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Abstract

Defects strongly influence the electronic properties of graphene. It is of

importance to get a deeper insight into the influence that defects have on electron
transport. In this work we accurately model defect structures with density
functional theory. We obtain tight-binding parameters via transforming the
results into the basis of maximally localized Wannier orbitals. We can then
treat large-scale structures with defects using a highly efficient tight-binding
approach. To combine the defect structure calculations with the surrounding
lattice, we present a new embedding technique that is applicable to a wide range
of zero-dimensional defects. This technique defines a transition region between
the tight-binding parameters of the bulk lattice and those obtained for the defect
structure. To test our technique we model an experimental setup currently
investigated at the University of Vienna.
Our approach turns out to be applicable to a broad range of defects. Calculations
were conducted for Stone-Wales defects, flower defects, double vacancies and
silicon substitutes. The scattering at these defects could be investigated in detail
for a wide range of energies. We find robust backscattering signatures of the
defect symmetries that can be explained by the band structure of graphene.
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1 Introduction

The first discovery of graphene by Novoselov and Geim in 2004 [1] opened a new field of
physics, the field of 2D materials. The past twelve years of ever growing intense research
have led to a profound understanding of the extraordinary properties of graphene [2].
Graphene consists of a single layer of carbon atoms arranged in a hexagonal honeycomb
lattice with properties such as the manifestation of an anomalous quantum Hall effect,
extremely high electron mobility, extraordinary mechanical strength and extreme
thinness being just the most prominent [2, 3]. Of special interest is the nearly linear
band structure of graphene around the Fermi energy. In this range the band structure
mimics a relativistic dispersion that can be described by the Dirac equation for massless
particles.

The good theoretical understanding and the progress made in graphene synthesis and
processing have led to a development stage where application ready graphene based
devices are within reach [4]. Possible new devices based on graphene cover a broad
range from spintronics [5] and highly accurate sensors to terahertz clocked field effect
transistors or stacked 2D material photovoltaics [6].

To further push the development of such devices and to be able to think of other
new applications, an even better theoretical understanding of graphene is of critical
importance. The change in properties of graphene due to imperfections is crucial for
the performance and functionality of future devices and therefore the understanding of
such changes is a keystone in the path towards graphene based devices.

While graphene in general is of high crystalline purity every real lattice in a real
device intrinsically features imperfections due to defects and the finite size of the
lattice. Defects as well as boundary effects can strongly affect the extraordinary
properties of graphene. A variety of defect structures were already observed and
also theoretically predicted, eg. topological defects (Stone-Wales and flower defects)
[7, 8, 10, 15, 11, 12, 13, 14, 15, 16]. In this thesis we are searching for new ways to
describe changes in transport properties when introducing such defects into a large
lattice structure.

As density functional theory (DFT) and other highly accurate methods are not directly
applicable to mesoscopic systems, a simpler approach demanding less computational
effort is chosen: the tight-binding method. To simulate defects we combine DFT and
tight-binding calculations. This is done by first calculating a supercell containing one
defect via DF'T which is then embedded into a large lattice described by tight-binding.
A technique of embedding these rather small structures calculated by DFT into the
large tight-binding lattice is developed and tested on a variety of defects.

In the first chapter we revisit some theoretical background. We then discuss the
properties of graphene and how we include them in our calculations in chapter two.
In the third chapter we argue why an embedding technique has to be used, how we
realize it and what limitations for this technique exist. The following chapter discusses
the DFT calculations of the embedded structures and in the last chapter we test and
apply the embedding technique to a structure that resembles an experimental setup
currently performed at the University of Vienna [17].



2 Concepts

In this section we introduce the main concepts used for developing the results of this
master’s thesis. Due to the wide range and relative complexity of some of the concepts
we only provide an overview. For a detailed discussion please see the corresponding
references.

2.1 Density Functional Theory (DFT)

Solving the quantum mechanical many body problem analytically is an impossible
task already for as few as three electrons. Even direct numerical approaches fail,
due to the factorial scaling of the problem with the number of electrons. Quantum
mechanically treating many-electron systems requires approximations. A very common
example is the Hartree-Fock-approximation where the key idea is to approximate the
electron-electron interaction by a mean field.

In 1998 Walter Kohn, an Austrian born American physicist received the Nobel prize in
chemistry for developing the - up to today - most popular method, Density Functional
Theory (DFT) [18].

The foundation of DFT are the Hohenberg-Kohn-Sham-theorems.

e For any system of interacting particles in an external potential the
ground state density is uniquely determined.

e A universal functional for the energy can be defined in terms of
the density. The exact ground state is the global minimum of this
functional. [18]

Given these theorems, how can we find the functional for an atomistic system and
how can we minimize it regarding its energy? Starting from the many-electron time-
independent Schrodinger equation

{T Ve v} ¥ = Blw) 1)

the individual terms of the Hamiltonian need to be expressed as a functional of the
electron density. V,_. represents the electron-electron interaction and can be expressed
as

Vedn(r)] = / / %drdr'—i—ch[n(r)] 2)

In Equation (2) the first term on the right side accounts for Coulomb repulsion while
the second term U,. represents the exchange and correlation term discussed below.
Vext. denotes the external potential due to the atomic nuclei and is easily expressed in
terms of the electron density

Vext.[0(r)] = /n(r)VeXt(R)dr. (3)

The R are the fixed ionic positions in Born-Oppenheimer approximation. The kinetic
energy term can be expressed as

Tn(r)] = Ton(r)] + Teorr[n(r)] (4)
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where T represents the kinetic energy of non-interacting electrons and T, stands for
the corrections due to interaction of the electrons.
After identifying all parts of the functional we arrive at

E[(r)] = Ve [0(1)] + Valn(@)] + Tofn(r)] + T (0] + Umeln@)].  (5)

The only part that remains to be expressed, to be able to fully write down the energy
functional in terms of the density, is the so-called exchange correlation functional
Exe[n(r)].

This functional should compensate for the error included in the calculation of the
kinetic energy and the electron-electron interaction. How to choose this functional
turns out to be the core challenge in applying DF'T. The most common approaches are
the local density approximation (LDA) and generalized gradient approximation (GGA).
The most intuitive approach, the local density approximation, models the exchange
correlation functional via:

FLPAn) = EEPAQ 4 EEPA[ (6)
B ) = -3(2) [amia 7)

b b
EPAm(r)] = /n(r) ~a-1n (1 +—+ —2>dr (8)
rg 12
ELPA[n] is the exchange functional, the integral over the approximated exchange energy
density, given by the Dirac exchange energy density for a homogeneous electron gas.
The ELPA[n] is the correlation functional, fitted to Monte Carlo simulations, by a fit
function with fitting parameters a,b and rs just recently derived [19] (For details see
[20]).
With the energy functional at hand, one now has to search for the electron density that
minimizes the energy such that,

— 0. 9)

This can only be done iteratively and implies - for larger systems (50-200 atoms) - a
high computational effort, as a self consistent matrix equation has to be solved. This
limits the applicability of DFT for large systems.

Although DFT works remarkably well for many systems there are some limitations [20]
most prominently the treatment of Van der Waals interactions.

One extension of DFT used in this master’s thesis is to apply the Hellmann-Feynman
theorem which enables calculating the forces acting on the ionic sites starting from the
ground state [20]. By iteratively moving the atoms from a starting position according
to the calculated forces from each ground state electron density associated with the
current ionic positions one can find the relaxed and stable atomic structure.

DFT is considered an ab-initio method which means no additional parameters from
previous calculations are needed to apply the method to a new system. Although some
might argue that the exchange correlation potential needs to be fitted and DFT cannot
be considered an ab-initio method.



2.2 Maximally Localized Wannier Functions (MLW.F)

A set of Bloch functions used in solid state physics can be transformed into a set of
localized wavefunctions via the Fourier-type transformation

ame P (k)dk.  [21, 22 (10)

n,R

BZ .

The W are called Wannier functions for a suitable U,y,. The Wannier function ¥, g(r)
is localized around lattice side R and can be associated with band n. ®,,(i) are the
standard Bloch functions in a periodic potential. U is a unitary matrix and contributes
to the gauge freedom that comes with independently chosen phases of each Bloch
function. Due to the unitarity of the transformation in Equation (10), the Wannier
functions are orthogonal to each other and span the same space as the Bloch states, i.e.
no information on the system is lost.

The gauge degree of freedom in U causes the Wannier functions to be not uniquely
defined. Depending on which matrix U is chosen, the localization ”quality” varies [22].
Although different localization criteria can be defined a very widely used criterion was
developed by Mazari and Vanderbilt [22, 23]. It involves the minimization of the sum
of the quadratic spread,

Q=7 [(7) —T2] = > _[(0nfr}|0n) — (On|r,[0n)?]. (11)

n

Where |0n) refers to the Wannier function localized at R = 0 and associated with band
n.
This criterion can be separated into an off-diagonal and a diagonal component,

QO = U+, (12)

Q = Z[ Z| |Rm|r|On)] } (13)
QO => > | |Rm|r|0n\ (14)

n Rm#0n

The reason for this separation is that €); is positive definite and independent of the
choice of U. Furthermore it is possible to express the spread function € in k space. By
minimizing €2, one finds the Wannier functions with minimal spread according to the
minimization criterion of Equation (11), the so-called Maximally Localized Wannier
Functions (MLWF) [23].

2.2.1 Disentanglement:

Usually only a small subset of orbitals in an atomic structure contribute significantly
to electronic properties such as transport. Therefore only a small number of bands and
therefore Bloch states need to be considered in the calculation, but ab initio methods,
such as described in Section 2.1, usually deliver a full set of Bloch states (up to a
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certain cut-off energy). Great care has to be taken which Bloch states should be used
in the transformation of Equation (10).

When the relevant energy bands are well separated from other bands by an energy gap
over the full Brillouin zone, the choice of bands and Bloch states is rather straight
forward. The bands are said to be not entangled. By contrast if relevant bands are
entangled with other bands meaning that relevant energy bands and non relevant bands
intersect somewhere in the Brillouin zone a so-called disentanglement procedure has
to be used. The aim of this disentanglement procedure is to find the set of relevant
bands N out of a set of Ny > N bands that reach inside a certain energy window at a
point k. At every point k the Ny bands span a Ny dimensional space S(k) and one can
define a number of sub spaces F(k) C S(k) with dimension N. Therefore we have to
find the subspace F (k) that minimizes the spread function 2. Since ) is independent
of the choice of U and € is positive semi definite one can obtain the relevant set of
Bloch states by minimizing §2; under variation of the subsets F [24].

The remaining difficulty is finding a good starting guess for the Wannier orbitals on
which the Bloch functions can be projected. This is usually achieved by choosing
atomic orbitals of the outer shell of the corresponding free atoms [24].

2.3 Tight-binding Method

Tight-binding is a method to efficiently calculate properties of large scale nanodevices
(with fast computers, in our days, up to 107 atoms). The approach is widely used for
many different problems, even though its assumptions are a crude simplification of the
real lattice.

