introduced for the design
of the path following controller, which not only allows to directly cope with paths
having zero curvature, but also drastically simplifies the path following control
law compared to the works known from literature, e.g.,[22]. Moreover, a feasible
neighborhood of the path is defined for which a diffeomorphism can be found
that maps the generalized coordinates to tangential, transversal, and rotational
coordinates. These properties of the presented PFC approach make it highly
suitable for industrial robotic applications. Following the ideas of [79], where pure
planar problems are considered, the method is combined with compliance control.

The proposed PFC approach for fully actuated manipulators is applied to a
DELTA Robot for a proof of concept. This manipulator, with parallel kinematics,
has three translational degrees of freedoms. In a first experiment, a specific
motion on a complex path defined by quartic splines in free space is performed.
In a second experiment, the combination of the presented path following control
approach with compliance control is demonstrated. To validate the compliant path
following control strategy, the end-effector is operated in the notch of a rigid object.
The PFC approach for elastic joint robots is verified by simulation studies in
Matlab R©/Simulink R©. In the first simulation example, the pure PFC for elastic
joint robots, the singular perturbation PFC approach, and the PFC for fully
actuated manipulators are compared by applying these approaches to an elastic

35
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joint robot with relatively soft transmissions. The PFC approach is compared to
a classical trajectory tracking controller (TTC) in the second simulation example
to point out the differences between the two control concepts.

Large parts of this chapter are published in similar form in [70, 80, 81].

3.1 Path assumptions
Suppose the path γ is given as a regular parametrized curve σT(θ) = [σT

t (θ),
σT
r (θ)] : T 7→ R

n, with reference position σt(θ) ∈ Rnt , reference orientation
σr(θ) ∈ Rnr , n = nt+nr, and path parameter θ, which is element of a nonempty set
T ⊆ R. In the three-dimensional space, nt = 3 holds. For a given parametrization
σ(θ), the path γ is defined as the subset of the output y of (2.1) γ = {ȳ ∈ Rn :
ȳ = σ

(
θ̄
)
, θ̄ ∈ T }, where σt(θ) defines the position part γt, see Fig. 3.1, and

σr(θ) the orientation part γr. The parametrization σ(θ) of the path γ is regular,
if σ′t

(
θ̄
)

= (∂σt/∂θ)
(
θ̄
)
6= 0 for θ̄ ∈ T . Another path requirement is that the

parametrization has to be k-fold continuously differentiable, where k = 3 for fully
actuated manipulators and k = 5 for elastic joint robots. The path γ is open or
closed depending on the choice of σ(θ) and T . For more information on curves,
see, e.g., [21].

3.2 Control objectives
To formulate the objectives of path following control, the mapping ‖yt‖γt : Rnt 7→
R

+
0 is introduced, which assigns each position yt in the output space a nonnegative

yt(t0)

yt(t1)

path γt

x0

y0

z0

Figure 3.1: Path γt and convergence of the output yt to the path.
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real number that is given by the shortest distance to the path γt, i.e., ‖yt‖γt =
inf ȳt∈γt ‖yt − ȳt‖2. The control objectives of path following control are defined as
follows, see [15] and Fig. 3.1.

(O1) Asymptotic convergence to σt(·): The position output yt of (2.1) converges
asymptotically to the path γt, i.e., ‖yt(t)‖γt → 0 for t→∞.

(O2) Invariance property: If the generalized coordinates and velocities of the
dynamic system at time t0, i.e., [q̄T

J (t0), ˙̄qT
J (t0)]T, are elements of the con-

trolled invariant subset Γ∗ of Γ =
{

[q̄T
J , ˙̄qT

J ]T ∈ R2m : h (q̄J) ∈ γ
}
, then

‖yt(t)‖γt = 0, ∀t ≥ t0.

(O3) Tangential motion: The motion on the path γt meets application-specific
requirements.

3.3 Orthonormal frame
An orthonormal frame with respect to a parametrized curve is constructed as
depicted in Fig. 3.2. For this, one possibility is given by the Frenet-Serret frame,
see, e.g., [21], which is used in [22] for PFC. The direct application of the Frenet-
Serret frame requires a given position parametrization σt(θ) : T 7→ R

nt to be
regular of order nt− 1 = 2, i.e., that the first two derivatives of σt(θ) with respect

yt = ht(qJ)

y∗
t = σt(θ∗)

e||(θ∗)

e⊥(θ∗)
e⋔(θ∗)

path γt

|δ 1
|

|δ2|

θ = θ0

x0

y0

z0

Figure 3.2: Orthonormal frame for PFC. [70] c© 2017 IEEE
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to θ are linearly independent. Note that second-order regularity of a path implies
a nonzero curvature of a parametrization σ(θ) for all θ ∈ T , see, e.g., [21]. Thus,
a straight line path segment has zero curvature, which shows that the requirement
of second-order regularity of a path is rather restrictive. Therefore, in contrast to
the works known from literature, e.g., [22], the parallel transport frame [24, 25] is
used in this work, which can handle curves with zero curvature and is introduced
in the following.

Recalling that σ′t(θ) is the tangential vector to γt at θ, the tangential unit
vector is given by

e||(θ) = σ′t(θ)
‖σ′t(θ)‖2

. (3.1)

To construct the parallel transport frame, the derivative of the normal vectors
e⊥(θ) and et(θ) has to point in the direction of the tangential unit vector e||(θ),
see [24]. Together with the requirement of orthonormality, the overdetermined
differential-algebraic equations

e′i(θ) = γi(θ)e||(θ), ei(θ0) = ei,0 (3.2a)
0 = 1− eT

i (θ)ei(θ) (3.2b)
0 = eT

|| (θ)ei(θ) , (3.2c)
for i ∈ {⊥,t} are obtained. Therein, γi(θ) is a scalar and ei,0 is the initial
condition, which complies with the algebraic equations (3.2b) and (3.2c). Note
that the equations (3.2a) and (3.2b) are of Hessenberg index-2 form with hidden
constraint (3.2c), see, e.g., [82] for more information on differential-algebraic
systems and hidden constraints. Differentiating (3.2b) with respect to θ and
substituting (3.2a) gives (3.2c). Differentiating (3.2c) with respect to θ and
multiplying (3.2a) by eT

|| (θ) results in

γi(θ) = −
(
e′||(θ)

)T
ei(θ) . (3.3)

Hence, inserting (3.3) into (3.2a) yields the ordinary differential equations for
i ∈ {⊥,t}

e′i(θ) = −
(
e′||(θ)

)T
ei(θ)e||(θ), ei(θ0) = ei,0 . (3.4)

Note that the second normal vector et(θ) can also be obtained using the cross
product, i.e.,

et(θ) = e||(θ)× e⊥(θ) . (3.5)

3.4 Projection operator and feasible neighbor-
hood

The closest point y∗t = σt(θ∗) on the path γt to yt is determined by the orthogonal
projection PT (yt), cf. [20]. Given a parametrized curve σ(θ) with θ ∈ T ⊆ R, the
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orthogonal projection of yt onto σt(θ) requires the solution of an optimization
problem, i.e.,

θ∗ = PT (yt) = argmin
θ∈T
‖yt − σt(θ)‖2

2 ∈ T . (3.6)

If θ∗ is an interior point of T , (3.6) features a strict minimum in a feasible
neighborhood, which fulfills the first-order necessary condition for optimality

(
yt − σt(θ∗)

)T
σ′t(θ∗) = 0 (3.7)

and the second-order sufficient condition for optimality

‖σ′t(θ∗)‖2
2 −

(
yt − σt(θ∗)

)T
σ′′t (θ∗) > 0 , (3.8)

see, e.g., [83]. Because σ′t(θ∗) is tangential to the path at σt(θ∗), (3.7) implies
that the vector yt − σt(θ∗) is orthogonal to the path, cf. Fig. 3.2. Rearranging
(3.8) and introducing

α(yt) =

(
yt − σt(θ∗)

)T
σ′′t (θ∗)

‖σ′t(θ∗)‖2
2

(3.9)

allows to define the feasible neighborhood of a path Yt = {ȳt ∈ Rnt : α(ȳt) < 1}.
Differentiating the first-order condition for optimality (3.7) with respect to the
time and using (3.1) and (3.9) yields the time derivative of the optimal path
parameter

θ̇∗ =
β(yt)eT

|| (θ∗)
‖σ′t(θ∗)‖2

ẏt , (3.10)

where
β(yt) = 1

1− α(yt)
. (3.11)

If the position output yt is on the path, α(yt = σt(θ∗)) = 0 and β(yt = σt(θ∗)) = 1
holds true.

3.5 Path following control for fully actuated ma-
nipulators

A fully actuated manipulator can be described by the dynamics (2.42) with the
output function (2.1) and the number of generalized coordinates m equals the
number of joint coordinates N , cf. Section 2.4.3. Here, the generalized coordinates
q are identical to the joint coordinates qJ . This type of manipulator features a
(vector) relative degree of {2, 2, . . . , 2} and is full state exact linearizable via static
state feedback. See [78] for a definition of the (vector) relative degree and the
exact linearization via state feedback. In the following, a path following controller
for this type of manipulators is presented. Additionally, a drastically simplified
path following concept using joint velocity controllers is introduced.
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3.5.1 Coordinate transformation
A coordinate transformation is deduced that maps the generalized coordinates
and velocities, q and q̇, of the system (2.42) to tangential coordinates ηT =
[η1, η2], transversal coordinates ξT = [ξ1, ξ2, ξ3, ξ4], and rotational coordinates
ζT = [yT

r , ẏT
r ] with respect to a path γ parametrized as a regular C3 curve σ(θ).

It will be shown that the coordinate transformation is a diffeomorphism onto its
image in a feasible neighborhood Yt of the path γt.

3.5.1.1 Tangential subsystem

The first tangential coordinate is, as proposed in [20], chosen by the arc length

η1 = g(yt) =
∫ θ∗

θ0
‖σ′t(τ)‖2dτ . (3.12)

See Theorem 1.4.1 in [21] for a definition of the arc length. Calculating the time
derivative of (3.12) and using (3.10), the second tangential coordinate follows as

η2 = η̇1 = ‖σ′t(θ∗)‖2θ̇
∗ = β(yt)eT

|| (θ∗)︸ ︷︷ ︸
(∇g)T

ẏt︸︷︷︸
∇ht q̇

, (3.13)

with gradient (∇g)T = ∂g/∂yt and Jacobian ∇ht = ∂ht/∂q = Jt. The limit case
α(yt)→ 1 implies β(yt)→∞. Hence, small values of ẏt result in large derivatives
of the arc length.

3.5.1.2 Transversal subsystem

The transversal coordinates, ξ1 and ξ3, are defined as the projections of yt−σt(θ∗)
onto the normal vectors e⊥ and et, see also Fig. 3.2,

ξ1 = δ1(yt) = eT
⊥(θ∗)

(
yt − σt(θ∗)

)
(3.14)

and
ξ3 = δ2(yt) = eT

t(θ∗)
(
yt − σt(θ∗)

)
. (3.15)

If the output yt is on the path, ξ1 = ξ3 = 0 holds. Differentiating (3.14) and
(3.15) with respect to the time yields

ξ2 = ξ̇1 =
(
e′⊥(θ∗)

)T
θ̇∗
(
yt − σt(θ∗)

)

︸ ︷︷ ︸
(3.2a),(3.7)

= 0

− eT
⊥(θ∗)σ′t(θ∗)θ̇∗︸ ︷︷ ︸

(3.2c)
= 0

+ eT
⊥(θ∗)
︸ ︷︷ ︸
(∇δ1)T

ẏt︸︷︷︸
∇ht q̇

(3.16)
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and

ξ4 = ξ̇3 =
(
e′t(θ∗)

)T
θ̇∗
(
yt − σt(θ∗)

)

︸ ︷︷ ︸
(3.2a),(3.7)

= 0

− eT
t(θ∗)σ′t(θ∗)θ̇∗︸ ︷︷ ︸

(3.2c)
= 0

+ eT
t(θ∗)
︸ ︷︷ ︸
(∇δ2)T

ẏt︸︷︷︸
∇ht q̇

,
(3.17)

with gradients (∇δ1)T = ∂δ1/∂yt and (∇δ2)T = ∂δ2/∂yt. Note that the first parts
in (3.16) and (3.17) are zero due to the usage of the parallel transport frame.

3.5.1.3 Rotational subsystem

The first and second rotational coordinates are chosen as

ζ1 = yr = hr(q) (3.18)

and
ζ2 = ζ̇1 = ẏr = ∇hr q̇ , (3.19)

with Jacobian ∇hr = ∂hr/∂q = Jr.

3.5.1.4 Diffeomorphism

The tangential, transversal, and rotational maps, (3.12)-(3.19), are used to con-
struct a C1-diffeomorphism, see, e.g., [84, p.147] for a definition of a diffeomorphism.
The virtual PFC output ŷT

p = ĥT
p (q) = [η1, ξ1, ξ3, ζ

T
1 ] is introduced, which allows

to define the mapping

[
ŷp
˙̂yp

]
=




η1
ξ1
ξ3
ζ1
η2
ξ2
ξ4
ζ2




=




g ◦ ht(q)
δ1 ◦ ht(q)
δ2 ◦ ht(q)

hr(q)
(∇g)T∇ht q̇
(∇δ1)T∇ht q̇
(∇δ2)T∇ht q̇
∇hr q̇




= Φ(q, q̇) . (3.20)

Throughout this work, the subscript p in ŷp, ĥp, Ĵp, . . . refers to PFC, whereas
the subscript s is used for surface following control introduced in the next chapter.

Lemma 1. The mapping Φ : X 7→ Z with X = Q × TqQ, Q = {q̄ ∈ RN :
α ◦ ht(q̄) < 1}, and tangential space TqQ is a C1-diffeomorphism, if JT(q) =[
JT
t (q),JT

r (q)
]
is nonsingular.
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Proof. By the inverse function theorem, see, e.g., Theorem 8.2 in [84], the following
properties have to be shown:

(i.) X and Z are open in R2N ,

(ii.) Φ ∈ C1(X ,Z), and

(iii.) ∇Φ =
[
∂Φ/∂q, ∂Φ/∂q̇

]
is nonsingular for all

[
qT, q̇T

]T ∈ X .

Since Q is an open subset of RN , X and Z are open in R2N . Since the output y =
h(q) is assumed to be sufficiently smooth and σ(θ) ∈ C3(T ,RN), Φ ∈ C1(X ,Z)
holds. The Jacobian of Φ reads as

∇Φ =
[
Ĵp(q) 0
∗ Ĵp(q)

]
, (3.21)

with the PFC Jacobian
Ĵp(q) = Lp(q)J(q) (3.22)

and matrices

Lp(q) =
[
Ep(q) 0

0 I

]
and Ep(q) =



β(yt)eT

||
eT
⊥

eT
t


 ,

where I is the 3× 3 identity matrix. If J(q) is nonsingular and α(yt) < 1, then,
Ep(q) and Lp(q) are nonsingular, β(yt) < ∞, and thus, ∇Φ is nonsingular for
all [qT, q̇T]T ∈ X .

From (3.20) and (3.22) it follows that the relation

˙̂yp = Lp(q)ẏ = Ĵp(q)q̇ (3.23)

holds.

3.5.2 Feedback linearization
Differentiating the tangential state η2 = η̇1 from (3.13) with respect to the time
yields

η̈1 =
(

(∇β)TẏteT
|| (θ∗) + β(yt)

(
e′||(θ∗)

)T
θ̇∗
)

ẏt

+ β(yt)eT
|| (θ∗)ÿt ,

(3.24)

where (∇β)T = ∂β/∂yt. The time derivatives of the transversal states ξ2 = ξ̇1
from (3.16) and ξ4 = ξ̇3 from (3.17) take the form

ξ̈1 =
(
e′⊥(θ∗)

)T
θ̇∗ẏt + eT

⊥(θ∗)ÿt (3.25)
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and

ξ̈3 = (e′t(θ∗))T
θ̇∗ẏt + eT

t(θ∗)ÿt . (3.26)

The second-order time derivative of ζ1 from (3.18) gives

ζ̈1 = ÿr . (3.27)

The equations (3.24)-(3.27) can be written in matrix form as

¨̂yp = ˙̂Jp(q, q̇)q̇ + Ĵp(q)D−1(q)
(
τd + τext − n(q, q̇)

)
. (3.28)

Hence, application of the feedback transformation

τd = n(q, q̇)− τext + D(q)Ĵ−1
p (q)

(
vp − ˙̂Jp(q, q̇)q̇

)
(3.29)

to the system (2.42) and (2.1), with new control input vT
p = [vT

p,t,vT
p,r], where

vT
p,t = [v||, v⊥, vt], results in a linear input-output relation from the new input vp

to the virtual output ŷp in the form of N integrator chains of length two
¨̂yp = vp . (3.30)

Note that the dynamics of the transformed system are linear with respect to a
nonlinear plant and a nonlinear path γ.

The virtual inputs in the direction of the normal vectors, v⊥ and vt, can
effectively be used to fulfill objective (O1), i.e., to stabilize the transversal ξ-
subsystem and to guarantee asymptotic convergence to σt(·). The controlled
invariant subset is given by

Γ∗ =
{[

q̄T, ˙̄qT
]T ∈ X : Φξ(q̄, ˙̄q) = 0

}
, (3.31)

with

Φξ(q, q̇) =




δ1 ◦ ht(q)
δ2 ◦ ht(q)

(∇δ1)T∇ht q̇
(∇δ2)T∇ht q̇



. (3.32)

Thus, objective (O2) is met, because if
[
q̄T(t0) ˙̄qT(t0)

]T ∈ Γ∗, then, by choosing
v⊥ = 0 and vt = 0, ξi = 0, with i = 1, 2, 3, 4 and ‖yt(t)‖γt = 0, ∀t > t0. Moreover,
the virtual input in tangential direction v|| allows to control the motion along the
path, thus, objective (O3) can be satisfied.

3.5.3 Stabilization of the linearized system
Any controller that stabilizes the (exactly) linearized systems (3.30) can be used to
compute the new input vp. In the following, a position controller and a compliance
controller for the PFC to compute vp are presented.
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3.5.3.1 Position control

The simple position control law

vp =
[
vp,t
vp,r

]
=




η̈p1 − aη,2ėpη − aη,1epη
ξ̈p1 − aξ,2ėpξ1 − aξ,1e

p
ξ1

ξ̈p3 − aξ,2ėpξ3 − aξ,1e
p
ξ3

ÿpr − ar,2ėpr − ar,1epr




(3.33)

is utilized, where epη = η1−ηp1, epξj = ξj−ξpj , epr = yr−ypr , ai,j > 0 with i ∈ {η, ξ, r}
and j = 1, 2. The C2 reference position on the path is denoted by ηp1, where the
superscript p designates references for position controllers throughout this work.
The C2 references for the orthogonal states and the orientation are given by ξp1 , ξp3 ,
and ypr = σr(θ∗), respectively. Note that integral parts can also be added to the
control law (3.33) to eliminate the control error in stationary conditions. Inserting
the control law (3.33) into the linear system (3.30) yields the exponentially stable
error dynamics 



ëpη + aη,2ė
p
η + aη,1e

p
η

ëpξ1 + aξ,2ė
p
ξ1 + aξ,1e

p
ξ1

ëpξ3 + aξ,2ė
p
ξ3 + aξ,1e

p
ξ3

ëpr + ar,2ėpr + ar,1epr


 = 0 . (3.34)

The components two and three of (3.34) show that ξ1 and ξ3 exponentially converge
to the references ξp1 and ξp3 , respectively, and, thus, objective (O1) is fulfilled for
ξp1 = ξp3 = 0. Additionally, if

[
qT(t0), q̇T(t0)

]T ∈ Γ∗, then v⊥ = 0 and vt = 0 holds,
the output yt stays on the path γt for all t ≥ t0, and objective (O2) is fulfilled.
Component one of (3.34) shows that the tangential coordinate η1 exponentially
converges to the reference ηp1. Hence, objective (O3) can also be satisfied. A
schematic drawing of the PFC with position control is depicted in Fig. 3.3.

As introduced in Chapter 2, the orientation is always represented by Euler
angles in the case of nr = 3. In this case, the control law (3.33) demands the use
of the analytical Jacobian Ja of (2.17) for the calculation of the PFC Jacobian Ĵp
in (3.22), i.e. J = Ja. It should always be possible to find an appropriate Euler
angle definition (e.g. ZYZ, ZYX) that avoids representation singularities for the
reference φT

d = [ϕd, ϑd, ψd] = σT
r (θ∗). However, due to control errors, the actual

orientation yr = φe can get close to representation singularities leading to an
ill-conditioned control law. To avoid this problem, the geometric Jacobian Jg of
(2.11) is used in the calculation of the PFC Jacobian Ĵp, i.e. J = Jg, resulting in
the linear system

¨̂yT
p =

[
η̈1, ξ̈1, ξ̈3, ω̇

T
e

]
=
[
vT
p,t,vT

p,o

]
= vT

p , (3.35)

with the new rotational control input vp,o and the angular velocities of the end-
effector ωe expressed in the inertial frame. The orientation error can then be
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Figure 3.3: Path following control scheme.

defined locally as, see [6],
Re
d = RT

e Rd , (3.36)
where Rd is the rotation matrix of the reference Euler angles φd, Re is the rotation
matrix of the end-effector orientation φe, and φde are the ZYX Euler angles of
Re
d. The time derivative of (3.36) yields, see (2.22),

Ṙe
d = RT

e

(
ST(ωe) + S(ωd)

)
Rd = S

(
RT
e (ωd − ωe)

)
Re
d (3.37)

and, therefore, the relation RT
e (ωd − ωe) = TZY X(φde)φ̇de holds, see (2.15).

