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Abstract

The accumulation of particles in laminar incompressible fluid flows is investigated. Boundary-
driven closed systems are considered. We deal with a thermocapillary liquid bridge, a lid-driven
cavity and a partially liquid-filled rotating drum. In all three the configurations we consider flows
after the onset of a steady three-dimensional instability. The corresponding fluid dynamics
systems are equivalent to a Hamiltonian system of 1.5 degrees of freedom and we consider
flow parameters for which chaotic and regular regions coexist. Owing to the boundary-driving
mechanism, the quasi-periodic streamlines (Kolmogorov-Arnold-Moser or KAM tori) are mainly
located near the moving wall or the free-surface.

Finite-size particles with small Stokes numbers are introduced in these fluid flow systems
to study the so-called particle accumulation structures (PAS). In the following we extend the
classical framework of investigation of PAS, passing from thermocapillary to boundary-driven
flows. We further aim at clarifying the fundamental mechanism PAS is based on, regardless of
the specific system in which it is considered. The main flow features basically required in these
set-ups are KAM tori located near the boundaries and particles of finite-size. The particles
which move close to a wall or a free-surface may be transferred from the chaotic to the regular
regions of the flow because of the repulsion exerted by the boundaries. The particle–boundary
interaction represents the main dissipative mechanism responsible for the formation of PAS.

For simulating particles moving close to the driving boundaries we employ fully-resolved simu-
lations produced via a discontinuous Galerkin finite element method (DG-FEM) in combination
with the smoothed profile method (SPM). The simulations aim at clarifying the dependence of
the lubrication gap width on particle size and density ratio after that a single particle is trapped
(within a certain tolerance) in 2-D PAS. To this end, small particles in a shear–stress- and a
lid-driven cavity are investigated. The fully-resolved simulation results are employed to improve
an existing particle–boundary interaction (PSI) model. A one-way coupling approach which
includes such an improved PSI model is used to simulate two- and three-dimensional particle-
laden flows. A comparison of the numerically predicted PAS with experimental data is finally
made to confirm the numerical results.

All the main phenomenological explanations given for understanding PAS will be commented
and discussed in details. Our principal aim is to show that the strong correlation between particle
accumulation structures and flow topology, together with the particle–boundary interaction
dissipative effect, provides a universal mechanism for explaining PAS for all set-ups investigated.
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1. Introduction

In this chapter the physical phenomenon of interest for the present thesis is introduced and
discussed. A detailed overview on particle accumulation structures (PAS) is given, pointing out
the different mechanisms which may lead to particle clustering. Thereafter we briefly present
the theoretical background needed to understand PAS.

Experimental and numerical observations of particle accumulation in a liquid bridge are re-
ported. The phenomenological interpretations proposed in literature for explaining PAS phe-
nomena are presented and discussed, together with the motivations at the core of this thesis.
Finally an outline of this dissertation is given.

1.1. Particle Accumulation Phenomena

Particle-laden flows are a class of multiphase flows in which an immiscible dispersed particulate
phase is embedded in a continuous fluid phase. They occur in many industrial processes like
steel making [260], biological applications [177] and combustion processes [63] as well as in
natural phenomena such as volcanic ash flows, sand storms, debris flows [86]. It is therefore
of crucial importance a deep understanding and an accurate prediction of the key phenomena
which arise in this framework. Based on these reasons, particle-laden flows is a flourishing field
of theoretical, experimental and computational fluid dynamics research.

In the following we will focus on particle accumulation phenomena observed in incompressible
laminar flows. Various authors have considered such a matter, paying attention to the effect of
inertia with respect to the temporal evolution of the particle distribution (see e.g. [6, 7, 112])
and investigating the accumulation pattern in correlation with chaotic and regular regions of
the flow [41, 250, 288]. As we will see in the following, the direct correlation between particle
clustering regions and the topology of the flow field is one of the key elements for understanding
PAS phenomena. However, differently from the aforementioned investigations, inertia is playing
a secondary role in the mechanisms we will investigate.

A fundamental step for understanding particle clustering in incompressible fluid flow systems
consists in identifying the main source of dissipation for the particulate-phase system. Our focus
will be on particle accumulation in steady three-dimensional flows and, under these conditions,
the fluid dynamic system is equivalent to a Hamiltonian system of 1.5 degrees of freedom [12].
Owing to the solenoidal constraint, the Liouville’s theorem states that the phase space volumes
are conserved in the Hamiltonian system represented by the fluid flow. This implies that ac-
cumulation phenomena cannot be produced by simple advection of the particles with the flow,
but there must be a dissipative mechanism which leads to particle clustering. In general, par-
ticle inertia, buoyancy effects and other dissipative mechanisms may lead to accumulation. In
our case, among these dissipation sources, a dominant role is played by the particle–boundary
interaction.

In the following we will deal with the so-called particle accumulation structures. They have
been reported for the first time by Schwabe et al. [255], where an unexpected particle clustering

1



1. INTRODUCTION

(a) (b)

Figure 1.1.: Experimental evidence of particle accumulation structures reported in [256] under
microgravity conditions. The snapshots represent top- (a) and side-view (b) of a
thermocapillary liquid bridge seeded with particles. The tracers arranged themselves
in a line-like pattern rotating with the hydrothermal wave occurring in the fluid flow.

is experimentally observed for very small Stokes numbers in a liquid bridge

St =
2a2

p

9R2
% = O(10−5), % =

ρp

ρf
= O(1), (1.1)

where ρp and ap are density and radius of the employed spherical particles, ρf and R denote the
fluid density and the liquid bridge radius. It is significant that such a phenomenon is reported
for “tracer particles” which, in other words, are particles supposed to almost perfectly follow
the flow. As said, a perfect tracer cannot accumulate in non-dissipative flows and this explains
the surprise of the authors in observing particle clustering in the liquid bridge. In the spirit of
such an observation, we will keep on referring to small particles which accumulate on PAS as
tracers.

Figure 1.1 depicts the top- and side-view of a liquid bridge heated from above where initially
randomly distributed particles arranged themselves in a ordered line-like pattern [258]. This
particle clustering phenomenon is known as PAS since the work of Schwabe et al. [255] and is
attracting increasing interest of many authors who experimentally and numerically observe and
investigate it (see e.g. [255, 254, 270, 258, 228, 126, 194, 190, 195, 197, 104, 102]).

Different patterns have been reported in dependence on the main non-dimensional groups of
interest in the liquid bridge set-up. Among the main features highlighted by Schwabe et al. is the
rapid de-mixing of initially randomly suspended particles which organize in tubular structures
or closed threads after few convective time units. Moreover, almost all the particles present in
the fluid are attracted to the periodic or quasi-periodic orbit without sensible changing of the
shape of PAS due to particle–particle interaction. This may lead to speculate that the particle
accumulation is, with good approximation, a single-particle phenomenon. Such a hypothesis is
commonly exploited in the numerical prediction of PAS, where tracers are usually modeled as
point-wise particles using a one-way coupled approach.

Two other aspects are still to be mentioned. First of all the peculiar feature of thermocap-
illary [152] flows produced by the shear stress driving along the liquid–gas interface. Owing to
it, the highest velocities of the flow are reached at the interface and the resulting streamline
crowding transports many particles very close to the free-surface. For this reason, understanding

2



1.2. MOTIVATION

PAS requires to take into account the role of particle–free-surface interactions (see [126, 194])
even though small particle volume fractions and very low Stokes numbers are involved in the
phenomenon.

Moreover, the finite size of the particle is negligible when the tracer moves in a region far
away from the boundaries, but essential when it moves very close to the free-surface. Indeed, the
lubrication forces exerted from the boundary on the finite-size tracer produce a sensible change
of the whole trajectory if compared to a zero-size particle one. Hence, an accurate prediction of
the particle accumulation structures requires a thorough description of the particle–boundary
interaction.

We anticipate that in this accumulation phenomenon inertial effects play a minor role [197].
Neglecting the particle–free-surface interaction in the numerical simulation of PAS produces
unrealistic predictions (see [195]) and even a simply advected tracer whose motion near the
free-surface is modeled via a dedicated theoretical particle–boundary interaction approach can
qualitatively well reproduce experimental results [194]. However, as pointed out by Mukin &
Kuhlmann [194], for an accurate prediction of particle accumulation structures, it is necessary to
take into account the minimum lubrication gap width between the free-surface and the particle
trapped in the periodic- or quasi-periodic attractor.

1.2. Motivation

Even though particle accumulation phenomena in a liquid bridge have been extensively demon-
strated experimentally or reproduced numerically for more than two decades, the theoretical
mechanisms which dominate the phenomenon are still subject of discussion. Aim of this work
is to clarify the physical mechanism which produces the accumulation structures discussing
and criticizing most of the theoretical explanations proposed so far. Summarizing some of the
interpretations, among the proposed theories: the gathering effect of the cold corner on the
free-surface [258], a resonance phenomenon combined with a Bernoulli-effect [255], the interac-
tion between vorticity-waves and PAS [160], a particle-flow synchronization [228, 190] and the
repeated interaction between particles and free-surface in combination with regular and chaotic
regions of the flow topology [126, 194].

Apart from the last one, all the reported interpretations have been inferred from experi-
mental or numerical observation and never rigorously demonstrated. We will provide other
proofs in support of the theory of Kuhlmann et al. [126, 194] showing that this represents a
phenomenological explanation of PAS universally valid for all the set-ups we investigate. The
strong correlation between flow topology and particle accumulation structures will be further
proven comparing PAS and regular regions for the flow. Apart from the liquid bridge, a two-
sided antiparallel lid-driven cavity and a partially liquid-filled rotating drum are considered.
These mechanically-driven systems are chosen on purpose to demonstrate PAS in the absence of
a contracting-expanding free-surface and characteristic frequencies of the traveling wave insta-
bility. This way we aim at showing that the theoretical explanations of Schwabe et al. [258, 255],
Pushkin & Melnikov et al. [228, 190], respectively, do not provide a universal argument for in-
terpreting PAS in all the set-ups in which it is observed. Vice versa, the streamline crowding
in proximity of the driving boundaries induces repeated particle–free-surface/wall interactions
in all the considered systems. Moreover, considering the particle–boundary interaction as the
main dissipative effect the numerical time is consistent with the experimental PAS formation
time.

Thereafter, we aim at quantitatively compare numerical and experimental results both, in
case of liquid-bridge and lid-driven-cavity flows. For the first time, an experimental observation

3



1. INTRODUCTION

of PAS will be reported in set-ups different from the liquid bridge. To the best of the author’s
knowledge, this is the first time that a systematic comparison will be presented in terms of
objective and reliably measurable quantities.

To that end we will determine a functional dependence of the minimum lubrication gap width
between particle and free-surface/wall after that the particle has been trapped by the periodic
attractor (within a certain tolerance). Parameters of the investigation will be the particle radius
and the particle-to-fluid density ratio. Such a result will be used for numerically predicting
PAS. Furthermore, it may guide future experiments estimating the window of particle radii to
employ for observing particle accumulation. Moreover, ad-hoc cases will be selected to show
that an accurate prediction of the lubrication gap may be essential even for a simple qualitative
prediction of the particle accumulation experimentally observed in a liquid bridge.

Finally, the role of particle–particle interactions will be investigated comparing single-particle
attractors with multiple particle accumulation. We aim at understanding if mutual particle
interactions may induce loss of particles from an established particle accumulation structure.

1.3. State of the Art of Particle Accumulation Structures

Since the pioneering work of Schwabe et al. [255], PAS phenomena in a liquid bridge have
triggered a series of experimental and numerical investigations aiming at understanding and
giving a physical explanation of it. The first experimental evidence of PAS considered subcritical
regimes for the liquid bridge under which the flow is steady and axisymmetric. Under these
conditions particles heavier than the fluid tend to accumulate on toroidal structures very close
to the free-surface. Very similar particle accumulation structures have been reported for different
combinations of particle radii and particle-to-fluid density ratios (abstract of [255]).

PAS has been also found in case of supercritical conditions when the fluid flow instability
arises in the form of a hydrothermal wave (see e.g. [266, 202, 291, 251, 167] for details about
the fluid flow configuration after the onset of such instability). The shape of the periodic or
quasi-periodic attractor is different from the subcritical case and the particles seem to cluster
along line-like structures rotating with the same angular velocity of the hydrothermal wave.
The accumulation structure winds m times around the thermocapillary vortex core, where m
represents the azimuthal wave number of the hydrothermal wave [254]. Different forms of PAS
are reported in dependence on the liquid bridge aspect ratio and the other non-dimensional
groups of interest for the fluid flow. Figure 1.2 depicts two examples of periodic attractors for
mode 2 (a) and mode 3 (b).

Owing to the limited hydrostatical stability, only small liquid bridges can be realized on the
ground. Based on this reason, particle accumulation structures have been further investigated
under microgravity conditions scaling up the typical length of a liquid bridge under normal
gravity conditions (mm) to the orders of centimeters. Under weightlessness conditions (see fig.
1.1) it has been shown that particle accumulation structures may arise (see [256]), which proves
that buoyancy effects are not necessary for the occurrence of such a phenomenon. During these
experiences conducted under the MAXUS 6 flight, it was also found that the optimum parameters
(i.e. aspect ratio, Reynolds numbers, particle radius) for observing PAS differ slightly between
weightlessness and ground conditions.

Apart from the aforementioned studies conducted using a NaNO3 liquid bridge, other ex-
perimental investigations using liquid bridges made out of silicone oil [280, 270, 1, 279, 2, 206,
103, 104] further enriched the patterns of observed accumulation structures varying the Prandtl
number of the fluid and classifying existence regimes for the so-called SL-I- and SL-II-PAS.

Other periodic attractors are found in [258], where the authors report the PAS formation time

4



1.3. STATE OF THE ART OF PARTICLE ACCUMULATION STRUCTURES

(a) (b)

Figure 1.2.: Particle accumulation structures in a liquid bridge beyond the onset of a hydrother-
mal wave instability. The azimuthal wave numbers are m = 2 (a) and m = 3 (b) and
the arrows depict the sense of rotation of the hydrothermal wave (and consequently
of the particle accumulation structures). The two snapshots are reported in [254].

and suggest it as a fundamental quantity of interest for identifying the dominant mechanism
responsible for PAS. A precise definition of the PAS formation time τ is currently matter of
discussion and was defined by Schwabe et al. as “the time elapsed between a homogenization of
the particle distribution and the moment when PAS can be recognized again by the observer”.
This definition is certainly subjective, but may lead to estimate an order of magnitude of the
clustering phenomenon formation time. In fact, the different accumulation mechanisms (inertia,
particle–boundary interaction, etc...) sensibly differ in the time required to produce PAS and
in the accumulation structures they produce [197]. Therefore an estimate of τ can be used to
reliably identify the dominant effects form the secondary ones. In [258] it was also experimentally
reported that the PAS formation time is function of the particle diameter and the particle density.

Moreover, experimental reconstruction of single-particle trajectories are reported in [270, 258,
279, 206, 104], which show how single particles follow the accumulation pattern, but travel with
much slower azimuthal velocity than the phase velocity of the hydrothermal wave.

Once again we point out that the experimental evidence demonstrates that the shape of the
accumulation pattern does not depend on the number of particles suspended in the liquid bridge.
This observation may suggest that particle–particle interaction does not play an important role
in determining PAS. However, as reported in [258], a transfer of particles from the line-like PAS
to the bulk region of the flow has been observed. They proposed sedimentation and other causes
to explain it, but the relevance of particle–particle interactions in the stability of PAS is still to
be clarified.

Apart from experimental studies, the first attempts to numerically model particle accumula-
tion structures are due to Domesi [69, 70]. He highlighted the strong deviation between zero-size
and finite-size particle trajectories moving very close to the free-surface and suggested it as cause
of the particle accumulation. This idea has been further developed in a more systematic manner
by Hofmann & Kuhlmann [126]. These authors proved that particle–free-surface interactions can
actually lead to an attracting periodic orbit for particle motion. Further improvements of this
theory are proposed in [194], where the crucial role of coexisting chaotic and regular streamlines
is pointed out. Moreover Mukin & Kuhlmann [194] highlighted the importance of estimating

5



1. INTRODUCTION

the minimum lubrication gap width between particles and free-surface (after that particles ac-
cumulated along the periodic orbit) for a quantitatively accurate numerical prediction of the
accumulation phenomenon.

Other numerical investigations included inertial effects for reproducing PAS either in a liquid
bridge flow [190] or in an ad-hoc analytical model flow [228]. In both these papers a phenomenon
of synchronization between particles and fluid flow is proposed as cause of PAS speculating the
frequency lock-in between PAS and hydrothermal wave frequency. However, inertial effects
involve much slower accumulation dynamics if compared to the experimental formation time
[154, 149, 197]. Moreover Kuhlmann & Muldoon [153, 156] have brought to the discussion robust
arguments against the interpretation of particle accumulation as result of a lock-in phenomenon.
Their objections are based on the fact that synchronization may occur between two weakly-
coupled systems [226], whereas the particle dynamical system is definitely driven by the fluid
flow for the typically small Stokes numbers involved in the experiments. In this case the particle
structures are moving in synchronous motion with the fluid flow, but do not induce frequency
lock-in.

Still to be mentioned is another interpretation of PAS inferred in his numerical study by Lappa
in [160]. He proposed the interaction between vorticity-waves as cause of PAS formation noticing
that the particle attractors lie on axial vorticity isosurfaces. He also found particle accumulation
in liquid bridges under standing wave instability [163], g-jitter conditions [162] and Rayleigh-
Bénard convection [161]. These results are at least questionable due to the first-order scheme
used for the time integration which, by itself, may produce PAS by accumulation of numerical
errors. Moreover in the papers of Lappa it is not reported the strange implementation of the
PSI model he employs (see [197]).

1.4. Thesis Outline

The present thesis is organized as follows.
Chapter 2 gathers the problem formulations for the three-dimensional flow configurations in

which PAS is investigated: a liquid bridge, an antiparallel lid-driven cavity and a partially
liquid-filled rotating drum. Equations, boundary conditions and different scalings are discussed
to formally define the particle-laden flows to be investigated.

In Chapter 3 we present the numerical methods employed for dealing with fully-resolved
particle–free-surface, particle–wall and particle–particle interactions. The choice will be moti-
vated via a thorough comparison with other methods commonly employed in literature.

The accumulation phenomenon in the two-dimensional shear–stress-driven and lid-driven cav-
ities is investigated in Chapter 4. After a complete accumulation, the minimum lubrication gap
width between particle and boundary is calculated, relating it to the particle radius and the
particle-to-fluid density ratio. Finally a phenomenological consideration on particle–particle
interactions is conducted.

Chapter 5 presents the numerical prediction of particle accumulation structures in the three
configurations defined in Chapter 2. A tight connection between PAS and flow topology will be
demonstrated and the comparison between numerical and experimental data is considered for
verifying our prediction whenever experimental data are available.

Finally, Chapter 6 is dedicated to summarize and discuss the results of the present work as
well as to propose possible future investigations for better understanding and predicting particle
accumulation structures.
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2. Problem Formulation

Three different problem set-ups will be investigated herein presenting their mathematical for-
mulation in this chapter. The non-dimensionalization is consequently adapted in dependence on
the flow features, and the corresponding scalings are discussed in the following.

The first part of this chapter focuses on describing the fluid phase modelling. Three-dimensional
thermocapillary and mechanically-driven flows are targeted: a liquid bridge, a lid-driven cavity
and a partially liquid-filled rotating drum. The aim is to extend the usual framework of inves-
tigation of particle accumulation structures from thermocapillary- to boundary-driven systems.

The last part of this chapter is dedicated to the particulate phase modelling. A point-wise
and a finite-size approach for dealing with the particles will be mathematically formulated and
discussed. During this thesis both of them will be employed in dependence on the specific case
to investigate.

2.1. Liquid Bridge

The first set-up we formulate consists of a liquid bridge of an incompressible Newtonian liquid.
The liquid has density ρf, and both its thermal diffusivity and kinematic viscosity, κ(T ) and
ν(T ), are assumed temperature dependent. Two coaxial, cylindrical disks of radius R are placed
at a mutual distance d. They are kept at constant temperatures Tcold = T0 − ∆T/2 and
Thot = T0 + ∆T/2 and represent the support of the liquid bridge. The hotter disk is heating the
fluid from above.

Under micro-gravity conditions or for small characteristic scales, the principal driving is due to
thermocapillary forces which arise from the surface-tension gradient induced by the temperature
gradient. The surface tension between the ambient gas and the liquid bridge

σ = σ0 − γ(T − T0), (2.1)

can be, in good approximation, represented as a linear function of the temperature, where σ0 is
the surface tension at the mean temperature T0 = (Thot + Tcold)/2 and γ = −∂σ/∂T |T=T0

the
negative surface tension coefficient. In fig. 2.1 a sketch of the problem is depicted.

Cylindrical coordinates (r, ϕ, z) are used to formulate the problem and a thermocapillary
scaling is employed, non-dimensionalizing as follows

u =
γ∆T

ρfν0
û, x = dx̂, t =

dρfν0

γ∆T
t̂, p =

γ∆T

d2
p̂, T = ∆T θ̂, (2.2)

where u = uer + veϕ +wez and p are the velocity and pressure fields, respectively, x = (r, ϕ, z)
denotes the space vector in cylindrical coordinates, t is the time and the caret indicates non-
dimensional quantities. Dropping it and including the Boussinesq approximation, the non-
dimensional Navier–Stokes system reads

Re (∂t + u · ∇)u = −∇p+∇ · (ν/ν0∇u) + Bd θez, (2.3a)

∇ · u = 0, (2.3b)

Ma (∂t + u · ∇) θ = ∇ · (κ/κ0∇θ) , (2.3c)
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Figure 2.1.: Sketch of the liquid bridge.

where the non-dimensional groups of interest are the thermocapillary Reynolds number, Re, the
Marangoni number, Ma, and the dynamic Bond number, Bd

Re =
γ∆Td

ρfν
2
0

, Ma =
γ∆Td

ρfν0κ0
, Bd =

βρfgd
2

γ
, (2.4)

where g is the acceleration of gravity and β the thermal expansion coefficient. For convenience,
instead of the Marangoni number, a reference Prandtl number, Pr = ν0/κ0, will be employed in
combination with the thermocapillary Reynold number, considering that Ma = RePr.

Assuming the case of large mean surface tension σ0, the flow-induced dynamic deformation of
the interface can be neglected and the shape deformation problem is therefore independent of
the internal liquid bridge flow. This corresponds to consider the asymptotic limit of a vanishing
capillary number Ca = γ∆T/σ0 → 0, and reduces the normal-stress balance to the Young–
Laplace equation

∆ps = ∇ · n + Bo z, (2.5)

where n is the unit outward-pointing normal vector, ∆ps denotes the static pressure difference
across the free-surface, and Bo is the static bond number

Bo =
ρfgd

2

σ0
. (2.6)

Owing to symmetry arguments, the shape of the liquid bridge h(z) is axisymmetric and the two
boundary value problem (2.5) can be solved supplementing (2.5) with a set of three boundary
conditions. Fixing the volume ratio V of the liquid bridge and assuming the contact line pinned
to the sharp edges of the supporting rods, the following constraints are employed

h (z = ±1/2) = 1/Γ, V =

∫ 1/2

−1/2
h2(z)dz, (2.7)

where Γ = d/R is the aspect ratio of the liquid bridge and the volume ratio is normalized by
the volume πR2d of a cylindrical liquid bridge.
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2.2. LID-DRIVEN CAVITY

Once the liquid bridge shape has been determined, to close the mathematical problem (2.3),
no-slip and isothermal boundary conditions are employed on the support rods

z = ±1/2 : u = 0, v = 0, w = 0, θ = ±1/2. (2.8a)

In case of an axisymmetric flow, the following conditions are enforced along the axis

r = 0 : u = ∂rw = ∂rθ = 0. (2.8b)

Neglecting the stresses exerted by the surrounding gas on the liquid bridge, the interface is
assumed to be a conductive free-surface, modeled according to Newton’s heat transfer law

r = h(z) : u · n = 0, (S · n) · tz = −∇θ · tz, (2.9)

∇θ · n = −Bi (θ − θa) , (S · n) · tϕ = −∇θ · tϕ, (2.10)

where Bi = ld/k is the Biot number, l the heat transfer coefficient, k the thermal conductivity,
θa(z) the ambient temperature distribution, S = ∇u + (∇u)T the viscous stress tensor and tz
and tϕ are the tangential unit vectors in the (r, z)- and (r, ϕ)-plane, respectively.

Two different flow conditions will be investigated in the case of a liquid bridge: a subcritical
axisymmetric flow and a supercritical one for which a periodic traveling wave occurs. In both the
cases experimental results are available and our numerical investigation aims at quantitatively
reproduce the corresponding PAS-related experimental data. Further details on the parameters
and the flow characteristics are given in Chapter 5 and for an extensive parametric study about
flow configurations and instabilities occurring in dependence on the non-dimensional groups of
interest we refer the reader to [205, 167, 147, 253, 290, 289, 291, 299].

2.2. Lid-Driven Cavity

The second case to investigate is an incompressible Newtonian fluid in a closed cavity of rectan-
gular cross-section. Both the density and the kinematic viscosity, ρf and ν respectively, are here
assumed constant and thermal effects are not included. The fluid flow is mechanically driven
by two parallel sidewalls placed at a mutual distance d which slide in opposite direction with
constant velocity U . The cavity has a cross-sectional height h in y-direction and is assumed
infinitely long in z-direction. A sketch of it is depicted in fig. 2.2.

In this case, a viscous scaling is employed

u =
ν

h
û, x = hx̂, t =

h2

ν
t̂, p =

ρfν
2

h2
p̂ (2.11)

where u and p are the velocity and pressure fields, respectively, x and t denote space and
time coordinates, and the caret-sign represents non-dimensional quantities. Dropping it, the
non-dimensional Navier–Stokes equations read

(∂t + u · ∇)u = −∇p+∇2u, (2.12a)

∇ · u = 0. (2.12b)

To close the mathematical problem, no-penetration and no-slip boundary conditions are en-
forced along the walls, whereas periodic conditions are set in z-direction

u (y = ±1/2) = 0, u (x = ±Γ/2) = ∓Re ey, u (z = λ/2) = u (z = −λ/2) , (2.13)
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Figure 2.2.: Sketch of the two-sided anti-parallel lid-driven cavity.

where

Re =
Uh

ν
, Γ =

d

h
and λ =

L

h
(2.14)

are the Reynolds number, the cross-sectional aspect ratio and the non-dimensional wavelength
of the periodic domain, respectively.

Three different Reynolds numbers (beyond the onset of the flow instability) are targeted for
this configuration, keeping the cross-sectional aspect ratio fixed. The period of the domain is
selected to equal the critical wave length. For all the cases the instability arises in form of two
steady mirror-symmetric orthogonal convection cell whose centres are located at zn = z0+n(λ/2)
with n ∈ Z and no through-flow (w = 0) is present over the cell boundaries. More details about
the onset and the different instability scenarios which can arise in this system can be found in
[5, 3, 30, 157].

2.3. Partially Liquid-Filled Rotating Drum

The last set-up to investigate is a rotating cylindrical drum of radius R partially filled with
an incompressible Newtonian liquid of constant density ρf and kinematic viscosity ν. The flow
is driven by the constant rotational speed of the drum, Ω, and the system is assumed to be
infinitely extended along its axial direction z. We consider the limit in which gravitational
forces are dominant over centrifugal and capillary forces. Moreover we require that capillary
forces dominate over inertia forces. This is realised if Fr � 1, Fr/(CaRe) � 1 and CaRe � 1,
respectively. The limit we consider is Fr→ 0, Ca→ 0 with Fr/Ca→ 0 such that Re = O(1) and
in this limit, the gas-liquid interface remains flat and perpendicular to the gravity vector. The
liquid level has maximum depth h and the liquid- and passive gas-phases are decoupled from
each other. In the following only the liquid phase (gray color in fig. 2.3) will be object of the
investigations.

A convective scaling is adopted

u = ΩRû, x = Rx̂, t =
1

Ω
t̂, p = ρfΩ

2R2p̂. (2.15)
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Figure 2.3.: Sketch of the rotating drum problem. In grey the liquid-phase in the cavity is
depicted.

Dropping the caret, the non-dimensional Navier–Stokes equations read

(∂t + u · ∇)u = −∇p+ Re−1∇2u, (2.16a)

∇ · u = 0. (2.16b)

where

Re =
ΩR2

ν
(2.17)

is the convective Reynolds number.
No-penetration and no-slip boundary conditions are set along the moving wall, periodic con-

ditions are imposed in z-direction

u (r = 1) = eϕ, u (z = λ/2) = u (z = −λ/2) , (2.18)

and along the free-surface a zero-tangential-stress boundary condition is enforced

y = −1 + Γ : u · n = 0, (S · n) · ez = 0, (S · n) · ex = 0, (2.19)

where

Γ =
h

R
and λ =

L

R
(2.20)

are the non-dimensional liquid depth and wavelength of the periodic domain, respectively. Once
again we consider an instability which arises in form of steady two mirror-symmetric periodic
cells whose boundaries are located at zn = z0 + nλ/2 with n ∈ Z.

For fixed Γ and λ, three Reynolds numbers beyond the onset of hydrodynamic instability will
be investigated in Chapter 5. For a detailed study about the scenarios experimentally observed
in this configuration we refer to [274, 24].

2.4. Particle Modelling

Particle-laden flows are belonging to a class of multiphase flows in which two phases only are
considered. The dispersed phase consists of particles, herein assumed rigid, and it is immersed
in the continuously connected fluid phase.
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2. PROBLEM FORMULATION

The equations presented so far are valid for modelling single-phase flows or the fluid-phase
of particle-laden flows. Hence, including the particulate phase implies modelling particle–fluid
and, if needed, particle–particle interactions.

Different approaches are used in dependence on the characteristic length and time scales of
the two-phases. Hereinafter we target small Stokes numbers and particle volume fractions. In
the following we employ either a one-way coupling or a fully-resolved simulation. They consider
three levels of rising complexity and, consequently, of increasing computational cost. (a) The
one-way coupling approach neglects the feedback of the particulate phase on the fluid as well
as the particle–particle interactions. (b) Single-particle fully-resolved simulations include the
effect of the particle on the fluid phase, but neglect the interactions between particles. (c) When
multiple-particle simulations are carried out the interactions between particles are considered.
Since the particulate-phase is assumed always immersed in the fluid phase and no dewetting
phenomena are modelled, particle contacts will not arise.

The coupling between fluid- and particulate-phase is obtained via the no-slip and no-penetration
conditions all over the solid-fluid interface. The equations of rigid body motion are used to com-
pute the particle trajectories, integrating forces and torques, F and R, exerted by the fluid on
the i-th particle

F i = MiV̇ i, Ri = Ii · Ω̇i (2.21)

where Mi, Ii, V i and Ωi are the mass, inertia tensor, translational velocity and rotational rate
of the i-th particle, respectively.

When a one-way coupling approach is employed, the particles are typically modelled as spher-
ical particles immersed in a non-uniform Stokes flow (relatively to the fluid flow motion). Under
such assumptions, the Maxey–Riley equation [189] holds and we employ a simplified version of
it [10], neglecting the Basset term and the Saffmann and Faxén corrections. The scaling will be
adapted case by case to the fluid-flow scaling; the Maxey–Riley in thermocapillary scaling reads

ÿ =

(
1

%+ 1/2

)[
− %

St
(ẏ − u) +

3

2

Du

Dt
− %− 1

Fr2 ez

]
, (2.22)

where y is the position of the particle and D/Dt is the Lagrangian derivative moving with the
fluid. Three non-dimensional groups arise: the particle-to-fluid density ratio, the Stokes number
and the Froude number

% =
ρp

ρf
, St = %Re

2a2

9d2
, Fr =

γ∆T

ν0ρf

√
gd
, (2.23)

where a is the particle radius, d the characteristic dimension of the flow system and Re the
thermocapillary Reynolds number of the fluid flow. In the limit of St→ 0, if gravity is negligible,
% = 1 and the particle is initially velocity-matched with the fluid, the Maxey–Riley equation
reduces to a pure advection equation and the particle becomes a perfect tracer and behaves like
a fluid element. Typical particle parameters of this study and the experiments we target are
% ∈ [1, 2] and St ∈ [10−5, 10−2].

The three terms considered on the rhs of in 2.22 account for the forces exerted by the undis-
turbed fluid on the sphere (1/(% + 1/2)Dtu), the Stokes drag due to the viscosity of the fluid
(−1/(%+1/2)%/St(ẏ−u)), the added-mass term which includes the effect of the relative motion
of the particle in the fluid (1/2(%+1/2)Dtu) and the buoyancy force (1/(%+1/2)(%−1)/Fr2ez).

Even if we included the Saffmann and Faxén corrections, 2.22 could not accurately take into
account particle–boundary interaction effects when the sphere moves nearby a wall or a free-
surface. Moreover the lubrication effects we aim at considering in case of particle trajectories
very close to a wall or a free–surface, may be crucial in making an accurate prediction. In
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Chapter 4 and 5 this point will be extensively discussed, comparing point-particles and fully-
resolved numerical results, proposing a particle–boundary interaction model and validating it
with experimental data.
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3. Numerical Method

The methods chosen to numerically simulate particle-laden flow phenomena are discussed in this
chapter. Their main features and the reasons to opt for them will be highlighted, comparing
these methods with other possible options already broadly established in literature.

This chapter is basically divided in two main parts: the first one which refers to the discretiza-
tion method used in space, DG-FEM (discontinuous Galerkin finite element method), applied
to a stiffly-stable splitting scheme in time. The second one which includes the rigid dispersed
particulate phase in the flow domain, SPM (smoothed-profile method). An extension of the al-
gorithms available in the literature is presented in order to include thermal and variable-viscosity
effects in the numerical simulation.

The reader is referred to the Appendix for a collection of the most significant benchmarks
included for validation and verification purpose.

3.1. h/p Discretization Methods

The numerical method we are going to employ, discontinuous Galerkin finite element method
(DG-FEM), belongs to the class of h/p-methods and in the following we will discuss about the
reasons why we chose it.

One of the main strengths of classic h/p spectral methods (see [139, 138, 36, 38, 37]) is
the so-called p-convergence. It consists of approaching the exact solution by increasing the
degrees of freedom of a single element employed to discretize the domain. For an infinitely
smooth solution, the p-convergence is faster than any polynomial convergence and increasing
the polynomial order can therefore be very efficient. The p-refinement flexibility may be further
extended considering different orders of approximation for different elements. This leads not
just to a global p-refinement capability of the method, but also to its local p-adaptivity [67, 68].

In addition to the p-type, the name h/p methods refers to a second kind of convergence:
the h-convergence. Since the computational domain is described in an element-wise approach,
the convergence of the numerical solution to the exact one may be obtained by reduction of
the elements size, h. Thereafter, an element-wise approach guarantees an high flexibility either
in describing complex geometries or in locally refining the solution accuracy. In general a
suitable combination of h- and p-refinements guarantees high accuracy for a relatively cheap
computational cost.

These features of classic h/p spectral we would certainly like to keep in our numerical method.
For limiting numerical stability constraints, we plan to apply an implicit time discretization;
considering that we would not have any advantage by using an explicit discretization approach
(mass matrix not to be inverted), the implicit discretization is certainly recommended. On the
other hand, classic spectral element methods (SEM) typically employ symmetric basis functions,
which are the best choice for dealing with problems dominated by symmetric terms (diffusive
terms), but numerical stability issues may occur when the dominant effect is due to convection
(see [123]). This point has been extensively considered in literature and many techniques have
been proposed to cure such a drawback of the classic FEM/SEM approach, e.g. introducing
a suitable numerical viscosity or using an enriched functional space including bubble functions
capable to self-adapt to the local advection direction (see e.g. [234]).
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This consideration represents a discriminant for us since the phenomena we are interested in
are highly dominated by convective terms. For them the upwinding technique employed in finite
difference (FDM) and finite volume methods (FVM) represents the most natural discretization
approach. The choice of merging h/p spectral and finite volume methods results, as natural
consequence, in the discontinuous Galerkin finite element method, which combines the space
functions used by h/p approaches with a FVM-like sense in satisfying the discrete equations.

A typical choice for including the local approach in h/p methods consists in duplicating the
variables along the shared faces between different elements. This results, for a nodal approach,
in doubling the degrees of freedom at the internal faces (see fig. 3.1) and connecting the adjacent
elements via preservation of the numerical flux across each shared edge. The latter operation
ensures globally meaningful results and it is nothing but the reconstruction step proper of the
finite volume methods [123]. The main drawback of the discontinuous approach in comparison
with a continuous Galerkin one is the increment of the degrees of freedom, which induces larger
discrete systems and, consequently, higher computational effort in the solving process. On the
other hand, a typically sparser matrix is obtained by DG-FEM if compared with classic h/p
methods and raising the degrees of freedom affects the computational cost less and less the
higher the polynomial order is. For this reason, the latter disadvantage of the discontinuous
approach seems not to be so effective for the simulations of main interest herein.

Figure 3.1.: Degrees of freedom in a classic h/p method (left) and in a DG-FEM (right).

In conclusion, because of accuracy and flexibility, either in a geometrical or in a numerical flux
designing sense, the discontinuous Galerkin finite element method appears as the best candidate
for simulating the cases of interest for the present thesis.

3.2. Evolution of Discontinuous Galerkin Finite-Element
Method

The introduction of DG-FEM can be traced back to the work of Reed & Hill [240] who used
it for dealing with neutron transport problems. Successively, an intensive effort was spent
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in the analysis and the development of DG’s theoretical basis including convergence studies for
smooth [165, 136, 223] and non-smooth solutions [171, 48], post-processing [56, 64, 247], limiting
[229, 233, 230, 231, 232, 183] and various numerical stability issues.

Even though the method has been introduced in the 70’s, the main development effectively
started only in the 90’s and because of the flexibility in designing the numerical fluxes, hyperbolic
equations and conservation laws became natural candidates for the employment of DG-FEM [44,
43, 57, 58, 55, 49]. Therefore, electromagnetism (e.g. [294]), acoustics (e.g. [9]), elasticity (e.g.
[74]), shallow water (e.g. [89]) and plasma physics (e.g. [170]) have been extensively investigated
by the means of discontinuous Galerkin methods.

