
Intuitive Robot Programming and Physical Human-Robot
Interaction

DIPLOMA THESIS

Conducted in partial fulfillment of the requirements for the degree of a

Diplom-Ingenieur (Dipl.-Ing.)

supervised by

Univ.-Prof. Dr. techn. A. Kugi
Dr. techn. C. Hartl-Nesic

submitted at the

TU Wien
Faculty of Electrical Engineering and Information Technology

Automation and Control Institute

by
Elias Pritzi

Matriculation number 01607436

Vienna, in September 2022

Complex Dynamical Systems Group
A-1040 Wien, Gußhausstr. 27–29, Internet: https://www.acin.tuwien.ac.at



Preamble
First and foremost, I would like to express my deep gratitude to my supervisor, Dr. techn.
Christian Hartl-Nesic, for his continuous inspiration and guidance. The completion of this
diploma thesis would not have been possible without his support, be it for the theoretical
knowledge in the field of robotics as well as for the practical support during the execution
of the experiments.

I would like to especially thank Univ.-Prof. Dr. techn. A. Kugi for the opportunity to
conduct my diploma thesis under his supervision and for giving me access to the robot
laboratory. His interesting lectures were what made me pursue this particular degree in
the first place.

I am also very grateful for the continuous encouragement, motivation and support
provided by my family. My family’s support made my studies possible at all.

Last but not least, I would like to thank all the fellow students that assisted me during all
my years of studying, whether during preparations for exams, during laboratory exercises
or during various on- or off-topic discussions. In particular Felix Heidegger, Lukas Flatz
and Georg Feiler are to be thanked for countless professional and personal exchanges of
ideas.

Vienna, in September 2022

I



Abstract
Recent trends in the manufacturing industry require more flexible and customizable
production sites to satisfy the demand for an increasing product diversity. To cope
with this shift, manufacturing companies increasingly apply collaborative robots, since
they are more versatile and are easier to adjust to new tasks compared to traditional
industrial robots. Collaborative robots especially offer opportunities for small- to medium-
sized enterprises, because they are designed for direct human-robot interaction and thus
programmable without the need for highly sophisticated programming skills. Nevertheless,
the development of intuitive interaction modes is still an active field of research to which
the presented work contributes.

In this work, two novel user interaction modes for human-robot collaboration (HRC)
are introduced, called Path Snap-In and Path Switch. These modes are based on path-
following control and address multitask scenarios. The human operator decides online
which task to perform by physically interacting with the robot.

During Path Snap-In, the robot can snap in and out of the tasks by pushing it towards
or away from predefined paths. This is achieved by simultaneously computing multiple
path-following controllers and weighting their individual control output with a distance-
dependent weighting factor. The so-called Orientation Snap is introduced as a special
case of Path Snap-In, in which only the orientation of the end-effector snaps in and out of
predefined directions while the robot is freely movable otherwise.

During Path Switch, the robot is always controlled by one active path-following controller.
The operator may change the active task by pushing the robot towards the path of the
desired task. An underlying belief system estimates the human intent by accumulating
the externally applied force. Once a desired task change is detected, an online trajectory
generator generates a trajectory to transition to the new path.

The presented concepts are validated in a collaborative drilling scenario on an experi-
mental setup with the Kuka LBR iiwa 14 R820.

II



Kurzzusammenfassung
Jüngste Trends in der Fertigungsindustrie erfordern flexible und anpassbare Produkti-
onsstätten, um der Nachfrage nach einer zunehmenden Produktvielfalt nachzukommen.
Um diesen Wandel zu bewältigen, setzen Fertigungsunternehmen vermehrt kollaborative
Roboter ein, da diese im Vergleich zu traditionellen Industrierobotern vielseitiger sind und
sich einfacher an neue Aufgaben anpassen lassen. Kollaborative Roboter bieten vor allem
für kleine und mittelständische Unternehmen neue Möglichkeiten, da sie speziell für die
Interaktion zwischen Mensch und Roboter konzipiert sind und daher ohne anspruchsvolle
Programmierkenntnisse in Betrieb genommen werden können. Die Entwicklung von intui-
tiven Interaktionsmodi ist ein aktives Forschungsgebiet, zu welchem diese Arbeit einen
Beitrag leistet.