Following along the lines of [6], the new rotational control input is chosen as

vp,o = ω̇d − Ḃe(φde)φ̇de + Be(φde)
(
ar,2φ̇de + ar,1φde

)
, (3.38)

with ωd = TZY X

(
σr(θ∗)

)
σ′r(θ∗)θ̇∗, Be(φde) = ReTZY X(φde), and TZY X(·) ac-

cording to (2.21). Hence, the control law (3.38) is well defined for angular control
errors of less than π/2. Replacing the control law for vp,r in (3.33) with vp,o of
(3.38) and using the relation ωd−ωe = Be(φde)φ̇de yields the exponentially stable
error dynamics for the orientation

φ̈de + ar,2φ̇de + ar,1φde = 0 , (3.39)

with ar,1 > 0 and ar,2 > 0.

3.5.3.2 Compliance control

Compliance control addresses a classical problem in robotics of simultaneously
controlling the position and the interaction forces with the environment [26]. In
the following, it is shown how to combine the presented path following control
concept with compliance control. For this, a position-based impedance control is
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employed, see [29]. In position-based impedance control, the compliance is realized
by tracking the trajectory of the exponentially stable reference impedance model
using position control in an inner control loop and an impedance control in the
outer loop. As shown in [32], this method is well suited for accurate positioning
in free space as well as for scenarios where the robot is in contact with rigid
environments. Due to the possibility of using high gains in the inner loop, the
position-based impedance control is rather insensitive to model uncertainties.

The fundamental idea of compliance control is to design a controller which
imposes a reference dynamics (impedance) between external forces and the position.
In the case of the PFC approach presented in this section, the reference impedance
of the motion along and orthogonal to the path γt as well as the reference
impedance of the orientation can be separately defined as




τ||
τ⊥
τt
τr


 =




md
||ë
d
η + dd||ė

d
η + kd||e

d
η

md
⊥ë

d
ξ1 + dd⊥ė

d
ξ1 + kd⊥e

d
ξ1

md
⊥ë

d
ξ3 + dd⊥ė

d
ξ3 + kd⊥e

d
ξ3

md
r ëdr + ddr ėdr + kdredr



, (3.40)

where edη = η1 − ηd1 , edξ1 = ξ1 − ξd1 , and edξ3 = ξ3 − ξd3 denote the errors between the
coordinates η1, ξ1, and ξ3 and the references ηd1 , ξd1 , and ξd3 and edr = yr − σr(θ∗).
Moreover, md

i , ddi and kdi for i = {||,⊥, r} are design parameters representing the
mass, damping, and stiffness and




τ||
τ⊥
τt
τr


 = Ĵ−T

p τext =




1
β
eT
|| 0

eT
⊥ 0

eT
t 0
0 I




J−T
g τext (3.41)

are the external (projected) generalized forces.
Assuming perfect tracking of the inner position loop (3.33), the actual tangen-

tial and transversal coordinates η1, ξ1, and ξ3 as well as the orientation yr in (3.40)
can be replaced by the position controller references ηp1, ξp1 , ξp3 , and ypr . Introducing
the errors epdη = ηp1 − ηd1 , epdξ1 = ξp1 − ξd1 , epdξ3 = ξp3 − ξd3 , and epdr = ypr −σr(θ∗) allows
to deduce the impedance control law

η̈p1 = η̈d1 + τ||
md
||
−

dd||
md
||
ėpdη −

kd||
md
||
epdη ,

η̇p1 =
t∫

0

η̈p1dτ, ηp1 =
t∫

0

η̇p1dτ ,
(3.42a)

ξ̈p1 = ξ̈d1 + τ⊥
md
⊥
− dd⊥
md
⊥
ėpdξ1 −

kd⊥
md
⊥
epdξ1 ,

ξ̇p1 =
t∫

0

ξ̈p1dτ, ξp1 =
t∫

0

ξ̇p1dτ ,
(3.42b)
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ξ̈p3 = ξ̈d3 + τt
md
⊥
− dd⊥
md
⊥
ėpdξ3 −

kd⊥
md
⊥
epdξ3 ,

ξ̇p3 =
t∫

0

ξ̈p3dτ, ξp3 =
t∫

0

ξ̇p3dτ ,
(3.42c)

ÿpr = σ̈r(θ∗) + τr
md
r

− ddr
md
r

ėpdr −
kdr
md
r

epdr ,

ẏpr =
t∫

0

ÿprdτ, ypr =
t∫

0

ẏprdτ .
(3.42d)

Hence, in the combination of PFC with compliance control, the (external)
references in tangential and orthogonal direction to the path γ are denoted by the
superscript d and the references for the inner position control loop are denoted by
the superscript p.

If the Euler angles are used in the case of yr ∈ R3, the impedance depends on
the orientation of the compliant frame with respect to the inertial frame when
using the control law (3.33) to compute vp,r together with the compliance control
(3.42d), cf. [33]. To avoid this disadvantage and to cope with the representation
singularities, the geometric Jacobian Jg of (2.11) is used in the calculation of
the PFC Jacobian Ĵp leading to the linearized system (3.35) and the orientation
between the compliant frame p and the desired frame d is defined as, cf. [33],

Rd
p = RT

d Rp , (3.43)

where Rd is the rotation matrix of the reference Euler angles φd = σr(θ∗) and Rp

is the rotation matrix of the compliant frame. The impedance is defined as

md
rφ̈pd + ddrφ̇pd + kdrφpd = TT

ZY X(φpd)µd , (3.44)

where φpd = [ϕpd, ϑpd, ψpd] are the ZYX Euler angles of Rd
p, and (µd)T =

[µdϕ, µdϑ, µdψ] is the measured torque vector expressed in frame d. Since ωTµ =
ωT[0 I]J−T

g τext = ωTRdRT
d [0 I]J−T

g τext = (ωd)T[0 RT
d ]J−T

g τext, with the angu-
lar velocity ωd expressed in frame d holds, the measured torque vector is given
by

µd = [0 RT
d ]J−T

g τext . (3.45)

Note that representation singularities do not appear in (3.44) for |ϑpd| < π/2.
The control law

vp,o = ω̇d + Ḃd(φed)φ̇ed
+ Bd(φed)

(
φ̈pd + ar,2

(
φ̇pd − φ̇ed

)
+ ar,1 (φpd − φed)

)
,

(3.46)
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with Bd(φed) = RdTZY X(φed), ωd = Ti

(
σr(θ∗)

)
σ′r(θ∗)θ̇∗, for i ∈ {ZYX,ZYZ},

and φed as the ZYX Euler angles of Rd
e leads to the exponentially stable error

dynamics for the orientation

φ̈ed − φ̈pd + ar,2
(
φ̇ed − φ̇pd

)
+ ar,1 (φed − φpd) = 0 , (3.47)

cf. [33]. Hence, the orientation of the end-effector Re converges to the desired
compliant orientation Rp.

3.5.4 Simplification using joint velocity controllers
In robotics, the nonlinear system dynamics (2.42) are often neglected and the
joints are independently controlled using fast high bandwidth linear position
and/or velocity controllers. Feedforward of, e.g., the gravitational forces can be
used to improve the performance of the subordinate velocity controllers. If the
joint velocity controllers are assumed to be ideal, the system dynamics (2.42)
simplifies to

q̇ = q̇ref , (3.48)
with the reference velocity input q̇ref .

In the following, a path following control approach based on (3.48) is presented
and is denoted as kinematic PFC. In contrast to the PFC based on the dynamics
for fully actuated systems (2.42), σ(θ) has only to be C2 for the kinematic PFC
because the (vector) relative degree of the system reduces to {1, 1, ..., 1}.

3.5.4.1 Coordinate transformation

The coordinate transformation Φ : RN → R
N is derived, which maps the general-

ized coordinates q to the tangential, transversal, and rotational coordinates ŷp
and reads as

ŷp =




g ◦ ht(q)
δ1 ◦ ht(q)
δ2 ◦ ht(q)

hr(q)


 = Φ(q) , (3.49)

with g, δ1, and δ3 from (3.12), (3.14), and (3.15), respectively.

Lemma 2. The mapping Φ : Q 7→ Z ⊂ RN , with Q = {q̄ ∈ RN : α ◦ ht(q̄) < 1},
is a C1-diffeomorphism, if J(q) is nonsingular.

Proof. Based on the inverse function theorem it has to be shown that

(i.) Q and Z are open in RN ,

(ii.) Φ ∈ C1(Q,Z), and

(iii.) ∇Φ = ∂Φ/∂q = Ĵp(q) is nonsingular for all q ∈ Q.
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Since Q is an open subset of RN , Z is open in RN . As the output y = h(q) is
assumed to be sufficiently smooth and σ(θ) ∈ C2(T ,RN), Φ ∈ C1(Q,Z) holds.
If J(q) is nonsingular and α(yt) < 1, then, Ep(q) and Lp(q) are nonsingular,
β(yt) <∞, thus, ∇Φ = Ĵp(q) is nonsingular for all q ∈ Q.

3.5.4.2 Feedback linearization

Because of the relation (3.23), application of the feedback transformation

q̇ref = Ĵ−1
p vp,k (3.50)

to the system (3.48) and (2.1), with the new control input vT
p,k = [vT

p,t,k,vT
p,r,k],

where vT
p,t,k = [v||,k, v⊥,k, vt,k], results in a linear input-output relation from the

new control input vp,k to the virtual PFC output ŷp in the form of N decoupled
integrators

˙̂yp = vp,k . (3.51)

3.5.4.3 Stabilization of the linearized system

The position control law

vp,k =
[
vp,t,k
vp,r,k

]
=




η̇p1 − aηepη
ξ̇p1 − aξepξ1

ξ̇p3 − aξepξ3

ẏpr − arepr



, (3.52)

where epη = η1 − ηp1, epξ1 = ξ1 − ξp1 , epξ3 = ξ3 − ξp3 , and epr = yr − ypr, yields an
exponentially stable error dynamics, if ai > 0 with i ∈ {η, ξ, r}. The reference
position on the path is denoted by ηp1 and the references for the transversal states
by ξp1 and ξp3 .

A compliant behavior is achieved by using (3.42) to compute the references
ηp1, ξp1 , ξp3 , and ypr together with the position controller (3.52).

A similar approach as in Section 3.5.3.2 is used to deal with representation
singularities in the case of nr = 3. Using the geometric Jacobian to compute
the PFC Jacobian Ĵp, i.e., J = Jg, for the PFC feedback transformation (3.50)
yields the linear system ˙̂yT

p = [η̇T
1 , ξ̇1,ω

T
e ] = [vT

p,t,k,vT
p,o,k], where vp,o,k denotes

the new rotational control input. The Euler angles φpd are determined by the
impedance law (3.44) and the rotation matrix of the compliant frame is given by
Rp = Rd(φd)Rd

p(φpd), see (3.43). The control law

vp,o,k = ωp −Bp(φep)arφep , (3.53)

with Bp(φep) = RpTZY X(φep) and φep as the ZYX Euler angles of Rp
e = RT

p Re,
leads to the exponentially stable error dynamics

φ̇ep + arφep = 0 , (3.54)
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with ar > 0. For this derivation, the relations ωdpd = TZY X(φpd)φ̇pd, ωp = ωd +
Rdω

d
pd, ωd = Ti

(
σr(θ∗)

)
σ′r(θ∗)θ̇∗ with i ∈ {ZY X,ZY Z}, and ωep = ωe − ωp =

Rpω
p
ep = Bp(φep)φ̇ep are used.

3.6 Path following control for elastic joint robots
The dynamic system (2.64) with output function (2.1) is not input-output lineariz-
able by applying static state feedback [7, 9]. De Luca showed that linearization is
possible using dynamic state feedback [9]. However, this feedback law becomes
quite complicated for manipulators with more than two degrees of freedom.

This section presents two path following controllers for the simplified elastic
joint manipulator dynamics (2.65) with joint forces τJ including viscosity (2.66)
and without viscosity (2.67), respectively, which are both input-output linearizable
via static state feedback.

3.6.1 Robots with visco-elastic joints
The simplified elastic joint manipulator dynamics (2.65) with joint forces τJ
including viscosity (2.66) (visco-elastic joint) and output function (2.1) has a
(vector) relative degree of {3, 3, . . . , 3} and is input-output linearizable via static
state feedback [74].

3.6.1.1 Coordinate transformation

A mapping Φ is introduced that transforms the joint coordinates qJ and the
motor coordinates qM as well as their first time derivatives into tangential η1,
transversal ξ1 and ξ3, and rotational ζ1 coordinates of (3.12), (3.14), (3.15), and
(3.18) with respect to a C4 path γ. Since the (vector) relative degree is given by
{3, 3, . . . , 3}, the first 3N transformed coordinates are chosen as the virtual output
ŷT
p = [η1, ξ1, ξ3, ζ

T
1 ] as well as their first and second time derivatives. Following

the idea of [74], the velocity of the motor coordinates q̇M is chosen as the N
remaining coordinates. The mapping Φ then reads as




ŷp
˙̂yp
¨̂yp
q̇M




=




g ◦ ht(qJ)
δ1 ◦ ht(qJ)
δ2 ◦ ht(qJ)

hr(qJ)
Ĵpq̇J

˙̂Jpq̇J + ĴpD−1
E (τJ + τext − nE)

q̇M




= Φ(qJ , q̇J ,qM , q̇M) , (3.55)

with the PFC Jacobian Ĵp of (3.22).
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Lemma 3. The mapping Φ : X 7→ Z with X = Q × TqQ, Q =
{

[q̄T
J , q̄T

M ]T ∈
R

2N : α ◦ ht(q̄J) < 1
}
and tangential space TqQ, is a C1-diffeomorphism, if J(qJ)

is nonsingular.

Proof. As in the previous section, the inverse function theorem is employed. Hence,
the following conditions have to be satisfied:

(i.) X and Z are open in R4N ,

(ii.) Φ ∈ C1(X ,Z), and

(iii.) ∇Φ =
[
∂Φ/∂qJ , ∂Φ/∂q̇J , ∂Φ/∂qM , ∂Φ/∂q̇M

]
is nonsingular for all

[
qT
J , q̇T

J ,qT
M , q̇T

M

]T ∈ X .

Since Q is an open subset of R2N , X and Z are open in R4N . The output
y = h(qJ) is assumed to be sufficiently smooth and σ(θ) ∈ C4(T ,RN), hence,
Φ ∈ C1(X ,Z) holds. Since DE, Ks, and Kd are positive definite matrices, the
Jacobian of the mapping Φ

∇Φ =




Ĵp 0 0 0
∗ Ĵp 0 0
∗ ∗ ĴpD−1

E Ks ĴpD−1
E Kd

0 0 0 I




(3.56)

is nonsingular, if J(qJ) is nonsingular, and [qT
J ,qT

M ]T ∈ Q, which implies that Ĵp
is nonsingular, see also Lemma 1.

3.6.1.2 Feedback linearization

The third time derivative of the virtual output ŷp is given by

ŷ(3)
p = ¨̂Jpq̇J + 2 ˙̂Jpq̈J − ĴpD−1

E

(
(ḊE + Kd)q̈J + ṅE − τ̇ext

−Ks(q̇M − q̇J) + KdD−1
M (τJ + τf,M)

)
+ ĴpD−1

E KdD−1
M τd .

(3.57)

Hence, application of the feedback transformation

τd = D−1
p,v (vp,v − bp,v(qJ , q̇J ,qM , q̇M)) (3.58a)

to the system (2.65), joint forces τJ of (2.66) and output function (2.1), with the
new control input vT

p,v = [vT
p,t,v,vT

p,r,v] ∈ RN , the decoupling matrix

Dp,v(qJ) = ĴpD−1
E KdD−1

M , (3.58b)
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and the vector

bp,v (qJ , q̇J ,qM , q̇M) = ¨̂Jpq̇J + 2 ˙̂Jpq̈J − ĴpD−1
E

(
(ḊE + Kd)q̈J + ṅE

− τ̇ext −Ks(q̇M − q̇J) + KdD−1
M (τJ + τf,M)

) (3.58c)

results in the closed-loop dynamics

ŷ(3)
p = vp,v (3.59a)

and

q̈M = D−1
M

(
D−1
p,v (vp,v − bp,v(qJ , q̇J ,qM , q̇M))− τJ − τf,M

)
. (3.59b)

Thereby, equation (3.59b) represents the non-observable internal dynamics of the
system (3.59) with the output y = [yT

t ,yT
r ]T = h(qJ) according to (2.1). Note

that the time derivative of the external forces τext is required for the feedback
transformation (3.58), which can be hard to obtain in real applications due to the
sensor noise.

The zero dynamics is defined as the internal dynamics of the input-output
linearized system (3.59) for ŷp = 0 ∀ t ≥ t0 and has to be stable [78]. The
condition ŷp ≡ 0 implies that vp,v ≡ 0 as well as qJ,v ≡ qJ,0 = const. Hence, the
zero dynamics of system (3.59), where τext is assumed to be zero, is given by

q̈M(ŷp ≡ 0) = −K−1
d Ksq̇M . (3.60)

Since Kd and Ks are positive definite matrices, the zero dynamics are exponentially
stable.

The new inputs v⊥,v and vt,v of vT
p,t,v = [v||,v, v⊥,v, vt,v] can be used to fulfill

the control objectives (O1) and (O2) and with v||,v an application specific motion
along the path can be achieved. Note that the decoupling matrix Dp,v(qJ) is
nonsingular for [qT

J ,qT
M ]T ∈ Q.

3.6.1.3 Stabilization of the linearized system

Similar to the PFC for fully actuated systems, the position control law

vp,v =




(ηp1)(3) − aη,3,vëη − aη,2,vėη − aη,1,veη
(ξp1)(3) − aξ,3,vëξ1 − aξ,2,vėξ1 − aξ,1,veξ1

(ξp3)(3) − aξ,3,vëξ3 − aξ,2,vėξ3 − aξ,1,veξ3

(ypr)(3) − ar,3,vër − ar,2,vėr − ar,1,ver


 (3.61)

asymptotically stabilizes the linear system (3.59a) if pi(s) = s3 + ai,3,vs
2 + ai,2,vs+

ai,1,v constitutes a Hurwitz polynomial for i ∈ {η, ξ, r}. In (3.61), ηp1, ξp1 , and ξp3
denote C3-references for the position on the path and the deviation from the path.
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The control errors are given by eη = η1 − ηp1, eξ1 = ξ1 − ξp1 , eξ3 = ξ3 − ξp3 , and
er = yr − ypr, where ypr = σr(θ∗).

In principle, the visco-elastic PFC approach can also be combined with com-
pliance control, but the references η̈p1, ξ̈p1 , ξ̈p3 , and ÿpr of the impedance control law
(3.42) have to be differentiated with respect to the time to obtain the references
(ηp1)(3), (ξp1)(3), (ξp3)(3), and (ypr)(3) for the position control law (3.61). This further
implies that the time derivative of the measured external forces or torques τext is
required.

3.6.2 Robots with pure elastic joints
If the viscosity inside the joints is negligibly small, the joint forces τJ of the
dynamic system (2.65) are given by (2.67) (pure elastic joint), the system has
a (vector) relative degree of {4, 4, . . . , 4}, and is full state exact linearizable via
static state feedback [7].

3.6.2.1 Coordinate transformation

A coordinate transformation is derived that maps the joint coordinates qJ and the
motor coordinates qM as well as their first time derivative onto the virtual output
ŷT
p = [η1, ξ1, ξ3, ζ

T
1 ] as well as their first, second, and third time derivatives, with

tangential η1, transversal ξ1 and ξ3, and rotational ζ1 coordinates of (3.12), (3.14),
(3.15), and (3.18) with respect to a C5 path γ. The coordinate transformation Φ
reads as




ŷp
˙̂yp
¨̂yp

ŷ(3)
p




=




g ◦ ht(qJ)
δ1 ◦ ht(qJ)
δ2 ◦ ht(qJ)

hr(qJ)
Ĵpq̇J

˙̂Jpq̇J + ĴpD−1
E (τJ + τext − nE)

r + ĴpD−1
E (τ̇J + τ̇ext − ṅE − ḊEq̈J)




= Φ(qJ , q̇J ,qM , q̇M) , (3.62)

with the PFC Jacobian Ĵp of (3.22) and the vector r = ¨̂Jp(qJ , q̇J , q̈J)q̇J +
2 ˙̂Jp(qJ , q̇J)q̈J .