The main assumptions are:

e The dynamics of the nuclei can be neglected like in almost all electronic structure
method. This follows by looking at the adiabatic theorem (Born-Oppenheimer-
approximation), which can be applied due to the much greater mass of the nuclei
compared to the electrons.

e The electrons are tightly bound to the nuclei meaning the electron wavefunctions
are strong localized around the nuclei. Here lies the origin of the term ”tight-
binding”. This assumption is valid for low energies forming a main restriction of
the method.

e Tight-binding is a single particle model where electron-electron interactions are
included as in a meanfield effective potential Vg.

With these assumptions we can choose the basis of our lattice to be the orbitals of
all atoms relevant for transport. This approach is called linear combination of atomic
orbitals (LCAO), as every state can be represented is linear combination of atomic
orbitals where ¢ runs over all atomic orbitals.

Our single electron Hamiltonian reads

Hse - Z Hatm,i(r + Rl,n) + veff(r)7 (15)

Ln,i



where H,,, is the Hamiltonian for an electron in the valence band of a free atom and
the Ri, = la; + nay are spatial shifts by full unit cells and Vg represents the effective
lattice potential. This potential can be understood as a mean-field approximation of
electron-electron coupling and external potential contributions.

With the assumption of tightly bound electrons, the orbitals of all atoms in the lattice
form a basis set for electrons with an energy around the Fermi energy. Orbitals with low
and high energy compared to the Fermi level are neglected as electrons in low energy
orbitals do not contribute to transport and high energy orbitals are very unprobable to
be occupied. The strong localization around the atomic nuclei implies that the overlap
with orbitals of neighboring atoms is small. In the following we will refer to this basis
as tight-binding basis. The basis is not a complete basis as the orbitals that do not
contribute to transport are dropped.

A state can be expanded as

) =3 culén). (16)

where |¢,) represents one localized orbital site n. Representing the Schrodinger equation
in the LCAQO basis and applying basis elements from the left yields a matrix eigenvalue
problem of the form

Z<¢m|Hse|¢n>Cn = EZCH<¢m|¢n> = Hc = Ec. (17)

n

In Equation (17) H is the matrix representation of the Hamiltonian in LCAO basis.
One can distinguish between diagonal and off-diagonal elements

€ = Hi,i = <¢1|Hse|¢i> (18)
Yy = Hij = (¢i|Heel|9y) (19)

The diagonal elements ¢; are the part of the Hamiltonian that describes energy contri-
butions on a given site, from e.g. potentials or the kinetic energy. They are referred to
as on-site energies. The ~;; contribute to interaction between orbital i and orbital j, i.e.
the amplitude for coupling between orbital i and orbital j.

Since the overlap of LCAO basis elements is small for atomic lattice sites far apart
the coupling parameter ;; for distant sites is small and is usually dropped to reduce
computational effort. An approximation where all interaction parameters beyond the
n'" nearest neighbors are dropped, is called n'" nearest neighbor approximation.

2.3.1 Band structure calculations

The band structure evaluated along a high symmetric path on a single reciprocal unit
cell of a lattice, is of special interest. This band structure characterizes all properties of
the electron wavefunction within the lattice. How can the band structure be obtained
from the Schrodinger equation in the tight-binding model?

Considering that every LCAQO orbital in a solid fulfills the Bloch condition for unit cell
translations the elements of the LCAO basis can be renumbered

§3) = |Pnri)- (20)
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|Pn,1i) 1s the i'" LCAO orbital of a unit cell shifted by R;, from an arbitrarily chosen
origin. Every orbital in the solid can be expressed via an orbital in the unit cell at the
origin by the Bloch relation

|pn1i) = e Fnt|dg g 5). (21)

When looking at the Schrédinger equation in Equation (17) we find

ZH(n,l,i),(O,O,j) Pn1i) = Eloooy) (22)
n,lji

& 3 He i gn0) = Elgos). (23)
n,lji

This reduces the evaluation of the band structure to an eigenvalue problem of size P,
with P the number of LCAO orbitals in one unit cell.

2.3.2 Tight-binding and MLWF

For certain energy ranges and lattice configurations - when the MLWF's are well localized
and orthogonal to each other at one atomic site and energy range - the MLWF's can be
used as tight-binding basis. This is valid because MLWF's have the same properties as
the LCAO basis. To underline the similarity, we plot a Wannier orbital with the same
symmetry as a LCAO p, orbital (see Figure 1).

Figure 1: Left: MLWF orbital obtained from graphene DF'T calculations located at a carbon
atom (yellow structure represents a graphene unit cell). Right: A LCAO p, orbital, with a
comparable localization and the same symmetry.



2.4 Transport in Mesoscopic Systems

Mesoscopic systems (from several tens of atoms to um solids) are a key research field in
modern solid state physics, as they relate quantum mechanical results to macroscopic
properties of materials. Especially, modeling electronic transport properties is of mayor
interest as semiconductor devices and applications from new materials are meanwhile
small enough that quantum effects need to be considered, yet of a size that tight-binding
can handle with modern algorithms.

The physics of such systems is very broad. We therefore focus on the most important
concepts. For a detailed introduction see [25, 26].

2.4.1 Landauer formula

Transmission probabilities and electronic properties (e.g. the conductance) of a ballistic
mesoscopic device can be calculated via the Landauer-Bittiker formalism. In this
subsection we want to shortly motivate this formalism.
To model a scattering structure one can think of a geometry consisting of two leads
attached to a scattering region as outlined in Figure 2. The expansion of the leads
and the scattering region in z direction is so narrow that the system can be viewed
as two-dimensional. Electrons in the conduction bands of the leads far away from the
scattering region can move freely in x-direction and are restricted to only a few modes
M due to the finite width W in y-direction [25],

M = int [ﬂ]

AR

with Ap the wavelength at the Fermi energy. Due to the special bandstructure M has
to be doubled for graphene.
The electronic wavefunctions can be expressed as plane waves times a transverse
function x

(24)

Ui (x,y) = Ce™x(y). (25)
The probability for electrons to pass through the device from one lead to the other can

be expressed by a transmission probability function T = |t|?. This probability relates
to the conductance G via the Landauer formula

T
—
2e2 9
Q=" )" . 26
ol (26)

Equations (24) and (26) give rise to the discrete increase of conductance as energy
is increased. Note that Equation (26) does not account for a finite temperature or
a larger number of leads attached to the system. Therefore Biittiker expanded the
Landauer equation (Equation (26)) to a larger number of attached leads and for finite
temperatures. The conductance G between leads p and q at temperature T can be
expressed via [25],

Gp,q = 2% Tp,q(E) ( - afggf) ) dE (27)



where fo(T) it the equilibrium Fermi function.
Equation (27) builds an important step towards understanding Green’s functions which
will be shortly introduced in the next section and widely used in this thesis.

j X
y scattering region

left lead right lead

Figure 2: Basic structure of a scattering device. A lead attached at each side, with discrete
modes entering the scattering region and either being scattered back to the lead of origin or
into any other lead.

2.4.2 Green’s function method

The concept of Green’s function is used in many fields of physics. In general a Green'’s
function G expresses the response R to any excitation S of a system if the response is
related via a differential operator Dy, [25],

DepR=S=R=D_S and D, =G. (28)

In the case of coherent scattering our differential operator is given by Do, = {E — H},
where H is the Hamilton operator of the system. When calculating the conductance by
Equation (26) the excitation term S is an incident wave as defined in Equation (25).
However, this is not the only excitation one can think of as will be seen in Section 6.
The Green’s function can be related to the well known scattering matrix and therefore
to the transmission probability via the Fisher-Lee relation [27].

S = 8 + ifiy /IR / dyr / dyi () G (v yr) X (7) (29)

where vi* and v{* are the group velocities at the leads L and R. With this we can
understand the Green’s function G(r,1’) as a measure for the response at position r for
an excitation of the system at position r’.

2.4.3 Using Dyson’s equation for appending leads

The Green’s function as a direct measure of the response of a system fully describes the
scattering problem in coherent transport at the precision of the modeled Hamiltonian.



X
r Scattering region
Y Lead Vios 518

— I
<=
VS—)L

Figure 3: Interaction potential Vi,_,g (Vg_1,) between scattering region (S) and lead (L) only
act on a small part of the lead.

Calculating the Green’s function is a challenging task, as a large matrix inversion has
to be done. Moreover, for infinite leads, the Hamiltonian matrix is infinite dimensional
making it impossible to calculate. This problem can be overcome via Dyson’s equation.
In the following we sketch a derivation starting from two separate structures (see
Figure 3).

Thinking of a scattering region attached to an infinite lead as shown in Figure 3 the
Hamiltonian describing the system can be written as

((HLO —El ) Vies ) ( Gr, GL<—S> 1 (30)
Vser (Ho—Elnxn)/) \Gser,  Gs oo

Here Vi, g is the interaction between the scattering region and the lead with Vi, g =
Vg - Ho is the Hamiltonian of the non-interacting scattering region and Hyy is the
non-interacting Hamiltonian of the lead. This leads to four equations

(Hpo — Bloooo)CL 4 ViesGser, = loooo (
VL_SGL + (Ho — Eln n)Gser, (
(Hpo — Eloooo)Cres + ViesGs = 0 (33
Vi _(Gres+ (Hy — Elyn)Gs = Inn (

and, after solving for Gg, one arrives at

:Ggol =Gro 1
/_/% 7 % N -
Gs = | (Ho = Elyn) = Vi s (Hi = Elo o) ' Vies | (35)
b

which can easily be transformed into the matrix form of a special case of Dyson’s
equation [25, 26, 31],
Gs = Gso + GgoX1Gs. (36)

This result still contains an infinite-dimensional matrix but this is not a problem
because the non-interacting Green’s function G at the border of the half infinite lead
can usually be evaluated analytically. This is done by first calculating the Green’s
function for the infinite lead and then splitting it up into two half infinite ones [26].
The procedure introduced above is not only valid for connecting half infinite leads with
scattering regions but for any non-local perturbation of the system [28, 29, 25].
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3 Properties of graphene

One must not search for reasons why graphene is a promising research field. It was
first observed only a few years ago [1] defining a new class of materials, the so-called
2D materials. Many other 2D materials have followed the discovery (e.g. hexagonal
boron-nitrite).

Graphene is a one atom-thin membrane of carbon atoms, where each atom features
three covalent in-plane bonds separated by 120 degree angles defining a honeycomb
lattice.

3.1 Solid state description
Graphene can be described with 2 atoms per unit cell. The basis vectors are given by
2],

arVBy - a3

a1_2<3> 32_2( 3 ) (37)
where a &~ 1.42A represents the inter atomic distance. The basis in reciprocal space is

given by [2], o o 3
=( V7). (38)

2_7T(\/§> 3a 1

3a 1

by =

ky
(a) (b)
by
“ K/
L’F
Figure 4: (a) Graphene in real space, the 0 ’s mark the nearest neighbor interactions. (b)

Graphene in reciprocal space with the marked first Brillouin zone and the Dirac points at K
and K’. Also the usual high symmetry path alongside which the band structure is evaluated
is indicated by the doted green line, along I'KMTI'.

