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Abstract

The combined thermocapillary-buoyant flow in sessile and hanging droplets is investi-

gated numerically. The droplet sits on or hangs from a flat plate whose temperature is

kept constant. The flow is driven by buoyancy and thermocapillary forces which arise

due to a linear variation of the ambient temperature normal to the wall. Neglecting

evaporation and in the limit of large mean surface tension the liquid–gas interface is

spherical and non-deformable which allows to formulate the problem in body-fitted

orthogonal toroidal coordinates such that the interface is a coordinate line.

Steady-state axisymmetric solutions to the incompressible Boussinesq equations are

obtained using a vorticity–stream function formulation discretized by second-order

central finite differences on a non-uniform grid. The resulting nonlinear difference

equations are solved iteratively employing a Newton–Raphson method. The results in

terms of stream function and temperature are presented varying influential parame-

ters such as the contact angle, Reynolds number, heat transfer rate between the liquid

and the ambient, fluid material, and level of gravity. Three different cases are com-

prehensively examined: thermocapillary-driven flow, buoyancy-driven flow, and mixed

thermocapillary-buoyant flow.

A temporal two-dimensional linear stability analysis is carried out for the pure buoy-

ant flow as well as for the thermocapillary-driven flow in droplets attached to a flat

substrate. The onset of thermal instabilities is found in the buoyancy-driven flow when

the temperature is uniformly distributed in vertical direction. Moreover, the existence

of axisymmetric instabilities is examined for thermocapillary flow in liquid droplets

varying different parameters.
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Chapter 1

Introduction

In a liquid droplet attached to a flat substrate, which has a different temperature than

the surrounding atmosphere, two main forces drive the fluid flow within the droplet.

The temperature gradient along the free surface results in surface tension variation

and consequently, the thermocapillary stresses drive the flow (Scriven and Sternling,

1960). In addition, buoyant forces act in the bulk as a result of a heterogeneous thermal

expansion of the fluid (Lord Rayleigh, 1916).

1.1 Motivation

In-depth studies have been carried out on the thermocapillary-buoyant flow in liquid

droplets owing to the important influence it has on many industrial processes. For

instance, in surface coating and patterning processes by means of binary solutions, in

order to achieve a uniform distribution of the particles over the surface, it is crucial not

only to take into account the particle-surface interactions (Shmuylovich et al., 2002),

but also the influence of Marangoni flow during the evaporation of the binary solution.

Kim et al. (2016) show that, during the evaporation of the solution, a continuous mix-

ing procedure due to a sequence of Marangoni flows leads to obtaining a homogeneous

deposit. The solute- and surfactant-driven Marangoni effects are thoroughly discussed

by Jamgotchian et al. (2001) and Marin et al. (2016). In microfluidic devices with

open channels where the liquid has a free surface, one recent actuation technique is to

employ the thermocapillary pumping to drive droplets or liquid streams (Sammarco

and Burns, 2000; Chen et al., 2005). Experimental and analytical results are discussed

by Odukoya and Naterer (2013) for the microheaters which drive the thermocapillary

motion in microfluidic devices, considering different substrate materials. Dynamical
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particle accumulation structures (PAS) are observed in droplets due to the thermocap-

illary convection (Ueno, 2011). Similar structures have been detected and extensively

studied in liquid bridges (Schwabe et al., 1996; Ueno et al., 2008; Kuhlmann et al.,

2014) as well as in annular pools (Lappa, 2013). The current study can be extended

to find the PAS in liquid droplets. Another example of a technical application of the

Marangoni effect is to produce smart surfaces which their surface properties can be

triggered to switch between superhydrophobicity and superhydrophilicity (Guo et al.,

2005). These surfaces are becoming widely demanding in space, aviation, and even

automotive industries. For instance, these coatings can prevent fog condensation over

surfaces with different chemical properties (Onda et al., 1996), or can be useful to

produce self-cleaning surfaces in small-scale electronic circuits (Fürstner et al., 2005).

Migrating droplets through Marangoni convection is another function conducted by

Chen and Stebe (1997), Nguyen and Chen (2010) and Schmitt and Stark (2016). They

investigated the influence of both the thermocapillarity and the surfactant-induced

Marangoni stresses on the migration of a self-propelled droplet. Darhuber and Troian

(2005) discussed the more general case of migration of the droplets by surface stresses.

The last applications to be mentioned here are the control of deposition patterns by

ejecting droplets through ink-jet printers (Park and Moon, 2006), and migrating bub-

bles and drops under reduced gravity (Subramanian and Balasubramaniam, 2005; Wu

and Hu, 2011). There are numerous other applications applied to Marangoni effect.

Considering all the discussed applications above, it is important to explicitly study

the effects of thermocapillarity in liquid droplets by decoupling the problem into more

manageable subproblems. Then it is possible to include more additional effects such

as buoyancy, evaporation, and surface deformation. In this work, the thermocapillary-

driven as well as the buoyancy-driven flows in liquid droplets are studied. Then the

combined thermocapillary-buoyant flow is taken into account to analyze the interac-

tions between buoyancy and thermocapillarity in sessile and hanging droplets.

1.2 Literature review

The fluid flow in a droplet attached to a flat rigid substrate has been studied from many

aspects in the last two centuries. Many experimental as well as numerical studies were

undertaken with the focus on natural convection, evaporation, and thermocapillary

convection in sessile or hanging droplets. In this section, a brief review of previous

studies in this field is given.
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1.2.1 Rayleigh-Bénard convection

The most famous studies on the convection in a liquid layer subject to a vertical temper-

ature stratification are done by Bénard (1900) and Lord Rayleigh (1916). The convec-

tion cells with periodic pattern which develop due to buoyancy-driven instabilities are

known as Rayleigh-Bénard convection cells. The study of this type of convection leads

to the development of hydrodynamic stability theory (Chandrasekhar, 1961; Drazin

and Reid, 1981). In the past century, a huge amount of studies has been conducted to

discuss this phenomenon in different geometries and under various conditions (Block,

1956; Busse, 1978; Bergé et al., 1980; Benguria and Depassier, 1987; Colinet and Legros,

1994). A stability analysis of a horizontal layer of liquid heated from below has been

carried out by Clever and Busse (1974) in order to find the onset of convection varying

the Prandtl and Rayleigh numbers. They found that the instabilities appear when

the temperature difference across the liquid layer exceeds a critical value (∆T > ∆Tc)

which leads to the formation of periodic convection rolls with a certain wave number k.

They showed that in the ∆T − k plane exists a region in which the steady convection

rolls are stable. This region is known as the ”Busse balloon”. The transition from

the steady to the time-dependent convection in two- and three-dimensions has been

investigated by Curry et al. (1984) in rectangular and Morris et al. (1993) in cylindrical

geometries. In the former work, the transition to the chaotic Rayleigh-Bénard convec-

tion in a liquid layer bounded by free-slip walls was studied numerically. They found

that increasing the Rayleigh number through the chaotic regime leads to an increasing

degree of small-scale structures. In the latter study, it was stated that a reason for the

chaotic convection even for small Rayleigh numbers might be the large aspect ratio of

the cylindrical cell even though the theory predicts that the steady rolls have to be

stable. The onset of instability has been analytically found to be Rac = 657.51 for two

impermeable parallel horizontal boundaries which are maintained at different constant

temperatures by Lord Rayleigh (1916). Furthermore, the critical Rayleigh number for

a plane layer of the fluid with free boundary at the top and rigid boundary at the

bottom was obtained to be Rac = 1100.65 (Chandrasekhar, 1961).

In liquid droplets attached to a solid flat plate, buoyant forces are usually weaker than

thermocapillary stresses; therefore, the convection inside the droplet is generated by

surface-tension gradients rather than buoyancy (Zhang and Yang, 1982; Hegseth et al.,

1996). As a consequence, the influence of buoyancy-driven flow in liquid droplets has

not been extensively examined although in some cases buoyancy becomes dominant

(Savino et al., 2002). In this work, the effect of buoyancy on the fluid flow in liquid

droplets is investigated in the absence and presence of thermocapillarity by varying

3
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key parameters such as Biot, Prandtl, and Rayleigh numbers.

1.2.2 Evaporation

In the early twentieth century, Irving Langmuir developed an equation to describe the

liquid evaporation (Langmuir, 1932) using only the temperature and pressure parame-

ters. Later in 1940s Birks and Bradley (1949) and Bradley and Shellard (1949) studied,

more specifically, the evaporation of liquid droplets by taking into account the vapor

pressure as well as temperature gradient in the droplet and in the ambient. Fuchs

(1959) introduced d2 law of evaporation for spherical droplets, stating that during the

evaporation, the square of the droplet diameter decreases linearly with time. The evap-

oration of droplets on surfaces was theoretically studied by Picknett and Bexon (1977).

They introduced three modes of evaporation: constant contact angle, constant radius,

and the mixed mode for a large range of droplet shapes. They also realized that, ex-

cept for very shallow droplets, the evaporation process begins with the constant radius

up to a certain contact angle and then switches to the constant angle mode. They

validated their predictions by comparing the results with experimental measurements

as well as other theoretical works. The effect of the droplet size on the contact an-

gle employing solid surfaces with different materials was examined by Good and Koo

(1979). They experimentally observed that the contact angle variation depends not

only on the material of the substrate, but also the droplet size.

Yekta-Fard and Ponter (1988) evaluated the impact of liquid vapor in the ambient on

the contact angle for a wide range of liquid materials, droplet sizes, and substrate rough-

nesses. They also observed that for water droplets residing on different substrates in a

vapor saturated environment, the contact angle increases by decreasing the drop size.

Hegseth et al. (1996) investigated a significant interior flow in evaporating droplets and

provided a formula for the droplet lifetime. They detected unsteady cellular structures

which always appeared close to the droplet surface, meaning that the surface tension

gradients drive the flow. A numerical model for describing the hydrodynamics inside

an evaporating droplet was developed by Mollaret et al. (2004). They also studied the

effect of the humidity on the evaporation process, on the presumption that the droplet

has a spherical cap shape. The model was confirmed by comparing the results with

that of their own experiments and also with the previous experimental results.

McHale et al. (2005) studied the evaporation of water droplets on superhydrophobic

surfaces experimentally. They found that superhydrophobic textured surfaces consist-

ing of circular micro-pillars lead to form droplets with contact angles even larger than

4
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160◦. The evaporation mode for droplets of such large contact angles was found to be

constant radius initially up to a certain contact angle followed by a stepwise contact

line jump from one pillar to the other. Dunn et al. (2008) provided a mathemati-

cal model for the evaporation of a shallow axisymmetric sessile droplet assuming the

constant radius evaporation mode. They showed that the total evaporation rate de-

pends on the thermal conductivity of both the liquid droplet and the flat substrate as

well as the ambient pressure. A numerical method for simulating the evaporation of a

non-spherical axisymmetric sessile droplet was developed by Barash et al. (2009). For

the simulations, they took into account the shape deformation of the droplet induced

by gravity. Moreover, they considered the influence of the thermal conduction in the

droplet as well as nonstationary effects of the vapor diffusion in the ambient air. Yet,

they noticed that approximating the shape of droplet by a spherical-cap agrees well

with the flow characteristics obtained from the simulation of the real droplet shape.

Evaporation of droplets attached to a flat substrate results in the evolution of different

flow patterns (Sefiane et al., 2008; Carle et al., 2012). Finding the origin of these flow

patterns made the stability analysis of the liquid droplets interesting. Karapetsas et al.

(2012) showed that the thermocapillary instabilities (Davis, 1987; Schwabe et al., 1992)

are responsible for the appearance of the hydrothermal waves, leading to the develop-

ment of the patterns. Resulting from their numerical simulations, they discovered the

formation of stationary multiple rolls as well as traveling hydrothermal waves within

the droplet.

Although evaporation has a significant influence on the flow behavior within droplets,

it has been neglected in the current study due to the following reasons. Assuming a

non-volatile droplet leads to mass conservation and consequently the liquid-gas inter-

face can be assumed to have a non-deformable shape (in the limit of large mean surface

tension) which significantly simplifies the problem. Furthermore, neglecting evapora-

tion, the influence of the other phenomena such as thermocapillarity and buoyancy can

be independently studied.

1.2.3 Marangoni effect

The gradient of temperature along the free surface of a liquid results in surface tension

stresses which drive the Marangoni convection (Marangoni, 1871; Scriven and Sternling,

1960). The Marangoni effect has been observed and studied in many fluid mechanics

problems (Pesach and Marmur, 1987; Fuhrich et al., 2001; Arafune et al., 2003). How-

ever, in case of droplets and bubbles, Bond and Newton (1928) were probably the first

5
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who investigated the effect of thermocapillarity. They showed, both theoretically and

experimentally, that because of the Marangoni effects the terminal velocity of spherical

droplets or bubbles surrounded by a medium of higher viscosity is larger than that of

a solid sphere with the same size and mass. Much later, Citakoglu and Rose (1969)

investigated the influence of surface curvature as well as the non-equilibrium at the

liquid-vapor interface in small droplets on the rate of heat transfer during evaporation

and condensation processes. They experimentally observed that the thermocapillary

convection has a strong influence on the heat transfer in a droplet. Davis and Homsy

(1980) observed the formation and detachment of droplets from a fluid layer with a

free surface due to thermocapillary stresses along the free surface. Shih and Megaridis

(1996) studied numerically the effect of thermocapillary forces on the lifetime of evap-

orating droplets, and concluded that the thermocapillary flow along the free surface

amplifies the internal circulation in the droplet and subsequently decreases the evapo-

ration time.

Savino et al. (2002) studied buoyancy and thermocapillary effects on the evapora-

tion of hanging drops and evaluated the flow in octane and water. In the case of

octane droplets they observed that the effect of thermocapillary stresses is essential

and buoyancy does not affect the fluid flow. On the other hand, they examined a

water droplet in which the thermocapillary effect can be disregarded, and compared

the flow characteristics with the former case. However, they considered a fixed and

non-deformable liquid-air interface by considering a quasi-steady process. Carle et al.

(2012) detected hydrothermal waves in drops of ethanol under microgravity conditions

during a parabolic flight as well as under normal gravity condition. They observed that

the resulting hydrothermal waves have similar characteristics (apart from the g-jitter

effect). Consequently, they confirmed that the thermocapillary instabilities result in

the observed hydrothermal waves.

The evaporation of non-axisymmetric droplets was examined by Sáenz et al. (2015).

Their experimental and numerical study showed the existence of three-dimensional

azimuthal flow in the bulk of the droplet. They also detected two counter-rotating

vortices emerging in the transient stage right after placing the droplet over a heated

substrate. The strength of these vortices is found to be directly related to the ini-

tial temperature difference between the droplet and the substrate. Furthermore, they

discussed the influence of thermocapillary convection and thermal conduction on the

temperature distribution within the droplet. More recently, Al-Sharafi et al. (2016)

investigated the effects of buoyant and thermocapillary forces on the fluid flow within

a droplet sitting on a superhydrophobic surface. Droplets with contact angles of up to

150◦ have been considered. In the limit of large contact angles, they detected a pair of

6
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counter-rotating circulation cells in the upper part of the droplet. They claimed that

the combination of buoyancy and thermocapillarity results in the formation of these

vortices. A state-of-the-art application of thermocapillarity is introduced by Black

(2016) for the lab-on-a-chip applications. He introduced a number of methods to cap-

ture and levitate a nano-scale inner droplet within a larger compound drop by means

of thermocapillary convection.

A mechanism known as coffee-ring effect was first presented by Deegan et al. (1997).

They observed patterns over the substrate left from the edge of an evaporating droplet

containing colloidal particles. Following their work, many other researchers tried to

employ this phenomenon in many industrial applications. For instance, Nguyen and

Stebe (2002) proposed that by altering the boundary conditions along the liquid-gas

interface in a droplet, it is possible to control the structure of patterns formed from an

evaporating droplet. The reversal of the coffee-ring phenomenon by thermocapillary-

driven flow was introduced by Hu and Larson (2006), both experimentally and theo-

retically, showing that the particles deposit at the center of the droplet. Considering

the thermal conductivity of the substrate, Ristenpart et al. (2007) arrived at the con-

clusion that the direction of the Marangoni flow in a sessile droplet is based on the

relative thermal conductivities of the substrate and the liquid; a phenomenon which

may notably change the resulting particle-deposition patterns. Through a mathemati-

cal model, Dunn et al. (2009) addressed the significant impact of substrate conductivity

on droplet evaporation. Another recent application of the coffee-ring effect is related

to molecular semiconductors which are used in electronic devices. Wang et al. (2016)

demonstrated that, employing thermocapillary-driven flow, it is possible to grow bilayer

semiconductors in a rapid cost-efficient way.

1.3 Scope of the thesis

As it is discussed in the previous section, many of the earlier studies have addressed the

flow and the temperature fields, evaporation rate, chemical and mechanical properties

of the substrate, and the interactions between different forces which are driving the

flow in droplets, qualitatively. The numerical study of the fluid flow within a droplet is,

however, challenging as the liquid-gas interface is nonstationary and has a curvature. In

order to meet the challenge, a non-volatile droplet with a spherical-cap-shape interface

is considered assuming that the mean surface tension is asymptotically large. The aim

of this work is a detailed numerical study of the internal convective flow of a droplet

considering thermocapillary, buoyant, and combined thermocapillary-buoyant forces.

7
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In this study, thermocapillary and buoyant flows in sessile and hanging droplets are

considered, taking into account a variety of Prandtl numbers, droplet sizes and shapes,

gravity levels, temperature gradients, and heat transfer rates through the liquid-gas

interface. Moreover, a two-dimensional axisymmetric linear stability analysis is pre-

sented to investigate the mechanism of thermal instability in pure buoyant flow as well

as to examine the existence of axisymmetric instabilities in thermocapillary flows in

liquid droplets. Non of these topics have been systematically studied before.

All the physical, theoretical, and numerical aspects of this research together with the

obtained results are presented in the following order. Chapter 2 provides the problem

formulation including the governing equations in different scalings as well as the linear

stability equations. The relevant boundary conditions for each set of equations are

also derived. In chapter 3 the numerical implementations are presented in detail. The

properties of the body-fitted coordinate system employed in this study is introduced,

the numerical methods which are used to solve the problem are provided, and the

computational code is verified prior to solving the main problem by means of a two-

dimensional exact solution of the Navier-Stokes equations. The steady-state results

are provided in chapter 4 for both sessile and hanging droplets attached to a heated

or cooled flat substrate. Chapter 5 presents the axisymmetric two-dimensional linear

stability analysis of the buoyancy-driven, the thermocapillary-driven, and the combined

thermocapillary-buoyant-driven flows. Finally, the summary and conclusions are given

in chapter 6.

8



Chapter 2

Problem Formulation

The fluid flow confined to a droplet in contact with a solid flat plate is considered. The

fluid is an incompressible Newtonian liquid of density ρ, surface tension σ, kinematic

viscosity ν and thermal diffusivity κ. The temperature of the flat plate T0 is kept

constant and the droplet is either sitting on or hanging from the flat plate. The

temperature of the passive ambient varies linearly from T0 at the level of the plate to

Ta(z) = T0+bz at a perpendicular distance z from the plate, where b can be positive or

negative. In practice, this constant temperature gradient can be reproduced between

two parallel isothermal flat plates with different temperatures. Far from the edges

of the parallel plates, the conduction heat transfer dominates and consequently, the

temperature isolines are parallel to the flat plates, varying linearly in the fully developed

thermal region (Eckert and Carlson, 1961; Guo et al., 1998).

This temperature gradient drives the heat transfer between the liquid droplet and the

ambient gas which leads to a surface tension variation σ(T ) along the free surface. In

the linear approximation

σ = σ0 − γs(T − T0), (2.1)

where σ0 is the surface tension at the reference (flat plate) temperature and γs =

−∂σ/∂T |T0
is the surface-tension coefficient.

A spherical-cap-shaped droplet of radius R is considered assuming that the static Bond

number

Bo =
ρgL2

σ0
(2.2)

as well as the Capillary number

Ca =
γs|∆T |
σ0

(2.3)
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R
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Figure 2.1: Droplet with base radius R in contact with a flat plate at temperature T0.
The temperature in the passive gas at the level of the droplet’s apex is T1.
The contact angle α is indicated. j and k are unit vectors in Cartesian
coordinates.

tend to zero in the limit of large mean surface tension, where L is the maximum height

of the droplet. These assumptions ensure that the static and dynamic deformations

of the liquid-gas interface are negligible (see Rienstra, 1990). Furthermore, we assume

a non-volatile liquid which guarantees a time-independent droplet shape. Figure 2.1

shows the configuration for a sessile droplet with a contact angle α = 100◦.