Lemma 4. The mapping Φ : X 7→ Z with X = Q × TqQ, Q =
{

[q̄T
J , q̄T

M ]T ∈
R

2N : α ◦ ht(q̄J) < 1
}
and tangential space TqQ, is a C1-diffeomorphism, if J(qJ)

is nonsingular.

Proof. Based on the inverse function theorem it has to be shown that

(i.) X and Z are open in R4N ,
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(ii.) Φ ∈ C1(X ,Z), and

(iii.) ∇Φ =
[
∂Φ/∂qJ , ∂Φ/∂q̇J , ∂Φ/∂qM , ∂Φ/∂q̇M

]
is nonsingular for all

[
qT
J , q̇T

J ,qT
M , q̇T

M

]T ∈ X .

Since Q is an open subset of R2N , X and Z are open in R4N . The output
y = h(qJ) is assumed to be sufficiently smooth and σ(θ) ∈ C5(T ,RN), hence,
Φ ∈ C1(X ,Z) holds. The Jacobian of the mapping Φ

∇Φ =




Ĵp 0 0 0
∗ Ĵp 0 0
∗ ∗ ĴpD−1

E Ks 0
∗ ∗ ∗ ĴpD−1

E Ks




(3.63)

is nonsingular, if J(qJ) is nonsingular, and [qT
J ,qT

M ]T ∈ Q, which implies that Ĵp
is nonsingular.

3.6.2.2 Feedback linearization

From the forth time derivative of the virtual output ŷp

ŷ(4)
p = Ĵ(3)

p q̇J + 3¨̂Jpq̈J + 3 ˙̂Jpq(3)
J − ĴpD−1

E

(
2ḊEq(3)

J + D̈Eq̈J + n̈E
− τ̈ext + Ksq̈J + KsD−1

M (τJ − τf,M)
)

+ ĴpD−1
E KsD−1

M τd ,
(3.64)

the feedback transformation
τd = D−1

p,e (vp,e − bp,e(qJ , q̇J ,qM , q̇M)) , (3.65a)
with the decoupling matrix

Dp,e(qJ) = ĴpD−1
E KsD−1

M , (3.65b)
and the vector

bp,e (qJ , q̇J ,qM , q̇M) = Ĵ(3)
p q̇J + 3¨̂Jpq̈J + 3 ˙̂Jpq(3)

J −Dp,e(τJ − τf,M)
− ĴpD−1

E

(
2ḊEq(3)

J + D̈Eq̈J + n̈E − τ̈ext + Ksq̈J
) (3.65c)

can be derived. Note that the second time derivative of the external forces τext
appears in the feedback transformation (3.65), which can be unfeasible to obtain
in real applications due to the sensor noise. Application of (3.65) to the system
(2.65), joint forces τJ of (2.67), and output function (2.1), with the new control
input vp,e ∈ RN , results in a linear input-output relation from the new input
vT
p,e = [vT

p,t,e,vT
p,r,e], with vT

p,t,e = [v||,e, v⊥,e, vt,e], to the virtual output ŷp in the
form of N integrator chains of length four

ŷ(4)
p = vp,e . (3.66)

The new inputs v⊥,e and vt,e can be used to fulfill the control objectives (O1) and
(O2) and with v||,e an application specific motion along the path can be achieved.
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3.6.2.3 Stabilization of the linearized system

If pi(s) = s4 + ai,4,es
3 + ai,3,es

2 + ai,2,es+ ai,1,e constitutes a Hurwitz polynomial
for i ∈ {η, ξ, r}, the position control law

vp,e =




(ηp1)(4) − aη,4,ee(3)
η − aη,3,eëη − aη,2,eėη − aη,1,eeη

(ξp1)(4) − aξ,4,ee(3)
ξ1 − aξ,3,eëξ1 − aξ,2,eėξ1 − aξ,1,eeξ1

(ξp3)(4) − aξ,4,ee(3)
ξ3 − aξ,3,eëξ3 − aξ,2,eėξ3 − aξ,1,eeξ3

(ypr)(4) − ar,4,ee(3)
r − ar,3,eër − ar,2,eėr − ar,1,eer




(3.67)

asymptotically stabilizes the linear system (3.66). The references for the position
on the path and deviation from the path in (3.67) have to be of class C4.

The pure elastic PFC approach can also be combined with compliance control,
but, in the present case, the references η̈p1, ξ̈p1 , ξ̈p3 , and ÿpr of the impedance control
law (3.42) have to be differentiated twice with respect to the time to obtain the
references (ηp1)(4), (ξp1)(4), (ξp3)(4), and (ypr)(4) for the position control law (3.67).
This entails that the second time derivative of the measured external forces or
torques τext is required.

3.6.3 Simplification using singular perturbation theory
The feedback transformation (3.65) for the full state model of a pure elastic joint
robot contains the second order time derivative of the mass matrix DE(qJ) and
the Coriolis matrix CE(qJ , q̇J), contained in nE(qJ , q̇J). Hence, the control law is
computationally demanding for robots with several degrees of freedom. Therefore,
a singular perturbation approach is proposed in the following, which allows to
resort to a simpler control law.

3.6.3.1 Singular perturbation approach

Singular perturbation theory, see [76], has been widely used to simplify the
controller design for robots with elastic joints, see, e.g., [7] and [85]. Within this
approach, the system dynamics are split up into a fast and a slow subsystem.
For the problem at hand, the slow subsystem is related to the link dynamics and
the fast subsystem to the elastic joint dynamics. In order to apply the singular
perturbation theory to the elastic joint robot, the dynamics of the joint torques
τJ have to be fast in comparison to the dynamics of the joint coordinates qJ .
Hence, the stiffness Ks needs to be sufficiently large, which is why Ks is formally
replaced by Ks = Kε/ε

2, with 0 < ε� 1, see [85]. The slow quasi-steady state
model is then given by, see [85],

(DE(q̄J) + DM) ¨̄qJ + nE(q̄J , ˙̄qJ) = τ̄d + τ̄ext , (3.68)

where a bar refers to a quasi-steady state and the generalized friction forces on
the motor side τf,M are assumed to be zero. This model corresponds to the rigid
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body model with neglected coupling effects between the rotor and the link motion.
The boundary layer model in the new coordinates z = τJ − τ̄J and the fast time
ν = (t− t0)/ε with (arbitrary) initial time t0 reads as, see [85],

d2z
dν2 + Kε

(
D−1
E (qJ) + D−1

M

)
z = KεD−1

M (τd − τ̄d) . (3.69)

Because qJ is considered to be constant in the fast time ν, the boundary layer
system (3.69) is linear and time invariant.

3.6.3.2 Controller

A composite controller is used in the following. The control input τd is split up into
a slow component τd,s and a fast component τd,f such that the slow component
only affects the quasi-steady state model (3.68) and the boundary layer model
(3.69) is only affected by the fast component. The overall control input reads as
τd = τd,s + τd,f .

The path following controller is designed for the quasi-steady state model
(3.68), which corresponds to the rigid body model resulting in the slow control
input component, compare (3.29),

τd,s = nE(q̄J , ˙̄qJ)− τext + (DE(q̄J) + DM) Ĵ−1
p

(
vp − ˙̂Jp ˙̄qJ

)
. (3.70)

Hence, the path parametrization σ(θ) only has to be C3 and the position and
compliance controllers as described in Section 3.5.3 can be used to compute vp.
The fast control input component

τd,f = −εDbτ̇J , (3.71)

with the positive definite damping matrix Db, gives rise to exponentially stable
closed-loop dynamics of the boundary layer system (3.69), see [85]. Hence, applying
the singular perturbation approach to pure elastic joint robots with relatively stiff
transmissions tremendously simplifies the path following controller and allows to
use the results from the PFC approach for fully actuated manipulators.

3.7 Implementation
The proposed static state feedback controllers are implemented on digital comput-
ers. Hence, a time discretization in the form tk = kTs, k = 0, 1, 2, . . . is performed,
with the sampling time Ts. For the discrete-time implementation of the PFC,
the optimization problem (3.6), the integral (3.12), and the differential-algebraic
equations (3.2) have to be solved numerically in real time.
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3.7.1 Numerical solution of the optimization problem
The optimization problem (3.6) is numerically solved using the Newton method.
For the initialization, the global optimum θ∗0 is needed. A sufficient number of
evenly spread points on the path γt are chosen and the distances to yt(0) are
calculated. The point with shortest distance is used as starting point for the local
minimum search to obtain θ∗0. Then, the optimization problem (3.6) is iteratively
solved in each time step k = 1, 2, . . . for i = 1, 2, . . . according to

θk,i = θk,i−1 −
J ′(θk,i−1)
J ′′(θk,i−1) , (3.72)

with initial condition θk,0 = θ∗k−1 and cost function J(θk,i−1) = ‖yt,k −σt(θk,i−1)‖2
2

until |θk,i − θk,i−1| < ε. The optimal solution θ∗k = θk,i is used to perform the
numerical integration of (3.12), i.e.,

η1,k = η1,k−1 + (θ∗k − θ∗k−1)‖σ′t(θ∗k)‖2 , (3.73)

where η1,k = η1(kTs) and θ∗k = θ∗(kTs).

3.7.2 Discretization of the parallel transport frame
A discrete method to calculate the normal vectors of the parallel transport frame
is proposed in [25]. In every time step k = 1, 2, . . . , a rotation axis and an
angle is determined from the tangential vectors e||,k and e||,k−1 and the normal
vectors are rotated with respect to them. The approach is ill-conditioned for
small changes of the tangential vectors. Hence, another approach that directly
solves the overdetermined problem (3.2) to find the first normal vector e⊥(θ) is
presented. Application of the constant step-size backward Euler method, see, e.g.,
[82], to (3.2) for i = ⊥ yields

e⊥,k = e⊥,k−1 + Tsγ⊥,ke||,k
0 = 1− eT

⊥,ke⊥,k
0 = eT

||,ke⊥,k ,
(3.74)

where e⊥,k = e⊥(kTs). The overdetermined equations (3.74) have no solution for
Ts > 0. A straightforward idea is to search for a least-squares solution of (3.74),
see [82]. Therefore, the constrained least-squares problem

min
pk∈R4

f(pk) = 1
2‖e⊥,k−1 − e⊥,k + Tsγ⊥,ke||,k‖2

2

s.t. g1(pk) = 1
2
(
eT
⊥,ke⊥,k − 1

)
= 0

g2(pk) = eT
||,ke⊥,k = 0 ,

(3.75)
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with pT
k = [eT

⊥,k, γ⊥,k] and fixed k, is considered. The optimal solution (p∗k)T =
[(e∗⊥,k)T, γ∗⊥,k] of (3.75) is found using the first-order optimality condition of (3.75),
i.e.,

(∇f)(p∗k) + λ∗1(∇g1)(p∗k) + λ∗2(∇g2)(p∗k) = 0 (3.76a)
g1(p∗k) = 0 (3.76b)
g2(p∗k) = 0 , (3.76c)

with Lagrange multipliers λ∗1 and λ∗2 and gradients

(∇f)T = ∂f

∂pk
=
[
−
(
e∗⊥,k−1 − e∗⊥,k + Tsγ

∗
⊥,ke||,k

)T
,

Ts
(
e∗⊥,k−1 − e∗⊥,k + Tsγ

∗
⊥,ke||,k

)T
e||,k

]

(∇g1)T = ∂g1

∂pk
=
[(

e∗⊥,k
)T

0
]

(∇g2)T = ∂g2

∂pk
=
[
eT
||,k 0

]
.

(3.77)

From the last row of (3.76a) and (3.76c), we obtain

γ∗⊥,k = − 1
Ts

eT
||,ke∗⊥,k−1 . (3.78)

Multiplying (3.76a) by eT
||,k and using (3.76b) and (3.76c) yields λ∗2 = 0 and

e∗⊥,k = 1
1 + λ∗1

(
e∗⊥,k−1 − eT

||,ke∗⊥,k−1e||,k
)
. (3.79)

Inserting (3.79) into (3.76b) results in

1 + λ∗1 = ±
√

1−
(
eT
||,ke∗⊥,k−1

)2
. (3.80)

Thus, (3.75) features the analytic solution

e∗⊥,k =
e∗⊥,k−1 − eT

||,ke∗⊥,k−1e||,k√
1−

(
eT
||,ke∗⊥,k−1

)2
, (3.81)

which represents an iteration for the first normal vector e⊥,k. Note that to ensure
continuity of e∗⊥,k the positive solution of (3.80) has to be used.

The iteration (3.81), without derivation, can also be found in [86]. The initial
condition for the iteration (3.81), i.e., e⊥(θ0) = e⊥,1, must comply with the
algebraic equations of (3.74). In the following, it is proved that the iteration
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(3.81) converges to the solution of (3.2) for Ts → 0. The difference equation (3.81)
reads as

e⊥,k
√

1−
(
eT
⊥,k−1e||,k

)2 − e⊥,k−1 = −eT
⊥,k−1e||,ke||,k . (3.82)

Substitution of (3.78) on the left hand side in (3.82), dividing by Ts, and taking
the limit results in

lim
Ts→0

√
1− T 2

s γ
2
⊥,ke⊥,k − e⊥,k−1

Ts

= ė⊥ + lim
Ts→0

√
1− T 2

s γ
2
⊥,k − 1

Ts
e⊥,k = ė⊥ = e′⊥θ̇ .

(3.83)

Utilizing (3.76c) for k − 1 on the right hand side in (3.82), dividing by Ts, and
taking the limit yields

− lim
Ts→0

eT
⊥,k−1

e||,k − e||,k−1

Ts
e||,k = −eT

⊥ė||e|| = −eT
⊥e′||e||θ̇ . (3.84)

Thus, in the limit case Ts → 0, the iteration (3.81) resembles (3.4) and the
iteration (3.81) numerically solves the differential-algebraic system (3.2). The
second normal vector et(θ) is calculated using (3.5).

3.7.3 Path parametrization
A path γ may be represented by any regular parametrization σ(θ) : T 7→ R

n of
class Ck. Arbitrary paths can be approximated using splines, where the Ck curve
is defined piecewise by polynomials. In the experiments with the DELTA robot
presented in Section 3.8.1 and 3.8.2, quartic splines are used, which are of class
C3. In particular, a parametrization σ(θ) : T 7→ R

n of the form

σ(θ) =





σ0(θ), θ0 ≤ θ < θ1

σ1(θ), θ1 ≤ θ < θ2
...

σl−1(θ), θl−1 ≤ θ ≤ θl

(3.85a)

consisting of l path segments with

σs(θ) = σ|[θs,θs+1) (θ) =
4∑

j=0



aj,s(θ − θs)j
bj,s(θ − θs)j
cj,s(θ − θs)j


 (3.85b)

and suitable coefficients aj,s, bj,s, cj,s, j = 0, . . . , 4 and s = 0, . . . , l−1 is considered.
Note that also non-uniform rational basis splines (NURBS), see [87], can be used
to parametrize a path γ.
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3.8 Applications
This section illustrates the characteristics and demonstrates the applicability of the
control concepts presented in this chapter. PFC for fully actuated manipulators
is implemented on the real-time system DS1006 from dSPACE with a sampling
time of Ts = 1 ms to control a DELTA robot of the type Festo EXPT-45, see
Fig. 3.4. Experimental results with position control are shown in Section 3.8.1
and with compliance control in Section 3.8.2.

The performance of the PFC for elastic joint robots is evaluated by simulation
studies using Matlab R©/Simulink R© R2016b on a 64 bit Windows 7 computer.
In Section 3.8.3, PFC of a serial robot with three pure elastic rotational joints
is shown. A simulation example of the simplified PFC for elastic joint robots
using singular perturbation theory is given in Section 3.8.4, where a six axis
industrial robot with pure elastic joints is stabilized on a spline path. Additionally,

Figure 3.4: DELTA Robot Festo EXPT-45. [70] c© 2017 IEEE
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a classical trajectory tracking controller (TTC) is simulated to demonstrate the
advantages of PFC compared to TTC.

The application of PFC approach for fully actuated manipulators and the
kinematic PFC approach to generate virtual fixtures for physical human-robot
interaction is presented in Chapter 5.

3.8.1 Path following control of a Delta robot
In this experiment, the PFC law (3.29) with the Jacobian (2.33) and the position
controller (3.33), where integral parts are added, is implemented on the real-time
system DS1006 and applied to the DELTA robot Festo EXPT-45. Since a
DELTA robot features three translational and no rotational degrees of freedom,
the rotational subsystem ζ is omitted. The mathematical model of the DELTA
robot is presented in Chapter 2. A teach-in procedure followed by a quartic spline
interpolation was performed, using (3.85) to obtain the path γt, which is depicted
in Fig. 3.5.

The position controller with integral parts is given by, cf. (3.33)

vp =




η̈p1 − aη,2ėpη − aη,1epη − aη,0
t∫

0
epηdτ

ξ̈p1 − aξ,2ėpξ1 − aξ,1e
p
ξ1 − aξ,0

t∫
0
epξ1dτ

ξ̈p3 − aξ,2ėpξ3 − aξ,1e
p
ξ3 − aξ,0

t∫
0
epξ3dτ




(3.86)
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Figure 3.5: Path γt and measured output yt of the PFC experiment on a DELTA
robot. [70] c© 2017 IEEE
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and the control parameters are shown in Table 3.1. A reference ηp1 for the
tangential coordinate η1 is generated, which smoothly connects the starting point
ηp1,0 = 0.022 m and the end point ηp1,T = 0.31 m with a maximum velocity of
η2,max = 0.1 m/s. The references in transversal direction, ξp1 and ξp3 , and their
derivatives are set to zero. The end-effector was initially placed next to the path.
Fig. 3.5 depicts the measured output yt which obviously converges to the path
γt. The tangential coordinate η1 and the reference ηp1 is shown in Fig. 3.6(a).
The measurements clearly show that control objective (O3) is fulfilled. The
transversal states ξ1 and ξ3, depicted in Fig. 3.6(b), quickly converge to zero and
stay approximately at zero, hence, the control objectives (O1) and (O2) are also
satisfied. The deviation of the transversal states from zero is mainly caused by the
sticking friction in the linear drives. This gets clear by comparing the transversal
states ξ1 and ξ3 with the generalized velocities q̇ of Fig. 3.6(e) and the linear drive
forces τd of Fig. 3.6(f). Fig. 3.6(c) shows in addition the virtual control input
vT
p = [v|| , v⊥ , vt ].

3.8.2 Compliant path following control of a Delta Robot
To illustrate the combined path following and compliance control strategy, an
experiment is performed, in which the end-effector of the DELTA robot is operated
in a notch. This is a typical task that may occur in automatic glue dispersion,
where the environment is not exactly known. Fig. 3.4 shows the Festo EXPT-45,
a ball with a soft shell, which is fixed to the robot via a gripper, and a ball notch.
A teach-in procedure is performed and the path γ is recorded and interpolated
using quartic splines, as described in Section 3.7.3. The task of this experiment is
to move the end-effector with the ball along a ball notch from ηd1,0 = 0.02 m to
ηd1,T = 0.49 m with a maximum velocity of ηd2,max = 0.5 m/s. If the recorded path
exactly conforms with the real path this task is not a problem at all. However,
if the workpiece is displaced with respect to the recorded path, the ball on the
end-effector gets in contact with the environment. Pure position control would
either damage the ball notch of the workpiece, break the end-effector or harm the
ball joints of the DELTA robot.

In the considered experiment, the workpiece is displaced−2.5 mm in x-direction
and 5.5 mm in y-direction. The feedback transformation (3.29), the position con-
trol law (3.86), and the impedance control law (3.42), with the control parameters
from Tables 3.1 and 3.2, are executed in real-time on the dSPACE system with

Table 3.1: Control parameters.
Symbol Value Unit Symbol Value Unit
aη,0 42875 1/s3 aξ,0 125000 1/s3

aη,1 3675 1/s2 aξ,1 7500 1/s2

aη,2 105 1/s aξ,2 150 1/s
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Figure 3.6: Experimental results of the PFC strategy applied to the DELTA robot.
[70] c© 2017 IEEE

a sampling time of Ts = 1 ms. The damping ratio of the virtual mass-spring-
damper systems is defined as ζd = 5, which results in the damping constants
ddi = 2ζd

√
md
i k

d
i , for i ∈ {||,⊥}. This relatively high damping is required to ensure

contact stability, see, e.g., [31, 88] for more information. To measure the external
force τext, the six-axis force sensor K6 −D40 from ME-Messsysteme is used.
Fig. 3.7 shows that the output yt deviates from the original path γt due to

the displacement of the workpiece with the ball notch. However, the proposed
control strategy is still able to move the ball with maximum velocity inside the
notch. As shown in Fig. 3.8(a), the reference motion ηd1 along the path can be
tracked very well. The position errors in the transversal states are smaller than
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Table 3.2: Compliance control parameters.
Symbol Value Unit Symbol Value Unit
md
|| 0.3 kg md

⊥ 0.3 kg
dd|| 300 Ns/m dd⊥ 122.47 Ns/m
kd|| 3 kN/m kd⊥ 0.5 kN/m
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Figure 3.7: Path γt and measured output yt with the combined PFC and compli-
ance control strategy. [70] c© 2017 IEEE

1 mm, cf. Fig. 3.8(b). Note that the characteristics of ξp1 and ξp3 correspond to the
displacement of the notch. The forces acting on the ball during the movement are
depicted in Fig. 3.8(c). The force in tangential direction τ|| is mainly caused by
friction between the ball and the notch. In addition, the control inputs τd, i.e.
the forces of the linear drives, are shown in Fig. 3.8(d).

