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Abstract 
A semi-empirical law for twin growth is proposed, which considers the twin volume saturation 

and initial twin volume fraction after nucleation. This law is in good agreement with the 

experimental electron back scattered diffraction results of AZ31 Mg alloy. A growth factor is 

included in the model, which controls the speed of increase of twin volume fraction and its 

saturation. The underlying physics of this factor. By extracting the common features of 

assessed physical mechanisms of twin growth, a simple dislocation model of twin thickening 

is proposed. This model delivers a reasonable estimate of the velocity of a twin partial 

dislocation, serving as reference or input for dislocation dynamics modeling of twinning. Based 

on the understanding on the twinning and dislocation slips in Mg, a novel thermomechanical 

treatment containing a pre-straining step is tested experimentally in AZ31 Mg alloy. Three 

different pre-strain schemes are attempted and their effectiveness for weakening of the strong 

basal texture of AZ31 Mg alloy is discussed. It is shown that the <c+a> pyramidal slip promotes 

the recrystallization process in the subsequent isothermal heat treatment, resulting in significant 

weakening of the basal texture. Finally, a Taylor type mean field model embedding twin growth 

and Voce hardening law, is developed. Instead of using the non-linear rate-sensitive 

constitutive law, i.e., the visco-plasticity formulation, this model provides rapid predictions on 

the texture evolution of as extruded Mg alloys and delivers relative activities of different 

deformation modes. The prediction is consistent with the experimental results of AZ31 Mg 

alloy.  
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1 Introduction 
Mg exhibits intrinsically strong anisotropy because of its hexagonally close packed (hcp) 

lattice structure [1, 2]. This anisotropy has profound impacts on its microstructural response to 

deformation. The anisotropy is closely related to the different activation stresses of various 

deformation modes including basal slip, pyramidal slip, prismatic slip and deformation 

twinning. The activation stress is represented by the critical resolved shear stress (CRSS). It 

can be generalized from the literature that CRSSbasal < CRSStwinning < CRSSprismatic ≤ 

CRSSpyramidal [3-7]. The CRSS of different deformation modes suggests that basal slip should 

be the most easily activated. The earlier studies have also confirmed this statement [8-11]. 

However, basal slip can only accommodate the plain strain on the basal plane of the hcp lattice. 

Non-basal slip systems and deformation twinning are required to be activated in the case that 

the strain tensor has components along the c axis. Due to its relatively low CRSS, the tensile 

twinning {101�2}˂101�1˃ (twinning plane and twinning direction) plays an important role in the 

deformation of Mg at room temperature. Not only can tensile twinning accommodate the strain 

components along c axis, but also it exerts significant effects on the texture evolution, i.e., the 

c axis of the matrix lattice is reoriented by tensile twinning {101�2}˂101�1˃ by approximately 

86° around the ˂101�0˃ axis. Furthermore, tensile twinning has a strong impact on work 

hardening, since it reduces the mean free path of dislocation slip and causes the formation of 

twin-twin joints. Tensile twinning is prevailing at room temperature deformation [12], and 

understanding of the mechanisms of twin evolution has thus a high practical relevance. Despite 

considerable efforts to research the nucleation and growth of twins [13-17], the twin-dislocation 

interaction at atomic scale [18] and the effects of twinning on work hardening and texture 

evolution [19-21], a physical law capturing twin growth and associated twin volume fraction 

has not been established yet. In fact, numerical methods such as Volume Fraction Transfer 

(VFT) scheme and Predominant Twin Reorientation (PTR) scheme [22] enclose the twin 

volume fraction and were applied in texture modeling of hcp metals Mg, Zr and Ti, accepting 

some arbitrariness in the computational parameter selection (e.g., arbitrary threshold value of 

the twin volume fraction in PTR). The numerical nature of VFT and PTR entail many iterations, 

associated with high computational cost. In the present thesis, a semi-empirical law on the 

evolution of twin volume fraction was intended to be proposed. This law considers initial twin 

volume fraction after nucleation and the twin volume saturation. A growth factor of twin, α, is 

included, which is required to determine the speed of increase of twin volume fraction and its 

saturation. A simple dislocation model considering twin thickening is developed. This model is 

supposed to deliver a reasonable estimate of the velocity of a twin partial dislocation. Since the 
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physically precise quantitative evaluation of this property is beyond conventional experimental 

determination, an estimate on its order of magnitude will be a useful reference or input for 

dislocation dynamics modeling of twinning. It has been shown that the basal texture greatly 

handicaps deformation ability of Mg alloy. Here, a novel thermal mechanical method will be 

developed to weaken the strong basal texture. Three pre-strain schemes are attempted 

experimentally, and their ability to weaken the strong basal texture is discussed. 

The orientation distribution of polycrystal grains and its control is a key to innovation and 

process optimization in industry. All non-random orientation distributions are defined as 

“texture”. Understanding the consequences of relative activity of different deformation modes 

and associated ratios of CRSS allows for controlling and understanding the deformation 

response of the material, such as, texture evolution and vice versa. Although transmission 

electron microscopy (TEM) was applied to clarify the activity of deformation modes [23, 24], 

explicit and detailed experimental investigation of the relative activity of different deformation 

modes remains a challenging task. In the framework of virtual materials design, studying the 

texture evolution and the anisotropic mechanical response of Mg via crystal plasticity [25, 26] 

has been shown to be an efficient, promising approach, since, the relative activities of different 

deformation modes can be evaluated at each moment of a deformation setting.  

Present texture modeling approaches can be divided into the categories 1) mean field and 

2) full field. 1) The full constraints Taylor model (FC model), the relax constraints Taylor model 

(RC model) [27] and the visco-plasticity self-consistent method (VPSC) are mean field models 

[22]. VPSC is much more complex than Taylor Type models. Due to its iteration algorithm, it 

is also computationally costly. Thus, the Taylor Type model may be a suitable choice when it 

comes about simulative trends of texture evolution, whereas, in fact, VPSC will deliver more 

accurate numerical simulation results. 2) Crystal plasticity finite element method (CPFEM) 

represents a full field model [28]. Compared to the mean field models, the full field model 

indeed delivers additional information to the understanding of texture, like the local stress field. 

However, high computation expense is needed, and the method does not necessarily give more 

reliable answers compared to the results of Taylor type model [29]. Further, restrained by the 

calculation capacities of even high-end computers, the grain number in full field method is 

limited. In contrast, in the mean field method, more grains (more than 5000) can be considered 

easily and allow for better statistics.  

In the present thesis, a Taylor type model is developed to simulate the texture evolution of 

the as-extruded AZ31 Mg alloy. The semi-empirical physics law of twin growth is embedded 



3 
 

in this model and the minimum shear principle proposed by Bishop and Hill [30] is applied to 

select the active slip systems. 
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2  Objectives 
 

The objectives of this thesis are  

 

1. Establishing a semi-empirical twin growth law. This law should be consistent with the 

experimental observations, and its simplicity should facilitate its implementation into a 

texture model. 

2. Finding a novel thermal mechanical experimental method to weaken the strong basal 

texture of the as-extruded AZ31 Mg alloy. Three pre-strain schemes will be tested and 

their ability of weakening basal texture will be examined.  

3. Developing a modified Taylor type model into which a semi-empirical twin growth law 

is embedded. This model will be applied to simulate the texture evolution of as-extruded 

AZ31 alloy. The prediction should be consistent with the experimental results of AZ31 

Mg alloy. This model should also significantly reduce the calculation time due to its 

simplicity of mathematical form.  
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3 State of the art 
In this section, the current understanding of deformation of single crystal and polycrystal 

is presented in Section 3.1 and 3.2. In Section 3.3, the reader is led through relevant pre-

requisites for texture modeling, starting with a representation of orientation and texture to the 

understanding of orientation distribution function (ODF). Deformation modes in Mg and its 

alloys are presented in Section 3.4. For the purpose of modeling the texture, a basic knowledge 

on crystal plasticity is required, which is the focus of Section 3.5. Modeling approaches based 

on crystal plasticity are briefly introduced and compared in Section 3.6, focusing on their 

usability for modeling the texture evolution. 

3.1 Understanding deformation - single crystal  
In this section, the state-of-the-art of understanding deformation of a single crystal is 

discussed, which sets up the basis for the considerations of deformation in polycrystalline 

material (Section 3.2). 

3.1.1 Schmid´s law and generalized Schmid´s law 
When a single crystal metal sample is subjected to a uniaxial tensile test, its yield strength 

will vary with the orientation of the sample. This indicates that yielding of a single crystal is 

directly related to the activation of its slip systems. The experimental observation has shown 

that a slip system can be activated when the shear stress acting in the slip direction on the slip 

plane reaches some critical value. This critical shear value is the stress required to move a 

dislocations along the slip plane [31]. 

The yield strength of the single crystal with a certain orientation is calculated as follows. 

The applied stress in the tensile direction on cross section area A is σ=F/A, F is the applied 

force. The resolved shear stress, Rτ , acting along the slip direction on the slip plane then reads 

 R
resolved force acting along the slip direction

area of  slip plane
τ =  . (3.1) 

The resolved force acting along the slip direction is F cos λ, and the area of the slip plane is 

A/cosφ, where λ is the angle between the tensile axis and the slip direction and φ is the angle 

between the tensile axis and the slip plane normal, as shown in Fig. 3.1. Rτ  is then given by: 

 R
F cosλ σ cosφ cosλ
A cosφ

τ ⋅
= ⋅ ⋅=  . (3.2) 

It is found that the resolved shear stress required to activate a specific slip system in a given 

material with specified dislocation density and purity is constant. This threshold stress is known 
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as the critical resolved shear stress (CRSS), cτ , being different for different slip systems. The 

Schmid´s law can be expressed as 

 R cσ cosφ cosτ = τλ⋅ ⋅ ≥  . (3.3) 

cosφ cosλ⋅  is called the Schmid factor. Usually, in metals, several slip systems are activated 

during deformation. It is unlikely that the resolved shear stress acting on each system 

simultaneously reaches their respective cτ  as the applied tensile stress increases. More probable, 

for one slip system, cτ  is reached first. This is the primary slip system, whose CRSS is p
cτ . The 

activation of the primary slip system marks the start of plastic deformation. The stress required 

for the activation of the primary slip system is the yield stress of the single crystal, 
p

c cσ = τ cosφ cosλ⋅ . In the cases where the different slip systems have same cτ (e.g. in the face 

cantered cubic metals), according to the Schmid’s law Eq. (3.3), the primary slip system will 

be the system with the largest Schmid factor. 

 

 
 

Fig. 3.1. Uniaxial tensile deformation of a single crystal: λ is the angle between the tensile axis and the slip 

direction; φ is the angle between the tensile axis and the slip plane normal. 

 

When the stress state imposed on the single crystal is complex, the Schmid’s law is transmuted 

to tensor form. Hereby, the unit vector of the slip direction b(s) and normal to the slip plane n(s) 

for a given slip system are written in the sample coordinate frame. bi
(s) is the ith component of 
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unit vector b(s) in the slip direction in the sample coordinate frame and nj
(s) is the jth component 

of unit vector n(s)  normal to the slip plane. Then the dyadic product of b(s)  and n(s)can be 

defined as b(s)n(s), and the symmetric and skew parts of this dyadic can be expressed as: 

 ( ) ( ) ( ) ( ) ( )( )1
2

s s s s s
ij i j j im b n b n= +  , (3.4a) 

 ( ) ( ) ( ) ( ) ( )( )1= +
2

s s s s sm b n n b  , (3.4b) 

 ( ) ( ) ( ) ( ) ( )( )1
2

s s s s s
ij i j j iq b n b n= −  , (3.5a) 

 ( ) ( ) ( ) ( ) ( )( )1=
2

−s s s s sq b n n b  , (3.5b) 

where ( )sm is the Taylor tensor and the generalized Schmid´s law can be expressed as 

 s s s: = τm σ  . (3.6) 
sτ is the CRSS for one specific slip system. Its essence is that the component of the applied 

stress performing the plastic work determines the kinematic behavior [32]. When there is no 

thermal dissipation, the plastic work done by the macroscopic tensile stress will be equal to that 

of the micro resolved shear stress. 

 sτ d dγ ε= σ  . (3.7) 

Based on Schmid’s law, the shear strain is expressed as  

 cos cosd dε ϕ λ γ=  . (3.8) 

For the strain rate, we obtain 

 cos cosε ϕ λγ=   , (3.9) 

which represents the relationship between macro-strain rate and micro-strain rate in the one 

dimensional case (e.g. the uniaxial tension of a single crystal). However, since the general strain 

in one grain of a polycrystal (which may be thought of as a “single crystal” in a polycrystal, 

here) has 6 different components (for it is a tensor), Eq. (3.9) will become a tensor formula. 

When there are many active slipping systems, all these active slipping systems contribute to the 

whole deformation, and the strain rate of the single crystal (or one grain in a polycrystal 

aggregate) can be expressed as  

 c s s

s
= γ∑D m  . (3.10) 

cD  is the strain rate tensor of one grain in the polycrystal. Therefore, in a polycrystal aggregates, 

since the mechanical response of each grain is different also cD  of each grain is different. From 

the Eq. (3.10), the direction of strain rate tensor cD  is determined by the Taylor tensors sm  of 
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all active slip systems and sγ  can be seen as the component of the strain tensor cD  along the 

Taylor tensors of this slip system. Based on the volume conservation assumption during 

deformation processes, the strain rate tensor cD  will have 5 independent components, 

indicating that 5 independent slip systems are required to accommodate any inhomogeneity 

during deformation. It is notable that Schmid´s law serves as a corner stone for all kinds of 

crystal plasticity models. 

3.1.2 Orientation change of a single crystal  
Fig. 3.2 illustrates a single crystal subjected to tension. Here the resolved shear stress on 

the slip system reaches the CRSS, i.e., this slip system is activated. If there were no constraints 

on the end of the sample bar, the tensile axis of the sample would rotate with the normal to the 

slip plane and the slip direction would remain unchanged. However, usually the end of the 

tensile axis of the sample is fixed and cannot rotate. Then the crystal orientation will vary and 

the crystal will suffer a rigid rotation. Assume the unit vectors s and m standing for the slip 

direction and normal to the slip plane of active slip system. The rotation axis around which slip 

direction s rotates toward the tensile axis T is then given by 

 ( )
1/221 = − r s×T s×T  , (3.11) 

where r is the unit vector and T is the unit vector along axis. The change rate of s and m can be 

expressed as s  and m  [33] 

 ⋅

*s = Ω s  , (3.12) 

 = ⋅

*m Ω m  , (3.13) 

 ( )γ= − − ⋅

*Ω sT TS T m  , (3.14) 

where *Ω  is the rigid lattice spin rate. Eq. (3.14) will be applied in Section 6.1. 

 

 
Fig. 3.2. Schematic diagrams for a single crystal undergoing single slip in tension [33]. 
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In the case of a uniaxial tension test of a single crystal, assuming the instantaneous 

hardening rate is h, the tensile stress rate �̇�𝜎 evolves with the tensile strain rate (the true strain 

rate) �̇�𝑒 as 

 Mσ ε=   , (3.15) 

and 

 ( )
2 2 2

cos
cos cos cos

2ΦhM
Φ Φ

σ
θ

⋅
= +  . (3.16) 

The first term of Eq. (3.16) represents the work hardening effects, while the second term of 

Eq. (3.16) is related to geometrical softening. During the tensile test, the orientation of single 

crystal will change. When the change of the orientation of single crystal makes the required 

tensile stress decrease, single crystal appears to become soft with deformation. This 

phenomenon is called geometrical softening, which is exclusively caused by the rotation of the 

crystal. Geometrical softening happens locally, which can be ascribed to the inhomogeneous 

dislocation distribution and the non-uniform deformation [33]. Eq. (3.16) allows for the 

competition between work hardening and geometrical hardening. When M becomes negative, 

geometrical softening outweighs the work hardening and the crystal softens.  

3.1.3 Stages in the τ-γ curves of a single crystal 
The proposal of different stages of strain hardening in stress–strain curves marks a major 

benchmark in the evolution of strain-hardening theory [34]. Experiments of single crystals have 

demonstrated the existence of a number of different stages of strain hardening, which are 

introduced here in short. 

Stage I is initiated by the motion of a single slip system, which strongly depends on the 

orientation of the crystal and does not occur if the deformation is initialized by multiple slip 

from the beginning. Stage II exhibits the largest hardening rate, whose magnitude is of 1/200 

of the shear modulus μ. The hardening rate in Stage II depends on orientation as well, while it 

is insensitive to strain rate or material compositions. The work hardening rate in stage III 

exhibits a decreasing trend and it is very sensitive to temperature and the rate of deformation. 

Stage III has been shown to depend strongly on the type of material, indicating the stacking 

fault energy (SFE), which itself is strongly material-dependent, plays an important role in this 

stage. The presence of stage III confines the extent of stage II, especially at high temperatures 

and for materials with high SFE. Fig. 3.3 illustrates the shear stress versus shear strain curves 

(τ-γ) for single crystals with different orientations in 99.98% Cu at room temperature and an 

initial shear strain rate of 2×10-3/s [34].  
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Fig. 3.3. Resolved shear stress – resolved shear strain curves of 99.98% Cu single crystals with various 

orientations at room temperature and an initial shear strain rate of 10-3/s (The beginning and end of stage 

II are marked) [34]. 

 

3.2 Deformation of polycrystals 
3.2.1 Experimental observations 

Fig. 3.4 (a) shows the optical micrograph of deformed polycrystalline lead. The observed 

plastic deformation caused by simple shearing is a local feature. Formation of slip-steps 

(Fig. 3.4 (b)) was explained by sliding of certain families of crystal planes over each other in 

certain crystallographic directions lying in the planes  

 

  
 

Fig. 3.4. Observation of slip lines in polycrystalline Pb (a); and (b) the schematic representation of slip-

steps [35]. 

 

Fig. 3.4 (b) illustrates the “slip-steps” caused by the emergence of “slip bands”, which 

formed along crystallographic planes, at the specimen surfaces. The dashed lines indicate the 

traces of the crystalline slip planes and the bold line C represents a grain boundary separating 

(a) (b) 
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two grains. Nowadays, it can be verified by transmission electron microscopy that, in 

microscale, the dislocations were stored on the slipping planes. 

3.2.2 Stages in σ-ε curves of polycrystals 
Fig. 3.5 illustrates a set of stress-strain curves in Cu fcc polycrystals at different 

temperatures. The starting stage of all of these curves exhibit the same constant slope, which is 

similar to stage II in single crystals, while stage I is absent in polycrystals, indicating that 

deformation is initiated by the simultaneous activation of multiple slip systems. Further studies 

have shown that other fcc metals also have a similar linear strain hardening stage. Moreover, 

stage II in polycrystals is almost insensitive to the deformation temperature. The hardening rate 

in stage II is of the magnitude of 1/50 of Young's modulus E. Stage II and associated multi-slip 

behavior is restricted to the low-strain range. The commencement of stage III is characterized 

by the strong dependence on temperature, strain rate and material composition. There is also a 

stage IV in the high-strain range of the stress-strain curves for metals with a low hardening rate. 

This stage can be considered as an asymptote for high strains, and stage II can be seen as an 

asymptote for low strain [34]. 

 

 

Fig. 3.5. Compressive stress-strain curves for Cu polycrystals at different temperature. The strain rate is 
1 s-1 for all solid curves [34].  

 

Fig. 3.6 shows tension and compression responses of rolled AZ31 alloy sheets at the strain 

rate of 10-2 s-1 at different temperatures of 25 °C, 65 °C and 150 °C [36]. The uniaxial tension, 

compression tests were performed in different directions: along rolling direction (RD); 
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transverse to rolling direction (TD); along normal direction (ND); and 45º to rolling direction 

(DD). 

 

 

 

Fig. 3.6. Tension (a) and compression(b) responses of rolled AZ31 alloy sheets at a strain rate of 10-2 s-1 at 

different temperatures and directions [36]. 

 

The tension response of the rolled, polycrystalline AZ31 Mg alloy, as shown in Fig. 3.6 (a), 

is similar to the curves shown in Fig. 3.5. However, as shown in Fig. 3.6 (b), the compression 

of rolled AZ31 Mg alloys displays the flow curves with very different shapes, which cannot be 

simply divided to 3 stages as in the fcc metals. The shape differences between the compressive 

flow curves are strongly related to the deformation twinning [36], which is absent in the case 

of Cu polycrystal compression.  

3.2.3 Work hardening  
Work hardening or strain hardening primarily originates from interactions of the following 

material defects interactions, 1) dislocation-dislocation, 2) twin-dislocation and 3) twin-twin.  

1) dislocation-dislocation interaction: As deformation goes on, dislocations multiply and 

interact mutually[37]. Due to this dislocation-dislocation interaction, the stress needed for 

activation of dislocation movement and initiation of plastic deformation [38, 39] increases. 