Mainly due to the work of Bassi & Rebay, Baumann, Cockburn & Shu, DG methods focused on
inviscid, compressible fluid dynamics [60, 21] and have been successively generalised to diffusion,
convection–diffusion and compressible Navier–Stokes problems [20, 22, 59, 208, 23, 180, 181, 42,
127, 221, 307, 115, 114]. More recently, a further improvement consisted in applying RANS
and LES modelling to compressible Navier–Stokes equations [19, 17, 203, 209, 159, 282, 287],
and discontinuous Galerkin methods have also been successfully employed for incompressible
Navier–Stokes equations [176, 53, 51, 50, 193, 168, 16, 18, 263, 192, 241, 52, 204, 78, 77].

Among all these authors, three main approaches for the numerical flux design arose, i.e.
interior penalty, local discontinuous Galerkin and Bassi-Rebay methods. A comparison between
them was derived in [8] and, in the present thesis only the former one will be implemented. The
interior penalty method uses nothing but a penalization technique in order to induce a certain
smoothness in the numerical solution, and the same approach is then used to apply Dirichlet
boundary conditions, enforced via a so-called spectral penalty method (see [83, 84, 85, 120, 117,
118, 121, 119, 122]).

To the author’s knowledge, the quoted literature can give a detailed summary of the potential
of discontinuous Galerkin finite element methods, especially when applied to fluid dynamics.
However, giving an exhaustive overview about the method is not within the scope of this dis-
sertation. We refer to [8, 54, 225, 140, 123, 241] for a far more complete overview of DG-FEM,
keeping in mind that, owing to the intensive investigation recently carried out in such a field, it
appears to be a continuously active research area (e.g. hybridizable DG methods [204]).

3.3. Discrete Incompressible Navier–Stokes Equations

In the following section a discontinuous Galerkin method with interior penalty approach will
be applied to the incompressible Navier–Stokes equations. One of the main difficulties of nu-
merically simulating this system of equations is that velocity and pressure are coupled via the
incompressibility constraint. In order to overcome such an obstacle, when a primitive variable
formulation is employed, Chorin & Temam introduced the projection methods [45, 272]. These
methods belong to the fractional/splitting methods and their efficiency comes from approaching
the incompressible Navier–Stokes equations in a sequence of steps that decouples pressure and
velocity unknowns.

After their introduction, many improvements and approaches have been developed and three
main classes of projection methods can be identified: pressure-correction [93, 275, 283, 142],
velocity-correction [109, 210, 141] and consistent splitting methods [108].

In the following, just one velocity-correction approach will be employed and, for an extensive
review about projection methods and their comparison, we refer to [107].
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3.3.1. Temporal Discretization

A stiffly stable velocity-correction splitting scheme will be implemented in order to deal with the
incompressible Navier–Stokes equations. Different from the pressure-correction fractional step
method, the chosen algorithm belongs to the so-called high-order projection methods because it
is proved to be numerically stable even for third or higher order in time. Furthermore, it is one
of the most employed schemes for h/p spectral methods and it has been extensively tested.

Because of these reasons, following Karniadakis et al. [141], we consider a three-stages pro-
jection method: the first step integrates the convective terms, written in a conservative form,
via an Adam-Bashforth second-order scheme; the second step represents the projection of the
resulting velocity components onto a weakly divergence-free functional space and the third step
includes the viscous terms.

In case the viscous scaling is employed, the time-discrete system of continuity, Navier–Stokes
and energy equations read

γ0ũ− α0u
n − α1u

n−1

∆t
=− β0 [N(un,un)−Grθney]

− β1

[
N(un−1,un−1)−Grθn−1ey

]
(3.1a)

γ0θ̃ − α0θ
n − α1θ

n−1

∆t
=− β0N(un, θn)− β1N(un−1, θn−1) (3.1b)

∇2p̄n+1 =
γ0

∆t
∇ · ũ (3.1c)

∂p̄n+1

∂n̂
=− β0n̂ ·

(
Dun

Dt
+∇× ωn −Grθney

)

− β1n̂ ·

(
Dun−1

Dt
+∇× ωn−1 −Grθn−1ey

)
(3.1d)

−∇2un+1 +
γ0

∆t
un+1 =

γ0

∆t
ũ−∇p̄n+1 (3.1e)

−∇2θn+1 +
γ0Pr

∆t
θn+1 =

γ0Pr

∆t
θ̃, (3.1f)

where ω is the vorticity vector field, n identifies the current time, ∆t is the time step, N(u, ∗)
represent the non-linear term written in a conservative form as follows

N(u,u) =

 Nu

Nv

Nw

 = ∇ ·

 Fu

Fv

Fw

 =



∂
(
u2
)

∂x
+
∂ (uv)

∂y
+
∂ (uw)

∂z

∂ (uv)

∂x
+
∂
(
v2
)

∂y
+
∂ (vw)

∂z

∂ (uw)

∂x
+
∂ (vw)

∂y
+
∂
(
w2
)

∂z


(3.2a)

N(u, θ) =∇ · Fθ =
∂ (uθ)

∂x
+
∂ (vθ)

∂y
+
∂ (wθ)

∂z
(3.2b)

and (3.1d) represents a pressure boundary condition to employ when Dirichlet boundary condi-
tions are set on velocity and it is obtained using the so-called curl − curl formulation.
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Owing to the second-order backward scheme in time, the velocity-correction cannot be a self-
starting method. The first time step is then performed via a simpler implicit Euler method. A
straightforward way to implement it consists in suitably defining the constant coefficients of the
algorithm as follows

γ0 = 0, α0 = 1 , α1 = 0, β0 = 1 , β1 = 0, if n = 1 (3.3a)

γ0 =
3

2
, α0 = 2 , α1 =

1

2
, β0 = 2 , β1 = −1, if n > 1 (3.3b)

Moreover the explicit treatment used for the non-linear terms is very efficient, because there
is no need of implementing an iterative non-linear solver for dealing with the convective terms.
Finally, owing to the stability properties of the scheme, it does not impose very severe constraints
on the time step ∆t and an appropriate design of the discrete convective fluxes can even more
increase the stability performance of the projection method.

As is clear from (3.1), the solution of the incompressible Navier–Stokes equations is reduced
to solve two Helmholtz problems in terms of temperature and velocity, and one Poisson problem
in terms of pressure.

3.3.2. Spatial Discretization

Once the temporal discretization is provided by the splitting method, a DG approach is used to
discretize in space. Following the strategy outlined in [123], the non-linear advection terms are
treated via an upwind scheme of the numerical fluxes, derived from the Lax–Friedrichs/Rusonov
scheme. The variational form adopted for such a purpose is:

find N∗ such that

(φh, N∗)Ωk
h

= (φh,∇ · INF∗(uh, ∗))Ωk
h

−
1

2
(φh, JINF∗(uh, ∗)K)∂Ωk

h

+
λ

2
(φh, n̂ · JuhK)∂Ωk

h

, ∀φh ∈ Vh (3.4)

where the subscript h indicates the performed spatial discretization, ∗ is a generic symbol em-
ployed to generalize the notation among the different non-linear terms, i.e. uh, vh, wh or θh,
{φh} is the test function basis, Vh =

⊕K
k=1 PN

(
Ωk
h

)
, Ωk

h is the k-th element of the spatial mesh,
PN
(
Ωk
h

)
is the functional space used for the k-th element, INf is the N -th-order interpolation

of f , J·K = (·|el1)−(·|el2) refers to the jump operator and λ is nothing but the penalty multiplier
for the local Lax–Friedrichs scheme and it is evaluated by the usage of the trace values. Along
the Dirichlet boundaries for velocity and temperature, the boundary conditions are included in
the non-linear term by the mean of the relative positive trace.

The second stage of the algorithm implies the solution of a Poisson equation in terms of
pressure. An interior penalty approach is used for the discontinuous Galerkin discretization and,
along the velocity Dirichlet boundaries, pressure Neumann boundary conditions are applied via
the so-called rotational approach introduced in (3.1d). The current step can be then formulated
as:
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find pn+1
h ∈ Vh such that

(
∇φh,∇pn+1

h

)
Ωk

h
−

1

2

(
n̂ · ∇φh, n̂ · Jpn+1

h K
)
∂Ωk

h\∂Ωh

−
(
φh, n̂ ·

{{
∇pn+1

h

}})
∂Ωk

h\∂Ωh
+
(
τkφh, n̂ · Jpn+1

h K
)
∂Ωk

h\∂Ωh

−
(
n̂ · ∇φh, (pn+1

h )−
)
∂Ωk

h∩∂ΩpDir
h
−
(
φh, 2n̂ · ∇(pn+1

h )−
)
∂Ωk

h∩∂ΩuDir
h

+
(
τkφh, (p

n+1
h )−

)
∂Ωk

h∩∂ΩpDir
h

=

−
(
n̂ · ∇φh, ppDir

)
∂Ωk

h∩∂ΩpDir
h

+

(
φh,−

γ0

∆t
∇ · ũh

)
Ωk

h

+

(
φh, β0

∂pnh
∂n̂

+ β1
∂pn−1

h

∂n̂

)
∂Ωk

h∩∂ΩuDir
h

+
(
τkφh, p

pDir
)
∂Ωk

h∩∂ΩpDir
h

, ∀φh ∈ Vh, (3.5)

where the superscript − indicates the negative trace, {{·}} = 1
2 (·|el1) + 1

2 (·|el2) is the average
operator, τk is the penalty factor for the k-th element which is chosen in dependence on the
element size hk and the number of nodes per edge, the superscripts pDir and uDir refer to the
pressure and the velocity Dirichlet boundaries, respectively.

Because the linear system resulting from such a discretization, as for the remaining Helmholtz
problems, is described by a sparse matrix whose non-zero entries are located according to the
connectivity between the elements, it is computationally convenient to employ a reordering
strategy such to reduce the bandwidth of the matrix. To this end the reverse Cuthill–McKee
algorithm [65] is adopted. Moreover, because the Poisson matrix is Hermitian and positive
definite, Cholesky factorization is used to solve the reordered linear system in an efficient way.

The last stage of the splitting algorithm consists of two equations formally identical to each
other (see (3.1e) and (3.1f)), with the only difference of the pressure gradient contribution.
Therefore, the interior penalty DG formulation will be presented only for the x-momentum
equation.

Find un+1
h ∈ Vh such that

(
∇φh,∇un+1

h

)
Ωk

h
+
γ0

∆t

(
φh, u

n+1
h

)
Ωk

h
−

1

2

(
n̂ · ∇φh, n̂ · Jun+1

h K
)
∂Ωk

h\∂Ωh

−
(
φh, n̂ ·

{{
∇un+1

h

}})
∂Ωk

h\∂Ωh
+
(
τkφh, n̂ · Jun+1

h K
)
∂Ωk

h\∂Ωh

−
(
n̂ · ∇φh, (un+1

h )−
)
∂Ωk

h∩∂ΩuDir
h
−
(
φh, n̂ · ∇(un+1

h )−
)
∂Ωk

h∩∂ΩuNeu
h

+
(
τkφh, (u

n+1
h )−

)
∂Ωk

h∩∂ΩuDir
h

=

−
(
n̂ · ∇φh, uuDir

)
∂Ωk

h∩∂ΩuDir
h

+

(
φh,

γ0

∆t

(
ũh −∆t∇pn+1

h

))
Ωk

h

+

(
φh,

∂un+1
h

∂n̂

)
∂Ωk

h∩∂ΩuNeu
h

+
(
τkφh,−uuDir

)
∂Ωk

h∩∂ΩuDir
h

, ∀φh ∈ Vh. (3.6)

The combination of all these stages brings to one complete temporal step of the projection
method. A well-known problem of projection schemes is the possible occurrence of spurious
pressure modes whose explanation can be referred to a classic saddle point problem (see [234]).
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This occurs when the same functional space Vh is used for discretizing pressure and velocity.
In order to cure these non-physical pressures, a typical FEM/SEM strategy is to choose a
richer functional space for the velocity than for the pressure field. In this case it is common to
consider PN − PN−2 functional spaces for velocity and pressure, respectively. More in general,
a suitable choice that respects the Ladyzhenskaya–Babuška–Brezzi (LBB) or inf-sup condition
will guarantee the absence of parasite pressures [34, 11]. Whereas the same functional space
is used for pressure and velocity, a stabilization technique has to be implemented for classic
continuous Galerkin approaches. This is not necessary in the case of DG-FEM because the
penalty factor used in the pressure step (second stage) of the splitting method can be designed
such to considerably affect the pressure spurious modes. Furthermore, as discussed in [107], their
importance decreases as the order of discretisation increases and choosing high-order polynomial
basis (i.e. polynomial order ≥ 4), parasite pressures are not considerably effective in the solution
accuracy. Because of these reasons, the same functional space is used for both, pressure and
velocity, and 5th or higher polynomial order will be selected in the following simulations.

3.4. Methods for Particle-Laden Flows

Many different approaches have been developed for dealing with multiphase and, specifically,
particle-laden flows. A numerical method applied in this field is basically required to be accurate
in the description of the particle trajectories and the respective macroscopic forces. Moreover,
it must be efficient for simulating many particles immersed in the fluid-phase, possibly even
complex shaped particles. In the following, a short overview about the most commonly used
approaches is given to justify the choice of SPM (smoothed profile method) for dealing with
finite-size particles. For implementation details and benchmark results, the reader is referred to
the Appendix and to [245].

Treating finite-size particle-laden flows can be done via two different numerical approaches.
The first class of methods simulate the particulate phase using a Lagrangian approach. In
practice, it means that the computational mesh employed for this group of methods is deforming
following the particle motion.

Among all the different Lagrangian descriptions for the particulate phase, two main methods
have been successfully implemented in this field: the arbitrary Lagrangian-Eulerian (ALE) and
the space-time finite element methods. In the latter case both, time and space variables, are
discretized with a finite element method using a pure Lagrangian point of view, in which the
spatial domain deformation is directly mirrored via a deformation in time of the computational
mesh (see Johnson et al. [134, 135]). On the other hand, the ALE method introduced by Hirt
[124, 125], employs both, Eulerian and Lagrangian descriptions, for solving the flow. In this case
the Lagrangian representation can be arbitrary, in the sense that it is generally done considering
a reference, fictitious domain [128, 129, 71, 178, 269, 131]. When the mesh deformation velocity
coincides with the flow velocity, the ALE method reproduces a pure Lagrangian description.

Even though these approaches have been successfully applied for high-order methods in fluid–
structure interactions [293, 296, 292, 27, 26, 182, 207, 220, 218] or particle-laden flows (up
to 1000 particles, see [135]), they do not seem very efficient for the cases of interest in the
present study. In fact we deal with dilute suspensions and the working hypothesis which is
commonly applied states that the phenomena to investigate are not sensibly affected by particle–
particle interactions. Hence, only one particle will be considered in most of the simulations for
investigating particle–boundary interaction phenomena. Moreover a moving mesh method can
be very expensive if one wants to keep the computational resolution nearby the particle almost
constant. This is due to the motion of the particle which induce a rapid degrading of the mesh
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Figure 3.2.: Degrading of the computational mesh in Lagrangian descriptions due to the motion
of a single particle in the domain.

in the fluid-phase domain. Consequently frequent re-meshing operations are needed. Figure 3.2
clarifies this issue.

The second class of methods for dealing with particle-laden flows employs an Eulerian de-
scription, simulating the interaction of the two phases on a fixed computational mesh. In this
framework many different approaches have been developed for modeling the multiphase flow of
interest. Differently from the Lagrangian methods, they do not require any re-meshing operation
due to computational grid degradation induced by the particle motion (see fig. 3.3). However,
if necessary, an adaptive grid can be employed.

Figure 3.3.: Eulerian description of a single particle moving in the domain.
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3.4. METHODS FOR PARTICLE-LADEN FLOWS

Some of these methods, like the distributed Lagrange multiplier (DLM) method introduced
by Glowinski [90], impose an additional body force to maintain the rigid-body motion of the
particles inside the particulate-phase domain and enforce the no-slip condition among the two
phases. Such constraints are usually verified via velocity- [91, 92] or strain-rate-based [215]
conditions added to the space of Lagrange multipliers.

Another Eulerian approach consists of representing the particle phase via a low-order expan-
sion of force multipoles, i.e. Stokeslet, Stresslet, Rotlet, etc. This is the case for the force
coupling method (FCM) introduced by Maxey et al. [188], in which a Taylor expansion of the
Oseen tensor is employed and the non-zero-size particles are represented in the fluid-phase as
distributed body forces [188, 179, 66]. However, even though FCMs give a very good approxima-
tion of the flow field far from the particles with a remarkable reduction of computational costs in
comparison with full-scale simulations, their main drawback is that the flow is not fully resolved
close to the particle surface. Therefore they exhibit a dramatic loss of accuracy in regions up to
25% of the radius far from the particle surface [47]. Hence, this aspect makes FCMs not suitable
for an appropriate simulation of the phenomena the present investigation focuses on.

In both the latter cases, as well as for the method of virtual identity particles (VIP, see [175]),
employing h/p methods guarantees that the spectral convergence is preserved [173, 174, 72].
Moreover, because of their efficiency, Eulerian methods have been successfully used for simulating
up to 10000 and 1000 particles in 2-D and in 3-D, respectively [214, 213, 46].

Beside the simulation of the particulate phase via fictitious domain methods (DLM) or dis-
tributed body forces (FCM), other approaches can be employed such as a front tracking tech-
nique [276] or a semi-analytic method that iteratively matches the analytical and the numerical
solutions for the flow field nearby and far away from the particles, respectively (see the imple-
mentation of Physalis introduced by Prosperetti & Og̃uz [227, 268, 130, 305, 306]).

Finally, a last comment is reserved to the immersed boundary method (IBM). This approach
belongs to the Eulerian class, as well, and it is widely employed in literature, specially by the
finite-volume and finite-difference communities. The method is based on tracking the immersed
boundary, which moves with the flow velocity, via a series of Lagrangian markers. Modeling
the elastic/rigid properties (see [80, 28] for rigid-bodies) of the immersed boundary consists
in determining the singular force distribution exerted on the flow in the regions nearby the
Lagrangian markers. For this purpose, regularized Dirac delta functions have been introduced
by Peskin [222]. Recent developments of the method consist in its extension to a second-order
scheme [158] and implementation of different approaches for the interaction between Eulerian and
Lagrangian representation (see virtual boundary method and direct forcing method [94, 76, 281]).
A slightly different approach was then proposed via the immersed interface method (IIM) which
includes the interface jump conditions into the discrete equations (see [166, 169, 164]) rather
than considering the immersed boundary actions in a continuous fashion.

This short summary about the methods typically used to deal with particulate flows is con-
cluded here motivating the choice of the smoothed profile method and comparing it with the
aforementioned approaches. SPM describes the particle–fluid-phase interaction by means of an
interface layer into which the rigid-body equations used for modelling the particulate phase are
smoothly converted in the equation for the fluid phase. In this sense, the numerical transition
layer can be interpreted as a matching operation similar to the one implemented in Physalis.
Like DLM, FCM, Physalis, IBM and IIM, also the SPM employs an Eulerian mesh; thus avoid-
ing the need for re-meshing due to the mesh degrading phenomena discussed for Lagrangian
approaches. In general, the smoothed profile method has characteristics in common with some
of the discussed techniques. Like the FCM, the particles are represented as body forces and
similar to IBM, the SPM enforces approximate boundary conditions. Another common point
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between SPM, FCM and IBM is that the particle volume is part of the computational domain
and no internal constraints are enforced on it. For such a purpose, a penalty body force is
adopted to ensure the rigidity of the particles and to integrate the relative translational and
rotational velocities. This approach implicitly includes no-slip boundary conditions between the
two phases and is responsible for the flow accuracy nearby the particle surfaces. In this sense it
can be considered an improvement with respect to the body-force system employed in the FCM
and, owing to it, it is possible to accurately simulate the colloidal forces and lubrication gaps of
crucial importance for particle–boundary interaction phenomena [201]. Moreover, together with
FCM and DLM, also SPM enjoys the spectral convergence if coupled with h/p methods [187].

Our last remark focuses on comparing the diffuse-interface and the sharp-interface methods.
The transition between the particulate rigid phase and the fluid phase may be modelled using a
numerically sharp border or smearing the coupling region in a diffuse interface. Techniques which
employ body-fitted elements (see e.g. [135]) are clear examples of the former approach. However,
also IBM can be implemented using a sharp interface (see e.g. [303, 88, 277, 261, 242]). Among
the key issues in the latter case is the conservation of mass and energy, specially whether a cut-cell
method is adopted. Contrary to body-fitted-element methods, SPM belongs by definition to the
diffuse-interface methods and its interface thickness is typically governed by a scalar parameter ξ.
Using a diffuse-interface approach is usually convenient to avoid numerical problems connected
to the so-called grid locking [33]. The main drawback of diffuse-interface methods which is of
interest for the present thesis work is the limited capability to describe refined regions nearby the
solid-fluid interface. The coupling interactions between particles and fluid are smeared within
the interface layer. This implies that simulations in which a particle is passing close to a domain
boundary must make sure that the diffuse interface does not cross the boundary itself. On the
other hand refining the interface thickness leads to a stiffer interaction between the particulate-
and the fluid-phase which may even induce numerical instability. A thorough parameter tuning
is therefore always required for diffuse-interface methods as SPM.

SPM has been intensively developed and tested in the last years passing from classic particle-
laden flows (see e.g. [301, 198, 300, 200, 132]) to model electro-charged colloids and electrophore-
sis of dense dispersion (see [143, 145, 144, 199, 302, 184, 137]).

Apart from its efficiency in dealing with many particles [201, 301], a useful property of the
smoothed profile method is the possibility of easily represent complex-shaped rigid bodies. In
fact, SPM has been recently employed for describing stochastic roughness over the particle
surfaces [304] and even the full rotating body of a waterjet propulsion system [185, 186]. In the
present investigation we will only deal with circular/spherical particles, but the aforementioned
references are relevant because SPM was tested for high Reynolds numbers up to turbulent
regimes. Moreover SPM always exhibited excellent comparisons against moving-grids full-scales
simulations and the dramatic cost reduction implied by SPM is typically considerable. Hence,
it is hereinafter chosen for simulating the multiphase flows of interest.

3.5. Smoothed Profile Method

The smoothed profile method was originally proposed to resolve fluid- and particle-phase inter-
actions in colloidal dispersions. It is based on the idea of representing the particles via a smooth
concentration function, φ, (the so-called smoothed profile), which equals one in the particle do-
main and zero in the fluid-phase. Figure 3.4 shows a typical smooth variation (by gray-scale) of
φ in a two-dimensional interface region.

The coupling of discontinuous Galerkin finite element and smoothed profile method is aiming
at simulating the interactions between particulate- and fluid-phase. Therefore, the algorithm
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Figure 3.4.: Smoothed profile function φ for a complex-shaped particulate phase immersed in a
fluid domain ΩF.

presented in eq. 3.1 can be extended in order to consider the forces exerted by the fluid on
the particles, their consequent rigid-body motion, as well as the perturbation field due to the
particulate phase. Once again we point out that employing an Eulerian approach is the reason
why the algorithm adopted remains substantially unchanged for the fluid phase domain.

The first quantity to define is the smoothed profile φ, which represents a concentration field
to describe the whole particulate phase. Following the approach proposed by Nakayama et al.
[201]. For the single particle we employ

φi(x, t) =
1

2

[
tanh

(
− di(x, t)

ξi

)
+ 1

]
, (3.7)

where φi is the smoothed profile of the i-th particle, di is the signed distance to the i-th particle
surface, which is positive outside and negative inside the particle and ξi is the interface thickness
parameter for the i-th particle. A more detailed investigation on the choice of the smooth
function employed to realize the transition between fluid- and particulate-phase can be found in
[245]. Figure 3.5 depicts a one-dimensional smoothed profile of radius a and centred in xp for
different ξ.

Starting from the single indicator functions φi, under the hypothesis of non-overlapping par-
ticles1, the global concentration field φ can be obtained by direct superposition. For Np rigid
bodies

φ(x, t) =

Np∑
i=1

φi(x, t). (3.8)

Referring to [201], the rigid-body motion of the particles reads

φ(x, t)up(x, t) =

Np∑
i=1

[V i + Ωi × (x− P i)]φi, (3.9)

where up is the particle velocity field and P i, V i and Ωi are i-th particle centroid, translational
and rotational rate, respectively. Moreover, due to the non-overlapping condition and since up

1This hypothesis is only approximated employing (3.7), but other smoothed-profile functions may be chosen if
required, see [245]
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Figure 3.5.: Smoothed profile function φ in 1-D. Four interface thickness are depicted: ξ = 0
(solid line), 0.05a (dashed line), 0.1a (dashed-dotted line), 0.15a (dotted line).

is obtained by superimposition of rigid-body motions, SPM guarantees that the particle velocity
field is identically divergence-free [201]. This is certainly a good property of the method because
it assures that the spatial approximation introduced by the smoothed profile technique does not
induce numerical dissipation due to violation of the incompressibility constraint. This is a crucial
point to avoid particle accumulation structures induced as an artefact of the numerical technique.
Finally, as shown in [201] and [187], no-slip and no-penetration conditions are automatically
verified by the smoothed profile approach and the global velocity field can be obtained as a
combination of particle- and fluid-phase velocities (up and uf, respectively)

u(x, t) = φ(x, t)up(x, t) + [1− φ(x, t)]uf(x, t). (3.10)

Using the same stiffly-stable splitting scheme of (3.1) (with the viscous scaling), and coupling
it with the smoothed profile method as done in [245], the algorithm reads

P n+1
i =P n

i + ∆t
K∑
k=0

akV
n−k
i (3.11a)

On+1
i =On

i + ∆t

K∑
k=0

akΩ
n−k
i (3.11b)

γ0ũ− α0u
n − α1u

n−1

∆t
=− β0 [N(un,un)−Grθney]

− β1

[
N(un−1,un−1)−Grθn+1ey

]
(3.11c)

γ0θ̃ − α0θ
n − α1θ

n−1

∆t
=− β0N(un, θn)− β1N(un−1, θn−1) (3.11d)

∇2p∗ =
γ0

∆t
∇ · ũ (3.11e)

∂p∗

∂n̂
=− β0n̂ ·

(
Dun

Dt
+∇× ωn −Grθney

)

− β1n̂ ·

(
Dun−1

Dt
+∇× ωn−1 −Grθn−1ey

)
(3.11f)
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−∇2u∗ +
γ0

ν∆t
u∗ =

γ0

∆t
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)
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γ0u
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∗

∆t
=
γ0φ

n+1
(
un+1

p − u∗
)

∆t
−∇pp, (3.11p)

where Oi, ri, F i and Ri are orientation, distance vector from the instantaneous centre of
rotation, forces and torques on the i-th particle, the subscript p refers to the perturbation
fields induced by the particle, ∗ refers to the flow field obtained without updating the particle
perturbations, ak originates from the backward differentiation formulae adopted for integrating
the particle positions and velocities and the total pressure field can be reconstructed by the
relation pn+1 = p∗ + pp.

Different from the single-phase flow, two thermal diffusivity coefficients have to be considered
for including the thermal coupling. Therefore, the Prandtl number is not constant in the do-
main. To model such an aspect, the concentration function φ is employed in a more convenient
definition of a global Prandtl number

Pr = φ(x, t)Prp + [1− φ(x, t)] Prf. (3.12)

where Prp = ν/κp and Prf = ν/κf.
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Interaction

The modelling of the motion of non-zero-size tracers in thermocapillary- or mechanically-driven
flows can be extremely challenging when the particles are advected close to any boundary. This
is the case for the configurations presented in Chapter 2, where the streamlines are very dense
near the boundaries. It implies that if we have an initially random distribution of particles,
a significant amount of tracers will pass in the close vicinity of the driving boundary within a
given time. Thus, modelling the particle–boundary interaction may be of crucial importance
for predicting the particle trajectories with a reasonable accuracy using a one-way coupling
approach.

One of the main issues of simulating particle-laden flows consists of modelling the local
particle–boundary interaction. This may have a global impact on the prediction of particle ac-
cumulation structures as reported in [194, 195]. In this framework one-way-coupled simulations
are commonly employed modelling the particle–boundary interaction as an inelastic collision in
normal direction to the boundary. However, to improve the accuracy of such predictions, the
particle-to-fluid density ratio and the particle size are of major importance and therefore they
will be investigated in this chapter for simplified two-dimensional problems. The main goal of
the corresponding fully-resolved simulations is to improve the inelastic collision model including
a prediction of the minimum lubrication gap width in the state of a stationary accumulation
structure. The last part of this chapter is concerned with the role of particle–particle interactions
in PAS phenomena.

4.1. Particle–Boundary Interaction

One of the main goals of simulating particle-laden flows consists in accurately predicting the
particle trajectories. Moreover, considering closed flows for which the streamlines cluster towards
the driving boundary, the particle–boundary interaction phenomena become more and more
important because a high volume flux is concentrated in a thin layer nearby such boundaries.

The particles will move so close to the driving boundary that the thickness of the lubrication
gap formed between their surface and the boundary itself may possibly be several times smaller
than the particle radius. In such scenario it is obviously not possible to neglect the particle size
effects (as done in a point-wise particle approach), but all the relevant scales need to be solved
(fully-resolved simulations) or, at least, modelled.

Hofmann & Kuhlmann [126] proposed to mimic the particle–free-surface interaction with the
so-called PSI (particle–surface interaction) model. Motivated by experimental observations (see
e.g. [270, 255]), it is nothing but a rebound scheme. Along the free-surface normal direction the
velocity of the particle is set to zero if the velocity vector points out of the fluid domain. It is
shown by many authors (see e.g. [195, 126, 194, 151]) that particle accumulation phenomena
can be well captured employing such a model. Even though these authors are aware of the
importance of properly modelling the lubrication gap width (see e.g. [194]), at the time being
it is commonly neglected in their numerical simulations. In fact they set the minimum distance
between particle centroid and driving boundary equal to the particle radius.
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The fully-resolved approach does not require any modelling operation. Therefore, it can be
used to obtain a prediction of the lubrication gap width to be included in the PSI model for
improving the point-wise particle results.

4.1.1. Particle-Surface Interaction Model

In case a one-way coupled approach is employed, the Maxey–Riley equation is solved to calculate
the particle trajectories and no feedback effect from the particulate- to the fluid-phase is included.
Moreover, as discussed in Chapter 2, the Maxey–Riley equation refers to a sphere in a non-
uniform flow. In general, the Faxén and Saffmann corrections are considered for taking into
account the trajectory curvature effect and the lift effect of a free-surface, respectively. However
these corrections are not valid very close to the boundaries.

These considerations highlight the necessity to model the particle–boundary interaction and
in the following we will introduce the PSI model. It assumes that when a particle is approaching
a boundary there is a region of the fluid domain which cannot be accessed by the particle
centroid due to the tracer’s finite-size. Indeed, if the distance between the particle centroid and
a free-surface (assumed undeformable) or a wall equals the particle radius, this means that the
particle experiences a collision with the boundary. Assuming the lubrication gap negligible, this
condition implies that the particle centroids are not allowed to explore a region closer than the
particle’s radii to the boundaries (the so-called prohibited region).

The assumption of the particle–surface interaction model is that, after such a collision, the
particle slides along the boundary with zero surface-normal velocity since it is pushed towards the
free–surface/wall. As soon as the particle velocity measured at its centroid is inward-pointing in
normal direction to the boundary, the PSI model stops being effective on the particle trajectory
until the next collision occurs.

A theoretical improvement of the model has been proposed by Mukin & Kuhlmann [194], who
pointed out the sensitivity of PAS predictions to the size of the prohibited region and, therefore,
the importance of including the lubrication gap width in the PSI model. The notion of interaction
length ∆ was consequently developed as the particle radius plus the minimum lubrication gap
width, measured after the particle accumulated on a PAS. Operatively it indicates the thickness
of the prohibited region measured from the boundaries of the fluid domain.

A sketch of the PSI model is depicted in fig. 4.1 for a two-dimensional flow field. The “collision”
between particle and boundary is ∆ far from the top wall/free-surface and represents the point
of discontinuity between the trajectory predicted by the Maxey–Riley equation only and the
one affected by the PSI model. A smooth release point is always characteristic of the model, as
depicted in fig. 4.1.

Even though the notion of interaction length ∆ was proposed in [194], it has never been
applied because of the difficulty in giving an estimate of the minimum lubrication gap width δ.
Therefore ∆ has been approximated with the particle radius a, so far.

The improvement which can be introduced with the fully-resolved simulations consists in
giving an estimate of δ = ∆−a for obtaining better predictions from the Maxey–Riley equation
plus PSI model. Moreover, a fully-resolved trajectory can give a qualitative measure of the
errors committed employing a one-way coupled approach plus the particle–surface interaction
model.

Owing to the inelastic character of the collision, an important drawback of the PSI model
is that it cannot accurately predict the particle accumulation dynamics. This limit cannot be
overcome improving the prediction of ∆ and therefore the accumulation dynamics predicted by
fully-resolved and one-way coupled approaches differs sensibly.
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Figure 4.1.: Sketch of the particle–surface interaction (PSI) model. The full line represents the
trajectory predicted by the Maxey–Riley equation without any particle–boundary
interaction model. The dotted line is obtained enforcing the PSI model after the
collision between the particle and the boundary.

4.2. Particle–Free-Surface Interaction

The first case we considerer is the interaction of a single particle with a free-surface. A numerical
solution to the three-dimensional problem of particle motion in a liquid bridge is extremely
demanding. However, for the interaction of particles with the free-surface, the local radius of
curvature of the interface is much bigger than the particle radius. Then a good approximation
may be obtained by considering the interface as flat. A further simplification we include is
to deal with the two-dimensional thermocapillary flow in the limit of Ca → 0. We therefore
consider a square cavity of linear length L with one free-surface. For Pr→ 0 and if buoyancy is
neglected the temperature field is linear (conductive) and the shear stress on the free-surface is
constant. Figure 4.2 shows a sketch of this shear–stress-driven cavity.

In the limit Pr → 0 we use a viscous scaling for which the Reynolds number is the thermo-
capillary Reynolds number defined as in (2.4) with d = L. The non-dimensional Navier–Stokes
equations are expressed by (2.12). In dimensionless form, the flow field boundary conditions
read as

x = ±1/2 : u = v = 0, (4.1a)

y = −1/2 : u = v = 0, (4.1b)

y = 1/2 : ∂yu = −Re, v = 0. (4.1c)

Fixing the Reynolds number to 1000 and considering circular particles, the investigated pa-
rameters will be defined by the particle radius, a = ap/L, and the particle-to-fluid density ratio,
% = ρp/ρf where ap and ρp are the particle radius and density, respectively.

A preliminary simulation is made for reaching a steady-state flow field. Thereafter, a single
particle is instantaneously released. This creates a initial numerical mismatch in the part of
the domain where the particle is suddenly inserted because of the rigidity constraint. Owing
to the small Stokes numbers under investigation, the effect of the initial numerical mismatch is
negligible (see [244]).

For finite-size particles heavier than the fluid, two main mechanisms make the particle tra-
jectory differ from a streamline initialized in the same position: inertia and particle–boundary

31



4. PARTICLE–BOUNDARY AND PARTICLE–PARTICLE INTERACTION

Tcold Thot

τ0

y

x

L

ap

Figure 4.2.: Sketch of the two-dimensional shear–stress-driven cavity. The three particle sizes
which are simulated via fully-resolved simulations are depicted in scale.

interaction. These two counteracting actions can lead the particle to become trapped in a limit
cycle which represents an approximation (non-interacting particles) of two-dimensional PAS.
After computing the limit cycle trajectory via fully-resolved simulations, it will be possible to
extract the ∆ from it and compare such a two-dimensional PAS with the one predicted via
one-way coupling plus PSI model.

4.2.1. Fully-Resolved Simulations

All the simulations reported below are obtained using a functional space of 5th-order polynomials
for the DG-FEM discretization and employing an interface layer thickness ξ = 0.05a. The time
discretization adapts the time step ∆t as function of ξ in order to minimize the numerical error
(see [187]).

The scales of the flow, the particle and the lubrication gap are fully resolved. The trajectories
are calculated in two separated steps. When the particle passes close to the free-surface the h-
adaptivity of our numerical method is employed for solving up to the smallest scales (lubrication
gap) present during the particle–boundary interaction phenomenon, see fig. 4.3a. After the tracer
moved away from the free–surface, the smallest scales to resolve are the particle scales and the
entire flow field is spectrally interpolated on a new grid (fig. 4.3b). The new distribution of the
elements is more refined along the expected particle trajectory, considering that for small Stokes
numbers it will not differ much from a streamline (see fig. 4.4).

Poincaré Maps

As depicted in fig. 4.4, the driving boundary represents a region of the flow field where the
streamlines are dense. To investigate the effect of inertia and particle–free-surface interaction a
Poincaré section is employed at y = yP . Selecting yP sufficiently close to the free-surface, the
deviation of the particle trajectories from a streamline will be strongly affected by the particle–
boundary interaction if the particle moves in y > yP . Viceversa, if y < yP the inertial effect will
be dominant.

In describing the particle dynamics by mean of a Poincaré map we make the hypothesis
that the Poincaré points only depend on (xin, yP ) for the given dynamical system, where x0 is
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Figure 4.3.: Example of the computational mesh used for the fully-resolved simulations in the
case of a = 0.03. Figure 4.3a shows a cut-off of the grid employed when the particle
moves close to the free-surface (the actual numerical results are produced on a six-
times finer computational mesh). The computational grid employed for the particle
trajectory in the bulk region is depicted in (b).

the initial position of the particle. In fact, owing to the small Stokes numbers, the relaxation
time of the particle is very short if compared with the fluid flow time scale. This means that
regardless of the initial velocity of the particle, its trajectory can be reliably computed just
knowing the position where the particle has been initialized (see [244]). The Poincaré sections
are obtained initializing the particle at ∆y = 0.1 from yP with its centroid velocity-matched
with the unperturbed fluid. The initial conditions for the free-surface and the bulk mappings
are denoted with yfs

s and yb
s , respectively. Selecting yP = 0.3 assures that all the trajectories

of interest in determining the limit cycle are covered and that boundary and inertia effects are
almost decoupled.