3.8.3 Path following control of a 3R elastic joint robot
The PFC is applied to the industrial robot Comau Racer 1.4, where it is assumed
that only the first three joints are actuated and the last three joints are fixed.
Only the position of the end-effector is considered in the simulations and the
orientation is ignored. Hence, the 3R robot features three translational and no
rotational degrees of freedom. In contrast to the real robot, the transmissions
of the joints are assumed to be purely elastic with a relatively low stiffness of
Ks = 103 · diag([35, 35, 19])Nm/rad and the friction τf is set to zero. Hence, the
simplified equations of motion (2.65) with the joint torques (2.67) serves as basis
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Figure 3.8: Experimental results of the combined PFC and compliance control
strategy. [70] c© 2017 IEEE

for the Matlab R©/Simulink R© simulation model. Henceforth, the PFC for elastic
joint robots presented in Section 3.6.2, the singular perturbation PFC approach
of Section 3.6.3, and the PFC for fully actuated manipulators of Section 3.5
are compared for this elastic joint robot. For the latter PFC approach, the
motor coordinates qM have to be used instead of the link coordinates qJ because
otherwise the closed-loop system would become unstable, see [7].

The smooth path γt is defined as a vertically bent lemniscate

σt(θ) =




0.25 cos(θ) + 0.7
0.25 sin(θ) cos(θ) + 0.2

0.1 sin2(θ) + 1.103


 (3.87)

and is depicted in Fig 3.9. All numbers are given in meters. The reference ηp1 for
the tangential coordinate η1 smoothly connects the starting point ηp1(t0) = 0.96m,
the point ηp1(t1) = 0.31m and the end point ηp1(t2) = 1.99m with a maximum
velocity of |η̇1,max| = 1.5m/s.

First, the results with the PFC law (3.65) and (3.67) for the elastic joint robot
of Section 3.6.2, with the control parameters of Tab. 3.3, are presented. The
simulated output yt is depicted in Fig 3.9 and the corresponding trajectories in
Fig. 3.10. Fig. 3.10(a) shows that the desired motion on the path ηp1 is tracked
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Figure 3.9: Path γt and simulated output yt with PFC approach for the 3R elastic
joint robot.

Table 3.3: Control parameters of the PFC approach for the 3R elastic joint robot.
Symbol Value Unit Symbol Value Unit
aη,1,e 6250000 1/s4 aξ,1,e 6250000 1/s4

aη,2,e 500000 1/s3 aξ,2,e 500000 1/s3

aη,3,e 15000 1/s2 aξ,3,e 15000 1/s2

aη,4,e 200 1/s aξ,4,e 200 1/s

very well and Fig. 3.10(b) illustrates that the output yt converges to and then
remains on the path γt. In Fig. 3.10(c), it can be seen that the motor velocities
q̇M,i slightly differ from the joint velocities q̇J,i, in particular for high drive torques
τd,i due to the elastic transmissions, cf. Fig. 3.10(d).

Second, the results of the singular perturbation PFC approach according to
(3.70) with (3.33) and (3.71) are presented. Thereby, the control parameters of
Tab. 3.4 are used, where the damping matrix for the fast control input (3.71)
reads as Db = diag([db,1, db,2, db,3]). Fig. 3.11 shows that the desired motion on
the path ηd1 is tracked very well, but large deviations from the path of up to 40mm
occur. A comparison of Fig. 3.11 with Fig. 3.10 reveals that the oscillations of
the link coordinates qJ,i and the motor torques τd,i are larger with the singular
perturbation PFC approach. Hence, the stiffness Ks in this simulation example
is too small to properly apply the singular perturbation theory. Note that the
singular perturbation PFC approach shows good results in the simulation example
of Section 3.8.4, where the stiffness Ks is ten times larger than in this simulation
example.

Third, the results with the PFC approach for fully actuated manipulators
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Figure 3.10: Simulated performance of the PFC approach for a 3R elastic joint
robot.

of Section 3.5 with the control parameters of Tab. 3.4 are presented. Again,
the desired motion on the path ηp1 is tracked very well, which can be seen in
Fig. 3.12(a). The deviations from the path are below 20mm and, therefore, much
smaller than with the singular perturbation PFC approach, cf. Fig. 3.12(b). A
static error from the path remains because only the motor coordinates qM are
used for the control law. The joint coordinates qJ , which are relevant for the
actual end-effector pose, differ due to gravity. The drive torques τd,i are also larger
compared to the PFC approach for the elastic joint robot.

Table 3.4: Control parameters of the singular perturbation PFC and the PFC for
fully actuated manipulators for the 3R elastic joint robot.

Symbol Value Unit Symbol Value Unit
aη,1 900 1/s2 aξ,1 900 1/s2

aη,2 60 1/s aξ,2 60 1/s
ε 4 · 10−5 1 db,1 1100 1/s
db,2 1100 1/s db,3 640 1/s
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Figure 3.11: Simulated performance of the singular perturbation PFC for a 3R
elastic joint robot.

3.8.4 Comparison between path following and trajectory
tracking control

In this section, the PFC is compared with a classical trajectory tracking controller
(TTC) to point out the differences between these two concepts. The industrial
robot Comau Racer 1.4 is chosen for the simulation model, but in contrast
to the real robot the joints are assumed to be pure elastic with the stiffness
Ks = 104 · diag([35, 35, 19, 3, 1, 0.5])Nms/rad and the friction τf is set to zero.

The singular perturbation PFC law (3.70) and (3.71) together with the position
and orientation control laws (3.33) and (3.38) are used. The control parameters
are listed in Table 3.5 and εDb = 10−3 · diag([22, 22, 8.8, 2.4, 4.4, 2.2])Nms/rad.
The path γ and, therefore, the parametrization σT(θ) = [σT

t (θ),σT
r (θ)], is an

Table 3.5: Control parameters for the 6R elastic joint robot.
Symbol Value Unit Symbol Value Unit
aη,1 361 1/s2 aη,2 38 1/s
aξ,1 729 1/s2 aξ,2 54 1/s
ar,1 625 1/s2 ar,2 50 1/s
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Figure 3.12: Simulated performance of the PFC for fully actuated manipulators
for a 3R elastic joint robot.

approximation using quartic splines of the recorded end-effector position and
orientation during an experiment on the real robot and its position part γt is
depicted in Fig. 3.13. The reference ηp1 for the tangential coordinate η1 smoothly
connects the starting point ηp1,0 = 0.026m and the end point ηp1,T = 0.954m with a
maximum velocity of η̇p1 = 0.3m/s. An external force acts between t = 1.5s and
t = 2.0s on the end-effector in a way that the system is slowed down in tangential
direction with respect to the path to show the benefits of the PFC in comparison
to a classical TTC.

Fig. 3.14(a) shows that the desired motion on the path ηp1 can be tracked very
well except for the time period where the external force, as described above, is
applied. The two transversal states ξ1 and ξ3, which are depicted in Fig. 3.14(b),
converge to zero and stay approximately at zero even when the external force
is exerted on the robot. In Fig. 3.14(c) and Fig. 3.14(d), one can see that the
Euler angles ϕ and ϑ of the end-effector’s orientation φe quickly converge to the
reference Euler angles ϕd = σr,1(θ∗) and ϑd = σr,2(θ∗), respectively, corresponding
to the actual optimal path parameter θ∗. The Euler angle ψ has a similar behavior
and is omitted for brevity. In contrast to TTC, cf. Fig. 3.15, the progress of the
reference orientation automatically slows down corresponding to the actual speed
on the path. The motor torques τd are depicted in Fig. 3.14(e) and Fig. 3.14(f).
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Figure 3.13: Path γt and simulated output yt for the 6R elastic joint robot.

For a comparison of the PFC with TTC, a computed torque controller, e.g.
[7], is implemented for the same elastic joint robot. The reference trajectory is
constructed using the path γ of Fig. 3.13 and the same reference motion on the
path as for the PFC. The control parameters are chosen in such a way that the
TTC has similar dynamics as the PFC. The same force acting between t = 1.5s
and t = 2.0s is applied to the end-effector. The output yt is transformed into
tangential and transversal coordinates η1, ξ1, and ξ3 for better comparability.
Fig. 3.15(a) shows that the motion along the path with TTC is similar to the PFC.
In Fig. 3.15(b), the deviations to the path are depicted. The error is much bigger
than for the PFC when the robot is slowed down in tangential direction to the
path with an external force, cf. Fig. 3.14(b). Fig. 3.15(c) and Fig. 3.15(d) show
the Euler angles ϕ and ϑ as well as their references ϕd and ϑd, respectively. Since
the reference trajectory is parametrized in time, the progress of the orientation
does not slow down. This is in contrast to the PFC, where the progress of the
reference orientation is defined by the progress on the path.
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Figure 3.14: Simulated performance of the PFC for a 6R elastic joint robot.
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Figure 3.15: Simulated performance of the TTC for a 6R elastic joint robot.



CHAPTER 4

Surface Following Control

This chapter presents surface following control (SFC) for fully actuated manip-
ulators and elastic joint robots in three-dimensional space, which is based on
input-output linearization, cf. [78]. The presented SFC approach is closely related
to the PFC approach presented in the previous chapter, but here, the system
is stabilized on a two-dimensional surface rather than a one-dimensional path.
It can handle open, closed, and intersecting surfaces represented by a regular
parametrization of class Ck, which is in contrast to the approaches of [12–14] that
require the implicit representation of the surface.

The proposed SFC approach for fully actuated manipulators is applied to
a DELTA robot and the Comau Racer 1.4 for a proof of concept. In the first
experiment, the DELTA robot’s position is stabilized on a cylinder and a reference
motion on the cylinder is tracked. In the second experiment, the combination of
SFC and compliance control is applied to the Comau Racer 1.4 and a human
operator moves the robot along a paraboloid of revolution. The SFC approach for
visco-elastic joint robots is verified by a simulation study in Matlab R©/Simulink R©,
where end-effector’s position of a 3R elastic joint robot is stabilized on a paraboloid
of revolution.

Parts of this chapter are published in similar form in [81, 89].

4.1 Surface assumptions
The surface S is given by a regular Ck parametrization σT(θ) = [σT

t (θ),σT
r (θ)] :

Ts 7→ R
n with the parameter vector θT = [θ1, θ2], which is an element of the

nonempty set Ts ⊆ R2. The surface S can be separated into a position part St
defined by σt(θ) ∈ Rnt and an orientation part Sr defined by σr(θ) ∈ Rnr . The

73
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parametrization σ(θ) of the surface S is regular, if σt,θ1 × σt,θ2 6= 0∀θ ∈ Ts,
where σt,θi = ∂σt/∂θi for i = 1, 2. Hence, at each point of the regular surface St
there exist two linear independent tangent vectors σt,θi , i = 1, 2, with ‖σt,θi‖ > 0,
and a normal unit vector e⊥(θ), which is the normalized cross product of the two
tangent vectors.

4.2 Control objectives
The mapping ‖yt‖St = inf ȳt∈St ‖yt− ȳt‖2 is introduced to formulate the objectives
of surface following control. It assigns each position yt in the output space a
nonnegative real number that is the shortest distance to the surface St. The
control objectives of surface following control are defined as follows, see Fig. 4.1:

(O1) Asymptotic convergence to St: The position output yt of (2.1) converges
asymptotically to the surface St, i.e., ‖yt(t)‖St → 0 for t→∞.

(O2) Invariance property: If the configuration coordinates and velocities of the dy-
namic system at time t0, i.e., [q̄T

J (t0), ˙̄qT
J (t0)]T, are elements of the controlled

invariant subset Γ∗ of

Γ =
{[

q̄T
J , ˙̄qT

J

]T ∈ R2n : h (q̄J) ∈ S
}
, (4.1)

then ‖yt(t)‖St = 0, ∀t ≥ t0.

(O3) Tangential motion: The motion on the surface St meets application-specific
requirements.replacemen

yt(t0)

yt(t1)

St

x0

y0

z0

Figure 4.1: Surface following control objectives.
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4.3 Moving frame
The tangent unit vectors of the surface parametrization σt(θ) are given by

e||,i(θ) = σt,θi(θ)
‖σt,θi(θ)‖2

, i = 1, 2 (4.2)

and span the tangent plane to St at θ as depicted in Fig. 4.2. The normal unit
vector e⊥(θ) is obtained using the cross product

e⊥(θ) = σt,θ1(θ)× σt,θ2(θ)
EG− F 2 , (4.3)

where
EG− F 2 = ‖σt,θ1(θ)× σt,θ2(θ)‖2

2 > 0 (4.4)
with the coefficients of the first fundamental form

E = σT
t,θ1σt,θ1 > 0 , F = σT

t,θ1σt,θ2 , G = σT
t,θ2σt,θ2 > 0 . (4.5)

The angle between the tangent unit vectors e||,1(θ) and e||,2(θ) is given by α||(θ) =
arccos

(
F/
√
E G

)
and due to the regularity of the surface S, sin

(
α||(θ)

)
6= 0

holds. At each point on a regular surface St, the three linear independent vectors
e||,1, e||,2, and e⊥ are defined and form a frame. Thus, any other vector can be
represented as a linear combination of (4.2) and (4.3). It can be shown, see, e.g.,
[21, p.128], that the partial derivatives of (4.3) with respect to θ1 and θ2, i.e.,
e⊥,θi = ∂e⊥/∂θi, are given by the Weingarten equations

e⊥,θ1(θ) = α11(θ)σt,θ1(θ) + α12(θ)σt,θ2(θ) ,
e⊥,θ2(θ) = α21(θ)σt,θ1(θ) + α22(θ)σt,θ2(θ) .

(4.6)
replacemen

yt(t1)

St

y∗
t (t1)

= σt(θ∗)

e⊥(θ∗)

e||,1(θ∗)

e||,2(θ∗)

α||(θ∗)

|δ|
x0

y0

z0

Figure 4.2: Moving frame of the surface following control.
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The functions αij(θ) in (4.6) read as

α11(θ) = MF − LG
EG− F 2 , α12(θ) = LF −ME

EG− F 2 ,

α21(θ) = NF −MG

EG− F 2 , α22(θ) = MF −NE
EG− F 2 ,

(4.7)

with the coefficients of the second fundamental form

L = σT
t,θ1θ1e⊥ , M = σT

t,θ1θ2e⊥ , N = σT
t,θ2θ2e⊥ , (4.8)

where σt,θiθj = ∂2σt/∂θi∂θj.

4.4 Projection operator and feasible neighbor-
hood

The orthogonal projection PTs(yt) is used to determine the closest point y∗t =
σt(θ∗) on the surface St to yt. Let σ(θ) with θ ∈ Ts ⊆ R2 be a parametrized
surface, the orthogonal projection of yt onto σt(θ) reads as

θ∗ = PTs(yt) = argmin
θ∈Ts

f(yt,θ) ∈ Ts , (4.9)

with
f(yt,θ) = 1

2‖d(yt,θ)‖2
2 , d(yt,θ) = yt − σt(θ) .

If θ∗ is inside the set Ts, (4.9) features a strict minimum in a feasible neighborhood.
The optimum θ∗ fulfills the first-order necessary condition for optimality

(
∂f

∂θ

)
(yt,θ∗) =



−
(
σ∗t,θ1

)T
d∗

−
(
σ∗t,θ2

)T
d∗


 = 0 , (4.10)

with σ∗t,θi = (∂σt/∂θi)(θ∗) for i = 1, 2 and d∗ = d(yt,θ∗), in addition to the
second-order sufficient condition for optimality

H∗ = H(yt,θ∗) =
(
∂2f

∂θ2

)
(yt,θ∗) > 0 , (4.11)

with the Hessian

H∗ =
[
E∗ F ∗

F ∗ G∗

]
−




(
σ∗t,θ1θ1

)T
d∗

(
σ∗t,θ1θ2

)T
d∗

(
σ∗t,θ2θ1

)T
d∗

(
σ∗t,θ2θ2

)T
d∗


 , (4.12)

where K∗ = K(θ∗), K ∈ {E,F,G}, see, e.g., [83] for necessary and sufficient
optimality conditions for static optimization problems. The second-order sufficient
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condition for optimality (4.11) is given in terms of the leading principle minors of
H∗, i.e.,

β1(yt) = E∗ −
(
σ∗t,θ1θ1

)T
d∗ > 0 , (4.13a)

β2(yt) = det(H∗) > 0 . (4.13b)

Hence, the feasible neighborhood of a surface is defined as Yt = {ȳt ∈ Rnt :
βi(ȳt) > 0, i = 1, 2}. Clearly, if yt ∈ St, d∗ = 0 and H∗ > 0 holds because of
(4.4) and (4.5).

Differentiating the first-order condition for optimality (4.10) with respect to
the time results in

θ̇∗ = (H∗)−1




(
σ∗t,θ1

)T

(
σ∗t,θ2

)T


 ẏt . (4.14)

4.5 Surface following control for fully actuated
manipulators

In this section, a surface following controller for fully actuated manipulators as
described in Section 2.4.3, with the dynamics (2.42) and the output function (2.1),
is presented. Additionally, a drastically simplified surface following concept using
joint velocity controllers is introduced.

4.5.1 Coordinate transformation
A coordinate transformation is defined, which maps the generalized coordinates
and velocities, q and q̇, of the system (2.42) and (2.1) into tangential coor-
dinates ψT = [ηT

1 ,η
T
2 ] ∈ R4, transversal coordinates ξT = [ξ1, ξ2] ∈ R2, and

rotational coordinates ζT = [yT
r , ẏT

r ] ∈ R2nr with respect to a surface S with
regular parametrization σ(θ) of class C3. It will be shown that the coordinate
transformation is a diffeomorphism in a feasible neighborhood Yt of the surface S.

The rotational subsystem is the same as for the PFC for fully actuated
manipulators defined in Section 3.5.1.3 and thus omitted in this section.

4.5.1.1 Tangential subsystem

The tangential coordinates are defined by

η1 = g(yt) =
∫ t

t0
Σ∗θ̇∗dτ , (4.15)

with initial time t0 and the nonsingular matrix

Σ∗ =

‖σt,θ1(θ∗)‖2 ‖σt,θ2(θ∗)‖2 cos

(
α||(θ∗)

)

0 ‖σt,θ2(θ∗)‖2 sin
(
α||(θ∗)

)

 ,
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which ensures that the two components of η1 locally represent a physically
interpretable length in orthogonal directions. Differentiation of (4.15) with respect
to the time t and using (4.14) yields

η̇1 = η2 = Σ∗θ̇∗

= Σ∗ (H∗)−1
[
σT
t,θ1(θ∗)
σT
t,θ2(θ∗)

]

︸ ︷︷ ︸
∇g

ẏt , (4.16)

with the Jacobian ∇g = ∂g/∂yt.

4.5.1.2 Transversal subsystem

The transversal coordinate ξ1 is defined as the projection of d(θ∗) = yt − σt(θ∗)
onto the normal vector e⊥, i.e.,

ξ1 = δ(yt) = eT
⊥(θ∗)

(
yt − σt(θ∗)

)
. (4.17)

Differentiating (4.17) with respect to the time yields with (4.6)

ξ2 = ξ̇1 = eT
⊥(θ∗)ẏt = (∇δ)T Jtq̇ , (4.18)

with the gradient (∇δ)T = ∂δ/∂yt and Jt = ∂ht(q)/∂q.

4.5.1.3 Diffeomorphism

A C1-diffeomorphism is constructed, where the tangent, normal, and rotation
maps (4.15)-(4.18) and (3.18), (3.19) are used. Introducing the virtual SFC output
ŷT
s = ĥT

s (q) = [ηT
1 , ξ1, ζ

T
1 ] allows us to define the mapping

[
ŷs
˙̂ys

]
=




η1
ξ1
ζ1
η2
ξ2
ζ2




=




g ◦ ht(q)
δ ◦ ht(q)

hr(q)
∇g Jt q̇

(∇δ)T Jt q̇
Jr q̇




= Φ(q, q̇) . (4.19)

Lemma 5. The mapping Φ : X 7→ Z with X = Q × TqQ, Q = {q̄ ∈ RN :
βi ◦ ht(q̄) > 0, i = 1, 2}, and tangent space TqQ is a C1-diffeomorphism, if J(q)
is nonsingular.