In a hexagonal honeycomb lattice the carbon atom orbitals p2, pg and s? form
sp2-hybridized orbitals (see Figure 4). The p? orbitals of the lattice atoms form a 7
band.

The (un)occupied sp2 orbitals are energetically much lower (higher) in energy than the
7 band. They are therefore entirely filled or empty and do not contribute to transport.

11



On the other hand the m band is composed of half filled p, orbitals allowing easy
hopping from one atom to another and high electron mobility.

The crystalline structure can meanwhile be grown very pure leading to few defects and
few lattice scattering events of current-carrying electrons. Electron mobilities measured
in graphene flakes have reached 2 - 10°cm/s? even exceeding that of silver [32].

The hexagonal structure of graphene leads to a whole set of interesting properties.
The dispersion relation is linear within an energy window of +1 eV around the Fermi
level (see detailed derivation in the following Section 3.2). Effects that occur due to the
quasi relativistic particle behavior and low disorder, such as Klein-tunneling [2] can be
observed. Great mechanical strength and the recently described pseudo-magnetic-fields
are other examples of the very special properties of graphene [2].

3.2 Linear dispersion relation

In this section we outline the derivation and some consequences of the special band
structure of graphene. Assuming low energies (in the range of one eV) transport
is dominated by the p, orbitals which are well localized at the atoms. Therefore a
tight-binding approach is appropriate (see Section 2.3).

As only the electron in the p, orbitals (respectively the electrons in the 7 band)
contribute to transport the number of eigenstates per atom can be reduced to one. Under
the constraint of mutually small overlaps these eigenstates are in good approximation
orthogonal to each other, defining a proper basis to represent the total tight-binding
Hamiltonian of the lattice, as described in Section 2.2 and Section 2.3.

N
Higy = Hig  with  Hip = e|d) (ol + > g ley) (@il (39)
i=0 j

where j runs over the neighbors taken into account, € describes the on-site energy, v;;
the tight-binding interaction parameters for a certain neighbor coupling and |¢;) the p,
orbital located at atom i.

Large lattices can be - in good approximation - viewed as infinite. Looking at an
arbitrary state in such an infinite lattice,

) = Z Ci,A

where i runs over all unit cells and c;5 and c;g are the amplitudes of the state in unit
cell i at site A and B. the Hamiltonian is periodic in Rj,, =1-& + m - & and thus
Bloch’s theorem can be applied.

®ia) + CiB|diB) (40)

HEL W) = Elg) (v + Ralt)) = e R(r|y)) (41)

With the procedure described in Section 2.3.1 using Bloch’s theorem the eigenvalue
equation in Equation (41) can be reduced to two dimensions. Including second nearest

12



neighbors one arrives at [44, 26]

% 0) = Bly) — (*(f O i(fkgk)) () =e(2). (12)

The f; 5 in the above equation refer to all first and second nearest neighbor interaction
terms (E.g. fi(k) = 71 (e*9 4 k92 4 k) §’s from Figure 4) [26].
The dispersion relation for this eigenvalue problem can also be calculated analytically,

By = 4+71\/3 + £(K) — 72f(K) f(k) = 2 cos(V/3kya) + 4 cos (\?kya) cos <gkxa).

(43)
This dispersion relation is quite special (see Figure 5): around the K and K’ points, the
dispersion relation has a double-cone like shape, as the valence and conduction band
touch each other at a single point. This leads to two conclusions:

e With peaks touching but not overlapping, one cannot expect typical metallic
behavior where one half filled band is responsible for the conductance. But also
semiconductor-like behavior with spacing between valence- and conductance band
cannot be expected.

e With the cone like shape around K and K’ points, the energy-momentum relation
is linear. This is not expected by classical mechanics where Ey, o< k? but rather
by a relativistic description of a particle with zero mass E o« k. Expanding
Equation (43) around K gives [30]

Ey(q) = £vrq| + O[(a/K)?. (44)

vp &~ 10°m/s is the Fermi velocity of the electrons which can be identified via
Vp = 371& Replacing the speed of light in the Dirac-equation with the Fermi
Ve1001ty of the electrons the "new” Dirac-equation describes electronic behavior
in graphene for low energies very well.
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3.0

Figure 5: a: Dispersion relation obtained from second NN coupling using v; = 2.7 eV and
v2 = —0.2 eV [2]. b: line plot of Equation (43) trigonal warping around K point. The values
indicated on the plots line are in units of eV relative to the Fermi energy.

Up to first order the dispersion relation has no directional dependence. When
expanding Equation (43) to second-order one obtains,

9v,a?

3182 x
E. ~ ve|q| — < i %Sin {3 arctan (2—)}) Q2. (45)
y

An additional direction dependent term leads to a threefold symmetry and the so-called
trigonal warping [2]. For energies below 1eV the dispersion relation is barely direction
dependent, whereas for higher energies, the dependence increases see Figure 5, a).

3.2.1 Simulating a perfect graphene lattice

In the previous section we found that the band structure is linear around the Fermi
energy (2, 30]. To simulate graphene by a crude model it therefore would be sufficient
to only consider first NN tight-binding parameters reshaping a perfect cone like band
structure around the K point (see Figure 6). This crude simulation does not correctly
account for the trigonal warping and also reproduces the band structure around the
K point poorly. The third NN description is computationally as expensive as the
second NN description (as is outlined below) and more accurate. Therefore to simulate
a perfect graphene lattice interactions up to third-nearest neighbors are taken into
account. With the procedure outlined in Section 2.3.1 and used above one obtains [26]

—,

. B e+ (k) fi(k) (k) fea) . (ca
Hap V) = Elv) = (fl(_EHfg(_E) € + f5(k) )(%) _E<CB)' (46)

By solving this eigenvalue problem a third NN tight-binding approximation of the

dispersion relation for an infinite graphene lattice is obtained.
As outlined in Section 2.3, tight-binding is no ab-initio method and the coupling
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parameters ~; must be calculated using DFT. This has been done [26, 31| via fitting
the band structure obtained from tight-binding to the band structure taken from DFT.
The values obtained are,

v =3145eV 4 =-0.042eV 3 =0.35¢€V. (47)
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Figure 6: Dispersion relation obtained from ab-initio calculations (dashed red line), with
10th NN coupling (solid red line), with third NN coupling using a parameter set from [31]
(dotted green line) and with first NN coupling (dotted blue line).

For energies up to 2 eV, the fitting for third NN shows excellent agreement with
the band structure calculated from ab-initio results (see Figure 6). The tight-binding
description up to third-nearest neighbors accurately describes transport in perfect bulk
graphene at low energies. A detailed discussion can be found in [26].

Numbering the next neighbors
In the following we specify the numbering of the n*® nearest neighbor. For a perfect
lattice this is straightforward. Starting from the circle with the smallest radius all atoms
with the same distance to the corresponding lattice side are numbered in ascending
order (see Figure 7).

Advantage of third-nearest neighbor approximation

The possibility to use only third NNs to accurately simulate electron transport in
perfect bulk graphene allows calculating the Green’s function slice by slice and then
join the slices together using Dyson’s equation. One can split a perfect graphene zigzag
ribbon into parts each consisting of a single slice (see Figure 8). When only third-
nearest neighbors are considered, the slices can be added iteratively to the total Green’s
function via Dyson’s equation, similar to the procedure described in Section 2.4.2
26, 29].

This procedure is not so simple anymore if fourth-nearest neighbors or higher are
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Figure 8: (a) Illustration of how the lattice can be viewed as built up by slices and the
interaction potentials between neighboring slices. When considering only third-nearest
neighbor coupling all interaction terms between not neighboring slices are dropped and the
tight-binding Hamiltonian has the form illustrated in (b).

considered, as the tight-binding Hamiltonian between non neighboring slices becomes
nonzero. However a similar approach would be possible by splitting the lattice into pieces
of two or more slices each. Considering fourth NN would increase the computational
effort to calculate the Green’s function for the same geometry by a factor of four. This
is because the calculation of the Green’s function per slice scales cubically and the
number of slices considered will be halved. For eight nearest neighbors each piece
would have to consist of three slices increasing the computational effort compared to
the third-nearest neighbor approximation by a factor of nine.

3.3 Defect structures

Graphene lattices typically have high crystalline quality and thus feature only very
few defects at room temperature [11, 7]. Nevertheless defects have a strong effect on
lattice properties, e.g. they weaken the mechanical stability and are a central source of
electron scattering [11]. The aim of this master’s thesis is to find a method to simulate
defect structures in large-scale graphene devices with high accuracy. It is therefore
urgent to first characterize the different types of defects.

3.3.1 Characterization of defect structures

Defects in a lattice can roughly be classified according to,

e their dimensionality
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e by the number and types of atoms added to or removed from the lattice
e and by the new geometric order caused by these changes.

The listing in this section is not intended to be exhaustive, but rather gives an overview
over defects in graphene.

Dimension of defects

As in a bulk material there are zero-dimensional defects. Their spatial extension
is of the order of one Wigner-Seitz-cell. The most prominent case is just one missing
atom, a vacancy [7]. The role of one-dimensional defects in a 2D material is already
very different to the 3D case, as there is - simply speaking - no easy way around for
the electrons. Defects of this kind form a line and can extend over the full width of,
e.g. a ribbon. As an example for line like defects consider epitaxially grown graphene
where the lattice orientation changes locally due to the method of growth [2]. This
leaves grain boundaries between homogeneous local areas [7].

Number and types
Removing atoms leads to vacancies while replacing a carbon atom leads to an impu-
rity. Adding an atom at a lattice site is called adsorbate and rearranging atoms while
keeping their number constant results in configurations such as the very prominent
Stone-Wales defect (see Figure 9).

Geometric order
For vacancies, impurities and adsorbate defects the geometric ordering of the atoms
as well as the binding behavior changes. E.g. in a zero-dimensional vacancy the
neighboring atoms rearrange, see Figure 9.
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Figure 9: a: An example how the lattice can rearrange around a double vacancy. b: Image of
a Stone-Wales-defect. Geometries obtained from DFT relaxations. The red marked atomic
lattice sites indicate the central sites of the defect structure.

The number of these defects is very low at room temperature, due to high formation
energies and (depending on the defect-type) high mobility [16]. It is possible to increase
the number of defects, by irradiation using electron-beams [9] or evaporation of e.g.
fluorine [8].

3.3.2 Simple defect simulation technique

To describe disorder within the tight-binding approach outlined in Section 2.3 the
coupling parameters at and around the defect need to be adapted. Some defect
structures such as vacancies or adsorbates can be simulated by using a very crude
model: the orbitals of the defect structure are thought of as no longer participating in
transport. Surrounding electrons cannot scatter into orbitals of the defect structure.
To achieve this the on-site energies of defect structure orbitals are increased to a very
high value (usually 1000 eV) [42].