For the setup described only two forces drive the fluid flow: buoyancy and thermocap-

illarity. The effects of these driving forces are studied separately as well as jointly. The

thermal stratification in vertical direction initiates a buoyant flow within the droplet’s

bulk for a strong enough gravity level. On the other hand, the surface-tension variation

leads to the thermocapillary effect which generates the fluid motion along the droplet’s

free surface.

2.1 Governing equations

The sets of equations governing the thermocapillary-buoyant flow have been derived

previously in detail for similar fluid dynamical problems by, e.g., Bergman and Ra-

madhyani (1986); Davis (1987); Ben Hadid and Roux (1992) and Priede and Gerbeth

(1997). Therefore, the derivation of the governing equations consisting of continuity,

Navier–Stokes, and energy equations is not repeated here. However, some important

remarks which specifically address the current problem are presented in this chapter.
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Two different scalings of the governing equations have been employed in this work, the

thermocapillary scaling (Ostrach, 1977; Haj-Hariri et al., 1997), which is applied for

the cases of the pure thermocapillary flow as well as for the combined thermocapillary-

buoyant flow, and the viscous scaling (Busse, 1986) for the case of pure buoyancy-driven

flow.

2.1.1 Thermocapillary scaling

The flow is governed by the Navier–Stokes, continuity, and energy equations in the

Boussinesq approximation

∂tU 0 + (U 0 · ∇)U 0 = −1

ρ
∇P0 + ν∇2U 0 + gT0k, (2.4a)

∇ ·U 0 = 0, (2.4b)

∂tT0 +U 0 · ∇T0 = κ∇2T0, (2.4c)

where k is the unit vector normal to the flat plate in Cartesian coordinates. In (2.4)

the subscript 0 denotes basic flows. The Boussinesq approximation assumes that the

density variation is negligible in all terms of the governing equations except in the

gravity term in (2.7a), which is responsible for the buoyancy-driven flow (Zeytounian,

2003).

The temperature is scaled by ∆T = |T1 − T0|, where T1 = bL is the passive ambient

temperature at a distance L above (or below) the plate. Moreover, we define the

mean temperature Tm = (T0 + T1)/2 which is employed to non-dimensionalize the

temperature. The reduced temperature

θ0 =
(T − Tm)

∆T
+

1

2
(2.5)

is defined such that in the case of a hot plate in a cold atmosphere θ0(z = 0) = 1 and

θ0(z = l) = 0 (where l = L/R) in the passive gas, and in the case of a cold plate and

Variable r t U0, V0,W0 Ψ0 P0 θ0

Scale R R/U⋆ U⋆ = (ν/R)Re νRe ρU⋆2 ∆T

Table 2.1: Thermocapillary scaling of the variables with Re according to (2.6).

11
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hot ambient θ0(z = l) = 1 and θ0(z = 0) = 0.

Important dimensionless parameters in (2.7) are Reynolds, Prandtl, and Grashof num-

bers

Re =
U⋆R

ν
=
γs∆TR

ρν2
, Pr =

ν

κ
, Gr =

gβ∆TR3

ν2
, (2.6)

using the thermocapillary scaling which is given in table 2.1, where β = −ρ−1∂ρ/∂T |p
is the linear thermal expansion coefficient of the liquid. In this scaling U⋆ is the

characteristic thermocapillary velocity, as stated in Nienhüser and Kuhlmann (2002).

Now we can write the non-dimensional set of the governing equations as

Re (∂t +U 0 · ∇)U 0 = −∇P0 +∇2U 0 +
Gr

Re
θ0k, (2.7a)

∇ ·U 0 = 0, (2.7b)

Ma (∂t +U 0 · ∇) θ0 = ∇2θ0. (2.7c)

The product RePr, which is here termed the Marangoni number, Ma, is otherwise the

Peclet number (Pe = U⋆R/κ = RePr).

2.1.2 Boundary conditions

To solve the governing equations specified above, a set of boundary conditions has to

be defined on all boundaries of the domain.

The no-slip boundary condition for the velocity

U 0 = 0, (2.8)

as well as a Dirichlet boundary condition for the temperature

θ0 =

{

1, if b < 0 (hot plate),

0, if b > 0 (cold plate),
(2.9)

are imposed on the flat plate.

The non-volatile-liquid assumption imposes the global conservation of mass for a sta-

tionary droplet shape, which means that the velocity normal to the liquid-gas interface

is zero, i.e.

n ·U 0 = 0, (2.10)

12



2.1 Governing equations

where n is the unit vector normal to the free surface. Moreover, the balance between

tangential viscous stresses and thermocapillary forces along the free surface yields

t1 · (S · n) = −t1 · ∇θ0, (2.11a)

t2 · (S · n) = −t2 · ∇θ0, (2.11b)

where S = ∇U 0+(∇U 0)
T is the viscous stress tensor in the liquid phase and t1 and t2

are the two orthogonal unit vectors tangent to the free surface. It should be mentioned

that the viscous stresses in the gas phase are neglected.

To model the heat transfer between the liquid and the ambient gas Newton’s law is

employed

n · ∇θ0 = −Bi(θ0 − θa), θa(z) =

{

1− z/l, if b < 0 (hot plate),

z/l, if b > 0 (cold plate),
(2.12)

where Bi = hR/k the Biot number, in which h is the heat transfer coefficient and k

denotes the thermal conductivity of the gas. Bi = 0 implies that the liquid-gas interface

is adiabatic, whereas the Bi → ∞ imposes the fixed temperature θa(z) along the free

surface.

2.1.3 Viscous scaling

For pure buoyancy-driven flow, the viscous scaling is employed instead of the ther-

mocapillary scaling discussed above. The scaling of the governing equations (2.7) is

converted to viscous scaling by redefining the characteristic velocity as

U⋆ =
ν

R
, (2.13)

and setting Re = 1. The variables are then scaled as shown in table 2.2. The governing

equations read

(∂t +U 0 · ∇)U 0 = −∇P0 +∇2U 0 +Grθ0k, (2.14a)

∇ ·U 0 = 0, (2.14b)

Pr (∂t +U 0 · ∇) θ0 = ∇2θ0. (2.14c)

13
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Variable r t U0, V0,W0 Ψ0 P0 θ0

Scale R R2/ν ν/R ν ρν2/R2 ∆T

Table 2.2: Viscous scaling of the variables.

In this case, the thermocapillary stresses are neglected. However, we assume that the

surface tension keeps the steady spherical-cap-shape of a non-volatile droplet subject

to any level of gravity which is used in this study.

2.1.4 Boundary conditions

As discussed in the previous subsection, for the viscous scaling, the boundary condition

on liquid-gas interface has to be modified. Neglecting the thermocapillary stresses, a

free-slip condition is considered along the free surface which reads

∂n(U 0 · t1) = 0. (2.15)

The temperature boundary condition along the free surface as well as the velocity and

temperature boundary conditions at the substrate remain the same as in (2.12), (2.8),

and (2.9), respectively.

2.2 Linear stability analysis

In this work, the two-dimensional axisymmetric stability is analyzed for the ther-

mocapillary driven flow, the pure buoyant flow, as well as the combined buoyant-

thermocapillary convection in liquid droplets.

In order to determine the linear stability of the flow, a total flow is introduced which

consists of the basic flow and infinitesimal perturbations |(ũ, p̃, θ̃)| ≪ 1 (Drazin and

Reid, 1981)

u(x, t) = U 0 + ũ , p(x, t) = P0 + p̃ , θ(x, t) = θ0 + θ̃, (2.16)

where x = (x1, x2, x3) is the vector of the three coordinates. Considering the same

boundary conditions as in the basic state, the governing equations (thermocapillary

14



2.2 Linear stability analysis

scaling) can be written for the total flow

Re (∂t + u · ∇)u = −∇p+∇2u+
Gr

Re
θk, (2.17a)

∇ · u = 0, (2.17b)

Ma (∂t + u · ∇) θ = ∇2θ. (2.17c)

Substituting (2.16) into (2.17) and subtracting the basic flow yields

Re (∂tũ+ ũ · ∇U 0 +U 0 · ∇ũ+ ũ · ∇ũ) = −∇p̃ +∇2ũ+
Gr

Re
θ̃k, (2.18a)

∇ · ũ = 0, (2.18b)

Ma
(

∂tθ̃ + ũ · ∇θ0 +U 0 · ∇θ̃ + ũ · ∇θ̃
)

= ∇2θ̃. (2.18c)

Furthermore, the quadratic terms ũ·∇ũ and ũ·∇θ̃ can be neglected due to the assump-

tion of infinitesimal perturbations. Therefore, the governing equations for infinitesimal

perturbations read

Re (∂tũ+ ũ · ∇U 0 +U 0 · ∇ũ) = −∇p̃+∇2ũ+
Gr

Re
θ̃k, (2.19a)

∇ · ũ = 0, (2.19b)

Ma
(

∂tθ̃ + ũ · ∇θ0 +U 0 · ∇θ̃
)

= ∇2θ̃. (2.19c)

Considering the assumptions which are discussed for the basic flow, the boundary

conditions corresponding to (2.19) are

θ̃ = 0 , ũ = 0, (on the flat plate), (2.20)

and
n · ũ= 0

n · ∇θ̃= −Biθ̃

t1 · (S · n)= −t1 · ∇θ̃
t2 · (S · n)= −t2 · ∇θ̃







(on the free surface). (2.21)

Similarly, for the case of viscous scaling, the governing equations for the infinitesimal
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perturbations are

(∂tũ+ ũ · ∇U 0 +U 0 · ∇ũ) = −∇p̃ +∇2ũ+Grθ̃k, (2.22a)

∇ · ũ = 0, (2.22b)

Pr
(

∂tθ̃ + ũ · ∇θ0 +U 0 · ∇θ̃
)

= ∇2θ̃, (2.22c)

with the same boundary conditions as in (2.20) and (2.21), except for the perturbation

velocity tangent to the liquid-gas interface

∂n(ũ · t1) = 0. (2.23)

The general solution of (2.19) as well as (2.22) can be introduced as a superposition

of normal modes, considering the periodic extension of the domain in azimuthal (x3)

direction 




ũ

p̃

θ̃




 (x1, x2, x3, t) =






û

p̂

θ̂




 (x1, x2)e

−γt+imx3 + c.c. (2.24)

where û, p̂ and θ̂ are the shape functions of the perturbations, m ∈ N is a natural wave

number in azimuthal direction, and γ is the temporal complex decay rate

γ = µ+ iω ∈ C (2.25)

of (2.24), includes the decay rate µ ∈ R and the oscillation frequency ω ∈ R. In order

to have normalized shape functions of the perturbations we set the maximum infinity

norm to 1 within the computational domain.

The substitution of the normal mode ansatz (2.24) into the perturbation equations

(2.19) requires first to choose an appropriate coordinate system such that the governing

equations can be discretized, which will be discussed in the next chapter.
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Numerical Implementation

In order to treat the governing equations numerically, it is preferred to select a body-

fitted coordinate system such that no coordinate mapping will be needed. At the first

glance, considering liquid droplets with a spherical-cap shape, the spherical coordinate

system is a practical option. However, considering droplets of different contact angles,

the coordinate lines fit perfectly only to the free surface of droplets and no coordinate

line fits to the solid wall (except in case of α = π/2). Therefore, the spherical coordinate

system is not an optimal coordinate system for the current study.

Among the available curvilinear coordinate systems, toroidal coordinates seem to be a

suitable candidate for this problem. As it is shown in figure 3.1, the ξ = constant lines

fit to the free surface of spherical-cap-shaped droplets with different contact angles.

Moreover, the ξ = ξmax = π line fits to the flat substrate. However, a singularity which

appears in toroidal coordinates when η → ∞ has to be treated numerically. On the

other hand, the differential vector operators are quite complicated and the numerical

discretization is hard to implement. Nevertheless, this coordinate system has been

used in some specific problems such as solving the force-free magnetic-field boundary-

value problem (Buck, 1965) or simulation of the flow in the throat of convergent-

divergent nozzles (Kliegel and Levine, 1969). Although some researchers have employed

toroidal coordinates, no comprehensive reference is available for this coordinate system.

Therefore, we first need to discuss the coordinate system itself and then derive the

differential operators.



Chapter 3 Numerical Implementation

3.1 Toroidal coordinates

Toroidal coordinates are obtained by rotating planar bipolar coordinates about the

y-axis (Arfken, 1985). Two foci of the coordinate system which are located at (±a, 0)
coincide with the three-phase contact line of the droplet, where a = 1 introduces the

dimensionless form of the drop’s base radius regardless of the contact angle. The

transformation equations from toroidal to Cartesian coordinates as well as the scale

factors are

x =
a sinh η cosφ

cosh η − cos ξ
, y =

a sinh η sin φ

cosh η − cos ξ
, z =

a sin ξ

cosh η − cos ξ
, (3.1a)

hη =
a

cosh η − cos ξ
, hξ =

a

cosh η − cos ξ
, hφ =

a sinh η

cosh η − cos ξ
, (3.1b)

and the unit vectors (eη, eξ, eφ) read

eη =
cosφ(1− cosh η cos ξ)

q
i+

sin φ(1− cosh η cos ξ)

q
j − sinh η sin ξ

q
k, (3.2a)

eξ = −sinh η sin ξ cosφ

q
i− sinh η sin ξ sinφ

q
j +

cosh η cos ξ − 1

q
k, (3.2b)

eφ = − sin φi+ cosφj, (3.2c)

where

q = cosh η − cos ξ. (3.3)

The coordinates satisfy η ∈ [0,∞), ξ ∈ [0, 2π], and φ ∈ [0, 2π]. The inverse transfor-

mation from Cartesian to toroidal coordinates reads

η = ln
d1
d2

, ξ = cos−1

(
d21 + d22 − 4a2

2d1d2

)

, φ = tan−1 y

x
, (3.4)

where d1,2 =
√

x2 + y2 + z2 + a2 ± 2a
√

x2 + y2.

In three dimensions a ξ-constant surface

2az cot ξ = x2 + y2 + z2 − a2 , 0 ≤ ξ ≤ 2π, (3.5)

with the center-point positioned at (0, 0, a cot ξ) and radius a |cot ξ| fits to the free

surface of a spherical-cap-shaped sessile or hanging droplet of contact angle α. The
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3.1 Toroidal coordinates

ξ = const.

η
=

co
n
st
.

j

k

Figure 3.1: Toroidal coordinates. j and k are unit vectors in Cartesian coordinates.

contact angle can be expressed as a function of ξ which fits to the liquid-gas interface.

It reads

α(ξmin) = π − ξmin, (3.6)

where 0 < ξmin < π fits to the free surface of all possible drop shapes, from a droplet

of a very large contact angle over a superhydrophobic surface to an extremely shallow

one. On the other hand, ξmax = π fits to the flat plate. However, to provide a better

imagination of the problem setup, a two-dimensional sample grid in toroidal coordinates

is illustrated in figure 3.2 for α = π/2 and φ = 0.

The differential vector operators gradient, divergence, curl, and Laplacian, respectively,

are written as

∇ψ =
q

a

(

eη
∂ψ

∂η
+ eξ

∂ψ

∂ξ
+ eφ

1

sinh η

∂ψ

∂φ

)

, (3.7a)

∇ ·U =
q

a

[
∂Uη

∂η
+
∂Uξ

∂ξ
+

1

sinh η

∂Uφ

∂φ
− 2UξH3 + UηH1

]

, (3.7b)

∇×U =
q3

a3 sinh η

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

eη(a/q) eξ(a/q) eφ(a/q) sinh η

∂η ∂ξ ∂φ

(a/q)Uη (a/q)Uξ (a/q) sinh ηUφ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (3.7c)

∇2ψ =
q2

a2

[

∂ηηψ + ∂ξξψ +
1

sinh2 η
∂φφψ −H2∂ηψ −H3∂ξψ

]

, (3.7d)
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R

T1

T0

η = ∞
η
=

0

ξ
=
π/2

ξ = π

Figure 3.2: A sample non-uniform grid corresponding to toroidal coordinates (η, ξ).

where

H1 =

(
cosh η

sinh η
− 2 sinh η

q

)

, H2 =

(
cosh η cos ξ − 1

q sinh η

)

, H3 =
sin ξ

q
, (3.8)

and U = (Uη, Uξ, Uφ)
T is the (velocity) vector in toroidal coordinates. These differ-

ential operators are employed to formulate the Navier–Stokes, continuity, and energy

equations in toroidal coordinates.

3.2 Steady axisymmetric flow

In the limit of relatively small Reynolds numbers the flow in a drop can be assumed

to be steady and axisymmetric with respect to the centerline η = 0 using toroidal co-

ordinates (η, ξ, φ). Therefore, we can eliminate the following terms from the governing

equations

∂t = ∂φ = Uφ = 0. (3.9)

3.2.1 Vorticity-stream function formulation

Rewriting the governing equations in vorticity-stream function formulation simplifies

the solution procedure, since the pressure will drop out from the equations. In order
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3.2 Steady axisymmetric flow

to define the Stokes stream function and vorticity in toroidal coordinates, we have to

start from the vector potential

U 0 = ∇×B, (3.10)

in which the stream function Ψ0 builds the only non-zero component of the vector

potential (Batchelor, 1967)

B =

(

0, 0,
q

a sinh η
Ψ0(η, ξ)

)

. (3.11)

For the toroidal coordinate system, the vector potential for the velocity depends on η

and ξ. Therefore, taking the curl of B the stream function in two-dimensional flow is

introduced as

Uη =
q2

a2 sinh η

∂Ψ0

∂ξ
, (3.12a)

Uξ = − q2

a2 sinh η

∂Ψ0

∂η
, (3.12b)

which automatically satisfies the continuity equation (2.7b). In order to show that the

presented isolines are streamlines, the total differential of the Stokes stream function

Ψ0 has to be zero (Thomson, 1960). In toroidal coordinates

dl

ds
=
a

q

dη

ds
eη +

a

q

dξ

ds
eξ = λU 0, (3.13)

where l is the line element, s is the curvilinear line along the streamline, and λ is a

constant. In other words, we find

dη = λUη
a

q
ds , dξ = λUξ

a

q
ds. (3.14)

Having the total differential of the stream function, it follows that

dΨ0 =
∂Ψ0

∂η
dη +

∂Ψ0

∂ξ
dξ = −sinh η

q2
Uξdη +

sinh η

q2
Uηdξ = 0, (3.15)

which confirms that Ψ0 is the Stokes stream function. As it is mentioned before, using

the current scaling we have a = 1.

The vorticity is derived from

Ω0 = ∇×U 0 = q(∂ηUξ − ∂ξUη)− sinh ηUξ + sin ξUη, (3.16)
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which can be written in terms of the stream function

Ω0 = − q3

sinh η
[∂ηη + ∂ξξ +H2∂η +H3∂ξ] Ψ0. (3.17)

Since two different scalings of the governing equations have been employed in this

work, the components of governing equations in toroidal coordinates for each scaling

are presented separately.

3.2.2 Thermocapillary scaling

The relation connecting the vorticity and stream function is given in (3.17), which

satisfies the continuity. Taking the curl of the momentum equation (2.7a) gives

Re [∇× (U 0 · ∇)U 0] = −∇× (∇P0)
︸ ︷︷ ︸

=0

+∇×∇2U 0 +
Gr

Re
(∇× θ0k). (3.18)

The term on the left side can be expanded to

∇× (U 0 · ∇)U 0 = (U 0 · ∇)Ω0 − (Ω0 · ∇)U 0
︸ ︷︷ ︸

=0 (for 2D flow)

+

=0 (incomp. flow)
︷ ︸︸ ︷

Ω0(∇ ·U 0) +U0(∇ ·Ω0)
︸ ︷︷ ︸

∇·curl=0

. (3.19)

The only non-zero term (U 0 · ∇)Ω0 results in

(U 0 · ∇)Ω0 = q (Uη∂ηΩ0 + Uξ∂ηΩ0)eφ. (3.20)

In the same manner, the second term on the right side of (3.18) becomes

∇× (∇2U 0) = ∇2Ω0 = ∇2Ω0eφ, (3.21)

and finally, considering the transformation from Cartesian to toroidal coordinates, the

last term in (3.18) becomes

∇× θ0k = ∇×




θ0






− sinh η sin ξ/q

(cosh η cos ξ − 1)/q

0











=

[

(cosh η cos ξ − 1) ∂η + (sinh η sin ξ) ∂ξ

]

θ0eφ.