Proof. According to the inverse function theorem, the following conditions have
to be satisfied:

(i.) X and Z are open in R2N ,
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(ii.) Φ ∈ C1(X ,Z), and

(iii.) ∇Φ =
[
∂Φ/∂q, ∂Φ/∂q̇

]
is nonsingular ∀

[
qT, q̇T

]T ∈ X .

Since Q is an open subset of RN , X and Z are open in R2N . Moreover, the
output y = h(q) is assumed to be sufficiently smooth and σ(θ) ∈ C3(Ts,RN),
Φ ∈ C1(X ,Z) holds. The Jacobian of Φ reads as

∇Φ =
[
Ĵs(q) 0
∗ Ĵs(q)

]
, (4.20)

with the SFC Jacobian
Ĵs(q) = Ls(q)J(q) (4.21)

and the matrices

Ls(q) =
[
Es(q) 0

0 I

]
and Es(q) =

[
∇g
eT
⊥

]
.

If J(q) is nonsingular and βi(yt) > 0, i = 1, 2, then, Es(q) and Ls(q) are
nonsingular, and thus, Ĵs and ∇Φ are nonsingular for all [qT, q̇T]T ∈ X .

From (4.19) and (4.21) the relation
˙̂ys = Ls(q)ẏ = Ĵs(q)q̇ (4.22)

can be derived, which is equal to (3.22) when replacing the subscript s with p.

4.5.2 Feedback linearization
Differentiating the tangential state η2 = η̇1 from (4.16) with respect to the time
yields

η̈1 = d
dt(∇g) ẏt +∇g ÿt . (4.23)

The time derivative of the transversal state ξ2 = ξ̇1 from (4.18) takes the form

ξ̈1 =
([

e⊥,θ1(θ∗), e⊥,θ2(θ∗)
]
θ̇∗
)T

ẏt + eT
⊥(θ∗)ÿt . (4.24)

The equations (4.23), (4.24), and (3.27) can be written in matrix form as, see also
(4.22)

¨̂ys = ˙̂Js(q, q̇)q̇ + Ĵs(q)D−1(q)
(
τd + τext − n(q, q̇)

)
. (4.25)

Note that (3.28) for ¨̂yp is equal to (4.25) when Ĵp is replaced with Ĵs. Hence, the
SFC feedback transformation is obtained just by replacing Ĵp with Ĵs in the PFC
feedback transformation (3.29) and yields

τd = n(q, q̇)− τext + D(q)Ĵ−1
s (q)

(
vs − ˙̂Js(q, q̇)q̇

)
. (4.26)
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Application of (4.26) to the system (2.42) and (2.1), with the new control input
vT
s = [vT

s,t,vT
s,r], where vT

s,t = [v||,1, v||,2, v⊥], results in the linear input-output
relation

¨̂ys = vs. (4.27)
Note that the dynamics of the transformed system are linear with respect to a
nonlinear plant and a nonlinear surface S. The virtual input in the direction of the
normal vector v⊥ can effectively be used to fulfill objective (O1), i.e., to stabilize
the transversal (ξ1, ξ2)-subsystem and to guarantee asymptotic convergence to the
surface St. The controlled invariant subset is given by

Γ∗ =
{[

q̄T, ˙̄qT
]T ∈ X : Φξ(q̄, ˙̄q) = 0

}
, (4.28)

with
Φξ(q, q̇) =

[
δ ◦ ht(q)

(∇δ)T Jt q̇

]
. (4.29)

Thus, objective (O2) is met, because if [q̄T(t0), ˙̄qT(t0)]T ∈ Γ∗, then by choosing
v⊥ = 0, ξ1 = 0 and ‖yt(t)‖St = 0 ∀t > t0. Moreover, the new inputs in tangential
direction, v||,1 and v||,2, allow to control the motion on the surface, thus, objective
(O3) can be fulfilled.

4.5.3 Stabilization of the linearized system
The new input vs can be computed by any controller that stabilizes the linearized
system (4.27). In the following, a position controller and a compliance controller
for the SFC are presented.

4.5.3.1 Position Control

The simple position control law, cf. Section 3.5.3,

vs =
[
vs,t
vs,r

]
=



η̈p1 − aη,2ėpη − aη,1epη
ξ̈p1 − aξ,2ėpξ − aξ,1epξ
ÿpr − ar,2ėpr − ar,1epr


 , (4.30)

where epη = η1 − ηp1, epξ = ξ1 − ξp1 , epr = yr − ypr yields an exponentially stable
error dynamics, if ai,j > 0 with i ∈ {η, ξ, r} and j = 1, 2. The reference position
on the surface is denoted by ηp1 and the reference for the orthogonal state by
ξp1 . The reference for the orientation is given by ypr = σr(θ∗). The orthogonal
state ξ1 exponentially converges to the reference ξp1 and, thus, objective (O1) is
fulfilled for ξp1 = 0. Additionally, if [qT(t0), q̇T(t0)]T ∈ Γ∗, then v⊥ = 0 holds, the
output yt stays on the surface St for all t ≥ t0, and objective (O2) is fulfilled.
The tangential coordinate η1 exponentially converges to the reference ηp1 . Hence,
objective (O3) is also satisfied.
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In the case of dim(yr) = nr = 3, the same method as presented in Sec-
tion 3.5.3.1 can be used to deal with the representation singularities of the Euler
angles.

4.5.3.2 Compliance control

A similar approach as in Section 3.5.3.2 for the PFC is used here to generate a
desired compliance behavior for the SFC. With the SFC, the reference impedance of
the motion along and orthogonal to the surface as well as the reference impedance
of the orientation can be separately defined as



τ||
τ⊥
τr


 =



md
||ëdη + dd||ėdη + kd||edη

md
⊥ë

d
ξ + dd⊥ė

d
ξ + kd⊥e

d
ξ

md
r ëdr + ddr ėdr + kdredr


 , (4.31)

where edη = η1 − ηd1 and edξ = ξ1 − ξd1 denote the errors between the coordinates
η1, ξ1 and the references ηd1 and ξd1 . Moreover, md

i , ddi , and kdi for i ∈ {||,⊥, r}
are positive design parameters for the reference impedance model. The external
(projected) generalized forces are given by



τ||
τ⊥
τr


 = Ĵ−T

s τext . (4.32)

The controller (4.30) is employed for the inner position control loop and
assuming perfect tracking, the actual tangential and transversal coordinates η1
and ξ1 as well as the orientation yr in (4.31) can be replaced by the references ηp1 ,
ξp1 , and ypr . The impedance control law then follows as

η̈p1 = η̈d1 + τ||
md
||
−

dd||
md
||
ėpdη −

kd||
md
||
epdη ,

η̇p1 =
t∫

0

η̈p1dτ, ηp1 =
t∫

0

η̇p1dτ ,
(4.33a)

ξ̈p1 = ξ̈d1 + τ⊥
md
⊥
− dd⊥
md
⊥
ėpdξ1 −

kd⊥
md
⊥
epdξ1 ,

ξ̇p1 =
t∫

0

ξ̈p1dτ, ξp1 =
t∫

0

ξ̇p1dτ ,
(4.33b)

with ypr from (3.42d) and the errors epdη = ηp1 − ηd1 and epdξ1 = ξp1 − ξd1 .
In the case of dim(yr) = nr = 3, the same method as presented in Sec-

tion 3.5.3.2 can be used to deal with the representation singularities of the Euler
angles.
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4.5.4 Simplification using joint velocity controllers
Similar to the kinematic PFC, the feedback law for the SFC can be drastically
simplified when subordinate velocity controllers are used that sufficiently satisfy
the relation (3.48). Kinematic SFC is presented in the following, where σ(θ) only
has to be C2.

4.5.4.1 Coordinate transformation

The coordinate transformation Φ : RN → R
N reads as

ŷs =



g ◦ ht(q)
δ ◦ ht(q)

hr(q)


 = Φ(q) , (4.34)

with g and δ from (4.15) and (4.17), respectively.

Lemma 6. The mapping Φ : Q 7→ Z ⊂ RN , with Q = {q̄ ∈ RN : βi ◦ ht(q̄) >
0, i = 1, 2} and βi from (4.13), is a C1-diffeomorphism, if J(q) is nonsingular.

Proof. Based on the inverse function theorem it has to be shown that

(i.) Q and Z are open in RN ,

(ii.) Φ ∈ C1(Q,Z), and

(iii.) ∇Φ = ∂Φ/∂q = Ĵs(q) is nonsingular for all q ∈ Q.

Since Q is an open subset of RN , Z is open in RN . Since the output y = h(q) is
assumed to be sufficiently smooth and σ(θ) ∈ C2(Ts,RN), Φ ∈ C1(Q,Z) holds.
If J(q) is nonsingular and βi(yt) > 0, i = 1, 2, then Ĵs = ∇Φ is nonsingular for
all q ∈ Q.

4.5.4.2 Feedback linearization

Because of (4.22), application of the feedback transformation

q̇ref = Ĵ−1
s vs,k (4.35)

to the system (3.48) and (2.1) results in the linear input-output relation

˙̂ys = vs,k . (4.36)

In (4.35) and (4.36) the new control input is denoted by vT
s,k = [vT

s,t,k,vT
s,r,k], where

vT
s,t,k = [v||,1,k, v||,2,k, v⊥,k]. Unlike the SFC feedback law for the dynamic model,

see (4.26), the computational demanding time-derivative of the Jacobian ˙̂Js does
not appear in the kinematic SFC law (4.35).
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4.5.4.3 Stabilization of the linearized system

Similar to Section 3.5.4.3, the position control law is chosen as

vs,k =
[
vs,t,k
vs,r,k

]
=



η̇p1 − aηepη
ξ̇p1 − aξepξ
ẏpr − arepr


 , (4.37)

which yields an exponentially stable error dynamics if ai > 0 with i ∈ {η, ξ, r}.
A compliant behavior is achieved by using (4.33) and (3.42d) to compute the

references ηp1, ξp1 , and ypr together with the position controller (4.37). The same
method as for the kinematic PFC presented in Section 3.5.4.3 can then be used
to deal with the representation singularities of the Euler angles in the case of
dim(yr) = nr = 3.

4.6 Surface following control for elastic joint
robots

This section presents two surface following controllers for the simplified elastic
joint manipulator dynamics (2.65) with joint forces τJ including viscosity (2.66)
and without viscosity (2.67), which are both input-output linearizable via static
state feedback. The two SFC approaches are based on the same ideas as the PFC
approaches for elastic joint robots presented in Section 3.6.

4.6.1 Robots with visco-elastic joints
The (vector) relative degree of the simplified elastic joint manipulator dynam-
ics (2.65) with joint forces τJ from (2.66) and output function (2.1) reads as
{3, 3, . . . , 3}.

4.6.1.1 Coordinate transformation

The mapping Φ transforms the joint coordinates qJ and the motor coordinates
qM as well as their first time derivatives into the virtual output ŷT

s = [ηT
1 , ξ1, ζ

T
1 ]

and their first and second time derivative and reads as




ŷs
˙̂ys
¨̂ys
q̇M




=




g ◦ ht(qJ)
δ ◦ ht(qJ)

hr(qJ)
Ĵsq̇J

˙̂Jsq̇J + ĴsD−1
E (τJ + τext − nE)

q̇M




= Φ(qJ , q̇J ,qM , q̇M) , (4.38)

with the SFC Jacobian Ĵs of (4.21).
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Lemma 7. The mapping Φ : X 7→ Z with X = Q × TqQ, Q =
{

[q̄T
J , q̄T

M ]T ∈
R

2N : βi ◦ ht(q̄J) > 0, i = 1, 2
}
and tangential space TqQ, is a C1-diffeomorphism,

if J(qJ) is nonsingular.

The proof is identical to the proof of Lemma 3 by just replacing Ĵp by Ĵs.

4.6.1.2 Feedback linearization

The third time derivative of the virtual output ŷs is given by (3.57), where Ĵp
is replaced by Ĵs. Hence, the feedback transformation that yields the linear
input-output relation

ŷ(3)
s = vs,v (4.39)

and the non-observable internal dynamics (3.59b) is similar to (3.58) and given
by

τd = D−1
s,v (vs,v − bs,v(qJ , q̇J ,qM , q̇M)) , (4.40a)

with the new control input vT
s,v = [vT

s,t,v,vT
s,r,v] ∈ RN , the decoupling matrix

Ds,v(qJ) = ĴsD−1
E KdD−1

M , (4.40b)

and the vector

bs,v (qJ , q̇J ,qM , q̇M) = ¨̂Jsq̇J + 2 ˙̂Jsq̈J − ĴsD−1
E

(
(ḊE + Kd)q̈J + ṅE

− τ̇ext −Ks(q̇M − q̇J) + KdD−1
M (τJ + τf,M)

)
.

(4.40c)

The stability proof of the zero dynamics is given in Section 3.6.1.2. The new
input v⊥,v of vT

s,t,v = [v||,1,v, v||,2,v, v⊥,v] can be used to fulfill the control objectives
(O1) and (O2) and with v||,1,v and v||,2,v an application specific motion along the
surface can be achieved. Note that the decoupling matrix Ds,v(qJ) is nonsingular
for [qT

J ,qT
M ] ∈ Q.

4.6.1.3 Stabilization of the linearized system

Similar to the PFC for visco-elastic joint robots, the position control law

vs,v =




(ηp1)(3) − aη,3,vëη − aη,2,vėη − aη,1,veη
(ξp1)(3) − aξ,3,vëξ1 − aξ,2,vėξ1 − aξ,1,veξ1

(ypr)(3) − ar,3,vër − ar,2,vėr − ar,1,ver


 (4.41)

asymptotically stabilizes the linear system (4.39) if pi(s) = s3 + ai,3,vs
2 + ai,2,vs+

ai,1,v constitutes a Hurwitz polynomial for i ∈ {η, ξ, r}. In (4.41), ηp1 and ξp1
denote C3-references for the position on the surface and the deviation from the
surface St. A combination with compliance control is possible as described in
Section 3.6.1.3.
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4.6.2 Robots with pure elastic joints
The joint forces τJ of the dynamic system (2.65) are given by (2.67) and the
system has a (vector) relative degree of {4, 4, . . . , 4}, when the viscosity inside
the joints is negligibly small.

4.6.2.1 Coordinate transformation

A coordinate transformation is derived that maps the joint coordinates qJ and
the motor coordinates qM as well as their first time derivative onto the virtual
output ŷT

s = [ηT
1 , ξ1, ζ

T
1 ] and their first, second, and third time derivative with

respect to a C5 surface S. The coordinate transformation Φ reads as




ŷs
˙̂ys
¨̂ys

ŷ(3)
s




=




g ◦ ht(qJ)
δ ◦ ht(qJ)

hr(qJ)
Ĵsq̇J

˙̂Jsq̇J + ĴsD−1
E (τJ + τext − nE)

rs + ĴsD−1
E (τ̇J + τ̇ext − ṅE − ḊEq̈J)




= Φ(qJ , q̇J ,qM , q̇M) , (4.42)

with the SFC Jacobian Ĵs of (4.21) and the vector rs = ¨̂Js(qJ , q̇J , q̈J)q̇J +
2 ˙̂Js(qJ , q̇J)q̈J .

Lemma 8. The mapping Φ : X 7→ Z with X = Q × TqQ, Q =
{

[q̄T
J , q̄T

M ]T ∈
R

2N : βi ◦ ht(q̄J) > 0, i = 1, 2
}
and tangential space TqQ, is a C1-diffeomorphism,

if J(qJ) is nonsingular.

The proof is identical to the proof of Lemma 4 by just replacing Ĵp by Ĵs.

4.6.2.2 Feedback linearization

Differentiating ŷs four times with respect to time yields (3.64), where Ĵp is replaced
by Ĵs. Hence, the linear input-output relation

ŷ(4)
s = vs,e (4.43)

is obtained by applying the feedback transformation (3.65), where Ĵp is replaced
by Ĵs, to the system (2.65), joint forces τJ of (2.67) and output function (2.1).
For the sake of completeness, the feedback transformation is recapitulated here

τd = D−1
s,e (vs,e − bs,e(qJ , q̇J ,qM , q̇M)) , (4.44)

with the new control input vT
s,e = [vT

s,t,e,vT
s,r,e] ∈ RN , the decoupling matrix

Ds,e(qJ) = ĴsD−1
E KsD−1

M , (4.45)
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and the vector

bs,e (qJ , q̇J ,qM , q̇M) = Ĵ(3)
s q̇J + 3¨̂Jsq̈J + 3 ˙̂Jsq(3)

J −Ds,e(τJ − τf,M)
− ĴsD−1

E

(
2ḊEq(3)

J + D̈Eq̈J + n̈E − τ̈ext + Ksq̈J
)
.
(4.46)

The new input v⊥,e of vT
s,t,e = [v||,1,e, v||,2,e, v⊥,e] can be used to fulfill the control

objectives (O1) and (O2) and with v||,1,e and v||,2,e an application specific motion
on the surface St can be achieved.

4.6.2.3 Stabilization of the linearized system

Similar to the PFC for pure elastic joint robots, the position control law

vs,e =




(ηp1)(4) − aη,4,ee(3)
η − aη,3,eëη − aη,2,eėη − aη,1,eeη

(ξp1)(4) − aξ,4,ee(3)
ξ1 − aξ,3,eëξ1 − aξ,2,eėξ1 − aξ,1,eeξ1

(ypr)(4) − ar,4,ee(3)
r − ar,3,eër − ar,2,eėr − ar,1,eer


 (4.47)

asymptotically stabilizes the linear system (4.43) if pi(s) = s4 + ai,4,es
3 + ai,3,es

2 +
ai,2,es + ai,1,e constitutes a Hurwitz polynomial for i ∈ {η, ξ, r}. The references
in (4.47) have to be of class C4. The same arguments are valid regarding the
combination with compliance control as stated in Section 3.6.2.3.

4.7 Implementation
As for the PFC, the static state feedback controllers are implemented on digital
computers with the sampling time Ts. The optimization problem (4.9) and the
integral (4.15) have to be numerically solved in real time.

The optimization problem (4.9) is solved using the Newton method. For the
initialization, the global optimum θ∗0 is needed. A sufficient number of evenly
spread points on the surface St are chosen and the distances to yt(0) are calculated.
The point with shortest distance is used as starting point for the local minimum
search to obtain θ∗0. Then, the optimization problem (4.9) is iteratively solved in
each time step k = 1, 2, . . . for i = 1, 2, . . . according to

θk,i = θk,i−1 −H−1(yt,k,θk,i−1)
(
∂f

∂θ

)
(yt,k,θk,i−1) , (4.48)

with yt,k = yt(kTs), f from (4.9), and the initial condition θk,0 = θ∗k−1 until
‖θk,i − θk,i−1‖2 < ε. The optimal solution θ∗k = θk,i is used to perform the
numerical integration of (4.15), i.e.,

η1,k = η1,k−1 + Σ∗(θ∗k)θ̇∗kTs , (4.49)
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where

θ̇∗k = (H∗(yt,k,θ∗k))
−1



(
σ∗t,θ1

)
(θ∗k)T

(
σ∗t,θ2

)
(θ∗k)T


 ẏt,k ,

ẏt,k = Jt(qJ,k)q̇J,k, qJ,k = qJ(kTs), q̇J,k = (qJ,k − qJ,k−1)/Ts, and η1,k = η1(kTs).

4.8 Applications
SFC for fully actuated manipulators is implemented on the real-time system
DS1006 from dSPACE with a sampling time of Ts = 1 ms to control a DELTA
robot of the type Festo EXPT-45, see Fig. 3.4, and the six-axis industrial
robot Comau Racer 1.4. Experimental results with position control are shown
in Section 4.8.1 and with the combination of SFC and compliance control in
Section 4.8.2.

The performance of the SFC approach for visco-elastic joint robots is evaluated
by a simulation study using Matlab R©/Simulink R© R2016b on a 64 bit Windows 7
computer and the results are presented in Section 4.8.3. Due to the similarity of
the SFC approach to the PFC approach of Chapter 3, no simulation example is
given for the SFC approach for elastic joint robots.

An application of the kinematic SFC to generate virtual fixtures for physical
human-robot interaction is presented in Chapter 5.

4.8.1 Surface following control of a Delta robot
In this experiment, the SFC law (4.26) with the Jacobian (2.33) and the position
controller (4.30) is implemented on the real-time system DS1006 and applied to
the DELTA robot Festo EXPT-45.

A cylinder with parametrization σt(θ) : Ts 7→ R
3 is used to demonstrate the

surface following control approach, see Fig. 4.3. The parametrization is given by

σt(θ) =




r cos (θ1)
θ2

r sin (θ1) + c


 , (4.50)

with radius r = 90 mm and offset c = 505 mm, Ts = [0, 2π]× [θ2, θ2], and θ2 < θ2 ∈
R. Points on the surface ηp1,i, i = 0, 1, 2, 3 are chosen for the tangential coordinates.
They are smoothly connected with a maximal velocity of ηp2,max = [0.2, 0.2]Tm/s
to generate the reference in tangential direction ηp1. The sequence is defined as

ηp1,0 = [0, 0]Tm → ηp1,1 = [0.25, 0]Tm
↑ ↓

ηp1,3 = [0, 0.15]Tm ← ηp1,2 = [0.25, 0.15]Tm .