This model has its obvious limitations as no reordering and therefore change in the
surrounding interaction parameters is taken into account. Also no possible remaining
scattering into the defect orbit (for example in adsorbates) is accounted for and only a
limited number of defect types can be handled. Nevertheless it is a reasonable approach
for e.g. fluorine defects as a carbon atom located beneath a fluorine atom forms an sps
hybridization where no p, orbital is left for scattering and the lattice geometry only
changes slightly [8].
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Figure 10: Band structures for a perfect lattice calculated with MLWF. Taking all (dotted
blue line), up to tenth (solid red line), seventh (solid green line) and third (solid yellow line)
NN parameters into account. The shift from the Fermi energy at the K point for the third
NN parameter set, is caused by the cut-off of higher order NN parameters. Only with tenth
NN parameter set the band structure can be reproduced accurately in the energy range +1.2
eV around the Fermi energy.

4 Towards an accurate defect simulation

A more advanced approach than the basic one outlined in Section 3.3.2, is to perform
DFT calculations. Starting from an initial guess a number of atoms arranged in a large
super cell can be relaxed into their ground state and an accurate electron density can be
calculated. This is done by minimizing the Kohn-Sham energy functional as described
in Section 2.1. From this ground state electron density the tight-binding parameters
can be obtained via basis transformation into MLWF, as described in Section 2.2.
The challenging and limiting part in these calculations is that not only one graphene
unit cell but large super cells consisting of the whole defect and some surrounding
atoms have to be simulated. Depending on the defect size already zero-dimensional
defects such as double vacancies need to include 70 atomic sites to obtain a structure
where the atomic sites at the border of the structure rebuild perfect graphene.

How can we obtain reasonable NN parameters from such large structures? The two
possible approaches for obtaining NN parameters in a perfect graphene lattice are
MLWF and band structure fitting.

e MLWEF: Starting from the Kohn-Sham orbitals in Bloch basis one can use the
criterion introduced in Equation (11) to obtain Maximally Localized Wannier
Functions (MLWF') and then drop all higher interaction terms. This has been
done by [31], finding that at least 10" NN interaction are needed to accurately
reproduce the band structure of a perfect lattice.

e Band structure Fitting: Another approach is to use Gauss-Newton based
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least squares optimization algorithms, to optimize NN parameters up to a certain
order to best fit the band structure obtained from DFT calculations. This has
also be done by [31] using the Lederberg-Manquard algorithm [33, 34|, for a third
NN parameter set obtaining the values from Equation (47). The corresponding
band structure is displayed in Figure 6.

While the method of obtaining NN sets from MLWF is also adaptable to large super
cells band structure fitting is not feasible for large structures. This can be made clear
when considering a double vacancy structure Figure 9 (a) consisting of 70 atoms. To
optimize for a third NN parameter set 910 free parameters would need to be optimized.
Even with the fourfold defect symmetry 260 free parameters are left leading to a
Levenberg-Manquard optimization problem of the same dimensionality. With the
unknown smoothness of this high dimensional optimization function the optimization
results may be rather unphysical and the band structure fitting procedure, as used for
the perfect crystal, is not applicable. Another difficulty is the assignment of which
band structure line to fit to which eigenvalue of the band structure matrix. While this
is straightforward for small cells (see Figure 10) it becomes an impossible task for large
cells (see Figure 11).

The method of obtaining NN parameters directly from MLWEF can be used but also
has some unpleasant issues, as outlined in the next subsection.

4.1 Using MLWF to obtain NN parameters for large unit cells

Sticking with the example of a double vacancy one can use Wannierisation algorithms
as outlined in Section 2.2 to obtain all tight-binding parameters.
From these tight-binding parameters the relevant ones have to be chosen. Proceeding
the same path as for perfect graphene in [31] we now have to find the minimum number
of NN that have to be considered in order to accurately reproduce the band structure.
Choosing the next neighbors as outlined in Figure 7 we can compare the band structure
obtained using different maximum NN numbers. Calculating different maximal NN
parameters one finds that considering all NN up to the eighth NN the band structure fits
the exact bandstand already very well, while when only considering up to third-nearest
neighbors results are not meaningful (see Figure 11).

Using the method of directly obtaining NN parameters from MLWFs therefore requires
at least eighth NN to be useful.
Four problems occur when directly using MLWF for an exact defect description,

e No general rule exists to provide the needed maximum NN number in order to
reproduce the defect bands with high accuracy. Therefore each defect structure
potentially requires a different number of NNs for a converged description.

e High computational effort for defect simulations as all the surrounding perfect
graphene lattice has to be calculated with NN parameters of the same order to
guarantee smoothness between the WMLF parameters of the defect structure
and the perfect lattice. As outlined in Section 3.2.1, using higher order NN

21



E- Er [eV]
E- Er [eV]

Figure 11: (a) Band structure of a double defect embedded in a 70 atom large super cell, as
shown in Figure 9 (a), as calculated from DFT (solid red line), with up to eighth nearest
neighbor parameters (dashed green line) and up to third-nearest neighbors (dashed blue line).
(b) Zoomed in around the Fermi energy.

parameters strongly increases computational effort.

e The modular recursive Green’s function method as introduced by [29] is
not directly applicable for higher NN couplings anymore. Without such a
method no simulation of large mesoscopic structures in a reasonable amount of
time is possible.

e Larger super cells are needed for higher order NN couplings. This is because
periodic boundary conditions in the DFT calculation cause high order NN pa-
rameters to obtain values that couple defect orbitals with the defect structure in
the periodic replica of the super cell.

4.2 Embedding defects by combining MLWF and fitting pro-
cedures

Due to the impossibility of using band structure fitting and the difficulties that arise
when using the MLWF method to obtain physical tight-binding parameters for defect
structures we have to search for other approaches. The is obviously to increase the
computational effort by as little as possible and to allow simulation of a broad range of
defects.

One approach that one could think of is combining both methods such that the
difficulties of each method are overcome. We meet these requirements by choosing a
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mixed approach of MLWEF and band structure fitting.

The idea of our embedding approach is to use a number of atoms in the perfect
lattice around the calculated defect structure as transition area for the tight-binding
parameters. Starting far away from the defect structure with the bulk third NN
parameters obtained from fitting to the perfect band structure the number of NN
parameters considered is slowly increased and their values change accordingly. This
is done until up to the tenth NN parameters obtained by MLWF calculations of bulk
graphene are reached. Within the region where tenth nearest neighbors are considered
the defect structure then can be placed.

The reason we choose the transition area to reach up to tenth NN parameters is that
we expect the band structure of tenth NN parameter calculations to perfectly resemble
the accurate band structure for any given defect structure. This is a large advantage
as it makes the embedding technique largely independent of the defect structure it
embeds.

The procedure of our proposed embedding technique can be split into three parts,

e Starting from a perfect graphene lattice structure an area is replaced by the
defect structure calculation.

e Around the defect area a broad transition region has to be defined. The
transition region is further decomposed into sub-areas to ensure a smooth transi-
tion of the NN parameters. We call these sub areas curtains, as they enclose the
defect like a set of curtains.

e After defining the curtains we have to choose reasonable interaction param-
eters for each of them.

4.2.1 Requirements to the defect structure calculation

When calculating the defect structure with ab-initio methods one has to keep in mind
some requirements that have to be fulfilled in order to reach physical results applicable
within our embedding technique. The exact parameters for density functional theory
calculations and Wannierisation process are discussed in detail in Section 5. The main
requirement for the ab-initio calculation employed in the embedding technique is that
the calculated number of atoms and shape of the defect structure is chosen such that
the NN parameters at the border of the defect are of compatible size with the ones
obtained for the bulk lattice. As a general rule we found that at least one full unit cell
of an essentially unperturbed lattice should lie between the mayor part of the defect
and the border of the defect structure.

4.2.2 Defining the transition region

Figure 12 illustrates how the geometry is build up: at the center of the defect area lies
an arbitrary defect, which fulfills the requirements of Section 4.2.1. Around this defect
curtains are placed. We choose the curtains such that for any path at least one unit
cell of a perfect graphene structure has to be passed, meaning that to the left and right
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a slice as defined in Figure 8 is appended and to the top and bottom of the structure
the slice is expanded by two atoms each.

The number of curtains to choose depends on the smoothness which is required for the
transition from third NN parameters to tenth NN parameters.

One could also think of other curtain geometries, such as only appending one atom at
the top and bottom each. Our choice seems reasonable as the distance in real space,
that an electron has to travel to pass through the curtain is about the same in both
coordinate directions.

The reason a rectangular shape of the defect structure’s super cell was chosen and not
e.g. a hexagonal is due to the easiness of keeping track of individual atoms with a
simple shape.

4.2.3 Choose the correct parameters

To meet the criterion of smoothness between the used parameter set in the defect
structure and the perfect lattice a convenient criterion has to be defined on how the NN
parameters should slowly be shifted while still reproducing the correct band structure.
For convenience we now introduce a notation for NN parameter sets,

SNNrnax - {EONNmaX7 7?Nmax7 ) VEEZ::} (48)
where Sy, .. 18 the tight-binding parameter set including up to NN, parameters are
non-zero and the €)™ and ;"™ are the NN parameters of this set.

As a starting point we used least squares optimization to the perfect band structure
with ever increasing maximal NNs. This turned out to work very well (see Section 6.2).
One could also think of more advanced optimization routines using Lagrange multipliers
to only optimize within a subset in which the lowest +; for each set are confined to a
certain range. As the simple approach turned out to work very well we did not use
more advanced approaches even though we expect them to be more precise.

To guarantee that the tight-binding Hamiltonian is hermitian we used the following
procedure to set the NN parameters within the curtain structure.

e assign every orbital i of the structure with a parameter set Sy

i,max "’

e For every orbital i iterate through all orbitals j with a NN distance N smaller
than Nj nax.

o if Nimax < Njmax then set the NN interaction parameter in the tight-binding

i,max

Hamiltonian to %ﬁ
e If both orbitals lie within the defect structure area +;; is taken from the Wannier

parameters obtained from the DFT calculation.

i,max

e the on-site energies ¢ are set to eON inside the curtain area and to the values
obtained from MLWF in the defect area.
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Figure 12: Defect structure (shaded white) surrounded by 10 so-called curtains enumerated
from 1 to 10. Every atom within the red (or green) shaded areas is part of the corresponding
curtain. In every curtain the order of included NN parameters is increased. Note that the
curtain numbers indicated do not correspond to the order of NN parameters considered, e.g.
curtain number four and five can both be described by a NN parameter set of order seven.
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Setting the NN parameters as explained above guarantees that the Hamiltonian is
hermitian. This can be made clear when looking at the tight-binding value distribution
of the Hamiltonian of the single slice which ”cuts” exactly through the defect structure

(see Figure 13).
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Figure 13: The NN parameter value distribution in the tight-binding Hamiltonian of the
central slices of the defect structure with curtains, shown in Figure 12.