The Poincaré maps are constructed linking the first intersection of the particle trajectory with
y = yP to the second ordered return on the Poincaré line

P fs(x) : xfs
in → xfs

out, P b(x) : xb
in → xb

out. (4.2)

Combining the Poincaré maps which result from the two parts of the particle trajectory (P fs(x)
and P b(x) for free-surface and bulk, respectively), an oriented Poincaré map

P (x) : xn → xn+1 = P b[P fs(x)] (4.3)
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Figure 4.4.: Streamlines of the shear–stress-driven cavity for Re = 1000.

is obtained in order to describe the particle dynamics. Figure 4.5 makes clear how to construct
the three mappings.

Existence of a Stable, Global Limit Cycle

Employing a fully-resolved approach for describing the particle dynamics we can demonstrate
whether a limit cycle exists in a certain set-up. Moreover, analyzing the oriented Poincaré map it
is possible to describe the character of such a limit cycle, determining if it is global or local, stable
or unstable. The first parametric study investigates three particle radii, a = 0.01, 0.03, 0.05, for
the particle-to-fluid density ratio % = 2.

The free-surface and bulk mappings are combined in fig. 4.6 for all the considered particle radii.
An example of how to employ the two maps for building the iterative Poincaré map is depicted
in the case of particle radius a = 0.05 (triangles). A particle which starts at (x, y) = (0.255, 0.3)
(open diamonds) is mapped by the free-surface mapping at (x, y) = (−0.39, 0.3) on the vertical
axis (A and B segments on the graph). Starting from this position the particle will move in
the bulk region for completing its first return (C and D segments on the graph), up to the
coordinates (x, y) = (0.318, 0.3) (full diamond). Therefore, the Poincaré map will consist of the
corresponding connection between the open and the full diamonds.

A first remark can be made considering the free-surface and the bulk mappings for the finite-
size tracers, P fs and P b respectively, compared to the fluid element mappings (indicated by the
subscript ψ). For the latter case each initial position of the perfect tracer is mapped in itself

after an ordered return and P fs
ψ =

[
P b
ψ

]−1
= Pψ. Owing to the asymmetry of the flow, the

free-surface mapping compresses the fluid element trajectories along x ([P fs
ψ ]′ < 1) and the bulk

mapping completely recovers such a compression ([P b
ψ ]−1 = P fs

ψ ). The comparison between the

slopes of P fs and [P b]−1 for all the investigated finite-size particles shows a higher absolute value
slope of [P b]−1 with respect to [P b

ψ ]−1 and a lower one for P fs. This is due to inertia effects
which centrifuge out the particle trajectory (dominant in the bulk) and finite-size effects which
repel the particle from the free-surface because of viscous lubrication forces.

P fs and [P b]−1 intersect in one point only. This represents a fixed point for the iterative
Poincaré map which uniquely determines the limit cycle. Moreover, the combined map reported
in fig. 4.7 for all the particle sizes, is a monotonic continuous function with 0 < P ′(x) < 1, which
characterize the limit cycle as stable and globally attracting.
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Figure 4.5.: Schematic representation of free-surface P fs, bulk P b and iterative maps P , respec-
tively (a), (b) and (c).

This result can be understood if we consider that for heavy particles (% > 1) the inertia
effect is dominant far away from the boundaries and tends to centrifuge the particle out from
the vortex core. On the contrary, when a particle approaches the free-surface, the repulsion of
the boundaries due to lubrication effects dominates and induces a net centripetal effect on the
particle trajectory. The equilibrium between the two effects is reached when the particle moves
on the limit cycle. Along with this argument it is expected that the attraction to the limit cycle
from the interior is due to inertial effects which, in two-dimensional flows, are the only process
which can push a particle towards the periodic attractor from inside. Therefore, in the limit
of particle-to-fluid density ratio % ↓ 1, the degeneration of the limit cycle to a fixed point is
expected for a non-zero sized particle. Experimental evidence of this case is reported in [257],
where also particles lighter than the fluid are considered. As a further remark, fig. 4.7 shows
that the bigger the particle the higher its attraction rate to the limit cycle.

In literature (see e.g. [151]) the existence of a single, stable, global limit cycle is reported
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Figure 4.6.: Free-surface (open symbols) and bulk (full symbols) mappings for three particle
radii: a = 0.01 (◦), 0.03 (�) and 0.05. (4). The thick dotted-line indicates a
the fluid element mapping Pψ, whereas the arrows show how to employ the two
mappings to build the iterative Poincaré map (open diamond to full diamond) in
a representative case for a = 0.05. Referring to fig. 4.5, the open diamonds would
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Figure 4.7.: Iterative Poincaré map xn+1 = P (xn) at y0 = 0.3 for Re = 1000, % = 2 and
a = 0.01 (◦), 0.03 (�) and 0.05 (4) in a shear–stress-driven cavity flow. The
dotted line indicates the bisector and its intersection with the Poincaré map defines
the fixed point, i.e. a point on the limit cycle.
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Figure 4.8.: Limit cycles for particles with % = 2 and a = 0.01 (◦), 0.03 (�), 0.05 (4) in a
shear–stress-driven cavity for Re = 1000.

for the case of a three-dimensional axisymmetric liquid-bridge flow for which a two-dimensional
PAS is observed. In Chapter 5 we investigate this case and compare with experiments, testing
the improvement which is obtained by employing the fully-resolved simulation results in the PSI
model.

Parameter Dependence of the Limit Cycle

The unique intersection between the iterative maps and the bisector line defines xn = xn+1 = x∗

such that a particle placed at (x, y) = (x∗, yP ) moves along the limit cycle. Figure 4.8 shows the
limit cycles for Re = 1000, % = 2 and a ∈ {0.01, 0.03, 0.05}. In vicinity of the free-surface the
particles move almost parallel to it. This is a first confirmation of the good approximation made
by the PSI model in assuming an inelastic collision between particle and boundary. Moreover,
for the three investigated cases, the minimum lubrication film thickness δ between the particle’s
surface and the free-surface is one or two orders smaller than the particle radius itself.

Referring to [194], the interaction length ∆ = a+δ (minimum distance between the free-surface
and the particle centroid) is a key parameter of the PSI model. Employing the fully-resolved
approach, the interaction length is straightforward to compute once the limit cycles are obtained.

In order to compare the results for different particle radii, the interaction length is plotted in
fig. 4.9 normalizing it with the particle radius. It can be noticed that the minimum normalized
lubrication gap width δ/a is strongly depending on the particle radius a. The smaller the particle
the less it is capable to squeeze the lubrication gap.

A second parameter of investigation is the particle-to-fluid density ratio. In this case the
particle radius has been fixed to a = 0.05 and nine different density ratios % ∈ [1.2, 2] are
considered for Re = 1000. The complete Poincaré map P is employed as before to determine
the fixed points and the corresponding limit cycles. Figure 4.10b depicts the iterative maps
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Figure 4.9.: Normalized interaction length ∆/a as function of the particle radius a for a particle–
free-surface interaction in a shear–stress-driven cavity with Re = 1000 and % = 2.

for all the investigated density ratios and shows the strong dependence of the fixed point on %.
Thereafter, comparing the slopes of the iterative maps in proximity of the corresponding fixed
points, they do not sensibly depend on %. Hence the asymptotic rate of attraction to the limit
cycle, P ′(x∗), is a weak function of the particle-to-fluid density ratio.

As done in the previous case, computing the trajectories of particles initialized in (x, y) =
(x∗, yP ) each periodic orbit is calculated and depicted in fig. 4.10c. As % increases the limit
cycles become larger. This smooth trend results in period orbits for light particles which are
completely nested in limit cycles for heavier particles.

Once again the interaction length ∆ is obtained from the periodic orbits and fig. 4.11 depicts
it, normalized with the particle radius, as function of the particle-to-fluid density ratio. The
dependence of the minimum lubrication gap on % is even stronger than the one observed as
function of the particle radius. Indeed δ covers a wide range of scales passing from two orders
of magnitude smaller than the particle radius (% = 2) to the same order of a (% = 1.2). Hence,
the heavier the particle the more it is capable to squeeze the lubrication gap.

In case of a particle–free-surface interaction, the dependence of the interaction length ∆ =
f(a, %) on the particle radius and density ratio has been determined. Table 4.1 lists the fixed-
point x∗, the minimum lubrication gap width δ and the orbit time τ for all limit cycles computed
for Re = 1000. In the next section these results are employed to improve the one-way coupled
prediction including in the PSI model the lubrication gap width calculated via fully-resolved
simulations.

4.2.2. Comparison of One-Way Coupling and Fully-Resolved Simulations

The comparison between one-way coupling and fully-resolved simulations is hereinafter made
in terms of the prediction of the periodic orbits. Integrating the Maxey–Riley equation (2.22)
and applying the PSI model using the fully-resolved estimate of the interaction length ∆, the
one-way-coupled limit cycles are computed. Figure 4.12 demonstrate the influence of correctly
predicting the interaction length as function of the particle radius for % = 2 and Re = 1000. For
a = 0.05 (fig. 4.12a) the fully-resolved and one-way-coupled results are in good agreement, for
a = 0.03 (fig. 4.12b) they still well compare and for a = 0.01 (fig. 4.12c) the agreement is good.
Hence the periodic orbits obtained for the present choice of parameters can be well approximated
employing a one-way coupling approach and modeling the particle–free-surface interaction via
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Figure 4.10.: Free-surface and bulk, iterative maps and limit cycles are plotted in (a), (b) and
(c), respectively, for a shear–stress-driven cavity flow for Re = 1000, a = 0.05 and
% ∈ [1.2, 2.0]. Nine different particle-to-fluid density ratios are selected: % = 1.2
(◦), % = 1.3 (�), % = 1.4 (4), % = 1.5 (�), % = 1.6 (.), % = 1.7 (∗), % = 1.8 (O),
% = 1.9 (×) and % = 2 (+). The dotted lines indicate the fluid element mapping
and the bisector line in (a) and (b), respectively.

an improved PSI model. A further remark has to be made concerning the particle–boundary
interaction model. The dashed lines in fig. 4.12 depicts the one-way coupling trajectories whether
no PSI model is applied and, in these cases, no limit cycles were reached.

In order to show the improvement obtained in the one-way coupled trajectories plus PSI

39



4. PARTICLE–BOUNDARY AND PARTICLE–PARTICLE INTERACTION

∆
a

δ

free–surface

fitting

1.6

1.5

1.4

1.3

1.2

1.1

1
1.2 1.4 1.6 1.8 2

∆
/a

̺fitting

Figure 4.11.: Normalized interaction length ∆/a as function of the particle-to-fluid density ratio
% for the particle–free-surface interaction in a shear–stress-driven cavity with Re =
1000 and a = 0.05. The markers represent fully-resolved simulation results and
the solid line is obtained via a cubic best fit with homogeneous fitting weights.

model if the lubrication gap width is included, we compare the limit cycle for different particle-
to-fluid density ratios %. Figure 4.13 depicts only the region near the free-surface and the
periodic orbits obtained via fully-resolved simulations (marked line), the classical PSI model
with ∆ = a (dashed line) and the improved PSI model with ∆ = a + δ obtained from fig. 4.11
(solid line). Reducing the particle relative density the minimum lubrication gap width increases
and the improvement obtained including the fully-resolved results in the PSI model becomes
more and more important. Figure 4.13e shows that a one-way-coupled approach cannot predict
with reasonable accuracy the reference trajectory obtained via fully-resolved simulations by the
original PSI model. Hence, we further confirmed that an accurate evaluation of the minimum
lubrication-gap width may be of crucial importance for accurately predicting PAS.

From the various comparisons reported we can conclude that the PSI model qualitatively well
describes the particle–free-surface interaction if used in combination with a one-way coupling
approach. More accurate predictions can be obtained if the minimum lubrication gap width
is taken into account including the fully-resolved simulation results. However, modeling the
interaction as an inelastic collision cannot, by definition, capture the dynamics of attraction
of the particles to the limit cycle. Indeed, particles which are initially located in a region
outside the limit cycle are instantaneously mapped on the limit cycle once they are released
after “colliding” for the first time with the free-surface. As shown in the fully-resolved iterative
maps, the particles approach the periodic orbit only asymptotically after multiple returns. On
the contrary, if a particle is initialized inside the limit cycle, it will spiral towards it because of
its inertia. This is taken care of by the Maxey–Riley equation.

4.3. Particle–Wall Interaction

The second case under consideration deals with the interaction between a single circular particle
and a moving-wall. Owing to the small radius of the particle, even in the case of a curved
moving wall the local curvature of the boundary is neglected and the particle–wall interaction
can be investigated with good approximation considering a flat moving-wall. As done in the
previous case, we study a two-dimensional configuration. The Reynolds number is of the order
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Figure 4.12.: Particle trajectories for three different particle radii, a = 0.05, 0.03 and 0.01 (a), (b)
and (c) respectively. The marked and the solid lines depict fully-resolved simula-
tions and Maxey–Riley equation plus PSI model results, respectively. The dashed
line represents a one-way coupled trajectory for t ∈ [0, 2] obtained initializing the
particle at (x, y) = (x∗, yP ). Without applying the PSI model no periodic orbit is
reached.
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Figure 4.13.: Limit cycles for a shear–stress-driven cavity for Re = 1000, a = 0.05 and % ∈
[1.2, 2]. Dashed and solid lines indicates the limit cycles obtained using a one-way
coupling plus PSI model in which as interaction length ∆ = a and ∆ = a + δ are
selected, respectively. The markers show the reference periodic orbit obtained via
the fully-resolved simulation.
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Table 4.1.: Fixed-point x∗, minimum lubrication gap width δ and orbit time τ for the computed
limit cycles in a shear–stress-driven cavity for Re = 1000.

a % x∗ δ τ

0.05 1.2 0.164 0.0282 0.0587
0.05 1.3 0.198 0.0215 0.0638
0.05 1.4 0.230 0.0158 0.0702
0.05 1.5 0.257 0.0123 0.0765
0.05 1.6 0.283 0.0093 0.0845
0.05 1.7 0.306 0.0069 0.0936
0.05 1.8 0.327 0.0051 0.1032
0.05 1.9 0.343 0.0038 0.1129
0.05 2.0 0.356 0.0028 0.1227
0.03 2.0 0.379 0, 0021 0.1438
0.01 2.0 0.406 0.0024 0.1853

of the ones which will be investigated in the next chapter for the three-dimensional flows. A
lid-driven square cavity of linear dimension L is considered; the moving-wall is located at the
top and it moves tangentially to itself with constant velocity U . Figure 4.14 depicts a sketch of
the lid-driven cavity.

The convective scaling is employed and the non-dimensional Navier–Stokes equations read as
in (2.16) where the Reynolds number is

Re =
UL

ν
. (4.4)

The mathematical problem is closed by the non-dimensional boundary conditions

x = ±1/2 : u = v = 0, (4.5a)

y = −1/2 : u = v = 0, (4.5b)

y = 1/2 : u = 1, v = 0. (4.5c)

The Reynolds number is fixed to 100, the particle-to-fluid density ratio % = ρp/ρf = 2 and the
particle radius, a = ap/L, is assumed as parameter. The particles are instantaneously initialized
in the steady-state flow field (see fig. 4.15) and the inertia and particle–boundary interaction
effects will be investigated via Poincaré maps produced from the fully-resolved simulation results.

4.3.1. Fully-Resolved Simulations

As done for the case of a particle–free-surface, also for the particle–wall interaction 5th-order
polynomials and interface layer thickness ξ = 0.05a are employed for the fully-resolved simula-
tions. In order to resolve all the relevant scales of the flow, a similar structure of the computa-
tional grids presented fig. 4.3 is employed. In the specific case of a particle moving away from the
wall, the mesh has been adapted to the streamlines depicted in fig. 4.15. The DG-FEM element
distribution in the bulk is very similar to the one shown in fig. 4.3b for the shear–stress-driven
cavity.
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Figure 4.14.: Sketch of the two-dimensional lid-driven cavity. The five different particle sizes
targeted in this investigation are depicted to scale.
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Figure 4.15.: Streamlines of the lid-driven cavity flow for Re = 100.

Poincaré Maps and Existence of a Stable, Global Limit Cycle

The Poincaré maps along the line y = yP are employed to investigate the particle motion in a
lid-driven cavity. Choosing an ordinate on which to construct them which is close enough to the
moving-wall (where the streamlines are dense), the inertial and particle–boundary interaction
effects can be almost decoupled as done in the previous section. To do so we select yP = 0.3
and we derive two complementary mappings, Pw(x) and P b(x), which respectively describe the
dynamics of a particle along y = yP in case the particle moves in y > yP (wall mapping) or in
y < yP (bulk mapping)

Pw(x) : xw
in → xw

out, P b(x) : xb
in → xb

out. (4.6)

Moreover, owing to the small Stokes numbers, the phase space of a particle consists with
good approximation on its coordinates only. Once again, to avoid any dependence on the
initial numerical transient due to the instantaneous particle injection in the steady flow field,
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Figure 4.16.: Conceptual sketch of wall, bulk and iterative maps.

we initialize the particles at an ordinate ys which is ∆y = 0.1 far from yP (yb
s = yP + 0.1,

yw
s = yP − 0.1).

From the combination of the two Poincaré maps for the particle–wall interaction and bulk
motion, a first oriented return Poincaré map P (x) = P b[Pw(x)] is obtained for defining the
particle dynamics along yP . The whole process is analogous to the one used for the shear–
stress-driven cavity, with the only difference that the driving boundary is here producing a
clockwise main vortex. A representative sketch of the three mapping operations is depicted in
fig. 4.16.

As in the previous section, the existence of limit cycle can be demonstrated by fully-resolved
simulations. Moreover, from the trend of the oriented Poincaré map it is possible to characterize
such a periodic orbit. We want to understand if the basin of attraction of the limit cycle is a
sub-space of the domain or if the whole domain is attracted by it. Moreover by fully-resolved
simulation we will clarify if the limit cycle is a stable or unstable attracting periodic orbit.

Five particle radii are considered in this investigation: a = 0.01, 0.02, 0.03, 0.04 and 0.05.
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Both the wall and the bulk maps are presented in fig. 4.17, combining them as done for the shear–
stress-driven cavity. The results are in complete analogy with the ones reported in the previous
section: the bulk mapping tends to centrifuge out the particle and the particle–wall interaction
acts compressing them owing to finite-size effects. The closer the particle moves to the wall the
more dominant the particle–boundary interaction effects dominate on the inertial ones. This is
shown by the slope of the wall map which is lower (in absolute value) than the bulk mapping
slope. The two curves intersect, for each particle size, in just one point which determines the
equilibrium between compression and expansion of the particle trajectories along x. In terms
of oriented Poincaré map this can be observed in the fixed point for which the iterative map
intersects with the bisector line. As aforementioned, this represents one of the two abscissae
xn+1 = xn = x∗ where to initialize the particle on y = yP such that its trajectory coincides with
the attracting periodic orbit.

Figure 4.18 depicts the oriented Poincaré map and shows a monotonic trend for which 0 <
P ′(x) < 1; this property of the iterative map derivative has been observed in the case of a
particle motion in a shear–stress-driven cavity as well and defines the stable and global attracting
character of the periodic orbit. Moreover, the bigger the particle the higher its attraction rate to
the limit cycle. This conclusion can be drawn observing that P ′(x) becomes smaller and smaller
the bigger the particle radius.

In fig. 4.19 the periodic orbits in the square lid-driven cavity for Re = 100, % = 2 and
a ∈ [0.01, 0.05] are depicted. We focus on the region nearby the moving-wall where the particle
motion is almost parallel to the driving boundary. This confirms that, even for particle–wall
interactions, the assumption of a normal inelastic collision is a good local approximation. In the
considered cases, the minimum thickness of the lubrication gap passes from one order smaller
up to the same order of magnitude of the particle radius.

Comparison between Free-Surface and Wall Interaction Length

A first comparison between particle–wall and particle–free-surface interaction is made in terms
of the attraction rate to the periodic orbit. For % = 2 and a = 0.05 fig. 4.20 compares the two
iterative Poincaré maps obtained in this and the previous section. P ′(x) for the periodic orbit
in a lid-driven cavity is evidently greater than the one of the same particle accumulating in
a shear–stress-driven cavity (for comparable Reynolds numbers). This demonstrate the higher
attraction rate to the limit cycle for the particle in the shear-driven cavity. The same trend is
found for the formation time of particle accumulation structures experimentally observed in a
liquid bridge and a lid-driven cavity. For comparable Reynolds numbers, the accumulation in a
liquid bridge is faster than in a lid-driven cavity.

Once the limit cycles for the considered particle radii are calculated, the minimum distance
between the particle’s centroid and the moving-wall (interaction length ∆) can be computed.
This quantity has already been described as the input for improving the PSI model, but it is
also a measure of comparison between particle–wall and particle–free-surface interactions.

Figure 4.21 depicts the interaction length normalized with the particle radius (∆/a = 1+δ/a)
for both, the lid-driven and the shear–stress-driven cavity. The normalized lubrication gap δ/a
is strongly depending on the particle radius. An important quantitative difference, however, is
reported in fig. 4.21 which shows δ/a to be one order of magnitude larger for a particle–wall
interaction. It is concluded that a rigid boundary exerts a much stronger repulsion on the
particle than a shear–stress boundary for comparable Re. Hence the interaction length of the
PSI model is strongly depending on the particle radius. Such a trend is in agreement with what
observed for the repulsion forces exerted on a sphere moving towards a wall or a free-surface.
In this case it is well known that the forces exerted in normal direction from a free-surface are
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Figure 4.17.: Wall (open symbols) and bulk (full symbols) mappings for five particle radii: a =
0.01 (◦), 0.02 (�), 0.03 (�), 0.04 (4), and 0.05 (O). The dotted line indicates the
streamline mapping.
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Figure 4.18.: Iterative Poincaré map xn+1 = P (xn) at yP = 0.3 for Re = 100, % = 2 and
a = 0.01 (◦), 0.02 (�), 0.03 (�), 0.04 (4) and 0.05 (∗) in a lid-driven cavity flow.
The intersection of the Poincaré maps with the bisector (dotted line) defines the
fixed point for each iterative map.
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Figure 4.19.: Periodic orbits nearby the moving-wall for particles with % = 2 and a =
0.01 (◦), 0.02 (�), 0.03 (�), 0.04 (4) and 0.05 (∗) in a lid-driven cavity for
Re = 100.
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Figure 4.20.: Comparison of the Poincaré maps obtained for a = 0.05 and % = 2 in the shear–
stress-driven (�) and the lid-driven (◦) cavity. The bisector is shown as dashed
line.
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Figure 4.21.: Comparison between the normalized interaction length ∆/a as function of the
particle radius a for a particle–wall (◦) and a particle–free-surface (�) interaction
for % = 2. A cubic fit, indicated in solid line, is used for the particle–wall interaction
length.

This quantitative information will be tested by comparing the periodic orbit obtained by
the PSI model in a one-way coupling approach with the reference trajectories computed by
fully-resolved simulations.
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4.3.2. Comparison of One-Way Coupling and Fully-Resolved Simulations

The periodic orbits obtained by one-way coupling and fully-resolved simulations are compared for
all the five particle radii considered in the present investigation. We will not further demonstrate
the importance of an appropriate particle–boundary interaction model as essential ingredient of
the prediction, but we focus on the improvement of the periodic orbit obtained including the
lubrication gap determined via the fully-resolved simulations.

Figure 4.22 depicts the three limit cycles obtained via one-way coupling (using ∆ = a and ∆ =
a + δ in the PSI model) and fully-resolved simulations. The strong curvature of the trajectory
nearby the sliding lid indicated a strong acceleration/deceleration in x-direction during the
approaching/releasing phase. The first conclusion which can be drawn from it is that the particle
trajectory has essentially two time scales: a slow one in the approaching/releasing phase and a
fast one, in the sliding phase. The same scenario has been observed in the shear–stress-driven
cavity and justify the use of the PSI model which characterize the particle trajectory as a
Filippov system applied to a fast–slow dynamical system. This aspect of the PSI model will be
further commented in the next chapter because directly linked to the accumulation process.

The fully-resolved simulations are assumed as reference trajectories and two different inter-
action lengths are compared for the PSI model. The dashed lines are used to indicate results
in which the lubrication gap is not taken care of (∆ = a), whereas the solid lines depict the
one-way coupled simulation for which the PSI interaction length is ∆ = a+δ. Figure 4.22 shows
a remarkable improvement of the one-way coupling trajectories when the minimum lubrication
gap width obtained from fully resolved simulations is included in the PSI model. It must be fur-
ther stressed that, even if big particles are considered, the one-way coupling approach is still an
adequate tool to simulate their trajectory. Especially in the case of PAS caused by particle–wall
interactions, this remark will become useful in the next chapter where relatively big particles
(i.e. a ≈ 0.04÷ 0.05) are dealt with.

4.4. Particle–Particle Interaction

The last investigation we conduct in two dimensions deals with particle–particle interactions. We
consider the experimental observation of transfer of particles from PAS to the chaotic bulk-flow
reported by Schwabe et al. [258]. The authors attributed this phenomenon to multimode hy-
drothermalwaves, external disturbance, sedimentation of particles and centrifugal forces. More-
over another mechanism of particle loss from PAS was numerically identified in [194] in the
framework of the PSI model. Mukin & Kuhlmann pointed out that particle loss may occur as a
single-particle phenomenon for relatively large particles owing to the geometry of the accumula-
tion structure near the boundary. Hereinafter we address another mechanism which may induce
particle transfer from PAS to the chaotic bulk-flow region: the particle–particle interaction
among the particles which accumulate about the PAS.

4.4.1. Analysis Concepts for the Particle–Particle Interaction

In the following we will formulate a conceptual explanation of the particles’ transfer phenomenon.
Assumptions will be discussed in order to motivate a simplified conceptual approach. This
section represents a first idea for a more detailed investigation.

For the small Stokes numbers typically characterizing the particle, the velocity degrees of
freedom in the phase space dynamics are neglected in the following1. Hence, without the particle

1For the flows under investigation, the velocity gradient is bounded and sufficiently smooth far from the singu-
lar corners. Therefore, in neighbourhoods of non-zero-size single-particle trajectories H the velocity of the
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Figure 4.22.: Periodic orbits for a lid-driven cavity flow for Re = 100, % = 2 and a ∈ [0.01, 0.05].
One-way coupling results (plus PSI model) are indicated with dashed and solid
lines assuming as interaction lengths ∆ = a and ∆ = a+ δ, respectively. The fully
resolved simulations are depicted using markers.
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velocities, the reduced phase space for the motion of np tracers is (ndim × np)-dimensional,
where ndim are the fluid-flow dimensions. Therefore, chaotic dynamics and strange attractors
are plausible for multiple-particle motion, even in planar flows. We remark that under the
simplifying assumption of negligible effects connected to the particle velocities relative to the
fluid the connected dissipation and the eventual strange attractors are neglected. We analyse
the transfer of particles from PAS to the chaotic bulk-flow region employing a Poincaré-like
stability, defined as follows

Let H be the single-particle limit cycle and Hi(xi(t)) the i-th particle trajectory.

Hi(xi(t)) is Poincaré-like (ε, τ)-stable⇔ di = dist (xi(t),H ) ≤ ε, ∀t ∈ [0, τ ] (4.7)

where ε is a small, non-infinitesimal tolerance normal to H about the single-particle periodic
attractor (see fig. 4.23). It is to be remarked that the so-defined Poincaré-like stability differs
from the classic Poincaré stability because it depends on the time-window we select, [0, τ ], and
on the tolerance ε and is just a monitoring quantity. At the end of this section we will propose a
suitable way to define such a tolerance in order to infer some stability properties for the three-
dimensional line-like PAS. In principle one would let t→∞, but because of numerical reasons,
only the short-term dynamics will be investigated.

2ǫ
xj(t = 0)

xk(t = 0)
xj(τ)

xk(τ)

H

Figure 4.23.: Conceptual sketch of the Poincaré-like stability within the time window t ∈ [0, τ ]
for two particle trajectories, Hj and Hk. According to the definition given in eq.
4.7 the j- and the k-particles are Poincaré-like stable and unstable, respectively.

The problem is further formulated in terms of an occupation ratio of particles along the
attracting limit cycle. Considering particles of the same size, their occupation ratio along a
limit cycle is defined as

φPAS =
2a

lPAS
· np (4.8)

where lPAS is the length of the single-particle limit cycle and np the number of particles moving
in its vicinity (to uniquely define such a neighborhood of H one may use the tolerance ε). An
implicit simplification is herein included in selecting φPAS as the only non-dimensional group to
investigate. In particular, the exclusion of the non-dimensional particle radius ap/d from the
following analysis must be justified. Owing to the typically small particle-Reynolds numbers,
the perturbation introduced by each particle can be represented, with good approximation, as
a creeping flow. For spherical particles in Stokes flow, the strength of the perturbation field
decays as ∼ r−1

p , where rp is the distance from the particle centroid. Hence we speculate that
the projection of the particle–particle interaction along the single-particle attractor may be taken

particle is bounded. This guarantees that considerations about the phase space may be made dealing with
the coordinate phase space only.
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into account employing only φPAS, regardless of the non-dimensional particle radius. However, in
order to neglect the particle radius as investigation parameter, we must limit the local curvature
of the single-particle limit cycle, χPAS, with respect to the particle size, apχ

PAS � 1.

If maxt(dist (xi,H )) = ε, φPAS equals the threshold occupation ratio for the i-th particle
φPAS
c,i (ε). Beyond φPAS

c,i (ε) the single-particle limit cycle does coincide with the i-th-particle
trajectory within the tolerance ε. Considering circular particles of the same density and size,
the PAS Poincaré-like stability can be inferred considering the particle occupation ratio. We aim
at finding φPAS

c such that the projection of the phase-space attractor onto each (xi, yi)-plane
coincides with the single-particle limit cycle within an arbitrary transversal tolerance ε for a
definite time window starting from definite initial conditions

φPAS ≤ φPAS
c (ε) = min(φPAS

c,i ). (4.9)

Owing to the far-field perturbation typical of two-dimensional flows, the particle–particle
interaction experienced by each tracer is stronger than it would be if they were spherical tracers
of the same radius at the same mutual distance. Therefore, we speculate that our estimate
of the maximum stable particle occupation ratio along the attractor can be considered as a
conservative supremum of the three-dimensional φPAS

c for line-like PAS.

If particle–particle interactions were negligible, the tracers would keep moving on the single-
particle periodic attractor and their trajectories would coincide. In this case a simple shift in
time would be enough to univocally link the particle trajectories. Along the same argument, the
similarity among the particle orbits can be measured in terms of the turn-over time τi required
by the i-th particle to complete a single revolution on the attractor.

4.4.2. Multiple-Particle Simulations

Under the assumption that the main particle–particle interaction can be approximated by con-
sidering the nearest neighbours only, three particles are simulated. This working hypothesis is
violated if PAS instability (defined as above) occurs, but it is still expected to hold in the limit
of φPAS ↑ φPAS

c . The shear–stress-driven cavity for Re = 1000 is chosen as flow field for this
investigation and fig. 4.24 depicts the aforementioned conceptual approximation.

The particles have a = 0.01 and % = 2 and are initially distributed along the limit cycle
calculated in Section 4.2.1 for a single particle. Owing to the variation of the velocity along the
single-particle limit cycle, the tracers are arranged in a non-uniform distribution. The mutual
distance between the particles will be smaller where the flow is slower and larger when the flow
is faster. Therefore, in order to simulate a Poincaré stable configuration for a given φPAS, the
particles are initialized at a constant frequency between each other fPAS = np/τ

PAS, where
τPAS is the turn-over time2 (assumed, in the limit, equal for all particles). The single-particle
turn-over time τ s-p is considered as a first estimate of τPAS. Simulating three particles only,
we place the central one at (x∗, yP ) and calculate the initial location of the other two particles
integrating backward and forward in time the single-particle trajectory up to t = 1/fPAS. The
three particles employed to investigate the stability of the attractor are labeled as in fig. 4.24.

Limiting our study to a relatively short time window (one turn-over time for the particle in
the middle, τ2), the data resulting from it will serve the purpose of investigating particle loss
along the attractor for multiple particles because such a process is experimentally observed to
be linked to the short-term dynamics of the system.

2The turn-over time is measured considering the Poincaré section of the particle trajectory with a line normal
to its trajectory and passing from its initial position. The i-th particle turn-over time τi is the time between
two successive ordered returns.
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Figure 4.24.: Sketch of the simulation set-up (right) for investigating the occupation ratio of
particles along the attractor such that particle–particle interaction does not induce
Poincaré-like instability in a two-dimensional shear–stress-driven cavity for Re =
1000. Three particles are used to model the set of accumulated tracers (left) of the
same size and density initially distributed along the single-particle attractor.

4.4.3. Results

Figure 4.25 compares the three particle trajectories with the single-particle limit cycle for
φPAS = 0.9500 (a), 0.7773 (b) and 0.6045 (c), respectively to 110, 90 and 70 particles, up
to t = τ2. For φPAS = 0.9500 the time window t ∈ [0, τ2] does not suffice to reliably describe
the particle dynamics (see fig. 4.26a). However the deviation of the multiple-particle trajecto-
ries (dashed, dashed-dotted, and dotted lines) from the single-particle limit cycle can already
be observed in the first phase of the system evolution (fig. 4.26b). This violates the working
hypothesis schematically depicted in fig. 4.24 and the resulting dynamics does not represent a
good approximation of a 110-particles system evolution (φPAS = 0.9500). Figure 4.26b depicts
a numerical two-dimensional version of the bursts experimentally observed when the particles
are leaving the region near the free-surface (see fig. 16b in [258]).

The minimum distance between the i-th particle centroid and the periodic attractor for a
single particle, di, is shown as function of time in fig. 4.27, integrating up to t = τ2. The
different lines refer to the three particles employed in the simulations. A remarkable decrease
of the order of magnitude for di (note the scales of the axes) can be observed passing from
φPAS = 0.9500 (a) to 0.6045 (c) and the latter case can already be considered as Poincaré-like
(ε, τ2)-stable with a ε = 3.56 × 10−3. Moreover, an important information can be extracted
if the distance from the single-particle limit cycle is averaged among the three particles, 〈di〉.
Tracking the particles and considering the solid line in fig. 4.27, 〈di〉 increases when the particles
approach the free-surface. When particle–particle interactions are present, the free-surface has
an ambivalent role: it focuses the tracers towards the single-particle limit cycle if particle–particle
interaction is weak, whereas it defocuses from the periodic orbit when the mutual interaction
between particles plays a major role. The latter behavior is shown by the initial temporal trend
of 〈di〉 for t ∈ [0, τ2](solid line in fig. 4.27).
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Figure 4.25.: Particle trajectories for three different occupation ratios φPAS = 0.9500 (a), 0.7773
(b) and 0.6045 (c). The dashed-dotted, dashed and dotted lines refer to particle
1, 2 and 3, respectively, whereas the markers indicate the single-particle periodic
attractor. Particle trajectories are integrated up to t = τ2.

Table 4.2 and fig. 4.28 give more quantitative comparisons between the single-particle periodic
orbit and the multiple-particle trajectories. As function of the occupation ratio φPAS, fig. 4.28a
depicts the turn-over time, τi (markers), for each particle compared with the single-particle
turn-over time (solid line). Moreover, fig. 4.28b shows the maximum distance of the particle
trajectories from the single-particle limit cycle as function of φPAS.

Table 4.2 lists the mean turn-over time, 〈τi〉, as well as the mean maximum distance of the
three particle trajectories from the single-particle limit cycle, 〈max(di)〉. In both the cases the
mean values are calculated averaging over the particle values. These data are given as function
of the occupation ratio φPAS and the number of particles np. As already discussed, the case of
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Figure 4.26.: Long-term evolution of the particle trajectories for occupation ratio φPAS = 0.9500
(a) and two-dimensional burst of the particle trajectories after the first interaction
with the free-surface (b). The dashed-dotted, dashed and dotted lines refer to
particle 1, 2 and 3, respectively, whereas the markers indicate the single-particle
periodic attractor.The time window of (a) is t ∈ [0, 6τ2].

φPAS = 0.9500 cannot be reliably represented simulating three particles only and this warning
is indicated in table 4.2 highlighting the corresponding row in gray.

The turn-over time for each particle τi, and consequently the mean turn-over time 〈τi〉, are
increasing if the occupation ratio increases from φPAS = 0.6045 to 0.7773. This can have two
causes: (a) particle–particle interaction projected along the single-particle periodic attractor and
(b) deviation of the tracers from the single-particle limit cycle. Only the central particle among
the three experiences the interaction with both the nearest neighbour tracers. Even though this
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Figure 4.27.: Minimum distance function of the i-th particle trajectory, di, from the single-
particle periodic attractor. The dashed-dotted, dashed and dotted line refer to
particle 1, 2 and 3, respectively, whereas the solid line indicates the average among
the particle of di. Three occupation ratios are depicted: φPAS = 0.9500 (a), 0.7773
(b) and 0.6045 (c).

is the case, fig. 4.28a shows that the turn-over times of all particles are very similar to each other.
Moreover, considering fig. 4.28, when the distance between each trajectory and the single-particle
attractor increases, τi increases as well. This observation may lead to conclude that increasing
di makes the multiple-particle turn-over times deviate from the period of single-particle limit
cycle.
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Figure 4.28.: Turn-over time τi (a) and maximum di (b) for the i-th particle as function of the
occupation ratio φPAS. The circle, triangle and square refer to the particles 1, 2 and
3, respectively. The dashed line denotes an exponential fit for the root-mean-square
of max(di) as function of φPAS.

Table 4.2.: Single-particle, τ s-p, compared with the averaged multiple-particle turn-over time,
〈τi〉 as function of the occupation ratio of particles along the attractor φPAS. The
averaged maximum distance of the multiple-particle trajectories from the single-
particle limit cycle, 〈max(di)〉, is computed up to t = τ2. All the particles are
equal to each other (a = 0.01, % = 2) and move in a shear–stress-driven cavity for
Re = 1000. The gray color indicates that the last row does not give reliable data for
interpreting the behavior of 110 particles with the only simulation of three of them.