In dieser Arbeit werden zwei neue Benutzerinteraktionsmodi für die Mensch-Roboter
Kollaboration (HRC) vorgestellt, Path Snap-In und Path Switch genannt. Diese basieren
auf der Pfadfolgeregelung und behandeln Szenarien mit mehreren Aufgaben und zuge-
hörigen Pfaden. Die Bediener_in entscheidet während der Ausführung durch physische
Interaktion mit dem Roboter, welche Aufgabe ausgeführt werden soll.

Während des Path Snap-In kann der Roboter auf bestimmten Pfaden einrasten oder
sich davon lösen, indem er zu den Pfaden hin- oder weggedrückt wird. Dies wird durch
eine simultane Berechnung von mehreren Pfadfolgereglern erreicht, dessen Stellgrößen
über distanzabhängige Gewichtungsfaktoren gewichtet werden. Als spezieller Fall des
Path Snap-In wird ein sogenannter Orientation Snap eingeführt, bei welchem nur die
Orientierung des Endeffektors in vordefinierte Richtungen einrastet bzw. sich davon löst,
während der Roboter ansonsten frei beweglich bleibt.

Während des Path Switch wird der Roboter immer durch einen aktiven Pfadfolgereg-
ler geregelt. Die Bediener_in kann die aktive Aufgabe ändern, indem der Roboter in
Richtung des Pfades der gewünschten Aufgabe gedrückt wird. Ein zugrundeliegendes
Belief-System schätzt die menschliche Absicht durch Akkumulation der extern einge-
brachten Kraft. Sobald ein gewünschter Wechsel der Aufgabe erkannt wird, generiert ein
Online-Trajektoriengenerator eine Trajektorie für den Übergang zum neuen Pfad.

Die vorgestellten Konzepte werden in einer kollaborativen Bohranwendung an einem
experimentellen Aufbau mit dem Kuka LBR iiwa 14 R820 validiert.

III



Contents
1 Introduction 1

1.1 Industrial Processes with Cobots . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Human-Robot Interaction in Collaborative Robotics . . . . . . . . . . . . 3
1.3 Aim of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Overview of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Mathematical Model 6
2.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Path Following Control 9
3.1 Path Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Path-Dependent Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Coordinate Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Exact Input-Output Feedback Linearization . . . . . . . . . . . . . . . . . 14
3.5 Path-Based Impedance Control . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 Nullspace Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 User Interaction 19
4.1 Path Snap-In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Control Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Virtual Input Transformation . . . . . . . . . . . . . . . . . . . . . 21
Weighting Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Combining and Feeding Back the Virtual Inputs . . . . . . . . . . 24
Parameter Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.2 Orientation Snap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Path Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Detection of the Intention to Switch . . . . . . . . . . . . . . . . . 30
External Force Estimation . . . . . . . . . . . . . . . . . . . . . . . 30
Search for new Path Candidates . . . . . . . . . . . . . . . . . . . 31
Belief System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.2 Transition Trajectory Generation . . . . . . . . . . . . . . . . . . . 35
Shape of the Trajectory . . . . . . . . . . . . . . . . . . . . . . . . 36
Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 37
Parameter Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 41
Transition Duration . . . . . . . . . . . . . . . . . . . . . . . . . . 43

IV



Contents V

5 Experiments 45
5.1 Teach-In Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Path Snap-In Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Path Switch Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Conclusion and Outlook 62

A Appendix 64
A.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.1.1 Pseudoinverse of path-based Jacobian . . . . . . . . . . . . . . . . 64
A.1.2 Transformation from path-based velocity to cartesian velocity . . . 65

A.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.2.1 System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.2.2 Controller Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.3.1 Winner Take All Algorithm . . . . . . . . . . . . . . . . . . . . . . 70