(3.22)
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3.2 Steady axisymmetric flow

Moreover, from the energy equation (2.7c) we have

Ma (Uη∂ηθ0 + Uξ∂ξθ0) = q [∂ηη + ∂ξξ −H2∂η −H3∂ξ] θ0. (3.23)

Collecting all terms discussed above and expressing the velocity by the stream function

considering (3.12), the vorticity-stream function formulation of the governing equations

reads

q3

sinh η
[∂ηη + ∂ξξ +H2∂η +H3∂ξ] Ψ0 = −Ω0, (3.24a)

q2 [∂ηη + ∂ξξ −H2∂η −H3∂ξ] Ω0 = Re
q3

sinh η
(∂ξΨ0∂η − ∂ηΨ0∂ξ)Ω0

− Gr

Re

[

(cosh η cos ξ − 1) ∂η + (sinh η sin ξ) ∂ξ

]

θ0,

(3.24b)

[∂ηη + ∂ξξ −H2∂η −H3∂ξ] θ0 = Ma
q

sinh η
(∂ξΨ0∂η − ∂ηΨ0∂ξ) θ0. (3.24c)

For the vorticity-stream function formulation of the governing equations, the boundary

conditions have to be defined. We start with the free surface boundary conditions as

the thermocapillary driving force is determined along the liquid-gas interface. The heat

transfer condition in toroidal coordinates is

eξ · ∇θ0 = Bi(θ0 − θa). (3.25)

in which n from (2.12) is substituted by −eξ. Furthermore, the surface stress condition

become

eη · (S · eξ) = eη · ∇θ0, (3.26a)

eφ · (S · eξ) = eφ · ∇θ0 = 0, due to ∂φ = 0, (3.26b)

where t1 = eη and t2 = eφ. In two-dimensional form the viscous stress tensor is derived

in toroidal coordinates as

S = q










2

(

∂ηuη − uξ
sin ξ

q

)

∂ηuξ + ∂ξuη + uη
sin ξ

q
+ uξ

sinh η

q
0

∂ηuξ + ∂ξuη + uη
sin ξ

q
+ uξ

sinh η

q
2

(

∂ξuξ − uη
sinh η

q

)

0

0 0 0










.

(3.27)
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Therefore, from (3.26a) we have

∂ηθ0 = q

(

∂ηuξ + ∂ξuη + uη
sin ξ

q
+ uξ

sinh η

q

)

. (3.28)

Substituting the velocities by the stream function as in (3.12) gives

∂ηθ0 =
q3

sinh η

[

−∂ηη + ∂ξξ −
(
3 sinh η

q
− cosh η

sinh η

)

∂η +
3 sin ξ

q
∂ξ

]

Ψ0. (3.29)

Defining Ψ0 = 0 at all the boundaries, the terms ∂ηη and ∂η vanish along the free

surface. On the other hand, using the vorticity and stream function relation (3.24), it

is possible to rewrite (3.29) in the compact form of

∂ηθ0 =
q3

sinh η

[

∂ξξΨ0 +
3 sin ξ

q
∂ξΨ0

]

= −Ω0 +
q3

sinh η

(
2 sin ξ

q
∂ξΨ0

)

.

(3.30)

As a result, collecting (3.25) and (3.30) as well as considering the zero value of the

stream function along all the boundaries, on the spherical free surface we impose

Ψ0= 0,

∂ξθ0 = Bi(θ0 − θa),

∂ηθ0 = −Ω0 +
2q2 sin ξ

sinh η
∂ξΨ0







on ξ = π/2 (free surface), (3.31a)

and for the other boundaries of the domain we have

∂ηθ0 = 0, Ψ0 = Ω0 = 0, on η = 0, (vertical axis), (3.31b)

θ0 = θw, Ψ0 = ∂ξΨ0 = 0, on ξ = π, (flat plate). (3.31c)

where θw is the dimensionless temperature of the flat plate. It is either θw = 1 for a

heated or θw = 0 for a cooled flat plate.

Moreover, for the boundary conditions at the contact line (3.40) as well as at the

flat plate (3.31c) two conditions are imposed on Ψ0. Numerically it is not possible to

satisfy both conditions for one variable; therefore, the Neumann boundary condition is

required to be converted to a boundary condition on the vorticity Ω0 (Lundgren and

Koumoutsakos, 1999). For the flat plate the Neumann boundary condition on stream
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3.2 Steady axisymmetric flow

function is substituted by

Ωi,end
0 = −2

q3

sinh η∆ξj
Ψi,end−1

0 , (3.32)

following the work of E and Liu (1996) and considering the differential vector operators

in toroidal coordinates. In (3.32), superscripts (i, j) show the (η, ξ) coordinates of a

node on the computational grid and ∆ξj = ξj − ξj−1. Similar boundary condition on

Ω0 is obtained at the contact line.

3.2.3 Viscous scaling

The components of the governing equations in viscous scaling are obtained in a sim-

ilar way as it is described in the previous subsection. The vorticity-stream function

formulation of the governing equations in this case reads

q3

sinh η
[∂ηη + ∂ξξ +H2∂η +H3∂ξ] Ψ0 = −Ω0, (3.33a)

q2 [∂ηη + ∂ξξ −H2∂η −H3∂ξ] Ω0 =
q3

sinh η
(∂ξΨ0∂η − ∂ηΨ0∂ξ)Ω0

−Gr

[

(cosh η cos ξ − 1) ∂η + (sinh η sin ξ) ∂ξ

]

θ0,

(3.33b)

[∂ηη + ∂ξξ −H2∂η −H3∂ξ] θ0 = Pr
q

sinh η
(∂ξΨ0∂η − ∂ηΨ0∂ξ) θ0. (3.33c)

The boundary conditions are similar to the thermocapillary scaling case apart from

the free surface boundary conditions for which the thermocapillary stresses are ne-

glected and a free-slip boundary condition is introduced. The free-slip condition for

the tangential velocity along the free surface gives

∂ξUη = 0. (3.34)

Rewriting this condition in terms of the stream function using (3.12), we have

∂ξ

(
q2

a2 sinh η

∂Ψ0

∂ξ

)

= 0 ⇒
(

∂ξξ +
2 sin ξ

q
∂ξ

)

Ψ0 = 0. (3.35)

Again, since the boundary condition Ψ0 = 0 is applied on the stream function along

all the domain boundaries, the free slip boundary condition has to be converted to a
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vorticity boundary condition. From the vorticity and stream function relation (3.17)

and considering that Ψ0 = 0, the vorticity along the free surface is

Ω0 = − q3

sinh η
[∂ξξ +H3∂ξ] Ψ0. (3.36)

Combining (3.35) and (3.36) results in the free slip boundary condition along the free

surface as

Ω0 −
q2 sin ξ

sinh η
∂ξΨ0 = 0. (3.37)

3.3 Numerical solution of the steady flow

To solve the governing equations numerically, the set of equations is discretized by

finite differences on a non-uniform grid. In this section, the grid generation in toroidal

coordinates, the discretization details, and the numerical method to solve the equations

are presented.

3.3.1 Grid generation

In order to provide the adequate resolution in regions where large gradients appear

(mostly along the boundaries), it is necessary to generate a non-uniform grid with

a proper stretching. To distribute the grid points in η and ξ directions, the nature

of toroidal coordinates has to be considered. The scale factors and transformation

equations are characterized by hyperbolic functions. Therefore, these functions have

been employed to define the stretching functions

η = c1
[
tanh−1(x1)

]c2
, x1 ∈ [0, 0.5], (3.38a)

ξ = ξmid + tanh(x2) , x2 ∈
[
tanh−1(−ξsym), tanh−1(ξsym)

]
, (3.38b)

where c1 ∈ [12.25, 16] and c2 ∈ [1.05, 1.5] are the regulating coefficients which control

the distribution of the nodes in η-direction, ξmid = (ξmax+ξmin)/2 is the algebraic mean

of the ξ coordinate and ξsym = (ξmax − ξmin)/2 defines a symmetrical grid stretching

starting from ξmid in both directions, toward ξmax and ξmin.

The distribution of Nη and Nξ points is homogeneous in x1 and x2, respectively. How-

ever, the stretching function in ξ direction (3.38b) is not suitable for all contact angles,
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Figure 3.3: Computational grid in (η, ξ)-plane (a) and (x, y)-plane (b). Every fifth grid
line is plotted in both directions for clarity. In (b), the values of η and ξ
are shown along the x and y coordinates, respectively.

(a)

(b)

(c)

Figure 3.4: Computational grid in (x, y)-plane for different contact angles. (a) α =
105◦, (b) α = 60◦, and (c) α = 36◦. Every fifth grid line is plotted in both
directions for clarity.
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since the applied inverse hyperbolic tangent function returns a real number only in the

interval of [−1, 1]. For instance, for a droplet with the contact angle of α = 135◦ the x2
interval exceeds the limit of [−1, 1] and becomes complex (tanh−1(ξsym) = 1.25+i(π/2)).

Furthermore, in case of shallow droplets, this function provides a weak stretching close

to the boundaries and the grid points are almost uniformly distributed. The reason is

that the inverse hyperbolic tangent function behaves almost linearly close to zero. In

order to treat these problems and provide a similar stretching for droplets of different

contact angles, equation (3.38b) is substituted by the following function

ξ = ξmid + χ tanh(x2) , x2 ∈
[

tanh−1

(

−ξsym
χ

)

, tanh−1

(
ξsym
χ

)]

, (3.39)

where χ is the normalized stretching factor and defined as χ = ξsym/0.95. In other

words, the normalized x2 interval is set to [tanh−1(−0.95), tanh−1(0.95)] independent

of the contact angle. Consequently, choosing an appropriate number of nodes in ξ

direction results in a similar stretching of the nodes for all contact angles.

Employing the stretching functions (3.38a) and (3.39), a suitable non-uniform grid

can be obtained for any droplet contact angle. A sample grid for a droplet with the

contact angle of α = 90◦ is plotted in figure 3.3, showing the grid points in both (η, ξ)-

and (x, y)-planes. To make the grid stretching visible, every fifth grid line is plotted

in both η and ξ directions. Close to the contact line, an accumulation of the grid

points is observed. This high resolution is, to some extent, required in this part of the

domain, where a boundary layer may develop for high Reynolds numbers. However,

an excessive accumulation of the nodes is not desired and has to be controlled. This

issue is discussed later in this subsection.

More computational grids are presented in figure 3.4 for different contact angles (α =

105◦, 60◦, and 36◦). Comparing the stretching along the free surface as well as the flat

substrate for different droplet shapes presented in figures 3.3 and 3.4 confirms that the

applied stretching function (3.39) in ξ direction is properly defined.

At the droplet’s contact line where η → ∞ exists a singularity in toroidal coordinates.

To numerically treat this singularity the full interval of the domain in η direction is

reduced from η ∈ [0,∞) to η ∈ [0, ηmax] with a sufficiently large value of η such that

the numerical results are not affected. It is clear that along the imposed cut an extra

boundary condition has to be defined, which reads

θ0 = θw, Ψ0 = ∂ηΨ0 = 0, on η = ηmax, (contact line), (3.40)
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replacemen
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max |Ψ0|
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Figure 3.5: maxη,ξ |Ψ0| as a function of ηmax. The parameters are Re = 100,Pr =
4,Gr = 0,Bi = 0.1, and α = π/2. The highlighted point indicates the
selected cut-off value of ηmax = 6.5. The cut is shown in the computational
domain, where a is the focus of the coordinate system and rcut is defined
in (3.41).

Moreover, the nature of the toroidal coordinates exhibits an accumulation of grid points

when η → ∞. Therefore, the selected value of ηmax should assure that not only the

solutions are not affected by the imposed cut, but also the unwanted grid refinement

close to the contact line is avoided.

To select an optimum value for ηmax, some numerical solutions are selected to be shown

here although the solution method is not presented yet. Figure 3.5 shows the extremum

of the stream function within the domain as a function of ηmax. It is clear that, for

ηmax > 6, the trend of max |Ψ0| levels off. On the other hand, comparing the grid

spacing for different values of ηmax leads to find an optimum value of ηmax = 6.5, which

results to a cut of the computational domain (see figure 3.5) with a relatively small

radius of

rcut = 1− sinh ηmax

1 + cosh ηmax

= 3.00× 10−3. (3.41)

The selected value for ηmax has been considered in defining the intervals x1, c1, and c2
in the grid stretching formulation (3.38a) in η direction.
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3.3.2 Finite difference discretization

The governing equations are discretized by a second-order central difference scheme on

a non-uniform grid which is specified in detail in the previous subsection. The centered

difference first derivative approximation at a grid-point i of a function y in η-direction

reads

∂y

∂η

∣
∣
∣
∣
i

=
∆2

i (yi+1 − yi) + ∆2
i+1(yi − yi−1)

∆i∆i+1(∆i +∆i+1)
+O(∆i∆i+1), (3.42a)

where ∆i = ηi−ηi−1. Similarly, the centered difference second derivative approximation

at a grid point i is defined as

∂2y

∂η2

∣
∣
∣
∣
i

= 2
∆i(yi+1 − yi)−∆i+1(yi − yi−1)

∆i∆i+1(∆i +∆i+1)
+O(∆i −∆i+1), (3.42b)

Furthermore, the forward and backward difference representations are

∂y

∂η

∣
∣
∣
∣

f

i

=− ∆2
i+1(yi+2 − yi)− (∆i+1 +∆i+2)

2(yi+1 − yi)

∆i+2∆i+1(∆i+2 +∆i+1)

+O(∆i+2∆i+1(∆i+2 +∆i+1)),

(3.43a)

∂y

∂η

∣
∣
∣
∣

b

i

=
∆2

i (yi−2 − yi)− (∆i +∆i−1)
2(yi−1 − yi)

∆i−1∆i(∆i−1 +∆i)

+O(∆i−1∆i(∆i−1 +∆i)),

(3.43b)

which are employed to discretize the boundary condition equations.

For an equidistant grid, the presented scheme is second-order accurate. However, for

a non-uniform grid it is first-order, but the local solution error can be controlled by

limiting the grid growth factor f = ∆i+1/∆i in the range [0.8, 1.2] (Fletcher, 1991).

In most of the grids employed in this work, the growth factor varies in the interval of

[0.9, 1.1]. A corresponding finite difference scheme is applied on ξ-direction.

Figure 3.6 sketches a nine-point stencil of the computational grid in the (η, ξ)-plane.

The indexing which is employed here is a one-index notation, n, which is defined as

n = i+ (j − 1)Nη, (3.44)

where i = 1, 2, . . . , Nη and j = 1, 2, . . . , Nξ.
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η

ξ

n−Nξ − 1 n−Nξ n−Nξ + 1
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∆i ∆i+1

∆j+1

∆j

Figure 3.6: Grid indexing in η-ξ coordinates. Nη and Nξ are the number of nodes
in η and ξ directions, respectively. n is the index notation which varies
between 1 and NηNξ and the dashed lines show the direction of the notation
increment.

3.3.3 Newton’s method

The sets of non-linear governing equations (3.24) as well as (3.33) are discretized using

finite difference schemes which are given in (3.42) and (3.43). The discretized equations

are then solved employing Newton’s method with damping which is implemented in a

Matlab code. When no damping is considered, this scheme ideally converges quadrati-

cally to the final solution (Kelley, 1995). Newton’s method is an iterative solver which

is defined by

J(xn) · δ = −f (xn), (3.45a)

xn+1 = xn + ǫδ, (3.45b)

where xn = (Ψ0,Ω0, θ0)
T is the actual solution (or the initial guess for the first itera-

tion), J is its Jacobian matrix, f is a vector-valued function derived from the governing

equations, and ǫ is the damping factor which varies between 0.5 and 0.9 in this study

for different cases to optimize the convergence speed.

Here the linear system of equations (3.45a) is solved using the backslash operator
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(”\”) in Matlab which computes the unknown vector x in A · x = b, where A is an

N × N matrix and b is a column vector with N components (Recktenwald, 2000).

The employed algorithm to solve this equation depends on the structure of the matrix

A. Although generally the backslash operator implements the Gaussian elimination

method, for the current case where A is sparse and has real multiple diagonal elements,

it attempts a Cholesky factorization instead. After a number of iterations when the

value of the residual is smaller than the square root of the machine accuracy, 10−8, the

iterative solver converges and xn+1 in (3.45b) is the solution vector.

3.4 Steady solver code verification

The present Matlab code which is employed to iteratively solve the Navier–Stokes

equations is tested, comparing the numerical results with the Kovasznay flow which is

an exact solution of the steady two-dimensional Navier–Stokes equations (Kovasznay,

1948). The Kovasznay flow in closed-form reads

Ψ = y − eλx

2π
sin 2πy, (3.46a)

Ω =
λ2 − 4π2

2π
eλx sin 2πy, (3.46b)

where

λ =
Re

2
−
√

4π2 +
Re2

4
, (3.47)

depends only on the Reynolds number.

Since the Kovasznay flow exhibits a planar two-dimensional flow, to numerically treat

it the implementation has to be done employing the bipolar coordinate system which

has the axis of translation in third dimension (z-direction) instead of the toroidal

coordinates with an axis of rotation (φ-direction) about η = 0; in other words, the

scale factors are different for the third dimension. However, the formulations are the

same for the two-dimensional case.

For the code verification an arbitrary computational domain is specified bounded with

the intervals η× ξ ∈ [−1.5, 2.25]× [π/2, 3π/2]. For vorticity and stream function on all

the boundaries Dirichlet boundary conditions are implemented which are derived from

the exact solution (3.46). Then the stream function and vorticity are computed for all

the interior grid-points using the iterative solver. The numerical results for streamlines
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(a) (b)

Figure 3.7: Computed stream function (a) and vorticity (b) for the Kovasznay flow
at Re = 40. An arbitrarily chosen computational domain bounded by
η × ξ ∈ [−1.5, 2.25]× [π/2, 3π/2] has been considered.

and vorticity are plotted in figure 3.7.

Numerical computations are repeated for different grid sizes, from 40×40 up to 240×240

in order to study the rate of convergence of the numerical scheme. The infinity norm

of the deviation between the exact and computed stream function is shown in figure

3.8 as a function of the grid size N =
√
NηNξ. The slope of the curve confirms the

second-order convergence rate of the iterative solver for the employed equidistant grid.

To assess the convergence of the grid some numerical results are presented in table 3.1

which lists the Stokes stream function extremum, |Ψ|max, together with the vorticity at

Grid size
Pr = 0.02 Pr = 4 Pr = 28

|Ψ|max × 104 −Ωcore |Ψ|max × 104 −Ωcore |Ψ|max × 104 −Ωcore

50 × 25 5.697 0.0361 7.126 0.0452 5.406 0.0333

100× 50 5.781 0.0353 7.148 0.0454 5.206 0.0327

200 × 100 5.832 0.0368 7.156 0.0446 5.133 0.0317

400 × 200 5.843 0.0367 7.163 0.0448 5.112 0.0317

Table 3.1: Stokes stream function extremum |Ψ|max and vorticity Ωcore at the center of
the toroidal vortex for different non-equidistant grids Nη ×Nξ. The param-
eters are Re = 100, Bi = 0.1, Gr = 0, and α = π/2.
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N =
√
NηNξ
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Figure 3.8: Infinity norm of the numerical error of Ψ on a uniform grid as a function
of grid size for Nη = Nξ (equidistant grid).

the position of |Ψ|max (center of the toroidal vortex, see figure 4.1), Ωcore, for a number

of different grid sizes. A grid size of Nη ×Nξ = 200× 100 has been chosen for all the

computations according to the obtained results. However, in some cases with extremely

high gradients near the liquid-gas interface or the flat substrate, finer grids with the size

of maximum Nη×Nξ = 400×200 have been employed. The reason for having twice the

number of nodes in η-direction as compared to ξ-direction is traced back to the nature

of the toroidal coordinate system in which the grid points are accumulating close to

the focus of the coordinate system (a, 0). Therefore, more nodes in this direction are

required to keep the aspect ratio of each computational cell within a reasonable limit

(see figure 3.3). However, in case of droplets with a larger (smaller) contact angle,

α > 90◦ (α < 90◦), the number of nodes in ξ-direction has been increased (decreased)

accordingly.