Bassani and Wu [40] proposed a simple strain rate-independent phenomenological hardening 

formulation: 

 ( )( )
c h βα

αβ
β

τ γ=∑   , (3.17) 

 ( ) ( )02
0

11 0 0

sech 1 tanh
N

s
s s

h h
h h h h f βα
αα αβ

β
β α

γγ
τ τ γ=

≠

   −   = − + +     −        
∑  , (3.18a) 
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 ,h qhβα αα α β= ≠  . (3.18b) 

where ( )
c
ατ  is the current yield strength on the α slip system, and hαβ  are the hardening rates. 

The off-diagonal terms in the matrix represent latent hardening. Latent hardening refers to the 

influence of the active slip systems on hardening of the inactive slip systems. fαβ  is the 

amplitude factor, which depends on the type of dislocation junction [40] formed between slip 

system α and β. 0γ is the amount of slip after which the interaction between slip system α and 

β reaches peak strength (generally, 0γ is assumed to be the same for all pairs of systems). 0τ  is 

the initial critical resolved shear stress, τ1 is the stage I stress (or the breakthrough stress where 

large plastic flow initiates). 0h  is the hardening modulus just after initial yield, and sh  is the 

hardening modulus during easy glide. q is the ratio of the latent and self-hardening rate. 

In constitutive laws, an extended Taylor’s law is usually applied to capture the effects of 

dislocation-dislocation interactions on CRSS, which relates the CRSS on a given system to the 

total dislocation densities on all slip systems. This approach yields proper results when the 

hardening in stage III is mainly controlled by the increasing dislocations density. However, the 

softening of flow stress due to annihilation of dislocations can be frequently observed, such as 

during deformation of Aluminum. This process is called dynamic recovery. In order to account 

for differing strengths due to dislocation–dislocation interactions and varying influence of 

dislocation interactions on hardening, Franciosi and Zaoui proposed an interaction matrix and 

the following expression for defining the CRSS on a slip system [41]:  

 s s ' '
0

'

s s ss s
c FZ

s
bτ τ µ α ρ= + ∑  , (3.19) 

where s
cτ  is the CRSS and s

0τ  is the lattice friction stress on the slip system s, respectively. sµ  

and sb  are the shear modulus and magnitude of Burgers vector of this slip system. 'ss
FZα  is the 

interaction coefficient related to the strength of the interaction between dislocation slip systems 

s and s’. Then, an interaction matrix can be established by 'ss
FZα . 'sρ  denotes the dislocation 

density of system s’. The dislocation system s, on which the CRSS is evaluated, is generally 

referred to as the primary system, while the other slip systems s’ are referred to as forest systems 

(which might be inactive at a specific deformation increment) with respect to s. It should be 

noted that the FZ formulation was originally proposed for fcc materials where the magnitude 

of the Burgers vector of different slip systems is identical. In hcp metals, the magnitude of the 

Burgers vector of different slip system is different, and dislocation mobility and friction stress 

associated with hcp slip systems are expected to yield a non-symmetrical latent hardening 
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matrix. The work hardening behavior in hcp metals will thus be different from that of fcc metals. 

A proper hardening law for hcp materials has been proposed by Lavrentev and Pokhil [42]:  

 s s ' ' ' '
0

'

s s ss s
c LP

s
bτ τ µ α ρ= +∑  , (3.20) 

This formulation also contains s
cτ  and s

0τ , and sµ  and sb  are again the shear modulus and 

magnitude of Burgers vector of the s’ slip system. Now, 'ss
LPα  is the interaction coefficient 

related to the strength of the interaction between dislocation slip systems s and s’. The numerical 

values of the FZ of Eq. 3.19) and LP coefficients of Eq. (3.20) are not expected to coincide. 

Obviously, the FZ and LP expressions of the hardening law differ by two aspects: (1) the 

position of the summation symbol and (2) the Burgers vector of the primary slip system enters 

the FZ formulation while Burgers vector associated with the forest slip systems is inserted in 

the LP expression. 

2) twin-dislocation interactions: It was found that the dislocation transmutation was irreversible 

and resulted in the presence of a larger number and a higher fraction of various dislocation types 

within the twinned regions than in the parent, forcing them to interact and induce an increasing 

latent hardening unique for twinning [43]. The interaction matrix, in principle, defines both, the 

flow stress and the hardening rate.  

Research on the influence of twin-dislocation interaction on work hardening is scarce, and 

studying the role of twin-dislocation interaction is an unsolved task.  

However, the frequently applied Voce type hardening law [44-47] considers twin-

dislocation interactions phenomenologically by the hardening matrix 'ssh , being found in the 

rate Eq. (3.21b) of the work hardening formulations: 

 ( )
s

s s s 0
0 1 1 s

1

ˆ 1 exps θτ τ τ θ
τ

  Γ
= + + Γ − −  

  
 , (3.21a) 

 '
'

'

ˆs
s s

ss
s

d h
d
ττ γ=
Γ ∑   , (3.21b) 

where Γ is the total accumulated shear in the grain by summing over all the slip and twinning 

systems. ˆsτ  is the reference stress. s
0τ  is the initial CRSS of slip system “s”. s

1τ  is the back 

extrapolated CRSS. s
0θ  is the initial hardening rate and s

1θ  is the asymptotic hardening rate. 'sγ  

is the shear rate of the slip system. 'ssh  represents the components of the hardening matrix. 

When 'ssh =1, the “self” and “latent” hardening are indistinguishable and the evolution of 

threshold stress of each slip system is only given by the reference hardening function ˆsτ . In 
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the present thesis, the Voce type hardening law is applied in the texture model presented in 

Chapter 6.  

3) twin-twin interactions: Twin-twin interactions in fact represent important 

microstructural features since they contribute to mechanical hardening in mechanical 

deformation. Twin-twin junctions resulting from twin–twin interactions can retard the 

detwinning process and thus impede the stress relaxation and promote the nucleation of new 

tensile twins [48-50]. The retardation behavior has been ascribed to the (unfavorable) 

dissociation of twin–twin boundary (TTB) dislocations [51]. However, the systematic research 

on the effects of twin-twin interaction on the work hardening is still missing. 

 

3.3 Representation of orientation and texture  
3.3.1 Representation of orientation 

Orientation is used in materials science for a complete relation between two coordinate 

frames, i.e., the crystal coordinate system and sample coordinate system [52]. In general, there 

are several ways to represent the relation between these two coordinate frames. The most 

commonly used method is adopting a rotation from one frame to another. Given two orthogonal 

coordinate frames, one orthogonal coordinate frame can be transformed into the other by a 

sequence of rotations and vice versa. The Euler angle is used to unambiguously define this 

rotation. There are several different, but equivalent definitions of Euler angle. In the following, 

these definitions are reviewed, and their differences are clarified. 

1) Kocks definition. This definition implies the advantage of symmetry and leads to 

symmetric Euler angles.  

We denote the sample coordinate system (SC) by X-Y-Z coordinates and the crystal 

coordinate system (CC) by 1-2-3 coordinates. Both coordinate systems are presumed to have 

right-handedness. The SC is set to be fixed in a unit sphere with the Z axis coinciding with the 

North Pole and the X axis lying in the prime meridian line, as depicted in Fig. 3.7. A notional 

boat on the surface of the sphere represents a specific coordinate system with its heading 

direction being the 1 axis and its mast direction being the 3 axis. The transformation from SC 

to CC can be well explained by using an analogue of moving the red boat (SC) to the purple 

boat (CC) in Fig. 3.7 through a sequence of rotations. The red boat initially experiences a 

rotation of Ψ around the 3 axis with the rotation direction from the 1 to the 2 axis thus 

transforming to the orange boat. Then the orange boat moves along the meridian line (orange) 

to its new position with the azimuthal angel of θ, which is equivalent to the rotation around its 

2 axis by θ from 3 to 1. Now, the orange boat's mast is located along its final direction (3 axis). 
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The last step is to rotate the orange boat around its 3 axis by π-Φ from the 1 to the 2 axis. The 

orange boat now exactly coincides with the purple boat, which means SC has been transformed 

to CC. It is interesting that the transformation from CC to SC is just needed to interchange Ψ 

and Φ. That is why the Kocks definition is called symmetric Euler angles.  

 

 
 

Fig. 3.7. Schematic representation of definition of Euler angles as spherical coordinates for a boat on the 

surface of a unit sphere (Kocks). 

 

Here, one question emerges, i.e., what is the rule governing the transformation between 

the components of one vector or tensor in SC and its components in CC. Mathematically, a 

rotation manipulation can be described by a rotation matrix Q. In order to deduce the 

transformation matrix from SC to CC, the rotation manipulation displayed in Fig. 3.7 is 

represented in the orthogonal coordinate systems in Fig. 3.8, where the red coordinate systems 

is denoted as SC and the purple coordinate systems is CC. After three successive rotations, the 

SC is completely transformed to CC. Given a vector v, its contra-variant components in the old 

coordinate system A and the new coordinate system B are (v1,v2,v3)T and (v1',v2',v3')T, 

respectively. The covariant base vectors of the new coordinate system B(b1, b2, b3) can be 

expressed by that of the old coordinate system A(a1, a2, a3) by equation:  

 

1 2 3
1 1 1
1 2 3
2 2 2
1 2 3
3 3 3

=
l l l
l l l
l l l

    
    
    

        

1 1

2 2

3 3

b a
b a
b a

, (3.22a) 
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then (v1',v2',v3')T can be expressed by (v1,v2,v3)T as: 

 

'

'

'

1 1 2 3 1
1 1 1

2 1 2 3 2
2 2 2
1 2 3 33
3 3 3

=

Tv l l l v
v l l l v

l l l vv

−                       

 (3.22b) 

When the old coordinate system A transforms to the new coordinate system B via a rigid 

rotation, Q=

1 2 3
1 1 1
1 2 3
2 2 2
1 2 3
3 3 3

l l l
l l l
l l l

 
 
 
  

 will be an orthogonal matrix, meaning QQT=QTQ=I, and Eq. (3.22b) 

can be simplified as: 

 

'

'

'

1 1 2 3 1
1 1 1

2 1 2 3 2
2 2 2
1 2 3 33
3 3 3

=

v l l l v
v l l l v

l l l vv

                       

 . (3.23) 

In the rotation manipulation of coordinate system defined by Kocks, the rotation matrix for the 

first rotation manipulation (Fig 3.8a) can be expressed as: 

 1

cos sin 0
= sin cos 0

0 0 1

Ψ Ψ 
 − Ψ Ψ 
  

Q  . (3.24) 

The rotation matrix for the second rotation manipulation (Fig 3.8b) can be expressed as: 

 2

cos 0 sin
= 0 1 0

sin 0 cos

θ θ

θ θ

− 
 
 
  

Q  . (3.25) 

The rotation matrix for third rotation manipulation (Fig 3.8c) can be expressed as: 

 
( ) ( )
( ) ( )3

cos sin 0
= sin cos 0

0 0 1

π π
π π
−Φ −Φ 

 − −Φ −Φ 
  

Q  . (3.26) 

The transformation matrix from SC to CC can be finally expressed by 

 3 2 1=g Q Q Q  , (3.27) 

and 

sin sin cos cos cos sin cos cos sin cos cos sin
= cos cos sin cos cos cos cos sin sin cos sin sin

cos sin sin sin cos

θ θ θ
θ θ θ

θ θ θ

− Φ Ψ − Φ Ψ Φ Ψ − Φ Ψ Φ 
 Φ Ψ − Φ Ψ − Φ Ψ − Φ Ψ Φ 
 Ψ Ψ 

g  (3.28) 
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As previously discussed, the Kocks definition of Euler angles has an advantage of 

symmetry. Interchanging Ψ and Φ, we obtain gT. This represents the reverse manipulation 

transforming CC to SC since gTg=I, which can be easily understood from Fig. 3.7. In the 

stereotype projection, the Kocks definition is shown in Fig. 3.9.  

 

 
 

Fig. 3.8. Rotation manipulations based on Kocks definition of Euler angles. 

 

 
 

Fig. 3.9. Kocks definition of Euler angles in sample and crystal coordinates. 
 

2) The Bunge definition: Euler angles are expressed as (φ1,Φ,φ2), which is shown in Fig. 3.10, 

where the red coordinate systems is denoted as SC and the purple coordinate system is CC. In 

terms of the Bunge definition, the transformation matrix from SC to CC can also be decomposed 

as a series of successive rotation manipulations, as depicted in Fig. 3.10. 

(a) (b) (c) 
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Fig. 3.10. Bunge definition of Euler angles as spherical coordinates for a boat on the surface of unit 

sphere. 
 

 
 

Fig. 3.11. Rotation manipulations based on the Bunge definition of Euler angles. 

(a) (b) (c) 
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Fig. 3.12. Bunge definition of Euler angles in sample and crystal coordinates. 
 

In the rotation manipulations of coordinate system defined by Bunge, the rotation matrix 

for the first rotation manipulation (Fig 3.11 (a)) can be expressed as: 

 
1 1

1 1 1

cos sin 0
= sin cos 0

0 0 1

ϕ ϕ
ϕ ϕ

 
 − 
  

R  . (3.29) 

The rotation matrix for second rotation manipulation (Fig. 3.11 (b)) can be expressed as: 

 2

1 0 0
= 0 cos sin

0 sin cos

 
 Φ Φ 
 − Φ Φ 

R  . (3.30) 

The rotation matrix for third rotation manipulation (Fig. 3.11 (c)) can be expressed as: 

 
2 2

3 2 2

cos sin 0
= sin cos 0

0 0 1

ϕ ϕ
ϕ ϕ

 
 − 
  

R  . (3.31) 

The transformation matrix from SC to CC can be finally expressed by 

 3 2 1='g R R R  . (3.32a) 

and 

1 2 1 2 1 2 1 2 2

1 2 1 2 1 2 1 2 2

1 1

cos cos sin sin cos sin cos cos sin cos sin sin
= cos sin sin cos cos sin sin cos cos cos cos sin

sin sin cos sin cos
'

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ

− Φ + Φ Φ 
 − − Φ − + Φ Φ 
 Φ − Φ Φ 

g . (3.32b) 
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Relations between Kocks definition and Bunge definition of Euler angles are obvious by 

comparing Fig. 3.9 with Fig. 3.12, where Ψ=φ1-π/2, θ=Φ, Φ=π/2-φ2, giving rise to = 'g g , 

which means the same orientation is obtained. 

 

3.4.2 Orientation space  

From the definition of the Euler angles described in Section 3.4.1, it follows that they are 

periodic with the period of 2π. Then the following equation holds: 

 { } { }1 2 1 22 , 2 , 2 = , ,g gϕ π π ϕ π ϕ ϕ+ Φ + + Φ  . (3.33) 

All possible Euler angles of one crystal form a space, which is called orientation space. 

From Eq. (3.33), the orientation space is a three dimensional periodic space with period 2π in 

three coordinate axis directions in a Cartesian coordinate system. The unit cell of orientation 

space {φ1, Φ, φ2} is {2π, 2π, 2π}. From the Bunge definition of Euler angles, the following 

relation is also valid: 

 { } { }1 2 1 2, 2 , = , ,g gϕ π π ϕ π ϕ ϕ+ −Φ + Φ  . (3.34) 

If we input an Euler angles set {φ1+π, 2π-Φ, φ2+π} into Eq. (3.32), we find that the 

resulting transformation matrix is just the same as if we input an Euler angles set {φ1, Φ, φ2}. 

Actually, this relation corresponds to an operation of reflection with plane Φ=π, plus a 

simultaneous displacement by π along the axes φ1 and φ2, which is schematically represented 

by Fig. 3.13. Therefore, the asymmetric unit cell can be expressed as {2π, π, 2π}, which is 

equivalent to the unit cell and thus can represent all possible Euler angle sets. This symmetry 

corresponds to a space group nP  in orientation space. 

 
 

Fig. 3.13. Unit cell and asymmetric unit in orientation space [53]. 
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Conventionally, to represent a crystal orientation, we can start from a coordinate system, 

which coincides with the SC and then rotate this coordinate system by g to make this coordinate 

system coincide with the CC. Thus, g is the representation of crystal orientation. However, it is 

not necessary to start from the coordinate system coinciding with the SC. We can also begin 

with an arbitrary coordinate system whose orientation is 0g  in terms of SC and after the rotation

,g , this coordinate system coincides with the final CC. Hence, the relation between these two 

descriptions can be expressed as = 0⋅,g g g . This equation represents a transformation in two 

orientation spaces. For a specific orientation g, it can be expressed by a point with the coordinate 

{φ1, Φ, φ2} in orientation spaces s, while it can also be expressed by a point with the coordinate 

{φ’1, Φ’, φ’2} in orientation spaces s’. However, if we consider the volume element dφ1dΦdφ1 

in the vicinity of point {φ1, Φ, φ2}, generally, this volume is not equal to the corresponding 

volume element dφ’1dΦ’dφ’2 in the vicinity of point {φ’1, Φ’, φ’2}. Because of the volume 

distortion involved in this transformation, we introduce an invariant parameter I(φ1, Φ, φ2) to 

make the volume of orientation space unchanged after transformation. Thus, the following 

relation holds: 

 ( ) ( )1 2 1 2 1 2 1 2' ', , ,' ' ' ,' =I d d d I d d dϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕΦ Φ Φ Φ  . (3.35) 

For Euler angles, the invariant parameter I(φ1, Φ, φ2)= sinΦ. With the help of a random 

orientation distribution, the invariant parameter I(φ1, Φ, φ2) can be defined as the number of 

orientation points falling into the volume element dφ1dΦdφ1: 

 ( )1 2
1 2

, , dnI
d d d

ϕ ϕ
ϕ ϕ

Φ =
Φ

 . (3.36) 

There is another way to understand the physical meaning of the invariant parameter I (φ1, 

Φ, φ2). As can be seen in Fig. 3.14, in a unit sphere, this random orientation distribution can be 

represented by a homogeneous radiation from the center point of the sphere, and each ray vector 

can be considered as the “z” axis of the crystal coordinate system.  
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Fig. 3.14. Random orientation distribution can be represented by a homogeneous radiation. 

 

At a different point on the spherical surface, in general, the same Δφ1 and ΔΦ cannot assure 

that the same number of ray vectors penetrate the surface area element. Apparently, as Φ 

approaches π/2, more ray vectors will pass through the surface area element. As a consequence, 

in orientation space, the density where Φ near to π/2 will be bigger than that in other parts of 

orientation space. The area element on the spherical surface can be expressed as dS=sinΦdΦdφ1 

(Fig. 3.15a). When dS is the same, then the same number of ray vectors will pass through dS, 

which means that the density in orientation space is homogenous (Fig. 3.15b).  

 
 

Fig. 3.15. (a) The definition of invariant parameter I (φ1, Φ, φ2) by random orientation distribution in 

orientation space; (b) definition of invariant parameter I (φ1, ζ, φ2) [50]. 

 

Indeed, dS is exactly the definition of the solid angle dΩ. The same dΩ guarantees for the same 

number of rays.  

(a) (b) 
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 1sind d dϕΩ = Φ Φ  . (3.37) 

Thus, the volume element in orientation space can be expressed as 

 1 22

1 sin
8

d d d dϕ ϕ
π

= Φ Φg  . (3.38) 

where 1/8π2 is the normalization factor. 

By substituting cosς = Φ , the infinitesimal increment of the new parameter ς  can be 

expressed as  

 sind dς = Φ Φ  . (3.39) 

Hence, the orientation increment element in orientation space { }1 2, ,ϕ ς ϕ  can be rewritten by 

 1 22

1
8

d d d dς ϕ ϕ
π

=g  . (3.40) 

Apparently, this orientation space has homogeneous density, which can be seen in 

Fig. 3.15 (b).  

3.3.2 Representation of textures 
In Section 3.3.1, the definition of orientation and orientation space are explained in detail. 

They are applicable for the question of orientation between the CC of a single crystal or one 

specific grain and SC. However, in terms of the orientations of a large number of grains, i.e., 

texture, the question remains how to represent orientation and orientation space properly? 

Consider one specific crystal direction of all grains (e.g. the c axis of all grains in polycrystalline 

Mg) in relation to the SC. Then, we can plot all the c poles as points on the pole figure.  

Fig. 3.16 shows the pole figure of rolled AZ31B Mg alloy [54], which exhibits a typical 

basal texture of moderate strength and uniform distribution of prismatic poles. This is the 

smoothed recalculated pole figure. 

 

 
 

Fig. 3.16 Recalculated pole figures for a hot-rolled thick AZ31B Mg plate measured by neutron 

diffraction [54]. 
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In the original pole figure, texture is represented by a large amount of discrete points, which 

may overlap and lead to an underestimation of distinct points and misinterpretation of texture. 

Therefore, it is beneficial to assign intrinsic weights / densities to discrete points to plot a 

contour pole figure. By plotting one specific axis of SC in CC of each grain, the inverse pole 

figure is obtained. This is especially useful when we consider the tensile axis of sample relative 

to the CC of one grain, where we can easily get the Schmid factor of one particular slip system. 

Fig. 3.17 illustrates the inverse pole figure of Mg-0.23 wt% Ce alloy (1:6 extrusion ratio) 

extruded at 450 °C [55]. 
 

 
 

Fig. 3.17 Inverse pole figures (IPF) of Mg-0.23 wt % Ce alloy extruded at 450 ℃ [55]. 