(4.51)



88 4. Surface Following Control

−50
0

50 −50
0

50
100

500

550

600

y
x in mm yy

in mm

y z
in

m
m

surface St

output yt

yt(t = 0)
reference yp

t

Figure 4.3: Surface St and measured output yt of the SFC experiment on a
DELTA robot.

Table 4.1: Control parameters.
Symbol Value Unit Symbol Value Unit
aη,0 64000 1/s3 aξ,0 64000 1/s3

aη,1 4800 1/s2 aξ,1 4800 1/s2

aη,2 120 1/s aξ,2 120 1/s

The reference in transversal direction ξp1 and their derivatives are set to zero.
Integral parts are added to the position controller (4.30), which reads as

vs =




η̈p1 − aη,2ėpη − aη,1epη − aη,0
t∫

0
epηdτ

ξ̈p1 − aξ,2ėpξ − aξ,1epξ − aξ,0
t∫

0
epξdτ


 (4.52)

for this experiment. The parameters of the position controller are shown in
Table 4.1. For the experiment, the end-effector is initially placed next to the surface.
Fig. 4.3 depicts the cylinder St, the starting point yT

t (t0) = [89.9,−62.8, 509.2]mm,
with respective initial parameters θ1,0 = 0.0467 rad and θ2,0 = −0.0628 m, the
output yt, and the reference ypt = hD ◦Φ−1

(
ŷps, ˙̂yps

)
with (ŷps)T = [(ηp1)T, ξp1 = 0].

It can be inferred from Fig. 4.3 that the output yt stays on the surface St for all
times and that the reference ypt is tracked quite well.

Fig. 4.4(a) shows the tracking behavior of the references in tangential directions
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Figure 4.4: Experimental results of the SFC approach applied to the DELTA
robot.

ηp1,1 and ηp1,2. The position error in the transversal state ξ1 is in the range of
1 mm, cf. Fig. 4.4(b). The new inputs v||,1, v||,2, and v⊥ vary quite smoothly, see
Fig. 4.4(c). The generalized coordinates q1, q2, and q3 are depicted in Fig. 4.4(d)
and the generalized velocities q̇1, q̇2, and q̇3 in Fig. 4.4(e). The deviations in the
transversal state ξ1 are mainly due to stick-slip friction in the linear drives. This
becomes clear by comparing the zero crossings of the generalized velocities with
the deviations in the transversal direction. Moreover, the input forces τd,1, τd,2,
and τd,3 of Fig. 4.4(f) also clearly show the influence of the friction.
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4.8.2 Compliant surface following control of an industrial
robot

The combination of SFC with compliance control for fully actuated manipulators
introduced in Section 4.5 is experimentally validated on the six-axis industrial
robot Comau Racer 1.4. Thereby, the control laws (4.26), (4.52), and (4.33) are
used to stabilize the robot on a paraboloid of revolution. A human operator is
able to move the robot along the surface without effort by using low stiffness
kd|| and damping dd|| in tangential direction. The stiffness kd⊥ and damping dd⊥
in orthogonal direction are chosen rather high to limit the deviations from the
surface. To avoid representation singularities of the orientation, the compliance
control laws (3.44) and (3.46) are utilized to compute the new orientation input
vs,o. The control parameters for (4.52) and (3.46) are listed in Tab. 4.2 and the
impedance parameters for (4.33) and (3.44) in Tab. 4.3.

The Comau Racer 1.4, which is shown in Fig. 4.5 and described in Chapter 2,
is used for this experiment. The 6D-force/torque sensor K6-D40 from ME-
Messsysteme is attached to the robot’s end-effector and used as haptic input
device. The SFC is implemented on the real-time system DS1006 from dSPACE
with a sampling time of Ts = 1 ms and the torque commands τd are sent to joint
servo controllers. A communication delay of approximately 2ms between the
DS1006 and the servo controllers limit the control gains in the position controller
(4.30). The experimental setup is depicted in Fig. 4.6.

Table 4.2: Control parameters for the SFC.
Symbol Value Unit Symbol Value Unit
aη,0 4913 1/s3 aξ,0 17576 1/s3

aη,1 867 1/s2 aξ,1 2028 1/s2

aη,2 51 1/s aξ,2 78 1/s
ar,1 2700 1/s2 ar,2 90 1/s

Table 4.3: Compliance control parameters.
Symbol Value Unit Symbol Value Unit
md
|| 3 kg md

⊥ 3 kg
dd|| 90 Ns/m dd⊥ 150 Ns/m
kd|| 1.5 N/m kd⊥ 5 kN/m
md
r 0.2 kgm2 kdr 34.4 Nm/rad

ddr 24.6 Nms/rad
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Figure 4.5: Comau Racer 1.4 equipped with the 6D-force/torque sensor K6-D40.
[81] c© 2018 IEEE

K6-D40

τd, (q̇ref)

q, τext

DS1006

servo
control

operator handle

Figure 4.6: Experimental setup. [81] c© 2018 IEEE
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4.8.2.1 Measurement results of the compliant SFC

The surface S is defined as a paraboloid of revolution with constant orientation
using the smooth parametrization

σ(θ) =
[
σt(θ)
σr

]
=




θ1 + 0.83
θ2

12.5(θ2
1 + θ2

2) + 0.6
0
π/4

π − 0.1




(4.53)

and is depicted in Fig 4.7. All numbers for σt(θ) are given in meters.
The external references ηd1 and ξd1 are set to zero. Hence, the robot’s motion

is only caused by the input forces of the operator via the impedance control law
(4.33) and is depicted in Fig. 4.7. Fig. 4.8(a) shows that the desired motion on
the surface ηp1 = [ηp1,1, ηp1,2]T is tracked very well. The desired deviation from the
surface St corresponds with the operator’s input force in orthogonal direction τ⊥,
see Fig. 4.8(b) and Fig. 4.8(c). An operator force of less than 20N is necessary for
the motion along the surface. Fig. 4.8(d) and Fig. 4.8(e) show that the impedance
of the orientation also behaves as specified. The first three joint torques are
depicted in Fig. 4.8(f).
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Figure 4.7: Surface St and measured output yt of the combined SFC and compli-
ance control strategy. [81] c© 2018 IEEE
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Figure 4.8: Experimental results of the combined SFC and compliance control
strategy. [81] c© 2018 IEEE

Hence, the results of this experiment confirm that the proposed SFC approach
is well suited to be combined with compliance control.

4.8.3 Surface following control of a 3R visco-elastic joint
robot

The SFC approach for robots with visco-elastic joints presented in Section 4.6.1
is verified by a simulation study in Matlab R©/Simulink R© and is applied to the
Comau Racer 1.4, where only the first three joints are actuated and the last
three joints are fixed. In contrast to the real robot, the transmissions of the
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joints are assumed to be visco-elastic with a relatively low stiffness of Ks =
103 · diag([35, 35, 19])Nm/rad and a viscosity of Kd = diag([10, 10, 10])Nms/rad.
Hence, the simplified equations of motion are given by (2.65) with the joint torques
(2.66). Moreover, the friction τf is set to zero.

The smooth surface St is defined as a paraboloid of revolution using the
parametrization

σt(θ) =




θ1 + 0.7
θ2

1.667(θ2
1 + θ2

2) + 1.11


 (4.54)

and is depicted in Fig 4.9. All numbers are given in meters.
The tangential reference ηp1 = [ηp1,1, ηp1,2]T is a smooth function connecting the

points ηp1,1(t0) = 0, ηp1,1(t1,1) = 0.3m, and ηp1,1(t1,2) = −0.25m with a maximum
velocity of |η̇p1,1| = 1.5m/s, as well as ηp1,2(t0) = 0, ηp1,2(t2,1) = 0.2m, and ηp1,2(t2,2) =
−0.2m with a maximum velocity of |η̇p1,2| = 1m/s. The trajectory of ηp1 is depicted
in the left upper graph of Fig. 4.10. The starting point of the end-effector is
defined as yt(t0) = [0.7, 0, 1.1]Tm, which is 10mm off the surface St. The reference
in transversal direction ξp1 and their derivatives are set to zero. The SFC law
(4.40) and the position controller (4.41), with the parameters from Tab. 4.4, are
implemented in Matlab R©/Simulink R©.

The simulated output yt is depicted in Fig. 4.9 and the trajectories in Fig. 4.10.
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Figure 4.9: Surface St and simulated output yt for the SFC applied to a 3R
visco-elastic joint robot.
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Figure 4.10: Simulated performance of the the SFC approach for a 3R visco-elastic
joint robot.

Table 4.4: Control parameters.
Symbol Value Unit Symbol Value Unit
aη,1,v 64000 1/s3 aξ,1,v 64000 1/s3

aη,2,v 4800 1/s2 aξ,2,v 4800 1/s2

aη,3,v 120 1/s aξ,3,v 120 1/s

Fig. 4.10(a) shows that the desired motion on the surface ηp1 is tracked very well
and Fig. 4.10(b) illustrates that the output yt converges to and then remains on
the surface St. The motor velocities q̇M,i slightly differ from the joint velocities
q̇J,i, in particular for high drive torques τd,i, due to the elastic transmissions, see
Fig. 4.10(c) and Fig. 4.10(d).





CHAPTER 5

Path and Surface Following Control for Human-Robot
Interaction

In this chapter, applications of path and surface following control for physical
human-robot interaction are presented, in which an operator is hand-guiding a
robot. PFC and SFC allow to restrict the motion of a robot to a path or surface.
Hence, these control approaches can be used to systematically generate a large
number of virtual fixtures.

The concepts to generate virtual fixtures introduced in this chapter are based
on the PFC and SFC approaches for fully actuated manipulators, where the
feedback linearizations (3.29) and (4.26) are denoted as dynamic PFC and SFC,
respectively, and the feedback linearizations (3.50) and (4.35) are denoted as
kinematic PFC and SFC. Note that the concepts to generate virtual fixtures with
the dynamic PFC/SFC can also be applied to the PFC/SFC approaches for elastic
joint robots.

Four experiments to generate various virtual fixtures in free space on the
six-axis robot Comau Racer 1.4 are presented in Section 5.2. These are soft
guidance virtual fixtures with path constraint, hard guidance virtual fixtures with
path constraint, dynamic guidance virtual fixtures with path constraint, and hard
forbidden region virtual fixtures, where the robot’s workspace is restricted to a
cylinder and, additionally, to the outside of a paraboloid of revolution, which
is placed inside the cylinder. Section 5.3 presents an application of the virtual
fixture approach to a semi-automation production use case, in which a plate is
taken from a magazine and assembled into a frame.

Parts of this chapter are published in similar form in [81].
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5.1 Generating virtual fixtures with path and
surface following control

The PFC and SFC approaches introduced in Chapter 3 and Chapter 4 decouple and
exactly linearize the dynamics in tangential and orthogonal direction to a path γ or
surface S. Thereby, PFC and SFC are only applied to the position parametrization
of the path or surface, γt and St, respectively. The reference orientation is coupled
to the optimal path parameter θ∗ (or optimal surface parameter vector θ∗) and
given by the trajectory ypr(t) = σr(θ∗(t)). Hence, the behavior of the robot
along a path or surface and away from it can be defined independently and in
a physically interpretable manner. This allows to systematically realize a large
number of possible virtual fixtures. In contrast to other virtual fixture methods,
a systematic proof of the closed-loop stability including the dynamics of the
manipulator can be given. A compliant behavior of the manipulator is achieved
by measuring the external force/torque fop = J−T

g τext, which is exerted on the
end-effector by an operator, see also (2.11) for the manipulator Jacobian Jg. The
generalized external forces τext are then transformed into tangential, transversal,
and orientation coordinates according to (3.41) and (4.32) and the impedance
control laws (3.42) or (4.33) are used as presented in the Sections 3.5.3.2 and
4.5.3.2, respectively. Note that for systems with very low (or compensated) friction,
a desired compliance behavior can also be achieved without a force sensor by
PFC/SFC for the dynamic system and the position control (3.33) or (4.30) with
small gains. For such systems, the operator’s input force fop on the end-effector
can be estimated from the drive forces/torques τd.

The survey papers [40] and [43] distinguish between several properties and
classifications of virtual fixtures. An overview of the six most prominent methods
to generate virtual fixtures is also given in Section 1.2. Numerous methods to
define the geometry of the virtual fixtures can be found in literature including
point clouds and mesh grids. The paths for PFC and the surfaces for SFC can be
defined by splines allowing for high flexibility to represent different geometries
and, additionally, leading to a continuous control output. Three classifications of
virtual fixtures, which can be realized with PFC and SFC, are discussed in the
following and are experimentally validated in Section 5.2.

5.1.1 Guidance and forbidden region virtual fixtures
Virtual fixtures can either guide an operator to and along a submanifold of the
workspace (guidance virtual fixture) or prevent the operator from entering specific
areas of the workspace (forbidden region virtual fixture). Most of the existing
methods to generate virtual fixtures enable only one of the two possibilities.

PFC and SFC ensure that the manipulator converges to and then remains on a
path or surface. Compliance control in tangential direction with low stiffness and
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damping enables the operator to easily move the manipulator along the path or
surface. Hence, guidance virtual fixtures can be implemented using kinematic or
dynamic PFC/SFC by simply adjusting the parameters in the position controllers
and the impedance control laws (3.42) and (4.33), respectively.

In the case of forbidden region virtual fixtures, the operator is able to move
the manipulator’s end-effector freely inside the admissible region of the restricted
workspace without any manifold stabilization. Various control concepts like
Cartesian impedance control exist to generate such an unconstrained motion, see,
e.g., [3, 26, 29, 32, 90]. The limits of the restricted workspace are defined by M
parametrized surfaces St,i, i = 1, . . . ,M , and inside the admissible region, the
shortest distance to each surface has to be computed. This can be achieved by
solving a global optimization problem to obtain each optimal surface parameter
vector θ∗i , which is in general computationally quite expensive. SFC with the
corresponding surface St,i gets activated to prevent from entering the forbidden
region, when the manipulator’s end-effector contacts St,i and the input force of the
operator fop points into the forbidden region, implying that ‖yt − σt,i(θ∗i )‖ < dfr
as well as sfr,ieT

i,⊥(θ∗i )[I 0]fop < 0 holds, where σt,i is the position parametrization
of the surface St,i, dfr > 0 is the distance threshold, I is the 3× 3 identity matrix,
and sfr,i = 1 when the normal vector ei,⊥ onto the surface St,i points into the
admissible region and sfr,i = −1 when ei,⊥ points into the forbidden region. The
motion is then restricted by SFC to a tangential direction of the surface St,i as long
as the operator’s input force fop points into the forbidden region. Unconstrained
motion is activated again once the input force of the operator points into the
admissible region, i.e., sfr,ieT

i,⊥(θ∗i )[I 0]fop > ffr holds, where ffr > 0 is a small
force threshold that prevents from chattering between the control laws.

Assume that the two surfaces St,i and St,j intersect in the curve γt,ij as depicted
in Fig. 5.1. Then, during active SFC with surface St,i, yt ∈ St,i holds, and the
shortest distance dc,ij to the intersection curve γt,ij has to be computed, which
can be done by solving the optimization problem (3.6) to compute θ∗ij. Once
the manipulator’s end-effector contacts the intersection curve γt,ij, thus also the
surface St,j, and the operator’s input force fop points into the forbidden region of
the surface St,j , i.e., dc,ij = ‖yt−σt,j(θ∗j )‖ < dfr as well as sfr,jeT

j,⊥(θ∗j )[I 0]fop < 0
holds, PFC along the intersection curve γt,ij gets activated. With active PFC, the
optimal parameter vectors θ∗i and θ∗j of the two intersecting surfaces have to be
computed to be able to switch back to SFC. The transition back to SFC with
surface St,i takes place when sfr,jeT

j,⊥(θ∗j )[I 0]fop > ffr holds and the transition
to SFC with surface St,j takes place when sfr,ieT

i,⊥(θ∗i )[I 0]fop > ffr holds. The
resulting state machine to generate forbidden region virtual fixtures with SFC
and PFC is depicted in Fig. 5.2. Note that in the special case of three intersecting
surfaces in one point, set-point stabilization has to be added as control state with
similar transitions to PFC as described above.

It is worth noting that no stability proof is provided for the overall switched
system including the state machine of Fig. 5.2. While this is not a big issue for
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Figure 5.1: Intersection of two surfaces. [81] c© 2018 IEEE

uncon-
strained
motion

SFC PFC

surface contact
intersection

curve contact

fop points into
admissible region

fop points away
from one surface

Figure 5.2: Forbidden region virtual fixtures state machine. [81] c© 2018 IEEE

static forbidden region virtual fixtures, it has to be investigated in more detail for
the dynamic case.

5.1.2 Hard and soft constraints
The behavior away from the virtual fixture defines the level of guidance. Hard
constraints do not allow any motion off the virtual fixture (negligible deviations
always occur in practice due to limited control gains), while soft constraints give
some compliance to allow the operator little freedom to deviate from the fixture.

Hard constraints can be implemented with kinematic or dynamic PFC/SFC
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by using the position controller (3.33), (3.52), (4.30), or (4.37) for the transversal
directions with high gains.

Using the combination of compliance control with PFC or SFC enables to
realize soft constraints. The stiffness away from the constraint can be adjusted
with kd⊥. The impedance control laws (3.42) and (4.33) remain stable for a variable
stiffness kd⊥ = kd⊥(ξi) > 0, with i = 1, 3. Hence, also nonlinear virtual springs
can be implemented. Note that for manipulators with very low (or compensated)
friction, soft constraints can also be generated by using dynamic PFC/SFC
together with the position controller (3.33) or (4.30) for the transversal directions
with small gains.

5.1.3 Static and dynamic virtual fixtures
Normally, the virtual fixtures do not change over time and are static. However, in
some applications the constraints have to be changed dynamically to adapt to a
changing environment, e.g., in robot-assisted heart surgery [91].

Such dynamic virtual fixtures can also be implemented with PFC or SFC.
Thereby, the path γt or surface St remains constant, but the reference path or
surface deviation is adapted corresponding to the dynamic virtual fixture. For
PFC, the desired path deviation ∆σt(t) ∈ C2 at σt(θ∗) is projected onto the
normal vectors e⊥ and et leading to the transversal references

ξi1 = eT
⊥∆σt and ξi3 = eT

t∆σt , (5.1)

where i = p for hard constraints and i = d for soft constraints. For SFC, there
is only one transversal direction onto the surface St and, hence, its reference is
given by

ξi1 = ∆σt , (5.2)

with i = p for hard constraints, i = d for soft constraints, and the scalar desired
surface deviation ∆σt(t) ∈ C2.

A desired path deviation of class C2 implies a continuous output τd or q̇ref
of the PFC/SFC feedback transformation. Note that the maximum deviation
from a path or surface is limited by the feasible neighborhood, cf. Section 3.4 and
Section 4.4.

5.1.4 Summary of the virtual fixture generation with PFC
and SFC

A large number of virtual fixtures can be generated with PFC and SFC. Tab. 5.1
lists the types of guidance virtual fixtures that can be generated with either
dynamic or kinematic PFC/SFC for a manipulator equipped with a sensor to
measure the generalized forces exerted on the end-effector by an operator. If the
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Table 5.1: Guidance virtual fixtures for manipulators with force sensor. [81] c©
2018 IEEE

guidance virtual fixture type control laws
stat./dyn. guidance manifold dynamic kinematic
manifold level type PFC/SFC PFC/SFC

static
hard path (3.29),(3.33),(3.42a) (3.50),(3.52),(3.42a)

surface (4.26),(4.30),(4.33a) (4.35),(4.37),(4.33a)

soft path (3.29),(3.33),(3.42) (3.50),(3.52),(3.42)
surface (4.26),(4.30),(4.33) (4.35),(4.37),(4.33)

dynamic

hard
path (3.29),(3.33) (3.50),(3.52)

(3.42a),(5.1) (3.42a),(5.1)

surface (4.26),(4.30) (4.35),(4.37)
(4.33a),(5.2) (4.33a),(5.2)

soft
path (3.29),(3.33) (3.50),(3.52)

(3.42),(5.1) (3.42),(5.1)

surface (4.26),(4.30) (4.35),(4.37)
(4.33),(5.2) (4.33),(5.2)

manipulator has very low (or compensated) friction, it is highly back-drive able
and virtual fixtures can be generated using PFC/SFC without a force sensor, as
listed in Tab. 5.2. In this case, kinematic PFC/SFC cannot be used due to the
high gains of the velocity controllers, which disable the back-drive ability.