A.4 Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



1 Introduction
In the past, the field of robotics mainly focussed on the development of traditional
industrial robots, which are now widely used in manufacturing facilities for high-volume
production. Although these robots require fence guardings and additional safety measures,
the average robot density in the global manufacturing industry reached 126 robots per
10, 000 employees in 2020 [1]. Recent trends in the manufacturing industry demand more
customizability and shorter lead time to produce a larger variety of products. Especially
small- and medium-sized companies follow this demand, and thus, increasingly adopt
collaborative robots into their manufacturing processes [1, 2]. Collaborative robots, often
abbreviated as cobots, are designed for direct interaction between a human operator and
the robot [3]. With the employment of cobots, the work load can be divided between the
human and the robot and no safety fence guards are needed. One of the main difficulties
in the adoption of human-robot collaboration (HRC) is the development of intuitive
interaction modes. When sophistacted interaction modes are implemented, providing
inputs to the robot as well as estimating the robots intention (to interact with the robot,
the human operator must be able to anticipate its motion) must be straightforward [4].
The communication with the robot should not distract the human operator from the task
at hand.

1.1 Industrial Processes with Cobots
Currently, most cobots in the manufacturing industry deal with simple tasks like handling
or assembling objects [4]. The use of cobots in these tasks reduces the human work
load and, additionally, allows the manipulation of objects which are not suitable for a
human, e. g., due to safety or hygienic reasons [5, 6]. While the mentioned tasks may
also be performed by traditional industrial robots, the integration of cobots results in
shorter product lifecycles, reduced time-to-market and increased flexibility [7]. However,
in material handling and assembling tasks, the robot is used as a tool and not as a
collaborative workmate. In these applications, the full potential of collaborative robots
is not utilized. To differentiate the different levels of human-robot interaction (HRI),
various classifications are found in the literature. Most of them distinguish at least three
categories [8]:

• Human-Robot Coexistence describes the sharing of a common workspace between the
human and the robot without a common task. The main goal is avoiding collisions,
while both parties focus on their individual tasks.

• Human-Robot Cooperation describes the joint work of the human and the robot
to fulfill a common task, while both parties deal with individual subtasks. In this

1



1 Introduction 1.1 Industrial Processes with Cobots 2

scenario, the robot may, e. g., fetch parts from the storage and provide them to the
human, who subsequently assembles these parts to a final product.

• Human-Robot Collaboration (HRC) describes the performance of a complex task by
the human and the robot together. For example, the joint operation of a two-person
cross-cut saw falls in this category [9].

To make use of the full potential of collaborative robots, a lot of research is put into the
category Human-Robot Collaboration. In a collaborative application, the preciseness and
strength of the robot is combined with the cognitive awareness of the human operator,
which enables the execution of complex tasks. One of the most common applications of
industrial robots is welding. Difficulties in performing welding processes with robots arise
in real working conditions, e. g., due to distortions induced by heat [10]. A skilled human
welder can adapt to these difficulties, but the robot generally can not. In a human-robot
collaborative welding application, the human operator may adapt the robot behavior
to the real working conditions and thus improve the task execution. This applies in a
similar way to other robotic operations, such as spray painting [11], milling [12], cutting,
polishing, deburring or drilling [13].

These applications are suitable for HRC and share one specific property. Each task
defines a geometric path along which the robot or the robotic tool should interact with
the workpiece. The movement along this geometric path is not tied to a predefined
timing information, since this timing information depends on real working conditions.
This problem is often considered as path following control [14]. In path following control,
the movement of the robot endeffector along the path and the movement transversal to
the path are controlled separately. The main objective is to move and stay on the path,
while the secondary objective is to perform a desired motion along the path. With the
application of transversal feedback linearization, a rigid-body robotic system transforms
into a linear system in the path coordinates [15]. With this transformation, common
control strategies like force control, impedance control or admittance control are applicable
in these path coordinates.