The dotted red lines indicate the border between neighboring parts of the Hamiltonian. This
can be made clear by comparing the structure of this plot with Figure 8 b, where slice i is
the slices which cuts exactly through the middle of the structure shown in Figure 12.

The non-interacting Hamiltonian parts of the slices Hy are along the diagonal part, note that
at the borders the number of non-zero interaction parameters decrease and in the center of
each slice the parameters shift due to the influence of the defect which is located in the white
rectangle. Also the center slice is two orbital sites smaller due to the missing orbitals at the
defect.

The parts of the Hamiltonian that contribute to interaction between neighboring slices
(indicated with white arrows and H}’IH, H}H’l, H}’l_l and Hi_l’l) also shift at the borders
and in the middle due to defect influence. In the upper right and lower left corner also some
off-diagonal non-vanishing parts of the Hamiltonian H}_I’H'l and H}H’l_l are recognizable
(white circles), these parameters are at least fourth NN parameters v4<; and contribute to
next to nearest neighbor slice interaction. These parameters are set zero when the lattice is
treated with third NN parameter set S and therefore approach to zero at the boundary of

the structure.
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5 DFT calculations and Wannierisation

As outlined in Section 2.1 we used density functional theory and maximally localized
Wannier orbitals to obtain tight-binding parameters. In this section these calculations
are discussed in detail. In the first two sub-chapters some general points are high-
lighted and in the following perfect lattice calculations and individual defect structure
calculations are discussed.

5.1 DFT calculations

For all DFT calculations we used VASP (Vienna ab-initio simulation package) [35,
36, 37, 38] together with the standard LDA (local density approximation) exchange
correlation potential. The same procedure was used for all DFT calculations. The
DFT calculations were done with an energy cut-off of 700eV, meaning that all Bloch
waves up to the energy
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Emax = _cht with cht > |k - G| (49)

2m
were used as a basis set. Geyt is the maximal super cell shift considered and m the
electron mass. A Monkhorst-pack grid was used for k-point sampling of the numerical
integrations together with a Gaussian smearing function with a standard deviation o
of 0.2 A. The steps described here are all performed within VASP and only controlled
via parameter input.

As initial positions a number of carbon atoms were placed within a defined super

cell. The super cell and the position of the atoms were chosen according to a perfect
honeycomb lattice. Starting from this perfect structure local perturbations were created
by either removing, adding or shifting one or several atoms.
We used two different forms of periodic super cells a rectangular shape for large
calculations and simple multiplicities of the normal unit cell for smaller structures (see
Figure 14). There are two reasons for choosing two different shapes of super cells. The
rectangular unit cell shape only builds up a periodic structure if the atoms per slice are
dividable by four. Therefore if the size of a defect structure lies between two sizes of
periodic rectangular shapes a unit cell like shape is preferable as the numerical effort
would increase unnecessarily. The reason to -in some cases- prefer rectangular super
cell shapes is that the Wannierisation for large super cells works more conveniently for
the rectangular shape.

In a next step the ionic positions were relaxed using a conjugate gradient algo-
rithm. Iteratively the ionic positions were shifted along the gradient of the forces, using
alternating a trial step and a correction step. After every step, the electron density
was calculated with DFT and new forces were obtained.

The relaxation was done until the change of the forces between two steps was smaller
than 10~3eV /A,
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Figure 14: (a) The rectangular shape of the super cell used in DFT calculations for large
structures. (b) The shape of a super cell consisting of a multiplicity of just the normal
graphene unit cell.

After the relaxation an accurate DFT calculation was done. The Kohn-Sham
functional is minimized until the energy change between two minimization steps is
smaller than 10~%eV. This is also done multiple times during the relaxation, but with
lower accuracy as the relaxation does not need these high accuracy electron densities.

5.2 Wannierisation

As outlined in Section 2.2 Mazari and Vanderbilt developed an algorithm to obtain
MLWF from a set of entangled bands [23]. We use a computational tool based on this
algorithm called wannier90 [22, 23, 39] to transform the Bloch states obtained from
DF'T calculations into a localized basis.

In this algorithm the input parameters are initial projections onto localized orbitals, the
Bloch basis overlaps, as well as a few computational parameters. The initial projections
are needed to correctly disentangle the Bloch bands in order to choose the right band
at every k point in the brillouin for Wannierisation (see Section 2.2 and [23, 24]). In
order to obtain correct results the initial orbital projections should be chosen such that
they in a good approximation rebuild the final Wannier orbitals.

The initial orbitals onto which the Bloch states are projected are LCAO orbitals with
one p, orbital at every atomic lattice site and one s orbital at every double bond
centered between two atomic sites. When looking at Figure 1 one finds that the chosen
p. orbital resembles the final localized orbital well.

An alternative initial projection set could be chosen by taking the sp2 hybridized
orbitals of the outer shell of the carbon atom. However we obtained more accurate
results when choosing this projection set in lines with previous results [31].
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Figure 15: Ilustration of the used energy windows for the disentanglement procedure. The
solid green plot is the band structure obtained from DFT calculations of a simple perfect
lattice unit cell as shown in Figure 14 (b), the doted blue plot is the ban structure after
wannierisation. Note that only a small fraction of the band structure calculated with DFT is
used in the wannier basis. To choose the right bands from the DFT calculation the inner
energy window has to set right below the minimum of the lowest band, which is not used in
the Wannierisation and the outer energy window limit is placed exactly above the maximum
value of the highest band considered.

Other important parameters which do also concern the disentanglement are the chosen
inner and outer energy window. They define the energy range in which bands of the
band structure and therefore their Bloch functions can / have to be included in the
disentanglement procedure. All bands that lie within the outer energy window can
be included in the disentanglement meaning they build up the space S(k) defined in
Section 2.2. All bands within the inner energy window have to be part of the sub space
F(k) that minimizes € (see Section 2.2). The extend of the two windows massively
influences the convergence of the disentanglement procedure. In all Wannierisation
calculations we set the inner energy window in the range of —25 eV to —0.4 eV and
the outer energy window from —26 to 12 ¢V (see Figure 15).

The Wannierisation process leads to no loss of information on the relevant bands as it
only entails a unitary basis rotation. The band structure is obtained with equivalent
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accuracy (see Figure 15).

The maximum number of iteration steps we chose for the disentanglement (as described
in [24]) was 5000 steps and for the Wannierisation (as described in [23]) was 500 steps.
Although these parameters are of minor importance as the iterations should converge
before this high number of iteration steps is reached they can work as benchmark
numbers. If the disentanglement or the Wannierisation has not reached the required
accuracy before the maximum number of iterations, some parameters of the calculation
such as the projections or the energy windows were not set properly.

5.3 Curtain parameter calculations

To obtain the tight-binding parameter sets S' of the curtains a DFT calculation of
a single perfect lattice unit cell was performed and the Wannier parameters were
calculated. Starting from these parameters a least square Levenberg-Marquard fitting
was used to calculate the SNN for each set of NN parameters, used in different curtains.
For the DFT calculation, a k-point grid of 35x35x1 samples was used. Together with
the Monkhorst sampling with which, due to symmetry only 1/12 of the reciprocal unit
cell had to be calculated, this provided a rather fine k-mesh. It was important to use
an odd number of sample points in the xy plane. Otherwise the high symmetry points
K and K’ of the reciprocal unit cell would not be evaluated directly but interpolated,
leading to a large error at these -for transport highly important- points.

For the case of a perfect lattice structure no relaxation calculation was needed, as the
lattice constant was already known from [31] giving 1.4208 A and the ionic positions
could be set accordingly.

Wannierisation was done using initial projections onto three s orbital located between
the two lattice sites and two p, orbitals located at the atomic lattice sites for each unit
cell (see Figure 16). The validity of the transformation was verified by comparing the
two band structures before and after the Wannierisation which showed perfect agreement
(see Figure 15). The Levenberg-Marquard algorithm [33, 34] tries to minimize the norm

ly — £(x, B)II*. (50)

Where y are the target values for the fit and f is the function under variation of the fit
parameters 3. In our case y is the perfect band structure, f is the eigenvalue problem
of the tight-binding Hamiltonian described in Section 2.3.1 and 3 is the corresponding
parameter set S.

The correction term & for the parameter set 3 is calculated in each step by solving,

(J'T = ADd = Iy — £(8)]. (51)

The J is the Jacobian matrix of the function f and A serves as damping factor with I
the unit matrix. As a starting set for the Levenberg-Marquard optimization of S° we
used the parameters obtained from Wannierisation, dropping all higher NN parameters.
For every lower set S' we used S'™! as a starting point, dropping the highest ;4. The
values we obtained are given in Table 1. The y onto which the fitting was executed were
taken from the band structure calculated with DFT, which lie within the considered
energy range, +1.2eV from the Fermi energy.
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Figure 16: The large blue spheres indicate the position of the initially projected s orbitals
relative to the carbon atoms of one unit cell (border indicated by red lines). The smaller
gray spheres indicate the position of the carbon atoms and the p, orbitals used for initial
projections of the perfect lattice structure for Wannierisation.

[eV] S10 S? S8 S7 SO S° S* S3
€ | 0.29697 0.29499 0.29464 0.30003 0.30323 0.29570 0.08835 0.07893
Y1 | -2.91164 -2.92326 -2.95482 -3.03528 -3.11753 -3.14029 -3.09637 -3.28542
Yo | 0.22317 0.22675 0.22625 0.23194 0.23803  0.23385 0.03508  0.03186
v3 | -0.28900 -0.29228 -0.28632 -0.29412 -0.30412 -0.31542 -0.29678 -0.37544
v4 | 0.02480 0.02503  0.02445 0.02512  0.02598 0.02730 0.03617

v5 | 0.05493  0.05380 0.05358 0.05532 0.05752  0.06778

Y6 | -0.02232 -0.02161 -0.02163 -0.02235 -0.02321

vz | -0.01295 -0.01257 -0.01260 -0.01299

vs | -0.02181 -0.02115 -0.02111

Y9 | 0.00716  0.00695

Y10 | 0.00400

Table 1: Tight-binding parameter set values obtained from fitting. S' is the parameter set

that accounts for up to i NN parameters.

One can verify the set by comparing the resulting band structure with the original
band structure from the DFT calculation (see Figure 17). To use the parameter sets in
the curtain area of the embedding technique introduced in Section 4 the condition of
smoothly shifting parameters between adjacent curtains must be fulfilled. The criterion
is met by most but not all parameters in Table 1. This was considered a problem for
the embedding technique. However, the benchmark calculations in Section 6.2 show
that the parameter shifts are sufficiently smooth and the obtained parameter sets are

suitable for the embedding technique.
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Figure 17: The band structures calculated with the fitted tight-binding parameter sets S'.
The solid green lines indicate the optimized energy window. The dotted blue line is the band
structure around the K point, calculated with DFT, the solid red line indicates the band
structure calculated with the optimized tight-binding parameter sets.
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5.4 Defect structures calculations

To accurately simulate defects not only the embedding has to be performed with high
accuracy but also the defect structure calculations need to be of high quality. We
performed DFT calculations for four different types of defects: Stone-Wales, double
vacancies, silicon substitute and flower-like defects.