The energy equation is verified considering a creeping flow (Re → 0) in the absence of

gravity (Gr = 0) in sessile droplets of different contact angles (α = 105◦ and α = 75◦),

with Bi → ∞. With these assumptions the convective heat transfer is negligible and

the temperature along the free surface is equal to the ambient temperature at the

same level. Therefore, pure conductive heat transfer is expected in the domain. The

horizontal isotherms shown in figure 3.9 confirm the pure conduction within the domain

for these two different drop shapes.
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Figure 3.9: Isotherms; labels show the non-dimensional temperature θ0 ∈ [0, 1] for
droplets with contact angles of (a) 105◦ and (b) 75◦. The parameters are
Re → 0, Pr = 4, Bi → ∞, and Gr = 0.

3.5 Linear stability equations

Recalling the normal mode ansatz (2.24) and considering two-dimensional axisymmet-

ric perturbations (m = 0), the solution of (2.19) can be obtained using the vorticity-

stream function formulation as in the basic state

ψ(η, ξ, t) = Ψ0 + ψ̃ , ω(η, ξ, t) = Ω0 + ω̃ , θ(η, ξ, t) = θ0 + θ̃, (3.48)

and the normal modes can be written as






ψ̃

ω̃

θ̃




 (η, ξ, t) =






ψ̂

ω̂

θ̂




 (η, ξ)e−γt + c.c. (3.49)

with γ = µ + iω ∈ C. Inserting (3.48) in the governing equations (3.24), subtracting

the basic flow, and linearizing the equations by neglecting the quadratic terms, the

linear stability equations (thermocapillary scaling) read

0 = ω̂ + [∂ηη + ∂ξξ −H2 −H3∂ξ] ψ̂, (3.50a)
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γReω̂ =q2
[

∂ηη + ∂ξξ −
(

H2 + Re
q

sinh η
∂Ψ0

)

∂η

−
(

H3 − Re
q

sinh η
∂ηΨ0

)

∂ξ

]

ω̂ − Re
q3

sinh η

[

∂ξψ̂∂η − ∂ηψ̂∂ξ

]

Ω0

− Gr

Re

[

(cosh η cos ξ − 1) ∂η + (sinh η sin ξ) ∂ξ

]

θ̂,

(3.50b)

γMaθ̂ =

[

∂ηη + ∂ξξ −
(

H2 +Ma
q

sinh η
∂Ψ0

)

∂η

−
(

H3 −Ma
q

sinh η
∂ηΨ0

)

∂ξ

]

θ̂ −Ma
q

sinh η

[

∂ξψ̂∂η − ∂ηψ̂∂ξ

]

θ0.

(3.50c)

The boundary conditions for this case are similar to the basic flow case with some

minor modifications. The boundary conditions for vorticity and stream function remain

unchanged, whereas the boundary conditions for temperature are slightly different

at the flat plate and the contact line. Moreover, a Neumann boundary condition is

imposed at the symmetry line. The set of boundary conditions reads

ψ̂= 0,

∂ξ θ̂= Biθ̂,

∂η θ̂= −ω̂ +
2q2 sin ξ

sinh η
∂ξψ̂







on ξ = π/2 (free surface), (3.51a)

∂η θ̂ = 0, ψ̂ = ω̂ = 0, on η = 0, (vertical axis), (3.51b)

θ̂ = 0, ψ̂ = ∂ηψ̂ = 0, on η = ηmax, (contact line), (3.51c)

θ̂ = 0, ψ̂ = ∂ξψ̂ = 0, on ξ = π, (flat plate). (3.51d)

Similarly, for the case of pure buoyant flow we can write the linear stability equations

in vorticity-stream function form. The linear stability equations in this case are

0 = ω̂ + [∂ηη + ∂ξξ −H2 −H3∂ξ] ψ̂, (3.52a)
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γω̂ =q2
[

∂ηη + ∂ξξ −
(

H2 +
q

sinh η
∂Ψ0

)

∂η

−
(

H3 −
q

sinh η
∂ηΨ0

)

∂ξ

]

ω̂ − q3

sinh η

[

∂ξψ̂∂η − ∂ηψ̂∂ξ

]

Ω0

−Gr

[

(cosh η cos ξ − 1) ∂η + (sinh η sin ξ) ∂ξ

]

θ̂,

(3.52b)

γPrθ̂ =

[

∂ηη + ∂ξξ −
(

H2 + Pr
q

sinh η
∂Ψ0

)

∂η

−
(

H3 − Pr
q

sinh η
∂ηΨ0

)

∂ξ

]

θ̂ − Pr
q

sinh η

[

∂ξψ̂∂η − ∂ηψ̂∂ξ

]

θ0,

(3.52c)

with the same boundary conditions as in (3.51a) except along the free surface where a

free-slip boundary condition has to be imposed. Considering this boundary condition

from the basic state (3.37) we have

ω̂ − q2 sin ξ

sinh η
∂ξψ̂ = 0. (3.53)

In both cases, the stability problem represents a real, singular, generalized eigenvalue

problem in the form of

Ax̂ = γBx̂, (3.54)

where x̂ = (ψ̂, ω̂, θ̂)T are the eigenvectors, A is a non-singular, asymmetric coefficient

matrix, and B is a diagonal singular coefficient matrix. The generalized eigenvalue

problem (3.54) is solved using the Matlab’s eigs command which employs an implicitly

restarted Arnoldi iteration (Arnoldi, 1951; Mahajan et al., 1991; Lehoucq and Sorensen,

1996). However, since B is singular, this method cannot be directly implemented.

Therefore, a two-step transformation which serves as a preconditioner for the eigenvalue

problem is implemented, as thoroughly discussed in the work of Lanzerstorfer and

Kuhlmann (2012). The first step is a shift-invert transformation with zero shift, which

gives the eigenvalues with the smallest absolute value, and the second step is a Cayley

transformation to assure that no critical eigenvalue is missed in the first step (Kooper

et al., 1995).

As it is explained above, in an axisymmetric two-dimensional linear stability problem,

the most dangerous mode can be found by obtaining the smallest real part of the decay

rate, µmin. The flow is linearly stable or unstable, if µmin > 0 or µmin < 0, respectively.

For more details on eigenvalue-detection strategies and methods of root-finding, readers
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are referred to Wright and Trefethen (2001) and Lanzerstorfer and Kuhlmann (2012).
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Chapter 4

Basic State Results

In this chapter, the computational results are presented for four general cases of ses-

sile/hanging drops attached to heated/cooled substrates, varying a wide range of pa-

rameters such as contact angle α, Re, Pr, Bi, and Gr. For all cases, the numerical

results are provided in streamlines and isotherms shown on the left and right half of

each droplet, respectively. Streamlines and isotherms are generally at equidistant lev-

els. The direction of the fluid flow in vortices is indicated by plus/minus sign (±) for

counter-clockwise/clockwise rotation at the core of each vortex. However, when not

indicated, the direction of the flow is clockwise on the left half of the droplet. In most

of the cases, a list of quantitative data is provided in a table in order to facilitate

the comparisons. For simplicity, all the subscripts ”0” of the basic state variables are

omitted, e.g. Ψ0 ⇒ Ψ.

4.1 Heated substrate

For the case of the droplet attached to a heated plate, the dimensionless temperature

of the atmosphere varies linearly between the substrate, θa(0) = 1, and a distance l

above (or below) the substrate, θa(l) = 0, where l is the dimensionless maximum height

of the droplet. This temperature difference leads to heat transfer between the liquid

droplet and the passive ambient which generates a temperature gradient along the

liquid-gas interface and in the bulk liquid. The interfacial temperature gradient results

in a surface tension gradient which drives the fluid flow, whereas the bulk temperature

gradient leads to buoyant flow motion in presence of gravity. In this section, results for

thermocapillary-driven, buoyancy-driven, and mixed buoyant-thermocapillary-driven

flows are presented.
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4.1.1 Thermocapillary-driven flow

In the absence of gravity, thermocapillary stresses along the liquid-gas interface are the

only driving forces. Generally, the aim of this work is to provide a parametric study

for both sessile and hanging droplets, but in the zero gravity conditions there is no

difference between these two setups. Therefore, a sessile droplet is presented for all the

zero gravity cases.

The first parameter to be considered is the thermocapillary Reynolds number, Re.

Figure 4.1 shows the flow and temperature field for three different liquids (Pr = 0.02,

4, and 28 representing liquid metal, acetone, and silicon oil, respectively) when the

Reynolds number varies. Each column presents a liquid material with different Prandtl

number, and the Reynolds number increases from top to bottom. For a very low

Reynolds number, Re = 1, the flow and temperature fields are nearly the same for all

Prandtl numbers. The effect of the thermocapillarity on the fluid flow for Pr = 0.02

is negligible for the given range of Reynolds numbers as thermal diffusion dominates.

This can be visually observed comparing figures 4.1a with 4.1m. However, for higher

Prandtl numbers, the convective heat transport along the free surface can be observed

when the Reynolds number increases especially for the case of Pr = 28 (see figure 4.1o).

A more quantitative comparison of these cases is provided in table 4.1 which lists the

temperature at the apex of the droplet, θapex, as well as the stream function extremum,

|Ψ|max, for the given cases in figure 4.1.

For larger Reynolds numbers, a thermal boundary layer develops along the liquid-gas

interface. The evolution of this boundary layer is illustrated in figure 4.2 for Pr = 28

and Bi = 1. As the thermal boundary layer develops by increasing the Reynolds

number, a region with a constant temperature grows at the center of the toroidal

Re
Pr = 0.02 Pr = 4 Pr = 28

θapex |Ψ|max × 104 θapex |Ψ|max × 104 θapex |Ψ|max × 104

1 0.8871 5.777 0.8870 5.792 0.8862 5.882

10 0.8871 5.782 0.8858 5.932 0.8782 6.798

100 0.8871 5.832 0.8758 7.156 0.9013 5.133

250 0.8870 5.922 0.8807 6.987 0.9214 3.665

1000 0.8864 6.413 0.9121 4.727 0.9449 2.189

Table 4.1: Temperature at the drop’s apex and stream function extremum max |Ψ| for
the cases shown in figure 4.1.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 4.1: Reynolds number variation for Pr = 0.02 (left column), Pr = 4 (middle
column), and Pr = 28 (right column), for Gr = 0, θw = 1, α = π/2,
and Bi = 0.1. (a,b,c) Re = 1, (d,e,f) Re = 10, (g,h,i) Re = 100, (j,k,l)
Re = 250, (m,n,o) Re = 1000. For each droplet: streamlines (left) and
isotherms (right).
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(a) (b) (c)

Figure 4.2: Thermal boundary layer evolution for Pr = 28, Bi = 1, Gr = 0, θw = 1,
α = π/2, (a) Re = 1000, (b) Re = 3000, and (c) Re = 8000.

vortex. For Re = 8000 which is presented in figure 4.2c, this constant temperature

region occupies all the inner bulk of the droplet which leads to large temperature

gradients along the boundaries, especially close to the substrate. For such cases with

steep gradients close to the boundaries, a computational grid with higher resolution

is employed to ensure the accuracy. Here a larger Biot number is chosen to further

strengthen the thermal boundary layer. The difference can be seen by comparing

figures 4.1o and 4.2a with the same parameters except the Biot number. The influence

of the Biot number on the flow field will be further discussed later in this chapter.

The stream function profiles are shown in figure 4.3a for a constant Marangoni num-

ber Ma = 2800, which can be obtained by varying Reynolds and Prandtl numbers

simultaneously. In this figure, the stream function is plotted as a function of ξ along

a line η = constant which passes through the extremum of |Ψ|, as illustrated in figure

4.3b. For Pr = 0.02 the flow structure is different from the higher Prandtl number

cases, since the flow is inertial (Re = Ma/Pr = 1.4 × 105). However, the structure of

the toroidal vortex is quite similar for the higher Prandtl numbers. By increasing the

Prandtl number the curves converge to a limit curve. Furthermore, figure 4.4 illustrates

the streamlines and the isotherms for some of the cases discussed in figure 4.3.

Although the flow behaves differently for low and high Prandtl numbers, the tempera-

ture field is quite similar for all the cases. In order to confirm these similarities, table

4.2 lists some characteristic parameters for different Prandtl numbers and for a con-

stant Marangoni number. Even though for Pr = 0.02 the stream function extremum,

vorticity, and the position of vortex center is quite different from the other cases, the

temperature at the apex of the droplet is roughly the same as the ones for larger

Prandtl numbers.

In order to thoroughly analyze the vortex structure for different liquids, i.e. different

Prandtl numbers, a wide range of Marangoni numbers has to be considered. Fig-

ure 4.5 shows the global extremum of the stream function as a function of Marangoni
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π
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Figure 4.3: (a) Stream function Ψ versus ξ along a line η = constant which passes
through the streamfunction minimum Ψmin; see (b). The parameters are
Ma = RePr = 2800, Bi = 0.1, Gr = 0, θw = 1, and α = π/2.

Pr |Ψ|max × 104 Ωcore θapex Center of vortex (|x|, y)
0.02 2.979 −0.0133 0.8915 (0.574, 0.392)

4 5.280 −0.0323 0.9043 (0.547, 0.531)

7 5.188 −0.0317 0.9032 (0.558, 0.524)

28 5.101 −0.0312 0.9021 (0.568, 0.518)

83 5.070 −0.0314 0.9025 (0.568, 0.521)

Table 4.2: Stream function extremum, vorticity at the vortex core, apex temperature,
and coordinate of the center of the vortex in Cartesian coordinates (x, y) for
different Prandtl numbers. The parameters are the same as in figure 4.3.

(a) (b) (c)

Figure 4.4: Constant Marangoni number, Ma = 2800 for Bi = 0.1, Gr = 0, θw = 1,
α = π/2, (a) Pr = 0.02, (b) Pr = 4, and (c) Pr = 28.
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Figure 4.5: Maximum of |Ψ| as a function of Ma (thermocapillary scaling, see table
2.1). The parameters are Bi = 0.1, Gr = 0, θw = 1, and α = π/2.

number for different liquid materials. In all the cases, the stream function extremum in-

creases by increasing the Marangoni number up to a maximum value and then decreases

monotonically. However, for the presented setup, this maximum is almost constant (at

Ma ≈ 700) except for the low Prandtl number case in which the maximum occurs at

Ma ≈ 100.

For Pr = 0.02 in the asymptotic case of large Marangoni numbers, the trend of the curve

is well estimated by the slope of −1/2. However, the asymptotic trend in the case of

higher Prandtl numbers is different and has the slope of approximately −1/3. Although

there are some deviations from this slope, e.g. for Pr = 28, generally this asymptotic

trend is fitted well to all liquids with Pr > 1. This scaling (max |Ψ| ∼ Ma−1/3) is close to

the classical inertial conductive scaling (Kuhlmann, 1999) as the temperature is nearly

evenly distributed over the free surface. Nevertheless, confirming both asymptotic

trends analytically is still an open question. It should be noted that the boundary

layers are very thin in the limit of large Marangoni numbers. As a result, the cut-out

of the domain, rcut (see figure 3.5), may affect the evolution of boundary layers. To

avoid this, for all computations in the limit of large Marangoni numbers, the value of

ηmax has been modified such that rcut < 10−6. This modification of the computational

domain ensures that the evolution of boundary layers are not affected by rcut.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.6: Streamlines and isotherms for (a) α = 155◦, (b) α = 150◦, (c) α = 144◦,
(d) α = 105◦, (e) α = 90◦, (f) α = 75◦, (g) α = 60◦, (h) α = 45◦, and
(i) α = 30◦. The parameters are Re = 250, Pr = 4, Gr = 0, θw = 1, and
Bi = 0.1.

The next important parameter to be considered is the contact angle. Depending on

the substrate material, the droplet can have different shapes with different contact

angles; from very large contact angle for hydrophobic surfaces to shallow drops with

small contact angles for hydrophilic substrates. Employing the toroidal coordinates,

it is quite straightforward to generate different droplet shapes by adjusting only ξmin

which fits to the liquid-gas interface.

Drops with a wide range of contact angles are shown in figure 4.6. For the same

parameters, the convection is vigorous for droplets of large contact angles (see the

isotherms in figures 4.6a to 4.6c). In this case, the downward flow along the symme-

try line compresses the isotherms close to the substrate at the center of the droplet.

Moreover, along the free surface the convective heat transport is much stronger than

in the shallow droplets, e.g. figure 4.6i, where the heat transfer is mainly conductive
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Figure 4.7: Stream function extremum |Ψ|max (left axis, squares) and the temperature
at the apex of the droplet θapex (right axis, circles) versus the contact angle
α. Parameters as in figure 4.6. The dashed lines are guides to the eye.
The full lines represents the approximations max |Ψ| = 1.2 × 10−9α3 and
θapex = 1− 1.64× 10−3α.

and the isotherms are straight and almost parallel. Comparing the temperature field

for large and shallow droplets shows that the temperature distribution in droplets of

small contact angles is much more uniform than the ones of large contact angles which

confirms a much weaker thermocapillary convection in shallow droplets.

The effect of the contact angle variation on the fluid flow and the temperature field is

compared in more detail in figure 4.7, which illustrates the temperature at the droplet’s

apex, θapex, as well as the stream function extremum, |Ψ|max, as functions of the contact

angle α. In the asymptotic limit of shallow droplets (α → 0), the maximum thickness

of the droplet is proportional to the contact angle l ∼ α. Considering the effective

temperature difference, θeff = 1 − θapex, for the thermocapillary-driven flow, an order-

of-magnitude consideration of heat transfer boundary condition of (3.31a) yields

1

l
(1− θapex) ∼ Biθapex. (4.1)

Therefore, assuming θapex = 1 − ǫ where ǫ is a small value, the effective driving tem-

perature scales as
ǫ

1− ǫ
≈ ǫ = Bil ⇒ 1− θapex ∼ α. (4.2)
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Furthermore, a balance between viscous stresses and thermocapillary forces from the

thermocapillary stress condition (3.31a) yields the following scaling for the stream

function

∂ηθ ∼ Ω ≈ ∂ξξΨ ⇒ |Ψ|max ∼
∼α2

︷︸︸︷

l2 (1− θapex)
︸ ︷︷ ︸

∼α

⇒ |Ψ|max ∼ α3. (4.3)

The scalings given in (4.2) and (4.3) are both confirmed with the computational results

which are shown in figure 4.7. For the presented case, the following approximations fit

well to the plotted curves

max |Ψ| = 1.2× 10−9α3, (4.4a)

1− θapex = 1.64× 10−3α. (4.4b)

By increasing the contact angle, neither the stream function nor the apex temperature

follow the approximated trends indicated in (4.4). The stronger increment of the

stream function leads to an amplified convective heat transport from the hot substrate

along the liquid-gas interface toward the apex. Correspondingly, the apex temperature

increases as it is presented in figure 4.7. The strengthened convection for large contact

angles which is discussed above is supported by the geometry as for thermocapillary

liquid bridges considered by Kuhlmann et al. (1999) and also Nienhüser and Kuhlmann

(2002). In case of a hot substrate, the highest thermocapillary stresses along the free

surface occur close to the contact line. For contact angles α > π/2 the driving force

along the free surface accelerates the flow and consequently enhances the convective

heat transport, whereas for α < π/2 it deflects and decelerates the flow close to the

contact line.

The most influential parameter to be considered is the Biot number. Considering the

current setup in which the heat transfer through the liquid-gas interface leads to a

temperature deviation along the free surface and consequently enables the thermocap-

illary driving force, the rate of heat transfer which is characterized by the Biot number

is of great importance. Figure 4.8 presents streamlines and isotherms varying the Biot

number. Since for Bi = 0 we have an adiabatic liquid-gas interface, the temperature

in the whole computational domain is uniform and no driving force exists. Therefore,

there is no fluid flow in the domain and consequently no streamlines and isotherms are

available for Bi = 0. For a very small Biot number as in figure 4.8a, a very weak temper-

ature difference appears along the free surface which leads to a thermocapillary-driven
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: Biot number variation; (a) Bi = 0.005, (b) Bi = 0.05, (c) Bi = 0.2, (d)
Bi = 1, (e) Bi = 5, and (f) Bi = 20. The parameters are Re = 250, Pr = 4,
Gr = 0, θw = 1, and α = π/2.