Industrial processes are often described by a desired motion of a robotic tool along an
application-specific path. The motion of the tool is expressed w.r.t. a virtual reference
point specific to a robotic tool. This virtual reference point is called tool center point
(TCP) and may be, e. g., the tip of a milling head. The TCP of a robotic tool is described
as a translation and orientation relative to the robot flange.

In applications, where human and robot work collaboratively, the robot should behave
compliantly in certain situations. Various well-known control strategies let the robot react
compliantly to an external contact. Using an impedance controller, the robot reacts to
a deviation from the desired position with a restoring force. With this control concept,
the robotic system acts as a virtual spring-mass-damper system with specifiable virtual
impedance parameters [16]. Another method to implement a desired impedance is by
using an admittance controller. An admittance controller reacts to an external force
with a change in the desired position. The admittance-controlled system is position
controlled and reacts to an external force, whereas an impedance-controlled system is
torque controlled and reacts to a deviation in the position. Depending on the system
at hand, either an impedance or admittance controller may be used. Note that for the



1 Introduction 1.2 Human-Robot Interaction in Collaborative Robotics 3

implementation of an impedance or admittance controller, the external force must be
measurable. Otherwise, the virtual mass is not specifiable and only the virtual spring
and the virtual damper parameters can be chosen. This resulting controller is called
compliance controller.

1.2 Human-Robot Interaction in Collaborative Robotics
The interaction between the human and the robot is a very active field of research, since
both, commanding tasks to the robot and estimating the intention of the robot, must be
straightforward in a sophisticated interaction interface. Various interaction modes, such as
visual, vocal, gestural or haptical among others, are studied [17]. Some interaction modes
like vocal and gestural commanding appear natural to humans, but they are only usable to
activate high-level functionality. They have a limited amount of differentiable commands
and it is almost impossible to program a milling task by voice or gesture. Thus, without
a large degree of robot autonomy, vocal and gestural commanding are of limited benefit
in industrial processes. A more promising approach is haptic interaction. With haptic
interaction, a more detailed task description can be programmed, while this interaction
is still intuitive to the human. This communication type is often referred to as physical
Human-Robot Interaction (pHRI) [18, 19]. It is commonly used in the programming
concepts for collaborative robots.

The most common methods to program a robotic task are lead-through programming,
offline programming, walk-through programming and programming by demonstration [4]. In
lead-through programming, the robot is manually moved through the desired motion with
the use of a teach pendant. It is a simple, but time-consuming programming method and
is not suitable for complex tasks. With offline programming, the programming is remotely
done in a specific software without physical access to the actual robot. It simulates the
behavior of the complete robotic working environment and the program is deployed to
the physical robot only after validation in the simulation. It is suitable for complex tasks
and less time-consuming than lead-through programming, but it requires the knowledge
of a specific robot programming language and the corresponding software tools. To make
the programming more accessible to non-experts, the walk-through programming was
introduced. During the walk-through programming, the operator is allowed to physically
move and guide the robot through the desired process. The robot records the performed
motion and is able to exactly reproduce it. In a more generalized way, the method of
programming by demonstration records multiple demonstrations of a human guiding the
robot through the desired motion and tries to learn and abstract the task. By taking
multiple demonstrations, the robot learns, e. g., which parts of the motion require higher
precision and which parts less. The difficulty lies in finding a way to abstract multiple
task demonstrations.

In a collaborative scenario, the human should be able to incorporate its cognitive
understanding of the environment. To do so, the operator must be able to adapt the
behavior of the robot during the online execution of a task. This can either be the
adaptation of a single ongoing task or the selection and switch between mutiple ones. In



1 Introduction 1.3 Aim of this Work 4

the following, some research papers dealing with online single- or multi-task adaptation
are briefly discussed.