φPAS np fPAS τ s-p 〈τi〉 〈max(di)〉 τ2

0.6045 70 377.84 0.1853 0.1877 0.002516 0.1874
0.7773 90 485.79 0.1911 0.012712 0.1915
0.9500 110 593.75 0.1850 0.054863 0.1664
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4.4.4. Conceptual Extension to Three-Dimensions

To conclude we will apply these concepts to three-dimensional particle accumulation structures.
In Chapter 5 the strong correlation between particle attractors and regular regions of a steady
fluid flow will be discussed. A single non-zero-sized particle does not perfectly follow the flow,
but the small Stokes numbers and density ratios typically considered make its trajectory very
similar to a streamline. As already discussed, this statement does not hold in the close vicinity
of the boundaries.

In a three-dimensional flow it is therefore important to define in which regions of the domain a
one-way coupled particle trajectory has a chaotic motion and where it moves along a periodic or
quasi-periodic orbit. These regular regions for the single-particle trajectory will be approximated
in the following discussion by the regular regions for the flow streamlines of a three-dimensional
steady flow.

Figure 4.29 depicts a conceptual sketch of a generic tubular regular region for the fluid flow.
Far enough from it a single tracer moves in a chaotic fashion. We consider the case of a single-
particle accumulating on a closed trajectory inside the regular region of the flow (we make the
assumption that the attracting limit cycle does not sensibly differ from the closed streamline).
The curvilinear coordinate along the periodic attractor is denoted with s and the minimum
distance of it from the boundary between regular and chaotic regions in each cross-section
normal to s is called ds-p.

If we give a clear description of the line-like PAS and the flow topology, the minimum ac-
ceptable tolerance for the system to be Poincaré-like stable may heuristically be approximated
by min(ds-p). In fact, requiring that the particle trajectory coincides with the closed streamline
within a tolerance ε = min(ds-p) means that the particle will always move within the regular
region. Hence, for the corresponding threshold occupation ratio, this condition would yield

min(ds-p) = max(di)⇒ φPAS ≤ φPAS
c . (4.10)

From (4.10) it results a conservative estimate of the stability boundary for particle accumulation
structures in steady three-dimensional flows. Evaluating min(ds-p) we can determine an infimum
of φPAS

c and the corresponding number of particles which can safely accumulate about the single-
particle line-like PAS without causing loss of particles along the accumulation structure.

ds-p
ds-p

s

Figure 4.29.: Sketch of a part of the regular regions for the flow about a line-like PAS. The
coordinate s is defined along the periodic attractor (closed trajectory assumed
approximated by a closed streamline) and the gray areas represent the sections of
the tubular regular region. The minimum distance between the periodic attractor
and the boundary of a section of the regular region is indicated by dmin and, in
general, is function of t and s.

We finally remark that the mechanism we propose phenomenologically agrees with experi-
mental observations of the loss of particles along PAS. Indeed, in the initial phase of the accu-
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mulation, the occupation ratio along the attractor is very small. The more particles accumulate,
the higher φPAS becomes. This holds up to the threshold φPAS

c at which the PAS Poincaré-like
instability occurs and the accumulation structure looses particles to regions in which the stream-
lines are chaotic. This explains the contribution of particle–particle interactions to the loss of
particles along the accumulation structure without making any reference to fluid-flow induced
causes (e.g. multimode hydrothermalwaves). Such a mechanism takes into account the low
Stokes numbers which are usually employed in the experiments and the corresponding negligible
effect that particles have on the fluid, supposed to be almost insensitive to φPAS.
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5. Topology and Particle Accumulation
Structures

Inertia and particle–boundary interaction effects may lead to accumulation of particles in specific
regions of the flow domain. We will consider either fluid-flow systems in which both effects are
necessary to attract particles to global and stable PAS or systems in which the inertial effect
can be neglected and the particle accumulation is determined by the only particle–boundary
interaction. The case of particles clustering due to the only inertial effect has been extensively
studied in literature (see e.g. [267]) and we will not deal with it in the present thesis.

The first part of this chapter considers PAS in a liquid bridge, either for axisymmetric or three-
dimensional flows. The focus will be on the accurate prediction as function of the parameters of
PAS and on the improvement derived from including the lubrication gap width in the PSI model.
We will show how accurate the fully-resolved two-dimensional estimate can be in quantitative
comparison with experimental results.

The second part of the chapter investigates a two-sided antiparallel lid-driven cavity for which
PAS are reported here for the first time. A comparison with experimental investigations is also
presented.

The last section includes a numerical prediction of PAS for a partially liquid-filled rotating
drum in which there is no experimental evidence of particle accumulation structures, so far. The
aim of such a section is to predict a suitable range of Reynolds numbers and particles sizes for
which PAS may occur.

5.1. Different Interpretations of Particle Accumulation
Structures

A numerical prediction of particle accumulation structures has been targeted by various re-
search groups (see e.g. [190, 160, 194, 195]) and the accumulation mechanism itself is currently
debated. Among the proposed interpretations, some authors tend to attribute it to a particle–
fluid synchronization process [190, 228], others correlate PAS to the vorticity field [160], whereas
Kuhlmann et al. [126, 195, 194, 151] explain the particle attraction to periodic and quasi-periodic
orbits as a phenomenon directly connected to the flow topology and the particle–boundary in-
teraction.

An exhaustive comment by Kuhlmann & Muldoon [156] excluded the synchronization mech-
anism among the possible causes of PAS and a further proof of it will be given in the present
chapter. Indeed, only one-way coupled simulations are used in the following and this implies that
the particles are, by definition, slaves of the flow field. To have particle–fluid synchronization it
is required a weak coupling between particulate- and fluid-flow systems (see e.g. [226]), which
is absent in our simulations, the fluid-phase being not affected by the particles.

The debate developed observing the particle accumulation structures in a liquid bridge, which
is the only experimental evidence of PAS reported so far. When a hydrodynamical instability
occurs in the flow of the liquid bridge in form of a traveling hydrothermal wave, the traveling
frequency of PAS equals the frequency of the hydrothermal wave. However, even if the flow has
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a characteristic frequency which is also observed for the particle accumulation structures, such a
frequency does not result from synchronization between PAS and fluid, but from a synchronous
motion with which the particle accumulation structures follow the flow. Moreover, PAS are
also present in systems which do not have any characteristic traveling wave frequency, e.g. in a
lid-driven cavity flow, and we will demonstrate it herein for the first time.

Regarding the “vorticity thinking” proposed by Lappa, this is resulting from the numerical
observation that PAS are traveling along axial vorticity isosurfaces ([160]). However it has never
been rigorously demonstrated how the vorticity-wave interaction could lead to PAS. Moreover,
this does not provide a clear framework for understanding when PAS can occur in dependence
on the particle radius, even though PAS has been experimentally observed for very specific
combinations of flow-field and particle parameters (see e.g. [258]).

A possible cause of such controversies may be due to a technical problem in simulating the
particle motion nearby the domain boundaries. Integrating numerically the Maxey–Riley equa-
tion the particles moving near the boundaries may unphysically exit the domain or cluster along
the three-phase contact line on the cold corner of the liquid bridge due to numerical error. Even
if according to their theoretical explanations Lappa [160] and Melnikov et al. [190] do not need
any particle–boundary interaction model for numerically reproducing PAS, both of them employ
a rebound scheme to prevent the aforementioned unphysical scenarios for the particle motion
(see e.g. [190, 160]). This is corresponding, in practice, to apply the PSI model proposed by
Hofmann & Kuhlmann. Since Lappa and Melnikov et al. have considered it as a minor numerical
artifact, they kept on attributing PAS to inertia, synchronization and vorticity wave interac-
tion causes. For an extensive analysis on the role of numerical errors and rebound schemes in
simulating PAS we refer to [196].

In this chapter we will provide further evidence in support of the theory of Kuhlmann et
al. [126, 195, 194, 151] by computing the flow topology, simulating the particle accumulation
structures and comparing them with the regular regions of the flow. The particle radius is
assumed as a key parameter of the investigation. To the best of the author’s knowledge, this
is the first time that such a clear proof is given for flow-field parameters which are targeted
in experimental studies and a comparison with the available experiments is presented in the
following whenever possible.

5.1.1. Phenomenological Explanation of Particle Accumulation Structures

Since many different phenomenological explanations have been proposed for interpreting PAS,
the previous overview about them may have helped the reader to get oriented. In this subsection
we aim at specializing the discussion about the theory of Kuhlmann et al., which we support in
the present thesis. In the following we clarify it in its essential physical aspects and in the way
we model them.

The first aspect to discuss is the correlation between particle accumulation structures and fluid
flow topology. The particles we consider are not so heavy (% = O(1)) and characterized by small
Stokes numbers. Moreover the investigated fluid flows are featured by very high streamline den-
sity nearby the driving boundary. These two considerations suggest that inertial and buoyancy
effects do not play a major role if compared to finite-size effects when the particle passes very
close to the boundaries. Moreover, in the flow configurations we consider, the major part of the
domain (including the boundaries) is occupied by the chaotic region. Therefore, by ergodicity,
each particle located in the chaotic sea will be advected to move nearby the boundaries and will
experience strong interactions with free-surfaces/walls due to its finite size.

As mentioned, inertia and buoyancy effects are almost negligible for the particle parameters
under investigation, hence the regular regions of the fluid flow (without particles) approximate
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possible trapping sub-volumes for single particles. Moreover it is experimentally reported that
particle–particle interactions do not sensibly affect the shape of the accumulation pattern. This
means that KAM surfaces not only may represent a good approximation of trapping regions for
single particles, but they also very well approximate PAS.

The second important point to discuss is the dissipation phenomenon which brings the par-
ticles to accumulate. Many dissipation mechanisms are actually acting on the particles such as
inertia, buoyancy and particle–boundary interactions. In our framework of investigation, the lat-
ter dissipative effect is definitely dominant on the former ones and it determines the major part
of the accumulation dynamics. The dissipation is introduced in the particulate dynamical sys-
tem because of the lubrication forces which are responsible for the strongest particle–boundary
interaction effects. Their importance is limited to a flow region in the vicinity of a wall or a
free-surface. This is because the considered particles are very small and lubrication forces are
effective when the particle centroid has a distance from the boundaries which is at most of the
same order of its radius, ∆ = O(a).

The last feature required for having particle accumulation in the framework of PAS is the
vicinity of KAM tori to the fluid flow boundaries. When a regular region is located near a wall
or a free-surface the dissipation mechanism due to the particle finite size can transfer the particle
from a chaotic to a regular sub-volume of the flow. Once the particle enters a regular region, it
remains trapped in it contributing to the accumulation pattern which identifies the PAS.

Employing fully-resolved three-dimensional simulations for determining the particle trajecto-
ries would be infeasibly numerically expensive and modelling assumptions are required. The
first assumption we do (experimentally confirmed) is that PAS is a single-particle phenomenon.
Therefore, in the framework of point-wise particle simulations, we select a one-way coupled
approach. The second assumption numerically validated in the previous chapter consists in
modelling the particle motion in proximity of a wall or a free-surface using the PSI model. In
terms of dynamical systems, this last step corresponds to employing a Filippov system [79] for
the velocity vector field in which the particle is moving. The PSI model is therefore responsible
for modelling the main dissipative contribution in the particles dynamical system (see e.g. [110]).
As a simplified case we consider the dissipation produced by the PSI model on the phase space of
a perfectly advected tracer in steady, three-dimensional flow. Marking a ring of fluid elements,
when it “collides” with the PSI prohibited region, its area shrinks due to the discontinuity of
velocity in normal direction to the boundary. This clarifies the dissipation source induced by
the PSI model. Therefore, even if inertial and buoyancy effects are neglected in integrating the
particle trajectory (ẏ = u), the tracer particle can still accumulate in the framework of our
model because of the particle–boundary interaction dissipation.

5.2. Liquid Bridge

The first set-up considered herein for investigating particle accumulation structures is the liquid
bridge. For the corresponding problem formulation we refer to Section 2.1. At first an axisym-
metric liquid bridge configuration is dealt with because quantitative experimental results have
been reported (see [246]). In this case the importance of accurately determining the lubrication
gap width is investigated in the framework of the PSI model. The numerical and experimental
results are compared considering the temporal evolution of a single particle trajectory in terms
of its radial coordinate as function of time from the liquid bridge axis.

The second subsection is concerned with a three-dimensional hydrothermal wave in a liquid
bridge. The corresponding experimental particle accumulation structures are published in [103]
and they will serve as a reference for our numerical prediction of PAS.
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Figure 5.1.: Sketch of a conceptual model of the experimental set-up.

Table 5.1.: Thermo-physical properties of the test fluid at 25 ◦C.

ρ ν κ σ0 γ β
(kg/m3) (m2/s) (m2/s) (N/m) (N/(m K)) (1/K)

8.71× 102 2.0× 10−6 7.02× 10−8 18.3× 10−3 −7.0× 10−5 1.24 x 10−3

The same experimental set-up has been used for both of the above cases. For further details
we refer to [103]. The liquid employed in both cases is 2-cSt silicone oil (KF96L-2cs, Shin-Etsu
Chemical, Co., Ltd., Japan) and its thermo-physical properties are reported in table 5.1. A
simplified model for the numerical calculation is shown in fig. 5.1. The inclusion of the ambient
gas enables to estimate the role of environmental conditions on the prediction of PAS.

The spherical particles employed in the experiments are gold-coated acrylic particles and the
range of considered radii varies from 5 to 25µm. In table 5.2 it is reported the mean density of
the particles ρp for different particle radii ap, as well as the mean particle-to-fluid density ratio
% = ρp/ρf calculated at 25 ◦C. For more extensive details about the experimental apparatus and
the relative test fluid and particles we refer to [103] and [246].

5.2.1. Axisymmetric Liquid Bridge

All the comparisons between numerical and experimental results in this section are based on the
following liquid flow non-dimensional numbers

Pr = 28.5, Re = 331, Γ = 0.66, V = 1.0, Bd = 0.40. (5.1)

In order to demonstrate the fluid flow features fig. 5.2 depicts the corresponding temperature
and Stokes streamfunction fields obtained employing a steady-state finite volume solver devel-
oped during this thesis. For more details we refer to the Appendix C, where an example of the
grid distribution commonly employed is reported and discussed. For the following simulations
366 × 366 grid nodes are employed using an hyperbolic tangent stretching with stretching fac-
tor 1.05. The thermal boundary conditions are adiabatic (Bi = 0) with a statically deformed
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Table 5.2.: Particle densities and density ratios, ρp and % respectively, for different particles radii
ap at 25 ◦C.

ap [µm] 5 7.5 15+0
−0.35 25± 0.01

ρp [kg/m3] 2.20× 103 1.77× 103 1.49× 103 1.47× 103

% 2.52 2.03 1.71 1.69

free-surface. However, to take into account the heat transfer across the liquid-gas interface in
predicting PAS, an extended multiphase solver will be also considered in the following subsec-
tions. In that case the free-surface boundary conditions described in Chapter 2 are implicitly
extended in the solver, balancing stresses and energy across the interface.

z

x

−1.5 −1 −0.5 0 0.5 1 1.5
−0.5

−0.25

0

0.25

0.5

Figure 5.2.: Streamlines (right) and isothermal lines (left) for the axisymmetric flow in a liquid
bridge with adiabatic free-surface for Pr = 28.5, Re = 331, Γ = 0.66, V = 1.0 and
Bd = 0.40. The dashed line depicts the free-surface of the liquid bridge and the
dashed-dotted line denote its axis.

Experimental Evidence of the Existence of a Global Attractor

All the experiments presented in this section are carried out at Tokyo University of Science by
Misa Ishimura under the supervision of Ichiro Ueno.

The experimental results are obtained making sure that the steady quasi-axisymmetric flow
is reached and a period of 38 thermal time units, d2/κ, is given to the system for asymptot-
ically relax to it. Consequently, in order to make the comparison with numerical simulations
independent on particle–particle interactions, one single particle is inserted in the liquid bridge
through a hole in the external shield with a needle. The particle is kept on the needle because
of electrostatic forces and will detach from it very close to the free-surface once the needle is
retracted from the liquid bridge.

Having an axisymmetric flow, the whole flow-field domain is occupied by regular, periodic
streamlines (see [211]) and, regardless of gravity, the only two mechanisms that may lead to
a stable, global periodic attractor for the particle are centrifugation by inertia and repulsion
by boundary forces. The phenomenon has been extensively discussed in Chapter 4 and in this
subsection we aim at experimentally demonstrate the existence of such an attracting orbit.
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Figure 5.3.: Experimental evidence of the attraction of a single particle to the limit cycle (◦)
in a liquid bridge with ap = 25µm, % = 1.69, d = 1.65 mm, Γ = 0.66, Pr = 28.5,
Re = 331 and Bd = 0.40. The dashed line denotes Rmin, calculated averaging
three experimental runs in terms of min(rp) after 60 minutes from the insertion of
the particle. The maximum deviations of Rmin from the nominal value (measured
averaging all the experimental runs) are indicated in dashed-dotted lines. The
dotted and solid lines are the numerical predictions made considering a single-fluid
solver (with adiabatic liquid bridges free-surface) and a two-fluids solver (which
includes the ambient effects), respectively.

The radial position of the particle is measured by particle tracking for one hour (80 thermal
time units ca.) and recorded for 4 seconds each 5 minutes. The attraction to the limit cycle
is demonstrated in fig. 5.3 showing the minimum radial coordinate of the particle for each of
the recording intervals, min (rp), as function of time. A nominal value of min (rp) after 60
minutes, Rmin, is obtained averaging the experimental results for different runs. In all of them
the attraction to the limit cycle has been observed. Figure 5.3 demonstrates the very good
agreement our numerical simulations with the experimental data of M. Ishimura & I. Ueno.
More details about the numerical solvers are given in the next subsection.

Comparison between Experiments and Simulations

Experimental results are compared with one-way coupled particle trajectories integrated in the
flow fields resulting from two different numerical solvers. The first one considers a simplified
single-fluid model for which adiabatic free-surface is assumed, whereas a more sophisticate mul-
tiphase solver is employed to take into account the energy transfer effects on the flow and conse-
quently on the particle accumulation structure. The fluids thermophysical properties assume as
reference temperature 25◦C and for the silicone oil we refer to [265] for modelling the temper-
ature dependences of the fluid’s viscosity and diffusivity. Figure 5.1 depicts the computational
domain employed in the latter case, for which dcold/d = dhot/d = 1, Rgap/R = 2. The height of
the test chamber does not correspond to the experimental set-up, but a sensitivity analysis has
been conducted on dcold/d = dhot/d. Increasing dcold/d = dhot/d beyond 1 does not considerably
affect the fluid flow velocity in the liquid bridge, hence we select dcold/d = dhot/d = 1 in order to
optimize the computational costs. In both cases, the thermocapillary scaling is adopted, stati-
cally deformed interface, temperature-dependency of kinematic viscosity and thermal diffusivity
are taken into account.

Figure 5.4 shows the numerical particle trajectory after full convergence to the limit cycle
corresponding to the largest particle available in the experiments (ap = 25µm, % = 1.69). Both,
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Figure 5.4.: Periodic attractor for the largest particle considered (ap = 25µm and % = 1.69)
in an axisymmetric liquid bridge flow with h = 1.65 mm, Pr = 28.5, Re = 331,
Γ = 0.66, V = 1.0 and Bd = 0.40. The trajectory is computed using the single-fluid
solver. The liquid–gas interface is depicted in dashed line.

in case of the single-fluid and the two-fluids solver, the particle collision (in the framework of
the PSI model) occurs at the hot corner, where the particle approaches closest the free-surface.
Only a small portion of the particle trajectory along the liquid-gas interface is however affected
by the inelastic collision model.

For a quantitative prediction of axisymmetric PAS, the only quantity which could be accu-
rately measured from the experiment is the radial position of the particle as function of time.
Moreover a one-way coupled approach in which the collision is modelled via PSI model is not
suitable for describing the accumulation dynamics, but only the final stage of PAS. Hence our
comparison will be based on the particle trajectory once it already accumulated on the periodic
orbit. Three main scalar quantities characterize the orbit: the minumum radial coordinate of
the particle, Rmin (see [270, 195, 194, 156]), the maximum radial coordinate of the particle,
Rmax, and the turn-over time, Tt-o. Table 5.3 lists these quantities comparing experimental and
numerical results in case a single-fluid or a two-fluids solvers is used. In the former case the
focus is on showing the improvement of our prediction whether the PSI model is considering the
lubrication gap width obtained in Chapter 4. The two-fluids solver is considered for the case of
interaction length ∆ = a+ δ only.

Furthermore, table 5.4 reports the relative difference between numerical and experimental
data defined as follows

∆rel =

∣∣∣∣∣sexp − sCFD

sexp

∣∣∣∣∣ (5.2)

where s indicates the quantity to compare and exp and CFD refer to experimental measurements
and numerical predictions, respectively. Such relative deviations are then compared with the
relative experimental tolerance ∆expTol obtained dividing the error bar by twice the nominal
value sexp.

We always find a good agreement with experimental data for which keeps ∆rel < 10% in
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Figure 5.5.: Radial coordinate of the particle trajectory for ap = 25µm, % = 1.69, after it
accumulated along the periodic orbit in an axisymmetric liquid bridge for h =
1.65 mm, Pr = 28.5, Re = 331, Γ = 0.66, V = 1.0 and Bd = 0.40. The solid
and dashed lines indicate numerical data obtained for the two-fluids and single-fluid
solvers, respectively. Open circles indicate the experimental data obtained after 60
minutes from the insertion of the particle in the liquid bridge.

all the cases for Rmin and Rmax. This confirms that the simplest one-way coupled model we
consider (single-fluid solver with adiabatic free-surface and interaction length ∆ = a) is already
a good approximation of the experiments. However, including the lubrication gap width from
the two-dimensional fully-resolved simulations of the previous chapter yields to an even better
agreement. Even the single-fluid solver is capable to accurately reproduce the experimental
results in terms of Rmin and Rmax. These quantities are not remarkably improved by considering
the two-fluids solver (for larger particles the deviation between experimental and numerical
results was already < 2.5%), but the predicted turn-over time. Figure 5.5 depicts a comparison
between experiments and numerical simulations for the particle trajectory along the periodic
orbit. In the computational prediction the particle tends to stay close to the free-surface for
a longer time than in the experiments. This explains why the two-fluid solver, for which the
free-surface velocity is higher, gives a better prediction of the turn-over time than the single-
phase adiabatic solver. The improved prediction of Tt-o is definitely better, specially if we
consider the strong simplification introduced by the PSI model. Having considered all the
possible factors which may have a significant role in the phenomenon, the remaining discrepancies
can be attributed to a possibly over-simplified approach with which the particle–free-surface
interaction is modelled or to experimental issues which may have caused a discrepancy between
experiments and mathematical model (surfactants on the liquid-gas interface near the cold corner
[191, 259], etc...).

From this study we can conclude that the axisymmetric particle accumulation structures can
be accurately predicted employing a one-way coupling approach for which the particle trajectory
is integrated using a Maxey–Riley equation corrected at the domain boundary via the PSI model.
An accurate estimate of the minimum lubrication gap width is definitely important to obtain
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Table 5.3.: Turn-over time, maximum and minimum radial coordinate of the limit cycles for
heavy particles in a thermocapillary liquid bridge with d = 1.65 mm, Γ = 0.66,
Pr = 28.5, Re = 331 and Bd = 0.40. The numerical results obtained via the single-
fluid and the two-fluids solves are indicated with s-fCFD and t-fCFD, respectively.

ap[µm] Rmax[mm] Rmin[mm] Tt-o[s] Source

15 2.471 1.592 1.292 t-fCFD (∆ = a+ δ)
2.472 1.587 1.462 s-fCFD (∆ = a+ δ)
2.485 1.555 1.464 s-fCFD (∆ = a)
2.44± 0.02 1.68± 0.04 1.00 Experiments

25 2.461 1.752 1.205 t-fCFD (∆ = a+ δ)
2.459 1.760 1.574 s-fCFD (∆ = a+ δ)
2.479 1.587 1.488 s-fCFD (∆ = a)
2.40± 0.03 1.75± 0.03 1.07 Experiments

Table 5.4.: Relative deviations in Rmin and Rmax between numerical and nominal experimental
data compared with the relative experimental tolerance for axisymmetric PAS in a
liquid bridge with d = 1.65 mm, Γ = 0.66, Pr = 28.5, Re = 331 and Bd = 0.40. The
numerical results obtained via the single-fluid and the two-fluids solves are indicated
with s-fCFD and t-fCFD, respectively.

ap[µm] ∆rel
Rmax

∆expTol
Rmax

∆rel
Rmin

∆expTol
Rmin

Source

15 1.27% 0.8% 5.24% 2.3% t-fCFD (∆ = a+ δ)
1.31% 5.53% s-fCFD (∆ = a+ δ)
1.85% 7.44% s-fCFD (∆ = a)

25 2.54% 1.3% 0.11% 1.7% t-fCFD (∆ = a+ δ)
2.46% 1.12% s-fCFD (∆ = a+ δ)
3.29% 8.79% s-fCFD (∆ = a)

an accurate numerical prediction of Rmin and Rmax. Finally, including heat transfer effects the
estimate of the particle turn-over time along the periodic orbit is sensibly improving, but still to
be further investigated. In particular it must be clarified the role of a surfactant film near the
cold corner in the early departure of the particle from the free-surface (compare experimental
and numerical trajectories in fig. 5.5).

5.2.2. Three-dimensional Liquid Bridge

In this section we will consider a thermocapillary liquid bridge flow after the onset of instability
in the form of a hydrothermal wave. Under normal gravity conditions, the flow parameters
which will be kept constant in the following are

Pr = 28, Γ = 0.68, V = 1.0, Ca→ 0. (5.3)

Two thermocapillary Reynolds numbers are considered: Re = 1600 and 1950.
The choice of these parameters is motivated by published experimental data which have never

been numerically reproduced before. Following the argument proposed in [194] for Pr = 4, a
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detailed study of the relation between particle accumulation and flow topology will be presented.
Considering Pr = 28 gives rise to a very thin thermal boundary layer which contributes to the
challenge of simulating these flows.

Owing to the small free-surface deformation the liquid-gas interface is assumed statically (and
dynamically) undeformed. Moreover thermal diffusivity and kinematic viscosity are considered
constant only the liquid phase is simulated. To include the heat transfer we follow [194] and set
Bi = 0.30 in Newton’s law, assuming the ambient temperature θa = 0.

An OpenFOAM R© solver has been developed and benchmarked by Thomas Lemee in the
framework of a dedicated FFG project [146] in order to deal with the thermocapillary flow of
interest and the corresponding Marangoni boundary conditions. The thermal diffusion scaling
is herein employed and the computational mesh is reported in fig. 5.7. A second-order implicit
discretization is adopted in time and the simulations are stopped after that the hydrothermal
wave has completely developed according to the following termination criterion in the rotating
reference frame

max
x,i

|ui(x, t)− ui(x, t−∆t)|
Ma∆t

≤ 10−5. (5.4)

In order to characterize the flow we refer to fig. 5.2 for demonstrating the features of the
basic state. Figure 5.6 depicts the projection of the velocity vectors for Re = 1600 on the (r, ϕ)-
and (r, z)-planes after the onset of the hydrothermal wave. The selected parameters lead to a
hydrothermal wave with fundamental azimuthal wave number m = 3. Non-linear interactions
generate also higher harmonics. The flow field for both the investigated Reynolds numbers is
periodic in time, all the spectral components have the same phase velocity and we can assume the
flow field stationary in a reference frame rotating with the hydrothermal wave. For Re = 1600
and 1950 the travelling wave has rotation rate ΩHTW = 116.230 and 123.218, respectively.

Main Topological Elements

The topology of the liquid bridge flow after the onset of the hydrothermal wave is here investi-
gated via a Lagrangian representation of the flow kinematics. Owing to the periodicity of the
flow, in a reference frame rotating with ΩHTW, the flow is steady with m = 3 in azimuthal
direction. The motion of the infinitesimal fluid element is governed by

dX

dt
= uΩHTW

(X) . (5.5)

where X is the fluid element location, X (t = 0) its initial position and uΩHTW
the fluid flow

velocity in the reference frame rotating with the angular velocity ΩHTW .

Equation 5.5 is integrated numerically employing the 4th/5th-order Runge–Kutta Dormand–
Prince method [73], which consists in an explicit integration of the fluid element trajectory
employing for each time step both, the 4th- and 5th-order Runge–Kutta scheme. By difference
of the two solutions an error estimate is produced and the ∆t is then adapted in order to keep
the estimated absolute and relative errors always lower than 10−7.

Passing from the Eulerian fluid flow description adopted so far to the Lagrangian frame of
reference an interpolation of the flow velocity uΩHTW

on the particle location has to be included.
First order interpolation is used to compute the chaotic streamlines. A more accurate quadratic
interpolant is adopted for computing streamlines in the regular regions of the flow. The two
intersections between the axis and the cylindrical rods are critical points. They become saddle
foci s1,2 after the onset of instability.
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Figure 5.6.: Velocity vectors for Re = 1600 projected on (r, ϕ)- (a), (r, z)-planes (b) in a reference
frame rotating with the angular velocity of the hydrothermal wave ΩHTW.
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Figure 5.7.: Distribution of the finite volume cells for each cross-section (a) and on the (x, z)
plane (b). The grid employed for the simulation presented in the following is 5 times
finer than the one depicted in this figure, consisting of ≈ 20 million grid points. The
double lines indicate the main blocks of the mesh.
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In order to characterize the saddle foci on the hot and cold walls, the streamlines are computed
for Re = 1600 at |z| = 0.5− 10−3 setting w = 0. The corresponding flow is therefore planar, but
not incompressible. It can be considered as good approximation of the streamlines for z → ±0.5.
It characterizes both the critical points as spiralling-out saddle foci. For demonstration purpose,
fig. 5.8 depicts the motion of a fluid element initialized in the vicinity of the saddle focus on the
hot rod.

x

y 0

0

1

1

−1

−1

Figure 5.8.: Spiralling-out (dashed line) motion of a fluid element over the hot rod. The stream-
lines are computed at z = 0.499 for Re = 1600 integrating forward in time up to
t = 0.5 a fluid element initialized at (r, ϕ) = (0.001, 0) setting w = 0.

The same character of the two saddle foci can be explained by a separated region in the flow.
Owing to the positive temperature gradient in z-direction and the thermophysical properties of
silicone oil (∂zθ > 0 and ∂θσ < 0), thermocapillary effects drive the flow over the free-surface
from top to bottom. In the vicinity of the cold corner, the flow raises with a sharp turn and a
separated region appears at the cold corner. Further investigations are currently in progress to
identify the intersection of the separation region with the cold rod. However, based on fig. 5.8,
we speculate that the separation region invades the whole or most of the bottom rod. Under
microgravity conditions such a recirculation zone is definitely small (see e.g. [205, 248]). It is
larger in three-dimensional buoyant flows, but also exists under weightlessness for Pr = 4 [126].
From the streamlines on the cold rod we can conclude that in the case under investigation it
invades the whole rod. To estimate the size of the separated region we plot the axial velocity w
along the liquid bridge axis (see fig. 5.9).

On the separated surface there is another critical point c which plays a major role in the
flow topology of the liquid bridge. It is a complex spiralling-in saddle focus and around such
a free point the chaotic see is distributed. To further investigate the kinematics of the chaotic
streamlines we integrate forward and backward in time two fluid elements located (rc, ϕc, zc ±
10−2). The blue and red lines in fig. 5.10 depict the fluid element trajectories from the hot
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Figure 5.9.: Axial velocity w along the liquid bridge axis. The changing of sign of w along
z identifies the intersection of the separated region with the liquid bridge axis at
z = 0.21067.

and cold rods, respectively. On the free-surface, the streamlines are moving from top to bottom
and then released nearby the edge of the separation region at the cold rod. Thereafter they are
attracted by the spiralling-in saddle-node c and ejected along its unstable manifolds towards the
spiralling-out saddle foci on the hot (blue dashed line) and cold (red solid line) walls.

s1
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c

x

z

−0.5

0.5

1−1 0

Figure 5.10.: Chaotic dynamics of two fluid elements integrated forward and backward in time
from (rc, ϕc, zc ± 10−2). The shift of c from the liquid bridge axis results from the
non perfect (m = 3)-periodicity of the flow. Full circles indicate the spiralling-out
saddle foci, whereas the square marker denote the spiralling-in saddle point.

A conceptual sketch of the main topological elements for the liquid bridge in supercritical
conditions is presented in fig. 5.11. A fluid element initially in the neighbourhood of s2 will
spiral out past the hot rod being attracted to the saddle limit cycle w2. Thereafter it moves
along the free-surface which connects the two saddle limit cycles w2 and wc. From the latter the
streamline is ejected in the bulk over the separation surface along which it will be attracted by

74



5.2. LIQUID BRIDGE

the complex saddle focus c. Thereafter the fluid element is further ejected along the unstable
manifold of c and attracted once again by s2. With respect to the cold rod basically two cases
may occur. If the chaotic streamlines lie within the separated region, they do not move along
the free-surface but start crawling the separation surface once they arrive at wc. On the other
hand, if a streamline is moving along the free-surface (above the separated region), it will be
attracted by the spiralling-in saddle focus c and may be successively ejected towards s1 along
the unstable manifold on c (black solid line in fig. 5.11). The fluid elements are attracted by c
and ejected along its unstable manifold towards s1. Our speculation based on this evidences is
that the chaos in the system is originated by the saddle-limit cycle at the cold corner wc and
the complex saddle focus in the bulk c. A detailed and dedicated study would be required for
proving this assumption and further investigations are currently in plan.

r
ϕ

z

θ = 1/2

θ = −1/2

wc

w2

s1

c

s2

Figure 5.11.: Sketch of the major topological elements of the liquid bridge in supercritical con-
ditions after the onset of a hydrothermal wave instability. The spiralling-in saddle
focus (red dot) and the saddle limit cycle on z = −1/2 are denoted by c and wc,
respectively. The spiralling-out saddle foci and the saddle limit cycle on the other
cell boundary (marked in blue) are indicated by s1,2 and w2. The grey areas depict
hot (top) and cold (bottom) rods.

Chaotic and Regular Regions

The aim of this topological study is to demonstrate the connection between periodic or quasi-
periodic regular regions of the flow and the particle attractors experimentally observed. For
a liquid bridge flow, Mukin & Kuhlmann [194] and Hofmann & Kuhlmann [126] have already
numerically demonstrated it in case of Pr = 4. Herein we target the experimental parameter
space and specific particle accumulations which have never been numerically reproduced before
(Pr = 28 in normal gravity conditions). Our goal will consist in demonstrating how an accu-
rate and systematic description of chaotic and regular regions is necessary for quantitatively
predicting PAS.

In a reference frame rotating with the angular velocity of the hydrothermal wave, ΩHTW, the
flow is steady and three-dimensional. The fluid motion can be interpreted as an Hamiltonian
with 1.5 degrees of freedom [12]. This statement implies that there may be a coexistence between
chaotic regions and quasi-periodic sub-volumes (regular regions) of the fluid domain. Owing to
the incompressibility of the flow field, the regular regions assume the shape of Kolmogorov-
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Arnold-Moser tori (KAM tori, [106]). A typical condition the flow is arranged in is therefore a
chaotic see in which the KAM tori are embedded. Moreover, the higher the Reynolds number,
the smaller the regular regions are expected to be.

To compute chaotic and regular streamlines, 20 fluid elements are evenly distributed along
four vertical lines with a phase shift of ∆ϕ = π along (r, z) = (1/Γ− 10−4, z). The streamlines
are integrated for t = 3 in thermal diffusive time units. For both the Reynolds numbers,
Re = 1600 and 1950, we produce a Poincaré section intersecting the fluid element trajectories
with the (r, ϕ)-plane. A second integration is performed for the regular streamlines employing
quadratic interpolation and setting the relative and absolute error estimate of the Runge–Kutta
Dormand–Prince method to 10−9. The integration time is chosen such that at least 20 oriented
returns on the Poincaré plane are obtained.

We therefore identify the KAM surfaces and the corresponding closed trajectory which can
be reliably computed; This is depicted in fig. 5.12 for both the investigated Reynolds numbers,
including the projection on the (r, ϕ)-plane of the corresponding closed streamline (solid line).
In fig. 5.12 chaotic (grey) and regular (indigo) regions of flow are characterized via a Poincaré
section on the (r, ϕ)-plane. Increasing the Reynolds number the volume occupied by the widest
regular region sensibly shrinks such that, at Re = 1950, we reliably identify a KAM torus just in
a very narrow region about the closed trajectory and its Poincaré returns are within the marker
size of the periodic orbit (�). Moreover, passing from Re = 1600 to Re = 1950, three small KAM
tori are created in the chaotic see. A further remarkable difference between the two Reynolds
numbers is the shape of their regular regions; passing from Re = 1600 to Re = 1950 the widest
KAM torus winds six times around the apparent vortex center (see the streamlines in fig. 5.2)
instead than three times only. To be noticed is also that the widest regular regions are located
very close to the driving boundaries (i.e. free-surface in this case).

As pointed out in [194], the minimum distance from the boundaries of the closed widest
streamline, LSL, and the corresponding outermost KAM surface we reach to identify, T SL, are key
quantities for understanding and predicting the particle accumulation structures. They define
the range of interaction lengths ∆ which lead to particle accumulation structures embedded
in the KAM tori (see e.g. [195, 194, 126]). Hence, these quantities are reported in table 5.5
together with the turn-over time of the widest closed streamline τSL. Moreover, in order to
identify the corresponding periodic orbit we compute one of the respective elliptic fixed points
of the Poincaré map carrying out a Newton–Raphson method up to a relative accuracy of 10−3

in the (r, ϕ)-plane.

Table 5.5.: List of the orbit times τSL for the closed streamlines LSL and minimum distances
∆fs and ∆w from the free-surface and walls, respectively, for both, the periodic orbit,
LSL, and the outermost KAM surface, T SL. To identify the radial coordinate of the
closed streamlines, one of their fixed point locations on the Poincaré map over the
(x, y)-plane is given.