Bi |Ψ|max × 104 Ωcore θapex Center of vortex

0.005 0.337 −0.0021 0.9935 (0.613, 0.482)

0.05 3.857 −0.0244 0.9339 (0.574, 0.523)

0.2 10.88 −0.0655 0.8093 (0.556, 0.519)

1 25.01 −0.1431 0.5417 (0.549, 0.508)

5 45.21 −0.2477 0.2016 (0.555, 0.490)

20 53.56 −0.2938 0.0478 (0.554, 0.490)

Table 4.3: Stream function extremum, vorticity at the vortex core, apex temperature,
and coordinate of the center of the vortex in Cartesian coordinates (x, y) for
different Biot numbers. The parameters are the same as in figure 4.8.

force driving the flow toward the apex. By increasing the Biot number, this driving

force enhances and the thermocapillary-driven vortex becomes stronger. The stronger

toroidal vortex magnifies the internal convective heat transport within the domain as

shown in figures 4.8d to 4.8f.

Table 4.3 lists some characteristics of the flow for the cases given in figure 4.8. Com-

paring the temperature at the droplet’s apex as well as the stream function extremum

shows a strong influence of the Biot number on the flow field. For instance, the stream

function extremum grows more than two orders of magnitude and the temperature

at the apex decays almost to zero when the Biot number varies from Bi = 0.005 to

Bi = 20. However, comparing the rate of change of the stream function and the position

of the center of vortex for large Biot numbers shows that these parameters converge to
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Figure 4.9: Temperature distribution along the liquid-gas interface θsurf as function of
the distance z from the plate for different Bi numbers. The parameters are
the same as in figure 4.8.

a limit. In other words, by further increasing the Biot number, the flow behavior will

not considerably changes.

To further analyze the effect of Biot number on the fluid flow, the temperature distribu-

tion along the liquid-gas interface is illustrated in figure 4.9 for different Biot numbers

including both the limiting cases of Bi = 0 and Bi → ∞. As discussed above, for Bi = 0

the temperature is constant in the domain and along the free surface (θsurf = θw = 1).

On the contrary, when the Biot number tends to infinity, the temperature along the

liquid-gas interface is imposed by the passive ambient gas, in which the temperature

distribution is linear with respect to the height z. Therefore, in case of Bi → ∞ the

temperature distribution along the free surface is also linear. The temperature profiles

for other relatively large Biot numbers which are plotted in figure 4.9 (e.g. Bi = 5, 20)

show a convergence to the asymptotic case of Bi → ∞.

Finally, figure 4.10 presents the temperature of the droplet’s apex as a function of

the contact angle α for wide range of Biot numbers covering four orders of magnitude

Bi = 0.1, 1, 10, and 100. For the adiabatic liquid-gas interface, Bi = 0, the apex

temperature is equal to the equilibrium temperature of the bulk θapex = 1. The curve

for Bi = 0.1 and its asymptotic scaling for the limit of small contact angles have been
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Figure 4.10: Drop’s apex temperature, θapex, as a function of the contact angle, α, for
different Biot numbers. The parameters are Re = 250, Pr = 4, Gr = 0,
and θw = 1.

discussed in figure 4.7. By increasing the Biot number, the rate of heat exchange

along the liquid-gas interface increases and consequently, the temperature of the apex

decreases. Considering the cases Bi = 1 and Bi = 10, by decreasing the contact angle

it can be seen that the temperature increases, which is similar to the case of Bi = 0.1

but with different slopes depending on the Biot number. By further increasing the

Biot number (Bi = 100), the apex temperature converges to the asymptotic case of

Bi → ∞. Therefore, the apex temperature tends to zero independent of the contact

angle. For all cases presented, the apex temperature increases by increasing the contact

angle (only beyond the minimum of each curve) due to an enhanced convective heat

transport along the free surface as discussed earlier in this subsection.

4.1.2 Buoyancy-driven flow

In the previous subsection, the effect of pure thermocapillary driving force (zero gravity

case, Gr = 0) on the flow in liquid droplets was discussed. Another important driving

force to be considered is the buoyancy in the presence of gravity, where Gr 6= 0. In
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(a) (b) (c) (d) (e)

Figure 4.11: Isotherms in the absence of thermocapillarity and gravity. The parameters
are Pr = 28, Gr = 0, θw = 1, α = π/2, and (a) Bi = 0.1, (b) Bi = 1, (c)
Bi = 10, (d) Bi = 100, (e) Bi = 105.

this case, the last term on the right side of (3.24b)

−Gr

Re

[

(cosh η cos ξ − 1) ∂η + (sinh η sin ξ) ∂ξ

]

θ (4.5)

is non-zero. Since Gr/Re ∼ R2, this term vanishes again for small droplets when

R→ 0. In other words, the thermocapillary force dominates buoyancy for the droplets

of small radius. However, for a range of low Reynolds and relatively high Grashof

numbers buoyancy affects the flow. For such cases, these two driving forces form

different flow structures within the droplet which will be discussed later. Nevertheless,

the investigation of the effect of pure buoyant driving force on the fluid flow in droplets

is essential prior to study the combined buoyant-thermocapillary flow.

In order to treat the pure buoyant flow, instead of the thermocapillary scaling which

is used in the case of thermocapillary-driven flow, the viscous scaling of the governing

equations is employed as presented in (3.33). Furthermore, the thermocapillary bound-

ary conditions along the liquid-gas interface (3.26a) have to be replaced by a free-slip

boundary condition which is given in (3.37).

In the absence of buoyancy and thermocapillary stresses, the Biot number is the only

parameter determining the temperature field. Figure 4.11 shows the isotherms for

different Biot numbers in a droplet with the contact angle of 90◦. For small Biot

numbers, the isotherms are horizontal close to the centerline but slightly bent toward

the contact line. By increasing the Biot number, the isotherms become horizontal and

nearly parallel within the whole domain. In the limit of Bi → ∞ the free surface

temperature equals the ambient temperature and the isotherms are fully parallel.

As discussed above, for a high Biot number, e.g. Bi = 100, the flow is at the state of rest

with nearly parallel horizontal isotherms (see figure 4.11d). This thermal stratification

51



Chapter 4 Basic State Results

Ra

Ψmax

0.03

0.02

0.01

0

0

−0.01

−0.02

−0.03
1000 2000 3000 4000 5000

Figure 4.12: Extremum of Ψ as a function of the Rayleigh number for Pr = 28, α =
π/2, Bi = 100, and θw = 1.

within a droplet sitting on a heated substrate can be unstable for a certain Rayleigh

number, Ra = GrPr, when the thermal expansion coefficient is positive β > 0. In order

to find the neutral Rayleigh number Ran at which convection sets in, we start from the

basic state with Ra = 0 and increase the Rayleigh number gradually by increasing the

level of gravity Gr. Figure 4.12 shows the evolution of the stream function extremum

of the steady state as a function of the Rayleigh number. For a wide range of Rayleigh

numbers the stream function remains nearly zero. However, due to a weak horizontal

temperature gradient for a finite value of Biot number, a weak flow is detected for

any non-zero value of Rayleigh number. For Ra ≈ 3080 ± 50, the value of the stream

function starts growing with a relatively steep slope which shows that the fluid flow is

developing. This flow has a toroidal structure (see figure 4.13d) with an upward flow

direction along the centerline.

For Ra > 3200, more than one branch of numerical solutions exist as shown in figure

4.12. One set of solutions corresponds to a toroidal vortex with a reverse flow direction

contrary to the one discussed before, and the other branch of the solutions exhibits

a weak flow which tends to zero by increasing the Rayleigh number. This plot with

three solution branches for Ra > 3200 exhibits a pitchfork bifurcation diagram which

is weakly perturbed due to an imperfect vertical temperature gradient. The upper and

lower solid branches which are almost symmetrical with respect to the horizontal axis
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Figure 4.13: Streamlines and the temperature field for pure buoyant flow corresponding
to the upper solid branch in figure 4.12. ”+” sign indicates the upward
flow direction along the centerline. The parameters are Pr = 28, α = π/2,
θw = 1, Bi = 100, and (a) Ra = 0, (b) Ra = 1400, (c) Ra = 2800, (d)
Ra = 3360, (e) Ra = 3920, (f) Ra = 4480.

(Ψ = 0) present the stable solutions, while the center dashed line branch indicates the

unstable solution.

Figures 4.13 to 4.15 show the streamlines and the temperature field for the solutions

at the upper, center, and lower branches, respectively. For zero gravity case (Ra =

0), no flow is detected since no driving force acts on the fluid (figure 4.13a). By

increasing the Rayleigh number up to Ra ≈ 3000, a very weak flow is detected due

to the imperfect temperature distribution as it was explained before. Comparing the

streamlines corresponding to the upper (figures 4.13d to 4.13f) and the lower stable

branches (figures 4.15a to 4.15c) show that the vortex structures are very similar for

any Rayleigh number, but the flow direction is reversed. The respective temperature

fields illustrate different directions of the convection within the domain in these two

cases.

The symmetric bifurcation diagram can be obtained considering Bi → ∞ for which the

isotherms are exactly parallel. However, because of the numerical errors, a perfectly

symmetric diagram cannot be obtained. Moreover, it is not possible to apply Bi → ∞
in the computations. Therefore, we impose a fixed linear temperature distribution

along the liquid-gas interface employing the same function as in the passive ambient

temperature. This is numerically equivalent to set Bi → ∞. With this setup, it is

possible to obtain the pitchfork bifurcation as it is illustrated in figure 4.16. Similar

to the diagram obtained for Bi = 100 in figure 4.12, two stable (solid lines) and one
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Figure 4.14: Streamlines and the temperature field for pure buoyant flow corresponding
to the dashed line in figure 4.12. The minus/plus sign (∓) indicates the
clockwise/counter-clockwise rotation. The parameters are Pr = 28, α =
π/2, θw = 1, Bi = 100, and (a) Ra = 3360, (b) Ra = 3920, (c) Ra = 4480.
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Figure 4.15: Streamlines and the temperature field for pure buoyant flow corresponding
to the lower solid branch in figure 4.12. ”-” sign indicates the downward
flow direction along the centerline. The parameters are Pr = 28, α = π/2,
θw = 1, Bi = 100, and (a) Ra = 3360, (b) Ra = 3920, (c) Ra = 4480.

unstable (dashed line) branches are detected when the Rayleigh number exceeds a

certain value. For the case of nearly perfect pitchfork bifurcation, this value is called

the neutral Rayleigh number which is found to be Rac ≈ 3100± 10.

It is important to know how the flow behaves between the two limits Bi = 0 and

Bi → ∞. Figure 4.17 shows the previously discussed cases of Bi = 100 and Bi → ∞
in comparison to three other Biot numbers (Bi = 0.1, 1, and 10), to illustrate different

trends for different Biot numbers. It should be mentioned that only the positive half

of the vertical axis is shown to make it easier to compare the curves. For Bi = 0.1, the

curve has a shallow slope which results in a very weak flow even for very high Rayleigh

numbers. The reason for that is a relatively strong horizontal temperature gradient

within the domain for such a low Biot number. Increasing the Biot number to Bi = 1

leads to a slightly weaker flow in subcritical regime, i.e. Ra < 3000, and a stronger

flow for higher Rayleigh numbers Ra > 3000 for which the slope of the curve increases

by increasing the Rayleigh number. By further increasing the Biot number, a turning

point appears somewhere in the interval of Ra ∈ [2800, 3200], and the curves tend to

converge to the asymptotic case of Bi → ∞. This turning point exists also for low
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Figure 4.16: Extremum of Ψ as a function of the Rayleigh number for Pr = 28, α =
π/2, θw = 1, and Bi → ∞.
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Figure 4.17: Maximum of Ψ as a function of the Rayleigh number for Pr = 28, α = π/2,
θw = 1, and Bi = 0.1, 1, 10, and 100 as well as Bi → ∞.
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Prandtl numbers, but at much higher Rayleigh numbers.

4.1.3 Thermocapillary-buoyant flow

To study the evolution of combined thermocapillary-buoyant flow in liquid droplets,

a wide range of Reynolds, Prandtl, and Grashof numbers have to be considered. As

shown in figure 4.18, different flow patterns are obtained for various liquid materials

with Pr = 0.02 (left column), Pr = 4 (middle column), and Pr = 83 (right column).

The general strategy to obtain the flow field is to start with a pure thermocapillary

case in which Gr = 0. In this case, only a single toroidal vortex appears (downward

flow along the axis η = 0) for all liquid materials. However, the temperature field

is different for different Prandtl numbers. By increasing the gravity level, different

flow structures are realized depending on the temperature distribution in the domain.

In order to show various combination of the counter-rotating vortices, many different

cases have been considered varying Reynolds, Prandtl, Biot, and Grashof numbers.

Figure 4.18 presents only three selected setups in which the flow evolves differently by

increasing the gravity level.

In the case of a low Prandtl number Pr = 0.02, the structure of the temperature field

initiates an upward buoyant flow along the drop’s centerline (opposite to the ther-

mocapillary effect on the free surface) by increasing the gravity level. Consequently,

the buoyant driving force generates a counter-rotating toroidal vortex near the center-

line which is illustrated in figure 4.18d (counter-clockwise rotation, ’+’). By further

increasing the Grashof number, the buoyancy-driven vortex grows in size and starts

to occupy the whole domain, squeezing the counter-rotating thermocapillary-driven

vortex toward the liquid-gas interface (figures 4.18g, 4.18j, and 4.18m). Finally, for

the current case with Re = 25 and Bi = 0.5, the buoyancy-driven vortex completely

dominates the flow for Gr > 3000.

For Pr = 4 the temperature field is slightly different (see figure 4.18b). Considering a

constant vertical distance, z, from the substrate, the maximum temperature is found

to be somewhere between the contact line and the center of the droplet. Therefore, for

a strong enough gravity level as in figure 4.18h, the buoyancy-driven vortex which is

attached to the substrate appears at the described position close to the contact line.

By increasing the Grashof number, this vortex grows in size and intensity and again

squeezes the thermocapillary-driven vortex, but this time toward the centerline (figures

4.18k and 4.18n). In this case, although thermocapillarity drives the flow along free

surface from the contact line toward the apex, the flow is opposing the thermocapillary
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Figure 4.18: Combined thermocapillary-buoyant flow for Bi = 0.5, α = π/2, and θw =
1. Left column: Pr = 0.02 and Re = 25 for Gr = 100, 1300, 1600, 2400, and
3000. Middle column: Pr = 4 and Re = 10 for Gr = 100, 1000, 1400, 2000,
and 4000. Right column: Pr = 83 and Re = 1 for Gr = 10, 100, 200, 500,
and 1000.
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Figure 4.19: Stream function extrema |Ψ|max for the buoyancy-driven vortex (Ψmax >
0) as well as thermocapillary-driven vortex (Ψmin < 0) as functions of the
Reynolds number. The parameters are Pr = 0.02, Bi = 0.5, Gr = 3000,
α = π/2, and θw = 1.

forces in the region where buoyancy is dominant. Therefore, along the free surface

two different flow directions exist which leads to an upward flow from an intermediate

radial distance from the droplet’s center. The resulting convective heat transport can

be seen considering the isolines sketched in figure 4.18n.

Finally, the flow evolution subject to the combined thermocapillary-buoyant flow is

considered for Pr = 83 (figure 4.18, right column). In this case, the maximum temper-

ature at a constant distance from the substrate is detected very close to the contact

line. Consequently, the buoyant force drives the flow upward along the free surface

and, unlike the previous cases in which the two driving forces compete, it amplifies the

thermocapillary-driven vortex which has the same flow direction. By increasing the

Grashof number, the convective heat transport becomes stronger (see figures 4.18l and

4.18o), since the Rayleigh number is very large.

The competition between thermocapillarity and buoyancy can be also discussed by

fixing the gravity level and varying the thermocapillary Reynolds number. In order

to present this competition, a variation of the Reynolds number in the interval of

Re ∈ [10, 300] for the case of Pr = 0.02 and Gr = 3000 has been selected. In figure

4.19 the absolute values of the stream function extrema for the two counter-rotating
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Gr
Ma = 28 Ma = 280 Ma = 2800

θapex |Ψ|max × 103 θapex |Ψ|max × 103 θapex |Ψ|max × 103

10 0.4451 3.325 0.4302 3.251 0.6214 1.738

80 0.4454 3.390 0.4209 2.888 0.6198 1.714

120 0.4458 3.623 0.4067 2.223 0.6154 1.649

240 0.4461 3.959 0.4043 1.744 0.6081 1.549

360 0.4462 4.244 0.4024 1.510 0.5998 1.446

Table 4.4: Temperature at the apex of the droplet, θapex, and the stream function
extremum, max |Ψ|, for the cases shown in figure 4.20.

vortices are plotted as functions of Reynolds number on logarithmic scales. Buoyancy

dominates thermocapillarity for Re < 40. An example of this regime has been already

discussed for Re = 25 in figure 4.18m. However, for Re > 40 the thermocapillary-

driven force becomes dominant and the buoyancy-driven vortex vanishes with a steep

slope.

In contrast to the cases discussed above for a sessile droplet sitting on a heated plate, the

competition between the thermocapillary and buoyant forces does not lead to develop-

ment of a counter-rotating vortex in a hanging droplet attached to a heated substrate.

Figure 4.20 depicts the flow and temperature fields in droplets subject to different

combination of thermocapillary and buoyant forces. In each column, the Marangoni

number is constant (left column: Ma = 28, middle column: Ma = 280, and right

column: Ma = 2800) and the level of gravity (Grashof number) increases from top

to bottom. Comparing the streamlines and isotherms of each column, it is clear that

the thermocapillarity dictates the flow direction even for higher gravity levels. In the

middle column, by increasing the Grashof number, the buoyant forces exhibit a weak

stabilizing effect by driving the flow in a reverse direction of the thermocapillary forces.

This weak influence can be observed comparing the isotherms in figure 4.20b with the

ones which are flattened in figure 4.20n. In left and right columns, it is difficult to

visually distinguish the effect of buoyancy for different Grashof numbers. Therefore,

some quantitative data are listed in table 4.4 for all droplets presented in figure 4.20,

in order to facilitate the comparison. For Ma = 2800, by increasing the gravity level

the stream function extremum decreases. This means that, similar to the middle col-

umn, buoyancy forces oppose the flow motion. In contrast, for Ma = 28, the values

of stream function extremum for different Grashof numbers confirm that the buoyant

forces enhance the thermocapillary-driven vortex. In other words, buoyancy drives the

flow in the same direction of the thermocapillary stresses.
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Figure 4.20: Combined thermocapillary-buoyant flow in a hanging droplet attached to
a heated plate; Ma = 28 (left column), Ma = 280 (middle column), and
Ma = 2800 (left column). The parameters are Bi = 1, α = 90◦, and
(a,b,c) Gr = 10, (d,e,f) Gr = 80, (g,h,i) Gr = 120, (j,k,l) Gr = 240,
(m,n,o) Gr = 360.
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4.2 Cooled substrate

For a droplet attached to a cooled plate in an ambient in which the dimensionless

temperature varies linearly between the substrate θa(0) = 0 and a distance l away from

the substrate θa(l) = 1, a temperature gradient arises within the liquid depending on

the rate of heat transfer through the liquid-gas interface. Similar to the case of the

heated plate in cooled ambient, this temperature gradient leads to a thermocapillary-

or buoyant-driven flow, or a combination of these two flows, depending on the problem

setup. In this section, a parametric study is presented for a droplet attached to a

cooled plate varying Reynolds, Prandtl, Grashof, and Biot numbers as well as the

contact angle.

4.2.1 Thermocapillary-driven flow

The temperature gradient along the liquid-gas interface results in thermocapillary

stresses along the free surface which drives the flow toward the contact line (cold

end of the free surface with θ = 0). Therefore, unlike the case of heated plate, the

flow direction is upward along the centerline. The structure of the flow for different

Prandtl numbers is illustrated in figure 4.21, for Re = 1, 10, 100, 250, and 1000. The

flow and temperature fields are visually similar for all Prandtl numbers when Re = 1,

as the thermocapillary driving force is weak. By increasing the Reynolds number, the

flow evolves differently for each presented Prandtl number.

For Pr = 0.02 (left column), the Marangoni number is small (varies between 2 and

20); therefore, the temperature field remains nearly unchanged as Reynolds number

increases. In case of higher Marangoni numbers (middle and right columns), the ther-

mocapillarity is stronger which leads to the convective heat transport along the liquid-

gas interface toward the contact line. As a result, a large temperature gradient forms

close to the cold substrate which generates the only driving force within the domain

since along the rest of the interface the temperature becomes almost constant (see

e.g. 4.21o). The concentration of the temperature gradient and consequently strong

thermocapillary stresses close to the contact line lead to displacement of the center of

the vortex toward the contact line. Correspondingly, the streamlines are compressed

in this region which confirms that the thermocapillarity drives the flow mainly in this

part of the liquid-gas interface.