 

In three dimensional orientation space, the texture of polycrystalline aggregates 

corresponds to a distribution of points. Conventionally, this distribution of orientation points is 

assumed to be continuous. This continuous orientation distribution can then be expressed as an 

expansion of series, which is the most frequently applied scheme in texture analysis.  

As shown in Fig. 3.16, the texture reflects the crystal symmetry. Therefore, only one part 

of the pole figure is sufficient to express the whole information of texture. We can rotate the 

fixed SC to the fixed CC by the rotation matrix g, where g corresponds to a set of Euler angles. 

Since there is also a series of rotations gA by which the crystal can be transformed to its 

symmetrically equivalent orientation, the crystal cannot be distinguished from its pre-rotation 

state after subjected to rotation gA. Therefore, the orientation represented by g is equivalent to 

the orientation represented by gA∙g. This is the crystal symmetry. For the highest crystal 

symmetry of face-centered cubic metals, the texture is most frequently described by {111} pole 

figure. Since the {111} pole figure has four {111} poles, a quarter of the whole pole figure is 

then enough to represent the texture. Besides the crystal symmetry, the texture also reflects the 

sample symmetry. For instance, the axis symmetry of an as-extruded Mg alloy is related to the 

extrusion axis. 
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3.3.3 Orientation distribution functions 
The texture of a polycrystalline aggregate can be described by an assembly of “discrete 

orientations,” or by a “continuous pole figure” with intensity assigned to each orientation. 

Generally, the texture can also be represented by a continuous function, assuming that the 

orientations in orientation space are continuously distributed. If the totality of all volume 

elements of the sample, whose orientations fall within the infinitesimal interval g~g+dg, is 

denoted by dV, and V is the total sample volume, we can then define an orientation distribution 

function f(g) , which follows: 

 ( )dV f d
V

= g g  . (3.41) 

Obviously, if we set the orientation distribution function f(g) to 1, then we get a random 

orientation distribution without preferred orientations. When the orientation g is expressed by 

Euler angles (φ1, Φ, φ2), the infinitesimal increment of orientation dg can then be represented 

by ( )2
1 21 8 sind d d dπ ϕ ϕ= Φ Φg  and  

 ( )1 2 1 22

1 sin
8

, ,dV f d d d
V

ϕ ϕ ϕ ϕ
π

= Φ Φ Φ  . (3.42) 

As introduced in Section 3.3.2, the orientation distribution essentially can be characterized 

by the “ray vector density” on the surface of a sphere. Hence, from an intuitive view, the 

orientation distribution function may be expressed by “generalized spherical harmonics”. 

Bunge [56] has done pioneering work in expanding the orientation distribution function f(g) to 

series and develop this harmonic method to a general method for quantitative texture analysis. 

The term of orientation distribution function sometimes has indeed been the synonym of the 

harmonic decomposition. The harmonic decomposition is very suitable for describing the 

gradual variation near a random orientation distribution. If only few terms of the harmonics are 

required to represent the orientation distribution function, the harmonic decomposition can 

prove its greatest usefulness.  

The generalized spherical harmonics can be expressed as [56, 57]  

 ( ) , ,

0
( )

l l
m n m n
l l

l m l n l
f C T

∞ + +

= =− =−

=∑ ∑ ∑g g  . (3.43) 

The orientation distribution function can also be expressed by Euler angles  

 ( ) ( )2 1, ,
1 2

0
, ,

l l
im imm n m n

l l
l m l n l

f PeC eϕ ϕϕ ϕ
∞ + +

= =− =−

Φ = Φ∑∑ ∑  . (3.44) 
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( ),m n
lP Φ  are the associated Legendre functions. There exist some relations between the 

coefficients of ( )1 2, ,f ϕ ϕΦ  and , ( )m n
lT g  can be expressed as 

 ( ) ( ) ( )2 1, , ,
1 2, cos, im imm n m n m n

l l lT T Pe eϕ ϕϕ ϕ= Φ = Φg  . (3.45a) 

Where  

( ) ( )

( )
( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

, ,

1 2

2 2

cos

1 ! !
1 1 1 1

2 ! ! !

m n m n
l l

l m n m l nn m n m l m l m
l l n

P P x

i l m l n dx x x x
l m l m l n dx

− − −− +
− − − +

−

Φ =
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, ( )m n
lT g  has an advantageous property, i.e., the orthonormality, which can be expressed as  

  ( ) ( ), ', '
' ' ' '

1
2 1

m n m n
l l ll mm nnT T d

l
δ δ δ∗ =

+∫ g g g  , (3.46) 

where ' ' 'll mm nnδ δ δ  is the three-dimensional δ  function. 

The essence of texture analysis is to derive the ODF from the PDF (pole density function) 

by using the harmonic spherical function series method. Eqs. (3.43) to (3.46) are especially 

useful in calculating the ODF. The software MTEX is based on this method and is extensively 

used in post processing of pole figures in texture modeling and simulation [58].  

 

3.4 Deformation modes in Magnesium  
3.4.1 Overview of deformation modes in Magnesium 

Mg possesses hexagonal-close-packed (hcp) lattice structure, with the ratio of its c axis to 

a axis equal to 1.6242. The lattice parameter of Mg is a=320.94 pm and c=521.08 pm [59]. In 

the lattices of hcp materials, the densest-packed lattice plane and lattice directions are 

{0001} and 〈a〉=〈21�1�0〉/3, respectively. The easiest slipping of dislocations prolongs via these 

lattice planes and directions. In Mg, these are, more precise, {0001}〈21�1�0〉 with Burgers vector 

of 〈a〉 , which consists of three different variants, (0001)[21�1�0], (0001)[1�21�0] and 

(0001)[1�1�20]. These systems compose the basal slip systems ([21�1�0] also denotes the inverse 

slipping direction to 〈21�1�0〉). The basal slip systems can only accommodate plane strain in the 

basal plane. When the strain contains components along the c axis, the activation of other 

deformation modes are required for slip. These deformation modes include non-basal slip 

systems such as prismatic slip  {101�0}〈21�1�0〉 , {101�0}〈0001〉 , first-order pyramidal 

slip{101�1}〈1�1�20〉, {101�1}〈2�113〉, second-order pyramidal slip {21�1�2}〈2�113〉, tensile twinning 

{101�2}〈1�011〉, {21�1�1}〈2�116〉 and compression twinning {101�1}〈1�012〉, {21�1�2}〈2�113〉. These 

deformation modes are listed in Table 3.1  
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Table 3.1 The independent deformation modes of Mg. 

Modes Plane 
direction (Burgers 

vector) 

Crystallographic 

elements 

Variants 

number 

Basal sip basal {0001} a=〈21�1�0〉/3 {0001} 〈21�1�0〉 3 

prismatic slip prismatic {101�0} 
a=〈21�1�0〉/3 {101�0} 〈21�1�0〉 3 

c=〈0001〉 {101�0} 〈0001〉 3 

1st order pyramidal slip 
1st order 

pyramidal {101�1} 

a=〈1�1�20〉/3 {101�1} 〈1�1�20〉 6 

c+a =〈2�113〉/3 {101�1}〈2�113〉 12 

2nd order pyramidal slip 
2nd order 

pyramidal{21�1�2} 
c+a =〈2�113〉/3 {21�1�2}〈2�113〉 6 

tensile twinning 
TT1: {101�2} 〈1�011〉 {101�2}〈1�011〉  6 

TT2: {21�1�1} 〈2�116〉/6 {21�1�1} 〈2�116〉 6 

compression twinning 
CT1: {101�1} 〈1�012〉/2 {101�1}〈1�012〉  6 

CT2: {21�1�2} 〈2�113〉/3 {21�1�2} 〈2�113〉 6 

 

The fact that hexagonal metals are crystallographically double-lattice structures implies 

that dislocation glide via non-basal slip modes goes along with a large Burgers vector, leaving 

high-energy stacking faults behind [43]. In principle, the non-basal slip systems are far more 

difficult to be activated compared with the basal slip systems. For example, 12 atomic bonds 

need to be broken to allow for pyramidal dislocation slip, while only 5 atomic bonds are 

required in the case of basal dislocation slip occurring on the close-packed plane [43]. 

Nevertheless, some experimental researches gave the evidence of the occurrence of non-basal 

slip such as pyramidal slip {21�1�2}〈2�113〉 at room temperature [4, 23, 24, 60]. However, the 

activity of non-basal slip at room temperature is generally very low due to the very high work 

hardening rate of this slip system below temperatures of 200 °C. 

Twinning accommodates c-axis deformation by homogenous simple shear. The twins can 

easily nucleate and grow through the glide activities of free twin partial dislocations that spread 

a stable twin fault (see Section 3.4.2.2). Reported CRSS values for pure Mg, as listed in 

Table 3.2, directly reveal the relative relevance of different deformation modes at room 

temperature: Basal slip has the lowest value, spanning from 0.45 to 0.81 MPa, followed by 

tensile twinning {101�2}〈1�011〉 with approximately 2 MPa. In contrast, prismatic slip has a 

considerably higher CRSS of 41 MPa, and compression twinning has the highest value of 80-

100 MPa. This indicates, confirming the experimental observation, that at room temperature 

deformation twinning is by far the most efficient, almost exclusively active deformation mode 

for the accommodation of strain components along the c axis. It should be noted that the 
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situation changes towards elevated temperature above 180 °C, where pyramidal slip can be 

easily activated, significantly improving the deformability of Mg [61].  

 
Table 3.2 The CRSS (Critical Resolved Shear Stress) values for pure Mg and AZ31B [31, 62-64]. 

Samples 
CRSS(MPa) 

Basal Prismatic 2nd Pyramidal Tensile twinning Compression twinning 

Mg SC 0.45-0.81 39 44 2 30-100 

AZ31B PC 10-45 55-100 100-180 10-30 - 

 

3.4.2 Deformation twinning in Mg 
3.4.2.1 Deformation twinning and microstructure 

The main contrasting features of deformation twinning relative to slip are (1) polarity due 

to directionality of twin shear and (2) the abrupt or discontinuous reorientation of a part of the 

parent grain (see Fig. 3.18). The magnitude of volume depends on the characteristic twin shear 

and macro strain. Polarity makes at least two frequent modes necessary for the accommodation 

of both tensile and compressive deformation. In those materials with particularly distinct texture, 

such as extruded Mg bar, twinning is very favorable [12]. Due to reorientation by tensile 

twinning (see Fig. 3.18), the type and activity of operative deformation modes changes 

dramatically. As a consequence, significant twin hardening caused by abundant twin-twin 

interactions (see Fig. 3.19 (a)-(c)) together with strong mechanical anisotropy can initiate crack 

formation (see Fig. 3.19 (d)-(f)). 

 

 
 

Fig. 3.18. TEM images of the tensile twins formed in Mg single crystals after compression along [0001], 

adopted from [65]. 
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Fig. 3.19. 3D structure of contraction twin networks: the contraction twin network (a–c) and sites of crack 

and void formation (d-f) [66]. 

 

Detwinning, which denotes the disappearance of twins by thinning, has been occasionally 

observed in Mg [48, 67-68]. Existing, limited literature on detwinning mechanism treats 

exclusively face-centered cubic metals [69-70]. The mechanism of detwinning and the 

parameters, which govern its occurrence in Mg, are still unclear.  

3.4.2.2 Geometric and crystallographic descriptions of deformation twins 
Generally, the deformation twinning can be considered equivalent to a simple shear, which 

re-orients the original (parent) lattice, resulting in the re-oriented lattice (twinned part) to be the 

mirror image of the parent lattice (untwined part) in relation to a specific lattice plane. This 

simple shear of the lattice points is achieved by atom displacements on the specific plane 

(invariant plane). As shown in Fig. 3.20, the invariant plane of this shear is called K1 and the 

shear direction is η1; the second undistorted plane K2 is conjugated with the K1 plane. The plane 

containing η1 and normal to K1 and K2 is the plane of shear, here denoted by P, and the 

intersection of K2 and P is the conjugate shear direction η2. Unlike slipping shear, the twinning 

shear has directionality, i.e., twinning shear can only occur in one direction and cannot be 

inverted. 
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Fig. 3.20. The four twinning elements [71]. 

 

The specific shear of twin, s0, , can be defined as s0=s/d, where d is the distance between 

two adjacent twin planes K1 and s is the displacement of an atom moving form parent lattice 

position to its corresponding position in the twin lattice(see Fig. 3.21). 

 

Fig. 3.21. The schematic figure of twin shear. 

 

The affine deformation can be used to represent a homogeneous simple shear, which 

transforms a parent lattice vector u to a twin lattice vector v through a second rank 

transformation tensor S [71]: 

 =v Su  . (3.47a) 

In order to be applied in computer calculation, the component form of Eq. (3.47a) is 

favored. In one specific coordinate system A, its component form can be expressed as 

 A i A i A j
jv S u= ⋅  . (3.47b) 

A iv  and A ju  are the contravariant (real space) components of the vectors u and v in coordinate 

system A (here Einstein summation convention is applied). The transformation tensor S can be 

further expressed as 
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 0s= +S I lm  , (3.48a) 

where lm is the dyadic product of vector l and m, which is the unit vector along the shear 

direction η1 and the unit normal vector to twinning plane K1, and I is the unit tensor. The 

component form of transformation tensor S in coordinate system A is  

 A i i A i A
j j 0 jS s l mδ= + ⋅ ⋅  , (3.48b) 

where i
jδ  is the Kronecker delta, and A il  are the contravariant components of a unit vector l 

and covariant components of a unit vector m. Particularly, if we choose a special orthonormal 

coordinate system with the 1st and 2nd coordinate axis defined as l and m, respectively, and the 

3rd axis obtained by right hand rule, then the transformation tensor S will possess a very simple 

representation. 

 
1 0

= 0 1 0
0 0 1

0s 
 
 
  

S  . (3.48c) 

It should be noted that the twin lattice vector v is expressed in coordinate system A, e.g. 

the parent crystal coordinate system, and normally has irrational components. However, v must 

have rational components when it is decomposed into the twin crystal coordinate system B. 

There are some rotation or reflection tensors, L, which link the parent crystal coordinate system 

A and the twin crystal coordinate system B, 

   B i i A j i A j A k i A k
j j k kv L v L S u C u= = =  , (3.49) 

where B iv  and A jv  are the contravariant components of the same vector v in different 

coordinate systems A and B. It should be noted that =B Av v , if vector v is expressed in entity 

form. Eq. (3.47) to Eq. (3.49) are very important for coordinate transformation in crystal 

plasticity studies. However, a more explicit formula, i.e., a transformation/rotation matrix Q 

should be exploited when describing a vector in parent crystal lattice moved into its new 

position in the twin.  

 2= −Q mm I  , (3.50) 

where mm is the dyadic product of unit normal m to the twin K1, and I is a unit two-rank tensor, 

whose component is Kronecker δ. The physical meaning of Eq. (3.50) is equivalent to the 

manipulation of rotating the upper half of the crystal by an angle π around the twin normal m, 

as shown in Fig. 3.22. 
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Fig. 3.22. Under the applied shear stress, one-half of the initial volume (dashed lines) shears to form a twin 
(solid lines).  

 

For Mg comprising a double-lattice structure, twin formation requires atomic shuffles in 

addition to twin shear [4, 71]. Although atomic shuffles do not induce deformation, they cost 

energy. The most frequently observed twins in Mg and other hcp metals, such as Ti, Zr and Be, 

can be ascribed to the relatively low specific shear and simple atomic shuffle mechanisms of 

these twin modes. Table 3.3 lists twinning modes and the associated essential parameters in Mg. 

These parameters are widely used in polycrystal plasticity simulations and serve for twin 

identification in electron backscattered diffraction (EBSD) experimental results. Importantly, 

the tensile twin can significantly reorient the c axis of the crystal, which has profound effects 

on the texture evolution of Mg during deformation.  

Table 3.3 Twinning modes and associated parameters in Mg [71]. 

Twinning mode K1 η1 zone axis Angle Shear 

Tensile twin {101�2} 〈1�011〉 〈1�21�0〉 86.32 0.129 

Compression twin {101�1} 〈1�012〉 〈1�21�0〉 56.46 0.139 

 

3.4.2.3 Nucleation and growth of deformation twins 
It is known that nucleation of deformation twins requires the dissociation of a dislocation 

configuration into single- or multi-layered stacking faults, which serve as twin nuclei. These 

fault configurations are bounded by partial dislocations of the parent crystal, which can also be 

considered as twinning dislocations [71]. Therefore, the nucleation of deformation twins is 

closely related to the stacking fault energy (SFE) of metals and the stress state in the grain 

interior. The cooperative motion of a large number of these partial dislocations is required for 
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the successive growth of a deformation twin [72]. Two principle categories of twinning 

mechanisms have been distinguished: 1) The pole mechanism was first proposed by Cottrell 

and Bilby [73], in order to explain deformation twinning in bcc metals. The pole mechanism 

describes the strict dissociation of a perfect dislocation into two twinning partials. One twinning 

partial is lying in the twin plane, whose Burgers vector is precisely the same as the specific 

shear of the involved twin system. The second partial is lying outside of the twin plane (pole 

dislocation), whose Burgers vector is normal to the interface equal to the inter-plane spacing of 

the twin planes. 2) The double-cross-slip mechanism was proposed by Pirouz (1987) [74]. This 

mechanism assumes the dissociation of a perfect screw dislocation segment into a leading 

partial, which lies in the twinning plane and can easily move under an applied stress, and an 

almost “stationary” trailing partial, which also lies in the twinning plane. When the applied 

stress on the leading partial allows it to overcome the critical radius, the leading partial will 

leave a partial dislocation loop, which is similar to a Frank-Read source. The loop extends, 

forming one layer of twin. Simultaneously, the leading partial proceeds, regenerating the 

original perfect screw segment with the trailing partial. Because the perfect dislocation segment 

is screw, it may double cross-slip to the adjacent twin plane and repeat the process above. 

Double-cross-slipping seems to represent the more likely twinning mechanism in Mg 

alloys. First, in low symmetry structures with several active twinning modes, suitable pole 

dislocations are difficult to find and even do not exist. Second, the calculated twinning stress 

according to pole mechanism, which is needed to overcome the attractive forces between the 

partials involved in the dissociation reaction, is much larger than the experimentally determined 

twinning stresses. Even though there is still no direct proof for the precise nucleation and growth 

mechanism of deformation twins in Mg, there is general agreement that nucleation and growth 

of deformation twins is related to the SFE and the stress state in the grain interior [71, 75]. 

Statistical EBSD analyses of deformation twinning in magnesium suggests that the grain 

boundary misorientation angle strongly influences twin nucleation and growth [76]. Khosravani 

[77] studied nucleation and propagation of tensile twins in magnesium alloy AZ31 by high-

resolution electron backscatter diffraction (HREBSD) and found the following relations of twin 

types to misorientation angle distribution: (1) Slip-assisted twins that apparently nucleated 

without influence from nearby twins are frequently observed at high-angle boundaries. (2) 

Twin-assisted twin formation spread from twins propagating across a grain boundary usually 

took place at low-angle boundaries.  

The weak relationship between crystal orientation and twin variant selection and the strong 

correlation between grain size and the number of twins formed per grain are frequently observed 
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in Mg and other hcp metals. Proper modeling of the nucleation of deformation twins contains 

the consideration that twins originate from a statistical distribution of defects on the grain 

boundaries and are activated by local stresses at the grain boundaries. This further suggests the 

significance of stress fluctuations generated at grain boundaries for experimentally observed 

dispersion in the twin variant selection [78]. 

Twin-twin interaction has been frequently observed in EBSD images. Studying twin-twin 

interactions, including their influence on hardening and detwinning, by materials modeling 

tools at meso- and micro-scales, particularly by crystal plasticity models, complement feasible 

microstructural and mechanical modeling packages of Mg alloys. Yu et al. [48] revealed the 

features of the twin-twin boundary and distinguished three kinds of twin-twin structures in 

single crystal Mg (see Fig. 3.23), which was subjected to a cyclical loading in [0001] and 

directions. (1) Quilted-looking twin structure consisting of twins arrested at other twin 

boundaries; (2) An “apparent crossing” twin structure, which links twins impinging 

independently on each side of twin lamella and (3) a double twin structure that results from 

secondary twins being nucleated at twin-twin interfaces.  

 

 
 

Fig. 3.23. “Cross structures” of different tensile twin variants in Mg: (a) two T1 twins and one T2 twin 
and (b) two T2 twins and one T6 twin [48]. 

 

3.5 Basics of crystal plasticity 
3.5.1 Kinematics of crystal plasticity 

In this chapter, some basic concepts in continuum mechanics, which are essential for 

crystal plasticity, are introduced, such as, deformation gradient, displacement gradient and 

velocity gradient. These concepts comprise important prerequisite for understanding different 

crystal plasticity models, such as, Taylor-type models, self-consistent models and crystal 

plasticity finite element methods. 
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3.5.1.1 Material points and spatial points 
In continuum mechanics, the basic property of a body is that it may occupy regions of 

Euclidean point space E. The body and the spatial region B it occupies at a specific moment are 

called a reference configuration. For specificity, B is referred to as the reference body and a 

point X in B is referred to as a material point or particle. Via a smooth function χ, a point is 

assigned to each material point X at time t  

 ( ),  t=x χ X  . (3.51) 

x is referred to as the spatial point occupied by X at time t. χ(X, t) is a function of X and 

describes the deformation configuration at time t. A basic hypothesis of continuum mechanics 

is that χ (X) is one-to-one in X, so that no two material points may occupy the same spatial 

point at a given time, or, more descriptively, so that the body cannot penetrate itself. The region 

of space occupied by the body at time t, Bt = χt(B) is referred to as the deformed body at time t, 

as shown in Fig. 3.24.  