Re KAM/streamline τSL ∆fs ∆w Fixed point (x, y, z)

1600 T SL – 0.005648 0.031589 –
LSL 0.04631 0.011800 0.041935 (0.2554, 1.4254, 0)

1950 T SL – 0.004521 0.020698 –
LSL 0.04742 0.004549 0.020721 (0.2464, 0.6432, 0)
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Figure 5.12.: Poincaré section of the KAM tori and the closed streamlines (indigo) embedded
in the chaotic see (grey) on the (r, ϕ)-plane for Re = 1600 (a) and Re = 1950
(b). The streamlines are computed in the rotating reference frame and the regular
structures have period m = 3. The intersections of the periodic orbits with the
Poincaré plane are marked by a diamond (�). The solid line denotes the projection
on the (r, ϕ)-plane of the closed streamlines.
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Comparison Between Experiments and Simulations

Particle accumulation structures in a liquid bridge have been extensively studied numerically
for flow conditions after the onset of hydrothermal wave instabilities (see e.g. [194, 190, 160]).
Hence we will not focus on different scenarios of numerically predicted PAS, but we aim at
demonstrating the importance of an accurate estimate of the minimum lubrication gap width
between particles and boundaries, δ.

In Section 5.2.1 we investigated such a matter in an axisymmetric flow. Reliable quantitative
data have been produced with an accurate particle tracking and single-particle experiments
have been performed in order to exclude particle–particle interaction effects. At the time being
a similarly accurate set of experimental data is not present for three-dimensional liquid bridge
flows. Therefore the numerical results presented in the following will only be qualitatively
compared with experiments. The two selected cases (Re = 1600 and 1950) have been chosen
ad-hoc because of the high sensitivity their PAS has to the particle radius [278]. This will let
us further understand the importance of δ in reliably predicting three-dimensional PAS.

The comparison with experiments is based on the accumulation patterns found carrying out
the simulations up to t = 3 thermal diffusive time units. The Maxey–Riley equation supple-
mented with the PSI model have been employed for simulating the particle trajectories ini-
tializing 1000 randomly distributed tracers in the particle domain. A restricted initialization
region V∗ is considered taking into account that the regions adjacent to the boundaries are not
accessible for finite-size particles in the framework of the PSI model (see [126]). In cylindrical
coordinates such a restricted domain reads

V∗ = [0, 1/Γ−∆fs]× [0, 2π]× [−1/2 + ∆w, 1/2−∆w], (5.6)

where ∆fs and ∆w are the interaction lengths in case of particle–free-surface and particle–wall
interaction, respectively.

Table 5.6 lists flow and particle parameters of the two targeted experiments, as well as the
interaction lengths adopted in the PSI model. Two different numerical simulations will be
considered for both the experiments: the first case employs an interaction length which does not
include the lubrication gap width (∆ = a), whereas the second numerical simulation will take
into account the predictions made in Chapter 4 regarding ∆fs and ∆w.

Table 5.6.: Flow and particle parameters employed for comparing experimental and numerical
particle accumulation structures in three-dimensional flows in a liquid bridge under
1g conditions for Pr = 28 and Γ = 0.68.

Re ap [µm] % ap/d = a ∆fs ∆w

1600 7.5 2.03 0.004411765 0.005884 0.010042
1950 5 2.52 0.002941176 0.004420 0.007017

Figures 5.13 and 5.14 depict the comparison between numerical and experimental results for
Re = 1600 and 1950, respectively. Two different kinds of particle accumulation structures are
shown: the so-called SL-I- (fig. 5.13) and SL-II-PAS (fig. 5.14). A first remarkable outcome
resulting from the comparison is the essential role of a good estimate of the lubrication gap
width δ. Indeed, the numerical simulations for which ∆ = a is employed in the PSI model (see
fig. 5.13a and 5.14a) do not predict any SL-I or SL-II, in contrast to what is experimentally
observed. On the other hand, if ∆fs and ∆w are taken into account in the PSI model, the
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comparison between numerical and experimental results is very convincing for both the cases.
This confirms that the two-dimensional estimate of ∆ is already good enough to reproduce
experimentally observed PAS conditions very sensitive to the particle parameters.

A further remark has to be made about the toroidal core experimentally observed for Re =
1600 (see fig. 5.13). This is not observed in the numerical simulations and a possible reason is
that it may be due to a very initial stage of the particle dynamics. Figure 5.13c is obtained
averaging in time the recorded visualization and a weakly chaotic regions may give the impression
of forming the toroidal PAS depicted in 5.13c if the experiment is recorded for too short time.

Comparing the regular structures of the flow topology and the patterns of accumulation one
can clearly observe the connection of PAS with the KAM tori. To the best of the author’s
knowledge, this is the first time that SL-II-PAS is numerically reproduced for experimental
conditions. Moreover the changing in shape of the closed streamline passing from Re = 1600 to
Re = 1950 gives a clear explanation of why SL-I- turns into SL-II-PAS increasing the Reynolds
number. Once again this statement confirms that PAS is strongly correlated with the flow
topology and can be considered a further proof in support of the explanation of Kuhlmann et
al. [126, 194].

Moreover, even if inertial and buoyancy effects are included in integrating the particle trajecto-
ries via the Maxey–Riley equation, the accumulation patterns almost coincide with the periodic
and quasi-periodic orbits of a fluid element (indigo line in fig.s 5.13 and 5.14). This leads to
speculate that inertial and buoyancy are minor effects regardless of which PAS phenomena are
still well described in the investigated cases.

5.3. Lid-Driven Cavity

The second set-up we consider is a two-sided antiparallel lid-driven cavity for the mathematical
formulation of which we refer to Chapter 2.

The aspect ratio of the cross section is set to Γ = 1.7, which corresponds to a critical Reynolds
number Rec = 211.58 and a critical wavelength λc = 2.73. Such a low Rec guarantees the pres-
ence of steady, three-dimensional flow configurations for a relatively large interval of supercritical
Reynolds numbers. The point symmetry with respect to each cell centres is a robust feature
of the flow even after criticality, as experimentally confirmed by Blohm & Kuhlmann [30] for
aspect ratio Γ = 1.96.

We refer to [3] for a complete description of the hydrodynamical instabilities one can observe
in this configuration and to [4] and [243] for details about the numerical method employed for
solving the Navier–Stokes system. Briefly, to give an idea of the accuracy employed for the
flow solver, we mention that all the fluid flow simulations in this section are carried out with
a collocated spectral method. Chebyshev–Gauss–Lobatto nodes are used in x- and y-direction,
whereas Fourier modes are employed in z to implicitly verify the periodic boundary conditions.
The solution is obtained using 128 modes in each direction and correcting the corners singu-
larities with a second-order asymptotic solution (see [31, 4]). A second-order Adam–Bashforth
backward–Euler scheme is adopted, employing a projection method conceptually similar to the
one discussed in Chapter 3.

All the flow field data of this section have been provided by Stefan Albensoeder who carried
out the simulations up to steadiness using the following termination criterion

max
x,i

|ui(x, t)− ui(x, t−∆t)|
∆t |Re|

≤ 10−7. (5.7)

The streamlines integration is done according to the details given in Section 5.2.2 setting
relative and absolute tolerance of the Dormand–Prince method to 10−10. A linear interpolation
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Figure 5.13.: Comparison between numerical, (a) and (b), and experimental, (c), results for PAS
under 1g conditions for Pr = 28, Γ = 0.68 and Re = 1600. The integration time
is t = 3 in thermal diffusion time units. If ∆ = a, initially randomly distributed
particles do not form a clear SL-I (a) as in experiments (c). If the estimate of
δ made in Chapter 4 is included (b), the tubular numerical SL-I-PAS very well
resemble the experimental results (c). The indigo solid line represents the periodic
orbit identified in the flow. The boundaries of V∗ are indicated with red dashed
lines. The experimental results are produced at Tokyo University of Science under
the supervision of Ichiro Ueno.
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Figure 5.14.: Comparison between numerical, (a) and (b), and experimental, (c), results for PAS
under 1g conditions for Pr = 28, Γ = 0.68 and Re = 1950. The integration time
is t = 3 in thermal diffusion time units. If ∆ = a, initially randomly distributed
particles do not accumulate (a). If the estimate of δ made in Chapter 4 is included
(b), the line-like numerical SL-II-PAS very well resemble the experimental results
(c). The indigo solid line represents the periodic orbit identified in the flow and
almost coincide with the accumulation pattern. The boundaries of V∗ are indicated
with red dashed lines. The experimental results are produced at Tokyo University
of Science under the supervision of Ichiro Ueno.
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Figure 5.15.: Cat’s-eye flow configuration occurring in the antiparallel lid-driven cavity at crit-
icality for Γ = 1.7, λc = 2.73 and Rec = 211.58. The markers indicate the hyper-
bolic point at the center of the cavity (•) and the couple of elliptic points (�) at
(x, y) = (±0.3253,∓0.0955) which complete the cat’s-eye configuration.

on the spectral grid is employed in computing chaotic streamlines, whereas the regular regions
are obtained using a spectral interpolation over all the 1283 modes of the mesh. For further
details about the approximation introduced passing from an Eulerian solution for the flow to a
Lagrangian description for the streamlines we refer to [243].

Three supercritical Reynolds numbers are here investigated: Re = 400, 500 and 700. The
peculiar cat’s-eye flow configuration of the basic-state (see fig. 5.15) is lost slightly above criti-
cality and the stationary flow field evolves from the elliptic instability presenting periodic cells
delimited by (z = ±λ/4)-planes. The through-flow is absent on this planes (w = 0), but the
planar velocity field is not incompressible. We anticipate that this gives rise to a spiralling-out
saddle focus and an attracting limit cycle on the cell boundary.

For demonstrating the steady flow and its characteristic point symmetry, the velocity vectors
for Re = 500 are plotted in fig. 5.16 projecting them on the planes z = −λ/4 (a), z = 0 (b), and
y = 0 (c).

5.3.1. Main Topological Elements

In this subsection we aim at qualitatively present the main topological features of the flow for the
supercritical conditions under investigation. For a quantitative and more detailed description of
their evolution in dependence on the Reynolds number we refer to [243].

Owing to the point symmetry, at the centre of each periodic cell there is a stagnation point.
It represents a complex saddle focus (c) around which the whole chaotic behaviour of the cavity
arranges. Moreover, a critical point (s1,2) characterised as simple saddle focus is located on each
cell boundary.

The heteroclinic connection formed in the basic-state by a sequence of two elliptic and one
hyperbolic points per cross-section (cat’s-eye configuration) is suddenly broken slightly after the
onset of the elliptic instability. Two saddle limit cycles (w1,2) are consequently formed on the cell
boundaries (see fig. 5.17) and a non-trivial saddle limit-cycle (wc) is identified along the cavity
walls (see fig. 5.18). The former are attracting in the cell boundary plane and repelling along the
solid walls whereas the latter is attracting in z-direction along the walls and repulsive towards
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Figure 5.16.: Projection of the velocity vector field for Re = 500, Γ = 1.7 and λc = 2.73 on
(z = −λ/4)- (a), (x, y) (b) and (x, z)-plane (c). For visualization purposes, the
vectors in (a) and (b) are magnified with respect to those of (c) by a factor of 1.5.
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the cavity bulk region (see [243]). To show it we compute an approximation of the streamlines
on the stationary walls, y = ±0.5, enforcing v = 0 and integrating the tracer trajectories on
the planes |y| = 0.5− 1.5× 10−4. The streamlines are shown in fig. 5.18a and they are in good
agreement with the deposition pattern of small particles observed by [29] (fig. 5.18b). There is no
need to compute the streamlines on the moving walls because they are straight lines determined
by the boundary conditions and are topologically connected with the fluid element trajectories
on the stationary walls.
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Figure 5.17.: Spiralling-out motion of a fluid element nearby the critical point s2 on the cell
boundary at z = −λ/4 for Re = 240 (dotted line), Re = 400 (solid line), Re = 500
(dashed line) and Re = 700 (dashed-dotted line). The degenerate saddle limit-cycle
w2 coincides with the cross-section boundaries.

In fig. 5.19 we report a proof of the broken heteroclinic connection showing a Poincaré sections
on the (x, z)- and (y, z)-planes of the two-dimensional stable manifold of the spiralling-in-saddle
focus at the cell center (red) together with the projections of the one-dimensional stable manifold
of the spiralling-out-saddle foci on the cell boundaries (blue).

The chaotic dynamics in the system is organised around a heteroclinic tangling between the
stable manifold of the central, complex saddle focus c and the unstable manifold of the saddle
non-trivial limit cycle on the wall wc. Integrating forward and backward in time 1000 streamlines
from a small circle of radius 2×10−4 around the cell centre such a tangling is shown via a Poincaré
section on the (x, z)-plane (see fig. 5.20). The red dots are obtained by backward integration in
time and identify the stable manifold of the saddle focus, whereas the black dots are streamlines
integrated forward in time. In the latter case the initial dynamics describe the one-dimensional
unstable manifold of the central saddle focus: half of the conditions along the initial circle
moves below the stable manifold, the other half moves above. The two bundles formed this
way compactly move toward two of the cavity corners marking a Poincaré return each (marked
as 1 in fig. 5.20). Two representative streamlines, colored in orange and magenta, are firstly
advected nearby the cell boundary from where they are attracted by the saddle limit cycle wc
and successively ejected in the cavity. The stretching exerted on the two streamline bundles
becomes evident after their first return nearby the central saddle point c. Hence, the black dots
are also a good approximation of the unstable manifold of wc, which intersect the central saddle
stable manifold in a tangled fashion. As mentioned, the chaotic behaviour of the flow is strongly
connected to such a heteroclinic tangle.
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Figure 5.18.: Comparison between numerical wall streamlines at y = −0.5 for Re = 500 (a) and
experimental deposition pattern (skin-friction lines) of small tracers (b) observed
for a two-sided antiparallel lid-driven cavity with Γ = 1.96 after operating it for
long time at Re = 700 (from [29]). The red line in (a) is the projection of the
closed wall streamline wc for Re = 500. In full and dashed lines it is indicated the
part of wc belonging to the bottom and top wall, respectively.

A sketch of the supercritical topological features is conceptually depicted in fig. 5.21.

5.3.2. Regular and Chaotic Regions

Reporting the main topological elements of the flow helps to understand the particle dynamics in
the cavity, however, a more direct connection between flow topology and particle accumulation
structures can be established determining the chaotic and regular regions.

As done in the case of the three-dimensional liquid bridge, the streamlines are integrated
for identifying the chaotic see and, consequently, the largest reconstructible KAM surface in
dependence on the Reynolds number. We initialize 2500 fluid elements evenly distributed on
(x, y) = (0, 0) and z ∈ [−λ/4, λ/4] for Re = 500 and Re = 400, and on (y, z) = (0, 0) within the
interval x ∈ [−0.85, 0] for Re = 700.

A preliminary Poincaré section is produced computing the streamlines up to t = 1 viscous
time-units and intersecting them with the plane x = 0 regardless of the crossing direction.
Observing their returns on the Poincaré section we identify the fluid elements which present
a chaotic dynamics and the ones whose behaviour is periodic or quasi-periodic. Owing to the
ergodicity of the flow, a fluid element belonging to the chaotic see will explore the whole chaotic
region. Employing 2500 initial conditions and integrating for one viscous time unit is enough
to have a good estimate of the chaotic see. A better description of the regular regions is given
computing few streamlines up to t = 2 such that the boundary of the KAM tori are clearly
shaped. Considering these regular fluid element trajectories, the outermost three-dimensional
KAM surface and the corresponding closed streamline are computed for each torus. We select
100 equidistant points along the closed streamline; the intersection of the target KAM surface
with the planes locally normal to the closed streamline is computed in each of the 100 points.
These planar intersections are then interpolated on the corresponding cross-sectional plane using
cubic splines. Finally, cubic Hermitian splines are employed to reconstruct the outermost KAM
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(a) (b)

Figure 5.19.: The red line is the Poincaré section with the (y, z)- (a) and (x, z)-planes (b) of the
central saddle two-dimensional stable manifold, whereas the blue line depicts the
projections on (y, z)- and (x, z)-planes of the unstable manifold of c showing how
a fluid element moves away from complex saddle focus towards the critical points
s1,2 on the cell-boundaries. The full black line depicts the stable manifold of the
spiraling-out saddle foci s1,2 projected on the (y, z)- (a) and (x, z)-planes (b). All
the results are obtained for Re = 500.

surface from the 100 torus cross-sections.

For the smallest Reynolds number we consider, Re = 400, we identify two simply-periodic
KAM tori which, owing to the features of the flow field, are point symmetric with respect to
the cell center. Most of the domain is occupied by the chaotic see organized around the central
saddle focus. Figure 5.22 depicts the corresponding Poincaré section on the (y, z)-plane (a) and
the three-dimensional reconstruction of the outermost KAM surface (b).

As the Reynolds number is further increased the chaotic region extends, as expected, and the
two KAM tori become smaller for Re = 500. This trend can be observed comparing fig.s 5.22
and 5.23.

For Re = 700 the regular regions are even smaller and four KAM tori are found. Each point
symmetric set consists of a simply-periodic and double-periodic torus, the latter of which winds
around the major regular region. Figure 5.24 depicts them in purple and green respectively. The
presence of a second type of regular structure (double-periodic KAM tori) for Re = 700 indicates
that a splitting of the single-periodic tori identified for Re = 500 occurred at an intermediate
Reynolds number. As further remark we notice that the regular regions are approximately
located always in the same part of the periodic cell regardless of the Reynolds number.

For all the Reynolds numbers the closed streamlines are computed finding the elliptic fixed
point of the Poincaré maps. The computation has been carried out using the Newton–Raphson
method up to a relative accuracy of 10−4 in the (y, z)-plane. Figures 5.22, 5.23 and 5.24 show
them with a diamond marker.

Figures 5.25 and 5.26 show the projection on the (y, z)- and (x, z)-plane, respectively, of the
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Figure 5.20.: Poincaré section of the central saddle two-dimensional stable manifold (red dots)
and the one-dimensional unstable manifold (black dots) on the (x, z)-plane. The
latter one approximate the unstable manifold of the wall limit-cycle wc (blue
squares). The data are obtained integrating backward and forward in time 1000
streamlines on a circle of radius 2×10−4 centered in c for t = 2 and Re = 500. Two
representative streamlines are depicted in orange and magenta (first 55 returns):
they initially move towards the cell boundaries at z = 0.6825 and z = −0.6825
marking a first return at ‘1’. The largest reconstructible regular region in the flow
is depicted by the indigo dots, and further details about such KAM tori will be
given in Section 5.3.2

closed streamlines identified inside the KAM tori. A remarkable feature is that the minimum
distance from the cavity walls always occurs between the periodic trajectory and the moving
walls at x = ±0.85.

As done in the case of the three-dimensional liquid bridge flow, we compute the minimum
distance from the boundaries of the closed streamlines and the outermost KAM surface we iden-
tified. These quantities are of major importance for understanding the particle accumulation
structures by mean of the particle–surface interaction model (see [195, 194, 126]). Table 5.7 re-
ports such distances and the orbit time τ of the closed trajectory. Following [195], the outermost
KAM surface and the respective closed trajectories are indicated as Ti and Li, and the corre-
sponding turn-over time will be τi. Owing to the point symmetry, we list such an information
for the regular structures located in z > 0 only.

5.3.3. Particle Accumulation Structures

The numerical predictions of particle accumulation structures in the two-sided antiparallel lid-
driven cavity are presented in the following. The attraction to periodic and quasi-periodic
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Figure 5.21.: Conceptual sketch of the main topolocical features of the fluid flow in supercritical
conditions. The red and the blue lines represent the non-trivial saddle limit-cycle
(wc) and the limit cycles on the cell boundaries (w1,2), respectively. The central
saddle focus c is depicted with a red dot, whereas the boundary saddle foci s1,2,
are shown as blue dots. The grey rectangle with white arrows in the background
is showing the upward moving wall.

Table 5.7.: List of the orbit times τ for the closed streamlines Li and minimum distances ∆ from
the moving wall for both, the periodic attractors and the outermost KAM surface,
Ti. To uniquely identify the closed streamlines, their fixed point location of the
corresponding Poincaré section on the (y, z)-plane is reported.

Re KAM/streamline τ ∆ Fixed point

700 T1 – 0.0243 –
L1 0.0198 0.0264 (0, 0.2809, 0.5345)
T2 – 0.0233 –
L2 0.0457 0.0244 (0, 0.2210, 0.5838)

500 T1 – 0.0359 –
L1 0.0272 0.0493 (0, 0.2497, 0.5348)

400 T1 – 0.0349 –
L1 0.0342 0.0711 (0, 0.2257, 0.5153)

orbits by the only mean of particle–boundary interaction is herein investigated. Hence the
trajectory of particles density-matched with the fluid are computed. Investigating PAS for
density-matched particles is motivated by experimental evidence of particle accumulation for
% = 1 [258] conducted in a liquid bridge. In the next section a comparison between numerical
predictions and experiments is presented for PAS. The experiments are carried out with almost
neutrally buoyant particles and, to the best of the author’s knowledge, this is the first time that
particle accumulation structures are experimentally reported in a configuration different from
the liquid bridge.

To clearly show such a dissipative mechanism, a perfect tracer equation is solved for integrating
the particle trajectories. Particle–particle interactions are neglected and the one-way coupled
approach is completed by the PSI model, including the dependence of the lubrication gap width
on the particle radius calculated in Chapter 4. It is indeed the PSI model which includes the
dissipation needed to a perfect tracer for accumulating.

All the simulations have been carried out up to t = 1 initializing 2500 particles form a random
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(a)
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(b)

Figure 5.22.: Poincaré section of the KAM tori (indigo) embedded in the chaotic see (grey) (a)
on the (y, z)-plane for Re = 400. The two point-symmetric periodic orbits inside
the KAM tori are marked by a diamond (�). Three-dimensional reconstruction of
the outermost KAM surfaces (b).
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Figure 5.23.: Poincaré section of the KAM tori (indigo) embedded in the chaotic see (grey) (a)
on the (y, z)-plane for Re = 500. The two point-symmetric periodic orbits inside
the KAM tori are marked by a diamond (�). Three-dimensional reconstruction of
the outermost KAM surfaces (b).
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Figure 5.24.: Poincaré section of the KAM tori (indigo and green) embedded in the chaotic see
(grey) (a) on the (y, z)-plane for Re = 700. Two sets of point-symmetric KAM
tori are found: a couple of single-periodic (indigo) and a couple of doubly-periodic
KAM tori (green). The four point-symmetric closed streamlines are marked by a
diamond (�). Three-dimensional reconstruction of the outermost KAM surfaces
(b).
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Figure 5.25.: Projection of the simple-periodic closed streamlines on the (y, z)-plane for Re =
400, 500 and 700 (a) and of the double-periodic orbit for Re = 700 (b).
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Figure 5.26.: Projection of the simple-periodic closed streamlines on the (x, z)-plane for Re =
400, 500 and 700 (a) and of the double-periodic orbit for Re = 700 (b).

distribution in one cell. The domain of initialization is such to exclude the regions which are
not accessible to the particles in the PSI model framework (see [126])

V∗ = [−Γ/2 + ∆,Γ/2−∆]× [−1/2 + ∆, 1/2−∆]× [−λ/4, λ/4]. (5.8)

Three scenarios are observed. (a) The first case is when the particles accumulate inside the
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KAM tori, see fig.s 5.28,5.29,5.30 and 5.35. The resulting PAS has been termed tubular PAS
in [126, 194]. After multiple interactions with the boundaries, the particles outside the regular
region are mapped by the PSI model on the KAM surface which is tangent to the boundary
of V∗. The particles initially inside the tangent KAM surface do not experience any form of
dissipation and, therefore, keep on moving along the periodic or quasi-periodic orbit they have
been initialized on. A particularly high accuracy is required to calculate such trajectories in
order to avoid particle accumulation structures due to dissipation by numerical errors (see e.g.
[196]). The scenario described occurs for interaction lengths ranged in the interval between the
minimum distance from the walls of the outermost KAM surface (∆Ti) and the one of the closed
trajectory (∆Li)

PAS inside KAM tori: ∆ ∈ [∆Ti ,∆Li ]. (5.9)

A limit case of this accumulation is the so-called line-like PAS [126, 195]. It occurs when the
interaction length ∆ equals the minimum distance between the closed trajectory and the walls,
∆Li , and it reduces the domain of accumulation to the closed trajectory identical to the closed
streamline only. To demonstrate it fig. 5.31, 5.36 and 5.37 show a comparison between the
accumulation patterns (dots) and the corresponding periodic orbits computed in Section 5.3.2.

(b) A second scenario which may occur is obtained for ∆ > ∆Li . If the interaction length is
slightly larger than ∆Li a period doubling of the attractor is observed about the closed trajectory
of the corresponding KAM torus (see fig. 5.32). Such phenomenon has been extensively discussed
in the Appendix of [194] and can be explained considering the geometrical properties of the KAM
surfaces and the mapping operation resulting from the PSI model. Experimental evidence of
period doubling attractors have been reported in a liquid bridge flow (see [278]). The existence
of such a phenomenon is however limited to a narrow interval of interaction lengths above ∆Li ,
and for ∆� ∆Li no particles accumulation has been found.

(c) The third case considers ∆ < ∆Ti for which the streamline hopping created by the PSI
model cannot map the particle to a regular region of the flow. If the interaction length is
slightly smaller than ∆Ti a new set of attractors with period higher than one is found. Even
though they are located outside the regular regions, they are still connected to the flow topology
because the flow dynamics in proximity of the boundary between KAM tori and chaotic see is
just weakly chaotic. The real part of Lyapunov exponents1 measured comparing two initially
close streamlines initialized right outside the border of a regular region is slightly bigger than
zero. This means that after a complete turn-over, two particles initially close to each other
will weakly diverge in terms of mutual distance, but staying still close to the KAM torus. The
dissipation induced by the PSI model is, in these cases, capable to recover the weak divergence of
their trajectories creating the attractors we observe in fig. 5.27, 5.33 and 5.34. This mechanism
has been reported for the first time in the model flow of a liquid bridge [155]. If the interaction
length is ∆� ∆Ti the numerical simulations do not predict any particle accumulation structure.

One conclusion which can be derived from the reported results is that particle accumulation
structures can be caused by the dissipative effect provided by the only particle–boundary in-
teraction. This was observed for the first time by Hofmann & Kuhlmann in [126] for a liquid
bridge and it is here confirmed for a lid-driven cavity. Moreover, we demonstrated once again
the strong correlation between particle accumulation structure and flow topology for all three

1Considering two initially close conditions at distance ∆x0 = ∆x(t = 0) along two distinct trajectories, the
Lyapunov exponent Λ measures the mean exponential rate of divergence of the two orbits. Denoting with
∆x(t) the distance between the two marked points at time t, the Lyapunov exponent is defined as

Λ = lim
t→∞, |∆x0|→0

1

t
ln

∣∣∣∣∣∆x(t)

∆x0

∣∣∣∣∣ (5.10)
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Reynolds numbers under investigation. Finally, the particle diameter investigated are provided
in table 5.8 and the PAS type listed is obtained using the estimate of the minimum lubrication
gap width provided in Chapter 4.

Table 5.8.: Range of interaction lengths ∆ and corresponding particle radii a for which the
existence of PAS is numerically investigated. With line-like in chaotic sea we indicate
the particle accumulation structure observed in the chaotic region in vicinity of the
KAM tori.

Re PAS type ∆ a

400 line-like in chaotic sea 0.0300 0.0201
tubular 0.0400 0.0321
tubular 0.0500 0.0431
tubular 0.0600 0.0549

single-period line-like 0.0711 0.0632
period-doubled line-like 0.0800 0.0778

500 line-like in chaotic sea 0.0200 0.0106
line-like in chaotic sea 0.0300 0.0201

tubular 0.0400 0.0321
single-period line-like 0.0493 0.0424

no PAS 0.0550 0.0485
no PAS 0.0600 0.0549

700 no PAS 0.0200 0.0106
single-period line-like 0.0244 0.0143

no PAS 0.0264 0.0162
no PAS 0.0300 0.0201
no PAS 0.0400 0.0321

5.3.4. Preliminary Comparison between Experiments and Simulations

All the experiments in this section are carried out at TU Wien by Haotian Wu2 under the
supervision of Hendrik Kuhlmann. Preliminary experimental investigations have been conducted
for Re = 400 and Re = 500. A comparison with the corresponding numerical results is presented
below to verify the numerical prediction of particle accumulation structures in the lid-driven
cavity.

The liquid employed for the experiments is 20-cSt silicone oil (Baysilone M20) and its kine-
matic viscosity and density are ρf = 9.5 × 102kg/m3 and ν = 2.0 × 10−5m2/s, respectively.
The particles employed in the experiments are spherical, polyethylene, almost neutrally buoyant
particles. Their radius is ap = 2mm, the particle density ρp = 943kg/m3 and the corresponding
particle-to-fluid density ratio is % = 1.01.

The experimental rig is the one used by Siegmann et al. [264]. The cavity is made between
two horizontal co-rotating cylinders as left and right cavity walls. The free distance between the
two moving walls d is therefore slightly varying with the height. In order to reduce the effect
of the finite extension in z-direction, a spanwise length-to-height ratio of 10.85 is employed.

2We want to kindly acknowledge the use of this results prior to publication.
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Figure 5.27.: Initially randomly distributed particles attracted to a quadruple-periodic line-like
structure after t = 1 for Re = 400. The green line indicates the projection of
the attractor on the (x, z)-plane and each black dot represents a particle. The
interaction length adopted for the PSI model is ∆ = 0.03 and the prohibited
regions for the particles are marked with red dashed lines.

Figure 5.28.: Poincaré section on the (y, z)-plane of the initially randomly distributed particles
in the last part of their trajectory (t ∈ [0.75, 1], grey dots) for Re = 400. The
indigo dots show the outermost KAM surface identified in Section 5.3.2. The
interaction length adopted for the PSI model is ∆ = 0.04 and it leads to a tubular
accumulation pattern.
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Figure 5.29.: Poincaré section on the (y, z)-plane of the initially randomly distributed particles
in the last part of their trajectory (t ∈ [0.75, 1], grey dots) for Re = 400. The
indigo dots show the outermost KAM surface identified in Section 5.3.2. The
interaction length adopted for the PSI model is ∆ = 0.05 and it leads to a tubular
accumulation pattern.

Figure 5.30.: Poincaré section on the (y, z)-plane of the initially randomly distributed particles
in the last part of their trajectory (t ∈ [0.75, 1], grey dots) for Re = 400. The
indigo dots show the outermost KAM surface identified in Section 5.3.2. The
interaction length adopted for the PSI model is ∆ = 0.06 and it leads to a tubular
accumulation pattern.
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(a)

(b)

Figure 5.31.: Initially randomly distributed particles attracted to a line-like PAS along the closed
streamline identified in Section 5.3.2 (indigo line). The accumulation is reported
after t = 1 for Re = 400 on the (x, y)- and (x, z)-planes, (a) and (b) respectively.
The prohibited regions for the particles (black dots) are marked with red dashed
lines and the interaction length adopted for the PSI model is ∆ = ∆Li = 0.0711.
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(a)

(b)

Figure 5.32.: Initially randomly distributed particles attracted to a period-doubled line-like PAS
organized about the closed streamline identified in Section 5.3.2 (indigo line). The
accumulation is reported after t = 1 for Re = 400 on the (x, y)- and (x, z)-planes,
(a) and (b) respectively. The prohibited regions for the particles (black dots) are
marked with red dashed lines and the interaction length adopted for the PSI model
is ∆ = 0.0800.
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Figure 5.33.: Initially randomly distributed particles attracted to a quadruple-periodic line-like
structure after t = 1 for Re = 500. The green line indicates the projection of
the attractor on the (x, z)-plane and each black dot represents a particle. The
interaction length adopted for the PSI model is ∆ = 0.02 and the prohibited
regions for the particles are marked with red dashed lines.

Figure 5.34.: Initially randomly distributed particles attracted to a triple-periodic line-like struc-
ture after t = 1 for Re = 500. The green line indicates the projection of the attrac-
tor on the (x, z)-plane and each black dot represents a particle. The interaction
length adopted for the PSI model is ∆ = 0.03 and the prohibited regions for the
particles are marked with red dashed lines.
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Figure 5.35.: Poincaré section on the (y, z)-plane of the initially randomly distributed particles
in the last part of their trajectory (t ∈ [0.75, 1], grey dots) for Re = 500. The
indigo dots show the outermost KAM surface identified in Section 5.3.2. The
interaction length adopted for the PSI model is ∆ = 0.04 and it leads to a tubular
accumulation pattern.

Transparent walls made out of Perspex allow to visualize the particle trajectories. A cross-
sectional aspect ratio of 1.6 is employed for the experiments and the height of the test section
is h = 40mm. This is slightly different from the one used for numerical simulations; moreover,
another important difference is represented by the curvature of the moving employed in the
experiments, which is absent in our simulations. A sketch of the experimental set-up is depicted
in fig. 5.38. For more extensive information about the apparatus we refer the reader to [264].

In the experiments a single particle in a periodic cell is used. Figure 5.39 depicts the exper-
imental observation from the top view (z-axis in horizontal direction) of particle’s trajectory
(by long time exposure) for Re = 400 (a) and Re = 500 (b) for a tracer of radius ap = 2mm.
The particle trajectory is recorded for 100 seconds after 30 minutes from when the moving walls
reached full speed and the images are produced with a sampling frequency of 20Hz. Figure 5.39
results from averaging them in time and a clear line-like or quasi-line-like particle accumulation
can be noticed for both the investigated Reynolds numbers. The mirror image reflection on the
top results from a reflection on the surface of one of the rotating cylinders. This indicates that
the particle trajectory is very close to the rotating top wall.

A top view of the particle trajectory obtained by particle tracking for Re = 400 (a) and
Re = 500 (b) is depicted in grey in 5.40. It is not possible to compare such trajectories one-
to-one with the numerical data because of the different cross-sectional aspect ratios. Moreover
the curvature of the moving walls present in the experiments is not considered in the numeri-
cal simulations. However, beyond these discrepancies, the qualitative agreement in shape and
location of the attractor is very good for both the Reynolds numbers (see fig.s 5.40, 5.31 and
5.36 for comparison). A distinct difference between the computational and the experimental
results is the distance of the line-like PAS from the furthest moving wall. Our one-way coupled
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(a)

(b)

Figure 5.36.: Initially randomly distributed particles attracted to a line-like PAS along the closed
streamline identified in Section 5.3.2 (indigo line). The accumulation is reported
after t = 1 for Re = 500 on the (x, y)- and (x, z)-planes, (a) and (b) respectively.
The prohibited regions for the particles (black dots) are marked with red dashed
lines and the interaction length adopted for the PSI model is ∆ = ∆Li = 0.0493.
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(a)

(b)

Figure 5.37.: Initially randomly distributed particles attracted to a line-like PAS along the closed
streamline identified in Section 5.3.2 (indigo line). The accumulation is reported
after t = 1 for Re = 700 on the (x, y)- and (x, z)-planes, (a) and (b) respectively.
The prohibited regions for the particles (black dots) are marked with red dashed
lines and the interaction length adopted for the PSI model is ∆ = ∆Li = 0.0244.
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Figure 5.38.: Conceptual sketch of the experimental set-up employed for investigating PAS in a
two-sided antiparallel lid-driven cavity configuration.

(a) (b)

Figure 5.39.: Top view of particle accumulation structures obtained via long-exposure pictures
with exposure time of 10 seconds after that a complete accumulation occurred.
Two Reynolds numbers are depicted: Re = 400 (a) and Re = 500 (b). The
rotating cylinders are located at the top and bottom part of the figure (� and ⊗
indicate their rotation direction) and the dashed line shows an approximation of
the periodic cell in which PAS is observed.

simulations predicted a periodic attractor which comes very close to both the moving walls,
whereas the experimental accumulation shows a particle trajectory much closer to one of the
rotating cylinders than to the other. The effect of the cylinders’ curvature and aspect ratio have
to be further investigated to figure out which changes they induce on the flow topology and on
the particle limit cycle.

Figure 5.40 also shows the Poincaré sections on the (y = 0)-plane obtained experimentally
for the limit cycle. In table 5.8 we indicated a = 0.0632 and a = 0.0424 as the optimal
particle radii for finding line-like PAS for Re = 400 and 500, respectively. In the experiment
such non-dimensional radii would correspond to ap = 2.5mm and ap = 1.7mm, respectively.
As demonstrated, a limit cycle has been experimentally found for ap = 2mm. Therefore our
numerical simulations can be considered sufficiently accurate for predicting the particle size for
which PAS occurs in the two-sided antiparallel lid-driven cavity flow.
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Figure 5.40.: Experimental evidence of quasi-line-like PAS obtained for a single particle in a
periodic cell of the two-sided antiparallel lid-driven cavity for Γ = 1.6, ap = 2mm
and Re = 400 (a) and Re = 500 (b). dmin and dmax indicate the extrema of the
free distance between the two rotating cylinders. The grey line is the projection of
the particle trajectories after a complete accumulation and the indigo dots denote
the Poincaré sections of the particle trajectories on the (x, z)-plane.
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5.4. Partially Liquid-Filled Rotating Drum

The last case we consider is a rotating drum configuration. The problem has been mathemati-
cally formulated in Chapter 2 and we refer the reader to it for further details about the equations
and boundary conditions we impose. Among the various assumptions, it is worth to mention
that we consider only the particle and the liquid phase, neglecting the gas-phase and assuming
a flat shear-free surface.

The maximum liquid depth is measured at the center of the drum and set equal to Γ = h/R =
0.2 (filling ratio); the two-dimensional steady flow is found to become unstable with respect to
a steady three-dimensional flow at a critical Reynolds number is Re = 774 (for further details
we refer to [111]). The critical wavelength is λc = 0.839. Three supercritical Reynolds numbers
will be investigated, considering Re = 1000, 1500 and 2000. At all the Reynolds numbers the
flow is found to be steady and three-dimensional.