The work [20] focusses on multi-task adaptation in a human-robot cooperative setup.
The authors introduce four tasks and a belief system that decides which task should be
the active one. The human can move the robot endeffector and by imitating the desired
task, the belief system updates its values, recognizes the human intent and the robot
changes its active task. The tasks are encoded as Dynamical Movement Primitives (DMPs)
[21], which is a statistical approach to encode tasks and movements. It is the foundation
for many other papers dealing with programming by demonstration. In [22], Nemec et
al. use speed-scaled DMPs to teach tasks and adapt them during the execution. This
work incorporates a two-stage learning process, where the path adaptation depends on
the speed of the taught motion (low speed means high precision and vice versa) and the
spatial variance of the repetitions. By considering speed and spatial difference, the path
w.r.t. time, space and desired impedance parameters is adjusted.

In [23], Ansari and Karayiannidis discuss a task-based role adaptation scheme based on
local geometric motion primitives. A rigid body is jointly moved by a human and a robot.
The robot supports the human in the two primitive tasks of translation and rotation.
Again, a belief system is used to choose the active task.

Another approach to adjust the robot behavior based on external human action is given
in [24]. In this work, the future desired trajectory is adjusted based on the force applied
by the human. This is helpful to avoid an obstacle on the intially planned trajectory that
is detected by the human during the execution. A single push by the human operator is
enough to deform the future desired trajectory. After a defined time, the robot returns to
the initially planned trajectory and the new trajectory merges in the old one.

1.3 Aim of this Work
While the publications mentioned above investigate the online adaptation of robotic tasks,
they rarely discuss HRC in a multi-task scenario, i. e. when multiple predefined tasks
exist. If they do so, their tasks are mostly specified as DMPs or specializations thereof.
These statistical formulations are useful if a task often changes slightly, or the motion for
the task has to be adapted from execution to execution. However, if the tasks are not
often adapted and the main goal is to switch between multiple predefined tasks, basing
the approach on the concept of path-following control offers more advantages. Control
concepts based on path-following control provide a systematic approach to HRC, where the
robotic motion is restricted to a geometric path in the workspace. Based on this specified
geometric path, the control strategy focusses on two objectives: controlling the robot in
the direction of the path and controlling the robot transversal to the path. To do so, a
direct formulation of the path and its derivatives is needed. DMPs do not provide that.
In contrast to DMPs, the representation as paths has no time parametrization attached
to it. This eases the switching between multiple tasks, since the explicit formulation in
the representation as path allows to find an optimal position along the path independent
of time, while the DMPs depend on the time at the moment of the switch.

Thus, the aim of this work is to design two novel modes of human-robot interaction,



1 Introduction 1.4 Overview of this Thesis 5

based on the control concept of path-following control. They should include the definition
of multiple collaborative tasks and enable the human operator to select and switch between
them. The first mode, called Path Snap-In, should let the operator freely move the robot
in its working environment and activate a certain task as soon as the robot comes close to
a task-specific pose. In the second mode, referred to as Path Switch, the robot should
always perform one active task, but it should transition into a new task when it is pushed
by the human in a certain task-specific way.

1.4 Overview of this Thesis
The remainder of this work is structured as follows. In Chapter 2, the mathematical
model of the 7-DOF collaborative robot used in the experimental section of the presented
work is introduced. The control concept is based on this mathematical model.

To describe a general manufacturing task, the position and orientation are given as
parametrized paths. The base of the HRI modes presented in this work is provided
by path-following control. Its control concept and the used notation are introduced in
Chapter 3.

The main contribution of this work is the introduction of two novel human-robot
interaction modes. They are presented in Chapter 4, where the first interaction mode
Path Snap-In is discussed in Section 4.1 and the second mode Path Switch is introduced in
Section 4.2. For the Path Snap-In, a method for activating and deactivating the assisting
control depending on the position and orientation of the tool center point is given. For
the Path Switch, a method to estimate the human intention is found. It accumulates the
exerted force by the human operator and decides which task should be the active one. To
transition between two tasks, an online trajectory generator is designed.

In Chapter 5, the concepts are validated in an examplary drilling scenario. The chapter
contains the discussion of three different experiments. The first experiment, presented in
Section 5.1, includes the teach-in of the robotic drilling task. In the second experiment,
presented in Section 5.2, the collaborative drilling task is performed with the Path Snap-In
mode and in the third experiment, presented in Section 5.3, the collaborative drilling task
exploits the Path Switch mode.