The apex temperature as well as the stream function extremum for the given cases in
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Figure 4.21: Reynolds number variation for Pr = 0.02 (left column), Pr = 4 (middle
column), and Pr = 28 (right column), for Gr = 0, θw = 0, and Bi = 0.1.
(a,b,c) Re = 1, (d,e,f) Re = 10, (g,h,i) Re = 100, (j,k,l) Re = 250, (m,n,o)
Re = 1000.
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Re
Pr = 0.02 Pr = 4 Pr = 28

θapex |Ψ|max × 104 θapex |Ψ|max × 104 θapex |Ψ|max × 104

1 0.1128 5.775 0.1127 5.761 0.1119 5.671

10 0.1128 5.770 0.1115 5.623 0.1046 4.844

100 0.1127 5.721 0.1018 4.512 0.0795 2.182

250 0.1126 5.641 0.0923 3.449 0.0689 1.298

1000 0.1123 5.306 0.0755 1.796 0.0553 0.523

Table 4.5: Apex temperature and max |Ψ| for the cases shown in figure 4.21.

figure 4.21 are listed in table 4.5. By increasing the Prandtl number for a constant

Reynolds number, the stream function extremum decays and the apex temperature

decreases. In the current case of a cooled plate, the effective temperature difference

for thermocapillary driving is θeff = θapex (rather than 1 − θapex for the heated plate

case). Therefore, the larger θapex for Pr = 0.02 means that the driving force is stronger

in this case. This can be confirmed by comparing the stream function extremum

for Pr = 0.02 and 28 which shows an order of magnitude difference for Re = 1000.

Furthermore, increasing the Reynolds number results in a reduction of the temperature

of the droplet’s apex for all Prandtl numbers. However, this reduction is stronger when

the Prandtl number is large due to the reduced thermal diffusivity.

The vortex structure for different Prandtl numbers is compared in figure 4.22 consider-

ing the same parameters as in figure 4.3. These curves are the stream function values

which are plotted as functions of ξ along an η = constant line which is shown in figure

4.22b. For a constant Marangoni number, Ma = 2800, all the curves cluster on top of

one another for Pr > 1 having a peak of |Ψ|max ≈ 2.2× 10−4, whereas the low Prandtl

number case exhibits a separate curve with a lower peak at |Ψ|max ≈ 1.5 × 10−4. In

order to compare the cases plotted in figure 4.22 quantitatively, table 4.6 lists some

characteristic parameters for the discussed cases above. Apart from the first row which

corresponds to the low Prandtl number Pr = 0.02, all the other quantities are quite

similar for Pr > 1.

The maximum of the stream function as a function of a wide range of Marangoni

numbers is plotted in figure 4.23 for four different liquids, Pr = 0.02, 4, 28, and 83.

In contrast to the heated plate case (see figure 4.5) in which all the curves exhibit

a maximum before decaying, a monotonically decreasing trend has been observed for

all the considered cases of a droplet attached to a cooled plate. In the limit of large

Marangoni numbers (Ma > 103), two different asymptotic trends are found for low and
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Figure 4.22: (a) Stream function Ψ versus ξ along an η = constant line which passes
through the stream function maximum Ψmax; see (b). The parameters are
Ma = RePr = 2800, Bi = 0.1, Gr = 0, θw = 0, and α = π/2.

Pr |Ψ|max × 104 Ωcore θapex Center of vortex

0.02 1.465 0.0131 0.1033 (0.781, 0.256)

4 2.176 0.0153 0.0798 (0.720, 0.383)

7 2.179 0.0153 0.0796 (0.720, 0.383)

28 2.182 0.0153 0.0795 (0.720, 0.383)

83 2.183 0.0153 0.0794 (0.720, 0.383)

Table 4.6: Stream function extremum, vorticity at the vortex core, apex temperature,
and coordinate of the center of the vortex in Cartesian coordinates (x, y) for
different Prandtl numbers. The parameters are the same as in figure 4.22.
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Figure 4.23: Maximum of |Ψ| as a function of Ma. The parameters are Bi = 0.1,
Gr = 0, θw = 0, and α = π/2.

high Prandtl numbers: max |Ψ| ∼ Ma−1/2 for low Prandtl numbers which is similar

to the slope given in figure 4.5, and max |Ψ| ∼ Ma−2/3 for all higher Prandtl numbers

which show a much stronger decay rate in comparison to the case of a heated plate.

The difference between the asymptotic slopes for high Prandtl numbers (−1/3 and

−2/3 for heated and cooled plate, respectively) can be described comparing the tem-

perature along the free surface of the heated and cooled plate cases for the same

Marangoni number as presented in figure 4.24. In order to have the same scaling for

the vertical axis of the graph, the effective surface temperature, θeffsurf , is defined as

θeffsurf =

{

1− θsurf (heated plate),

θsurf (cooled plate).
(4.6)

A continuous increase of effective surface temperature is detected for the heated plate

case which means that along the whole free surface, the thermocapillarity drives the

flow. In contrast, the effective surface temperature for the cooled plate exhibits a

steep increase close to the contact line (z → 0); then for z > 0.4 becomes nearly flat

which means that no temperature gradient is available for this part of the liquid-gas

interface. The reduced length of active thermocapillarity over the free surface is found

to be the reason for the reduction of the net driving force. As a result, the decay of
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Figure 4.24: Effective surface temperature θeffsurf as a function of the distance z from the
substrate. θeffsurf = θsurf for the case of cooled plate and θeffsurf = 1 − θsurf
for heated plate. The parameters are Bi = 0.1, α = π/2, θw = 0, and
Ma = 2.8× 105.

max |Ψ| ∼ Ma−2/3 for the cooled plate case is confirmed to be steeper than the one for

a heated plate, max |Ψ| ∼ Ma−1/3.

In order to analyze the influence of the Biot number on the fluid flow, the presented

case in figure 4.21h has been chosen with the parameters Re = 100, Pr = 4, and

Bi = 0.1. The results for a wide range of Biot numbers are presented in figure 4.25 and

more quantitative data are listed in table 4.7. Although the streamlines and isotherms

are visually very similar, especially for Bi > 10 (see figures 4.25d, 4.25e, and 4.25f),

comparing the parameters given in the table illustrates a strong variation of θapex and

consequently, stream function and vorticity when the Biot number increases. The

temperature difference between the apex of the droplet and the cooled plate varies

from ∆θ ≈ 0.1 for Bi = 0.1 to ∆θ ≈ 1 in the limiting case of Bi = 104 which can

be assumed to well approximate Bi → ∞. As a result, the toroidal vortex becomes

considerably stronger (|Ψ|max is more than an order of magnitude larger). Comparing

the last two rows in table 4.7 verifies that all the given parameters are converging to

an asymptotic limit when the Biot number tends to infinity.
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Figure 4.25: Biot number variation. The parameters are Re = 100, Pr = 4, Gr = 0,
θw = 0, α = π/2, and (a) Bi = 0.1, (b) Bi = 1, (c) Bi = 10, (d) Bi = 102,
(e) Bi = 103, (f) Bi = 104.

Bi |Ψ|max × 104 Ωcore θapex Center of vortex

0.1 4.513 0.0286 0.1018 (0.654, 0.449)

1 16.488 0.1123 0.4108 (0.696, 0.415)

10 39.217 0.2572 0.7397 (0.665, 0.441)

102 56.728 0.3725 0.9421 (0.637, 0.474)

103 60.360 0.3941 0.9930 (0.625, 0.483)

104 60.783 0.3967 0.9991 (0.625, 0.483)

Table 4.7: Stream function extremum, vorticity at the vortex core, apex temperature,
and coordinate of the center of the vortex in Cartesian coordinates (x, y) for
different Biot numbers. The parameters are the same as in figure 4.25.
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Figure 4.26: Maximum of stream function, max |Ψ|, as a function of Marangoni num-
ber, Ma, for Pr = 4, Gr = 0, θw = 0, α = π/2 and different Biot numbers.

The influence of the Biot number on the asymptotic behavior of the flow is taken

into account in figure 4.26, in which the stream function extremum is plotted as a

function of Marangoni number for three Biot numbers, Bi = 0.1, 5, and 104. As it

is discussed before, for low Biot numbers, the temperature along a large part of the

free surface becomes constant for high Marangoni numbers which leads to a steep

decay of the stream function maximum when Marangoni number increases. However,

by increasing the Biot number, the temperature at each point along the liquid-gas

interface tends to the temperature of the ambient gas at the same vertical distance

from the substrate. Therefore, the temperature is not constant along the free surface

anymore and consequently, the thermocapillarity drives the flow along the whole free

surface. As a result, for large Biot numbers the asymptotic behavior of the flow changes

and scales with max |Ψ| ∼ Ma−1/2 which is the same as the obtained scaling for the

low Prandtl number case shown in figure 4.5.

4.2.2 Buoyancy-driven flow

For a droplet which is sitting on a cooled substrate the thermal stratification normal

to the substrate is buoyantly stable when β > 0. In contrary, a droplet pending from

a cooled plate in a heated ambient can be unstable. Therefore, the more attractive
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case of a hanging droplet is chosen. The instability in a hanging droplet with the

contact angle of 90◦ results in a similar pitchfork bifurcation as in the case of a sessile

droplet on a heated plate (see figure 4.16). The equivalence is due to the symmetry of

the linearized equations with respect to Gr → −Gr and ∆T → −∆T in the absence

of thermocapillary stresses. For this reason, instead of considering only the hanging

droplet with the contact angle of 90◦, the effect of contact angle variation on the fluid

flow in hanging droplets subject to pure buoyant driving force is discussed.

Studying the fluid flow in a shallow hanging droplet subject to the pure buoyant forces

is more interesting than considering droplets with large contact angles, as multiple

convection cells develop by increasing the level of gravity. Therefore, we start with

investigating the evolution of the flow in a shallow hanging droplet with the contact

angle of α = 22.5◦ in the absence of capillary instabilities in the limit Ca → 0. For

such a shallow droplet where the aspect ratio is relatively small, l = L/R ≈ 0.197, it

makes sense to scale the Grashof number with l instead of R. For the new scaling, we

have

Gr =
gβ∆T l3

ν2
. (4.7)

The scaling of the equations has been modified accordingly by substituting R with l.

Similar to the heated plate, a high Biot number Bi = 100 has been chosen in order

to obtain a linear temperature distribution within the domain with horizontal and

almost parallel isotherms. Streamlines and isotherms for different Rayleigh numbers

are plotted in figure 4.27. For a low level of gravity, e.g. Ra = 280, an extremely weak

toroidal vortex develops, but the temperature field is hardly perturbed. Ideally, no flow

should be detected for such a low Rayleigh number in case of a fully parallel isotherms.

However, for the finite Biot numbers a weak flow develops for any non-zero Rayleigh

number. By gradually increasing the Rayleigh number, a cat’s eye structure evolves at

the center of the toroidal vortex. For Ra = 1580 a separated counter-rotating vortex

develops attached to the substrate which breaks the cat’s eye structure and divides

the single toroidal vortex into two vortices (figure 4.27c). This counter-rotating vortex

grows in size and magnitude by a very small increment of the Rayleigh number and

forms a convection cell between the two existing vortices (figure 4.27d).

Up to a certain Rayleigh number the temperature field remains nearly unperturbed

(see figures 4.27a to 4.27d), whereas for higher Rayleigh numbers, the convective heat

transport can be observed in the temperature field. Therefore, a good approximation

of the neutral Rayleigh number for α = 22.5◦ is found to be Ran = 1750 ± 100 after

comparing the temperature field for a wide range of Rayleigh numbers. In chapter 5,

the exact value of the neutral Rayleigh number Ran for a wide range of contact angles
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Figure 4.27: Pure buoyant flow in shallow drops hanging from a cooled substrate;
Rayleigh number variation: (a) Ra = 280, (b) Ra = 980, (c) Ra = 1580,
(d) Ra = 1680, (e) Ra = 2240, (f) Ra = 2800, (g) Ra = 3360, and (h)
Ra = 3920. The parameters are Pr = 28, θw = 0, α = 22.5◦, and Bi = 100.

will be obtained by means of axisymmetric linear stability analysis. For Ra > Ran
thermal instabilities result in a chain of convection cells. This onset of instability is

comparable, in order of magnitude, with the threshold of the linear stability for a planar

fluid layer with one free and one rigid boundary, Rac = 1100.65 (Chandrasekhar, 1961)

as the droplet is shallow. However, it should be noted that the observed convection

cells in a droplet are toroidal (axisymmetric), whereas in a plane layer they are straight

cylindrical rolls.

The number of convection cells in the droplet increases by further increasing the

Rayleigh number on account of possibly two main reasons. On the one hand, the

stronger vortices close to the centerline of the droplet drive weaker viscous eddies in

the tapered region (Moffatt, 1964). On the other hand, the flow becomes locally un-

stable in the vicinity of the contact line for a much higher Rayleigh number than the

one close to the centerline. In other words, introducing the local Rayleigh number

Ralocal = Ra

(
h(r)

l

)3

, (4.8)

which is scaled with the local height of the droplet at each radial distance from the

centerline, h(r), it is possible that Ralocal becomes larger than the neutral Rayleigh

number in some regions of the domain.
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Figure 4.28: Local Rayleigh number Ralocal as a function of the dimensionless radial
distance from the centerline rd = lr for Pr = 28, θw = 0, and different
Rayleigh numbers. The grey region is an approximation of the neutral
Rayleigh number for the contact angle of α = 22.5◦. The exact value of
the neutral Rayleigh number will be given in chapter 5.

In order to examine the influence of the Rayleigh number on the evolution of the

convective cells in the tapered region, figure 4.28 illustrates the local Rayleigh number

as a function of the dimensionless radial distance from the centerline, rd = lr, for

different Rayleigh numbers. An estimate of the onset of instability is highlighted by

the thick grey bar in the plot. The curves corresponding to the higher Rayleigh numbers

(Ra = 3360 and 3920) indicate that the flow is locally stable for rd > 0.5. However,

for these cases the convection cells have already developed in this region (see figures

4.27g and 4.27h). As a result, the local instabilities cannot be considered as a reason

for the evolution of these toroidal cells; therefore, the former reason (viscous eddies)

gives a more convincing explanation of the flow behavior in the vicinity of the contact

line. This can be confirmed even visually by comparing the structure of vortices in the

convection cells, e.g. in figure 4.27h. In cells which are closer to the centerline, the

center of each vortex lies almost on the center of its corresponding cell showing that

a body force (buoyancy) drives the flow. On the contrary, the vortex center shifts to

one side of the cell in the corner cells; consequently, the streamlines are compressed

between the vortex center and the separating streamline, which shows that a surface

force (viscosity) drives the vortex. Similar vortex structures have been observed in
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other flows which are driven by viscous forces, mainly as a consequence of boundary

confinements (Liron and Blake, 1981; Malyuga, 2005). Moffatt (1964) showed that

the fluid flow close to a sharp corner when at least one of the boundaries is a rigid

wall have to consist of a sequence of viscous eddies, in which the intensity and size

decreases rapidly by approaching the corner. This argument holds for the current case

of a shallow droplet attached to a flat substrate which exhibits a sharp corner with

both rigid and free boundaries.

To analyze the structure of the flow in more details, the absolute values of the stream

function along ξmid = (ξmax + ξmin)/2 are plotted in figure 4.29 for different Rayleigh

numbers. The algebraic mean of the ξ coordinate in the η-ξ plane is selected because

it nearly passes through the stream function extremum of each convection cell. The

logarithmic scale has been chosen for the vertical axis in order to make the visualiza-

tion of the stream function extrema easier. It also facilitates the comparison of the

flow structures for a wide range of Rayleigh numbers. It should be noted that the

peak values shown in figure 4.29 do not represent the exact values associated with the

stream function extremum in each cell because the described ξ = constant line does not

perfectly passes through the center of all vortices. However, they give a good estimate

of the extremum values.

For Ra = 980 and 1580 the flow is thermally stable (see also the corresponding curves

in figure 4.28) and as it is discussed before, the imperfect vertical temperature gradient

leads to the observed weak flow. Two weak maxima are observed for Ra = 980 at rd ≈
0.1 and 0.4 which correspond to the developed cat’s eye structure (see figure 4.27b).

However, the flow structure is different when Rayleigh number increases (Ra = 1580)

and three maxima are detected. In this case, the convection cells, in which the flow

direction reverses from one cell to the next one, have developed (see figure 4.27d).

Since the absolute value of the stream function is plotted in figure 4.29, each local

maximum represents a convection cell. For instance, for Ra = 1580, the second peak

at rd ≈ 0.3 corresponds to the middle convection cell in figure 4.27d in which the flow

direction is counter-clockwise (’+’) and the other two peaks refer to the other two

clockwise-rotating vortices (’−’).

When the Rayleigh number exceeds the neutral Rayleigh number, Ra > Ran, the

number of maxima increases to five for the current setup shown in figure 4.29. The local

maxima for higher Rayleigh numbers present the intensity of each toroidal convection

cell which grows by increasing the Rayleigh number. For these cases, it can be observed

that only the first three cells which are closer to the centerline of the droplet are strong

enough to visibly disturb the temperature field (see also figures 4.27f to 4.27h). The
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Figure 4.29: |Ψ| along ξmid = (ξmax + ξmin)/2 as a function of the dimensionless radial
distance from the centerline rd for Pr = 28, θw = 0, α = 22.5◦ and different
Rayleigh numbers.

other toroidal vortices in the region of the subcritical local Rayleigh number (rd > 0.5),

have much weaker stream function extrema. Furthermore, in the vicinity of the contact

line and for rd > 0.9, the stream function tends to zero for all the cases independent

of the Rayleigh number.

A shallow droplet with the contact angle of α = 22.5◦ has been thoroughly investigated

above. In order to study the influence of the contact angle on the fluid flow, droplets

with different contact angles (α = 105◦, 60◦, and 36◦) are considered. Figure 4.30

illustrates the stream lines and isotherms for these droplets for Ra = 3360. The

Rayleigh number is chosen to be large enough such that for all the presented cases,

the flow becomes thermally unstable. Comparing the flow fields for the presented cases

shows that the number of convection cells decreases by increasing the contact angle. To

explain this, it is necessary to consider the shape of each convection cell. Introducing

the aspect ratio for a convection cell

Γcell =
hcell
wcell

, (4.9)

where hcell and wcell are the mean height and the mean width of a cell, respectively, it
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Figure 4.30: Pure buoyant flow in hanging droplets of different contact angles. (a)
α = 105◦, (b) α = 60◦, and (c) α = 36◦. Parameters are Ra = 3360,
Pr = 28, θw = 0, and Bi = 100.

can be claimed that the preferential aspect ratio is Γcell ≈ 1 when the droplet is shallow

enough such that the free surface can be assumed to be parallel to the substrate far

from the contact line. This preferred aspect ratio can be examined for the discussed

case of a droplet with the contact angle of α = 22.5◦. Having in mind that the aspect

ratio of the droplet is l = L/R ≈ 0.2 and assuming the preferred aspect ratio of each

convection cell to be Γcell ≈ 1, one can expect to observe a chain of five convection cells

for this droplet shape

Ncell =
1

l
≈ 5, (4.10)

which is confirmed in figure 4.27h. In this case, the aspect ratio of each cell starting

from the one close to the centerline of the droplet is Γ ≈ 0.93, 0.95, 0.91, 0.8, and 0.35,

respectively. However, the aspect ratio cannot be exactly defined for larger contact

angles in which the curvature of the liquid-gas interface increases. Nevertheless, it can

give us a rough estimate. For instance, only one convective cell is observed for a droplet

with a contact angle of α = 105◦ in which the aspect ratio of the droplet is l = 1.3

(figure 4.30a). As another example, the droplet which is shown in 4.30b has the aspect

ratio of l ≈ 0.6 and two developed convection cells are evolved, Ncell = 2. The tiny cell

close to the contact line is an extremely weak vortex which is viscously-driven.

4.2.3 Thermocapillary-buoyant flow

Unlike the case of a sessile droplet over a heated plate, there is no competition be-

tween the thermocapillary and buoyant forces in the case of combined thermocapillary-

buoyant flow in hanging droplets attached to a cooled plate. That is because the tem-
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Figure 4.31: Streamlines and isotherms for sessile droplets sitting on a heated plate
(upper row) as well as hanging droplets attached to a cooled plate (lower
row) subject to the thermocapillarity. The parameters are Bi = 0.5, α =
π/2, Gr = 0, and (a,d) Pr = 0.02, Re = 25 (b,e) Pr = 4, Re = 10, (c,f)
Pr = 83, Re = 1.

perature distribution is different in these two cases. To give a comparison between the

temperature fields, figure 4.31 shows the isotherms for both heated (upper row) and

cooled plate (lower row) cases in the absence of gravity (Gr = 0). The difference in the

temperature distribution for three given Prandtl numbers is visually distinguishable in

case of heated plate, which results in various buoyancy-driven flow motion if the level

of gravity increases (see figure 4.18). In contrast, for all presented Prandtl numbers for

the hanging droplets attached to a cooled plate, the temperature field has the same

pattern with the isotherms which are bent slightly upwards close to the contact line.