Problems in the compatibility of the programs VASP and Wannier90 caused difficulties
when performing spin polarized calculations. Therefore no defect structures that would
need to be calculated spin polarized (e.g. single vacancies) could be treated.

5.4.1 Stone-Wales

The influence of the Stone-Wales (SW) defect, the most investigated defect structure in
graphene with a rather low activation energy of 2 eV [12], on transport properties was
already discussed for nanoscale GNRs [14]. To calculate this defect we used a super
cell consisting of 50 atoms arranged in a perfect lattice in a super cell consisting of
5x5 unit cells (see Figure 18 (a) ). Only two atoms in the center of the super cell were
shifted from their initial position into a position very close to the expected relaxed
ionic positions of the SW defect.

For the relaxation calculation all ions were allowed to shift into all directions of space,
except the right and bottom border atoms of the structure that were fixed to achieve
converge of the defect structure towards the bulk lattice (see Figure 18 (b) bottom and
right).

Due to the large number of atoms and the large real space extension of the super cell a
smaller k point sampling had to be chosen: only three k points in each direction of the
xy plane were sampled. However, due to the large super cell the reciprocal unit cell is
very small and a small number of k points is therefore sufficient.

Comparing the band structure obtained from using the final tight-binding parameters
up to tenth NNs, to the band structure calculated with DFT, the results show perfect
agreement (see Figure 19). For the atomic lattice sites, 0-4, 10-14, 25, 20, 21, 42 and
43 as numbered in Figure 18 the next neighbor parameters up to 10 nearest neighbor
are listed in Appendix A.1. All other hopping parameters can be obtained from these
values due to symmetry of the structure.
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Figure 18: (a) Shows how the atoms are arranged in the super cell during the DFT calculation.
The red atomic lattice sites are fixed in space during relaxation. The large spheres indicate
the projection positions of the s orbitals in the Wannierisation.

In (b) the lattice structure is rearranged, such that the defect is at the center of the structure.
This is done by full unit vector shifts of a number of orbitals, as the structure is calculated
with periodic boundary conditions this shifting is valid. Also the atomic lattice sites are
numbered.

5.4.2 Double Vacancy

To test the embedding model on vacancy type defects we also calculated a double
vacancy structure. The DFT calculation discussed below fails for single vacancies, as
for half filled orbitals also spin contributions need to be considered. A rectangular
super cell with 70 atoms was used to calculate this defect (see Figure 20). Due to the
large super cell also only three k points per direction in the xy plane were used. For
the ionic relaxation all atoms were allowed to move except the ones on the bottom and
the right of the super cell ( red indicated atoms in Figure 20). In Figure 20 (a) also
the chosen s orbital projections are shown.

The tight-binding parameter set S'° obtained from this calculation is listed in Ap-
pendix A. Due to the large number of atomic sites in the super cell, only the orbital
sites 0-6,12-18 and 24-27 are listed, all parameters belonging to other orbital sites can
be obtained through defect structure symmetry.
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Figure 19: Band structures of the defect structure with a Stone-Wales defect, shown in
Figure 18 (a). The dashed red line indicates the band structure obtained from DFT calculation,
the solid blue line shows the band structure after dropping NN parameters higher than tenth.
Perfect agreement between the two is found.
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Figure 20: (a) Atomic ordering of the atoms after DFT relaxation calculation. The red
atomic sites denote the atoms, which were fixed in space during relaxation. The blue spheres
indicate the positions of the s orbitals used for initial projection during Wannierisation.

(b) The band structures for a double vacancy structure as shown in (a). The dotted red
lines indicate the band structure calculated with DFT, the solid blue lines show the band
structure calculated with up to tenth NN parameters. The two band structures show perfect
agreement.
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5.4.3 Silicon Substitution

To also test the embedding technique for substitutes we consider a single silicon atom
replacing one carbon atom in a perfect graphene lattice structure. As the lattice atoms
in this defect structure are expected to shift only slightly in the xy plane, a smaller
configuration consisting of only 31 carbon atoms and one silicon atom were used in
a rectangular shaped super cell (see Figure 21 (a). The initial projections used to
disentangle the four valence orbitals of the silicon atom were chosen as sp2 hybridized,
equivalent to the hybridization of the carbon atoms in a perfect graphene lattice.
The band structure obtained from DFT calculations shows perfect agreement with
the band structure calculated with up to tenth NN parameters (see Figure 21 (b)).
In Appendix A.4 the tight-binding parameter for the atomic numbers (numbered in
Figure 21) 0-3, 8-11, 16, 17 and 20 are listed. The hopping parameters for the other
lattice sites can be obtained from these values using symmetry.
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Figure 21: (a) Atomic ordering of the atoms after DFT relaxation calculation for the silicon
substitute defect structure. The atoms next to the substitution are shifted slightly away from
the silicon. The red atomic sites denote the atoms which were fixed in space during relaxation,
the green atom is the silicon substitute. (b) The dashed red line indicates the band structure
calculated with DFT and the solid blue line the band structure calculated with up top tenth
nearest neighbor parameters. The two band structures show perfect agreement in the energy
range around the Fermi energy which is relevant for transport.
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5.4.4 Flower defect

A flower defect consists of six pairs of 5-fold and 7-fold rings of carbon atoms (see
Figure 22). Flower-like rotational grain boundaries have a very low activation energy
(1.2eV per pair) and are considered to have a large influence on transport properties
[12]. Although it is not yet entirely clear how they form, it is suggested that nitrogen
atoms may work as a catalyst or moving groups of Stone-Wales defects form flower
defects [13].

For the DFT calculations we used a rectangular super cell consisting of 128 atoms.
The defect is built by cutting out the center atoms of the defect, rotating them by 30
degrees and " gluing” them again, via DFT relaxation calculations. Due to the large
super cell, a small k mesh of only 3 samples per direction in the xy plane, were chosen.
In Appendix A.3 the hopping parameters for the atomic lattice sites 1-3, 17, 33-36 and
49-56 are tabulated, all other hopping parameters can be obtained from this set, due
to the sixfold symmetry of the defect.

(a) (b)

E - Er [eV]

Figure 22: (a) Geometry of the relaxed flower defect. The red atomic sites denote the atoms
fixed in space during relaxation. (b) The dotted red lines show the band structure calculated
with DFT, the solid blue lines indicate the band structure calculated with NN parameters
considering up to tenth NNs. Perfect agreement between the two band structures is found
over the whole energy range.
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6 Testing the embedding technique

Up to this point we have explained how an embedding technique for defect structures
could look like and have discussed all calculations necessary to realize such an embed-
ding. In this chapter the validity of the developed technique is tested and some results
are presented.

At the University of Vienna transport measurements in graphene are currently con-
ducted. We hope to be able to explain some observations made by this experiment.
Therefore we modeled our embedding test suite such that it resembles the experimental
setup. We first describe the experiment and how we modeled it and in the following
sub-chapters we test the embedding technique by the embedding of defect free structures.

6.1 An experimental setup

A minimal transport measurement in solids consist of a sample structure and at least
two contacts with voltage bias. The measured observable is then the current flow
between two contacts or leads. However, with this approach a lot of information on
the interior scattering behavior is lost or can only be measured indirectly.

2D materials offer new ways to directly measure the electron density at any position in
the lattice due to the accessibility of measurement tools from either side. The group of
Meyer at the University of Vienna tries to realize such a measurement [17]. They access
a free hanging single layer graphene sheet from two sites with two scanning tunneling
microscope (STM) tips, using one of the tips as a electrical contact. Between the tip
used as contact and another contact far away from the measured region a voltage bias
is applied. The second tip scans over the lattice to measure the electron density in each
orbital that interacts with the STM tip. Other experimental configurations with the
same setup can be achieved by varying the potential between the lattice, the contact
tip and the scanning tip.

The electron density measured is the electron density in the p, orbitals, as only they
contribute significantly to the tip-lattice interaction. The electron density in each p,
orbital is proportional to the probability of the electron to scatter into this lattice site.
As outlined in Section 2.4.2 the scattering probability is given by the absolute squared
of the response of the system, which can be calculated by applying an excitation
onto the Green’s function describing the lattice. We therefore are able to model this
experiment.

The size of the modeled lattice was chosen to be 545x630 nm (equals 256x512 atoms),
a size that is computable in a reasonable amount of time and also leaves almost no
boundary effects in the region of interest.

Dyson’s equation was used to join slices of the lattice iteratively (see Figure 8) to
efficiently calculate the Green’s function of the lattice. To prevent backscattering at
the boundaries of the structure half infinite leads were attached to the structure on all
four sides. The only hard wall boundaries remaining in our model are the corners of
the structure. The backscattering of electrons at these edges is negligible. Without the
leads at all four sides boundary backscattering dominates the electron scattering in
the simulation. By contrast, the size of the experimental flake (=1 pm) precludes any
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significant finite size effects.
Using a tight-binding model together with our embedding technique is an approxima-
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Figure 23: Different configurations with hard wall boundary conditions.Image (c) reproduces
the physical most accurate boundaries, as only very little backscattering from the remaining
edges occurs.

tion which does not account for several effects. Besides the ones listed in Section 2.3
these effects are,

e deformation of the lattice due to tip-lattice interaction,

e heating due to the current (actually any finite temperature effects are not in-

cluded),
e oscillations of the freely hanging lattice
e and influence of the surrounding atmosphere.

How large these effects are is partly still under investigation. Nevertheless we hope to
have established a reliable model.

6.2 Defect free scattering patterns

Before testing the embedding method the defect free scattering amplitudes for the
configuration outlined above are discussed. Due to the imperfect cone form of the
dispersion relation around the high symmetry points we found interesting scattering
patterns even for perfect graphene lattices.