Preliminary experimental observations have been conducted for proving the good approxima-
tion of the flat-interface assumption up to Re = 2500 and the existence of three-dimensional,
steady flows for the investigated Reynolds numbers. For further details about the onset of
instability we refer to [111].

The Navier–Stokes equations are solved employing icoFoam, a collocated transient solver
which operates with laminar, incompressible flows and is implemented in the OpenFOAM R©

framework. A second-order implicit discretization in time is adopted; the computational mesh
consists of ≈ 31 million grid-points, employing 450 evenly distributed cells in z-direction and
67600 cells for each cross-section. The cell distribution in the (x, y)-plane is depicted in fig. 5.41.
The simulations are terminated when a stationary state is reached according to the following
criterion

max
x,i

|ui(x, t)− ui(x, t−∆t)|
∆t

≤ 10−7. (5.11)
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Figure 5.41.: Distribution of finite volumes for each cross-section of the liquid domain. The grid
employed for the simulations is 10 times finer than the one depicted in this figure.
The double lines show the four blocks which are used in OpenFOAM to assemble
the computational mesh with blockMeshDict.

The same streamline integration method of Section 5.2.2 is here employed. The interpolation
among the grid-points is linear when chaotic streamlines are computed, whereas we employ a
quadratic interpolation method for computing streamlines in the regular regions. Relative and
absolute tolerances for the 4th/5th-order Runge-Kutta Dormand-Prince method are set to 10−8

and a maximum time step of ∆t = 3× 10−5 is employed.

In order to characterize the flow, the basic state at criticality is shown in fig. 5.42. After the
onset of the hydrodynamic instability a stationary flow evolves in form of periodic cells defined
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by the (z = ±λ/4)-planes. No through-flow is present across them, but, as in the case of the
lid-driven cavity, the corresponding planar flow is not incompressible.
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Figure 5.42.: Streamlines of the 2-D basic state in the partially liquid-filled rotating drum slightly
above criticality for Γ = 0.2 and Re = 780. The marker (•) indicates vortex center
(elliptic point).

The velocity vector field at supercritical conditions is shown in the following for Re = 1000, at
the planes z = −λ/4 (a), z = λ/4 (b) and x = 0 (c). Figure 5.43a shows the counter-clockwise
vortex at the center of the cell, whereas fig. 5.43b depicts how the vortex centre moves towards
the top-right corner for z = λ/4. The three-dimensionality developed after the onset of the
instability is evident in fig. 5.43c, were the free-surface acts transporting a fluid element from
one side to the other of the periodic cell.

5.4.1. Main Topological Elements

The topology of the flow will be investigated in the following, determining the character of the
critical points in the periodic cell as well as the corresponding stable and unstable manifolds. Two
stagnation points are present in the cavity and both of them are located on the cell boundaries.
As shown in fig. 5.44, integrating backward and forward in time the position of a single fluid
element along the cell boundaries we can characterize the two critical points as saddle foci, one
of them being a spiralling-in saddle focus (s1, fig. 5.44a) and the other one a spiralling-out saddle
focus (s2, fig. 5.44b).

The chaos in this system is generated after breaking the heteroclinic connection holding (in the
basic-state) between the sequence of elliptic points (one per each cross-section) in z-direction.
A fluid element initialized nearby the spiralling-out saddle focus on the cell boundary moves
towards the saddle limit cycle on z = −λ/4. From there it is ejected along the free-surface
towards the saddle-limit cycle on the other side of the periodic cell. This saddle limit cycle
attracts the fluid element sitting on the free-surface along z-direction and eject it over z = λ/4.
The fluid element ejected by the saddle-limit cycle will be attracted by the spiralling-in saddle
focus over the cell boundary. Finally the streamline is re-ejected in the bulk along the one-
dimensional unstable manifold of s1. A sketch of the main topological features of the supercritical
flow is depicted in fig. 5.45.

5.4.2. Regular and Chaotic Regions

To complete the topological characterization of the flow, we determine the chaotic and regular
embedded regions (KAM tori) in the liquid domain as function of the Reynolds number. For all
the investigated cases, 1000 streamlines are initialized on the (y, z)-plane in a region nearby the
rotating wall. The initial conditions are evenly distributed along five lines parallel to the y-axis
in the (x = 0)-plane ((y, z) ∈ [−0.9999,−0.9995]× [−λ/4, λ/4]). The trajectories are integrated
up to t = 50 in convective time units and each streamline is assigned to chaotic or regular
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Figure 5.43.: Velocity vectors for Re = 1000 and h/R = 0.2 projected on (z = −λ/4)- (a),
(z = λ/4)- (b) and (x = 0)-planes (c).

regions in dependence on its behavior. Periodic or quasi-periodic streamlines are re-computed
considering a lower relative and absolute tolerance for the 4th/5th-order Runge-Kutta scheme
(10−9) and a maximum time step of ∆t = 10−6.

For all the Reynolds numbers we investigate, Re = 1000, 1500 and 2000, only single-periodic
KAM tori are observed and the bigger the Reynolds number the smaller the portion of domain
occupied by regular regions is. This trend is reported in fig. 5.46, where the Poincaré sections
on x = 0.15174 are depicted. The KAM tori remain more or less localized in the same place
and increasing the Reynolds number they tend to approach the boundaries.

The outermost KAM surface is always closer to the free-surface than to the rotating wall.
Passing from Re = 1000 to Re = 1500 and 2000 the KAM tori tend to move towards the
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Figure 5.44.: Spiralling-in (a,c,e) and spiralling-out (b,d,f) saddle foci at the cell boundaries
indicated with s1 and s2, respectively. Figures (a,b) refer to Re = 2000, (c,d) to
Re = 1500 and (e,f) to Re = 1000.
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Figure 5.45.: Sketch of the major topological elements of the partially liquid-filled rotating tank
in supercritical conditions. The spiralling-in saddle focus (red dot) and the saddle
limit cycle on z = λ/4 are denoted by s1 and w1, respectively. The spiralling-out
saddle focus and the saddle limit cycle on the other cell boundary (marked in blue,
z = −λ/4) are indicated by s2 and w2. The grey area depicts the rotating wall.
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Table 5.9.: Minimum distances from the moving wall ∆w and the free-surface ∆fs of the closed
streamlines L and of the outermost KAM surfaces T . The orbit time τ of the closed
streamlines are provided as well as one of two fixed points in the (x = 0.15174)-
Poincaré plane corresponding to L.

Re KAM/streamline τ ∆w ∆fs Fixed point

2000 T – 0.0291 0.0223 –
L 6.102 0.0322 0.0329 (0.15174,−0.9553, 0.0417)

1500 T – 0.0266 0.0179 –
L 5.753 0.0338 0.0238 (0.15174,−0.9539, 0.0642)

1000 T – 0.0237 0.0194 –
L 5.120 0.0342 0.0230 (0.15174,−0.9534, 0.0702)

free-surface approaching it closer. A feature of this flow configuration is that the KAM tori are
always very close to both the boundaries. This may accelerate the particle accumulation induced
by particle–boundary interactions because a particle which moves close to the boundaries will
experience an interaction with them twice per turn-over period (one collision with the wall,
another with the free-surface).

The closed streamline in each KAM torus has been computed using the Newton–Raphson
method for finding the elliptic fixed point of the Poincaré map with a relative accuracy of 10−4

on the (x = 0.15174)-plane. The corresponding Poincaré return is indicated with a diamond
marker in the Poincaré maps.

The projection of the periodic orbits on the (x, y)- and (y, z)-planes are depicted in fig. 5.47
for Re = 1000 (dotted line), 1500 (dashed line) and 2000 (solid line). Once again it can be
noticed that the closed streamline always move very close to both the boundaries.

The closed streamline turn-over time is listed in table 5.9 as well as the minimum distance from
the boundaries for the outermost KAM surface and the closed streamline. This information will
be useful for numerically predicting the particle size to employ for observing PAS in experiments.

5.4.3. Particle Accumulation Structures

Particle accumulation structures in a partially liquid-filled rotating drum configuration have
never been reported, so far. The perfect tracer equation supplemented by the PSI model are
herein employed in the one-way coupled approach for numerically predicting PAS. Employing
neutrally buoyant particles which perfectly follow the flow far away from the boundaries will
make evident the role of dissipation induced by particle–boundary interactions.

In case of the particle–free-surface interaction, it must be considered that the free-surface in the
rotating drum configuration is a stress-free surface. Therefore the interaction length ∆ cannot
be directly derived from the shear–stress-driven cavity investigated in Chapter 4. In creeping
flow conditions, the forces exerted from a free-surface on a sphere moving towards the boundary
are 1/4 the forces exerted on the same sphere if the free-surface were a wall. Therefore we expect
a weaker repulsion from the shear–free-surface than from the wall ∆w > ∆fs and, because of
capillary forces, ∆fs > a. The best feasible approach to determine ∆w and ∆fs would certainly
be to simulate the two-dimensional attraction to PAS for η = 0.2 in the same conditions of
interest for fluid and particle parameters. This is currently in progress and we will produce our
preliminary results assuming that the free-surface interaction length equals the particle radius
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(a)

(b)

(c)

Figure 5.46.: Poincaré section of the KAM tori (indigo) embedded in the chaotic see (grey) on
x = 0.15174 for Re = 1000 (a), 1500 (b) and 2000 (c). The single-periodic orbits
inside the KAM tori are marked by a diamond (�).
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Figure 5.47.: Projection of the simple-periodic closed streamlines on the (x, y)- and (y, z)-plane,
(a) and (b) respectively. The dotted, dashed and solid lines indicate the periodic
orbits for Re = 1000, 1500 and 2000, respectively.

(∆fs = a). The prediction of the minimum lubrication gap width produced in Chapter 4 is here
taken into account for the interaction of a particle with the rotating wall, ∆w, regardless of the
curvature of driving wall itself. These results will be further improved in successive studies to
give a more precise indication about the range of existence of PAS. The particle trajectories are
initialized from 1500 random positions distributed in V∗

V∗ =
{

(x, y, z) : x2 + y2 ≤ 1−∆w, y ∈ [−1 + ∆w,−0.8−∆fs], z ∈ [−λ/4, λ/4]
}

(5.12)

and integrated up to t = 100 convective time units.

The regular regions approach very close both the fluid domain boundaries, therefore it is
necessary to distinguish between accumulations due to particle–wall, particle–free-surface in-
teractions or both. This implies that, as done in the case of the liquid bridge, two distinct
interaction lengths are considered for dealing with the rotating wall and the free-surface. There-
fore we proceed fixing a particle radius a and deriving from it ∆w and ∆fs. Therefore the
accumulation parameter windows are not only function of a single ∆, but combinations of ∆w

and ∆fs.

We first investigate the range of particle radii such that ∆w ∈ [∆T
w,∆

L
w] ∧∆fs ∈ [∆T

fs,∆
L
fs]. In

this case we can notice how the accumulation patterns are embedded in the regular regions of
the flow topology. To demonstrate it we compare the Poincaré section at x = 0.15174 of the
last quarter of particle trajectories (grey dots, t ∈ [75, 100]) and the outermost KAM surface
(indigo dots) calculated to define the flow topology. When line-like structures result from the
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accumulation processes, we compare them with the closed streamlines calculated in Section
5.4.2.

The results reported in fig. 5.49 and 5.52, 5.56 refer to tubular PAS. As specific case we
distinguish the line-like accumulation phenomenon. In the lid-driven flow it was reported just
for one value of ∆, whereas in the rotating tank we observe line-like PAS for the following
condition

single-periodic line-like PAS: ∆w = ∆L
w ∨∆fs = ∆L

fs. (5.13)

The accumulation of particles along a closed periodic orbit is reported in fig.s 5.50, 5.53, 5.54,
5.57 and 5.58 for Re = 1000, 1500 and 2000. The particle accumulation structures (dots) are
line-like and coincide with the closed streamlines (indigo) computed in the previous section.
As the particle radius increases, for Re = 1000 the periodic attraction is first occurring be-
cause of the interaction with the rotating wall. Vice versa, for Re = 1500 and 2000, the first
particle–boundary interaction inducing line-like PAS is due to the free-surface. However, further
investigations are therefore needed to better describe the particle–free-surface interaction length
in case of a stress-free surface.

For the particle radii considered, period doubling accumulations have not been observed and
for ∆w > ∆L

w ∧∆fs > ∆L
fs PAS does not occur in the PSI model framework. The last scenario

to consider is ∆w < ∆T
w ∧∆fs < ∆T

fs for which the creation of bigger tubular particle attractors
is observed. They keep on being located nearby the KAM tori, but in this case they are not
fully embedded in the outermost KAM surface. These kinds of tubular PAS are depicted in
fig.s 5.48, 5.51 and 5.55 and resemble the shape of KAM tori. The same argument discussed
in the lid-driven cavity case holds and the dissipation introduced by the PSI model suffices to
let particles accumulate in weakly chaotic regions of the flow. The main difference with the
lid-driven cavity results is that in this case a tubular PAS in the chaotic sea is observed.

Figure 5.48.: Poincaré section on the (x = 0.15174)-plane of the initially randomly distributed
particles in the last part of their trajectory (t ∈ [75, 100], grey dots) for Re = 1000.
The indigo dots show the outermost KAM surface identified in Section 5.4.2. The
selected particle radius is a = 0.0106 and the corresponding interaction lengths
adopted for the PSI model are ∆w = 0.02 and ∆fs = 0.0106 and they lead to a
tubular accumulation pattern developed around the outermost KAM surface.

Once again we demonstrated PAS for perfectly advected tracers undergoing to the PSI model.
The clustering of particles as results of coexistence of regular and chaotic regions for the flow
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Figure 5.49.: Poincaré section on the (x = 0.15174)-plane of the initially randomly distributed
particles in the last part of their trajectory (t ∈ [75, 100], grey dots) for Re = 1000.
The indigo dots show the outermost KAM surface identified in Section 5.4.2. The
selected particle radius is a = 0.0201 and the corresponding interaction lengths
adopted for the PSI model are ∆w = 0.03 and ∆fs = 0.0201 and they lead to a
tubular accumulation pattern embedded in the outermost KAM surface.

(a)

(b)

Figure 5.50.: Initially randomly distributed particles attracted to a line-like PAS along the closed
streamline identified in Section 5.4.2 (indigo line). The accumulation is reported
after t = 100 for Re = 1000 on the (x, y)- and (y, z)- planes, (a) and (b) respectively.
The prohibited regions for the particles (black dots) are marked with red dashed
lines, the selected particle radius is a = 0.0251 and the corresponding interaction
lengths adopted for the PSI model are ∆w = ∆L

w = 0.0342 and ∆fs = 0.0251.
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Figure 5.51.: Poincaré section on the (x = 0.15174)-plane of the initially randomly distributed
particles in the last part of their trajectory (t ∈ [75, 100], grey dots) for Re = 1500.
The indigo dots show the outermost KAM surface identified in Section 5.4.2. The
selected particle radius is a = 0.0106 and the corresponding interaction lengths
adopted for the PSI model are ∆w = 0.02 and ∆fs = 0.0106 and they lead to a
tubular accumulation pattern developed around the outermost KAM surface.

Figure 5.52.: Poincaré section on the (x = 0.15174)-plane of the initially randomly distributed
particles in the last part of their trajectory (t ∈ [75, 100], grey dots) for Re = 1500.
The indigo dots show the outermost KAM surface identified in Section 5.4.2. The
selected particle radius is a = 0.0201 and the corresponding interaction lengths
adopted for the PSI model are ∆w = 0.03 and ∆fs = 0.0201 and they lead to a
tubular accumulation pattern embedded in the outermost KAM surface.

has been further proven, as well as the connection between the accumulation patterns and
the periodic or quasi-periodic orbits of the flow. PAS has been reported for three different
Reynolds numbers, Re = 1000, 1500 and 2000. So far there is no experimental evidence of
particle accumulation for this specific set-up. We therefore aim at indicating in table 5.10 a
range of particle radii for which PAS is numerically predicted in order to facilitate experimental
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(a)

(b)

Figure 5.53.: Initially randomly distributed particles attracted to a line-like PAS along the closed
streamline identified in Section 5.4.2 (indigo line). The accumulation is reported
after t = 100 for Re = 1500 on the (x, y)- and (y, z)- planes, (a) and (b) respectively.
The prohibited regions for the particles (black dots) are marked with red dashed
lines, the selected particle radius is a = 0.0238 and the corresponding interaction
lengths adopted for the PSI model are ∆w = 0.0332 and ∆fs = ∆L

fs = 0.0238.
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(a)

(b)

Figure 5.54.: Initially randomly distributed particles attracted to a line-like PAS along the closed
streamline identified in Section 5.4.2 (indigo line). The accumulation is reported
after t = 100 for Re = 1500 on the (x, y)- and (y, z)- planes, (a) and (b) respectively.
The prohibited regions for the particles (black dots) are marked with red dashed
lines, the selected particle radius is a = 0.0246 and the corresponding interaction
lengths adopted for the PSI model are ∆w = ∆L

w = 0.0338 and ∆fs = 0.0246.

Figure 5.55.: Poincaré section on the (x = 0.15174)-plane of the initially randomly distributed
particles in the last part of their trajectory (t ∈ [75, 100], grey dots) for Re = 2000.
The indigo dots show the outermost KAM surface identified in Section 5.4.2. The
selected particle radius is a = 0.0106 and the corresponding interaction lengths
adopted for the PSI model are ∆w = 0.02 and ∆fs = 0.0106 and they lead to a
tubular accumulation pattern developed around the outermost KAM surface.
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Figure 5.56.: Poincaré section on the (x = 0.15174)-plane of the initially randomly distributed
particles in the last part of their trajectory (t ∈ [75, 100], grey dots) for Re = 2000.
The indigo dots show the outermost KAM surface identified in Section 5.4.2. The
selected particle radius is a = 0.0201 and the corresponding interaction lengths
adopted for the PSI model are ∆w = 0.03 and ∆fs = 0.0201 and they lead to a
tubular accumulation pattern embedded in the outermost KAM surface.

(a)

(b)

Figure 5.57.: Initially randomly distributed particles attracted to a line-like PAS along the closed
streamline identified in Section 5.4.2 (indigo line). The accumulation is reported
after t = 100 for Re = 2000 on the (x, y)- and (y, z)- planes, (a) and (b) respectively.
The prohibited regions for the particles (black dots) are marked with red dashed
lines, the selected particle radius is a = 0.0230 and the corresponding interaction
lengths adopted for the PSI model are ∆w = 0.0325 and ∆fs = ∆L

fs = 0.0230.
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(a)

(b)

Figure 5.58.: Initially randomly distributed particles attracted to a line-like PAS along the closed
streamline identified in Section 5.4.2 (indigo line). The accumulation is reported
after t = 100 for Re = 2000 on the (x, y)- and (y, z)- planes, (a) and (b) respectively.
The prohibited regions for the particles (black dots) are marked with red dashed
lines, the selected particle radius is a = 0.0227 and the corresponding interaction
lengths adopted for the PSI model are ∆w = ∆L

w = 0.0322 and ∆fs = 0.0227.

investigations concerning it.
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Table 5.10.: Range of particle radii a and corresponding wall and free-surface interaction lengths,
∆w and ∆fs respectively, for which the existence of PAS is numerically investigated.
With tubular in chaotic sea we indicate the tubular particle accumulation structure
observed in the chaotic region about the KAM torus

Re PAS type a = ∆fs ∆w

1000 tubular in chaotic sea 0.0106 0.0200
tubular in KAM 0.0201 0.0300

single-periodic line-like 0.0251 0.0342
no PAS 0.0321 0.0400

1500 tubular in chaotic sea 0.0106 0.0200
tubular in KAM 0.0201 0.0300

single-periodic line-like 0.0238 0.0332
single-periodic line-like 0.0246 0.0338

no PAS 0.0321 0.0400
2000 tubular in chaotic sea 0.0106 0.0200

tubular in KAM 0.0201 0.0300
single-periodic line-like 0.0227 0.0322
single-periodic line-like 0.0230 0.0325

no PAS 0.0321 0.0400
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The phenomenon of particle accumulation in boundary-driven flows has been investigated in
three different set-ups: a thermocapillary liquid bridge, a two-sided antiparallel lid-driven cavity
and a partially liquid-filled rotating drum. This selection of the cases to study has been made in
order to extend the typical research framework for PAS from thermocapillary- to more general
boundary-driven flows. We aimed at demonstrating that experimental observations of PAS in a
liquid bridge are not solely correlated with this system and its corresponding instabilities, but
more generally with a streamline crowding near the boundaries. This is a common feature in
all the flow configurations selected and has been exploited for proving the existence of particle
accumulation in mechanically-driven flows, as well.

The first important results have been achieved considering non-zero-size particles in two-
dimensional closed flows driven by either a constant shear-stress or a moving lid. In Chapter
4 we carried out fully-resolved simulations for a single particle in a square shear–stress- and
a lid-driven cavity using the DG-FEM code developed during this project and including the
rigid circular particle via SPM. Small-Stokes-number tracers with radius a equal 5 down to
1% the cavity length have been considered fully resolving fluid-flow, particle and lubrication
gap scales. The main challenge was the flow resolution of the lubrication scales which ranged
from O(0.01a) to O(a) for the parameters investigated. In both the systems we demonstrated
the existence of a stable, global limit cycles for particles heavier than the fluid. The non-zero-
size tracer is attracted to the periodic orbit due to particle–boundary interaction counteracting
centrifugal inertia. When the particle moves far away from the boundaries the former dominates
and centrifuges the particle out of the vortex core. On the other hand, when the rigid tracer
approaches the boundaries, owing to its non-zero-size, it is repelled because of lubrication forces.
These two mechanisms make the particle trajectory converge to a stable limit cycle independent
of its initial position. On the attracting periodic single-particle orbit boundary repulsion and
inertial centrifugal effects balance in the mean.

The fully-resolved simulations allowed to draw additional conclusions regarding the role of
the particle size and density ratio % in the accumulation phenomenon. In the limit of t → ∞
the initial position of the particle can be disregarded. It was found that, for a constant %,
bigger particles are more capable of squeezing the lubrication gap (a1 > a2 ⇒ δ1/a1 < δ2/a2).
Moreover, for a constant particle radius, the heavier the particle the smaller the minimum
lubrication gap becomes.

The single-particle dynamics have been investigated constructing iterative Poincaré maps
which gave the possibility to infer additional correlations between a, % and the rate of attraction
to the limit cycle. It is found that bigger particles accumulate faster than smaller ones and that
the rate of attraction to the limit cycle is almost insensitive to %.

Moreover, comparing the shear–stress- and the lid-driven cavities, the minimum lubrication
gap for a particle moving on the limit cycle is one order of magnitude larger in the lid-driven
cavities for comparable Reynolds numbers. In addition, particles in a shear–stress-driven cavity
suffer a higher rate of attraction to the limit cycle, as also confirmed by experimental observations
of PAS in a liquid bridge as compared to a lid-driven cavity.

The main purpose of the two-dimensional fully-coupled simulations was to quantify the in-
teraction length ∆ conceptually introduced for the first time by Mukin & Kuhlmann [194] and
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defined as the minimum distance between particle centroid and boundary after a complete at-
traction to the limit cycle (accumulation process). The interaction length comprises of the
particle radius and the minimum lubrication gap δ which has been neglected (δ = 0) before
our study. Herein we quantified its functional dependence on the particle radius and density
ratio for both, a particle–free-surface and a particle–wall interaction. This investigation will be
further developed in future studies in order to include the Reynolds number dependence on ∆
and to determine the interaction length for shear–free-surfaces, as well. In view of to the high
computational cost of fully-resolved simulations, even in two-dimensional flows, quantifying the
interaction length ∆ allowed us to simulate the accumulation process via a one-way coupling
plus a particle–boundary interaction model. Such a rebound scheme (PSI model introduced in
[126]) has been improved herein to take into account the minimum lubrication gap width for a
particle moving on its limit cycle. In Chapter 4 it was shown the importance of δ in accurately
predicting the global attracting periodic orbit in two-dimensions and the essential role of the PSI
model, without which no limit cycles have been found for the two-dimensional flow considered.

The two-dimensional mechanism of accumulation has been further tested for an axisymmet-
ric liquid bridge flow in Chapter 5. In this case we presented experimental results for single
particles transported in the fluid. Experimental evidence demonstrates the existence of a limit
cycle. The experiments have been satisfactorily reproduced by our one-way coupled simulations
employing the Maxey–Riley equation, the PSI model and an axysimmetric finite volume solver
developed during this project. Both, single-phase and multi-phase simulations have shown very
good agreement with experimental results. It is remarkable the improvement of the numerical
prediction accuracy when the PSI model is taking into account the estimate of δ made in Chap-
ter 4. In particular, approximating the interaction length by a results in a very poor prediction
of the minimum radial position of the particle centroid along the limit cycle. Still some open
questions remain on the prediction of the particle turn-over time after complete attraction to
the limit cycle. To the best of the author’s knowledge, this is the first time that a quantitative
comparison between numerical and experimental data has been made for particle accumulation
structures in terms of objectively defined quantities.

Using the OpenFOAM R© solver developed during the project PARTAC [150], a further com-
parison between numerical simulations and experimental results in a liquid bridge has been es-
tablished. Two experimental conditions have been selected for comparison because of different
PAS observed (SL-I and SL-II). After the onset of instability in form of a traveling hydrother-
mal wave, a three-dimensional flow develops. For the selected parameters, the flow is steady
with azimuthal wave number m = 3 and three-periodic in a reference frame rotating with the
phase velocity of the wave. One-way coupled numerical simulations have been carried out in the
rotating frame for reproducing the SL-I- and SL-II-PAS experimentally observed. Employing
the PSI model disregarding the minimum lubrication gap width does not lead to numerically
find PAS, whereas, if the estimate of ∆ made in Chapter 4 is included, both the accumulation
patterns reported experimentally are well predicted by our simulations. This proves once again
the importance of an accurate estimate of the interaction length for simulating PAS. To the
best of the author’s knowledge, this was the first time that SL-II-PAS has been numerically
reproduced for Pr = 28.

Another important achievement of this study consisted in initiating the investigation of PAS
in mechanically-driven flows. A spectral solver has been used for the lid-driven cavity fluid-phase
[4] flow, whereas OpenFOAM R© was employed for the partially liquid-filled rotating drum. In
both cases, a steady three-dimensional flow develops periodic cells after the onset of instability.
Numerous one-way coupled simulations have been carried out for covering the range of particle
radii which may lead to particle accumulation structures for three Reynolds numbers in each
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of the two set-ups. In this case we aimed at showing that PAS can be well predicted, in three-
dimensions, using only the advection equation combined with the PSI model. Tubular and
line-like PAS have been found in both the cases. We observe period doubling phenomena and
highly-periodic accumulation orbits for the case of the lid-driven cavity. Moreover, determining
the particle radius required for neutrally buoyant particles to form line-like PAS in the lid-driven
cavity for Re = 400 and Re = 500 was predicted. This prediction was validated by successive
experiments, even if slightly different geometrical parameters are employed in the experiments.
This is the first time that PAS is numerically and experimentally reported for mechanically-
driven flows. Further investigations are currently in progress to establish a quantitatively more
detailed comparison as well as to verify our numerical prediction for PAS in a rotating drum.

The main achievement of this thesis work consists in further clarifying the strong correlation
between flow topology and particle accumulation structures. A detailed topological study has
been conducted for all the three systems under investigation, with the main purpose of accu-
rately identifying chaotic and regular regions of the flow. The accumulation mechanism is indeed
based on the transfer of the particles from the chaotic see to the KAM tori by means of multi-
ple particle–boundary interactions. Comparing the accumulation patterns in the liquid bridge
(computed via integration of Maxey–Riley equation) and the closed streamline of the fluid-flow
one may notice that the accumulation region does not only resemble the regular one, but locates
on top of it. For the parameters considered, therefore, one may speculate that the inertia and
finite-size effects in the bulk do not sensibly affect the final stage of accumulation of the particles.
Moreover, the time scales connected with pure inertia accumulation are much longer than the
ones experimentally reported. Including the particle-boundary interaction via the PSI model
would already be accurate enough for an order-of-magnitude comparison with experiments in
terms of PAS formation time. This is a strong indication to conclude that addressing PAS as
inertial coherent structures (see [190, 104, 228]) is misleading. Inertia is playing a marginal role
in the three-dimensional accumulation phenomenon, whereas the main dissipation mechanism is
due to particle–boundary interaction. The PSI model employed for one-way coupled simulations
introduces the dissipation via a discontinuity of the velocity vector field which, in the framework
of dynamical systems, is classified as a Filippov system.

Finally, in the last section of Chapter 4, we proposed a mechanism for explaining the experi-
mentally observed transfer of particles from the accumulation pattern to the bulk regions of the
flow [258]. Our argument is based on the particle–particle interaction which may contribute to a
transfer of the particles from the regular regions of the flow to the chaotic see. We proposed the
particle occupation ratio as non-dimensional group of interest for describing the phenomenon.
Furthermore we defined a Poincaré-like stability for measuring the dispersion of particle trajecto-
ries about the single-particle attractor when mutual interactions between tracers are considered.
This theoretical explanation has been analysed in the two-dimensional shear–stress-driven cavity
and conceptually extended to three-dimensions. Future studies will aim to verify this hypothe-
sis and to numerically investigate the phenomena produced by particle–particle interactions in
PAS-related phenomena. To this end we will substitute the current one-way coupling with a
two- or a four-way coupling approach.
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A. From Prototypical to Physical Domains

In this chapter a way to transform prototypical domains into physical ones or part of it is
presented. A suitable choice for building the mesh is to divide the physical domain in a set of
smaller parts, elements, each of which will be referred to a prototypical element and somehow
connected with the neighbor ones.

In order to proceed, transfinite interpolations are implemented for both, two- and three-
dimensional geometries. They respectively deal with quadrilateral and triangular elements in
2-D, hexahedra and tetrahedra in 3-D. At the end of this chapter the nodes distribution is
discussed for two-dimensional cases.

Because of convergence degrading issues, just mappings in simply connected elements will be
considered, but it should be kept in mind that the transfinite interpolation technique does not
have such a sort of limitations.

A.1. Transfinite Interpolation

Transfinite interpolation is a class of method for approximating multivariate functions, which
is used to parametrize curved domains. In its bivariate and trivariate schemes, it is possible
to build approximation lattices for describing two- and three-dimensional domains respectively,
being known a parametrization of their surfaces.

Such a technique was first proposed in [62], where Coons surfaces have been used for computer-
aided design and numerical control production of free-form surfaces like a ship’s hull or an
air-plane fuselage. In his paper, Coons introduces the blending-function interpolation schemes,
an extension of which is the transfinite interpolation technique. One usually refers to Coons
surfaces as interpolatory surfaces coinciding, on the boundary of the prototypical quadrilateral,
with arbitrary curves explicitly prescribed. An extensive contribution to them was given by
Forrest in [81] and [82], but the generalization to transfinite interpolation is more properly due
to Gordon & Hall (see [95, 96, 97, 98, 99, 100, 101]).

They formulated the corresponding theory applying projection operators combined with each
others via Boolean algebra. Indeed, in [95] it is presented how to build an algebraically maximal
projector and a minimal one (tensor product) with both Lagrangian and Hermitian polynomi-
als. Using the transfinite interpolation technique, Gordon and Hall also present some mesh and
curvilinear coordinate systems generation procedures, but mainly referring to quadrilateral and
hexahedral prototypical domains. A transfinite mapping for triangles [13, 14] and tetrahedron
was discussed in [219] and a complete overview on the transfinite interpolation for all the proto-
typical domains is presented in [286]. A more recent intensive study on this topic is investigating
topology, application to integral equations, to wavelet methods and regularity of the transfinite
interpolation (see e.g. [235, 113, 236, 237, 238, 239]).

To motivate the choice of such an interpolation class of methods for mapping the prototypical
into the physical elements, one should consider some important strengths of the transfinite map-
ping. For instance the high computational efficiency due to an explicit definition of the mapping,
a good correlation between the boundary and the internal nodes, a direct extension from the
two- to the three-dimensional case and, specially, the nondenumerability property. The latter
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point gives the quality transfinite to the interpolation method and means that the set of points
on which the interpolation exactly matches the interpolated function is nondenumerable. Such
a property is particularly important for h/p-methods in order not to bound their rate of conver-
gence or even to avoid non-physical results due to meshing approximations (see e.g. [262]). On
the other hand, as main drawbacks of the transfinite interpolation technique there is the possi-
ble non-invertibility of the mapping as well as the effort required for obtaining the interpolation
itself, specially in three-dimensions. For such reasons, an alternative method for providing the
mapping is represented by the non-uniform rational B-spline (NURBS) interpolation, used with
success in the h/p-methods field and referred as NEFEM ([262]).

In the present thesis work we will opt for the transfinite interpolation technique, some more
details of which will be presented in the next subsections.

A.2. Lattice generators

The transfinite interpolation technique is based on an algebraic theory for approximating mul-
tivariate functions, whose details are extensively treated in [98]. Aim of this paragraph is just
to give some fundamental notions of lattice generators without entering in details. Therefore
it will be presented nothing but a framework to transfinite interpolation methods, in order to
better clarify the properties of the mapping itself.

Recalling [98], for defining the class of univariate projectors of interest (herein used as lattice
generators), it is considered a “normal, k–th order, linear, homogeneous, ordinary differential
operator with continuous real coefficients αi(x̂) , i = 0, 1, ..., k defined over the finite interval
[a, b]:

D = α0(x̂) + α1(x̂)
d

dx̂
+ ...+ αk−1(x̂)

dk−1

dx̂k−1
+ αk(x̂)

dk

dx̂k
, (A.1)

where αk(x̂) 6= 0 for any x̂ ∈ [a, b]. The null space of D is the k−dimensional linear space Φ
spanned by any linearly independent set of k solutions of the homogeneous differential equation
D[φ] = 0.”

We can then define as projector an idempotent1 linear transformation from a space Q into
the subspace Φ. Therefore P is a projector if it yields:

P [ · ] =
k∑
i=1

λi[ · ]φi(x̂), (A.2)

where {λi}ki=1 is a set of k bounded linear functionals belonging to the space Ck on [a, b] and
linearly independent over Φ, and {φi}ki=1 is the unique basis for Φ such that λi[φj ] = δij .

As reported in [98], the concepts extension from univariate to multivariate functions is straight-
forward and nothing but a parametric extension of the operators D and P to the space of
N -variate functions Ck1,...,kN . In the bivariate case, for instance, it holds:

D x̂ =Dx̂ ⊗ I ŷ, L x̂
i = λx̂i ⊗ I ŷ, P x̂ = P x̂ ⊗ I ŷ (A.3a)

D ŷ =I x̂ ⊗Dŷ, L ŷ
j = I x̂ ⊗ λŷj , P ŷ = I x̂ ⊗ P ŷ, (A.3b)

1Being U(x̂) an arbitrary function in Ck and π the unique function in Φ which interpolates U with respect to
{λi}ki=1 such that π(x̂) =

∑k
i=1 λi[U ]φi(x̂), a projector P is idempotent if it yields:

P [P [U ]] = P [U ] = π.
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where Dx̂,Dŷ,P x̂,P ŷ are the univariate operators D and P respectively defined for x̂ ∈ [x̂a, x̂b]
and ŷ ∈ [ŷa, ŷb], and I x̂, I ŷ are the corresponding identity operator.

It is then possible to proceed with some Boolean algebra applied to the projection operators,
combining them in order to obtain the lattice generators class of interest. The easiest way to
build a multivariate interpolation is to compose the projectors between themselves. As shown
in [95], this way conduces to an algebraically minimal projector2 that, for the parametrically
extended projection operators, reduces to a tensor product. In the bivariate and trivariate cases
it holds:

T (x̂, ŷ) = (P x̂ ◦P ŷ)[F ] (A.4a)

T (x̂, ŷ, ẑ) = (P x̂ ◦P ŷ ◦P ẑ)[F ], (A.4b)

where T (x̂, ŷ) and T (x̂, ŷ, ẑ) are the tensor product operators for interpolating the function
F (x̂, ŷ) and F (x̂, ŷ, ẑ) respectively on the point grid in x̂, ŷ and ẑ. Even though T is itself a
projector, its precision set consist only of the finite number of points on the generated lattices.
Therefore, it cannot be classified as a transfinite interpolation operator. On the other hand, it is
possible to obtain an algebraically maximal projector3 combining the projection operators P x̂i

via a Boolean sum. In the bivariate and trivariate cases, it yields:

P x̂ ⊕P ŷ =P x̂ + P ŷ −P x̂ ◦P ŷ (A.5a)

P x̂ ⊕P ŷ ⊕P ẑ =P x̂ + P ŷ + P ẑ −P x̂ ◦P ŷ−
P x̂ ◦P ẑ −P ŷ ◦P ẑ + P x̂ ◦P ŷ ◦P ẑ. (A.5b)

In the latter case, the obtained interpolation operator is a transfinite one because its precision
set consists of the whole characteristic lines of the generated lattice. That implies that the set of
points on which the interpolant exactly matches the interpolated function is nondenumerable.
Such a property comes from a theorem demonstrated for bivariate Lagrange, cubic spline and
trigonometric polynomial interpolation projectors ([95], [99]), but what is very essential is that
the so-called bending functions satisfy the cardinality conditions.

In the present thesis work, just Lagrangian blending functions will be considered and the
transfinite mapping to be presented are obtained using the element boundary surfaces only for
the exact matching with the lattice. Further coordinate surfaces constraints can be introduced to
better map the prototypical elements, but for the simple shapes of interest, this would introduce
unnecessary complications.

2A projector P is an algebraically minimal one when it yields:

D x̂1 [P] = 0 , D x̂2 [P] = 0 , ... ,D x̂N [P] = 0

3A projector P is an algebraically maximal one when it yields:

D x̂1D x̂2 ...D x̂N [P] = 0
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A.3. 2-D transfinite Lagrange interpolation

In order to clearly define the framework of a vector-valued bivariate transfinite interpolation, it
can be considered the graph of the vector-valued function:

F (x̂, ŷ) =


F1(x̂, ŷ)
F2(x̂, ŷ)

...
Fn(x̂, ŷ)

 , (A.6)

where x̂ and ŷ will be used to define the prototypical domain Ω̂ to be mapped in the physical
one Ω, or a part of it. From eq. A.6 it results that F (x̂, ŷ) maps, in general, R2 regions into
Euclidean n–space, En:

F : R2 → En. (A.7)

In the following subsections just planar mappings will be considered (n = 2), but one should
keep in mind that the bivariate transfinite interpolation does not impose any sort of constrain
in the choice of En.