In this case, increasing the gravity level leads to the buoyancy-driven flow just in one

direction (along the free surface toward the contact line), which is the same direction

as the thermocapillary flow.

As discussed above, the buoyancy and thermocapillarity drive the flow in the same

direction in case of a hanging droplet attached to a cooled plate independent of the

Grashof, Prandtl, and thermocapillary Reynolds numbers. To prove this, figure 4.32

depicts the combined thermocapillary-buoyant flow in hanging droplets of different

Prandtl numbers when the gravity level increases. Apart from the case of Pr = 0.02, for

which the flow field and temperature distribution remain almost unchanged, increasing

the gravity level enhances the thermocapillary-driven vortex and consequently ampli-

fies the convective heat transport along the liquid-gas interface toward the contact line.

This can be qualitatively seen comparing figures 4.32c and 4.32o As a result, a large
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Figure 4.32: Combined thermocapillary-buoyant flow for Bi = 0.5, θw = 0, and α =
π/2. Left column: Pr = 0.02 and Re = 25, middle column: Pr = 4 and
Re = 10, and right column: Pr = 83 and Re = 1. The gravity level varies
for all the columns from top to bottom with Gr = 100, 500, 1000, 2000 and
3000.
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Figure 4.33: Free surface temperature as a function of distance |z| from the substrate
for the cases given in figure 4.32, with Gr = 0 (· · ·), Gr = 100 (− − · − −),
Gr = 500 (−·−), Gr = 1000 (−−−), Gr = 2000 (· ·− · ·), and Gr = 3000 ( ).

temperature gradient appears in the cold corner and the cold fluid flows downward

along the droplet’s centerline (see e.g. figures 4.32n and 4.32o). This type of combined

thermocapillary-buoyant convection results in an interesting evolution of the temper-

ature distribution within the domain. As shown in figure 4.32h, the convective heat

transport cools down the apex of the droplet and the maximum temperature in the do-

main shifts upward along the free surface. The location of the temperature maximum

can be found at the free surface where both ends of a temperature isoline are fixed

to the free surface. By increasing the gravity level, this point moves toward the cold

corner. For higher Prandtl number, Pr = 83, the temperature maximum arrives very

close to the contact line which leads to a larger temperature gradient in the vicinity of

the cold corner (4.32o). In this case, a thermal boundary layer develops along the flat

substrate.

Plotting the temperature along the free surface, θsurf , as a function of the vertical

distance from the substrate leads to a better understanding of the convection details.
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Figure 4.34: Driving forces acting on a hanging droplet: Buoyant body force, FB, and
two opposing thermocapillary surface forces, F 1

T and F 2
T . The parameters

are Re = 10, Pr = 4, Bi = 0.5, Gr = 1000, θw = 0, and α = π/2. The
color and thickness of each arrow is proportional to the strength of each
driving force.

The free surface temperatures of all the cases presented in figure 4.32 are sketched in

figure 4.33. As expected, all the curves are lying on top of each other for Pr = 0.02

(Ma = 1) since the thermal convection is negligible even for large Grashof numbers.

In contrast, the free surface temperature becomes more sensitive to the gravity level

variation for higher Prandtl numbers. The maximum peaks appearing in case of Pr = 4

and 83 result in more complicated thermocapillary-driven forces which drive the flow

in two opposing directions up- and downward along the free surface. However, for

a range of low thermocapillary Reynolds numbers considered here, these opposing

thermocapillary forces are weak compared to the dominating buoyancy.

All the discussed driving forces are sketched in figure 4.34, which perceptibly summa-

rizes the direction and strength of the forces. Here F B represents the buoyant body

force (thick, black arrow) which dominates the flow, whereas F 1
T and F 2

T are the two

opposing thermocapillary forces. F 2
T (thin, light grey arrow) is much weaker than F 1

T

(dark grey arrow) since the temperature gradient close to the cold corner is much larger

than the one in the hot ambient side (see the corresponding curve in figure 4.33, right

column, Gr = 1000).

The combined thermocapillary-buoyant convection results in even more complicated

flow fields in case of shallow hanging droplets. In order to make it comparable with the

pure buoyancy-driven flow (figure 4.27), identical parameters have been chosen, plus a

moderate thermocapillary Reynolds number (Re = 20) such that the influence of both

the driving forces could be recognized. The results are illustrated in figure 4.35 for

the mentioned parameters varying the Rayleigh number. The pure thermocapillary-

driven force (4.35a) leads to the development of a single toroidal vortex. Increasing the
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Figure 4.35: Mixed thermocapillary-buoyant flow in a shallow hanging droplet; gravity
level variation for Re = 20, Pr = 28, Bi = 100, θw = 0, and α = 22.5◦. (a)
Ra = 0, (b) Ra = 1120, (c) Ra = 1960, (d) Ra = 2240, (e) Ra = 2800, (f)
Ra = 3360, (g) Ra = 3920, and (h) Ra = 4480.

gravity level enhances the convective heat transport and a cat’s eye structure evolves as

shown in figure 4.35c. This flow structure is visually similar and comparable to a pure

buoyant case (see figure 4.27b) although the stream function magnitude is much larger

in the combined case. For larger Rayleigh numbers, instead of a cellular flow pattern

which was found for pure buoyant flow, a multi-roll structure develops consisting of

a global circulation which envelops a series of co-rotating inner vortices. It can be

claimed that the global circulation is mainly driven by the thermocapillarity along the

surface, whereas the inner vortices are stimulated by the buoyancy which is a body

force. The number of these inner vortices are less than the number of convective cells

in pure buoyant flow as the co-rotating vortices are stretched in horizontal direction by

the thermocapillary stresses, especially close to the contact line (figure 4.35h). For the

current setup where the contact angle is α = 22.5◦, the maximum number of co-rotating

vortices is three.

Having the results for the buoyancy-driven, the thermocapillary-driven, and the com-

bined thermocapillary-buoyant flows, it is desired to compare the flow behavior between

these cases. However, it should be taken into account that the results are obtained em-

ploying two different scalings of the governing equations. Therefore, the value of stream

function (or generally the velocity) has to be rescaled from one to the other, i.e. from

thermocapillary to viscous scaling. This rescaling allows one to compare the results of

different cases.
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Figure 4.36: |Ψ| along ξmid as a function of the dimensionless radial distance
from the centerline rd for the pure buoyant flow (figure 4.27g),
pure thermocapillary-driven flow (figure 4.35a), and the combined
thermocapillary-buoyant flow (figure 4.35f). The parameters are Pr = 28,
Bi = 100, θw = 0, and α = 22.5◦.

The stream function magnitude along ξmid is exhibited in figure 4.36 for the three

discussed cases: pure buoyancy-driven flow (figure 4.27g), pure thermocapillary-driven

flow (figure 4.35a), as well as the combined thermocapillary-buoyant flow (figure 4.35f).

At first glance, a slight difference in stream function magnitude can be observed be-

tween the buoyant flow and the other two types of flow although the gravity level is

similar in all the cases (Ra = 3360). To find the reason for this difference, it is nec-

essary to analyze the evolution of the flow from the pure thermocapillary-driven flow

to a combined case by increasing the gravity level from Ra = 0 to 3360. Comparing

these two cases (dashed and solid lines in figure 4.36) shows that the effect of buoyancy

which tries to form the convective cells in the bulk is damped with the thermocapillary

stresses driving a global flow along the free surface. The stream function for these

two cases has the same order of magnitude. As a result, the combined flow consists

a general circulation which envelops a series of co-rotating vortices as shown in figure

4.35h.

In the combined thermocapillary-buoyant flow and for rd < 0.5, the buoyancy dom-

inates the flow; therefore, the co-rotating vortices develop in this region. A series of
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Figure 4.37: Mixed thermocapillary-buoyant flow in hanging droplets of different con-
tact angles. (a) α = 105◦, (b) α = 60◦, and (c) α = 36◦. Parameters are
Re = 20, Ra = 3360, θw = 0, and Bi = 100.

local extrema which is observed in the solid curve in figure 4.36 corresponds to these

co-rotating flow structures. On the other hand, for rd > 0.5 the thermocapillarity is

dominant and the curves corresponding to the thermocapillary and combined flows are

stacked on top of each other. The reason for that can be explained by the definition

of the local Rayleigh number which is discussed before (see figure 4.28).

Referring to the case of pure buoyant flow (dash-dotted line in figure 4.36), the stream

function is slightly larger than in the other two cases (thermocapillary and combined

thermocapillary-buoyant flows) when rd < 0.5. However, close to the cold corner, the

local Rayleigh number is tending to zero in the pure buoyant case; therefore, the stream

function decays in this region much steeper than in the cases in which thermocapillarity

drives the flow. In addition, comparing the radial position of the peaks in the curves

corresponding to the pure buoyant and combined flows show that the centers of the

vortices in the case of combined flow are shifted radially outward substantially. In the

combined flow, the thermocapillary force drives a global flow along the free surface

from the apex of the droplet toward the contact line in this setup which suggests the

reason for the displacement of vortices in the droplet. As a result, the number of co-

rotating vortices (elliptic points) in the combined flow is always less than the number of

convection cells in the pure buoyant flow. For the given contact angle of α = 22.5◦, the

number of visually observed convection cells is Ncell = 5 in the pure buoyant flow, while

only three co-rotating vortices are detected in the combined thermocapillary-buoyant

flow (see figures 4.27h and 4.35g).

The effect of contact angle variation on the combined thermocapillary-buoyant flow is

illustrated in figure 4.37. By increasing the contact angle the thermocapillarity becomes
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Figure 4.38: Mixed thermocapillary-buoyant flow in a shallow hanging droplet. Biot
number variation for Re = 20, Pr = 28, Ra = 3360, θw = 0, and α = 22.5◦.
(a) Bi = 0.1, (b) Bi = 1, (c) Bi = 10, and (d) Bi = 100. Temperature at
the droplet’s apex is (a) θapex = 0.152, (b) θapex = 0.452, (c) θapex = 0.783,
and (d) θapex = 0.964.

stronger (see figure 4.7) and dominates the flow. In figure 4.37c, the streamlines are

elongated toward the contact line, but the cat’s eye structure is not generated as in

figure 4.35f although all the parameters except the contact angle are the same in these

two cases. For larger contact angles, the dominance of the thermocapillary stresses

results in a single toroidal vortex. The thermal and thermocapillary convections in

the bulk leads to compressed isotherms at the bottom of the droplet and consequently,

development of a thermal boundary layer along the liquid-gas interface which becomes

thinner by increasing the contact angle (figure 4.37a).

In all the combined thermocapillary-buoyant cases discussed above, a very large Biot

number (Bi = 100) was considered in order to compare the results with the pure buoy-

ant case. However, it is important to examine the influence of Biot number variation

on the fluid flow. Figure 4.38 depicts the stream lines and isotherms for a wide range

of Biot numbers. For a low Biot number Bi = 0.1, the effective temperature difference

is small (θeff = θapex = 0.152); therefore, the buoyant forces are weak and the flow

is mainly driven by the thermocapillarity. Yet, the flow is very weak and no convec-

tion can be observed in the temperature field in figure 4.38a. However, the buoyant

forces become dominant by increasing the Biot number and again, a co-rotating flow

structure evolves, starting with a two-vortex structure as shown in figure 4.38b and

further developing to a three-vortex structure which is evident in figure 4.38d. For all

the cases, the convective heat transfer is much stronger close to the droplet’s centerline

than in the vicinity of the cold corner.

As the final topic to be discussed in this chapter, the combined thermocapillary-buoyant

flow in a sessile droplet attached to a cooled substrate is investigated, with similar

parameters as in the presented case of hanging droplets attached to a heated plate (see
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Figure 4.39: Combined thermocapillary-buoyant flow in a sessile droplet sitting on a
cooled plate; Ma = 28 (left column), Ma = 280 (middle column), and
Ma = 2800 (left column). The parameters are Pr = 28, Bi = 1, α = 90◦,
and (a,b,c) Gr = 10, (d,e,f) Gr = 80, (g,h,i) Gr = 120, (j,k,l) Gr = 240,
(m,n,o) Gr = 360.
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Gr
Ma = 28 Ma = 280 Ma = 2800

Ψmax × 103 Ψmin × 103 Ψmax × 103 Ψmin × 103 Ψmax × 103 Ψmin × 103

10 24.95 ≈ 0 18.32 ≈ 0 6.071 ≈ 0

80 7.541 -1.373 14.36 ≈ 0 5.840 ≈ 0

120 3.538 -5.385 12.78 ≈ 0 5.720 ≈ 0

240 0.498 -16.14 9.576 -0.103 5.385 ≈ 0

360 0.133 -23.39 7.617 -0.410 5.089 -0.006

Table 4.8: Stream function maximum, Ψmax (thermocapillary-driven vortex), and min-
imum, Ψmax (buoyancy-driven vortex), for the cases shown in figure 4.39.

figure 4.20). For a heated plate, the effects of buoyancy were found to be negligible.

In contrast, as shown in figure 4.39, the buoyant effects on the flow field are more

visible for sessile droplets on a cooled plate. Considering the left column (Ma = 28) in

which the thermocapillary stresses are weak, the buoyant forces drive a counter-rotating

vortex driven by horizontal gradients of temperature initiating from the center of the

droplet. By increasing the Grashof number this vortex grows and dominates the flow.

Consequently, the counter-clockwise thermocapillary-driven vortex (marked with ’+’

sign) is squeezed toward the liquid-gas interface (figure 4.39m).

For a relatively higher Marangoni number (middle column), the thermocapillary forces

are stronger. Therefore, the buoyancy-driven vortex (a separation from the substrate

due to the rise of hot fluid) can start to develop only for very high Grashof num-

bers (figure 4.39n). In the right column where the Marangoni number is even higher,

competing buoyant forces are much smaller in magnitude and the flow is fully driven

by the thermocapillary stresses along the free surface. Table 4.8 lists the strength

of thermocapillary-driven as well as buoyancy-driven vortices which are presented in

figure 4.39. According to the given values of the stream function extremum, buoyancy-

driven vortex dominates the flow only in case of Ma = 28 and with Gr > 120. In all

the other cases, the thermocapillary-driven vortex is much stronger than the buoyant

one and dominates the flow field.
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Chapter 5

Axisymmetric Linear Stability Analysis

In this section, an axisymmetric linear stability analysis is undertaken for the buoyancy-

driven, thermocapillary-driven, and combined thermocapillary-buoyant-driven flows in

liquid droplets. Solving the generalized eigenvalue problem (3.54), the leading eigen-

values, γ, with the smallest decay rate, µ, and corresponding two-dimensional eigen-

vectors, x̂, are detected. It is then possible to find the onset of axisymmetric instability

by varying different parameters.

For the buoyancy-driven flow this leads to finding the onset of instability. On the

other hand, existence of the onset of axisymmetric flow (wave number m = 0) in

thermocapillary-driven flows has to be examined by varying the Marangoni number.

Three-dimensional instabilities which occur at quite low Marangoni numbers have been

found and thoroughly discussed for evaporating droplets (see Karapetsas et al., 2012).

Nevertheless, the instabilities due to the pure thermocapillarity have not been studied

yet. As a first step, the axisymmetric stability analysis of thermocapillary-driven flows

in liquid droplets is provided in this chapter.

5.1 Pure buoyant flow

In case of the pure buoyant flow, parallel horizontal isotherms within the domain are

considered as shown in figure 4.13a. This static vertical temperature gradient triggers

an instability when the Rayleigh number reaches its neutral value, Ran (Chandrasekhar,

1961). Here the aim is to obtain the neutral Rayleigh number for droplets of different

contact angles subject to a vertical thermal gradient, which has not been studied

previously.
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Figure 5.1: Streamlines and isotherms for an unstable flow (Ra = 3920, left column)
and the eigenvector isolines corresponding to the neutral modes of stream
function and temperature (Ra = Ran, right column). The parameters are
Pr = 28, θw = 0, Bi → ∞, (a,b) α = 105◦, (c,d) α = 90◦, (e,f) α = 60◦,
(g,h) α = 36◦, and (i,j) α = 22.5◦
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5.1 Pure buoyant flow

Hanging droplets of different contact angles which are shown in figures 4.27 and 4.30

have been considered. In order to find the most dangerous eigenvalues for each droplet,

the generalized eigenvalue problem (3.54) is solved varying the Rayleigh number. By

increasing the Rayleigh number (Ra > Ran), infinitesimal perturbations grow in time

(Rayleigh-Bénard instability mechanism) and consequently, the flow becomes unstable

(Lord Rayleigh, 1916).

The onset of instability is detected when the decay rate becomes negative, µ < 0. Fig-

ure 5.1 shows the streamlines and isotherms in droplets with different contact angles

when the flow is unstable (Ra = 3920, left column) as well as the eigenvector isolines

corresponding to the neutral mode of stream function and temperature for the each

droplet (right column) when Ra = Ran. The isolines of stream function of neutral

mode (the left half of each droplet) exhibit the same structure (but much smaller am-

plitude) as the streamlines which are developed when the flow is unstable which is quite

evident since the fluid flow within the droplet is initiated only by the buoyancy-driven

perturbations. Similarly, comparing the deflections in isotherms (basic state results)

with the position of separating isotherms corresponding to the neutral modes show that

the solutions of the nonlinear supercritical equations (left column) are compatible with

the axisymmetric neutral modes (right column). It should be mentioned that two sets

of neutral solutions exist in which the eigenvectors have the same magnitude, but have

different signs. In order to keep the results of the linear stability solver comparable

with the obtained results of the basic state flow, only one branch of the solutions are

presented here.

Figure 5.2 depicts the neutral Rayleigh number as a function of droplet’s contact angle.

To produce this neutral curve, the generalized eigenvalue problem has been solved for

a wide range of contact angles α ∈ [9, 145] with the step size of ∆α = 1 in order to

provide a high resolution stability curve. The resulting curve shows that in the limit

of small contact angles, α → 0, for which the droplet can be assumed as an infinite

axisymmetric thin film, the neutral Rayleigh number converges to Raα→0
n ≈ 1700. The

obtained neutral Rayleigh number is comparable with the results presented by Vrentas

et al. (1981) for an axisymmetric buoyancy-driven convection in cylindrical geometries

(with a free-surface at the top) when the Prandtl number is large. They reported that

the neutral Rayleigh number varies in the interval of Ran ∈ [1100, 2000] depending on

the aspect ratio of the cylindrical pool.

The neutral Rayleigh number is investigated for different Prandtl numbers (Pr = 1, 4,

and 83). For all the cases, the same critical value has been detected, which shows that

the obtained onset of instability is independent of the Prandtl number (Korpela et al.,
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Figure 5.2: Neutral curve, pure buoyant flow with Bi → ∞. Neutral mode isotherms
are plotted for hanging droplets with three different contact angles α =
20◦(N), α = 90◦(◮), and α = 135◦(◭). The parameters are the same as in
figure 5.1

1973; Hwang and Cheng, 1973). This cannot be easily shown using the employed scaling

of the governing equations because the Grashof number appears in the momentum

equation (2.14a), while the Prandtl number shows up in the energy equation (2.14c).

Instead, the independence of the neutral Rayleigh number from the Prandtl number is

explained considering another scaling of the equations in the Boussinesq approximation

as in Busse (1986). The governing equations for the total flow read

(∂t + u · ∇)u = Pr
(
−∇p +∇2u+ Raθk

)
, (5.1a)

∇ · u = 0, (5.1b)

(∂t + u · ∇) θ = ∇2θ. (5.1c)

Substituting (2.16) into the governing equations (5.1), subtracting the basic flow, and

linearizing the equations, we have

(∂tũ+ ũ · ∇U 0 +U 0 · ∇ũ) = Pr
(

−∇p̃ +∇2ũ+ Raθ̃k
)

, (5.2a)
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Figure 5.3: Maximum of Ψ as a function of the Rayleigh number for α = π/2, θw = 0,
and Bi → ∞. The inner graph presents fits to the expected square root
law (Ψmax,i = ai

√
Ra− Ran) for different Prandtl numbers.