Compared to guidance virtual fixtures, the generation of forbidden region
virtual fixtures with PFC/SFC requires more implementation and computational
effort due to the switching between the control laws. With the method described
in this work, only static forbidden region virtual fixtures with hard constraints
can be generated, where the same control laws as listed in Tab. 5.1 or Tab. 5.2

Table 5.2: Guidance virtual fixtures for back-drive able manipulators. [81] c©
2018 IEEE

guidance virtual fixture type control laws
static/dynamic guidance manifold dynamic

manifold level type PFC/SFC

static
hard path (3.29),(3.33)

surface (4.26),(4.30)

soft path (3.29),(3.33)
surface (4.26),(4.30)

dynamic
hard path (3.29),(3.33),(5.1)

surface (4.26),(4.30),(5.2)

soft path (3.29),(3.33),(5.1)
surface (4.26),(4.30),(5.2)
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for a static manifold and hard guidance level are used. Dynamic forbidden region
virtual fixtures or soft constraints require different switching strategies, which are
subject to further research.

5.2 Virtual fixture implementation examples
This section presents four implementation examples of virtual fixtures generated
with PFC/SFC, which demonstrate several combinations of the virtual fixture
classes and properties described in Section 5.1. For this, the experimental setup of
Section 4.8.2 with the industrial robot Comau Racer 1.4 is used. These examples
comprise the following virtual fixtures:
Example 1: Static guidance virtual fixtures on a path with soft constraints

Example 2: Static guidance virtual fixtures on a path with hard constraints

Example 3: Dynamic guidance virtual fixtures on a path with hard constraints

Example 4: Static forbidden region virtual fixtures with hard constraints
PFC and SFC are implemented on the real-time systemDS1006 from dSPACE

with a sampling time of Ts = 1 ms and the torque commands τd are sent to joint
servo controllers. When the kinematic PFC of Section 3.5.4 or the kinematic SFC
of Section 4.5.4 are used, the reference joint velocities q̇ref are transferred to the
servo controllers instead of the torques. A communication delay of approximately
2ms between the DS1006 and the servo controllers limit the control gains in the
dynamic PFC/SFC.

The operator does not have any visual feedback about the path/surface or the
deviation from the path/surface during the experiments.

5.2.1 Example 1: Static guidance virtual fixtures on a
path with soft constraints

Guidance virtual fixtures on a path γ with soft constraints are generated by a
combination of the dynamic PFC (3.29) with compliance control (3.42) and inner
position controller (3.86). The robot’s end-effector is supposed to move on a
horizontal circle with radius rpc = 0.15m and center yT

pc = [0.83, 0, 0.9]m and the
constant orientation σT

r = [0, π/4, π − 0.1]rad, cf. Fig. 5.3. The parametrization
of the path is given by

σ(θ) =
[
σt
σr

]
=




ypc,x + rpc cos θ
ypc,y + rpc sin θ

ypc,z
0
π/4

π − 0.1




. (5.3)
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Figure 5.3: Path γt and output yt with soft guidance virtual fixtures (Example 1).
[81] c© 2018 IEEE

A low stiffness kd|| and damping dd|| in tangential direction enable the operator
to move the robot along the circle without effort. The stiffness kd⊥ and damping
dd⊥ in orthogonal direction are chosen rather high to limit the deviations from the
path. The orientation is also made compliant with respect to σr by applying the
control law (3.46) for the input vp,o. The control parameters for (3.86) and (3.46)
are listed in Tab. 4.2 and the impedance parameters in Tab. 4.3.

In the experiment, the operator moves the robot along the circle for approxi-
mately 11

4 revolutions. In the middle of the experiment, the robot is pushed down
in negative z0-direction to deviate considerably from the path, cf. Fig. 5.3.

Fig. 5.4(a) shows that the arc length on the circle η1 follows the reference ηp1,
which is the output of the impedance control law (3.42a). The robot deviates
from the circle corresponding to the external forces. This gets clear by comparing
the transversal states ξp1 and ξp3 in Fig. 5.4(b) with the external forces τ⊥ and τt
in Fig. 5.4(c). The deviations of ξi from ξpi , i = 1, 3, mainly occur at joint velocity
zero crossings and are caused by uncompensated friction effects.

The rotational coordinates, the external torques as well as the first three joint
torques are depicted in Fig. 5.4(d), Fig. 5.4(e), and Fig. 5.4(f), respectively. The
Euler angles ϕpd, ϑpd, and ψpd represent the desired deviation from the reference
orientation σr, which is caused by the external torques µdϕ, µdϑ, and µdψ. Again,
errors between the actual deviation ϕed, ϑed, and ψed and the reference deviation
ϕpd, ϑpd, and ψpd mainly occur at joint velocity zero crossings.
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Figure 5.4: Experimental results for soft guidance virtual fixtures (Example 1).
[81] c© 2018 IEEE

5.2.2 Example 2: Static guidance virtual fixtures on a
path with hard constraints

In this experiment, the kinematic PFC (3.50) with the position controller (3.52)
and the analytic Jacobian Ja (2.16) in (3.22) is used to restrict the robot’s
motion to a path. Additionally, the impedance control (3.42a) for the tangential
direction, with parameters md

||, dd||, and kd|| from Tab. 4.3, allows the operator
to move the robot along the path without effort. Hard constraints are ensured
by setting the references for the transversal states ξp1 and ξp3 as well as their
derivatives to zero. The orientation is also made stiff by setting the reference
to (ypr)

T = σT
r (θ∗) = [ϕp, ϑp, ψp]. Tab. 5.3 lists the control parameters for the
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Table 5.3: Control parameters for the kinematic PFC in Example 2.
Symbol Value Unit Symbol Value Unit
aη 10 1/s aξ 15 1/s
ar 12 1/s

kinematic PFC. The path γ is defined by cubic splines and its position part γt
is depicted in Fig. 5.5. The operator moves the robot from the beginning of the
spline path until the end and then backwards again, cf. Fig. 5.6(a). During the
backwards motion, a considerable force is applied in normal direction to the path,
which can be seen in Fig. 5.6(c). Fig. 5.6(b) shows that the robot remains on
the path with deviations of less than 0.4mm. The orientation of the end-effector
yT
r = [ϕe, ϑe, ψe] follows the reference orientation σr(θ∗) without noticeable errors

even with applied external torques, cf. Fig. 5.6(d).

5.2.3 Example 3: Dynamic guidance virtual fixtures on a
path with hard constraints

The same control law of Section 5.2.2 and path of Section 5.2.1 with constant
orientation σT

r = [0, π/4, π−0.1]rad are employed in this experiment, but now, the
radius of the circle is a function of time and given by rp(t) = rpc + arp sin(2πfrpt),
with arp = 20mm and frp = 0.5Hz. Hence, the radius of the circle constraint
oscillates between rp,min = 0.13m and rp,max = 0.17m with a period of 2s and

0.8
0.85

0.9
0.95

0

0.2

0.8

1

x0 in m y 0
in m

z 0
in

m

output yt

yt(t = 0)
path γt

Figure 5.5: Path γt and output yt with hard guidance virtual fixtures (Example 2).
[81] c© 2018 IEEE
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Figure 5.6: Experimental results for hard guidance virtual fixtures (Example 2).
[81] c© 2018 IEEE

∆σT
t (t) = arp sin(2πfrpt) [cos(θ), sin(θ), 0], see (5.3). The impedance control

(3.42a) for the tangential direction, with parameters from Tab. 4.3, allows the
operator to move the robot along the path without effort.

Hard constraints and dynamic virtual fixtures are implemented by setting
the references for the transversal states to ξp1 = eT

⊥∆σt = arp sin(2πfrpt) and
ξp3 = eT

t∆σt = 0, because e⊥ is pointing in radial direction of the circle and et
is pointing in direction of the z0-axis. The PFC control parameters are listed in
Tab. 5.3.

In this experiment, the operator moves the robot along the oscillating circle
for almost one revolution. The velocity of the robot along the circle is increased
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during the experiment to show the time dependency of the virtual fixture. The
resulting output trajectory yt is depicted in Fig. 5.7, together with the circles
with the minimum and maximum radius, rp,min and rp,max.

Fig. 5.8 shows the tangential, transversal states, the external forces, and the
torques of the first three motors. The transversal reference ξp1 oscillates at 0.5Hz
with an amplitude of 20mm and the state ξ1 follows without noticeable errors, cf.
Fig. 5.8(b).

5.2.4 Example 4: Static forbidden region virtual fixtures
with hard constraints

Forbidden region virtual fixtures with hard constraints are implemented in this
experiment. The robot’s motion is restricted to a cylinder with radius rcy = 0.2m,
height hcy = 0.4m, and vertical rotation axis with the coordinates xra = 0.9m
and yra = 0. Additionally, a paraboloid of revolution with height hpr = 0.2m,
radius rpr = 0.076m, and rotation axis coordinates xpr = 0.95m and ypr = 0
further restricts the workspace inside the cylinder, cf. Fig. 5.9. A Cartesian
position-based impedance control [29, 32] (often denoted as Cartesian admittance
control) is used to enable an unconstrained movement of the manipulator inside
the admissible region of the restricted workspace. Thereby, the parameters md

||,
kd||, and dd|| from Tab. 4.3 are used.

Once a limiting surface is reached, kinematic SFC (4.35) with position control
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Figure 5.7: Path γt @ rp,min = 0.13m and rp,max = 0.17m and output yt with
dynamic guidance virtual fixtures (Example 3). [81] c© 2018 IEEE
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Figure 5.8: Experimental results for hard guidance dynamic virtual fixtures
(Example 3). [81] c© 2018 IEEE

(4.37) and ξp1 ≡ 0 is activated to prevent the robot from entering the forbidden
region. The impedance control law (4.33a) is used to compute the two elements
of the reference ηp1 with parameters from Tab. 4.3.

Kinematic PFC (3.50) with the controller (3.52) becomes active when the
robot reaches the intersection of the two surfaces, i.e., a plane intersects the
cylinder or the paraboloid of revolution, hence, the path is a circle with radius rcy
or rpr. Additionally, the impedance control (3.42a) for the tangential direction,
with parameters from Tab. 4.3, allows the operator to move the robot along
the path without effort. Admittance control (AdmC) is activated again once the
intended motion from the operator points away from the forbidden region.

Continuous tangential velocities at the transitions are ensured by setting
the initial tangential references to η̇p1(tswitch) = [I 0]Ĵsq̇(tswitch) and η̇p1(tswitch) =
[1,0]Ĵpq̇(tswitch), respectively. The analytic Jacobian Ja is used for the PFC (3.50)
and SFC (4.35). Tab. 5.4 lists the control parameters.

In the experiment, the robot starts inside the admissible region at point
yT
t,0 = [1.094, 0.02, 1.077]m, which is marked with an asterisk in Fig. 5.9.
AdmC is activated and the operator moves the robot towards the paraboloid

of revolution (path A). Once the paraboloid of revolution is reached, SFC gets
enabled to prevent the robot from entering the forbidden region (path B). AdmC
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Table 5.4: Control parameters for the kinematic PFC/SFC in Example 4.
Symbol Value Unit Symbol Value Unit
aη 5 1/s aξ 5 1/s
ar 12 1/s
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Figure 5.9: Forbidden region and measured output yt (Example 4). [81] c© 2018
IEEE

gets active again once the input force of the operator points away from the surface
of the paraboloid of revolution. Now, the operator moves the robot towards the
cylinder (path C). SFC gets enabled again when the surface of the cylinder is
reached and the operator moves the robot along the cylinder towards the lower
vertical limit z0,min = 0.7m (path D). When the lower vertical limit is reached,
PFC on a circle with radius rcy gets active because the operator’s intended motion
points in negative z0 direction and to the outside of the cylinder (path E). The
operator’s input force then points into the inside of the cylinder and SFC on the
xy-plane with z0,min is enabled (path F). On the last path segment, the robot is
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moved in positive z0-direction with AdmC (path G).
Fig. 5.10 shows the tangential states, the transversal state, the external forces,

and the first three motor torques of the motion along the cylinder with SFC
(path D). The first tangential state η1,1 represents the arc length of the trajectory
projected to the xy-plane and the second tangential state η1,2 represents the
z-component of the trajectory. The transversal state ξ1 describes the deviation
from the cylinder, where negative values are a penetration of the forbidden region.
Hence, the penetration is less than 0.2mm, cf. Fig. 5.10(b).
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Figure 5.10: Experimental results for forbidden region virtual fixtures for the path
segment D in Fig. 5.9 (Example 4). [81] c© 2018 IEEE

5.3 Semi-automation production use case
Handling of a plate using human-robot collaboration is chosen as semi-automation
production use case. Guidance virtual fixtures lead a human operator along the
path γ1 to handle a plate from a magazine to a frame, cf. Fig. 5.11, and along
the path γ2 to move the robot’s end-effector back to the magazine. The mounting
pins of the plate have to be inserted into the boreholes of the frame, of which the
diameter is only 0.3mm larger than the diameter of the pins. In the test setup, the
positions and orientations of the magazine and the frame do not exactly match
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magazine

plate

frame

boreholes

mounting pins

path γt,1

Figure 5.11: Plate mounting using guidance virtual fixtures on a path.

with the path and, hence, the operator has to deviate from the path to fulfill the
task. This is achieved by using virtual fixtures with soft constraints.

The virtual fixtures are generated by a combination of the kinematic PFC
(3.50), where the geometric Jacobian Jg (2.11) in (3.22) is used, with compliance
control (3.42a), (3.42b), (3.42c), and (3.52). The control law (3.46) stabilizes
the orientation with the impedance of (3.44). The demonstration system is the
same as described in Section 4.8.2, which includes the industrial robot Comau
Racer 1.4, the 6D-force/torque sensor K6-D40 as input device, and the real-time
system DS1006 from dSPACE. A gripper equipped with four vacuum suction
cups is attached to the robot’s end-effector to grasp the plate, see Fig. 5.12. The
force/torque sensor is attached in series to the end-effector. This implies that
also the contact forces with the environment are measured. Contact occurs when
the plate in the magazine is gripped and when the plate pins are inserted into
the boreholes. In these cases, the compliance control limits the contact forces
to prevent damages and the damping parameters ddi of (3.42) and (3.46), for
i = {||,⊥, r}, have to be high enough to ensure contact stability, see, [88].

Two paths are necessary for the handling task. The first path γ1 starts with
taking the plate from the magazine and ends with assembling the pins of the plate
into the boreholes of the frame. The second path γ2 starts with releasing the
plate at the frame and ends at the magazine to grip the next plate, cf. Fig. 5.12.
Both paths are recorded during a teach-in procedure, where the robot is freely
movable in space via admittance control. The paths are stored as cubic splines
for the kinematic PFC.

The damping in tangential direction to the path dd|| limits the maximum
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γt,1

γt,2

Figure 5.12: Semi-automation production use case: plate mounting.

velocity of η1. In proximity of a stiff environment, the robot has to move relatively
slow to limit the forces in case of a contact and the damping should therefore be
quite high, which is also essential to ensure contact stability. On the other hand,
a higher speed is preferable in the free space between the magazine and the frame
to reduce the cycle time of the production step. Hence, the variable damping in
tangential direction is defined as the smooth function

dd||(η1) = d||,min+(d||,max−d||,min)
(
3−2 tanh(40η1)+tanh(80(η1−η1,max))

)
, (5.4)

where η1,max denotes the total length of the path γt,1 or γt,2, respectively. The
control parameters for the kinematic PFC are listed in Tab. 5.3 and the compliance
control parameters in Tab. 5.5.
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Table 5.5: Compliance control parameters for plate assembly.
Symbol Value Unit Symbol Value Unit
md
|| 3 kg md

⊥ 3 kg
d||,min 90 Ns/m dd⊥ 3 kNs/m
d||,max 3 kNs/m kd⊥ 7 kN/m
kd|| 1 N/m md

r 0.2 kgm2

ddr 229 Nms/rad kdr 34.4 Nm/rad

Fig. 5.13 shows trajectories of the motion along the path γ1 from the grasping
of the plate until the release of the plate after assembling the mounting pins
into the boreholes of the frame. The tangential states η1 and ηp1 are depicted in
Fig. 5.13(a). The frame is reached after approximately 12s and six more seconds
are required for the assembling of the mounting pins. The deviation from the path
γt,1 at the pin insertion adds up to about 1.1mm, which can be seen in Fig. 5.13(b).
Fig. 5.13(c) shows that the input forces of the operator stay below 45N during
the handling task. The trajectory of the damping in tangential direction dd|| is
depicted in Fig. 5.13(d), which is computed by (5.4). The orientation of the plate
when inserting the mounting pins into the boreholes has also to be adapted for
approximately 13mrad, cf. Fig. 5.13(e). The motor torques τd,i are depicted in
Fig. 5.13(g) and Fig. 5.13(h).
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Figure 5.13: Experimental results for plate assembly on path γ1.





CHAPTER 6

Conclusions and Outlook

The goals of this work were to develop a simple and efficient manifold stabilization
approach for industrial robots, to combine it with compliance control, and to show
possible applications with a focus on physical human-robot interaction. The man-
ifolds can constitute either a one-dimensional path or a two-dimensional surface
defined by a regular parametrization in the output space of the robot. This allows
to approximate arbitrary paths and surfaces by splines giving high flexibility for
the geometric shapes. Moreover, feasible neighborhoods of the manifolds are
defined for which a diffeomorphism can be found that maps the generalized coor-
dinates (joint coordinates) to tangential, transversal, and rotational coordinates,
and which allows to systematically prove the closed-loop stability. The presented
path following control (PFC) and surface following control (SFC) approaches
decouple and exactly linearize the dynamics of the orientation and in tangential
and transversal direction to a path or a surface. The decoupled dynamics can
be controlled independently to meet the requirements of the specific application,
e.g., to introduce a well defined impedance in tangential direction to a path or
surface. The manifold stabilization approaches are formulated for fully actuated
manipulators as well as for robots with elastic joints. The combination of PFC
and SFC with compliance control is used to systematically generate numerous
different types of virtual fixtures for physical human-robot interaction, which
include guidance and forbidden region virtual fixtures, soft and hard constraints as
well as static and dynamic virtual fixtures and their combinations. The proposed
approaches are validated by simulation studies in Matlab R©/Simulink R© and by
experiments on the DELTA robot Festo EXPT-45 and on the six-axis industrial
robot Comau Racer 1.4.
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6.1 Conclusions
The novel PFC approach was introduced in Chapter 3, which can handle open,
closed, and intersecting paths parametrized as regular continuously differentiable
curves. In contrast to, e.g., [22], the parametrization was split into the position
and orientation parametrization and the transversal feedback linearization was
only applied to the position parametrization. Application of the parallel transport
frame in the PFC approach not only allows to handle paths with zero curvature,
but also drastically simplifies the path following control law compared to, e.g.,
the Frenet-Serret frame, which is typically used in literature. Additionally, due to
the structure of the proposed PFC concept, this strategy is able to be combined
with compliance control with respect to the path.

The PFC approach was formulated for fully actuated manipulators as well as
for elastic joint robots. The elastic joint robots can contain either visco-elastic or
pure elastic transmissions between the rotors of the actuators and the links. For
fully actuated manipulators, also a simplified control concept was proposed, where
the subordinate joint velocity controllers are assumed to ideally track the velocity
reference. The feedback transformation for pure elastic joint robots contains the
second order time derivative of the mass matrix and the Coriolis matrix and
becomes very extensive for robots with complex dynamics. To simplify the control
law, the PFC was also developed for a reduced order model based on the singular
perturbation theory, which is applicable to robots with rather stiff transmissions
and exhibits the same structure and complexity as the PFC for fully actuated
manipulators.

For experimental validation, the proposed PFC approach for fully actuated ma-
nipulators was applied to the DELTA robot Festo EXPT-45. These experiments
include standard path following control in free space as well as the combination
with compliance control. It was shown that the combination of PFC with compli-
ance control enables applications in which the classical trajectory tracking control
fails. The PFC approaches for elastic joint robots were validated by simulation
studies in Matlab R©/Simulink R©. One simulation example also demonstrated
the limits of the singular perturbation based approach regarding the stiffness of
the joints. Another simulation example pointed out the advantages of the PFC
compared to classical trajectory tracking control, when external disturbances
prevent the robot from following the reference trajectory with the predefined
speed.