 

 
Fig. 3.24. The reference body B and the deformed body Bt [79]. 

 

In all kinds of continuum field modeling of the crystal plasticity, a material point refers to 

a representative volume element (RVE). Only over the volume of the material point, the micro-

stress field and the micro-strain field can be considered as homogeneous. In other words, 

because plastic deformation is locally discrete and inhomogeneous, the applicability of 

continuum field is only limited to volume elements not smaller than the RVE [80]. 

3.5.1.2 Deformation gradient  
The deformation gradient tensor field is defined as 
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  = ∇F χ  , (3.52) 

 T   ·    · d d d= =x F X X F  . (3.53) 

Keep in mind that the deformation gradient F is defined relative to the reference configuration 

B, which provides the relationship between a material line dX before deformation and the line 

dx, which consists of the same material as dX after deformation. 

R0 and R denote regions within the body in the reference (undeformed) configuration and 

current (deformed) configuration, respectively. Further, let N be a unit vector embedded within 

the body in the reference configuration. The deformation transforms N to n in the deformed 

state. The square of the stretch of N, λ(N), can be calculated as 

 ( ) ( ) ( )λ     = ⋅ ⋅ = ⋅⋅⋅ ⋅2 TN F N F N N F F N  . (3.54) 

Define ⋅≡ TC F F as the right Cauchy-Green deformation tensor 

 ( )1   
2

= −E C I  . (3.55) 

which is known as the Lagrangian strain tensor 

3.5.1.3 Velocity gradient 
The spatial tensor field 

 = ∇L v  , (3.56) 

is called the velocity gradient, where v is the velocity. It should be noted that the gradient 

operation is considered relative to the current configuration. The velocity gradient can be also 

expressed as  

 1−= ⋅L F F  . (3.57) 

If we decompose L into its symmetric and antisymmetric parts as 

 ( ) ( )1 1+
2 2

T T= − −L L L L L  , (3.58) 

the symmetric tensor D is called the rate of deformation or simply the deformation rate 

 ( )1 +
2

T=D L L  . (3.59) 

 ( )1
2

T= −W L L  . (3.60) 

If the current state is taken as the reference state, we refer to the tensor fields W and D, 

respectively, as the spin and the stretching tensors. The spin tensor is responsible for the texture 

evolution, and will be used in Chapter 6. In most cases, only the lattice rotation caused by plastic 

strain rate components is considered, while the lattice rotation caused by elastic strain 

component is ignored, which is the so-called rigid plastic idealization. 
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3.5.2 Kinetics of crystal plasticity 
As mentioned in Section 3.1.1, only if the driving force on the dislocation lines attain a 

critical value, the shear of the crystal can be activated. In the extreme case, where a nearly 

perfect crystal is subjected to increasing levels of shear stress at 0K, the shear strain rate will 

experience an abrupt rise, which is schematically shown in Fig. 3.27. When the shear stress σ 

is less than a definite value ˆ(0)τ , no shear strain rate γ  can be detected. ˆ(0)τ  is the 

mechanical threshold for initiating deformation by a specific mechanism at T = 0K [81]. 

 

 
Fig. 3.25. The strain rate γ  blows up at mechanical threshold ˆ(0)τ at 0K [81]. 

 

However, real materials with the usual internal variability of defect structure must have a 

smooth transition from no deformation to a high rate of deformation at T>0K. ˆ( )Tτ  refers to 

the rate-independent (athermal) reference mechanical threshold at T. Namely, at non-zero 

temperature, the local energy barriers for the dislocation glide process can be overcome at lower 

resolved shear stresses with the help of thermal activation, the physics of which can be 

expressed by an Arrhenius law.  

 
( )

0

ˆ,
exp

s
s
i

G
kT
τ τ

γ γ
 ∆
 = −
 
 

   , (3.61) 

where sτ  is the applied shear stress and ( )ˆ,sG τ τ∆  is the required activation energy. The 

required activation energy decreases with increasing sτ , resulting in a higher strain rate. 

Furthermore, only in the extreme case at 0K, the deformation process shows a strict “rate 

independence,” because the strain rate is undetermined in this case, as shown in Fig. 3.25. In 
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most realistic cases, where thermal activation takes effect, the actual curve of ˆγ τ−  is even 

much steeper than that shown in Fig. 3.25, indicating that the yield of the crystal is rate 

insensitive albeit not rate independent [82]. The frequently used alternative choice is the power 

law  

 ( ) ( )
0 0

0 0
:sgn : sgn :i

m ms s
s s s
i s s

τ
γ γ γ

τ τ
= =

σ mσ m σ m  
 , (3.62) 

where 0
sτ  is the shear stress at the reference shear strain rate 0γ . It should be noted that the rate 

independency corresponds to m approaching ∞. Then in the individual grain of polycrystal 

aggregates, the kinetics can be described as 

 ( )
0

0
: sgn :

m
s

c s s
s

s
γ

τ
= ∑ σ mD m σ m

 . (3.63) 

Eq. (3.63), extensively used in crystal plasticity, gives the relation between the strain tensor in 

the crystal scale Dc and the crystal-level stress.  
 

3.6 Reviews on modeling method of crystal plasticity 
3.6.1 Taylor type model  

In 1938, Taylor proposed a model, which simply assumed that the deformation gradient in 

each grain in a polycrystal aggregate is the same, i.e., the microscopic strain rate is the same as 

the macroscopic strain rate [27]. This model was initially proposed to describe deformation in 

Al and other fcc metals, which possess 12 independent slip systems. In the original version of 

the Taylor model (also called full constraints Taylor model, in short FC model), five 

independent slip systems must be simultaneously activated to accommodate any arbitrary 

strain, because there are 5 independent components in any strain tensor. The key of the Taylor 

model is to select a combination of slip systems, which not only satisfies the geometry condition 

but also, in coupling with strain tensor, an energetic condition. He showed that the active five 

slip systems have the minimum absolute sum of shear. The Taylor model has witnessed a 

conspicuous success in the prediction of the mechanical response and texture evolution of fcc 

metals during deformation processes in a wide range of applications.  

In 1951, Bishop and Hill presented a theory of the plastic deformation of a polycrystalline 

material based on the maximum work principle [30]. In his theory, Bishop generalized Taylor´s 

energetic condition of minimum absolute sum of shear in his minimum work conclusion 

 s s s s
s s

d dτ γ τ γ ∗≤∑ ∑  , (3.64) 
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where sdγ  is the shear of a set of active slip systems, and sdγ ∗  represents any set of shears, 

which are geometrically equivalent to the prescribed strain. Particularly, when the critical shear 

stress in every slip system is the same (equal hardening in all directions), Eq. (3.64) can be 

simplified to  

 s s
s s

d dγ γ ∗≤∑ ∑  , (3.65) 

which is exactly the energy condition in Taylor’s original paper. The Taylor model remains a 

suitable tool for first order approximations via fast calculation (at least 2 orders of magnitude 

faster than more recent VPSC and CPFEM developments, see following chapters). The Taylor 

model is expected to fail in those cases, where the plastic heterogeneity is too large [83]. For 

instance, during deep rolling, the shape of grains is severely distorted and becomes plate-like. 

As a consequence, the required relaxation of one direction in the FC model cannot be satisfied 

and the model cannot be applied. Advanced Taylor type model like ALAMEL model with 

relaxed constraint proposed can produce feasible results [29].  

3.6.2 Self-consistent Method 
As mentioned in Section 3.6.1, the Taylor model simply assumes that the strain in the 

individual grain (local strain) is the same as the overall strain in a polycrystalline metal, assuring 

the compatibility condition across the grain boundaries [84]. However, this implies that the 

equilibrium condition between grains cannot be satisfied. Not so in the case of a self-consistent 

model, which relates the local strain, local plastic strain and local stress (ε, εp, σ) in the 

individual grain to the overall strain, overall plastic strain and overall stress (ε*, ε*p, σ*), as 

first proposed by Kröner in 1961 [85] and then by Budiansky and Wu in 1961 [86]. In their 

model, the interaction of an individual grain with its surrounding material consisting of a 

polycrystalline aggregate was simplified to the case of an elastically isotropic sphere embedded 

in a homogeneous matrix of the polycrystalline aggregate, as shown in the Fig. 3.26. 
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Fig. 3.26. Schematical representation of the Kröner, Budiansky and Wu’s [86] model setting. 

 

The following three conditions have to be met in Kröner, Budiansky and Wu’s model: 1) 

The averages of local stress and local strain over the whole polycrystal must yield overall stress 

and overall strain. 2) Strain compatibility must prevail on the grain boundary. And 3) stress 

equilibrium on the grain boundary must hold[84]. The Eshelby’s solution for inclusion 

problems [87, 88] was used in the self-consistent approach to determine the relation between 

local quantities (ε, εp, σ) and global quantities (ε*, ε*p, σ*). For Eshelby´s solution for the elastic 

inclusion problem, matrix and inclusion properties need to be known beforehand. In contrast, 

in the self-consistent approach, these properties are being obtained during numerical iteration 

by imposing the condition that the averages of local stress and local strain over the whole 

polycrystalline must yield overall stress and overall strain.  

Other self-consistent methods have been proposed by Hill [89] and Lebensohn et al. [90]. 

Recently, self-consistent methods, and, hereby, especially the VPSC method, have been 

extensively used to predict the texture evolution and plastic response of hcp metals, including 

Mg, Zr and Ti [5, 93- 94]. Self-consistent methods are statistical, in which an inclusion with a 

particular orientation is the representative of all grains with the same orientation, and the 

homogeneous matrix represents the average surrounding of such set of grains [95]. This further 

means that self-consistent methods exhibit the feature of a mean field approach, and local stress 

and local strain inhomogeneities in the individual grain are not described. This shortcoming 

needs to be considered critically when it comes to large grain size. The assumption of a 

homogeneous effective medium might also become invalid when the discontinuity across the 

grain boundary is large [95], and of course in cases where local effects contribute considerably 

to the microstructural evolution. The latter situation is found in Mg alloys for twin-dislocations 

and twin-twin interactions.  

σ, ε, εp 

σ*, ε*, ε*p 
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3.6.3 Crystal Plasticity Finite Element Method 
CPFEM is another method used in modeling and simulating of deformation processes and 

plasticity anisotropy. An increment of deformation in a crystalline solid can be imagined to 

happen in two steps. The first step is that a process of simple shears on slip systems occurs by 

starting from the reference state. The second step is that a process of lattice deformation occurs 

[96]. The basic kinematic scheme is shown in Fig. 3.27.  
 

 
 

Fig. 3.27. Kinematic model of elastoplastic deformation of a single crystal [96]. 

 

Based on this scheme, the deformation gradient and velocity gradient can be decomposed 

into two parts, the plastic deformation gradient tensor and non-plastic deformation gradient 

tensor including rigid rotation and elastic distortion of the lattice. In CPFE, this understanding 

of crystal plasticity is embedded in the finite element method. The iterative calculation of node 

displacement yields the deformation gradient, and the mechanical response and the texture 

evolution is obtained by updating the slip plane's normal and slip direction in each simulation 

step. One can define the constitutive law and materials properties by himself, making this 

method versatile to a wide range of materials and compatible to diverse deformation 

mechanisms, such as, dislocation slip, martensite formation, twinning, grain boundary shear 

and deformation via shear banding [28].  

Different to mean field methods, such as, Taylor type models and self-consistent models, 

CPFE, as a full field method, can tackle local effects and capture the physics of local twin-twin 

and twin-precipitate interaction mechanisms. On the other hand, CPFEM may meet limitations 

when it comes to predictions of flow curve and texture evolution of polycrystalline material due 
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to its high computational cost. This is the case when the required number of grains for prediction 

is large, i.e., beyond 5000 grains. In turn, and in the spirit of multi-scale computational materials 

design, CPFE delivers valuable properties, such as, the local stress caused by twinning, which 

can serve as input parameter or calibration number for physical refinement of texture evolution 

models and flow curve simulations.  



44 
 

4 Experimental study and modeling on tensile twinning in AZ31 Mg alloy 
 

Tensile twins, as the most frequently observed twin mode in Mg, play an important role in 

accommodating the strain components along the c axis of Mg. In this chapter, we focus on 

studying the tensile twinning by EBSD analysis and computational modeling. Section 4.1 

summarizes the experimental observations on tensile twinning in as-extruded AZ31 Mg alloy 

by EBSD. The contribution of {10 1 2}<10 1 1> tensile twinning to strain is studied in 

Section 4.1. The contribution of {10 1 2}<10 1 1> tensile twinning to the strain can be divided 

into two parts: one is the contribution of twin nucleation and the other is the contribution of 

twin growth, which can be described by Eq. (4.5), later. Combining the experimental 

observations of tensile twinning in AZ31 alloy (Section 4.2) and the consideration on twin 

nucleation and growth (Section 4.3), Eq. (4.5) can be simplified. With this simplified equation 

and the experimental observation, the velocity of twin partial dislocations at the stages of twin 

nucleation and twin growth is estimated in Section 4.4. Based on the features of evolution of 

twin volume fraction and the saturation of twinning observed in Section 4.1, a semi-empirical 

law capturing twin growth is proposed in Section 4.5 and a brief summary on tensile twinning 

is given in Section 4.6.  

 

4.1 Experimental observations of twinning in AZ31 alloy 
As-extruded AZ31 Mg alloy bar samples with extrusion temperature of 350 °C are chosen 

for studying tensile twinning. Fig. 4.1 shows the initial texture of the as-extruded sample. In 

Fig. 4.1, the conventional “rolling direction” (RD) represents the direction of extruding, and the 

conventional “normal direction” (ND) represents an arbitrary direction, which is perpendicular 

to the RD direction in regard of the sample symmetry to the extruding axis.  

 
Fig. 4.1. The initial texture of as-extruded AZ31 alloy. 
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The pole figure reveals that the c axis of most grains is perpendicular to the extruding axis. This 

is consistent with typical extrusion textures of AZ31 reported in literature [2]. The as-extruded 

bar sample is subjected to a compression test. There, the compression axis is parallel to the 

direction of extruding, i.e., the RD. Due to the strong initial texture, where the [0001] axis of 

almost all grains lies perpendicular to the compression direction, basal slip can hardly occur 

during compression. 

Fig. 4.2 shows EBSD images of the AZ31 samples with different compression strain. The 

samples are labeled as S1 (ε=0.0015), S2 (ε=0.015), S3 (ε=0.02) and S4 (ε=0.065), with regard 

to their strain.  
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Fig. 4.2. EBSD images of the as-extruded AZ31 specimens with different strain: (a) ε=0.0015(S1); (b) 

ε=0.015(S2); (c) ε=0.02(S3); (d) ε=0.065(S4). 

 

Since slip on the pyramidal plane can proceed only at a relatively high temperature (above 

180 °C), the contribution of slipping to strain and stress can be neglected at all in the studied 

strain range. Therefore, the main deformation mode “left” to accommodate the strain is tensile 

twinning (see Section 3.4.). In fact, by further examining the misorientation angles of twin 

boundaries, the twins in Fig. 4.2 can be identified as tensile twins, since the tensile twin has a 

fixed orientation relation with the matrix, see Table 3.3. The relative activities of different 

(a) (b) 

(c) (d) 
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deformation modes will be studied by simulation in Chapter 6. As shown in Fig. 4.2 (a), even 

after a very small strain (0.15%), tensile twinning is activated in specimen S1. It is obvious 

from Fig. 4.2 (b) to (c) that almost all twins nucleate at the grain boundary (GB).  

The local stress concentration at grain boundaries and the high number of grain boundary 

dislocations, which may dissociate into partial dislocations, make GB the favorable sites for 

twin nucleation. The twin number density and twin volume fraction is so small that the twining 

can hardly change the texture at this strain. As deformation commences, tensile twins become 

profuse in the sample, as shown in Fig. 4.2 (b) to (d), and a large amount of twin-twin joints 

were observed, as indicated by the black arrows in the Fig. 4.2. Twin-twin joints make the 

further growth of twins increasingly difficult. As a result, twin growth stops and the twin 

volume becomes saturated.  

Under increased compression strain, in S4 (see Fig. 4.2 (d)), the twins are not only observed at 

the GB, but also between the two parallel pre-existed twins. This goes along with the 

assumption of previous research, where the nucleation of twins has been divided into two types, 

the one being the “normal nucleation” at the GB, the other representing the “interaction 

nucleation” stimulated by other twinning events [97]. The twin nucleation may be driven by the 

twin-twin interaction, which causes changes of the local stress field. These changes caused by 

twin-twin interaction can be quantified by simulation by full-field simulation methods, such as 

CPFEM or the phase field approach (ongoing research). 

Fig. 4.3 illustrates the statistically calculated mean twin number per grain with increasing 

strain, obtained from the experimentally obtained EBSD data. As strain increases, the twin 

number increases drastically. The mean twin numbers per grain, TN , raises rapidly with strain 

until it reaches a saturation value. By statistical calculation, TN  is 0.085 in S1 and saturates 

rapidly to 2.7 in S3. From Fig. 4.3, the increase of the twin number TN  stops at a strain of 2%, 

despite the fact that twin volume continues to experience a rapid increase beyond this strain, as 

shown in Fig. 4.2 (c) and (d). The statistically evaluated twin volume fraction from EBSD data 

of samples with different strain is used to validate the modeled twin volume fraction in the 

semi-empirical growth law presented in Section 4.5. 



48 
 

 
Fig. 4.3. Statistically calculated mean twin number per grain, Nt , in S1, S2, S3 and S4 from EBSD data. 

 

4.2 Contribution of tensile twinning to strain 
Based on this geometrical feature of twins, a simple model on the contribution of tensile 

twins to the strain accommodation under compression is postulated. Here, for simplicity, we 

neglect the effects of twin-twin interaction and assume that all the twins completely penetrate 

the grain. Fig. 4.4 shows the tensile twinning mode in the Mg lattice, which has the 

'ABABABAB....' stacking order. According to the crystallographic features of tensile twins and 

the initial texture, the Taylor factor of tensile twins can be calculated. 

 
Fig. 4.4. The tensile twinning mode in Mg lattice: The 'B' layer atoms are schematically represented by the 

circles in the middle of the lattice. 
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The contribution of twinning to the strain can be expressed as 

 0= T
t

f
M
γ

ε  , (4.1) 

where Tf  is the twin volume fraction, tM  is the Taylor factor and 0γ  is the specific shear of 

{10 1 2}<10 1 1> tensile twinning, which equals 0.13. The {10 1 2}<10 1 1> tensile twinning is 

the predominant mode in the present case. Therefore, the strain rate can be expressed as  

 0.13= = T

t

dfd
dt M dt
εε  . (4.2) 

An elliptic shape of deformation twins is often found by metallography of Mg. It is inferred 

here that the three-dimensional shape of deformation twins is oblate spheroid, in line with 

observations made in previous studies [97-99]. Then, the twin volume fraction follows as 

 
324 4=

22T T
l df N e

33
π π   ⋅ ⋅    
     

 , (4.3) 

where l is the twin length and e  is the mean twin thickness. TN  is the mean twin number per 

grain, d  is the mean grain size. TN  is defined as T t gN n n= , tn  is the total number of twins, 

and gn  is the total number of grains. e  is defined as t te e n= , with te  being the total 

thickness of all twins. The twinning process is actually very fast. Brunton and Wilson have 

studied the kinetics of twinning in zinc and tin crystals, finding that the velocity of twin partial 

dislocations during twin formation can be as high as 600 m/s [100]. It is thus reasonable to 

assume that the twin transverses the whole grain instantaneously at the moment of onset of 

plastic strain. Consequently, the twin length l can be assumed equal to the mean grain size, and 

then Eq. (4.3) simplifies to 

 = 2T Tf N e d⋅  . (4.4) 

Eq. (4.4) indicates that the evolution of deformation twins can be considered solely 

dependent on the thickening of twins, and the strain rate can be rewritten as 

 ( ) 0.260.13 0.26= = T T T

t t t

d 2N e d N dNd de e
dt M dt M d dt M d dt
εε

⋅
= ⋅ + ⋅

⋅ ⋅


 . (4.5) 

The physical meaning of Eq. (4.5) is that the contribution of deformation twinning to the 

strain in one crystal consists of two parts: (1) The nucleation of new twins, which possess a 

distinct, initial twin volume, indicated by the second term of Eq. (4.5) and (2) thickening of the 

twins, which corresponds to the growth of twins, indicated by the first term of Eq. (4.5). 
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4.3 Considerations on twin nucleation and twin thickening based on 
experimental observation 

Dislocation theory suggests that nucleation and growth of deformation twins involves the 

cooperative motion of a large number of twin partial dislocations on the twin plane along the 

twin direction. The twin nucleation processes are driven by elastic energy release. Haitham [50] 

suggested that slipping or twinning will increase the stress field in the grain and this increasing 

stress field can be released by new twinning events. In line with these findings, we believe that 

newly formed twins merge with each other, resulting in extraordinarily thick twins(see 

Fig. 4.2 (d)). Since the resolution of EBSD is not sufficient to discern whether a twin is 

originated from one nucleus or several nuclei, the thickening process may be envisaged either 

as process following some order, in which each layer is added successively to the twin, or as 

the random accumulation of embryonic twin faults [71]. Twin nucleation is determined by 

dislocation reaction, therefore, it is reasonable to suppose that the number of nuclei at the onset 

of twinning is related to the dislocation density.  