A.3.1. Edge Parametrization

The two-dimensional transfinite interpolation is built considering a parametrization of flow lines
the lattice will be based on. Only the element edges only will be assumed as exactly matching
lines with the lattice, but it stands that further constrains can be included for better adapting
the interpolation as explained in [100].

It is then natural to present one-dimensional segment parametrization samples that will be
employed in the following two-dimensional transfinite interpolation.

For convenience, the edges parametrization used in the quadrilateral mapping differs from the
triangle one because in the first case the parameter lives in the one-dimensional prototypical
domain γ ∈ [−1, 1], instead, for triangles, u ∈ [0, 1]. The segment parametrization of the two
cases are linked with each other through the transformation γ = 2u− 1.

The following linear and circular parametrization is extensively used during the present thesis
work because of the geometry to implement for the simulations of interest. It holds, however,
that transfinite interpolation methods can be used for every kind of parametrized edge.

Linear Segment: Cartesian Coordinates

Tedge(u) =

(
xa
ya

)
+ u

(
xb − xa
yb − ya

)
(A.8a)

Tedge(γ) =

(
xa
ya

)
+
γ + 1

2

(
xb − xa
yb − ya

)
(A.8b)

Circular Segment: Polar Coordinates

Tedge(u) =

(
xC
yC

)
+R

(
cos[φa + u(φb − φa)]
sin[φa + u(φb − φa)]

)
(A.9a)

Tedge(γ) =

(
xC
yC

)
+R

(
cos[φa + (γ + 1)(φb − φa)/2]
sin[φa + (γ + 1)(φb − φa)/2]

)
(A.9b)
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Figure A.1.: Edge mapped into a linear segment.
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Figure A.2.: Edge mapped into a circular segment with center C.

A.3.2. Quadrilateral Mapping

In order to formally distinguish the quadrilateral mapping from the triangular one, x̂ and ŷ will
be here redefined as ξ and η. For triangle transfinite interpolation they rather assume the name
of r and s.

Only the element edges will be used as lattice flow lines and the resulting univariate Lagrangian
blending functions are linear ([100])

φξ0(ξ) =
1− ξ

2
, φη0(η) =

1− η
2

(A.10a)

φξ1(ξ) =
1 + ξ

2
, φη1(η) =

1 + η

2
. (A.10b)

The bivariate projection operator can be then expressed as

Pξ[F ] =
1− ξ

2
F (−1, η) +

1 + ξ

2
F (1, η) (A.11a)

Pη[F ] =
1− η

2
F (ξ,−1) +

1 + η

2
F (ξ, 1). (A.11b)
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Combining this two projectors with a Boolean sum, the required lattice generator results

TQuad = Pξ ⊕Pη[F ] =
1− η

2
F (ξ,−1) +

1 + η

2
F (ξ, 1)+

1− ξ
2

F (−1, η) +
1 + ξ

2
F (1, η)−

1− ξ
2

1− η
2

F (−1,−1)−
1− ξ

2

1 + η

2
F (−1, 1)−

1 + ξ

2

1− η
2

F (1,−1)−
1 + ξ

2

1 + η

2
F (1, 1), (A.12a)

where, referring to fig. A.3, for the edge parametrizations it yields

F (ξ, 1) : Γ̂1 → Γ1, F (−1, η) : Γ̂2 → Γ2 (A.13a)

F (ξ,−1) : Γ̂3 → Γ3, F (1, η) : Γ̂4 → Γ4 (A.13b)

.
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Figure A.3.: Prototypical quad mapped into a generically shaped one.

A.3.3. Triangular Mapping

As done for quadrilaterals, also in triangular mappings it is considered a set of univariate linear
Lagrangian blending functions, but the edges parametrization is implemented from an unitary
one-dimensional domain. This choice results from convenience in using affine coordinates instead
than r and s

u1 = −
r + s

2
, u2 =

r + 1

2
, u3 =

s+ 1

2
. (A.14)

Moreover, it is formally more compact and expressive to switch from the usage of the graph
of a bivariate vector-valued function to three univariate functions verifying the compatibility
conditions and parametrizing the triangle edges. Referring to fig. A.4, it yields

F (r,−1)←→ E1(u) : Λ̂1 → Λ1 (A.15a)

F (r,−r)←→ E2(u) : Λ̂2 → Λ2 (A.15b)

F (−1, s)←→ E3(u) : Λ̂3 → Λ3, (A.15c)

where u lives in [0, 1]. The triangular transfinite interpolation results

TTri =u1 [E1(u2) + E3(1− u3)−E3(1)] +

u2 [E2(u3) + E1(1− u1)−E1(1)] +

u3 [E3(u1) + E2(1− u2)−E2(1)] . (A.16a)

130



A.4. 3-D TRANSFINITE LAGRANGE INTERPOLATION

-

6

P̂1

P̂3

P̂2Λ̂1

Λ̂3

Λ̂2

s

r -

6

P2

P1

P3

Λ1

Λ3 Λ2

y

x

TTri

Figure A.4.: Prototypical triangle mapped into a generically shaped one.

A.3.4. 2-D Mapping Benchmarks

In order to test the correct implementation of the two-dimensional transfinite interpolations for
quads and triangles, one can solve a PDE on the transformed domain and verify the expected
spectral convergence.

The equations in the mapped domain are written introducing the Jacobian of the transforma-
tion. Because of its relevance in the discretization algorithm presented in Chapter 3, a Poisson’s
problem is chosen as benchmark and Dirichlet boundary conditions are here applied. Owing to
the curved geometry, an over-integration technique is adopted in order to reduce aliasing errors
(see e.g. [123]). The following problem is solved

∇2f = −2π2 sin(πx) sin(πy) (A.17)

whose solution is fexact = sin(πx) sin(πy). The discretization error is here defined as ε =
fDG − fexact where fDG is the discrete solution obtained applying DG-FEM with one element
only and the interior penalty method is employed for setting the boundary conditions.

As depicted in fig.s A.5 and A.6, both the mappings are correctly preserving the spectral
convergence of DG-FEM methods, so one can conclude that the transfinite interpolations are
not only properly implemented, but also a suitable choice for the selected h/p-method. However
one should keep in mind that very distorted domains decrease the convergence rate because of
a strong influence of the mapping Jacobian. This suggests that a suitable meshing strategy
could be to prefer smooth transformations, even if this would mean smaller and more numerous
elements.

A.4. 3-D Transfinite Lagrange Interpolation

As done for the two-dimensional case, one can extend the presented graph of the vector-valued
function to three-dimensions

F (x̂, ŷ, ẑ) =


F1(x̂, ŷ, ẑ)
F2(x̂, ŷ, ẑ)

...
Fn(x̂, ŷ, ẑ)

 . (A.18)
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Figure A.5.: Convergence of the infinite-norm of the numerical error committed in solving an
infinitely smooth Poisson problem over a mapped quadrilateral domain. The cor-
responding single-element DG-FEM discretization has a functional space of order
p.
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Figure A.6.: Convergence of the infinite-norm of the numerical error committed in solving an
infinitely smooth Poisson problem over a mapped triangular domain. The corre-
sponding DG-FEM discretization has a functional space of order p.

From eq. A.18 results that F (x̂, ŷ, ẑ) maps R3 regions into Euclidean n-space, En

F : R3 → En. (A.19)
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In the following subsections the transfinite interpolation will be restricted to three-dimensional
mappings (n = 3). Two-dimensional transfinite Lagrange interpolations can be employed to
build the 3-D ones.

A.4.1. Edge Parametrization

The following subsections extend the edge parametrization in three-dimensions.

Linear Edge: Cartesian Coordinates

Tedge(u) =

 xa
ya
za

+ u

 xb − xa
yb − ya
zb − za

 (A.20a)

Tedge(γ) =

 xa
ya
za

+
γ + 1

2

 xb − xa
yb − ya
zb − za

 (A.20b)

Cylindrical Edge: Cylindrical Coordinates

Tedge(u) =

 xc
yc
za

+

 R cos[φa + u(φb − φa)]
R sin[φa + u(φb − φa)]
u(zb − za)

 (A.21a)

Tedge(γ) =

 xc
yc
za

+

 R cos[φa + (γ + 1)(φb − φa)/2]
R sin[φa + (γ + 1)(φb − φa)/2]
(γ + 1)(zb − za)/2

 (A.21b)

Spherical Edge: Spherical Coordinates

Tedge(u) =

 xc
yc
zc

+R

 cos[φa + u(φb − φa)] sin[θa + u(θb − θa)]
sin[φa + u(φb − φa)] sin[θa + u(θb − θa)]
cos[θa + u(θb − θa)]

 (A.22a)

Tedge(γ) =

 xc
yc
zc

+R

 cos[φa + (γ + 1)(φb − φa)/2] sin[θa + (γ + 1)(θb − θa)/2]
sin[φa + (γ + 1)(φb − φa)/2] sin[θa + (γ + 1)(θb − θa)/2]
cos[θa + (γ + 1)(θb − θa)/2]


(A.22b)

A.4.2. Hexahedral Mapping

As done for quadrilateral mappings, the chosen univariate Lagrangian blending functions are
linear

φξ0(ξ) =
1− ξ

2
, φη0(η) =

1− η
2

, φζ0(ζ) =
1− ζ

2
(A.23a)

φξ1(ξ) =
1 + ξ

2
, φη1(η) =

1 + η

2
, φζ1(ζ) =

1 + ζ

2
. (A.23b)
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The trivariate projection operator can be then expressed as

Pξ[F] =
1− ξ

2
F(−1, η, ζ) +

1 + ξ

2
F(1, η, ζ) (A.24a)

Pη[F] =
1− η

2
F(ξ,−1, ζ) +

1 + η

2
F(ξ, 1, ζ) (A.24b)

Pζ [F] =
1− ζ

2
F(ξ, η,−1) +

1 + ζ

2
F(ξ, η, 1). (A.24c)

The lattice generator is obtained combining this three projectors via a Boolean sum

THex = Pξ ⊕Pη ⊕Pζ [F] =
1− ξ

2
F(−1, η, ζ) +

1 + ξ

2
F(1, η, ζ)+

1− η
2

F(ξ,−1, ζ) +
1 + η

2
F(ξ, 1, ζ)+

1− ζ
2

F(ξ, η,−1) +
1 + ζ

2
F(ξ, η, 1)−

1− ξ
2

1− ζ
2

F(−1, η,−1)−
1− ξ

2

1 + ζ

2
F(−1, η, 1)−

1 + ξ

2

1− ζ
2

F(1, η,−1)−
1 + ξ

2

1 + ζ

2
F(1, η, 1)−

1− ξ
2

1− η
2

F(−1,−1, ζ)−
1− ξ

2

1 + η

2
F(−1, 1, ζ)−

1 + ξ

2

1− η
2

F(1,−1, ζ)−
1 + ξ

2

1 + η

2
F(1, 1, ζ)−

1− η
2

1− ζ
2

F(ξ,−1,−1)−
1− η

2

1 + ζ

2
F(ξ,−1, 1)−

1 + η

2

1− ζ
2

F(ξ, 1,−1)−
1 + η

2

1 + ζ

2
F(ξ, 1, 1)−

1− ξ
2

1− η
2

1− ζ
2

F(−1,−1,−1)+

1 + ξ

2

1− η
2

1− ζ
2

F(1,−1,−1)+

1 + ξ

2

1 + η

2

1− ζ
2

F(1, 1,−1)+

1− ξ
2

1 + η

2

1− ζ
2

F(−1, 1,−1)+

1− ξ
2

1− η
2

1 + ζ

2
F(−1,−1, 1)+

1 + ξ

2

1− η
2

1 + ζ

2
F(1,−1, 1)+

1 + ξ

2

1 + η

2

1 + ζ

2
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F(−1, 1, 1), (A.25)
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where, referring to fig. A.7, the face parametrization reads

F(−1, η, ζ) : Σ̂1 → Σ1 (A.26a)

F(1, η, ζ) : Σ̂2 → Σ2 (A.26b)

F(ξ,−1, ζ) : Σ̂3 → Σ3 (A.26c)

F(1, η, ζ) : Σ̂4 → Σ4 (A.26d)

F(ξ, η,−1) : Σ̂5 → Σ5 (A.26e)

F(ξ, η, 1) : Σ̂6 → Σ6. (A.26f)
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Figure A.7.: Prototypical hexahedron mapped into a generically shaped one.

A.4.3. Tetrahedral Mapping

In order to extend the triangular mapping into the tetrahedral one, the first step is to complete
the set of affine coordinates in terms of r, s and t, adapting them to the three-dimensional
prototypical element:

u1 = −
r + s+ t+ 1

2
, u2 =

r + 1

2
, u3 =

s+ 1

2
, u4 =

t+ 1

2
. (A.27)

Referring to fig. A.8, for the parametrization of edges and faces, it yields

F(r,−1,−1)←→ E1(u) : P̂1P̂2 → P1P2

F(r,−r,−1)←→ E2(u) : P̂2P̂3 → P2P3

F(−1, s,−1)←→ E3(u) : P̂3P̂1 → P3P1

F(−1,−1, t)←→ E4(u) : P̂1P̂4 → P1P4

F(r,−1,−r)←→ E5(u) : P̂2P̂4 → P2P4

F(−1, s,−s)←→ E6(u) : P̂3P̂4 → P3P4

F(r, s,−1)←→ S1(u1, u2, u3) : Ξ̂1 → Ξ1

F(r,−1, t)←→ S2(u1, u2, u4) : Ξ̂2 → Ξ2

F(r, s,−r − s− 1)←→ S3(u2, u3, u4) : Ξ̂3 → Ξ3

F(−1, s, t)←→ S4(u1, u3, u4) : Ξ̂4 → Ξ4, (A.28)
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where u lives in [0, 1].
Recalling [286], the tetrahedral transfinite interpolation can be written combining vertices,

edges and faces contribution to the mapping. In [286] it is also suggested to use affine coordinates
differences instead of implementing the parametrization directly in terms of ui. In such a way
the resulting interpolation is better conditioned and more robust

TTetra = TV ert + TEdges + TFaces

TV ert = u1 F(−1,−1,−1) + u2 F(1,−1,−1)+

u3 F(−1, 1,−1) + u4 F(−1,−1, 1)

TEdges =
6∑
i=1

Eint
i (uB − uA) uA uB

Eint
i (u) =


4E0

i (u)

(1− u) (1 + u)
if u 6= ±1

0 if u = ±1

E0
i (u) = Ei(u)−

1− u
2

Ei(−1)−
1 + u

2
Ei(+1)

TFaces =
4∑
i=1

Sinti (uB − uA, uC − uA) uA uB uC

Sinti (u) =


S0
i (u)

uAuBuC |Si

if u 6∈ ∂Si

0 if u =∈ ∂Si

S0
i (u) = Si(u)− TEdges|Si

(u) − TV ert|Si
(u), (A.29)

where uA, uB and uC are such that uA(P̂A) = uB(P̂B) = uC(P̂C) and
(P̂B − P̂A)× (P̂C − P̂A) points out of the prototypical tetrahedron.
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Figure A.8.: Prototypical tetrahedron mapped into a generically shaped one.

A.4.4. 3-D mapping benchmarks

For testing purpose a Poisson’s problem is solved on transfinitely mapped domains for both,
an hexahedron and a tetrahedron. Dirichlet’s boundary conditions are applied and an over-
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integration technique is used for reducing aliasing issues. The Poisson problem to solve reads

∇2f = −3π2 sin(πx) sin(πy) sin(πz) (A.30)

whose solution is fexact = sin(πx) sin(πy) sin(πz). The same definition applied for two-dimensional
benchmarks is here employed for computing the discretization error and the DG-FEM solver
considers one element only and the interior penalty method is employed for setting the boundary
conditions.

As depicted in fig.s A.9 and A.10, the three-dimensional transfinite mappings are correctly
implemented and exhibits the expected spectral convergence.

A.5. Distribution of Nodes

In order to conclude the description of the methodology, a short mention about node distribution
is given. The choice adopted for the current investigation is discussed and for more extensive
details about polynomial basis functions commonly used in literature we refer the reader to
[123, 36, 138].

In the following, we consider prototypical or reference discretization domains, onto which to
map the physical elements the computational mesh consists of. In fig. A.11 a 2-D example is
shown for triangular elements.

Referring to [139], similar constructions of polynomial basis can be used for 2- and 3-D cases
for both, simplices (segments, triangles and tetrahedra) and tensorized domains (quadrilater-
als and hexahedra). An accurate choice of the point sets for interpolation and quadrature
assumes different node distribution among the various prototypical domains. In the following,
an integration-based discountinuous Galerkin method is implemented, employing the nodal ap-
proach. Therefore nodal bases are used to determine the approximate solution as projection
into nodal subspaces.

We distinguish hereafter between two sorts of point sets: quadrature and interpolation nodes.
In both cases Legendre polynomials are employed, see e.g. [36] for more details about them.

A.5.1. Quadrature Nodes

Referring to [36], we recall the one-dimensional quadrature formulae, an extension of which
is basically used for both, simplices and tensorized domains. For the Gaussian quadrature
formulae, whose nodes are all in the interior of the reference domain, it holds

Let x0 < x1 < · · · < xN be the roots of the (N + 1)-th orthogonal polynomial pN+1, and let
w0, · · · , wN be the solution of the linear system

N∑
j=0

(xj)
kwj =

∫ 1

−1
xkw(x)dx , 0 ≤ k ≤ N . (A.31)

Then the weights wj > 0 for j = 0, · · · , N and

N∑
j=0

p(xj)wj =

∫ 1

−1
p(x)w(x)dx ∀p ∈ P2N+1(−1, 1), (A.32)

and it is not possible to find xj , wj , j = 0, · · · , N such that (A.32) holds for all polynomials
p ∈ P2N+2.
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Figure A.9.: Convergence of the infinite-norm of the numerical error committed in solving an
infinitely smooth Poisson problem over a mapped hexahedral domain. The corre-
sponding single-element DG-FEM discretization has order p.
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Figure A.10.: Convergence of the infinite-norm of the numerical error committed in solving an
infinitely smooth Poisson problem over a mapped tetrahedral domain. The corre-
sponding single-element DG-FEM discretization has order p.

When one of the quadrature nodes coincides with an extreme point of the domain, the Gaus-
sian reduce to Gaussian–Radau quadrature formulae

Let −1 = x0 < x1 < · · · < xN be the (N+1) roots of the polynomial q(x) = pN+1(x)+apN (x),
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Ωh
Ω̂

x

y

ξ

η

Figure A.11.: Example of element mapping from the physical (Ωh) to the prototypical domain
(Ω̂).

with a = −pN+1(−1)/pN (−1), and let w0, · · · , wN be the solution of the linear system

N∑
j=0

(xj)
kwj =

∫ 1

−1
xkw(x)dx , 0 ≤ k ≤ N . (A.33)

Then
N∑
j=0

p(xj)wj =

∫ 1

−1
p(x)w(x)dx ∀p ∈ P2N (−1, 1), (A.34)

and it is not possible to find xj , wj , j = 0, · · · , N such that (A.34) holds for all polynomials
p ∈ P2N+1.

Finally, if the nodes include both the extreme points of the domain, the Gaussian–Radau
reduce to Gaussian–Lobatto quadrature formulae

Let −1 = x0 < x1 < · · · < xN = 1 be the (N + 1) roots of the polynomial q(x) = pN+1(x) +
apN (x)+bpN−1(x), with a and b such that q(−1) = q(1) = 0, and let w0, · · · , wN be the solution
of the linear system

N∑
j=0

(xj)
kwj =

∫ 1

−1
xkw(x)dx , 0 ≤ k ≤ N . (A.35)

Then
N∑
j=0

p(xj)wj =

∫ 1

−1
p(x)w(x)dx ∀p ∈ P2N−1(−1, 1), (A.36)

and it is not possible to find xj , wj , j = 0, · · · , N such that (A.36) holds for all polynomials
p ∈ P2N .

Based on the previous formulae, a generalized version for quadrangles and hexahedra can
be obtained via tensor product (see e.g. [38, 138]). In the case of simplices, the latter exten-
sion is not so straightforward, but it can be obtained transforming the quadrature formulae of
quadrangles and hexahedra via a so-called collapsing coordinate technique4 (see [138]).

4The usage of collapsing coordinate systems only allows generalizations of quadrature formulae that do not place
nodes along the edge to be collapsed. This implies that Gauss–Lobatto integration rules cannot be extended
via this technique.
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Considering the 2-D case, if we refer to quadrilateral and triangular prototypical domains as
Q2 and T 2 respectively, it yields

Q2 = {(ξ, η) : −1 ≤ ξ, η ≤ 1} (A.37a)

T 2 = {(ξ, η) : −1 ≤ ξ, η; ξ + η ≤ 0} . (A.37b)

The collapsed coordinate system consists in defining a transformation between the two regions
that maps an edge of the quadrangles into a vertex of the triangle and viceversa, as depicted in
Fig. A.12

Q2 −→T 2, (x, y) 7−→ (ξ, η) =

(
(1 + x) (1− y)

2
− 1, y

)
(A.38a)

T 2 −→Q2, (ξ, η) 7−→ (x, y) =

(
2

1 + ξ

1− η
− 1, η

)
(A.38b)

y

x

η

ξ

Q2 −→ T 2

T 2 −→ Q2

Figure A.12.: 2-D collapsed quadrilateral using a Duffy transformation.

The same technique can be used for 3-D cases, and to transform from a hexahedron to a
tetrahedron, three successive collapses are employed. For details see [138]. In order to reduce
aliasing errors, an over-integration technique is adopted for the quadrature formulae and both,
general integration and lookup tables, are employed for implementing the cubature rules.

A.5.2. Interpolation Nodes

Aside from quadrature, the interpolation point sets have still to be defined. Because a nodal
approach is followed for implementing the present discontinuous Galerkin solver, they will be
used to generate the Lagrange basis on which to interpolate.

First of all the number of nodes per reference element, Ntot, has to be defined. Therefore, N
being the number of nodes per edge, and d the dimensions of the prototypical domain, it holds

Ntot =


(N + 1)d − 1 , for Qd, d = 1, 2, 3(
N + d

N

)
− 1 , for T d, d = 2, 3.

(A.39)

The choice among different interpolation node sets for the associated Lagrangian basis passes
through the study of the relative Lebesgue constant and, in particular, of its growth as function
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Figure A.13.: Warpblend nodes for N = 2 (top-left) to N = 7 (bottom-right).

of the interpolation order. Good rule is then to consider point sets whose Lebesgue constant
does not increase so rapidly with the number of interpolation nodes and some reference studies
about it can be found in [36] and [139].

In the case of tensorized domains, Gaussian points are commonly used to generate the La-
grange basis. On the other hand, there is no correspondent for simplices and many different
distributions have been investigated, e.g. electrostatic [122], Fekete [271], Heinrichs [116] and
warpblend [295] points.

A comparison among them can be found in [217], where the Lebesgue constant trends are
investigated with respect to the number of nodes. From this data it results that Warpblend and
Fekete points well behave increasing Ntot, therefore, owing to their explicit construction in both
2-D and 3-D cases, the warp and blend procedure is adopted for obtaining the interpolation
point sets5.

The Warpblend class of nodes transforms the equidistributed points, very ill-conditioned for
Galerkin methods, into a more robust distribution matching the Gauss-Lobatto points along the
edges of the simplicial reference domain. In fig. A.13 the chosen interpolation nodes are depicted
for varius N over the two-dimensional reference domain. However, for more details, the reader
is referred to [295].

5Fekete nodes are not available in 3-D.
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B. Numerical Solver: Benchmarks

A collection of benchmarks for testing the numerical solver is here presented. At first the spatial
and temporal discretization schemes applied to a single-phase flow will be validated.

Then the verification is extended to particle-laden flows with mechanical coupling only and
finally we will test the numerical solver developed during the present thesis work including
particle–particle interactions and thermal coupling.

B.1. Fluid Flow Benchmarks

In this section four typically used benchmarks are considered in order to validate our incom-
pressible Navier–Stokes DG-FEM solver. The only fluid flow part of the algorithm is here tested,
which correspond to Section 3.3.

At the beginning the h- and p-convergence rates are tested for an infinitely smooth solution
of the Navier–Stokes system; the Taylor–Green flow solution is herein selected.

The second benchmark considers the von Kármán street generated by a cylinder with circu-
lar cross section and it is intended to test the body-fitted elements presented in the previous
Appendix section for a more challenging flow structure.

Finally, because the main focus of this study is about closed flows, the lid- and thermocapillary-
driven cavity benchmarks are selected for being presented hereunder.

B.1.1. Taylor–Green vortex

The Taylor–Green flow is an infinitely smooth solution of the Navier–Stokes system, therefore it
can be used for testing h- and p-convergence of the discontinuous Galerkin finite element code
in a rigorous manner. The exact solution which represents the Taylor–Green vortex is

u = − cos(πx) sin(πy) exp
(
−2νπ2t

)
(B.1a)

v = + sin(πx) cos(πy) exp
(
−2νπ2t

)
(B.1b)

p = −0.25 [cos(2πx) + cos(2πy)] exp
(
−4νπ2t

)
. (B.1c)

Equations (2.16) are discretized on a square prototypical domain employing a kinematic viscosity
ν = Re−1 = 10−2. The exact solution of eq. (2.16) is depicted in fig. B.1.

Dirichlet boundary conditions are enforced on the velocity field along the left and right bound-
aries, whereas Neumann conditions are adopted for pressure. On top and bottom boundaries
Dirichlet conditions are employed for the pressure field and Neumann boundary conditions are
enforced on velocity.

In order to test the h- and p-convergence, a sufficiently small ∆t is chosen such that it does
not induce convergence saturation and the relative error

εf =
‖fDG − fexact‖∞
‖fexact‖∞

(B.2)

is tested at t = 1.
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Figure B.1.: Contour lines for pressure (a) and velocity vector field (b) of the Taylor–Green flow.
Solid lines indicate p > 0 and dotted line p < 0.

The tested element grids are depicted in fig. B.2, characterizing them by the size parameter
h. The corresponding h- and p-convergence are demonstrated in fig. B.3, employing 6th-order
polynomials for the h-convergence study, and h = 0.25 for the p-convergence. The results are
clearly showing the expected convergence rates for both kinds of refinements.

B.1.2. Von Kármán street

A second validation of the fluid flow solver is here presented considering a classical example of
hydrodynamic instability: the von Kármán street.

The case set-up for which [133] reports detailed numerical data is considered in order to
compare our simulations with literature results. A graphical description of the configuration
to investigate is depicted in fig. B.4, where a circular cylinder is invested by a channel flow.
To initiate the von Kármán street, the cylinder is fixed in an asymmetric position with respect
to the channel symmetry plane and the flow is obtained using the following time-periodic inlet
velocity profile

U =
6y (0.41− y)

0.412
sin

(
πt

8

)
. (B.3)

Discretizing this case we employ curved triangles body-fitted to the circular cylinder and
compare pressure drop, drag and lift coefficients, ∆p, CD and CL respectively, monitoring them
up to t = 8

CD =
D

(ρf/2)dU2
max

, CL =
L

(ρf/2)dU2
max

, ∆p = p(−0.05, 0.2)− p(0.05, 0.2), (B.4)

where d = 0.1 is the cylinder diameter, D the drag force, L the lift force and Umax the maximum
inlet velocity.
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Figure B.2.: Elements distribution for obtaining the discrete Taylor–Green vortex solution via
DG-FEM.
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Figure B.3.: h and p-convergence expressed in terms of pressure and velocity errors for the
Taylor–Green flow.
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Figure B.4.: Flow past a circular cylinder located asymmetrically in a plane channel flow.

The comparison with literature data is made considering Re = 15, employing the mesh de-
picted in fig. B.5a and using 8th-order polynomial basis functions. Figure B.5b depicts the
vorticity contours at time t = 8 and fig. B.6 shows the comparison with [133].

The good agreement with literature data is a further verification for the code developed
herein.

B.1.3. Lid-Driven Cavity

One of the most common benchmarks for testing incompressible Navier–Stokes solvers is cer-
tainly represented by the lid-driven cavity set-up. In the following, it will be used to validate
the implementation of continuity and momentum equations for closed-flow configurations. A
further test will be proposed in the next section to include thermal effects via the internal en-
ergy balance equation. Moreover, apart from being a paradigmatic set-up for studying vortex
structures in closed flows, the lid-driven cavity is extensively employed in the present study for
investigating the interaction between particles and moving walls.

Our simulations are compared with literature data for the case of Re = 1000 [15, 32, 252, 87,
35, 105, 284, 249], which represent a typical regime of interest for the present study.

As sketched in fig. B.7, a closed liquid-filled square cavity is considered. Its boundaries are
solid walls among which the only top one is moving with constant velocity U .

The cavity is infinitely extended in z-direction such to assume a two-dimensional flow, and
furthermore, gravitational effects will be neglected. The mathematical problem is closed includ-
ing no-slip and no-penetration boundary conditions all over the walls. The squared cavity has
edge-length equal to 1 and the origin of the reference system is placed in the centre of the cavity.

In order to test the grid convergence, five evenly spaced grids are employed and in table B.1 we
refer to them indicating with Nx and Ny the number of vertices per edge of the cavity. The whole
data is obtained using 5th-order polynomials and it clearly shows an achieved h-convergence,
plus a strong agreement with all the literature references. Following all the quoted papers, the
main parameters to compare are the position of the core-vortex, xmin(ψ), its strength, min(ψ),
and the vorticity at the vortex centre, ωmin(ψ). Moreover, an additional comparison between the
present simulation is depicted in fig.s B.9. In order to characterize the flow, the streamlines are
plotted in fig. B.8, where the primary vortex and the two secondary eddies at the bottom of the
cavity are shown.

B.1.4. Thermocapillary-Driven Cavity

In the present section a benchmark for thermocapillary flows is considered. The following
results are aimed at validating the part of the numerical solver which deals with energy transfer
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Figure B.5.: Mesh grid and vorticity contours at t = 8. With dotted lines ω < 0 is plotted,
whereas the solid lines indicate ω > 0.
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Figure B.6.: Time-dependence of the pressure drop (a), the drag (b) and the lift coefficient (c)
for t ∈ [0, 8]. Full line: present result, circles: [133].
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Figure B.7.: Sketch of the lid-driven cavity set-up.

Table B.1.: Convergence tests for the stream function-related quantities.

Grid/Reference min(ψ) ωmin(ψ) xmin(ψ) ymin(ψ)

Re = 1000

T
ra

n
si

en
t

(ε
=

10
−

1
0
)

Ref. [15] -0.1189 – – –
Ref. [32] -0.1189 -2.0678 0.0308 0.0652
Ref. [252] -0.1189 -2.0677 – –
Ref. [87] -0.1179 -2.0497 0.0313 0.0625
Ref. [35] -0.1163 – 0.0313 0.0586
Ref. [105] -0.1157 – 0.0312 0.0625
Ref. [284] -0.1173 – 0.0438 0.0625
Ref. [249] -0.1188 -2.0664 0.0335 0.0639

T
ra

n
si

en
t

(t
fi

n
=

50
) Nx = Ny = 10, p = 5 -0.1138 -1.9747 0.0333 0.0667

Nx = Ny = 20, p = 5 -0.1172 -2.0228 0.0316 0.0632
Nx = Ny = 30, p = 5 -0.1178 -2.0391 0.0310 0.0655
Nx = Ny = 40, p = 5 -0.1180 -2.0400 0.0308 0.0641
Nx = Ny = 50, p = 5 -0.1182 -2.0453 0.0306 0.0653

phenomena. In particular, because shear-stress boundaries are one of the main focuses of this
study, the scope of this benchmark is to prove the capability of our code in simulating the main
features of thermocapillary-driven flows.

To such a purpose, the typical thermocapillary-driven cavity set-up is considered and the
simulation results will be compared with literature data ([39], [40], [298], [216], [148]) for three
different cases.

An open liquid-filled square cavity is considered. As depicted in fig. B.10, the top boundary
of the cavity represents the free-surface and all the other boundaries are walls. In order to
drive the flow, the lateral walls of the cavity are isothermal and kept at a constant temperature
difference of ∆T whereas the basement is adiabatic. This results in thermocapillary stresses
acting on the free-surface and responsible for driving the flow from the hot to the cold side
(because ∂σ/∂T < 0). In addition, buoyancy effects will be included as contribution to the
momentum balance.

As basic assumptions we consider the case of large mean surface tensions σ0, in the asymptotic
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Figure B.8.: Streamlines in a square lid-driven cavity for Re = 1000.
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Figure B.9.: Comparison of velocities (a) and vorticity (b) along x = 0 and y = 0 in a square lid-
driven cavity for Re = 1000. The circle markers are the results of [32], the square
markers are reported in [87] and the solid line are obtained with out DG-FEM
solver.

limit of vanishing capillary number

Ca =
γ∆T

σ0
→ 0, (B.5)

where Ca is the capillary number and γ = −∂σ/∂T the surface tension coefficient. The substan-
tial simplification resulting from it is that the free-surface deformations dynamically induced by
the flow are absent ([147]). A second assumption regarding the cavity geometry assumes it in-
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Figure B.10.: Sketch of the thermocapillary-cavity set-up.

finitely extended in z-direction, reducing the flow from three- to two-dimensional. Furthermore,
the density variation is described by the mean of an incompressible model, that excludes its
dependency on the pressure, but takes into account the variation of density with temperature.
We therefore employ the Boussinesq approximation

δρ

ρ0
= −βδT (B.6)

where β is the thermal expansion coefficient.
Adopting a viscous scaling, we recall the definitions of the Prandtl, thermocapillary Reynolds

and Grashof numbers

Pr =
ν

k
, Gr =

gβ∆Th3

ν2
, Re =

γ∆Th

ρν2
(B.7)

being h the cavity height.
The closure of the problem is then achieved defining the boundary conditions. The side walls

are assumed perfectly conductive such that their temperature can be fixed, the bottom boundary
is adiabatic and the free-surface is considered in the limit of vanishing Biot number (absence of
heat exchange between free-surface and ambient).

As anticipated, three different cases are adopted as benchmark in dependence on the three
dimensionless groups ruling the phenomenon. In the first case a high-thermocapillary Reynolds
number flow is investigated, neglecting buoyancy effects and assuming kinematic viscosity equal
to the thermal diffusivity. The latter assumption is adopted in the third case, as well, but
halving the Reynolds number and including gravity effects. In order to better characterize
them, a dynamic Bond number is employed because it focuses on the ratio between buoyancy
and thermocapillary effects ([148]):

Bd =
Gr

Re
=
ρgβh2

γ
. (B.8)

Finally, the second case focuses on simulating a high-Marangoni number flow, combining a high
Prandtl with a moderate Reynolds number

Ma = RePr =
γ∆Th

ρνk
. (B.9)

Five literature sources are used as references, namely [39], [40], [298], [216] and [148], and
in all of them, a steady-state numerical simulation is performed. As significant quantities for
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the present benchmark, three main aspects of the flow are considered. The Nusselt number is
employed for characterizing the temperature field and, referring to [39], the following definition
is adopted

Nu =

∫ + 1
2

− 1
2

(
uθ −

∂θ

∂x

)
dy. (B.10)

To compare the cavity vortex-linked quantities, position, strength and vorticity of the vortex
core are considered. Finally, to completely characterize the flow, a further comparison is made
in terms of free-surface velocity.

All our simulations are transient starting from rest and stopped at t = 0.1. This suffices for
producing reliable comparisons with steady solvers for all our data, except for the temperature-
linked quantities for Pr = 30 (gray rows in table B.2). Even though such a high Marangoni
number is employed, the time required to reach a pseudo-steady-state for the free-surface velocity
and the streamfunctions-referred quantities seems already achieved after t = 0.1. On the other
hand, because of the high Prandtl number, the temperature evolution is much slower than in the
other cases, so a comparison in terms of steady-state Nusselt numbers in not so meaningful. In
fact, the temporal convergence is expected at t ∼ 10 and, because of computational cost reasons,
we will limit the comparison of the second case to streamfunction and free-surface velocity only.

Because of the characteristic features of thermocapillary flows, the computational mesh is
chosen to cluster its elements nearby the hot and the cold corners of the free-surface. Therefore,
in order to prove the h-convergence of the code, a global grid parameter is assumed for controlling
all the elements size. All the simulations are performed using 5th-order polynomials and the
data in tables B.2, B.3 and B.4 demonstrates a clear grid convergence of our solver for all the
quantities under investigation. Moreover, a very good agreement is shown between the literature
references and the present simulations.

In order to characterize the flow, isolines for temperature and streamfunction are plotted in
fig. B.11.

B.2. Multiphase Flow Benchmarks

In this section seven different configurations are employed as benchmark to validate the incom-
pressible Navier–Stokes DG-FEM solver coupled with SPM. Having tested the fluid flow part of
the algorithm in the previous section, the focus will be on the particulate-phase.

At first, different configurations will be investigated considering the only mechanical coupling
between a single particle and the fluid-phase. In them it is tested the prediction of forces and
torques exerted by the fluid on the particle for prescribed particle motions. The second class of
benchmarks will consider freely-falling particle and colloidal forces. Finally, the thermal coupling
between particulate- and fluid-phase will be tested, including particle–particle interactions in
the validation process.

B.2.1. Static Cylinder in a Channel Flow

As first benchmark, the flow field past a static circular cylinder in a channel is considered. Figure
B.12 depicts the simulation set-up we consider in this case, enforcing a fully developed Poiseuille
flow at the inlet. Adopting a convective scaling, the inflow velocity is given by

U =

(
1−

y

2d

)(
1 +

y

2d

)
(B.11)
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Table B.2.: Convergence tests for the heat transfer-related quantities.