The Green’s function is a direct measure of the response of a system to an excitation.
The current induced by the contact tip is an excitation of the system at the orbital
site |®;) in contact. The response of the system is obtained by applying the excitation

to the Green’s function,
R =GS. (52)

|R|? is the probability for an electron injected by the tip to scatter into any lattice site.
We discuss two cases: (i) an excitation at only one lattice side, equal to a STM lattice
interaction between only one p, orbital with a normalized excitation,

S, = |y, (53)
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and (ii) the excitation of two neighboring lattice sites, equal to an STM tip coupling to
two adjacent orbitals, expressed by the excitation,

=518+ [B1.1)). (54)
(i) When applying the excitation of Equation (53) onto the Green’s function of the sim-
ulated graphene structure the scattering amplitude of the electrons in this configuration
can be calculated (see Figure 24 (a) ). In this scattering pattern six preferred scattering
directions can be identified. The reason they occur can be understood by looking at
the dispersion relation of graphene which deviates from the perfect cone shape at high
energies forming a threefold symmetry around the K point (see Figure 5 (b)). With

S

equally distributed wave number K along the dispersion relation electrons are more
likely to be scattered into directions with larger absolute k values. The same threefold
symmetry emerges around the K’ point, only rotated by 60 degrees. This deviation
of the dispersion relation around the K and K’ point is called trigonal warping. As
electrons scatter equally around the K and the K’ point six dominant directions of
scattering emerge. The preferred scattering directions become more pronounced as
the electron energy increases since the deviation of the band structure increases for
increasing energies.

(ii) Placing the STM tip exactly between two lattice sites causes an excitation as
given in Equation (54). This excitation contributes equally to electron scattering into
either lattice site, A or B. Typical scattering amplitudes of electrons in the lattice
with an excitation of this form are shown in Figure 25. The twofold symmetry of the
preferred scattering directions can be understood when expanding the tight-binding
Hamiltonian around the K and K’ points up to second-order and calculating the
resulting wavefunctions. The second-order Hamiltonian expanded around K reads
40, 41],

H(G) = v(qyox + qgoy) — € {(qi +q)ox — 2qqu0y} (55)
and can be rewritten to
o 0 V|q|efie(q) . €|q'|262i9(61)
H(q) = (V|q|ei.9(q) _ e|81|2e_219@ 0 (56)
with 0 = arctan (%> (57)
Ay

Here v & 5.37 eVA and e ~ 4.12 eVA® are expansion coefficients that we calculated
via band structure fitting [42]. The oy and oy are the Pauli matrices and g is the wave

vector origin in K, with d = k — K. The Schrédinger equation around K,
0 V\q’e—iﬁ(d) _ e!(ﬂZeQi"@
(v!ﬁlew@ — €|q|2e—20@ 0 ) = E[¢) (58)

can now be calculated analytically. The eigenfunctions obtained are given by,
1 4+ a(d)
Vk(d) = —= 5@ (59)
V21
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Figure 24: (a) The scattering amplitude for an electron injected by the STM tip into the
graphene sheet at any point in the lattice. This is proportional to the absolute value of the
response of the system. In this image the excitation was given by Equation (53), leading to a
clear threefold symmetry -so-called trigonal warping- and six preferred scattering directions.
The scattering amplitude shown in this plot was calculated with the geometry and parameters
introduced in the beginning of this chapter, with an electron energy of 1 eV. The STM tip and
therefore the excitation is attached to the lattice site exactly at the center of the structure.
(b) Explanation of the six preferred scattering directions. The blue area indicates the angular
resolved probabilities to scatter into lattice sites between the two circles indicated in (a). The
red line shows the number of k states per scattering angle from the second-order dispersion
relation around K and K’.
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with
(@) = velale @D —¢[q? D B(q) = velale” D —elg?e D (60)
and eigenvalues
B+(q) = £va(q)5(9). (61)

With the same procedure as above the wavefunction around K’ can be calculated
analytically yielding,

0oL (/78
vk (q) = 7 ( e ) (62)

with
@/(@) = vrlale M@ + el F(G) = velale®D + qPe 0@ (63)
When taking the absolute value of the summed wavefunctions [42],

Yk + Vi (64)

one finds the curve shown in Figure 25 (b). This analytic expansion rebuilds the
simulated scattering amplitudes remarkably well. The analytic model and the simulation
predict both a far more pronounced angle dependent scattering for the excitation in
(ii) than for the trigonal warping effect as found for an excitation given in (i).

A more detailed discussion of the preferred scattering directions in defect free lattices
of this configuration can be found in [42].
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Figure 25: (a) Scattering amplitudes for electrons injected by an STM tip exactly between
two atomic lattice sites for an electron energy of 1 eV. A very clear twofold symmetry is
established that can be understood as an interference effect of the two wavefunctions around
K and K’. (b) Comparison between simulation and analytic model. The blue area shows the
angular resolved probability values taken from all lattice sites between the two dotted white
circles of (a). The red line shows the result of the analytically model. For larger electron
energies the twofold symmetry becomes even more pronounced.
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6.3 Perfect lattice embedding

Before embedding defects into the lattice configuration we use the embedding technique
on a defect free lattice. By comparing the differences in scattering amplitudes of defect
free simulations and simulations with a perfect lattice embedding the order and type
of the perturbations due to embedding can be studied.

The reason the embedded structure is a perturbation of the perfect lattice described
with third-nearest neighbors is due to the different NN descriptions in the transition
area. We therefore expect differences in the scatter amplitudes for a perfect graphene
lattice simulated with third nearest-neighbor parameter sets and a perfect lattice
embedding. This scattering is a consequence of the curtain method, as it would not
occur for a lattice structure simulated everywhere at the tenth-nearest neighbor level.
Due to the relative smooth transition of NN parameters in the curtain area of the
embedded structure, this perturbations are expected to be small and the scattering
should be dominated by the embedded defect structure.

We studied this effect by placing a 50 atom high and 25 slices wide defect into one
of the preferred scattering directions of Figure 24, starting at a distance of 14 slices
(= 34A) of the STM tip. The size and position of the embedded structure is outlined
in Figure 26 a (i).

To compare the the two calculations we used the difference of the scattering amplitudes

g = \rm R (65)

Where R is the response of the system with third-nearest neighbor description and R’
the response of the system with perfect lattice embedding. For the defect structure we
used curtains C; (numbered in Figure 12) together with parameter sets from Table 1
and assigned in Table 2.

Cp | Co | Cs|[Ca|Cs|Cs|Cr|Cs|Cy|Cro
83‘84‘85‘85‘86‘87‘88‘88‘89‘810

Table 2: Parameter sets used for different curtains.

The reason curtains C4 and Cs where both assigned with the parameter set S° is
due to the large parameter shifts from S* and S°. By assigning the same parameter set
to two neighboring curtains the transition is made slightly smoother. This was also the
reason to choose the parameter set S® on both curtains C; and Cg. The calculations
were done for energies 0.2 eV, 0.5 eV, 0.8 eV, 1.0 eV, 1.2 eV and 1.5 eV (see Figures 26
to 28). For each energy the scattering probability with an embedding (i) and without
an embedding (ii) is shown together with the error as defined in Equation (65) (iii).
When comparing the Figures 26 to 28 (i) with each other one finds the threefold
symmetry as explained in Section 6.2) emerging with growing electron energy.
Comparing the scattering amplitudes with (i) and without (ii) embedding in Figures 26
to 28 it is clear that the error made by embedding the defects is rather small compared
to the total scattering amplitude. How small the error is can be seen in (iii) of Figures 26
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to 28 when comparing the absolute difference with typical scattering amplitudes at the
distance of the defect. For energies between 0.2 eV and 1.0 eV the maximal difference in
scattering amplitudes lies within 1-5 % while it strongly increases for electron energies
above 1.2 eV yielding a maximal relative error of 35 % . The reason for a larger
error at higher energies can be easily understood by comparing the band structures in
Figure 17 for third NN set and for higher NN sets. The band structure of the third NN
approximation and higher NN sets differ strongly at energies above the optimization
range and therefore the scattering at the transition between curtains strongly increases.
Due to the small error for energies below 1.2 eV no differences in the scattering plots
with and without embedding can be seen. At 1.2 eV (Figure 28 a) a minor change of
the scattering pattern can be recognized and for 1.5 eV a strong perturbation due to
the embedded structure becomes apparent.

When testing the embedding technique on perfect lattice embedding one finds that the
embedding technique causes only small but energy dependent errors. Therefore we can
define two criteria that must be satisfied in order for the embedding technique to be
applicable.

e The perturbation caused by a defect structure must be much (about one magni-
tude) larger than the perturbation caused by perfect lattice embedding.

e The embedding technique is applicable only up to electron energies of 1.2eV. As
explained above this is due to the large perturbation caused by the embedding
technique for large energies (Figure 28 b). This is not really a restriction as
the tight-binding model for 3NN also fails at higher energies because at higher
energies the third order tight-binding approximation also does not resemble the
real band structure appropriately.
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Figure 26: Scattering states at 0.2eV and 0.5eV. In (i) defect free scattering amplitudes are
plotted in (ii) scattering amplitudes of perfect lattice embedding are shown. (iii) shows the
difference in scattering amplitudes as shown in Equation (65). The bottom left insets in
(i) and (ii) show the angle resolved scattering amplitudes with angle and axes as defined in
Figure 24.

Between (i) and (ii) no difference can be seen, in (iii) we find that the error for these low
energies is small compared to the total scattering amplitudes. In a (i) the position, shape
and distance of the embedded structure to the excitation position is shown.

47



Figure 27: Scattering states at 0.8eV and 1.0eV. In (i) defect free scattering amplitudes are
plotted in (ii) scattering amplitudes of perfect lattice embedding are shown. (iii) shows the
difference in scattering amplitudes as shown in Equation (65). The bottom left insets in
(i) and (ii) show the angle resolved scattering amplitudes with angle and axes as defined in
Figure 24.

Between (i) and (ii) no difference can be seen, in (iii) we find that the error for these electron
energies is small compared to the total scattering amplitudes. In a (i) the position and shape
of the embedded structure relative to the excitation position is shown.
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Figure 28: Scattering states at 1.2eV and 1.5eV. In (i) defect free scattering amplitudes are
plotted in (ii) scattering amplitudes of perfect lattice embedding are shown. (iii) shows the
difference in scattering amplitudes as shown in Equation (65). The bottom left insets in
(i) and (ii) show the angle resolved scattering amplitudes with angle and axes as defined in
Figure 24.

When comparing a(i) and a(ii) one finds that small differences due to the larger embedding
error found in a(iii) can be found. These differences become very prominent for even higher
energies as can be seen when looking at b (iii) and by comparing the angle resolved plots in
b (i) and b (ii). In b (i) the strongly differingt%reas are indicated by red arrows.



7 Defect embedding

After having established the error concepts for the presented embedding technique
(Section 6.3), this embedding technique can now be applied for scattering at different
defect structures. We use the same setup for the curtains as discussed in Section 6.3 and
placed the embedded structure 34A to the right of the STM contact tip (see red arrows
in Figures 29 to 32). The embedded structures consist of the defects calculated in
Section 5 and the surrounding curtains calculated in Section 4. To investigate scattering
at defects a number of parameters can be varied, such as the tip-defect distance, the
angle of the tip-defect line relative to the lattice orientation and the energy. Of these
parameters, the electron energy is of particular interest. We investigated therefore
electron scattering at various defect structures for different electron energies.