In the present hot-extruded specimens, the order of magnitude of dislocation density is 

between that for completely annealed metal (~1010 m-2) and for typical cold worked crystal 

(~1016 m-2). Therefore, the order of magnitude of dislocation length is about 10m in one grain 

in the present study (the grain size is about 20 μm). Previous research has estimated the order 

of magnitude of a critical radius of a twinning nucleus approximately 1~10 nm [71, 63]. On 

comparison of the dislocation length in one grain and critical twinning nucleus radius, it can be 

inferred that one grain can provide a large number of sites for potential twin nuclei. However, 

the experimentally observed mean twin number is orders of magnitude lower, only 2.7 on 

average in our present experiments. This indicates that only very few of the potential nuclei can 

experience the subsequent growth. As deformation proceeds, some nuclei may be activated 

locally, when the stress on them is sufficiently high to overcome the attraction of two partial 

dislocations bordering a stacking fault. In fact, the nucleation process of twins remains unclear 

due to the difficulty of its experimental examination. As an alternative and complementary way 

to experimental methods, modeling showed to be promising in unveiling the nucleation process 

of twins. Recently, a probabilistic model based on the famous Poisson distribution in statistical 

mechanics has been applied to study the nucleation of twins [15, 78].  

Overall, the measured saturated twin number per grain is in the same order of magnitude 

as found in other studies [97]. As shown in the Fig. 4.3, the mean number of twins per grain 

becomes saturated in the very early stage of deformation, where the compression strain is about 
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2%. Therefore, the thickening or growth of twins is the main part of contribution of twins to 

strain accommodation compared with the nucleation after a strain over 2%. Fig. 4.5 displays 

the schematic representation of nucleation and growth of deformation twins by extracting and 

abstracting the main information of Fig. 4.2. Fig. 4.5 (a)-(b) schematically represent twinning 

in the early stage and Fig. 4.5 (c)-(d) the later stage.  

 
Fig. 4.5. Schematic representation of nucleation and growth of deformation twins: 

(a), (b) for nucleation and (c), (d) for growth. 

 

Here we define the early stage of deformation when strain is less than 2%, the later stage of 

deformation when strain is large than 2%. 

A large amount of new twins form (red in Fig. 4.5 (b)) during the interval of time Δt after 

initiation of twinning (Fig. 4.5 (a)), and it can be supposed that the number of these new twins 

is n-1. If these new twins have the same starting thickness, e0, at the moment t, and the 

thickening of the initial twin can be neglected due to the short time interval Δt, then the mean 

twin thickness follows as 

 ( )1 0
0

1
=t t

e n e
e e

n+∆

+ −
≈  . (4.6) 

where the e1 is the thickness of initial twins (e1≈e0).  
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Eq. (4.6) suggests that the mean thickening rate would be zero at the earliest stage, and the 

contribution of the thickening of twins to strain can be ignored compared with the nucleation 

of new twins. The first term on the right side of Eq. (4.5) can be neglected in the early stage of 

deformation. Therefore, at the initial stage of deformation, the strain accommodation is mainly 

contributed by twin nucleation.  

On the other hand, in the later stage of deformation, where the twin number does not change 

any more (due to the rapid saturation of the twin number per grain), the contribution of 

deformation twinning to strain accommodation stems solely from twin growth and can be 

simplified as  

 0.26= T

t

N de
M d dt

ε ⋅
⋅

  . (4.7) 

 

4.4 Evaluation of the velocity of twin partial dislocations 
4.4.1 Velocity of twin partial dislocations during twin nucleation  

Defining t0 as the time needed for the partial dislocations transmitting from one twinning 

plane to its adjacent twinning plane (during t0, simultaneously, the partial dislocation sweeps 

the twinning plane at once), the area swept by a partial dislocation can be simplified as a circle 

with a constant radius Rc during this period. Thus, t0= Rc/v follows, where v is the dislocation 

velocity. In Section 4.3, we have already assumed that the thickening rate of twins is zero in 

the earlier deformation stage (see Eq. (4.6)). Strictly speaking, this thickening rate is the 

“instantaneous” thickening rate. However, there is also an “average” thickening rate of twins. 

After a certain time period Δt, the twin nucleus emerges with an initial thickness e0, then the 

“average” thickening rate of twins can be expressed as 0e t∆ . During this time period Δt, the 

partial dislocation sweeps over the twin plane for n times, thus Δt is equal to n times t0. 

Meanwhile the twin thickness should be n times, where d0 is the interspace of two adjacent 

twinning plane. Therefore, the “average” thickening rate of twins can be rewritten as 

 0 0 0

0

= =
c

e n d d v
t n t R

⋅
∆ ⋅

 . (4.8) 

From this simple equation, the velocity of twin partial dislocations can be evaluated once 

the initial thickness of twins is measured (Fig. 4.2(a)).  

Based on the present EBSD data, the “average” thickening rate is measured as 
61.3 10 m s−× . Inserting into Eq. (4.8) yields 
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 60 = 1.3 10 m s
c

d v
R

−×  (4.9) 

and, with the interspace of two adjacent twinning planes, d0=0.2 nm, and the radius of the circle 

swept by twin partial dislocation, Rc=20 μm, inserted in Eq. (4.9), a twin partial dislocation 

velocity of 0.13 m/s is obtained.  

It should be noted that this value is actually much smaller than the twin dislocation velocity 

reported by J.H. Brunton, which was as high as 600 m/s [100]. However, these reference data 

was measured in etched Zinc and Tin. Further, it should be pointed out that determination of 

the dislocation velocity by using high-resolution experimental techniques, such as, in-situ TEM 

would be more reliable [63, 67]. Nevertheless, the calculated velocity value by the present, 

simple model (0.13 m/s) is also much higher than that of ordinary dislocations.  

 

4.4.2 Velocity of twin partial dislocations for twin thickening 
Fig. 4.6 shows the true strain rate of sample S4 during the compression test. In Fig. 4.6, 

the true strain rate fluctuates seriously during the earlier stage of deformation, this stage 

corresponding to the nucleation of tensile twins. In the later stage of deformation, the strain rate 

becomes much more stable except for a jump around 125 s due to some instabilities of the 

measurement (see Fig. 4.6). Nevertheless, the mean true strain rate in the later half deformation 

stage of deformation, excluding this incontinuity, is approximately 5×10-4 /s This true strain 

rate can be inserted into Eq. (4.7) to estimate the velocity of twin partial dislocation in the later 

stage of compression.  

 
 

Fig. 4.6. The true strain rate of the sample S4 during compression test. 
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Since the mean twin number, NT, is saturated and will not change, the contribution of 

twinning to the strain accommodation arises solely from thickening. Accordingly, Eq. (4.7) can 

be rewritten as  

 00.26 0.26= =T T

t t c

dN Nde v
M d dt M d R

ε ⋅ ⋅
⋅ ⋅

  . (4.10) 

Inserting ε =5×10-4 /s, 𝑑𝑑 =20μm, Nt =2.7, d0 =0.2 nm, Rc =20 μm and Mt =2 (reflecting the 

strong initial texture and supposing constant Taylor factor of twinning system in the matrix), 

the dislocation velocity is calculated as 1.4×10-3 m/s. This indicates that the twin partial 

dislocations velocity after Nt saturation is only 1/100 of that one before saturation. This 

considerable difference can be discussed in the light of free dislocation path. Before Nt becomes 

saturated, the twins have abundant space to grow. Furthermore, lack of twin-twin interaction 

suggests that the twin partial dislocations will not meet obstacles and can move freely (see 

Fig. 4.2 (a)). The considerably slower dislocation velocity after Nt saturation can be explained 

by twin-twin interactions, impeding the movement of twinning partial dislocations (see 

Fig. 4.2 (b)-(d)). When twins encounter each other, a twin-twin boundary forms, leaving the 

twinning dislocations of the incoming twin blocked by the twinning boundary and forming 

boundary dislocations by dislocations reaction [48]. The back-stress caused by the pile-up of 

these boundary dislocations is believed to be responsible for the impedance of motion of 

twinning partials.  

The dislocation motion is considered as quasi-viscous when the drag resistance 

predominates, which happens if the dislocation speed is close to 10-2 of the speed of sound in 

materials [101]. Normally the order of magnitude of the speed of sound in metals at room 

temperature is 103 m/s. Therefore, the contribution of the deformation twin to strain rate follows 

as 

 0 0
0

0.26 0.26 0.26= = = expmT T T

t t c t c

d dN N Nde Qv v
M d dt M d R M d R RT

ε τ  ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅  
  . (4.11) 

This is similar to the power law of Eq. (3.63). Eq. (4.11) justify that the power law can be used 

in the study of the anisotropy and texture modeling of hcp metals, where deformation twinning 

happens.  
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4.5 Semi-empirical model of twin volume fraction evolution  
In this section, a simple model is proposed to capture the twin volume fraction evolution. 

It takes into account the main observed characteristics of twin evolution after nucleation, twin 

thickening and twin volume saturation with strain. Hereby, we denote the volume fraction of 

twins as, twf , which is equal to 0twV V . twV  is the volume of twins and 0V  is the volume of the 

grain. If the crystal grain is completely twinned, which happens only theoretically (i.e., the twin 

volume fraction reaches 100%), the corresponding twin shear strain, twγ , becomes the specific 

twin shear, which is 0.13 for the tensile twin {101�2}〈1�011〉 (see Table 3.3).  

In order to build a semi-empirical model capturing twin growth, the following assumptions 

are made, in part being based on our experimental observations by EBSD: 

1) The growth rate of the twins twdV dt  depends on the untwinned part of a grain 

( )0 1 twV f⋅ − . Apparently, the larger the untwinned volume (the “free” space for twin 

growth) is, the faster the twins grow. The larger the untwinned volume is, the easier 

the local stress by twinning can be relaxed. This local stress impedes the further growth 

of twins. In addition, the probability of the event of a twin-twin interaction is lower 

than in the grains with large untwinned volume. Here, the twin-twin interaction is 

assumed to impede the further growth of existing twins. For example, in the limiting 

case where there is no twin in one grain at one specific deformation moment, this grain 

will have the largest untwinned part, and there will be no twin-twin interaction in this 

grain at this moment. 

2) The growth rate of the twins also depends on the twinned volume. It can be assumed 

that the whole untwinned volume ( )0 1 twV f⋅ −  can be reserved for the further twin 

growth, but the untwinned volume can only in part be transformed into twins during 

twin grow. We assume that the remaining volume in the untwinned zone for the further 

growth of twins is ( )0 1 tw twV f f⋅ − ⋅ .The probability of twinning event in the untwinned 

part per unit time is assumed to be α , which is assumed to be constant for simplicity 

and will be discussed later. During the infinitesimal time interval dt  , the probability 

of twinning is then dtα ⋅ . Therefore, in the volume ( )0 1 tw twV f f⋅ − ⋅ , the new twinned 

volume twdV  during dt will be ( )0 1 tw twV f f α⋅ − ⋅ ⋅   . 
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3) There is an initial twin volume fraction 0f  at the commencement of twin growth, 

which can be set as a very small number but not 0, because the twin nuclei also have a 

volume. 

4) There is as saturated twin volume fraction sf , which can be statistically evaluated 

from experiment (see Section 4.1). 

These assumptions represent a sound simplification of the real case of twin growth and, 

importantly, imply that the rate of evolution of twin volume fraction 0( )twdV V dt  in one grain 

is not only dependent on the volume of the twinned part but also on the untwinned part. Then 

the following equation holds  

 ( )
0

= 1tw tw
tw tw

dV df f f
V dt dt

α= −  , (4.12) 

where α is an a-priori unknown constant. Eq. (4.12) can be further reasoned by expanding the 

right side.  

The derivative of Eq. (4.12) can be solved by separating variables and integration, and the 

solution is  

 ( )
( )

0

1=
11 1 exp

twf t
t

f
α

 
+ − − 
 

 (4.13) 

where 0f  represents the initial volume at the beginning of twin growth. There is another 

formulation which is similar to Eq. (4.13) (mathematically called “S” growth curve) 

 ( )
( )

=
1 1 exp

Af t
A t
B

α + − − 
 

 , (4.14) 

where A and B are constants and A > B. It can be easily checked that A is the limit number of 

( )f t  when t →∞ , while B is the limit number of ( )f t  when 0t → . 

It should be noted that in the Eq. (4.13) the “limit” value of twf  is 1 when t approaches 

infinity. However, this is not true. The saturated volume fraction of twins cannot reach 100%, 

and one should define a saturated twin volume fraction sf  which is smaller than 1, the twin 

volume faction then reads  

 ( )
( )

0

=
1 1 exp

s
tw

s

ff t
f t
f

α
 

+ − − 
 

 . (4.15a) 
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Replacing time t with the accumulated twin shear strain, twγ  , Eq. (4.15a) becomes 

 ( )
( )

0

=
1 1 exp

s
tw tw

s
tw

ff
f
f

γ
αγ

 
+ − − 
 

 . (4.15b) 

 

In order to examine the influence of parameter α , we prescribe parameters 0f  and sf  to    

5×10-4 and 0.25, respectively and change the value of α. The shape of the calculated twin 

volume fraction curves are shown in Fig. 4.7, where the value of α corresponding to red, blue 

and green line are 400, 300 and 250, respectively. 

 

 
 

Fig. 4.7. The curve of twin growth with different parameters of α. 

 

Eq. (4.15b) is used to fit the experimental data. Based on the EBSD data obtained by 

experiments, the volume fraction of twins is statistically calculated. The twin volume fraction 

twf  was 0.0032, 0.26, 0.5, 0.63 and 0.79 at the compression strain of 0.005, 0.015, 0.02, 0.023 

and 0.065, respectively. Fig. 4.8 shows the experimental twin volume fraction using Eq. (4.15), 

with fitted parameter α=340, 0f =0.001, and sf =0.251. 
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Fig. 4.8. The twin volume fraction evolution of sample S4. 

 

This shows that, in principle, Eq. (4.15) can properly reflect twin growth for the 

experimentally tested strain range, thus confirming our preceding discussion on the relations 

among the twinned and un-twinned zones. The proposed twin growth function here is 

continuous and has less fitted parameters than usually required to capture the growth of twin 

volume fraction and can be extended for use in crystal plasticity modeling. For instance, Yuichi 

et al. [102] have studied the volume fraction of deformation twin in pure Mg by crystal plasticity 

modeling in pure Mg with resulting twin growth behavior being comparable to the present 

results. In contrast, they used a purely phenomenological equation to capture the growth of twin 

volume fraction, with a probabilistically determined threshold volume fraction.  

 

The physics of α: 

Indeed, some potential of improvement of the present growth function remains, 

particularly concerning the fitting parameter α in Eq. (4.15). Its physical meaning is, in essence, 

the speed of twin saturation. This is influenced by several factors, such as, the stress state, strain 

rate, temperature, grain size and the orientation. Among these, the resolved shear stress factors, 

τ , on the twinning plane is expected to play a major role, since it acts as the driving force for 

twin growth and is related to the stress state and the orientation of the grain. Larger resolved 

shear stress, thus corresponding to a faster saturation process of twin growth, will then relate to 

a larger value of the parameter α.  
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Temperature increase is expected to influence the twin evolution due to the thermal 

activation of twin dislocations (compare with Section 3.4.2, twin growth involves the 

cooperative motion of dislocations on the twin plane). Indeed, the motion of slip dislocations is 

assisted by temperature as well. Thus, the relative activities of twinning and slip will determine 

the temperature-dependent competition between slip and twinning. The stress for slip 

dislocation motion decreases with increasing temperature and the temperature-sensitivity of slip 

dislocations is larger than that of twin dislocations. Consequently, the activity of dislocation 

slip outweighs that of twinning above a critical temperature. Below the critical temperature, 

twinning is then the predominant deformation mode, which is confirmed by many studies [71]. 

The effects of temperature on the twin stress are a remaining debate. Both, positive and negative 

temperature dependence of twin stress, was reported [71]. The measured twin stress decreased 

slightly with decreasing temperature for most twin modes in hcp metals. However, in these 

studies [103], the distinction between stress during twin nucleation or twin growth has not 

pursued. The twin stress differs significantly between these two stages.  

The dependence of α on grain size can be explained as follows. In the case of large grain 

size of polycrystals, twin saturation should be slower compared to smaller grain size, simply 

based on the lower probability of two twins to intersect with each other in the former case. De-

twinning may also play a role in twin growth. The back-stress due to the twin-twin interaction 

and twin-grain boundary interaction is thought to be responsible for de-twinning [63, 67]  

In fact, the stress state at twin joints is rather complex. In order to analyze the local stress 

caused by twin-twin joints, ongoing research employing full field methods is promising to 

“raise” α from a fitting parameter to an optimizable model variable.  

 

4.6 Summary on tensile twinning in Mg alloy 
1) The mean twin number per grain, Nt, saturates fast in present compression tests of AZ31 

Mg alloys, indicating the significant role of twin-twin interactions. The small computed 

number of twin nuclei compared to the theoretically probable number suggests that only 

few twin nuclei were activated during compression testing. 

2) Twin nucleation plays a dominant role in accommodating strain at the early deformation 

stage, where a large amount of new twins result in almost zero mean twin thickening rate. 

Twin growth dominates the accommodation of strain at later stages of deformation, i.e., 

after the mean twin number per grain has reached its saturated value. 

3) In the nucleation-dominated stage, the evaluated partial dislocation velocity by the present 

model is approximately 0.13 m/s. The velocity of twinning partial dislocation in the later 
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stage is only 1.4×10-3 m/s, indicating that the twin-twin interactions strongly affect the 

thickening of twins.  

4) A semi-empirical twin growth law considering the initial twin volume fraction after 

nucleation and the saturated twin volume fraction is proposed. The growth factor α 

determines the speed of twin volume fraction increase. Microstructural and state parameters 

which influence the free path for twin partials movement will also influence α. 
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5 Weakening basal texture in AZ31 Mg alloy observed by experiment 

Tensile twinning {101�2}˂101�1˃ is profuse in room temperature deformed Mg and its 

alloys, accommodating c axis strain during the deformation. The influence of deformation 

twinning on plasticity consists of two parts: 

 

• Deformation twinning serves as supplementary room temperature deformation mode 

to basal slip.  

• Deformation twinning provokes a strong reorientation effect on the lattice. 

{101� 2}˂101� 1˃ tensile twinning reorients the c axis by rotating round ˂101� 0˃ 

direction by about 86°. By this reorientation, the resolved stress on the slip systems 

is influenced.  

 

However, strain accommodation by deformation twinning is limited. Even if the grain is 

completely twinned by {101�2}˂101�1˃ tensile twinning, the plastic strain is calculated to be 

only 6.5%. As the easiest deformation mode at room temperature, basal slip plays a dominant 

role in accommodation of strain. This further means that, in order to obtain technologically 

desirable amount of plastic strain, basal slip has to be promoted as much as possible. 

Unfortunately, during deforming of Mg alloys at room temperature and even at elevated 

temperature, it tends to a strong basal texture, i.e., all the c axis grains are oriented perpendicular 

to the extrusion axis or parallel with the normal direction in rolling.  

The Mg alloy with strong basal texture has very poor deformability. In the previous 

compression tests reported in Section 4.1, further deformation becomes essentially impossible 

after strains above 10%. Moreover, cracks are initiated close to the compression strains of about 

12%. The question of how to “weaken” the basal texture is thus of great significance for 

improving the deformability of Mg alloys. The addition of rare earth elements (REE) in Mg can 

significantly reduce the tendency of developing a basal texture [104], even though the 

underlying mechanism is not fully understood. However, the cost of RE is often too high for 

mass industry application. Reducing the twin number in samples via thermal mechanical 

treatment may pose a promising method to enhance deformability. In order to weaken the strong 

texture by recrystallization, proper heat treatments are intended to be designed. Studies on the 

influence of static and dynamic recrystallization on the texture evolution were conducted [105-

108]. Modifying the basal texture by heat treatment is still challenging. The optimization of 

process parameters of heat treatment, time, the choosing of temperature is subtle. For instance, 

it was found that a large amount of tensile twins hardly change at medium temperature 
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annealing or only re-orientate by rotating around its c axis [106-108]. Even though, during high 

temperature annealing, tensile twinning disappeared, resulting in randomization of the c axis 

orientation of the Mg lattice,, this happened at the cost of appreciable grain coarsening. Hence, 

the best compromise has to be obtained between controlling grain size and basal texture 

elimination. In this framework, pre-straining represents a promising strategy to weaken the 

basal texture [109]. In this section, pre-strain was imposed on AZ31 Mg alloy to boost 

recrystallization of deformed samples and subsequently eliminate the undesirable strong basal 

texture. Pre-straining has been designed to initialize <c+a> pyramidal slip modes. The<c+a> 

dislocations have a longer Burgers vector than the basal dislocations and are expected to yield 

more distortion energy and, thus, a higher driving force for recrystallization. 