Grid/Reference Nu(x = −0.5) Nu(x = 0) Nu(x = 0.5)

Re = 10000, Pr = 1, Bd = 0

S
te

ad
y

Ref. [40] 4.33 4.40 4.36
Ref. [298] 4.36 – 4.36
Ref. [216] 4.44 4.36 4.30
Ref. [148] 4.36 4.36 4.36

T
ra

n
si

en
t

(t
fi

n
=

0.
1
)

h = 0.07, p = 5 4.3918 4.3735 4.3367
h = 0.06, p = 5 4.3830 4.3971 4.3357
h = 0.05, p = 5 4.3767 4.3518 4.3650
h = 0.04, p = 5 4.3737 4.3516 4.3664
h = 0.03, p = 5 4.3698 4.3572 4.3663
h = 0.02, p = 5 4.3695 4.3573 4.3663

Re = 2000, Pr = 30, Bd = 0

S
te

ad
y

Ref. [40] 6.60 6.29 6.42
Ref. [298] 6.61 – 6.61
Ref. [216] 6.69 6.71 7.14
Ref. [148] 6.23 6.23 6.23

T
ra

n
si

en
t1

(t
fi

n
=

0.
1)

h = 0.035, p = 5 8.4867 4.5361 2.1310
h = 0.030, p = 5 11.6968 4.5746 2.2250
h = 0.025, p = 5 8.9348 4.4233 2.1883
h = 0.020, p = 5 8.5163 4.4599 2.1665
h = 0.015, p = 5 8.3809 4.4620 2.1665

S
te

a
d

y

Re = 5000, Pr = 1, Bd = 10

Ref. [39] 4.17 4.15 4.14
Ref. [148] 4.55 4.545 4.55

T
ra

n
si

en
t

(t
fi

n
=

0.
1
)

h = 0.07, p = 5 4.6669 4.5316 4.4055
h = 0.06, p = 5 4.6746 4.5231 4.3865
h = 0.05, p = 5 4.6572 4.5548 4.4477
h = 0.04, p = 5 4.6488 4.5687 4.4496
h = 0.03, p = 5 4.6420 4.5693 4.4531
h = 0.02, p = 5 4.6349 4.5694 4.4590

1 Results not comparable with steady-state simulations.
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Table B.3.: Convergence tests for the stream function-related quantities.

Grid/Reference max(ψ) ωmax(ψ) xmax(ψ) ymax(ψ)

Re = 10000, Pr = 1, Bd = 0

S
te

ad
y

Ref. [40] 32.3 697 -0.08 0.12
Ref. [298] 32.1 701 -0.07 0.13
Ref. [216] 32.4 729 – –
Ref. [148] 32.2 702 -0.07 0.13

T
ra

n
si

en
t

(t
fi

n
=

0.
1
)

h = 0.07, p = 5 32.2252 704.8684 -0.0754 0.1299
h = 0.06, p = 5 32.2280 704.9873 -0.0744 0.1296
h = 0.05, p = 5 32.2220 702.9726 -0.0738 0.1313
h = 0.04, p = 5 32.2316 704.1387 -0.0736 0.1299
h = 0.03, p = 5 32.2307 705.5564 -0.0720 0.1280
h = 0.02, p = 5 32.2250 704.8051 -0.0726 0.1286

Re = 2000, Pr = 30, Bd = 0

S
te

ad
y

Ref. [40] 4.26 148 – –
Ref. [298] 3.38 125.4 -0.07 0.28
Ref. [216] 3.64 130.6 – –
Ref. [148] 2.87 109 0.10 0.28

T
ra

n
si

en
t

(t
fi

n
=

0.
1)

h = 0.035, p = 5 3.3676 122.9027 0.0553 0.2757
h = 0.030, p = 5 2.8925 111.7138 0.0884 0.2801
h = 0.025, p = 5 3.0896 118.2184 0.0744 0.2797
h = 0.020, p = 5 3.1801 121.2661 0.0723 0.2807
h = 0.015, p = 5 3.1802 120.1964 0.0729 0.2793

S
te

ad
y

Re = 5000, Pr = 1, Bd = 10

Ref. [39] 16.45 248.5 – –
Ref. [148] 16.36 230.6 -0.15 0.15

T
ra

n
si

en
t

(t
fi

n
=

0.
1
)

h = 0.07, p = 5 15.6705 226.2956 -0.1555 0.1643
h = 0.06, p = 5 15.6826 230.6119 -0.1570 0.1615
h = 0.05, p = 5 15.7183 231.0978 -0.1573 0.1619
h = 0.04, p = 5 15.7134 228.4487 -0.1559 0.1646
h = 0.03, p = 5 15.7231 226.9731 -0.1550 0.1614
h = 0.02, p = 5 15.7158 228.8274 -0.1559 0.1637
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Table B.4.: Convergence tests for the free-surface velocity-related quantities.

Grid/Reference ufs(x = 0) max(ufs) xmax(ufs)

Re = 10000, Pr = 1, Bd = 0

S
te

ad
y

Ref. [40] -296 – –
Ref. [298] -305 – –
Ref. [216] -306 – –
Ref. [148] -304 -712 -0.496

T
ra

n
si

en
t

(t
f
in

=
0.

1)

h = 0.07, p = 5 -304.62 -680.84 -0.496371
h = 0.06, p = 5 -304.48 -678.80 -0.496179
h = 0.05, p = 5 -304.73 -690.90 -0.495564
h = 0.04, p = 5 -304.78 -691.06 -0.495528
h = 0.03, p = 5 -304.83 -688.77 -0.495867
h = 0.02, p = 5 -304.83 -689.19 -0.495753

Re = 2000, Pr = 30, Bd = 0

S
te

ad
y

Ref. [40] -37.2 – –
Ref. [298] -29.8 – –
Ref. [216] -32.2 – –
Ref. [148] -24.0 -225 -0.499

T
ra

n
si

en
t

(t
f
in

=
0.

1)

h = 0.035, p = 5 -31.16 -279.75 -0.499664
h = 0.030, p = 5 -22.96 -243.93 -0.499770
h = 0.025, p = 5 -26.35 -283.41 -0.499733
h = 0.020, p = 5 -27.65 -265.84 -0.499804
h = 0.015, p = 5 -27.64 -254.64 -0.499853

S
te

a
d

y

Re = 5000, Pr = 1, Bd = 10

Ref. [39] -179 – –
Ref. [148] -176 -420 -0.492

T
ra

n
si

en
t

(t
f
in

=
0.

1)

h = 0.07, p = 5 -169.48 -423.57 -0.492936
h = 0.06, p = 5 -169.69 -423.25 -0.492144
h = 0.05, p = 5 -169.73 -421.54 -0.492032
h = 0.04, p = 5 -169.82 -422.85 -0.492425
h = 0.03, p = 5 -169.94 -422.87 -0.492418
h = 0.02, p = 5 -169.98 -422.89 -0.492658

154



B.2. MULTIPHASE FLOW BENCHMARKS

(a)
y

x
−0.5 0 0.5

−0.5

0

0.5

(b)

y

x
−0.5 0 0.5

−0.5

0

0.5

(c)

y

x
−0.5 0 0.5

−0.5

0

0.5

(d)

y

x
−0.5 0 0.5

−0.5

0

0.5

(e)

y

x
−0.5 0 0.5

−0.5

0

0.5

(f)

y

x
−0.5 0 0.5

−0.5

0

0.5

Figure B.11.: Temperature isolines (left) and streamlines (right) in a square thermocapillary-
driven cavity for Re = 10000, Pr = 1, Bd = 0 (a and b), Re = 2000, Pr = 30,
Bd = 0 (c and d) and Re = 5000, Pr = 1, Bd = 10 (e and f).
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where d = 2a = 1 the radius of the cylinder. To close the mathematical problem, no-slip and
no-penetration boundary conditions are imposed on the channel walls and outflow (uniform
pressure and zero-gradient velocity) is enforced on the right boundary of the simulation domain.

x
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2d

U
a

10d 30d

Figure B.12.: Static cylinder on the centerline of a channel.
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Figure B.13.: Elements of the computational mesh for simulating a circular cylinder in channel
flow with SPM.

The benchmark consists of comparing force coefficients and vorticity for four different Reynolds
numbers, simulating the presence of the cylinder with body-fitted elements (as done in Section
B.1.2) and with SPM. The two kinds of simulation are compared for t = 5, 5th-order polynomials
are employed as basis functions for the spatial DG-FEM discretization and ξ = 0.15a is set as
interface thickness layer for the SPM method. The element distribution employed for all the
simulations using SPM is depicted in fig. B.13.

For most of the cases herein a moderate Reynolds number is employed and a von Kármán
street will not develop, hence the main force coefficient to consider is certainly the drag coefficient
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of the cylinder

CD =
D

(ρf/2)U2
maxd

, (B.12)

where Umax is the inlet velocity along the centreline and D the force exerted by the fluid on the
cylinder in x-direction.

The comparison between the body-fitted DG-FEM (no SPM) and the DG-FEM plus SPM
solvers is depicted in fig. B.14, showing a very good agreement between the two results with a
maximum relative deviations inferior than ±1%.

A further comparison is here shown to critically comment the application of no-penetration
and specially no-slip boundary conditions implicitly enforced using the smoothed profile method.
In fact, the fluid flow vorticity is generated by the no-slip conditions along the walls and the
cylinder surface, therefore a comparison in terms of vorticity field is depicted in fig. B.15 at
time t = 5 for Re = 50. As it can be noticed, the SPM provides a good approximation of the
explicitly enforced no-slip boundary condition and it can be considered a good result in terms
of fluid- and particle-phase coupling conditions.

The last investigation we propose on this set-up considers Re = 100. For this moderate
Reynolds number the cylinder wake runs into von Kármán vortex-street instability and the
comparison with body-fitted element simulations is extended to the lift coefficient

CL =
L

(ρf/2)U2
maxd

, (B.13)

where L is the lift force exerted by the fluid on the cylinder.

A non completely satisfactory agreement is reported in fig. B.16 between body-fitted element
and SPM simulations. The initial transient of the instability is well captured by the SPM
method, at least up to t = 1. After the initial phase of evolution of the wake, the approximated
no-slip boundary condition enforced by the SPM slows down the growth rate of the perturbation
and the von Kármán street develops with an evident delay. Together with this effect, the
softening of the boundary condition imposed by the SPM approximation, significantly reduces
the vortex-shedding frequency predicted by DG-FEM plus SPM. Regardless of this issues, fig.
B.16 shows the good agreement of the drag and lift force coefficients extrema for the whole time
of the simulation (t = 10).

B.2.2. Circular Cylinder Harmonically In-Line Oscillating

The second benchmark for the particle-laden flow solver deals with prediction of forces exerted
by the fluid on a circular cylinder forced to periodically oscillate with frequency f . The radius
of the cylinder is a = d/2 and the fluid flow far away from the cylinder is at rest (see fig. B.17.

The oscillations are harmonically enforced in x-direction with the following functional depen-
dency

xp(t) = −Umax

2πf
sin(2πft), (B.14)

where (xp, 0) defines centroid position of the cylinder and Umax is the maximum velocity of
the forced oscillations. Also for this benchmark a convective scaling is adopted and two non-
dimensional groups of interest are used to completely define the case: the Reynolds number and
the Keulegan–Carpenter number

Re =
Umaxd

ν
, KC =

Umax

fd
. (B.15)
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Figure B.14.: Comparison of the drag coefficient for a circular cylinder in a channel flow pre-
dicted employing body-fitted DG-FEM simulations (lines) and DG-FEM plus SPM
(symbols).
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Figure B.15.: Vorticity contours for circular cylinder in channel flow. The vorticity values ωz =
0, 2.5 and 5 are represented in solid line, whereas ωz = −5 and −2.5 is shown in
dotted line.
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Figure B.16.: CD (a) and CL (b) of a circular cylinder symmetrically placed in a channel flow
during the development of a vortex-shedding phenomenon. The dashed-lines indi-
cate the DG-FEM plus SPM simulations, whereas the solid lines refer to DG-FEM
with body-fitted elements.

According to what reported in [75] a square computational domain of edge-length 100a is
enough for modelling the flow field far away from the cylinder without making the simulation
results domain-size dependent. Zero-gradient boundary conditions are applied on the velocity
field and a constant pressure is enforced on the domain boundaries. Because an SPM approach
is adopted, no boundary conditions are explicitly needed to match the two phases; the mesh
employed is presented in fig. B.18, 8th-order polynomials are used and ξ is fixed to 0.15a.

The comparison with the experimental and numerical data of [75] is made on the drag coeffi-
cient

CD =
D

(ρf/2)U2
maxd

(B.16)

and it is reported in fig. B.17 for Re = 100 and KC = 5 after the transient phase. Both the
data sets of Dütsch et al. are reported in only one set of markers because the agreement their
experiments and numerical simulations have makes the two data sets equal to each other within
the marker size. From fig. B.17 one can notice the good agreement between our DG-FEM plus
SPM code results and the experimental and numerical drag coefficient reported in [75].

B.2.3. Circular Cylinder Harmonically Oscillatory Rotating

In this benchmark we want to test the code in predicting torques exerted by the fluid-phase
on the particles. Hence a circular cylinder periodically rotating in an unbounded domain is
considered, enforcing an harmonic law for its angular velocity

Ωp(t) = Ωmax sin(2πft). (B.17)

A sketch of the problem of interest is shown in fig. B.19.

The convective scaling adopted in this benchmark is based on the maximum peripheral velocity
Umax = Ωmaxa. The corresponding Reynolds number is defined as in the previous benchmark
and to completely define the simulated case, the non-dimensional rotation frequency has to be
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Figure B.17.: Forced harmonic oscillations of a circular cylinder in quiescent flow (left). Com-
parison of drag coefficient for a cylinder in quiescent fluid oscillating harmonically
in x-direction (b).
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Figure B.18.: Element distribution used for simulating a harmonically oscillating circular cylin-
der in quiescent flow.

set. The same domain, boundary conditions, polynomial order of the basis function, interface
thickness and computational mesh of Section B.2.2 are employed.

The results of the DG-FEM plus SPM solver are compared in terms of torque coefficient

CT =
T

(ρf/2)U2
maxd

2
, (B.18)

where T is the torque exerted by the fluid on the circular cylinder, for Re = 300 and f = 0.2.
The literature data for this comparison are reported in [144] and, as it is shown in fig. B.19,
they very well compare with our prediction.
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Figure B.19.: Circular cylinder forced to harmonically oscillate in a quiescent flow (left). Com-
parison of the torque coefficient for a cylinder harmonically rotating in quiescent
fluid (right).

B.2.4. Cylinder Falling in a Channel

This benchmark is included to test the correct implementation of the algorithm part which
calculate the particle trajectories and velocities. A circular cylinder is placed on the centreline
of a straight vertical channel of width W = 4d, where d = 2a is the cylinder diameter. When the
cylinder is released, the fluid is initially at rest and because of gravity acceleration, the cylinder
of density ρp starts falling down asymptotically approaching a certain velocity which implies the
equilibrium between gravitational and viscous forces. Following [224], we set L = 40d1 and all
the boundaries are modelled as walls. A sketch of the problem to simulate is reported in fig.
B.20.

The most appropriate scaling to adopt for this benchmark is a gravity scaling. This is because
the phenomenon is fully driven by gravity forces and the arising non-dimensional groups are the
particle-to-fluid density ratio and the Galileo number

% =
ρp

ρf
, Ga =

√
|%− 1|gd3

ν
, (B.19)

where for all the presented simulations % is set equal to 3. The corresponding momentum
equation reads

∂u

∂t
+ (u · ∇)u = −∇p+

1

Ga
∇2u−

ey

|%− 1|
+ f s. (B.20)

The comparison with literature data is made on a wide range of Galileo numbers (Ga ∈
[0.01, 10]) and the termination criterion for the calculation is set as follows∣∣∣∣∣Unc − Un−1

c

Unc

∣∣∣∣∣ < 10−4. (B.21)

1According to [172], having a channel length bigger that 30 times the cylinder diameter is enough to have a good
approximation to a infinite channel.
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Figure B.20.: Circular cylinder falling in vertical channel starting from rest (left). Comparison
of the terminal velocity for a circular cylinder settling in a vertical channel in
quiescent fluid (right).

(a)

y

x

−2 0 2

−20

−10

0

10

20

(b)

y

x

−2 0 2
−2

0

2

Figure B.21.: (a) Example of the element distribution employed for simulating the circular cylin-
der settling in a vertical channel in quiescent flow. (b) Zoom in the highly refined
region.
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where Uc is the terminal velocity of the cylinder.

Two sources of data are here employed for comparison: the theoretical approximation of Faxén
and the numerical simulations of [224], which simulate the same problem using the immersed
boundary method applied to finite volume discretization. Pianet et al. proved that the theory
of Faxén gives a good prediction of the settling velocity, even though its hypothesis are not
properly verified. The terminal velocity of a confined cylinder is defined as follows

UFaxén
c = (1− %)

gd2

ν
f(kx), (B.22a)

where f(kx) is the Faxén’s correction factor

f(kx) = −0.9157− ln(kx) + 1.7244k2
x − 1.7302k4

x, (B.22b)

where kx = d/W = 0.25 is the blockage ratio in wall-normal direction. Following Pianet et al.,
we scale the velocity of the cylinder settling between two vertical parallel walls with the terminal
velocity in the case of a falling circular cylinder in unbounded domain. The latter, U∞, can be
obtained using the Oseen–Lamb approximation and it represents a good estimate of the former
one for low Galileo numbers

U∞ = −
Ga2ν

16γd

n∑
i=0

δi [ln(Ga)]i. (B.23)

The higher the Galileo number, the longer the distance the cylinder has to travel for reaching
the settling velocity is. Hence, to efficiently simulate the whole range of Galileo numbers targeted
in this benchmark, we employ h-adaptivity making sure that the particle always moves in a highly
refined grid region. For all the cases, 5th-order polynomial basis functions are used, ξ equals
0.1a and fig. B.21 shows an example of the computational grid we employ.

The results in terms of scaled terminal velocity, Uc/U∞, is depicted in fig. B.20 as function of
Ga. It is evident a very good agreement with both the literature sources, being it confined to
less than 2% in terms of relative difference. Moreover, the deviation from Faxén’s theory found
by our numerical data and by Pianet et al. has the same trend.

B.2.5. Cylinder Settling in a Bounded Geometry

In this benchmark the capability of our DG-FEM plus SPM code in accurately computing
colloidal forces will be tested. The problem to simulate consists in a circular cylinder of radius
a = d/2 initially located at the centre of a square cavity of edge-length 2L filled with a fluid
initially at rest. The cylinder is released at time t = 0 and it starts settling due to inertial forces
as in the previous benchmark. A sketch of the problem is presented in fig. B.22. Once again a
gravity scaling is adopted, the Galileo number and the cylinder-to-fluid density ratio are kept
both constant (Ga = 0.1566, % = 3) and the simulations investigate the role of the containment
parameter

k = kx = ky =
a

L
∈ [0.1, 0.85]. (B.24)

Figure B.22 shows the computational mesh consisting of 1682 equal-sized triangles (30 triangle
vertices per edge of the cavity), 5th-order polynomial basis functions are employed and the
interface thickness layer is ξ = 0.1a.

The results of our code is compared with Faxén’s theory (see eq. (B.21)) and the numerical data
reported in [224]. The target quantity is the asymptotic settling velocity Um

c the cylinder will
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Figure B.22.: Circular cylinder settling in a square cavity filled with a fluid initially at rest (left).
Element distribution of the computational mesh employed for simulating a circular
cylinder settling in a square cavity. The case depicted refers to k = 0.5 (right).
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Figure B.23.: Comparison of the asymptotic terminal velocity Um
p of a circular cylinder settling

in a square box of containment parameter k. The results of DG-FEM plus SPM
are represented by circles, the numerical data of [224] by squares, Faxén’s theory
is depicted in solid line and Pianet’s correlation with dashed line.
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reach before that the lubrication effects due to the presence of the bottom wall become sensible.
The aforementioned comparison is depicted in fig. B.23 and confirms the good agreement between
our prediction and the other literature sources. Either the DG-FEM plus SPM code or the
data by Pianet et al. clearly agree with Faxén’s theory for a moderate containment parameter
(k < 0.4), however, because Faxén’s law does not include the effect of the bottom wall, [224]
suggested the correlation to improve the prediction made with eq. (B.21)

Um
p

U∞
=

2∑
i=1

ϑi(1− k)2.8i, (B.25)

where ϑi are coefficients reported in [224] and Um
p is the maximum asymptotic velocity reached

by the settling particle.
A very good agreement is here reported between our data and Pianet’s. When colloidal forces

become important in determining the settling velocity, our numerical simulation sits on the
correlation function of [224] (see zoom-in region of fig. B.23).

B.2.6. Calibration of a Hot-Wire Probe

The mechanical coupling between the fluid- and the particulate-phase has been, so far, exten-
sively tested. Hence, the following two benchmark will focus on the thermal coupling.

In this case we simulate the calibration process of an hot wire probe which operates at constant
heat flux. The heat transfer is here considered for a circular cross-section wire of radius a within
a square confined domain of size 60a×60a. The wire is at the center of the domain, the horizontal
boundaries are isothermal walls at T = T0, and the flow is going from left (inlet) to right (outlet).
A sketch of this set-up is depicted in fig. B.24. To model the inflow conditions, Dirichlet boundary
conditions are applied on both, velocity and temperature (u = U êx and T = T0), whereas
the outflow considers a constant pressure and homogeneous Neumann boundary conditions for
temperature and velocity. A source-strength distribution is assumed for modelling the heat flux
due to constant electric current in the hot-wire and it is defined as follows

q = φ(x, t). (B.26)

As fluid the simulations are considering air, fixing Prf = 0.72, Gr = 1.5×10−6, and Prp = 3Prf.
The other non-dimensional groups which are arising in the problem are

Re =
Ud

ν
, Nu =

a

θw − θ∞

∫ 2π

0

∂θ

∂n
dϕ, (B.27)

where U denotes the inlet velocity, and θw and θ∞ represents the non-dimensional temperatures
on the wire surface and on the walls, respectively. To evaluate them, θw is obtained averaging
the temperature over the hot-wire surface and θ∞ is set to 1. The Nusselt number after reaching
steady-state is used as comparison parameter between the numerical prediction of our DG-FEM
plus SPM code and the calibration curves proposed by [61] for Re ∈ [0.02, 44]

Nu

(
1 +

θw − 1

2

)−0.17

= 0.24 + 0.56Re0.45. (B.28)

As initial conditions, the fluid is considered at rest and constant temperature T0. At the
beginning of the simulation, t = 0, the heat source within the hot-wire is suddenly switched
on as well as the incoming flow. The same grid of Section B.2.2 is employed, using 5th-order
polynomials and setting the interface layer thickness ξ = 0.05a. Investigating the problem for a
wide range of Reynolds numbers, a very good agreement with the experimental correlation law
by Collins et al. is found (maximum difference always below 2%) and reported in fig. B.25.
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Figure B.24.: Sketch of the hot-wire probe calibration problem.
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Figure B.25.: Comparison of the Reynolds-Nusselt number correlation for a hot wire probe in
steady state air flow; aT = (θw − 1) /2. The solid line depicts the correlation law
of Collins & Williams whereas the markers are the results of our DG-FEM plus
SPM code.
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Figure B.26.: Setup of the heat-exchanger problem.

B.2.7. Heat Exchanger

The last benchmark we report is still concerning the thermal coupling between fluid- and particle-
phase, but in the case of multiple particles involved in the simulations.

The forced convection problem targeted in this section considers a classic in-line circular-pin
heat exchanger invested by a fully developed flow. The pins shape is circular, of radius a, and
their arrangement is such that their centroid distances are equal to 4a either in horizontal or in
vertical direction. A sketch of the case is reported in fig. B.26.

Because the pins are supposed fixed, the only non-dimensional groups of interest are the
Reynolds and the Nusselt number, defined as in the previous section using as reference velocity
and temperature the maximum incoming velocity and inlet temperature, respectively. The nu-
merical simulations are made enforcing periodic boundary conditions on the left and on the right
edge of the domain, whereas on top and bottom boundaries, symmetric boundary conditions
are employed.

As computational mesh we adopt 70 evenly distributed element vertices per domain boundary,
5th-order polynomials and ξ = 0.05a. The comparison with the literature data by Behnia et al.
([25]) for isothermal pins are tabulated in table B.5 and a very good agreement is found also in
this case for all the three investigated Reynolds numbers.

Therefore, after presenting several benchmarks for various flow conditions, we consider the
numerical code developed in the present thesis work extensively verified and validated.

Table B.5.: Comparison of the Nusselt number for an in-line heat exchanger with circular pins
changing the Reynolds number.

Grid/Reference N = 70 ref. [25]

Re = 100 10.39 10.1
Re = 200 12.0 11.7
Re = 300 12.1 12.0
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The numerical method employed for simulating the axisymmetric liquid bridge flow of Section
5.2.1 is discussed and validated in this chapter of the Appendix.

In Chapter 5 this fluid flow solver has been employed for the one-way coupled simulations for
numerically investigating the experimental evidences reported in [255]. A similar approach was
adopted by [151].

C.1. Fluid Flow Discretization

The numerical flow field solver presented in this section discretize the steady-state Navier–Stokes
equations written adopting the thermocapillary scaling. The reference problem to simulate is a
statically deformed axisymmetric liquid bridge flow, including temperature dependent kinematic
viscosity and thermal diffusivity. We refer to Chapter 2 for a more detailed problem formulation.

The Newton–Raphson method is used to deal with non-linearities by the mean of successive
linearizations

J
(
yk
)
· δy = −f

(
yk
)
, (C.1a)

yk+1 = yk + δy, (C.1b)

where y = (u, v, p, T )T is the solution vector, J
(
yk
)

represents the Jacobian of the Navier–Stokes
equations at the iteration step k, δy is the increment of the solution between two successive
iterations and f

(
yk
)

is the nonlinear residual. Writing the problem to solve in explicit form
and linearizing with respect to the solution increment, it yields

∇ · δu = −∇ · uk, (C.2a)

Re
(
δu · ∇uk + uk · ∇δu

)
+∇δp−∇ · (ν/ν0∇δu)− Bd δTez =

−Re
(
uk · ∇uk

)
−∇pk +∇ ·

[
ν(T k)/ν0∇uk

]
+ Bd T kez, (C.2b)

Ma
(
δu · ∇T k + uk · ∇δT

)
−∇ · (κ/ν0∇δT ) =

−Ma
(
uk · ∇T k

)
+∇ ·

[
κ(T k)/ν0∇T k

]
. (C.2c)

The Jacobian can be computed using the Newton’s linearization of the convective terms

∇ · (uu) ≈ ∇ ·
(
uuk

)
+∇ ·

(
uku

)
. (C.3)

The code is implemented using a second order finite volume method discretized in primitive
variables on a structured staggered grid (see e.g. [297]).

The local mesh refinement is provided using an hyperbolic-tangent stretching of the compu-
tational cells, increasing the accuracy along all the four boundaries (see [285, 273] for details).
In fig. C.1 an example of the computational grid is depicted.
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Figure C.1.: Computational mesh which consists of 169×169 nodes. The grid refinement follows
a hyperbolic-tangent distribution and employs a stretching factor of 1.05.

Only statical deformations are considered in the the free-surface shape h(z) of the liquid
bridge, therefore the Young–Laplace equation is to be solved and it can be written in form of a
system of three ordinary first-order differential equations as follows

b′ =
(
Γ2 + b2

) [1

h
− ∆ps − Boz

Γ2

√
Γ2 + b2

]
, (C.4a)

h′ = b, (C.4b)

∆p′s = 0. (C.4c)

This non-linear system is solved by Newton–Raphson method discretized via central finite dif-
ferences and prescribing the liquid bridge volume ratio V, as indicated in Chapter 2.

C.2. Verification of the Numerical Solver

Two main part of the FVM solver are to be tested: the static free-surface deformation and the
internal fluid flow. Owing to the decoupling already discussed in Chapter 2, the free-surface
shape does not depend on the fluid flow and it can be separately tested. To verify it, a closed-
form solution in case of absence of gravity is represented by the catenoidal profile [212]

hcat(z) = h0 cosh

(
Γz

h0

)
, (C.5)

where h0 cosh(Γ/2h0) = 1. In fig. C.2 a convergence study of our solver is shown for a liquid
bridge of Γ = 1. The grid study is conducted for an even distribution of the nodes Nz, testing
the L∞ and L2 norms of the error

ε = hcat(z)− hFD(z), (C.6)

where hFD(z) is the finite difference numerical solution. A clear second-order convergence rate
is shown, consistently with the employed discretization.
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Figure C.2.: Convergence rate of the free-surface shape solver (left) for a closed-form solution of
a liquid bridge deformation with Γ = 1 (right). Squares and circles denote L2- and
infinite-norms, respectively.

The second benchmark for the fluid flow solver is made comparing the main representative
quantities of the flow structures with literature data for many different parameters. Our numer-
ical results are confronted with the ones published in [205] and [167]. The maximum absolute
value of the Stokes stream-function ψSt = rψ is considered for a upstraight cylindrical liquid
bridge with aspect ratio one under weightlessness. The comparison with literature data is made
for a wide range of Reynolds and Prandtl numbers employing a hyperbolic-tangent distribution
of the computational mesh with a stretching factor of 1.05. The results of our fluid flow solver
are reported in table C.1 and they very well agree with literature data.

Table C.1.: Maximum value of the Stokes’ stream function
∣∣ψSt

∣∣ for a cylindrical liquid bridge
under weightlessness with Γ = 1.

Re 1000 3000 5000 7000 Grid/Reference

Pr = 0.02 8.93 7.18 6.31 5.65 [167]
6.28 [205]

9.0200 7.1059 6.2178 5.6301 112× 112
9.0210 7.1102 6.2240 5.6384 169× 169
9.0226 7.1101 6.2249 5.6391 266× 266
9.0238 7.1114 6.2256 5.6401 366× 366

Pr = 4 2.35 2.09 1.97 1.86 [167]
2.03 [205]

2.4692 2.1875 2.0752 1.9894 112× 112
2.4684 2.1781 2.0612 1.9749 169× 169
2.4691 2.1778 2.0609 1.9727 266× 266
2.4698 2.1783 2.0605 1.9735 366× 366
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[136] Johnson, C. and Pitkäranta, J. (1986). An analysis of the discontinuous galerkin method
for a scalar hyperbolic equation. Mathematics of Computation, 46(173):1–26.

[137] Kang, S. and Suh, Y. K. (2011). Direct simulation of flows with suspended paramag-
netic particles using one-stage smoothed profile method. Journal of Fluids and Structures,
27(2):266–282.

[138] Karniadakis, G. and Sherwin, S. (1999). Spectral/hp Element Methods for CFD, Numerical
Mathematics and Scientific Computation. Clarendon Press.

[139] Karniadakis, G. and Sherwin, S. (2013). Spectral/hp Element Methods in Computational
Fluid Dynamics. Oxford University Press.

181



BIBLIOGRAPHY

[140] Karniadakis, G. E. and Hesthaven, J. H. (2006). Spectral interpolation in non-orthogonal
domains: Algorithms and applications. Journal of Engineering Mathematics, 56(3):201–202.

[141] Karniadakis, G. E., Israeli, M., and Orszag, S. A. (1991). High-order splitting methods for
the incompressible navier–stokes equations. Journal of Computational Physics, 97(2):414–443.

[142] Kim, J. and Moin, P. (1985). Application of a fractional-step method to incompressible
navier–stokes equations. Journal of Computational Physics, 59(2):308–323.

[143] Kim, K., Nakayama, Y., and Yamamoto, R. (2005). A smoothed profile method for
simulating charged colloidal dispersions. Computer Physics Communications, 169(1–3):104–
106.

[144] Kim, K., Nakayama, Y., and Yamamoto, R. (2006). Direct numerical simulations of
electrophoresis of charged colloids. Physical Review Letters, 96:208302.

[145] Kim, K. and Yamamoto, R. (2005). Efficient simulations of charged colloidal dispersions:
A density functional approach. Macromolecular Theory and Simulations, 14(4):278–284.

[146] Kuhlmann, H. and Lemée, T. (2016). Particle accumulation in the jeremi experiment:
Definition of necessary flow and particle parameters. FFG: ASAP 9 3604313, TU Wien.

[147] Kuhlmann, H. C. (1999). Thermocapillary Convection in Models of Crystal Growth.
Springer Tracts in Modern Physics.

[148] Kuhlmann, H. C. and Albensoeder, S. (2008). Three-dimensional flow instabilities in a
thermocapillary-driven cavity. Physical Review E, 77:036303.

[149] Kuhlmann, H. C., Lappa, M., Melnikov, D., Mukin, R., Muldoon, F. H., Pushkin, D.,
Shevtsova, V., and Ueno, I. (2014a). The JEREMI-project on thermocapillary convection in
liquid bridges. Part a: Overview of particle accumulation structures. Fluid Dyn. Mat. Proc.,
10:1–36.

[150] Kuhlmann, H. C. and Lemée, T. (2015a). Particle accumulation in the jeremi experiment:
Definition of necessary flow and particle parameters. ASAP9 840119, FFG.

[151] Kuhlmann, H. C. and Lemée, T. (2015b). Particle-depletion dynamics in axisymmetric
thermocapillary flows. Eur. Phys. J. Special Topics, 224:309–318.

[152] Kuhlmann, H. C., Mukin, R. V., Sano, T., and Ueno, I. (2014b). Structure and dynamics
of particle-accumulation in thermocapillary liquid bridges. Fluid Dyn. Res., 46(4):041421.

[153] Kuhlmann, H. C. and Muldoon, F. H. (2012a). Comment on “Ordering of small particles in
one-dimensional coherent structures by time-periodic flows”. Phys. Rev. Lett., 108(24):249401.

[154] Kuhlmann, H. C. and Muldoon, F. H. (2012b). Particle-accumulation structures in periodic
free-surface flows: Inertia versus surface collisions. Phys. Rev. E, 85:046310.

[155] Kuhlmann, H. C. and Muldoon, F. H. (2013). On the different manifestations of particle
accumulation structures (PAS) in thermocapillary flows. Eur. Phys. J. Special Topics, 219:59–
69.

[156] Kuhlmann, H. C. and Muldoon, F. H. (2014). Comment on “Synchronization of finite-size
particles by a traveling wave in a cylindrical flow” [Phys. Fluids 25, 092108 (2013)]. Phys.
Fluids, 26(9):099101.

182



BIBLIOGRAPHY

[157] Kuhlmann, H. C., Wanschura, M., and Rath, H. J. (1997). Flow in two-sided lid-driven
cavities: non-uniqueness, instabilities, and cellular structures. Journal of Fluid Mechanics,
336:267–299.

[158] Lai, M.-C. and Peskin, C. S. (2000). An immersed boundary method with formal
second-order accuracy and reduced numerical viscosity. Journal of Computational Physics,
160(2):705–719.

[159] Landmann, B., Kessler, M., Wagner, S., and Krämer, E. (2008). A parallel, high-order
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[246] Romanò, F., Kuhlmann, H. C., Ishimura, M., and Ueno, I. (2016b). Particle–free-surface
interaction in thermocapillary flows. prediction and observation of limit cycles in axisymmetric
flow. (in preparation).

[247] Ryan, J., Shu, C., and Atkins, H. (2005). Extension of a post processing technique for the
discontinuous galerkin method for hyperbolic equations with application to an aeroacoustic
problem. Journal of Computational Physics, 26(3):821–843.

[248] Rybicki, A. and Floryan, J. M. (1987). Thermocapillary effects in liquid bridges. I. Ther-
mocapillary convection. Phys. Fluids, 30:1956–1972.

[249] Sahin, M. and Owens, R. G. (2003). A novel fully implicit finite volume method applied to
the lid-driven cavity problem – part i: High reynolds number flow calculations. International
Journal for Numerical Methods in Fluids, 42(1):57–77.

[250] Sapsis, T. and Haller, G. (2010). Clustering criterion for inertial particles in two-
dimensional time-periodic and three-dimensional steady flows. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 20(1):017515.

188



BIBLIOGRAPHY

[251] Savino, R. and Monti, R. (1996). Three-dimensional numerical simulation of thermocap-
illary instabilities in floating zones. Applied Scientific Research, 56(1):19–41.

[252] Schreiber, R. and Keller, H. B. (1983). Driven cavity flows by efficient numerical tech-
niques. Journal of Computational Physics, 49(2):310–333.

[253] Schwabe, D. (1988). Surface-tension-driven flow in crystal growth melts. In Freyhardt,
H. C., editor, Crystals, volume 11, pages 75–112. Springer.

[254] Schwabe, D. and Frank, S. (1999). Particle accumulation structures (pas) in the toroidal
thermocapillary vortex of a floating zone — model for a step in planet-formation? Advances
in Space Research, 23(7):1191–1196.

[255] Schwabe, D., Hintz, P., and Frank, S. (1996). New features of thermocapillary convection
in floating zones revealed by tracer particle accumulation structures (pas). Microgravity sci.
technol., IX(3):163–168.

[256] Schwabe, D., Mizev, A., Tanaka, S., and Kawamura, H. (2006). Particle accumulation
structures in time-dependent thermocapillary flow in a liquid bridge under microgravity. Mi-
crogravity - Science and Technology, 18(3):117–127.

[257] Schwabe, D. and Mizev, A. I. (2011). Particles of different density in thermocapillary
liquid bridges under the action of travelling and standing hydrothermal waves. The European
Physical Journal Special Topics, 192(1):13–27.

[258] Schwabe, D., Mizev, A. I., Udhayasankar, M., and Tanaka, S. (2007). Formation of
dynamic particle accumulation structures in oscillatory thermocapillary flow in liquid bridges.
Physics of Fluids, 19(7):072102.

[259] Schwabe, D. and Scharmann, A. (1988). Marangoni and buoyant convection in an open
cavity under reduced and under normal gravity. Adv. Space Res., 8(12):175–185.

[260] Seetharaman, S. (2013). Treatise on Process Metallurgy Process Phenomena. Elsevier.

[261] Seo, J. H. and Mittal, R. (2011). A sharp-interface immersed boundary method with im-
proved mass conservation and reduced spurious pressure oscillations. Journal of computational
physics, 230(19):7347–7363.

[262] Sevilla, R. (2009). NURBS-Enhanced Finite Element Method (NEFEM). PhD thesis,
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