The work is concluded with a summary of the work and an outlook on possible extensions
in Chapter 6.



2 Mathematical Model
The first step in controlling the robot is the derivation of a mathematical model. First,
the kinematics of the robot are discussed and second, the system dynamics are presented.
In this work, the Kuka LBR iiwa 14 R820 is used. The following derivation is tailored to
this type of robot. For a more in-depth discussion, see, e. g., [25].

2.1 Kinematics
Describing a pose in the three-dimensional space requires six coordinates, i. e. three for
the position and three for the orientation. In this work, homogeneous transformations are
used to describe the relation between two coordinate frames. Using the notation dY

X ∈ R3

for the position vector and RY
X ∈ SO(3) for the rotation matrix of the frame Y with

respect to X , expressed in X , a homogeneous transformation HY
X ∈ SE(3) is given by

HY
X =


RY

X dY
X

01×3 1

�
, (2.1)

where 0m×n denotes a zero matrix or vector with m rows and n columns. In the following,
if m and n are omitted, 0 denotes a zero matrix of matching dimension. Successive
transformations are written as sequential multiplication of homogeneous transformations.
A translation of distance d in the direction of the local axis l is denoted by HTl,d and a
rotation of α around the local axis l is denoted by HRl,α. In the following, the coordinate
systems of the robotic joints are denoted by Li, see Figure 2.1. The homogeneous
transformation matrices HLi

Li−1
between two successive coordinate systems are described

by
HLi

Li−1
= HTy,di,yHTz,di,zHRx,αi

HRz,qi
, (2.2)

with the fixed joint parameters di,y, di,z and αi and the variable joint position qi. Con-
catenating the robotic links yields the forward kinematics of the tool center point (TCP)
frame T w.r.t. the base frame B, reading as

HT
B (q) = HL1

B (q1)HL2
L1

(q2) · · · HL7
L6

(q7)HE
L7HT

E =

RT

B (q) dT
B (q)

01×3 1

�
, (2.3)

with the homogeneous transformation from the base frame B to the frame of the first
robotic joint L1 (corresponding to HL1

B = HL1
L0

) and the transformation from the last joint
frame L7 to the endeffector frame E (corresponding to a translational transformation of
HE

L7 = HTz,d8,z), see Figure 2.1. In (2.3), the constant homogeneous transformation from
the endeffector frame E to the TCP frame T is denoted by HT

E . The kinematic joint

6



2 Mathematical Model 2.1 Kinematics 7

B

T

d1,z

HT
E

q3

q1

L2

L1

L3

L4

L5

L6

L7

d2,z

d3,y

d4,z

d5,y

d6,z

d7,y

d8,zWrist

Elbow

Shoulder

q5

q2

q4

q6

E

q7

Figure 2.1: Schematic drawing of the robot Kuka LBR iiwa 14 R820 with the used
coordinate frames [26].

parameters di,y, di,z, αi, i ∈ {1, ..., 7} and d8,z for the Kuka LBR iiwa 14 R820 are found
in the Appendix A.2.1.

Based on the forward kinematics (2.3), the pose of the TCP is considered as the output



2 Mathematical Model 2.2 Dynamics 8

of the system and is defined as

y =

yt
yr

�
=


dT

B (q)
ϕ


RT

B (q)
�

=

ht(q)
hr(q)

�
= h(q) ∈ R6 , (2.4)

with the position yt ∈ R3 and the orientation yr ∈ R3 of the TCP frame with respect
to the base frame B. The function ϕ


RT

B


computes a minimal representation of the
rotation matrix RT

B .
To relate the joint velocities to the translational and rotational velocities of the TCP,

the analytic Jacobian Ja(q) ∈ R6×7 is utilized. Differentiating (2.4) results in

ẏ =

ẏt
ẏr

�
= ∂h

∂q (q)q̇ =

Jt(q)
Jr(q)

�
q̇ = Ja(q)q̇ . (2.5)