Chapter 4 is devoted to the novel SFC approach, which can handle open,
closed, and intersecting surfaces represented by a regular and continuously differ-
entiable parametrization. This is in contrast to the existing approaches known
from literature, see, e.g., [12–14], which require the implicit representation of the
surface. Again, the parametrization was split into the position and orientation
parametrization and the transversal feedback linearization was only applied to the
position parametrization. The feedback linearization ensures that the nonlinear
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system dynamics transform into a decoupled linear system comprising two orthog-
onal tangential states and one transversal state with a physically interpretable
length with respect to the surface. This enables the combination with compliance
control that ensures a well defined compliance in tangential as well as in orthogonal
direction to the surface. The SFC approach was formulated for fully actuated ma-
nipulators as well as for elastic joint robots. A simplified control concept for fully
actuated manipulators was again proposed, where the subordinate joint velocity
controllers were assumed to be ideal. For experimental validation, the proposed
SFC approach for fully actuated manipulators was applied to the DELTA robot
Festo EXPT-45, where the robot was stabilized on a cylinder and to the six-axis
industrial robot Comau Racer 1.4. Simulation studies in Matlab R©/Simulink R©

were used to validate the SFC approach for elastic joint robots.
The application of the PFC and SFC approaches to physical human-robot

interaction, where an operator is hand-guiding a robot, was presented in Chapter 5.
The PFC and SFC approaches introduced in this work decouple and exactly lin-
earize the dynamics for the orientation and in tangential and transversal direction
to a path or surface. Therefore, these methods can be used to systematically
generate numerous different constraint types like guidance and forbidden region
virtual fixtures, hard and soft constraints as well as static and dynamic virtual
fixtures and their combinations. This is in contrast to the existing approaches
known from literature, which usually cover only a few different virtual fixture types.
Guidance virtual fixtures with hard or soft constraints can simply be generated
in a straightforward manner with PFC or SFC. Forbidden region virtual fixtures
require more implementation and computational effort because the distance to
each surface in the unconstrained motion state and to each intersection path in
the SFC state has to be calculated in every sampling instance. Four experiments
on the six-axis industrial robot Comau Racer 1.4 were performed to show the
ability of the PFC/SFC approach to generate a variety of virtual fixtures. Finally,
a semi-automation production use case was presented. This use case shows that
the virtual fixture approach can effectively be used to solve handling tasks, where
the strengths of the human operator and the robot are synergetically utilized.

6.2 Outlook
The presented manifold stabilization approach is applicable to most of the existing
industrial robots. However, the class of redundant manipulators is not covered yet.
In recent years, lightweight robots especially designed for physical human-robot
interaction are getting more popular. Some of these robots are realized with
redundancies and feature seven actuated joints like the KUKA LBR iiwa. The
redundancy resolution methods described in, e.g., [22, 85, 92] can be used to
extend the proposed manifold stabilization approach to redundant manipulators.

A combination of PFC with compliance control is used in [88, 93] to manipulate
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highly deformable materials like fiberglass strips. These applications are restricted
to the two-dimensional space. The manifold stabilization approaches presented in
this work are formulated in three-dimensional space, which enables to solve more
complex applications in which highly deformable materials are handled.

The generation of forbidden region virtual fixtures with PFC/SFC requires
the computation of the distance to each surface in the unconstrained motion
state. In this work, a global optimization problem is solved to obtain each optimal
surface parameter vector, which is in general computationally quite expensive.
However, there is no need to compute the distance to each surface in each sampling
instance due to the slow motion of the robot compared to the sampling time. The
time interval between the computation of the distance to a specific surface could
additionally depend on the value of the distance. Hence, there is a lot of room
to further decrease the computational costs. In addition, further research could
deal with dynamic forbidden region virtual fixtures and forbidden region virtual
fixtures with soft constraints, where different switching strategies than the ones
proposed in Section 5.1.1 have to be found.

This work considers hand-guiding physical human-robot interaction, while
virtual fixtures are also common in teleoperation, where the tool-carrying slave
manipulator copies the motion of a master device that is controlled by the human
operator. The application of the PFC/SFC approach to generate virtual fixtures
for teleoperation is also an open topic of research.



APPENDIX A

Friction Observer

In the robot dynamics (2.42), the second time derivative of the generalized
coordinates q appears. For external force estimation, De Luca showed that the
measurement or estimation of q̈ can be avoided by using the generalized momenta
p = D(q)q̇ [94]. This technique can also be applied to design a friction observer.

The dynamics (2.42) with τext = 0, where friction τf (q̇) ∈ Rm is modeled by
(2.41), can be written as

D(q)q̈ +
(
C(q, q̇) + CT(q, q̇)

)

︸ ︷︷ ︸
Ḋ(q,q̇), see (2.40)

q̇ = ṗ

= τ − τf − g(q) + CT(q, q̇)q̇.
(A.1)

The friction parameters fc and fv according to (2.41) are assumed to be unknown
but constant, which is why the disturbance model ḟc = 0 and ḟv = 0 is added to
the system (A.1). Since q(t) and q̇(t) are considered as known functions of time
t, the following linear time-varying system

ẋo =



0 −diag(sign(q̇)) −diag(q̇)
0 0 0
0 0 0




︸ ︷︷ ︸
A(t)

xo+




I
0
0




︸︷︷︸
B

(
τ − g(q) + CT(q, q̇)q̇

)

︸ ︷︷ ︸
u

,

(A.2a)
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with state xT
o = [pT fT

c fT
v ] and the output function

p = [I 0 0]
︸ ︷︷ ︸

Co

xo (A.2b)

serves as the basis for the observer design. System (A.2) contains six decoupled
subsystems representing each axis i = 1, . . . , 6

ẋo,i =




0 −sign(q̇i) −q̇i
0 0 0
0 0 0




︸ ︷︷ ︸
Ai(t)

xo,i +




1
0
0




︸︷︷︸
bi

ui , (A.3a)

with the output function

pi = [1 0 0]
︸ ︷︷ ︸

ci

xo,i (A.3b)

and the state xT
o,i = [pi fc,i fv,i]. The transition matrix of the system (A.3) follows

as

Φi(t, t0) =




1 −
t∫
t0
sign(q̇i(τ))dτ −

t∫
t0
q̇i(τ)dτ

0 1 0
0 0 1


 . (A.4)

The observer is implemented on a digital computer and, therefore, a discrete-
time representation of the system (A.2) is required. The discrete-time dynamics of

the subsystem (A.3) is given by xo,i,k+1 = Φi(tk+1, tk)xo,i,k+
tk+1∫
tk

Φi(tk+1, τ)dτbiui,k,

with xo,i,k = xo,i(kTs) and the sampling time Ts = tk+1 − tk. Let us assume that
q̇i(τ) = q̇i(kTs) = q̇i,k for kTs ≤ τ < (k + 1)Ts. Then the overall discrete-time
system reads as

xo,k+1 =




I −Tsdiag(sign(q̇k)) −Tsdiag(q̇k)
0 I 0
0 0 I




︸ ︷︷ ︸
Φk

xo,k +



TsI
0
0




︸ ︷︷ ︸
Γ

uk + wk

pk =Coxo,k + vk ,

(A.5)

where the zero-mean Gaussian process and measurement noise wk and vk, re-
spectively, are added. A linear time-varying Kalman-filter, see, e.g. [95], is used
as state observer for the system (A.5). The covariance matrix Rk > 0 of the
measurement noise vk and the covariance matrix Qk > 0 of the process noise wk

are the design parameters for the Kalman-filter and determine the dynamics of
the estimation error. The estimated friction parameters f̂c and f̂v can be used to
compute an estimation of the friction torque τ̂f (q̇) = F̂csign(q̇) + F̂vq̇.



123

A proof of concept for the friction observer is done by simulation in Mat-
lab R©/Simulink R©. The mathematical model of the fully actuated Comau Racer
1.4 is used, with the static friction of (2.41) and friction parameters

fT
v = [11.69, 108.56, 39.47, 1.342, 0.886, 0.7790] Nms,

fT
c = [40.8, 89.9, 19.47, 4.8, 3.64, 4.17] Nm.

The discrete linear time-variant Kalman-filter is implemented with a sampling
time of Ts = 1ms and the covariance matrices Qk and Rk are chosen as constant
diagonal matrices

R = diag([1, 1, 0.7, 0.05, 0.05, 0.05]) ,
Q = diag([1, 1, 1, 0.1, 0.1, 0.1, 1, 1, 1, 0.1, 0.1, 0.1, 1, 1, 1, 0.1, 0.1, 0.1]) .

The state estimation error covariance matrix for k = 0 is chosen as P0 = 103 · I,
with the identity matrix I, and the initial estimates of the friction parameters are
set to 70% of the real values, i.e. f̂c(k = 0) = 0.7 · fc and f̂v(k = 0) = 0.7 · fv. The
path following controller of Section 3 stabilizes the robot on the bent lemniscate of
Fig. 3.9 with a tangential reference velocity of η̇p1 = 1m/s. In Fig. A.1, the results
of the friction observer simulation are depicted, where the upper two graphs show
the generalized momenta p = D(q)q̇. The estimate of the generalized momenta
p̂ corresponds very well with p and is not depicted. The four lower graphs of
Fig. A.1 show that the estimates of the friction parameters converge to the real
friction parameters within 10s. Hence, a linear time-varying Kalman-filter is
suitable to estimate the friction parameters of the nonlinear dynamic robot model
without knowledge of the joint accelerations q̈.
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Figure A.1: Simulated results of the friction observer.



APPENDIX B

Base Parameters of the Comau Racer

This section revisits the method of [59] to determine the base parameters of serial
manipulators with application to the Comau Racer 1.4. The number of inertial
base parameters is given by

nb,i = 7N − 4β1 (B.1)

or if the first joint axis is parallel to the gravity vector by

nb,i = 7N − 4β1 − 2 , (B.2)

where β1 is the number of links connected by joints whose axes are always parallel
to the first joint axis. Using (B.2), the number of linear independent inertial base
parameters is nb,i = 36 for the Comau Racer 1.4, where β1 = 1.

The base parameters are not unique. Every nonsingular quadratic transfor-
mation of a base parameter set is also a base parameter set. Mayeda et al. give
one possibility of an inertial base parameter set. For this, the N links are divided
into link clusters with parallel joint axes. The first link i of a cluster j is denoted
by αj = i beginning with α1 = 1 and the last link k whose axis is parallel to the
link i axis is denoted by βj = k. The number of cluster j that contains link i is
given by c(i) = j. The total number of clusters of a manipulator is denoted by K.
The clusters of the Comau Racer are listed in Table B.1, where K = 5.

To apply the method of [59] to the Comau Racer, the coordinate systems have
to be defined as depicted in Fig. B.1, where the zi-axis corresponds to the axis
of joint i and the joint angle θi is measured between xi−1 and xi. The constant
vector from the origin 0i to the origin 0i+1 expressed in the coordinate system
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Table B.1: Cluster parameter of the Comau Racer.
α1 = 1 β1 = 1
α2 = 2 β2 = 3
α3 = 4 β3 = 4
α4 = 5 β4 = 5
α5 = 6 β5 = 6

(0i, xi, yi, zi) is denoted by lii. For the Comau Racer the vectors lii are given by

l11 =



a1
0
d1


 , l22 =



a2
0
0


 , l33 =



a3
0
0


 , l44 =




0
0
d4


 , l55 =




0
0
0


 , (B.3)

with the Denavit-Hartenberg parameters ai and di for 1 ≤ i ≤ 4 of Table 2.1.

The inertial base parameters for a robot with the first joint axis parallel to
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Figure B.1: Coordinate system definition of the Comau Racer 1.4 for base
parameter identification.
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the gravity vector and α2 = 2 are given by

%b,1 = Ĩ1,zz + υ1

%b,2+7(i−2) = Ĩi,zz + υi

%b,3+7(i−2) = ρi,x

%b,4+7(i−2) = ρi,y − ζb,i
%b,5+7(i−2) = Ĩi,xx − Ĩi,yy + υi

%b,6+7(i−2) = Ĩi,xy + lii,x ζb,i

%b,7+7(i−2) = Ĩi,xz − lii,x ζa,i

%b,8+7(i−2) = Ĩi,yz + lii,z ζb,i ,

(B.4)

for 2 ≤ i ≤ N , with

ρi = mipic,i + lii
N∑

j=i+1
mL,j =

[
ρi,x ρi,y ρi,z

]T
, (B.5a)

Ĩi = Īii + ST(lii)S(lii)
N∑

j=i+1
mL,j =



Ĩi,xx Ĩi,xy Ĩi,xz
Ĩi,xy Ĩi,yy Ĩi,yz
Ĩi,xz Ĩi,yz Ĩi,zz


 , (B.5b)

ζa,i =




0, i = βc(i)
∑βc(i)
j=i+1 ρj,z, otherwise

, (B.5c)

ζb,i =




∑βc(i)+1
j=αc(i)+1

zρj,z, i = βc(i) and c(i) 6= K

0, otherwise
, (B.5d)

and

υi =




∑βc(i)+1
j=αc(i)+1

Ĩj,yy − 2 lj,zζa,j, i = βc(i) and c(i) 6= K

0, otherwise
. (B.5e)

In (B.5b), Īii denotes the inertia tensor of link i with respect to the coordinate
system (0i, xi, yi, zi), where

Īii =



Ii,xx Ii,xy Ii,xz
Ii,xy Ii,yy Ii,yz
Ii,xz Ii,yz Ii,zz




and the skew-symmetric matrix operator S(·) performs the cross product S(a)b =
a × b. The resulting nb = 52 base parameters %T

b,C = [%b,C,1, . . . , %b,C,nb ] for the
Comau Racer 1.4 are listed in Table B.2, where pic,i =

[
pc,i,x pc,i,y pc,i,z

]T
.



128 B. Base Parameters of the Comau Racer

Table B.2: Base parameters %b,C,j of the Comau Racer.
j corresponding physical parameters (PP) j PP
1 I1,zz +∑3

i=2 Ii,yy + a2
1
∑6
i=2 mi 27 I5,xy

+a2
2
∑6
i=3mi + a2

3
∑6
i=4mi

2 I2,zz + a2
2
∑6
i=3mi 28 I5,xz

3 m2pc,2,x + a2
∑6
i=3mi 29 I5,yz

4 m2pc,2,y 30 I6,zz
5 I2,xx − I2,yy − a2

2
∑6
i=3mi 31 m6pc,6,x

6 I2,xy 32 m6pc,6,y
7 I2,xz − a2m3pc,3,z 33 I6,xx − I6,yy
8 I2,yz 34 I6,xy
9 I3,zz + I4,yy + a2

3
∑6
i=4mi + d2

4
∑6
i=5mi 35 I6,xz

10 m3pc,3,x + a3
∑6
i=4mi 36 I6,yz

11 m3pc,3,y −m4pc,4,z − d4
∑6
i=5mi 37 Im,z,3

12 I3,xx − I3,yy + I4,yy + a2
3
∑6
i=4mi + d2

4
∑6
i=5mi 38 Im,z,4

13 I3,xy + a3(m4pc,4,z + d4
∑6
i=5mi) 39 Im,z,5

14 I3,xz 40 Im,z,6
15 I3,yz 41 fc,1
16 I4,zz + I5,yy 42 fv,1
17 m4pc,4,x 43 fc,2
18 m4pc,4,y −m5pc,5,z 44 fv,2
19 I4,xx − I4,yy + I5,yy 45 fc,3
20 I4,xy 46 fv,3
21 I4,xz 47 fc,4
22 I4,yz + d4m5pc,5,z 48 fv,4
23 I5,zz + I6,yy 49 fc,5
24 m5pc,5,x 50 fv,5
25 m5pc,5,y −m6pc,6,z 51 fc,6
26 I5,xx − I5,yy + I6,yy 52 fv,6



APPENDIX C

Parameter Estimation of the Comau Racer

The linear regression approach of Section 2.5 is used to estimate the base parame-
ters %b,C of the Comau Racer 1.4.

C.1 Excitation trajectory
The period Tf of the periodic function (2.78) was chosen as 10s, which is an integer
multiple of the sampling time Ts = 1ms. The number of harmonics M in (2.78)
was set to 5. Instead of using all harmonics, the amplitudes of the frequencies
ω = 2ωf and ω = 4ωf are set to zero to reduce the degrees of freedom for the
optimization problem (2.79) from 66 to 42. The joint position limits, the joint
velocity limits, and the joint acceleration limits of Tab. C.1 are used as constraints
g1. The workspace constraints g2 are defined in a way that the robot cannot
collide with the ground or the socket. The resulting kν = 42 parameters ν of the
optimal excitation trajectory are listed in Tab. C.2 and the corresponding time
functions are depicted in Fig. C.1.

Table C.1: Joint limitations of the Comau Racer.
Joint qmin qmax |q̇max| |q̈max|

1 −165◦ 165◦ 220◦/s 400◦/s2

2 −65◦ 175◦ 250◦/s 550◦/s2

3 −70◦ 80◦ 300◦/s 666◦/s2

4 −180◦ 180◦ 550◦/s 1270◦/s2

5 −120◦ 135◦ 550◦/s 1270◦/s2

6 −180◦ 180◦ 600◦/s 1390◦/s2

129
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Table C.2: Parameters of the optimal excitation trajectory for the i-th joint.
i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

qi,0 0.0332 1.3758 0.2091 0.0075 0.1167 0.0017
ai,1 −0.1176 −0.0713 −0.0176 0.9083 −0.5208 −0.0867
bi,1 0.3297 −0.2599 −0.0181 0.0713 0.5076 −0.7961
ai,3 1.9736 0.2130 −0.0886 0.4240 1.0258 0.3671
bi,3 −0.3291 0.2930 −0.1763 0.7724 0.5667 0.9517
ai,5 0.2785 1.6351 0.9626 2.7082 0.6510 1.2767
bi,5 0.4256 1.2841 2.3068 1.4445 2.0331 2.1298
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Figure C.1: One period of the optimal excitation trajectory.

C.2 Estimated parameters

The joint positions and torques are recorded for five periods of the excitation
trajectory. Only the last four periods are used for the signal processing and
parameter estimation to avoid transient operation. The filter-bandwidth for the
positions is set to fg = 20/Tf . The parameters are estimated using the WLSE
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algorithm (2.80) with the torque covariance matrix

Υ =




159.53 0 0 0 0 0
0 135 0 0 0 0
0 0 38.688 0 0 0
0 0 0 0.5024 0 0
0 0 0 0 0.247 0
0 0 0 0 0 0.08




N2m2 ,

The identification procedure is carried out seven times and the estimated parame-
ters of each run are compared. The mean values of the identified base parameters
%̂b,C,j of the seven identification procedures as well as the relative standard devia-
tion σ̂rel,j are listed in Tab. C.3. Most of the estimated parameters have a relative

Table C.3: Identified base parameters %̂b,C,j of the Comau Racer.
j %̂b,C,j unit σ̂rel,j j %̂b,C,j unit σ̂rel,j
1 32.79 kgm2 0.479% 27 0.0199 kgm2 8.07%
2 26.14 kgm2 0.196% 28 0.00305 kgm2 25.5%
3 27.81 kgm 0.169% 29 0.0113 kgm2 4.78%
4 −0.396 kgm 17.3% 30 −0.0223 kgm2 6.29%
5 −17.7 kgm2 1.65% 31 −0.00607 kgm 12.8%
6 −1.4 kgm2 5.85% 32 −0.0106 kgm 5.47%
7 −1.28 kgm2 5.81% 33 −0.0116 kgm2 8.63%
8 1.929 kgm2 3.31% 34 −0.00136 kgm2 20.3%
9 4.299 kgm2 1.56% 35 0.00904 kgm2 7.93%
10 3.71 kgm 1.01% 36 −0.00282 kgm2 15.6%
11 −6.4 kgm 0.536% 37 0.000611 kgm2 2.64%
12 3.545 kgm2 1.17% 38 7.19e− 05 kgm2 2.37%
13 0.433 kgm2 5.67% 39 6.75e− 05 kgm2 2.12%
14 0.516 kgm2 8.81% 40 5.08e− 05 kgm2 3.87%
15 −0.234 kgm2 7.35% 41 41.63 Nm 1.82%
16 0.0745 kgm2 3.61% 42 14.68 Nms/rad 1.71%
17 −0.0396 kgm 7.12% 43 101.7 Nm 3.03%
18 0.129 kgm 2.91% 44 97.29 Nms/rad 8.11%
19 0.0595 kgm2 9.99% 45 21 Nm 2.29%
20 0.0404 kgm2 3.54% 46 39.69 Nms/rad 7.14%
21 −0.014 kgm2 16.2% 47 4.194 Nm 3.29%
22 −0.0853 kgm2 3.19% 48 1.812 Nms/rad 5.84%
23 0.00828 kgm2 8.44% 49 2.688 Nm 2.1%
24 0.0329 kgm 2.99% 50 1.695 Nms/rad 4.98%
25 −0.0426 kgm 1.09% 51 3.746 Nm 2.03%
26 −0.0362 kgm2 4.83% 52 1.102 Nms/rad 3.77%
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standard deviation σ̂rel,j of less than five percent. Other parameters seem to be
badly identifiable with a relative standard deviation of over 15%. Especially the
parameter %̂b,C,28 = I5,xz varies a lot over the individual identification runs with a
relative standard deviation of σ̂rel,28 = 25.5%. However, the predicted torque of
the model (2.74) with the estimated parameters of all runs match the measured
torque very well and the root mean square of the torque prediction error has the
same order of magnitude as the standard deviation of the torque measurements,
which can be seen in Fig. C.2 and Tab. C.4.

Table C.4: Prediction error and noise level of the torques.
Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

error RMS in Nm 11.2 21.8 9.6 0.98 0.57 0.47
noise level in Nm 12.6 11.6 6.22 0.71 0.5 0.28
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Figure C.2: Measured τm and predicted τp torque at the excitation trajectory.
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