 

5.1 Experimental  
At 350 °C, hot extruded AZ31 magnesium alloy with strong initial fiber texture is chosen. 

Three different deformation modes are selected in order to investigate the influence of strain 

modes on the recrystallization process. Under the first deformation mode, the sample is directly 

compressed to a strain of 10% at 180 °C (S1). Sample S2 is also compressed to a strain of 10%, 

but with the first half strain (5%) performed at 180 °C and the second half strain (5%) 

subsequently performed at RT. For S3, the same overall strain is chosen as for the previous two 

samples, with the first half strain (5%) performed at RT and the second half strain (5%) 

performed at 180 °C. All samples are subsequently subjected to isothermal aging at 300 °C for 

6 hours (S1H, S2H and S3H). An initially strong basal texture is found, as shown in Fig. 4.1 on 

page 44. 

The following hypotheses assisted the choice of deformation paths and temperatures:  

S1: A strain of 10% at the relatively high temperature of 180 °C is expected to promote 

high activity of <c+a> pyramid slip mode take place during the deformation [110].  

S2: During the first half deformation at 180 °C, the <c+a> pyramidal slip mode should be 

activated, whereas the contribution of deformation twinning is supposed to be small. In the 

subsequent half strain, at RT, the tensile twin and basal slip are expected to become important, 

while the amount of <c+a> may be retained. 

S3: At the first half strain, the main deformation mode is thought to be tensile twinning, in 

the following half strain, <c+a> pyramid slip is speculated to occur in both, matrix and twins, 
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and considerable amount of <c+a> dislocations may be stored in the previously formed tensile 

twin.  

The subsequent isothermal heat-treatment step following the pre-strain was imposed on S1, 

S2, S3, yielding the sample SH1, SH2 and SH3, respectively. The compression tests are 

performed on a Gleeble 1500 machine with a strain rate of 10-3/s. The texture evolution during 

heat treatment is examined by the EBSD technique (FEI Quanter 200 FEGSEM).  
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5.2 Texture modifications 
5.2.1 Texture modifications after compression testing  

Fig. 5.1 shows the pole figure and the EBSD image of samples S1, S2 and S3, respectively 

  

  

   
 

Fig. 5.1. Textures and microstructures of samples: (a) (b) S1; (c) (d) S2; (e) (f) S3. 

 

In sample S1 (Fig. 5.1 (a)), tensile twins are observed in some of the grains. The grain size 

distribution of those grains being twinned is relatively heterogeneous. Compared with the RT 

compression shown in the Fig. 4.2 on page 46, the twin number is much smaller. The number 

(a) 

(c) 

(e) 

(b) 

(d) 

(f) 
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of twin-twin joints is reduced relative to the number after RT compression due to the competing 

activity of <c+a> pyramidal slip. Due to active <c+a> pyramidal slip, the grain orientation is 

partially changed. The pole figure of S1 shows that the c axis of some grains is aligned with the 

RD (compression axis of compression tests), while the c axis of remaining grains being almost 

perpendicular to the RD, distributing around the equator of the projection sphere. During 

compression, the normal of the pyramidal plane, acting as the slip plane of the <c+a> slip, tends 

to align with the compression axis, making the c axis disperse around the equator. Even slight 

tilt of the c axis, even approx. 1 to 2° (see Chapter 6) relative to the compression axis, seems to 

reduce the probability of the simultaneous activation of different twin variants in the grains, as 

revealed by reduced twin-twin interactions. Such effects of the initial orientation of grain crystal 

on selection of tensile twin variant will be simulated in Section 6.1.  

The texture comparison between 180 °C compression and RT compression is shown in 

Fig. 5.2. In the case of RT compression, the scattering distribution of the c axis is lower than 

that in the 180 °C compression, suggesting the much lower activity of <c+a> slip. In RT 

compression, the initial texture of the samples is such that the c axis of most grains is almost 

perpendicular to the compression axis. The Schmid factors of different tensile twin variants, in 

this case, are the same, resulting in the same possibility of activation for different twin variants. 

Therefore, different twin variants are very likely activated simultaneously, provoking twin-twin 

intersect joints. 

 

  

 
Fig. 5.2. Texture resulting from (a) 180 ℃ compression (strain=10%) S1 and (b) RT compression 

(strain=6.5%). 

 

Fig. 5.1 (d) shows the EBSD images of S2. Pronounced twinning is observed in S2 

compared with S1. During the first half strain of 5% compressed at 180 °C, the <c+a> 

pyramidal slip takes place, making the pyramidal slip plane tend to be perpendicular with the 

(a) (b) 
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compression axis and, equivalently tilting the c axis slightly. After this first half deformation, 

the c axis of most grains is not perpendicular with the compression axis any more. In the next 

half compression at RT, these grains with tilted c axis experience tensile twinning. Therefore, 

the Schmid factors for different tensile twin variants in these grains are different, making their 

simultaneous activation difficult. This is supported by the evidence of only few observed twin-

twin insect joints (Fig. 5.1 (d)). Most twins are parallel with each other. The pole figure of S2 

is clearly different from the one of S1. The center zone of the pole figure of S2, as shown in 

Fig. 5.1 (c), is obviously blank, while there is a scattering distribution of c axis for S1, as seen 

in Fig. 5.1 (a). This can be ascribed to tensile twinning during the second half compression at 

RT in S2. Tensile twins, thereby, reorient those grains whose initial c axis was located in the 

center of the projection circle to a new orientation where their c axis aligns with the compression 

axis. In addition, a weak texture component can be extracted from Fig. 5.1 (d), likely caused by 

basal slip during the second half compression at RT. Basal slip may act in those grains that 

inherited a favorable orientation after the first half compression at 180 °C.  

Fig. 5.1 (f) shows the EBSD image of sample S3. Obviously, S3 and S2 have similar 

microstructures. Twin fraction, distribution and morphologies are similar in S2 and S3, i.e. most 

of the twins are parallel to each other and twin-twin interaction rarely occur. Still, S3 exhibits 

a different texture than S2, as shown in Fig. 5.1 (e). The texture of S3 is indeed very similar to 

that of the sample compressed at RT to 6.5%, which is also illustrated in Fig. 5.3. In the first 

half RT compression (5%) of S3, the c axis of most grains is reoriented and aligned with the 

compression axis. In the subsequent half 180℃ compression (5%), the texture is almost 

unchanged, indicating that the <c+a> pyramidal slip {21�1�2}〈2�113〉 has limited effects on the 

texture evolution in this case. 

 

 
 

Fig. 5.3. Texture of (a) S3 and (b) RT compression samples (strain=6.5%). 

(a) (b) 
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5.2.2 Effects of heat-treatment 
EBSD images of SH1, SH2 and SH3 are shown in Fig. 5.4. As a result of the isothermal 

heat-treatment, twins disappear in all these three samples. SH1 shows obviously larger mean 

grain size than SH2 and SH3.  

 

   
 

Fig. 5.4. The EBSD microstructure of samples: (a) SH1, (b) SH2, (c) SH3. 
 

In SH1, SH2 and SH3, some fine grains are enclosed by coarse grains. The mean grain size 

of SH1 is obviously larger than of S1, while the grains of SH2 and SH3 experience no 

significant growth during isothermal annealing at 300 °C. Large <c+a> pyramidal slip activity 

in S1 has larger strain accommodation ability than tensile twin, resulting in higher storage 

capacity for distortion strain energy in the crystal, leading to the higher driving force for 

recrystallization. This is reflected by the larger mean grain size of SH1 compared to the other 

samples. Furthermore, since grain boundary mobility is considered to be impeded by tensile 

twins, this influence should be lower in S1. The present texture analysis is actually qualitative. 

The quantitative study of the relative activities of different deformation via the crystal plasticity 

simulation will be conducted in Chapter 6.  

5.2.3 Texture comparison of as-compressed and heat-treated samples 
Fig. 5.5 shows the texture comparison between SH1, SH2, SH3, as well as S1, S2, S3. 

After heat-treatment, the texture experiences a significant change due to recrystallization of 

deformed grains for S1.  

 

(a) (b) (c) 
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Fig. 5.5. The texture comparison between samples: (a) S1; (b) S2 and (c) S3; (d) SH1; (e) SH2 and (f) SH3. 

 

The smallest texture change occurred in S3 during heat-treatment. In Fig. 5.5 (a) and 

Fig. 5.5 (d), the texture component located in the center of the pole figure represents the matrix, 

while the texture components locating along the RD represents tensile twins. The relative 

intensity between twin and matrix has changed significantly after heat-treatment. The 

comparison between Fig. 5.5 (a) and Fig. 5.5 (d) suggests that, after heat-treatment, the tensile 

twin is absorbed by the matrix and the texture is disperse in the center part of the pole figure. 

In S1, the number and volume fraction of twins is significantly less than in samples S2 and S3. 

The volume of the twinned zone is obviously smaller than that of the untwined zone in S1 (see 

Fig. 5.1 (b)) and more distortion energy is stored in untwined part. Therefore, in the subsequent 

heat treatment, the twin boundary emigrated toward the side of the twins and then these tensile 

twins appears to be “eaten up” by the matrix. 

The sharpness of the tensile texture of SH2 is weaker than that of S2, a new texture 

component arises during isothermal annealing, and the texture seems to become more 

randomized. This indicates that, after the heat-treatment, only a part of the tensile twins are 

transformed into new grains with new orientation. 

In SH3, the sharpness of texture corresponding to tensile twinning is slightly enhanced 

compared to S3, and no new texture components arise. This experimental observation suggests 

that, during heat-treatment, the matrix partially transforms into tensile twins, which is just the 

opposite trend than in SH1. In S3, a large amount of tensile twins was formed at the first half 

compression conducted at RT. During the second half compression (5%) at 180 °C, these tensile 

(f) 

(a) (b) (c) 

(d) (e) 
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twins, together with the matrix, experience <c+a> pyramidal slipping. This likely results in a 

relatively high stored distortion energy in the twins, allowing for twin boundary migration into 

the matrix during isothermal aging. 

Summarizing, textures and microstructures of heat-treated samples, SH2 reveals more 

random texture and favorable grain size, SH3 reveals the sharpest structure, whereas SH1 has 

the largest mean grain size. 
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6 Mean field-simulation of texture and yield strength evolution  
 

In this chapter, the anisotropy of single crystal Mg is described by calculation of the 

activation stresses for different deformation modes in the framework of Schmid´s law 

(Section 6.1). Mg exhibits strong anisotropy and the simulation results confirm that basal slip 

is the easiest deformation mode in Mg at room temperature. The reorientation of slip and tensile 

twinning in single crystals is also simulated, the results supporting the subsequent discussion 

in Section 6.2. Based on the knowledge introduced in Section 3.1, the texture evolution of 

polycrystalline Mg is simulated in the framework of the iso-work mean field method 

(Section 6.2). The conceptual limitations of this method are overcome by the development of a 

Taylor mean field model, which is applied for the simulation of texture evolution, relative 

activity and flow curve of as-extruded AZ31 Mg is simulated in Section 6.3. 

 

6.1 Crystal Plasticity Framework for single crystal Mg 
6.1.1 Anisotropy of yield stress 

In calculating the yield stress of single crystal Mg based on the Schmid´s law, the 

commonly used four axial coordinates of hcp crystals are transformed into three orthogonal 

axes, first. In the present work, all crystal plasticity calculations are performed in the Cartesian 

coordinates system. Usually, the a1 axes [21�1�0], [011�0] and the c axis [0001] of the four-axial 

coordinate system are used as X, Y and Z axes of the three-axial coordinate system, which is 

shown in Fig 6.1. 

 

Fig. 6.1. Schematic representation of coordinate transformation from 4 axial coordinates to 3 axial 
coordinates. 

T1 
T2 

T3 

T4 

T5 

T6 
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The index of one lattice direction d in the three orthogonal axial coordinate system X-Y-Z 

can be transformed from its index in the four axial coordinate system (a1-a2-a3-c), the 

transformation rule follows: 

 
1 2 0 0

= 3 2 3 0
0 0

U u
V v
W c a w

    
    
    
        

, (6.1) 

where [U V W] is the index of lattice direction d expressed in the X-Y-Z coordinate system and 

[u v t w] is its index expressed in four axial coordinates. t= -(u+v) and t is not an independent 

component of four indexes. In Mg, c/a is 1.6242, thus, the transformation matrix Q can be 

expressed as 

 
1 2 0 0

= 3 2 3 0
0 0 1.624

 
 
 
 
 

Q  . (6.2) 

Similarly, the transformation between the indices of a lattice plane p expressed in X-Y-Z 

coordinates and a four axial coordinate system (a1-a2-a3-c) can be written as  

 
1 0 0

= 1 3 2 3 0
0 0

H h
K k
L a c l

    
    
    
        

 , (6.3) 

where (H K L) represents the indices of lattice plane p expressed in X-Y-Z coordinates and (h 

k i l) are its indices expressed in the four axial coordinate system (a1-a2-a3-c). i= -(h+k) and i is 

not an independent component of four indices. For Mg, the transformation matrix S is expressed 

as 

 
1 0 0

= 1 3 2 3 0
0 0 1 1.6242

 
 
 
 
 

S  . (6.4) 

With this transformation matrix known, the yield stress can be calculated for Mg single crystal 

at room temperature.  

Fig. 6.2 illustrates the yield strength of single crystal Mg with different orientations. For 

simplification, here, only basal slip is considered first, which comprises three variants: (0001) 

[21�1�0], (0 0 0 1)[1�21�0] and (0 0 0 1) [1�1�20], denoted here as B1, B2 and B3. The critical shear 

stress, τc, for basal slip is set to be 0.8 MPa (refer to Table 3.2). Here, the Kocks definition of 

Euler angles is chosen. Ψ and Φ are fixed to zero and θ varies from 5° to 85°. When θ approaches 
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0° or 90°, the yield stress approaches infinity. It is apparent that the crystal with orientation of 

λ and φ being 45° has the lowest yield strength.  

 

 
 

Fig. 6.2. Yield stress(MPa) of single crystal Mg in uniaxial tension with only the basal slip systems 

considered. 

 

It is well known that five deformation mechanisms can act in Mg, i.e., slip {0001}〈21�1�0〉, 

prismatic slip {101�0}〈21�1�0〉 , 2nd order pyramidal slip {21�1�2}〈2�113〉 , tensile twinning 

 {101�2}〈1�011〉 and compression twinning {101�1}〈1�012〉. When calculating the yield stress of 

single crystal Mg, all of these five mechanisms should be considered. Crystallographically, this 

yields 24 types of deformation variants in total, which are listed in Table 6.1 including slip 

planes and slip directions. Accordingly, the basal slip system has three variants, the prismatic 

slip system has three variants, and the 2nd pyramidal slip, tensile twin and compression twin 

system have six variants, respectively. Table 6.1 also summarizes the Miller indices of all slip 

systems and twin variants in the usual deformation modes of Mg. The expression of all these 

deformation modes can be conveniently transformed from the four index scheme to three 

indices based on Eqs. (6.1)-(6.4).  
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Table 6.1 Deformation variants in Mg  

Deformation 

modes 
Miller Index 

Basal sip B1: (0001) [21�1�0] B2: (0001) [1�21�0] B3: (0001) [1�1�20] 

Prismatic slip P1: (011�0)[ 21�1�0] P2:( 101�0) [1�21�0] P3: (11�00) [1�1�20] 

2nd pyramidal 

slip<c+a> 

PY1: (21�1�2) 

[21�1�3�] 

PY2: (112�2) 

[112�3�] 

PY3: (1�21�2) 

[1�21�3�] 

PY4: (2�112) 

[2�113�] 

PY5: (1�1�22) 

[1�1�23�] 

PY6: (12�12) 

[12�13�] 

Tensile twin  
TT1:(101�2) 

[1�011] 

TT2: (011�2) 

[01�11] 

TT3: (1�102) 

[11�01] 

TT4: (1�012) 

[101�1] 

TT5: (01�12) 

[011�1] 

TT6: (11�02) 

[1�101] 

Compression 

twin  

CT1:(101�1)  

[101�2�] 

CT2: (011�1) 

[011�2�] 

CT3: (1�101) 

[1�102�] 

CT4: (1�011) 

[1�012�] 

CT5: (01�11) 

[01�12�] 

CT6: (11�01) 

[11�02�] 

 
The τc values for basal slip, prismatic slip, 2nd order pyramidal slip, tensile twinning and 

compression twinning are chosen as 0.8 MPa, 39 MPa, 44 MPa, 2 MPa and 88 MPa, 

respectively (refer to Table 3.2 on page 29).  

 

Tensile yield stress: 

Fig. 6.3 shows the yield stress of single crystal Mg in uniaxial tension with all deformation 

mechanisms considered (red curve), compared to the yield stresses calculated with basal slip 

only (black curve). It can be seen from Fig. 6.3 that the yield stress values are the same as those 

depicted in Fig. 6.2 for the same orientations, except in the orientations with θ equals to 5°, 10° 

and 85°. The according difference arises from the activation of tensile twinning. In these three 

orientations, the tensile twinning is easier to be activated than basal slipping. In Fig. 6.3, as in 

Fig. 6.2, the yield stress of single crystal Mg shows remarkable differences with varying 

orientations, indicating the strong mechanical anisotropy of single crystal Magnesium.  
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Fig. 6.3. Yield stress of single crystal Mg in uniaxial tensile with all deformation mechanisms considered 

 

In order to represent the mechanical anisotropy of single crystal Mg in a more convenient way, 

the yield stress is plotted in Fig. 6.4 along three typical directions, [21�1�0], [101�0] and [0001]. 

The corresponding Euler angles are (Ψ=0°, θ=90°, φ=180°), (Ψ=0°, θ=90°, φ=210°) and (Ψ=0°, 

θ=0°, φ=0~360°), respectively. Fig. 6.4 shows that the tensile yield stresses are different when 

uniaxial tensile stress (the stress tensor has only one axial component , σzz is non-zero) is applied 

along these three directions.  

The tensile yield stress along 〈0001〉 direction is calculated to be 4 MPa and is related to 

tensile twinning {101�2}〈1�011〉 . Indeed the possibility of the 6 variants of tensile twins 

{101�2}〈1�011〉 being activated is the same because the six fold symmetry of Magnesium single 

crystal. The calculated tensile yield stress along 〈21�1�0〉 direction is 90 MPa, which corresponds 

to the activation of the prismatic slip systems. When single crystal experiences a tensile 

along 〈101�0〉, the yield stress is also 90 MPa, and the prismatic slip system will be activated. 

Fig. 6.4 reveals that single crystal Magnesium exhibits very strong anisotropy when subjected 

to tensile test.  
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Fig. 6.4. The tensile yield stresses of single crystal Magnesium along the three directions ([𝟐𝟐1�1�𝟎𝟎], [101�0] 
and[𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎]). 

 

In Table 6.2 (a), the tensile stresses needed to activate all 24 deformation variants are listed, 

assuming that the tensile stresses are applied along [21�1�0]. It can be seen from Table 6.2 (a) 

that the tensile stress needed to activate the basal slip is infinitive, simply because the stress 

direction is parallel with the basal plane. In terms of prismatic slip, the stress for activating P1 

(P=prismatic) (011�0)[21�1�0] variants is infinitive, while the stress for P2: (101�0) [1�21�0] and P3: 

(11�00) [1�1�20] is the same, which is 90.06 MPa. The slip direction of the P1 variant coincides 

with the tensile direction, resulting in no resolved stress on the P1 slipping plane. As, for P2 

and P3, their slip planes are symmetric relative to the a1 direction. The 2nd pyramidal (PY) slip 

has 6 variants, for intrinsic symmetry reason of the lattice, the stress for PY1: (21�1�2) [21�1�3�] 

and PY4: (2�112)[2�113�] are the same, which are 98.5 MPa. Besides, PY2:(112�2)[112�3�], PY3: 

(1�21�2) [1�21�3�], PY5: (1�1�22)[1�1�23�] and PY6: (12�12)[12�13�] have the same activating tensile 

stress value of 394.2 MPa, being substantially larger than for PY1 and PY4. The tensile 

twinning will not be activated under this orientation because of the mono-directional feature of 

twinning, i.e., twin shear can only happen in one direction but not in its opposite direction. 

Nevertheless, compression twinning can take place. For symmetry reason, the CT1 

(compression twinning): ( 101�1 )[ 101�2� ], CT3: ( 1�101 )[ 1�102� ], CT4: ( 1�011 )[ 1�012� ], CT6: 

(11�01)[11�02�] has the same activation stress, which is 282.6 MPa, while the stresses for CT2: 

(011�1)[011�2�] and CT5: (01�11)[01�12�] are infinitive.  
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When extending the single-crystal Mg along [101�0] direction, as shown in Table 6.2 (b), 

the tensile stress needed to activate the basal slip is infinitive. The stress for activating P2: (101�0) 

[1�21�0] is infinitive, while the stress for P1 (011�0)[21�1�0] and P3: (11�00)[1�1�20] is 90.06 MPa. 