∇ · ũ = 0, (5.2b)

(

∂tθ̃ + ũ · ∇θ0 +U 0 · ∇θ̃
)

= ∇2θ̃. (5.2c)

Considering (5.2), the Prandtl and the Rayleigh numbers only appear in the momen-

tum equation (5.2a). In the subcritical regime, the liquid is at rest (no flow motion);

therefore, the basic flow terms are zero (second and third terms in the left hand side).

Moreover, for the Rayleigh number corresponding to the neutral state, the perturba-

tions neither grow nor decay (when the oscillation frequency ω = 0). Consequently,

the time derivative of the perturbations in the left hand side of (5.2a) becomes zero.

As a result, in order to find the neutral Rayleigh number (5.2a) can be written as

−∇p̃ +∇2ũ+ Raθ̃k = 0. (5.3)

The only dimensionless number in the governing equations is then the Rayleigh number,

which confirms the independence of the neutral Rayleigh number from the Prandtl

number. However, development of the flow field is not similar for different Prandtl

numbers in the supercritical regime. In order to verify this, figure 5.3 sketches the
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Figure 5.4: Extremum of Ψ as a function of the Rayleigh number for Pr = 28, θw = 0,
and α = π/2. The ’⋆’ sign shows the neutral Rayleigh number obtained
from the linear stability analysis.

upper branch of the pitchfork bifurcation for three different relatively large Prandtl

numbers Pr = 4, 28, and 83. It is clear that the neutral Rayleigh number remains

unchanged for all the provided cases, whereas the development of the flow field in the

supercritical regime is quite similar, with different amplitudes.

For the lowest Prandtl number presented here, Pr = 4, the Grashof number have to

be much larger than the other cases to reach the neutral Rayleigh number Grn =

Ran/Pr ≈ 776. Therefore, in the supercritical regime, the extremum of the stream

function (when Ra > Ran) is much larger for the low Prandtl number liquid (Pr = 4)

than the other ones as it is shown in figure 5.3. In other words, the toroidal convection

cell is stronger for lower Prandtl numbers. The fit to the expected square-root law

Ψmax,i = ai
√

Ra− Ran (5.4)

has been shown in the inner graph of figure 5.3 plotting Ψ2
max as a function of Rayleigh

number, in which constants ai are given for different Prandtl numbers.

The onset of instability for a sessile droplet sitting on a heated plate and a hanging

droplet attached to a cooled plate is found to be the same. Therefore, the neutral curve

given in figure 5.2 is valid for both the cases. The basic state solutions obtained for a
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sessile droplet subject to pure buoyant forces lead to detecting a pitchfork bifurcation

(see figure 4.16) for a droplet with the contact angle of α = 90◦. In order to compare

the onset of instability obtained from the linear stability solver with the results of the

basic state flow, the neutral Rayleigh number for α = 90◦ is plotted together with the

bifurcation curves for Bi = 100 as well as Bi → ∞ in figure 5.4. As discussed before,

the bifurcation curve in case of Bi = 100 is perturbed as a result of a temperature

gradient imperfection (Mullin, 1993). Even for Bi → ∞, the pitchfork bifurcation

is not perfectly symmetrical due to the errors of the numerical scheme (Barten et al.,

1989). Nevertheless, the turning point of the upper stable branch in both curves is very

close to the obtained neutral Rayleigh number, Ran = 3103.24, which is highlighted in

figure 5.4.

5.2 Thermocapillary flow

In this section, the axisymmetric stability of the thermocapillary-driven flow in sessile

droplets sitting on a heated plate is investigated. Similar to the pure buoyant case, the

generalized eigenvalue solver is employed, the basic state results are used as an input to

the solver, and the linear stability of the flow is analyzed varying the most influential

parameter in the thermocapillary driven flow, the Marangoni number. When the real

part of the most dangerous eigenvalue becomes negative (because we are considering

the decay rate), the flow will be axisymmetrically unstable. Then the corresponding

Marangoni number is the neutral Marangoni number, Man.

In order to find neutral axisymmetric instabilities in a sessile droplet attached to a

heated plate with the contact angle of α = 90◦, the most dangerous eigenvalues are

found varying the Marangoni number for three different Biot numbers (Bi = 0.1, 1,

and 20). The results are illustrated in figure 5.5 in logarithmic scale which shows

that the real part of the most dangerous eigenvalue decays with the slope of −1,

ℜ(γmin) ∼ Ma−1, independent of the Biot number. Therefore, it can be concluded that

ℜ(γmin) never turns negative for any value of Marangoni number. In other words, the

thermocapillary-driven flow in a sessile droplet with a contact angle of 90◦ is linearly

stable for the azimuthal mode m = 0. A similar behavior was obtained by Nienhüser

and Kuhlmann (2002) for the thermocapillary-driven flows in non-cylindrical liquid

bridges with a static free-surface shape. Since all the obtained most dangerous eigen-

values are real, it suffices to show γmin rather than ℜ(γmin). It should be also noted

that the results are independent of the Prandtl number, when the Prandtl number

is relatively large (Pr > 1) and the only characterizing parameter is the Marangoni
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Figure 5.5: Real part of the most dangerous eigenvalue, ℜ(γmin), as a function of
Marangoni number for the thermocapillary-driven flow. The parameters
are Gr = 0, θw = 1, and α = 90◦. The dashed lines are guides to the eye.

number. The discrete points which are plotted in figure 5.5 can be obtained employing

any Prandtl number larger than 1 and modifying the Reynolds number.

In contrast, for very low Prandtl numbers, the eigenvalues and eigenvectors evolve

quite differently. Figure 5.6 depicts the smallest eigenvalues as a function of Marangoni

number for a relatively large Prandtl number as well as for Pr = 0.02. Although the

flow in case of low Prandtl number is also linearly stable, the slope of the curve is

different from the other Prandtl numbers (γmin ∼ Ma−0.8). Moreover, the eigenvectors

which are sketched for the same Marangoni number, exhibit different structures. The

stream function perturbations form a single toroidal vortex when Pr > 1, while for

the low Prandtl number the main central toroidal vortex is bounded between two

weaker counter-rotating vortices, one close to the apex and the other in the vicinity

of the contact line. The differences between low and high Prandtl numbers were also

identified in the basic state results (see figures 4.5 and 4.23).

The stream function and temperature neutral modes (which are decaying exponentially

in time) for different Marangoni numbers are shown in the right column of figure 5.7.

The corresponding basic state flow and temperature fields for each case is sketched side

by side in the left column of the same figure. The stream function perturbations for
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Figure 5.6: The most dangerous eigenvalue, γmin, as a function of Marangoni number
for the thermocapillary-driven flow. The parameters are Bi = 1, Gr = 0,
θw = 1, and α = 90◦. The dashed lines are guides to the eye.

low Marangoni numbers form two counter-rotating vortices where the clockwise vortex

(’−’) is stronger in magnitude. These vortices develop due to the surface tension which

drives the perturbations in two opposite directions; one from the contact line upward,

and the other from the apex of the droplet downward along the free surface. The

perturbation isotherms illustrate the corresponding thermal gradients along the liquid-

gas interface. By increasing the Marangoni number, the structure of the flow field for

the basic state results and the neutral modes become similar. For Ma = 4000, the

clockwise vortex shown in figure 5.7h dominates the perturbation field and exhibits

nearly the same structure as in the streamlines of the basic state which are plotted

in figure 5.7g. A weak deflection of the streamlines close to the contact line (figure

5.7g) and the small counter-clockwise vortex (’+’) in figure 5.7h are in the same region.

Furthermore, the perturbation isotherms exhibit a single core oblate shape structure

for low Marangoni numbers as it is shown in figure 5.7b, whereas by increasing the

Marangoni number and the development of thermal boundary layers in the basic state

results, the single core turns into a toroidal structure with a strong gradient close to

the substrate (figure 5.7f).
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Figure 5.7: Streamlines and isotherms for thermocapillary-driven flow (left column)
and the eigenvector isolines corresponding to the most dangerous mode
of stream function and temperature (right column). The parameters are
Pr = 4, Bi = 1, Gr = 0, θw = 1, α = 90◦, and (a,b) Ma = 40, (c,d)
Ma = 400, (e,f) Ma = 4000, (g,h) Ma = 4× 104.
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Figure 5.8: Streamlines and isotherms for thermocapillary-driven flow (left column)
and the eigenvector isolines corresponding to the most dangerous mode
of stream function and temperature (right column). The parameters are
Ma = 400, Pr = 4, Bi = 1, Gr = 0, θw = 1, and (a,b) α = 105◦, (c,d)
α = 90◦, (e,f) α = 60◦, (g,h) α = 36◦, (i,j) α = 22.5◦.
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The evolution of perturbations in droplets with different contact angles are illustrated

in figure 5.8 for a constant Marangoni number, Ma = 400. Similar to figure 5.7,

the basic state results and the eigenvector isolines are plotted in the left and right

columns, respectively. Patterns of the stream function perturbations for droplets with

large contact angles exhibit two counter-rotating toroidal vortices and the perturbation

isotherms have a toroidal structure, as it is discussed before. However, for shallower

droplets, the perturbation isotherms become flatter and the thermal gradient along the

free surface leads to surface tension stresses which drive the flow just in one direction

(upward starting from the contact line). Therefore, the clockwise vortex, whose struc-

ture is very similar to the streamlines (left column), fully dominates the flow as shown

in figures 5.8f, 5.8h, and 5.8j.

5.3 Combined thermocapillary-buoyant flow

In the previous section, it was proven that the pure thermocapillary-driven flow in

liquid droplets is always linearly axisymmetrically stable (wave number m = 0). In

this section, the axisymmetric stability of the mixed thermocapillary-buoyant flow in

sessile droplets sitting on a heated plate as well as in hanging droplets attached to a

cooled plate is discussed.

Figure 5.9 illustrates the development of stream function and temperature perturba-

tions in droplets when the level of gravity increases. From left to right each row presents

a constant Marangoni number (Ma = 40, 400, and 8000, respectively) and the Grashof

number is constant in each row which increases from top to bottom. As discussed in

the previous chapter, the buoyancy dominates the flow only when the thermocapillary

Reynolds number is relatively small. Comparing the evolution of perturbations when

the Grashof number increases in the left and right columns (low and high Reynolds

numbers, respectively) confirms this statement.

In the left column, by increasing the gravity level from Gr = 10 to Gr = 100, a counter-

rotating toroidal vortex (’+’) develops close to the centerline of the droplet as shown

in figure 5.9d. However, the vortex is still weak in comparison to the thermocapillary-

driven vortex (’−’), since the perturbation isotherms are quite similar in figures 5.9a

and 5.9d. By increasing the gravity level further, the buoyancy-driven vortex fully

dominates the flow and becomes stronger in magnitude. The pattern of thermal per-

turbations then gradually changes for higher Grashof numbers (see figures 5.9j and

5.9m).
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Figure 5.9: Isolines corresponding to the neutral modes of stream function and tem-
perature for the combined thermocapillary-buoyant flow in a sessile droplet
sitting on a heated plate; Ma = 40 (left column), Ma = 400 (middle col-
umn), and Ma = 8000 (left column). The parameters are Pr = 4, Bi = 0.1,
α = 90◦, and (a,b,c) Gr = 10, (d,e,f) Gr = 100, (g,h,i) Gr = 500, (j,k,l)
Gr = 1000, (m,n,o) Gr = 3000.
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Figure 5.10: The most dangerous eigenvalue, γmin, as a function of the Grashof num-
ber, with the Marangoni number as a parameter, for the combined
thermocapillary-buoyant flow in a sessile droplet sitting on a heated plate.
The parameters are the same as in figure 5.9. The dashed lines are guides
to the eye.

In contrast to the low Marangoni number case, the structure of perturbation isolines

does not change by increasing the level of gravity for a high Marangoni number, Ma =

8000 (right column of figure 5.9). In other words, for a large enough Marangoni number,

the flow is fully dominated by the thermocapillarity no matter how large the gravity

level is. Similar conclusion has been given by Carpenter and Homsy (1990) for the flow

in a square cavity. For a moderate value of the Marangoni number (Ma = 400) which

is shown in the middle column, a weak deflection of the stream function perturbations

can be observed in figure 5.9n for a very large Grashof number, Gr = 3000. However,

even for lower Grashof numbers, a slight difference in the perturbation isotherms can

be observed comparing figures 5.9b and 5.9k which expresses a weak influence of the

buoyancy.

Although the influence of the gravity level on the neutral mode is presented in figure 5.9,

the stabilizing or destabilizing effect of buoyancy cannot be concluded from the plotted

isolines. In order to study the effect of buoyancy on the stability of the liquid droplet
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Figure 5.11: The most dangerous eigenvalue, γmin, as a function of the Grashof num-
ber, with the Marangoni number as a parameter, for the combined
thermocapillary-buoyant flow in a hanging droplet attached to a cooled
plate. The parameters are the same as in figure 5.12. The dashed lines
are guides to the eye.

in a combined thermocapillary-buoyant flow, the most dangerous eigenvalues are ob-

tained by solving the generalized eigenvalue problem for a wide range of Marangoni

and Grashof numbers. The results are classified and plotted in figure 5.10. The pos-

itive slope of all the curves (except for a very weak local minimum which appears at

Gr = 1000 in the upper curve) shows that the smallest eigenvalue grows by increas-

ing the Grashof number, despite different trends for different Marangoni numbers. It

means that the flow becomes more stable when the level of gravity increases. As a

result, it can be concluded that the buoyancy has a stabilizing effect on the combined

thermocapillary-buoyant flow independent of the Marangoni number. Moreover, the

results confirm that the combined thermocapillary-buoyant flow is axisymmetrically

stable similar to the case of pure thermocapillary-driven flow.

Similar investigation is done for the case of a hanging droplet attached to a cooled plate

and the results are shown in figures 5.11 and 5.12. The obtained trends for the curves of

the most dangerous eigenvalues versus Grashof number (figure 5.11) are nearly identical
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Figure 5.12: Isolines corresponding to the neutral modes of stream function and tem-
perature for the combined thermocapillary-buoyant flow in a hanging
droplet attached to a cooled plate; Ma = 40 (left column), Ma = 400
(middle column), and Ma = 8000 (left column). The parameters are
Pr = 4, Bi = 0.1, α = 90◦, and (a,b,c) Gr = 10, (d,e,f) Gr = 100, (g,h,i)
Gr = 500, (j,k,l) Gr = 1000, (m,n,o) Gr = 3000.
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to the ones of the heated plate case as shown in figure 5.10 with some small deviations

in the vertical axis. However, the evolution of the perturbations is different, comparing

figures 5.9 and 5.12. In this case, patterns of perturbation isotherms exhibit a more

uniform thermal gradients along the centerline which is different from the heated plate

case. Therefore, the flow perturbations evolve differently by increasing the gravity

level. Even for a very high Marangoni number (right column of figure 5.12), the effect

of buoyancy on the stream function perturbations can be distinguished (see figure

5.12o) although the thermocapillarity remains dominant.
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Chapter 6

Summary and Conclusions

The steady, incompressible, two-dimensional, axisymmetric flow in a non-volatile liq-

uid droplet attached to a solid flat substrate has been numerically computed for

three general cases of pure buoyancy-driven, pure thermocapillary-driven, and com-

bined buoyant-thermocapillary flows. Assuming the droplet to have a non-deformable

spherical-cap shape as a result of a large mean surface tension, the body-fitted toroidal

coordinate is employed. The flow in both sessile and pendant droplets attached to an

isothermal flat plate is investigated. The temperature in the ambient is assumed to vary

linearly with the vertical distance from the substrate. Consequently, the heat transfer

through the liquid-gas interface results in a temperature gradient within the droplet.

This nonuniform temperature distribution initiates two different driving mechanisms:

thermocapillarity which drives the flow along the liquid-gas interface and buoyancy

which is a body force and acts in the bulk of the liquid. The governing equations

in vorticity-stream function formulation are discretized by a second-order central dif-

ference scheme on a nonuniform computational grid and solved by means of an it-

erative solver implemented in Matlab. Results are presented in terms of streamlines

and isotherms for different contact angles covering a wide range of thermocapillary

Reynolds, Biot, Prandtl, and Grashof numbers. The data provided are claimed to

have benchmark quality on account of the high accuracy which is attained employing

a body-fitted coordinate system.

Based on the results obtained for the pure thermocapillary case, the flow can be cat-

egorized into two regimes, low and high Prandtl numbers. For each regime the flow

behavior is different. For low Prandtl numbers, the stream function extremum, which

represents the strength of the flow, was found to scale like Ma−1/2 in the asymptotic

limit of large Marangoni numbers. This scaling is valid for both sessile and pendant

droplets. In contrast, different scalings are detected for the high Prandtl number
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regime. For heated- and cooled-plate cases, the intensity of the flow scales like Ma−1/3

and Ma−2/3, respectively. Different thermal boundary layers, observed for a heated

and a cooled plate, are found to be the reason for the different scalings. Furthermore,

a scaling analysis of the boundary conditions on the free surface has been provided in

the limit of shallow droplets (α → 0). The analysis yields the scalings |Ψ|max ∼ α3

and 1− θapex ∼ α. Both scalings are confirmed with the numerical results obtained for

droplets with a range of small contact angles.

The onset of thermal convection in the pure buoyant flow is obtained when the tem-

perature distribution is uniform in vertical direction. To retrieve this temperature

distribution, a limit of maximum heat transfer rate through the liquid-gas interface

(Bi → ∞) is considered. A nearly perfect bifurcation diagram is obtained by plot-

ting the stream function extremum as a function of Rayleigh number. The onset of

thermal convection is examined for different droplet shapes. The values obtained for

shallow droplets are in good agreement with the onset of thermal convection in thin

liquid layers heated from below. Different origins have found for the observed toroidal

convection cells: the cells close to the center of the droplet are driven by buoyant

forces, whereas the ones in the vicinity of the contact line are formed by viscous forces.

These two convection cell types can be visually distinguished. The streamlines of the

buoyancy-driven cells have a symmetrical shape, while the center of the viscous eddies

are displaced towards the separating streamlines. An empirical relation between the

aspect ratio of the droplet and the number of convection cells is proposed, Ncell ≈ 1/l.

In the presence of buoyancy and thermocapillarity, the flow is driven predominantly by

thermocapillary stresses, except in the limit of low thermocapillary Reynolds number.

Under such conditions, buoyant forces either compete with the thermocapillary forces

and generate a counter-rotating vortex, or enhance the existing thermocapillary-driven

vortex, depending on the temperature distribution within the domain. In case of

competing forces, the separation of the buoyancy-driven vortex from the substrate

strongly depends on the balance between body and surface forces. A more interesting

competition of these forces is observed in shallow droplets. The surface tension stresses

drive a global flow which envelops the cells driven by buoyancy. As a result, a series

of co-rotating cells appears. The number of cells in these structures are found to be

always less than the number of cells in the same droplet shape subject to pure buoyant

forces.

By means of axisymmetric linear stability analysis, the neutral Rayleigh number is

obtained for the pure buoyant flow in droplets of different contact angles subject to a

uniform temperature distribution in vertical direction. The onset of thermal convection
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obtained from the nonlinear calculations has been confirmed by the results of the linear

stability analysis. For liquid droplets of different contact angles, the independence of

the neutral Rayleigh number from the Prandtl number is confirmed numerically as

well as analytically. For the thermocapillary-driven flow, it is found that no linear

instability exists with the wave number m = 0 independent of the Marangoni number

and the contact angle. It is shown that the most dangerous eigenvalue scales with

Marangoni number like Ma−1 for Pr > 1, and Ma−0.8 for a very low Prandtl number

(Pr = 0.02). In case of the combined thermocapillary-buoyant flow, buoyancy is found

to have a stabilizing effect on the flow in sessile and hanging droplets.

To extend the scope of the current study, many directions can be suggested. Firstly,

considering the latent heat due to evaporation in the boundary conditions of the liquid-

gas interface is probably the most appropriate extension to this work. A reason for

neglecting the evaporation in this study was to decouple the problem and focus partic-

ularly on other influential phenomena such as thermocapillarity and buoyancy. There-

fore, including the evaporation would help to provide more realistic results. Secondly,

an analytical scaling analysis is suggested in order to clarify various scalings which

have been found between stream function and Marangoni number. Finally, a full

three-dimensional linear stability analysis would be of interest to analyze the instabil-

ity mechanisms in buoyancy-driven as well as thermocapillary-driven flows.
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