7.1 Stone-Wales defect

We found that the Stone-Wales defect has only very little influence on the total scattering
behavior in all investigated energy regimes (see Figure 29). For very low energies the
embedding technique causes a rather large error, as the perturbation due to the defect
is only slightly larger than the perturbation caused due to the embedding technique
(see Figure 29 a (ii)). In Figure 29 a (ii) the rectangular shape of the embedded
region becomes apparent. Even for 1.2 eV and therefore very pronounced preferred
scattering directions the influence of the defect on the total scattering amplitudes is
small compared to other defects.

7.2 Flower defect

Of all investigated defects this defect structure features the most pronounced influence
onto the scattering amplitudes. The perturbation caused by the defect is -at all
investigated energies- one order of magnitude larger than the perturbation due to
embedding. Therefore the embedding technique works very well for this defect structure
(see Figure 30).

At low energies (0.2 eV and 0.5 eV) we found that a localized state in and around
the defect emerges (see Figure 30 a (i) and b (i)). By a localized state we mean that
large scatter amplitudes in the orbits in and around the defect structure where found,
this is equivalent to a large probability of the electrons to scatter into orbitals around
the defect. A localized state at the flower defect was already observed in [13] using
DFT calculations. This result provides further proof of the validity of the embedding
technique and an interesting feature worth further investigation.

For higher energies (0.8 eV, 1.0 eV and 1.2 eV) another property of scattering at
the defect emerges. The backscattering from the defect seems to develop a threefold
symmetry just as the perfect lattice scattering has (see Figure 30 b (i), ¢ (i) and c (ii)).
An explanation for this behavior is the threefold symmetry of the defect itself.

20



0.2 eV

0.8 eV

1.2 eV

Stone Wales defect

Rl

S eSS

T

R = [R]]

a (ii)

3.46

2.77

2.08

1.38

1.76

1.32

0.88

0.44

0.0
1072

Figure 29: Scattering amplitudes (i) and deviation from the scattering pattern of the defect
free lattice (ii) for an embedded Stone-Wales defect at three different energies. |R’| and
[|IR'| = |R|| as defined in Equation (65). The defect position is marked by a red arrow. The
nested plot in (i) show the angle resolved scattering amplitudes with axes and angle defined

as in Figure 24.

For 0.2 eV the embedding technique is not very accurate as the perturbation caused by the
defect is not much larger than the perturbation caused by the embedding (compare Figure 26
c (i) with a (ii) of this figure). For 1.2 eV the defect only causes slight scattering.
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Figure 30: Scattering amplitudes (i) and deviation from the scattering pattern of the defect
free lattice (ii) for an embedded flower defect at three different energies. |R/| and ||R/| — |R|]
as defined in Equation (65). The defect position is marked by a red arrow. The bottom left
insets in (i) show the angle resolved scattering amplitudes with axes and angle defined as in
Figure 24.

The embedding technique is applicable for all investigated energies as the perturbation caused
by the defect is much larger than the perturbation caused by the embedding technique. The
defect position is marked by a red arrow. In a(i) and b(i) a localized state around the defect
can be identified. 59



7.3 Si Substitute

The replacement of a carbon atom by a Si atom in the lattice leads to surprisingly
strong backscattering (see Figure 31 (i)). For the entire investigated energy range
the perturbation caused by the substitution defect is far larger than the perturbation
caused by the embedding. Therefore the embedding technique is applicable in the
entire energy range.

The reason for the rather strong influence on the scattering behavior is unclear as
the geometrical lattice expansion (as shown in Figure 21) is small compared to other
investigated defects. This could be subject to further investigations.

At 1.2 eV a threefold symmetry with three pronounced scattering directions emerges.
The incident electron beam gets strongly scattered at the defect structure where two
directions of backscattering emerge (see the two horizontal arrows in Figure 31 c(ii)).
The preferred directions of backscattering can be explained by the symmetry of the
defect structure.

7.4 Double Vacancy

We found that the influence of the double vacancy on the total scattering pattern is
very small. An argument that supports this observation is that the two sublattices
of graphene are disturbed the same way. Even though the defect structure opens
up a band-gap it conserves AB sub-lattice symmetry and therefore conserves the
pseudo-spin in graphene [43]. The conserved pseudo-spin causes strongly suppressed
backscattering at the defect structure [43]. Due to the small influence of the defect the
embedding method performs rather poorly for low electron energies (see Figure 32 a
(ii)). Nevertheless starting from 0.5¢V the embedding gives reasonable results and the
vacancy hardly changes the scattering pattern. Only for 1.2eV a slight change can be
found (see Figure 32 c (ii)).
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Silicon substitute

a (ii)

1.79

IR’ = [R]|

1.43

1.07

0.5eV

0.72

1.0 eV

3.66
2.74

1.2 eV

1.83

0.91

0.0
1072

Figure 31: Scattering amplitudes (i) and deviation from the scattering pattern of the defect
free lattice (ii) for an embedded silicon interstitial at three different energies. |R’| and
||IR'| — |R|| as defined in Equation (65). The defect position is marked by a red arrow. The
bottom left insets in (i) show the angle resolved scattering amplitudes with axes and angle
defined as in Figure 24.

For 0.2 eV the embedding technique is not very accurate, as the perturbation caused by the
defect is not much larger than the perturbation caused by the embedding (compare Figure 26
¢ (i) with a (ii) of this figure). For 1.2 eV the defect only causes slight scattering. The defect
position is marked by a red arrow. 54
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0.8 eV

1.2 eV

R’

Double vacancy

IR = IR

a (ii)

1.7

1.36

2.31
1.15

0.0
1073
c (ii)

1.16

0.93
0.7

0.46
0.23

Figure 32: Scattering amplitudes (i) and deviation from the scattering pattern of the defect
free lattice (ii) for an embedded double vacancy at three different energies. |R’| and ||R'| —|R]]
as defined in Equation (65). The defect position is marked by a red arrow. The bottom left
insets in (i) show the angle resolved scattering amplitudes with axes and angle defined as in

Figure 24.

For 0.2 eV the embedding technique is not very accurate as the perturbation caused by the
defect is not much larger than the perturbation caused by the embedding (compare Figure 26
c (i) with a (ii) of this figure). For 1.2 eV the defect only causes slight scattering.
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7.5 Conclusion

While the flower defect causes massive backscattering of incident electrons the Stone-
Wales defect and the double vacancy hardly cause any scattering at all. The silicon
interstitial leads to a backscattering at the structure that is surprisingly strong, consid-
ering the geometrical extension of the defect.

We currently do not have an explanation for the localized state at low energies around
the flower defect. While the strongly suppressed backscattering at the double defect
could be explained with conservation of pseudo-spin, the reason for the very small
influence of the Stone-Wales defect must lie in a different argument.

For defects with little influence on the scattering at low energies (0.2-0.5 eV) the
established embedding method is applicable but not very accurate. At higher energies
the influence of the defect on the total scattering pattern increases leading to a more
accurate description of defect scattering in graphene. For defects with larger influence
on the scattering pattern (e.g. flower and silicon interstitial) the embedding technique
is accurate in the entire energy regime.
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8 Summary

The aim of this thesis was to contribute to the understanding of defects in graphene.
We successfully established, implemented, and tested an embedding technique to
simulate transport through large graphene lattices with defects and used it to simulate
transport with a variety of different defect structures. We use a Green’s functions
method to calculate large lattice structures in the tight-binding formalism. We include
defect structures, consisting of a rearrangement of the atoms around the defect and
a corresponding change in tight-binding parameters, in these large lattices via an
embedding technique. We use density functional theory (DFT) to obtain an accurate
defect description while the computational effort of describing embedded defects via
tight-binding remains reasonable. The embedding technique surrounds a structure
relaxed via DFT with a transition area consisting of several layers of atomic lattice sites.
Tight-binding parameters in the transition region smoothly connect the high-order
description around the defect with the bulk lattice parameters. We tested this method
by embedding defect free structures and found that the embedding technique is valid.
An experimental setup currently used at the University of Vienna serves as a template
to shape our simulations, with this approach we hope to predict some results of these
measurements.

We find preferred scattering directions for electrons induced by a STM tip. These
preferred scattering directions could be explained analytically via trigonal warping and
interference effects of wavefunctions. Testing the embedding technique on the setup we
found that the gradual change of NN parameters in the transition region causes only
small errors in the scattering patterns and is therefore applicable for embedding defect
structures.

After these benchmark calculations we apply our embedding technique to a number of
different defect structures to determine their influence on the local transport properties.
We obtain a high-level description of defect structures using DFT calculations on
large super cells. A basis transformation of these calculations into maximally localized
Wannier orbitals yields tight-binding parameters of the defect structure.

We consider flower and Stone Wales defects, vacancies and silicon substitutes. While
Stone Wales and double vacancy defects only slightly change the scattering behavior
of the electrons, the larger flower defect massively influences the scattering behavior.
Quite interestingly also the geometrically rather small silicon substitution defect caused
a large perturbation of the scattering pattern. We also observed pronounced localized
states at the defect structure for flower defects at low electron energies.
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9 QOutlook

Future work based on this thesis could extend our results in various directions.
e Comparison with the discussed experiment,
e applying the embedding method to additional defect structures,
e improving the embedding technique itself,

e considering additional degrees of freedom of the lattice (e.g. electron-phonon
interactions)

e Developing a Green’s function method based on tenth NN coupling everywhere
making the embedding obsolete.

The embedding model could also be extended to larger defect structures, e.g. extended
one-dimensional topological defects spanning the whole lattice. One example would be
grain boundaries on epitaxially grown graphene where flakes that grow with different
orientation touch. Such defects are very common and up to this date not well under-
stood.

One obvious next step will be to compare the results obtained in this thesis with
the experimental data from the experiment discussed in Section 6.

An improvement of the embedding technique could be obtained by finding NN
parameter sets that blend smoothly into each other. One possible way of realizing
this would be limiting the optimization parameter space to a subset where the NN
parameters are smoothly transformed via Lagrange multipliers.

During the discussion some simplifications were applied to make large systems
treatable with modern computational capacities. One very drastic simplification was
neglecting electron phonon interactions. When N phonons per atomic lattice site are
considered the tight-binding Hamiltonian would be N times larger leading to a massive
increase in computational effort. Promising work is currently done to reduce the number
of basis elements that need to be considered in the phonon-electron interaction bringing
such treatment within reach.

Finally one could think of a variation of the currently implemented method of
calculating the Green’s function. Instead of proceeding slice by slice one could calculate
three slices at a time. While this would massively increase the computational effort it
would also make the embedding obsolete, as the lattice can be treated naturally in the
tenth nearest neighbor approximation.

In conclusion we can say that there is a lot left for investigation providing promising
research topics for the next years.
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Defect parameters of the Double vacancy with atoms as numbered

Table 4
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A.3 Flower defect
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Defect parameters of the Flower defect with atoms as numbered

Figure 22.
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Table 6

as numbered in Figure 22.
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A.4 Silicon interstitial
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Defect parameters of the Silicon interstitial with atoms as numbered
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