PY1: (21�1�2)[21�1�3�], PY2:(112�2)[112�3�], PY4: (2�112)[2�113�] and PY5: (1�1�22)[1�1�23�] have the 

same activating stress of 131.4 MPa, which is much smaller than that in the case of extending 

along [21�1�0] (394.2 MPa). Similar to the case in Table 6.2 (a), tensile twinning is absent at this 

orientation. All of the compression twin variants have finite stress values, activation stress for 

CT1: (101�1)[101�2� ] and CT4: (1�011)[1�012� ] are the same, which is 211.9 MPa, for CT2: 

(011�1)[011�2�], CT3: (1�101)[1�102�], CT5: (01�11)[01�12�] and CT6: (11�01)[11�02�] the stress is 

847.8 MPa. The yield stress is marked in red in the table and it is 90.06 MPa. When the tensile 

stress is applied along [0001] direction, it is interesting to see that the yield stress is only 4 MPa 

and all of the tensile twin variants can be activated simultaneously. However, compression 

twinning is absent.  
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Table 6.2 (a) The tensile stresses (MPa) needed to activate the 24 deformation variants along [𝟐𝟐1�1�𝟎𝟎] 

Deformation 

modes 
Deformation variants 

Basal sip B1:Infinitive B2: Infinitive B3: Infinitive 

Prismatic slip P1:Infinitive P2:90.06 P3:90.06 

2nd pyramidal 

slip <c+a> 
PY1: 98.5 PY2: 394.2 PY3: 394.2 PY4: 98.5 PY5: 394.2 PY6: 394.2 

Tensile twin  TT1: Absent TT2: Absent TT3: Absent TT4: Absent TT5: Absent TT6: Absent 

Compression 

twin  
CT1:282.6 CT2: Infinitive CT3: 282.6 CT4: 282.6 CT5: Infinitive CT6: 282.6 

 

Table 6.2 (b) The tensile stresses (MPa) need to activate the 24 deformation variantsalong [101�0] 

Deformation 

modes 
Deformation variants 

Basal sip B1:Infinitive B2: Infinitive B3: Infinitive 

Prismatic slip P1:90.06 P2:Infinitive P3:90.06 

2nd pyramidal 

slip<c+a> 
PY1: 131.4 PY2: 131.4 PY3: Infinitive PY4: 131.4 PY5: 131.4 PY6: Infinitive 

Tensile twin  TT1: Absent TT2: Absent TT3: Absent TT4: Absent TT5: Absent TT6: Absent 

Compression 

twin  
CT1: 211.9 CT2: 847.8 CT3: 847.8 CT4: 211.9 CT5: 847.8 CT6: 847.8 

 

Table 6.2 (c) The tensile stresses (MPa) need to activate the 24 deformation variants along [𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎] 

Deformation 

modes 
Deformation variants 

Basal sip B1:Infinitive B2: Infinitive B3: Infinitive 

Prismatic slip P1:Infinitive P2:Infinitive P3:Infinitive 

2nd pyramidal 

slip <c+a> 
PY1: 98.5 PY2: 98.5 PY3: 98.5 PY4: 98.5 PY5: 98.5 PY6: 98.5 

Tensile twin  TT1:4.0 TT2: 4.0 TT3: 4.0 TT4: 4.0 TT5: 4.0 TT6: 4.0 

Compression 

twin  
CT1: Absent CT2: Absent CT3: Absent CT4: Absent CT5: Absent CT6: Absent  

 

 

Compression yield stress: 

As a comparison with Fig. 6.4, the compressive yield stress of single crystal Mg, when it 

is subjected to the compression along the [21�1�0], [101�0]and[0001] directions, is examined (see 

Fig. 6.5). When compression acts along the c axis, the yield stress is 98.5 MPa, which is caused 

by the activation of the 2nd pyramidal slip system, while the activation stress for compression 
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twin is 211.9 MPa, indicating that compression twins do not occur. When single crystal 

Magnesium experiences compression along [21�1�0], the calculated yield stress is 5.34 MPa, 

caused by tensile twinning. Compared with the tensile case along the same direction of [21�1�0], 

the compression yield stress is much lower almost 1/22 of that for the extension case. In terms 

of compression along [101�0], the yield stress is 4 MPa, also caused by tensile twinning. 

 

Fig. 6.5. The compression yield stresses of single crystal Magnesium along these three directions 
([𝟐𝟐1�1�𝟎𝟎],[101�0]and[𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎]). 

 

Summarizing the simulation results for tension and compression, it is obvious that single 

crystal Mg exhibits strong anisotropy, which not only depends on the orientation of the single 

crystal but also on the applied tress state. Even at applied stresses along the same direction, 

tension stress is much different form the compression yield stress. The reason for this significant 

difference is that deformation twins play a very important role in single crystals, whose shear 

is mono-directional (polarity). Besides, the CRSS of different deformation modes is very 

different.  

Keeping the Euler angles Ψ and Φ equal to zero, and changing θ from 5° to 85°, the axial 

stresses (tensile or compression stress) required to activate the basal slip mode, prismatic slip 

mode, 2nd pyramidal slip mode, tensile twinning and compression twinning are displayed in 

Fig. 6.6. In Fig. 6.6 (a), the activation stress for a1(0001)[21�1�0], variant of basal slip exhibits a 

“U” shape as the orientation changes, where θ alters from 5° to 85° with Ψ and φ being 0. 

Because of the symmetry of lattice, a2(0001)[1�21�0], and a3(0001)[1�1�20] variants have the same 

activation stress under all these different orientations. For all of the basal slip system variants, 
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orientations with Euler angle (Ψ=0°, θ=45°, φ=0°) correspond to the lowest activation, where 

the Schmid factor is 0.5. In terms of prismatic slip, the activation stress of the a1(0001)[21�1�0] 

variant is calculated to be infinitive. Apparently, this result is reasonable, because in all 

orientations involved in Fig. 6.6, the applied stress axis is parallel with the slip plane. The 

curves of a2 (0001) [1�21�0] and a3 (0001) [1�1�20] coincide with each other, showing monotonous 

decrease.  
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Fig. 6.6. The applied axial stress required to activate the 6 different deformation modes: (a) basal slip; (b) 
prismatic slip; (c) pyramidal slip; (d) tensile twinning; (e) compression twinning. 

 

In fact, compared with basal slip systems, the prismatic slip (Fig. 6.6 (b)) requires much 

higher activation stress under the same orientation. For example, with the orientation (Ψ=0°, 

θ=5°, φ=0°), the activation stress for a1(0001)[21�1�0] variant of basal slip is 9.2 MPa, while the 

activation stress for a2 (101�0)[1�21�0] variant of prismatic slip is 11857 MPa, which is 1200 times 

higher than that for basal slip. Even the lowest activation stress in prismatic slip is 10 times as 

high as that of basal slip with Euler angle (Ψ=0°, θ=85°, φ=0°), indicating that the prismatic 

slip can be generally neglected relative to the basal slip. 

(a) (b) 

(d) 

(e) 

(c) 
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As for pyramidal slip modes, the shape of curves of all prismatic slip variants exhibit a 

peak feature, although these peaks occur at different position in Fig. 6.6 (c), which corresponds 

to the different orientation. In Fig. 6.6 (c), the activation stress for the pyramidal slip variant 

PY1 (21�1�2)[21�1�3�], has the highest value (1556.9 MPa) when the single crystal is orientated as 

(Ψ=0°, θ=60°, φ=0°). For symmetry reason, the variants PY2 ( 112�2 )[ 112�3� ], and PY6 

(12�12)[12�13�] have the same activation value in the whole span of the change of θ. Similarly, 

PY3 (1�21�2)[1�21�3�], and PY5 (1�1�22)[1�1�23�] also shows coinciding curves. For the activation 

stress curves of PY3 and PY5, the Euler angle (Ψ=0°, θ=50°, φ=0°) corresponds to the 

occurrence of peak which is 5423.4 MPa. The curve of PY4 (2�112)[2�113�] is very similar to that 

of PY1 and the peak occurs at (Ψ=0°, θ=30°, φ=0°). Actually the curve of PY4 is symmetric to 

that of PY1 in relation to the (Ψ=0°, θ=45°, φ=0°). The required stress for activating tensile 

twins and compression twins is displayed in Fig. 6.6 (d) and Fig. 6.6 (e) respectively. Fig. 6.6 

can directly deliver the information on the relative easiness of activation among these 5 different 

modes. 

 

6.1.2 Reorientation of single crystal Mg 
In this section, Eq. (3.14) is applied to simulate the reorientation of single crystal Mg. In 

order to represent the orientation evolution of single crystal Mg, simulation samples with three 

initial orientations are selected. For simplification, only basal slip is involved in these 

orientations. The initial Euler angles of orientation 1, 2 and 3 are (Ψ=0°, θ=15°, φ=0°), (Ψ=0°, 

θ=30°, φ=0°) and (Ψ=0°, θ=45°, φ=0°) respectively, assuring that there is only one active basal 

slip variant a1(0001)[ 21�1�0 ] during tensile testing. Fig. 6.7 illustrates the schematic 

representation of a single crystal Mg sample. In the three chosen initial orientations, the normal 

to the slip plane [0001], the slip direction [21�1�0] and tensile axis are coplanar vectors, which 

means that only θ evolves during tensile testing. 
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Fig. 6.7. Schematic representation of tension of a single crystal Mg sample. 

Table 6.3 lists the evolution of θ angles with tensile strain for the three samples. The strain 

is set to 20% in order to observe a significant change of the θ angle. Here, only 10 sets of data 

are selected from the large number of calculation data. For the sample with initial orientation 1, 

after experiencing a tensile strain of 20%, the θ angle changes from 15° to 37.7°, which is an 

increase by 22.7°. The θ angle of the sample with an initial orientation 2 increases from 30° to 

44.8°, by 14.7°. Similarly, the θ angle of the sample with an initial orientation 3 changes from 

45° to 54.6°, by 9.6°. Fig. 6.8 shows the continuous change of θ angle with strain. From Fig. 6.8, 

even though the total strain is the same for all initial orientation samples, the change of θ is 

different. This directly shows that the overall texture evolution depends not only on strain, but 

also on initial texture.  
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Table 6.3 The evolution of θ angle with tensile strain 

Strain 
Orientation 1 Orientation 2 Orientation 3 

Evolution of θ 

0.01 16.99929 30.97336 45.56736 
0.03 20.38667 32.81489 46.66943 
0.05 23.2494 34.53484 47.73059 
0.07 25.76338 36.15079 48.75367 
0.09 28.02295 37.67633 49.74117 
0.11 30.08577 39.12221 50.69532 
0.13 31.99015 40.49717 51.61811 
0.15 33.76315 41.80837 52.51134 
0.17 35.42471 43.06181 53.37663 
0.19 36.99006 44.26257 54.21546 
0.2 37.74049 44.84457 54.62537 

 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
15

20

25

30

35

40

45

50

55

60
 orientation 1
 orientation 2
 orientation 3

 

 

An
gl

e 
θ 

(d
eg

)

Strain ε  
Fig. 6.8. The evolution of θ angle with tensile strain. 

 

When the slip direction normal to the slip plane and the tensile axis are not coplanar, then, 

during the deformation, not only θ evolves, but also Ψ and φ evolve. In order to illustrate the 

change of Ψ and φ with strain, another set of three samples with different initial orientation are 

chosen, whose initial Euler angles are (Ψ=0°, θ=15°, φ=5°), (Ψ=0°, θ=15°, φ=15°) and (Ψ=0°, 

θ=15°, φ=25°). Table 6.4 lists the evolution of orientation of a Mg single crystal with three 

different initial orientations. Fig. 6.9 shows the evolution of orientations of a Mg single crystal 

with initial orientation (Ψ=0°, θ=45°, φ=150°).  
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Table 6.4 The evolution of orientation angle with tensile strain 

strain 
(Ψ=0°, θ=15°, φ=5°) (Ψ=0°, θ=15°, φ=15°) (Ψ=0°, θ=15°, φ=25°) 

Ψ θ φ Ψ θ φ Ψ θ φ 

0.01 -0.59 16.99 4.38 -1.81 16.99 13.11 -2.46 17.00 17.44 

0.02 -1.01 18.77 3.93 -3.09 18.77 11.77 -4.18 18.78 15.64 

0.03 -1.33 20.38 3.60 -4.04 20.38 10.76 -5.46 20.39 14.28 

0.04 -1.58 21.86 3.33 -4.80 21.86 9.94 -6.47 21.87 13.20 

0.05 -1.78 23.24 3.11 -5.41 23.24 9.29 -7.28 23.25 12.32 

0.06 -1.95 24.54 2.93 -5.91 24.54 8.74 -7.96 24.54 11.58 

0.07 -2.09 25.76 2.77 -6.34 25.76 8.26 -8.53 25.76 10.95 

0.08 -2.21 26.92 2.63 -6.71 26.92 7.85 -9.02 26.92 10.40 

0.09 -2.32 28.02 2.51 -7.03 28.02 7.49 -9.45 28.02 9.92 

0.1 -2.42 29.07 2.40 -7.31 29.07 7.16 -9.82 29.08 9.49 

0.11 -2.50 30.08 2.31 -7.57 30.08 6.88 -10.16 30.09 9.10 

0.12 -2.58 31.05 2.22 -7.79 31.05 6.61 -10.46 31.06 8.75 

0.13 -2.64 31.99 2.14 -8.00 31.99 6.37 -10.73 31.99 8.44 

0.14 -2.71 32.89 2.06 -8.18 32.89 6.16 -10.97 32.89 8.15 

0.15 -2.76 33.76 2.00 -8.35 33.76 5.95 -11.20 33.76 7.88 

0.16 -2.81 34.60 1.93 -8.50 34.60 5.77 -11.40 34.61 7.63 

0.17 -2.86 35.42 1.88 -8.6 35.42 5.60 -11.59 35.42 7.40 

0.18 -2.91 36.21 1.82 -8.78 36.21 5.43 -11.76 36.22 7.19 

0.19 -2.95 36.99 1.77 -8.90 36.99 5.28 -11.92 36.99 6.99 

0.2 -2.98 37.74 1.72 -9.01 37.74 5.14 -12.07 37.74 6.80 

 

 
Fig. 6.9. Rotation of single crystal Mg with initial orientation (Ψ=0°, θ=45°, φ=150°). 

 

Obviously two slip systems are simultaneously activated in this case, which means that 

only θ evolves, as can be seen in Fig. 6.9. From the present test calculations, it can be concluded 

that the present code for basal slip in Mg yields reasonable results.  

Fig. 6.10 illustrates the reorientation effects caused by tensile twin variant T1 in single 

crystal Mg with different initial orientations (T1 tensile twin variant is schematically 

represented in Fig. 6.1 on page 70). When we only consider the T1 twin variant, there exists an 

orientation relation between T1 and matrix (see Table 3.3). By simple geometry calculation 

(based on Eq. (3.50)), we can conclude that the tensile twin rotates the parent grain (matrix) 
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around the zone axis 〈21�1�0〉 by about 86°. Since the initial orientation of the single crystal is 

different, the twins have different orientation. Since the hcp crystal has six-fold symmetry, there 

will be some equivalence between different twin variants with some particular initial 

orientations. 

 

 

 

 

 

(a) 

(b) 

(c) 

(d) 
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Fig. 6.10. Reorientation of single crystal Mg caused by tensile twin variant T1:The initial orientations of 

single crystal are (Ψ=0°, θ=0°, φ=0°), (Ψ=0°, θ=0°, φ=60°), (Ψ=0°, θ=0°, φ=120°), (Ψ=0°, θ=0°, φ=180°), 

(Ψ=0°, θ=0°, φ=240°) and (Ψ=0°, θ=0°, φ=300°). 

 

Fig. 6.11 shows the reorientation effects caused by tensile twin variants T1, T2, T3, T4, 

T5 and T6 in single crystal Mg with the same initial orientation (Ψ=0°, θ=0°, φ=60°).  

 

(e) 

(f) 

T1 
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Fig. 6.11. Reorientation of single crystal Mg with same initial orientations (Ψ=0°, θ=0°, φ=180°) caused by 

different tensile twin variants: T1, T2, T3, T4, T5 and T6. 

 

It can be seen from Fig. 6.11 that, after twinning, the angle distance between the c axis of 

tensile twin and that of the parent grain is about 86°. However, the tensile twin variants rotate 

around different zone axes. T1 and T4 twin variants share the same zone axis [1�21�0], but rotate 

around opposite direction by 86°, indicating that the corresponding crystal coordinate axis of 

T1 twin should be almost in the inverse direction of that of T4 twins. Similarly, there are still 

other tensile twin variants sharing the same zone axis. For example, the T2 and T5 twins share 

zone axis [21�1�0] and T3 and T6 twins share zone axis [1�1�20]. In Fig. 6.10 (b) and (e), after 

twinning caused by T2 and T5 tensile twin variants, the [21�1�0] axis of twins and the parent 

crystal coincide with one another. Therefore, when this code is applied to a polycrystalline case, 

we can estimate the frequency of the T2 and T5 twin activation by simply checking how many 

[21�1�0] axes of twins and the parent crystal coincide with each other. It should be noticed that, 

here, we do not consider the crystal symmetry. When considering crystal symmetry, there must 

be one specific 〈21�1�0〉 direction of twins, which is aligned with one 〈21�1�0〉 direction of the 

parent crystal. Therefore, the best way to determine, whether tensile twin is activated, is just to 

check the c axis orientation but not the [21�1�0] axis. Nevertheless, examining the reorientation 

is still useful for validating the code. 

Now, we consider simultaneously T1, T2, T3, T4, T5 and T6 tensile twin variants. For 

different orientation of the single crystal, different tensile twin variants are active, which is 

shown in Fig. 6.12. 

 

T6 
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(Ψ=180°, θ=2°, φ=270°) T2, m=0.5 

 
(Ψ=180°, θ=4°, φ=270°) T2, m=0.4986 

 
(Ψ=180°, θ=5°, φ=270°) T1, m=0.4970 

 
(Ψ=180°, θ=6°, φ=270°) T3, m=0.4955 
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(Ψ=180°, θ=7°, φ=270°) T1, m=0.4936 

 

Fig. 6.12. Reorientation of tensile twin variants in single crystal Mg with initial orientations. 

 

It can be concluded form Fig. 6.12 that the tensile twin variant selection is very sensitive 

to the initial orientation. Even with a slight tilt of the c axis, the twin variant is different. This 

also explains that there is no twin-twin joints in S1, S2 and S3 in Section 5.2. 

 

6.2 Texture simulation of Mg polycrystal based on iso-work principle 
6.2.1  Iso-work principle 

The iso-work increment assumption has been proposed by Bouaziz [111]. For a disordered 

microstructure, the mechanical work increment is assumed to be equal in each constituent as 

expressed by: 

 ( ) ( ) ( ) ( )=I I J Jd dσ ε σ ε⋅ ⋅  . (6.5) 

The iso-work principle has been applied to dual-phase steel, which consists of one soft 

phase and one hard phase. The modeling results for Fe-Ag 18% composite are also 

reasonable[111]. The assumption of iso-work principle is that the hard phase experiences small 

strain increments, while the soft phase would experience larger ones. 

Since the iso-work principle yields good results in mechanically heterogeneous systems, it 

seems likely to be applicable to the case of polycrystalline deformation, too. We need to keep 

in mind, however, that, in the original application, both hard and soft phases underwent 

deformation, whereas in the case of deformation of polycrystals, some grains might not 

experience deformation but only pure rigid rotation. If this happens, no mechanical work will 

be done and the iso-work principle will be inapplicable to these particular grains. However, 

viewing deformation of polycrystal as statistical feature, the iso-work principle “acts” within 

the statistical average of all grains (1 cm3 of polycrystal metal contains almost 109 grains, 
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supposing the grain size is 1000 μm3), so that the effect of a few undeformed grains on the 

overall mechanical properties should be negligible. Furthermore, when deformation proceeds, 

the mechanical work can be assumed to be equal in every grain, no matter of its orientation. For 

hard orientated grains, the stress in the grain is big, while the strain increment in the grain is 

small. By contrast, for soft oriented grains, the stress is small, while the strain increment in the 

grain is big.  
In this section, we combine crystal plasticity in the single crystal introduced in Section 6.1 

with the iso-work principle. First, we assume that the stress state is the same in every grain and 

the reference strain rate of each grain is equal to the macro strain rate of the polycrystalline 

aggregate. Then we get the initial stress of each grain based on Schmid law and the volume 

average of the microstress in each grain is equal to the macrostress of the polycrystalline 

aggregate. This reference strain rate is used to calculate the work rate done in each grain. Since 

the microstrain rate in each grain is, in general, not the same as the macrostrain rate, the realistic 

microstrain rate in each grain has to be recalculated by applying the iso-work principle. The 

mean value of the work done by each grain can be calculated(details see the Fig. 6.13 and its 

interpretations). Based on iso-work assumption, the microstrain increment in each grain is 

calculated. and the macrostrain increment of the polycrystal aggregate will be the volume 

average of the microstrain increments in each grain. The basic idea and flow chart of calculation 

steps is illustrated in Fig. 6.13,  
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Fig. 6.13. Flow chart of the algorithm of iso-work mean field method. 

 

The detailed algorithm based on the flow chart in Fig. 6.13 can be explained in the 

following steps. These steps happen in the time interval t∆  between tn moment and tn+1 moment.  

Step 1: calculate the yield strength in each grain iσ : We assume that the reference microstrain 

rate iε is the same as the macrostrain rate ε and the stress state is the same in every grain. 

Based on this assumption and Schmid’s law, the yield strength, iσ , in each grain can be 
calculated. 

Step 2: Calculate the mean work W∆  in the time interval t∆ : The work in each grain is equal 

to i i tσ ε⋅ ⋅∆ . By assuming that each grain has the same volume, the volume mean is 

Assume macrostrain rate equal 

to microstrain rate  

Calculate the microstress 

in each grain  

Calculate the average 

work  

Recalculate the microstrain increment 

 

Update the orientation of each 

grain( ψi, θi, φi) 
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transformed to equal the arithmetic mean. Therefore, the mean work can be calculated by using 

following equation, where N is the number of grains 

=

N

i i
i

i i i

t
W t t

N

σ ε
ε σ ε σ

⋅ ⋅∆
∆ = ⋅∆ ⋅ = ⋅∆ ⋅

∑ 

   

Step 3: recalculate the micro-strain increment 'iε∆  of each grain corresponding to the mean 

work 
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Step 4: calculate the statistical mean value (macrostrain increment) of micro-strain increment 

in each grain 

'
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i
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i i
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ε ε σ
ε ε ε σ ε α

σ σ

∆ ⋅∆ ⋅
∆ = ∆ = = ⋅∆ ⋅ ⋅ = ⋅∆ ⋅

∑


   

Normally 1 iσ  is not the same as 1 iσ , therefore tε ε∆ ≠ ⋅∆ .  

Step 5: update the orientation of each grain by applying Eq. (3.14) 
 

6.2.2 Texture evolution of Mg without initial texture 
The random texture is of high significance for the simulation of texture evolution of 

polycrystalline samples without initial texture. Fig. 6.14 (a) and (b) illustrate the representation 

of random texture of a polycrystalline sample consisting of 8000 grains by using the 

stereographic projection scheme and equal area map scheme, respectively. It should be kept in 

remind that the random texture does not mean the random distribution of the three Euler angles 

(Ψ, θ, 𝜑𝜑), but rather the random distribution of (Ψ, cosθ, 𝜑𝜑). This is just because of the non-

homogeneity of orientation space. The random distribution of (Ψ, cosθ) assures the 

homogenous pole density on the spherical surface, and thus leads to a random orientation 

distribution together with the random distribution of 𝜑𝜑. Fig. 6.14 indicates that the random 

texture is better represented by the equal area map scheme.  
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Fig. 6.14. Representation of random texture of polycrystalline sample consisting of 8000 grains: (a) 

stereographic projection scheme; (b) equal area map scheme. 

 

Fig. 6.15 shows the texture evolution of a polycrystalline Mg sample consisting of 800 

grains with random texture during tensile deformation. The entire c axis of grains after 

deformation deviates from the tensile axis, however, grains with hard orientation rotated much 

slower than those with soft orientation. As elongation goes on, the texture on the brim of the 

circle becomes sharper and the center of the circle becomes blank, which means that, after 

deformation, all of the grains tend to reorientation of their c axis perpendicular to the tensile 

axis.  

(a) 

(b) 
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(a) 

(b) 

(c) 

(d) 
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Fig. 6.15. Texture evolution (caused by basal slip) of a polycrystalline Mg sample consisting of 800 grains 

with random initial texture at room temperature and a strain rate of 0.001/s: (a) ε=0; (b) ε=0.3; (c) ε=0.6; 

(d) ε=1.0; (e) ε=2.0 (equal area map scheme). 

 

It is interesting to find that the initially random orientation distribution of a [21�1�0] axis 

becomes separate after deformation. Note that, during tensile deformation, only basal slip is 

activated, with the c axis close to be perpendicular to the tensile axis and the basal plane almost 

parallel to the tensile axis. From the viewpoint of crystal symmetry, when the basal plane is 

parallel to the tensile axis, the possible range of angles between [21�1�0] axis and the tensile axis 

will be either approximately 60-90° or 0-15°.  

In Fig 6.16, when we rotate the basal crystal plane around the c axis, which reaches out of 

the paper plane in Fig 6.16, the angle between a [21�1�0] axis, the closest packed direction and 

T direction(tensile axis), can be easily envisaged to lie inside of these two angle ranges. Thus, 

in the pole figure of a axis, the pole density shows two separate parts. One part is relatively 

concentrated in the center of the circle and the other part is near the brim of the circle. However, 

in terms of pole density of the b axis, i.e., [011�0] , different characteristics are exhibited. 

Although, after tensile deformation, the distribution of b axis is also bifurcate, the center part 

of distribution of the b axis is much larger than that of the a axis, while the brim part is minor. 

This can be explained on basis of crystal symmetry as well. The b [011�0] axis is not the closest 

packed direction of the hcp lattice. If we rotate the basal crystal plane around the c axis, most 

of the b directions will be located in the range of 0-60°, which is corresponding to the center 

part of the pole density of the [011�0] axis. 

(e) 
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Fig. 6.16. Schematic representation of a axis and b axis of Mg. 

 

In the preceding discussion, only basal slip is activated at room temperature and the effects 

of pyramidal slip on the texture evolution are not considered. Then, basal slip is responsible for 

the texture evolution depicted in Fig. 6.15. At temperatures above approx. 180 °C, pyramidal 

slip will start to play an important role during deformation. In order to simulate the effects of 

pyramidal slip on the texture evolution, we choose the 2nd pyramidal slip system and reset the 

relative value of CRSS for different slip modes so that only the 2nd pyramidal slip system can 

be activated during tensile deformation. We again start from the sample without initial texture 

and deform the sample to a strain of 200%.  

The simulation results are illustrated in Fig. 6.17. As the tensile deformation proceeds, the 

pole figure of the c axis becomes more and more ring-shaped. The area of the ring does neither 

expand nor shrink, while it becomes sharper after the sample has experienced large strain. The 

evolution of c axis during tensile deformation is explained by the kinematics of the single 

crystal: As deformation proceeds, the 2nd pyramidal slip plane tends to be parallel to the tensile 

axis. When the 2nd pyramidal slip plane tends to be parallel to the tensile axis, the c axis will 

simultaneously be at an angle of about 70° to the tensile axis. However, there is a relatively 

sharp density of orientations located in the centre of the circle. This is probably caused by 

double-slip of the 2nd pyramidal slip. Strikingly, the density of c axis shrinks to a small area of 

points at the strain of 200%, causing all 2nd pyramidal slip systems to be active simultaneously. 

Rotations of these slip systems cancel with each other, resulting solely in an overall sample 

elongation with the c axis remaining unmoved in the pole figure.  

From Fig. 6.17, it is obvious that there is no separation of pole density of a [21�1�0] axis 

and b [011�0] axis, while there are two parts in the pole density of [0001] c axis, and pole 

densities of both a [21�1�0] axis and b [011�0] axis tend to be closer to the brim of the circle as 
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strain increases. A blank region forms in the center of the circle in both cases, which expands 

with strain. This blank region in the [21�1�0] pole figure is considered to be caused by the rotation 

of the [21�1�0] axis round the [011�0] axis. 

 

 

(b) 

(c) 

(d) 

(a) 
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Fig. 6.17. Texture evolution caused by 2nd pyramidal slip of polycrystalline Mg sample consisting of 800 

grains without initial texture at high temperature above 180 ℃ and a strain rate 0.001/s: (a)ε=0; (b) ε=0.3; 

(c) ε=0.6; (d) ε=1.0; (e) ε=2.0 (equal area map scheme, only 2nd pyramidal slip is considered). 

 

When the sample is deformed at elevated temperature, both basal slip and 2nd pyramidal 

slip are activated. We will thus examine the effects of the simultaneous activation of basal slip 

and 2nd pyramidal slip on the texture evolution in the following. The simulation results are 

shown in Fig. 6.18, which demonstrates the texture of sample with a tensile strain of about 60%. 

The c axis pole density in the pole figure can be considered as the simple superposition of 

texture components caused by basal slip and 2nd pyramidal slip. The center part of texture is 

corresponding to the texture component of pyramidal slip and the brim part corresponding to 

the component caused by basal slip. Actually, the pole figure of a [21�1�0] axis exhibits quite 

homogeneous feature and the pole figure of b [011�0] axis as well. Similarly, this feature can 

also be attributed to the superposition of the two texture components caused by basal slip and 

2nd pyramidal slip.  

 

 
 

Fig. 6.18 both basal and pyramidal slip active ε=0.6. 

 

(e) 
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The effects of tensile twins on the texture evolution are demonstrated in Fig. 6.19. The 

simulation sample is polycrystalline Mg with 1000 grains. The blue cross represents the parent 

crystal, while the red circle represents the twin. It can be seen that, after twinning, the c axis of 

the parent crystal is reoriented by about 86°. This explains the red ring-like pole density in the 

[0001] pole figure. Those grains, with initial orientation with the c axis lying almost parallel to 

the tensile axis, are favorable for tensile twinning. After twinning, the c axis will be almost 

perpendicular to the tensile axis. Since parent grains located in the center of the [0001] pole 

figure are favored for tensile twinning, a blank area is left after deformation (all grains twinned). 

The large size of blank area is due to twin polarity (see Chapter 3).  

 
 

Fig. 6.19. Reorientation of tensile twins in polycrystalline Mg with 1000 grains (the blue cross represents 

the parent crystal, while the red circle represents the twin).  

 

Current limitations of the model: 

It should be noted that the code of twin reorientation used here clearly meets some 

limitations, since, the volume fraction evolution of twins is not considered. Furthermore, as a 

rough assumption, the twinned part of the parent grains is defined as a new grain. In spite of 

this tentativeness of the present code, obviously, some useful information on twin reorientation 

and tensile twin variants selection is obtained by the present simulations. The modification to 

this code will include the twin volume fraction evolution, which will be described in detail in 

Section 6.3.  

An even more critical disadvantage in this model is that the stress state is assumed to be the 

same in each grain. Although the stress equilibrium condition across a grain boundary can be 

satisfied in this assumption, the compatibility condition is violated. Besides, owing to the simple 

stress state, the tensile twin selection is clearly over-simplified. In fact, the tensile twin selection 

is related to the local stress state in the grain scale and should thus take into account the stress 

state and effects of twin-twin interaction. Therefore, in the next section, a more realistic mean 
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field model is presented, which considers the evolution of twin volume fraction due to twin 

growth. The volume fraction evolution equation introduced in Section 4.6 is applied. 

 

6.3 Simulation of texture of AZ31 Mg alloy by Taylor mean field model 
6.3.1 Introduction of model and code package 

The texture evolution of as-extruded AZ31 Mg alloy is simulated by the Taylor Type mean 

field model that includes the semi-physics based twin evolution equation afore mentioned in 

Section 4.5. Owing to its mean field feature, the calculation time is reduced to magnitude of 

order of minutes. A code package containing eight subroutines has been developed and used in 

this approach. Fig. 6.20 illustrates the structure of this code package. 

 

 

 
Fig. 6.20. The structure of the developed simulation code package. 

 

1) GetSlip_HCP: This subroutine is used to calculate all potential slip systems and twin 

variants and to express them in the three axis coordinate frame. The transformation matrix 

Q and S, introduced in Section 6.1 are utilized. 

2) CombSlips_HCP: In the full constraints Taylor model, five independent slip systems are 

required. However, strong anisotropy of hcp may imply that this requirement cannot be 

satisfied. Thus, instead of FC model, a relaxed Taylor model has been selected to conduct 

the simulation. In this subroutine, all possible combinations of slip systems and twin modes 

are calculated. These slip systems are basal slip, prismatic slip and second order <c+a> 

pyramidal slip, while the twin modes only consist of the tensile twin mode. Since 

compression twins are very rarely observed experimentally, this simplification is reasonable 

and in line with available simulation studies of texture evolution. 

3) SelctSlip: In Taylor-based models, the microstrain in each grain is assumed to be the same 

as the macrostrain tensor. The combination of different slip shear, which yields the 

prescribed strain, might be non-unique. In other words, there might be many different 

combinations of slip systems, which can meet the geometrical requirement that the slip 

shear must generate the macrostrain tensor. According to the maximum work principle and 

Taylor mean field model 

1.GetSlip_HCP 2. CombSlips_HCP 3. SelctSlip 4. TwinVol 

5. Voce_hardening 6. TwinReo 7. GetActiv 8. WeightedPole 
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the minimum shear principle proposed by Bishop and Hill [30], the virtual work done by 

the different slip systems and the twin shear should be the least. Therefore, in this 

subroutine, the work done by all possible combinations of slip are calculated, among which 

the combination doing the least work is chosen as the realistic slip systems in this specific 

step. 

4) TwinVol: In this subroutine, the semi-physics law of twin growth introduced in Section 4.4 

is applied. Changes of the twin volume fraction with strain are captured by this subroutine. 

For simplicity, the evolution of twin volume fraction is assumed to be the same in each 

grain. In other word Eq. (4.17) used in each grain has same value of f0, fs and α (see 

Section 4.4). Essentially, the twin volume used here, thus, represents the mean twin volume. 

5) Voce_hardening: The Voce hardening law is used to describe the hardening behavior of 

each deformation mode (for details see Chapter 3). The self-hardening and the latent 

hardening factors are fitted and referred to the literature. Importantly, parameters of this 

subroutine govern the relative activities of different deformation modes during deformation, 

i.e., the influence of the ratios among the initial CRSS of different deformation modes on 

the relative activities can be examined. 

6) TwinReo: This subroutine numerically realizes the reorientation of tensile twin variants 

{10-11}˂10-12˃ relative to the matrix. As discussed in Chapter 3 of this thesis, the tensile 

twin variant {10-11}˂10-12˃ can reorient the matrix by about 86°. The rate of the 

reorientation caused by twin is thus directly determined by the rate of twin volume faction 

evolution. 

7) GetActiv: This subroutine is used to calculate the relative activity among the afore 

mentioned deformation modes, basal slip, prismatic slip, second order <c+a> pyramidal slip 

and tensile twinning. The relative activity is based on the calculation of the proportion of 

the shear increment of each deformation mode on the total shear increment in each 

simulation step. 

8) WeightedPole: This subroutine is used to calculate the weighted pole, because of the twin 

effects. For this, each grain is divided into 100 slices. Each slice represents a specific 

orientation and each slice is assumed to have the same weight. Therefore, by using this 

subroutine, materials with inhomogeneous grain size distribution can be simulated and the 

effects of twinning on the texture evolution can be discretized and shown in the smoothed 

pole figure. 
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6.3.2 Texture evolution with initial texture 
The initial texture of the as-extruded AZ31 Mg alloy is shown in the Fig. 6.21 (a)-(c). Here 

the RD-ND plane is chosen as perpendicular to the extrusion axis. In order to simulated the 

texture evolution of this as-extruded alloy under the compression along the extrusion axis and 

to validate our model, a virtual material with 1000 equally sized grains and similar initial texture 

was chosen as the start for the simulation, as shown in the Fig. 6.21 (d)-(f). Obviously, our 

virtual material can represent the initial texture of real matrial quite well. The c axis of all 1000 

crystals was set to be perpendicular to the compression axis and the ˂101�1˃ axis was set to be 

parallel with the compression axis. As mentioned in Chapter 4, the material has strong texture 

which is unfavorable to basal slip but favourable for tensile twinning. 

 

 
 

   
 

Fig. 6.21. Initial orientation of real AZ31 Mg alloy (a)-(c); and the initial orientation assigned to the 

virtual material in the simulation (d)-(f).  

 

Fig. 6.22 illustrates the experimental results of AZ31 Mg alloy with different compression 

strains, being 0.15%, 2% and 6.6% respectively. As can be seen in this Figure, the texture has 

experienced a significant change. Comparing the Figs. 6.21 (c), (f) and (i), one can find that a 

new component of texture emerged, which is approximately aligned with the compression axis. 

This indicates that the new texture component is caused by tensile twins. Simultaneously, the 

ring (see Figs. 6.21 (c) and (f)) almost disappeared at the strain 6.5%. Thus, it can be inferred 

(d) 

(a) (b) (c) 

(e) (f) 
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that the tensile twin reoriented a large extent of the matrix volume of the grain at the strain of 

6.5%. Similarly, it was reported that the twin volume fraction became saturated, with a volume 

fraction of about 80% at the strain 6% [102]. In this simulation, the saturated twin volume 

fraction was set as 80% while the initial twin volume fraction was chosen as 1%. 

 

 

 

 
 

Fig. 6.22. The experimental results of the texture evolution of AZ31 Mg alloy with strain 0.15%: (a)-(c); 

strain 2%: (d)-(f) and strain 6.5%: (g)-(i). 

 

Fig. 6.23 illustrates the simulation results of AZ31 Mg alloy compression strains of 2% . 

Generally, the simulation results are in good agreement with the experimental ones (see 

Fig. 6.23 (a)-(c). Due to twinning the c axis of most grains was reoriented by 86°, and as a result 

a sharp texture component in the center of the circle formed while the ring disappeared. Because 

the strain is quite small, the texture change caused by slip is relatively small and the main 

contribution to the texture evolution comes from tensile twinning.  

(a) 

(h) 

(b) (c) 

(d) (e) (f) 

(g) (i) 
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Fig. 6.23. Representative of simulation results (d-f) of the texture of extruded AZ31 Mg alloy with 

compression strain of 2% compared with experiments (a-c). 
 

Fig. 6.24 illustrates the experimental and simulated flow curve of AZ31 Mg during 

deformation.  

  
 

Fig. 6.24. The flow curve comparison between experimental and simulation  

 

Our simulation reproduces experimental quite well at low and high strain, which in general 

confirms the validity of our model in predicting the mechanical response of hcp material, in 

terms of texture evolution and flow curve. The hardening rate exhibits a significant change with 

(a) (b) (c) 

(d) (e) (f) 
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strain. In the range 3%-7%, the hardening rate shows a monotonous increase, most likely caused 

by twin-twin interaction. 

The largest difference is found at intermediate strain, where a closer inspection of input 

data, i.e., the Voce hardening parameters, is necessary. The according choice of proper 

hardening parameters is an ongoing task. Actually, the present model still has great potential 

for improvements. Once the appropriate hardening law will be adopted, the model is supposed 

to deliver better prediction on flow curve. The present model employs rate-independent crystal 

plasticity, which has before been successfully developed and applied for fcc metals [112]. Rate-

independent crystal plasticity avoids the necessity of solving non-linear equation  

In the Voce hardening law, the hardening matrix has considered the cross hardening effects 

between different deformation modes. In order to find the relation between activity of twins 

and hardening we plot the relative activities of different deformation modes.  

Fig. 6.25 exhibits the relative activities of different deformation modes. The definition of 

relative activity of different deformation modes can be seen in literature [113] The twin activity 

increase significantly and the during the stage 2%-4% experienced plummet, indicating that the 

twin volume fraction is rapidly getting saturated. Because in this stage twin-twin interaction 

impede the rapid growth of the twin, and therefore resulting in an increase hardening rate.  
 

 
 

Fig. 6.25. The relative activity of different modes during the deformation process. 
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7 Conclusions and perspective for ensuing research 

1) We established a semi-physically-based twin growth law, which accounts for the twin 

volume saturation and initial twin volume fraction after nucleation. A growth factor α of twin 

volume is included, which is required to determine the speed of twin volume fraction and its 

saturation. This factor is associated to twin-twin and twin-dislocation interactions. The 

proposed twin growth law is consistent with the experimental observations, and its simplicity 

facilitates its implementation into a texture model and delivers reasonable texture evolution 

consistent with the experimental results. α deserves further study, the effects of twin-twin 

interactions and twin-dislocation interactions on the twin saturation can be simulated by full 

field modeling approaches such as the CPFEM and phase field method. Also, the local stress 

caused by twin-twin interaction can be examined by CPFEM. 

2) A mean field method based on the Taylor type model is developed, which includes a 

semi-physics consideration of evolution of the twin volume fraction. In the application to 

simulation of texture evolution of AZ31 Mg alloy, its simplicity of mathematical form saves 

computation time. A modified Taylor type relaxed constraint model is applied to simulate the 

texture evolution of as-extruded AZ31 alloy. The semi-empirical physics law of twin growth is 

embedded in this model and the minimum shear principle proposed by Bishop and Hill is 

applied to select the active slip systems. Instead of using computationally expensive and 

complicated rate sensitive constitutive laws, where nonlinear equations are required to be 

solved with, e.g., the Newton-Raphson method, the present model avoids this numerical effort. 

Comparison of simulations with experimental results shows that the resulting fast computation 

of texture evolution is acceptable and reliable.  
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