The geometric Jacobian Jg(q) ∈ R6×7 directly maps to the angular velocity ωT
B of the

TCP frame T w.r.t. the base frame B and is computed as
ẏt
ωT

B

�
=


Jt(q)
∂

∂q̇ωT
B

�
q̇ =


Jt(q)
Jω(q)

�
q̇ = Jg(q)q̇ , (2.6)

The angular velocity ωT
B is calculated from the rotation matrix RT

B (q) using

ωT

B
�

× = ṘT
B (q)


RT

B (q)
T

, (2.7)

with the skew-symmetric operator [·]× : R3 → R3×3 defined asω1
ω2
ω3


×

=

 0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

 . (2.8)

In the following, if not mentioned otherwise, every rotation is described w.r.t. the base
frame B and the lower index (.)B is omitted to improve readability, i. e. ωT = ωT

B .

2.2 Dynamics
The system dynamics describe the reaction of the robot to an applied joint torque τ . It
can be shown that the dynamic model of a rigid-body system with 7 degrees of freedom,
i. e. q ∈ R7, is formulated as

M(q)q̈ + C(q, q̇)q̇ + g(q)� �� �
n(q,q̇)

= τ + τ e , (2.9)

with the mass matrix M(q) ∈ R7×7, the Coriolis matrix C(q, q̇) ∈ R7×7, the gravitational
vector g(q) ∈ R7, the applied motor torque τ ∈ R7 and the external torque τ e ∈ R7, see,
e. g., [25]. The external torque τ e is assumed to be measurable. Although the robot has
elastic joints, an underlying singular perturbation controller leads to the quasi-stationary
system dynamics with the same structure as (2.9). Hence, the same control strategies
as for rigid-body systems can be applied, see, e. g., [27, 28]. Thus, in the following, the
rigid-body model (2.9) is used for the controller design.



3 Path Following Control
The goal of robotic applications is for the robot to perform a specific motion. Depending
on the task, two motion control problems are distinguished: trajectory tracking control
(TTC) and path following control (PFC).

In TTC, the desired position of the TCP, as well as its derivatives, are known at every
time step. The goal of the TTC is to bring the position, velocity and acceleration of the
TCP to the desired values.

In contrast, PFC has no a priori time parametrization. Instead, it is based on a
geometric curve that the TCP should follow. The desired geometric curve for the TCP
is represented as a curve in task space with a path parameter. The primary goal of the
controller is to stabilize the TCP on the path. The secondary goal is to provide a desired
evolution along the path. PFC is a more general approach than TTC and is the focus of
this work.

In this chapter, the control theory of the used PFC is introduced. First, the mathematical
definition of a path in task space is given. A parallel transport frame is used to construct
path-dependent coordinates. Second, the exact input-output linearization method is
applied and third, the controller in the path-dependent frame is designed. An impedance
controller is used with different parameters in transversal and tangential directions. In the
last step, a nullspace controller is introduced to stabilize the nullspace of the kinematically
redundant system. Most concepts of this chapter are based on the works [29, 30], where
a more detailed explanation is found. The complete control structure is summarized in
Figure 3.1.

3.1 Path Definition
In this work, the explicit parametrization of a geometric path is used. With the mapping

σ(θ) : Θ → Rp , (3.1)

the path parameter θ, the allowed interval Θ and the output dimension p, the path Σ is
defined as

Σ = {y ∈ Rp | y = σ(θ), θ ∈ Θ} . (3.2)

A path Σ can be open or closed, depending on Θ. In the following, the path is assumed
to be regular, i. e.

σ′(θ̄) = ∂σ

∂θ
(θ̄) ̸= 0 ∀θ̄ ∈ Θ , (3.3)

9



3 Path Following Control 3.2 Path-Dependent Frame 10

Optimal Path
Parameter

Section 3.2

Coordinate
Transformation

Section 3.3 Impedance
Control

Section 3.5

Exact
Input/Output
Linearization

Section 3.4

System

Chapter 2
yt, ẏt

θ∗, θ̇∗

ξ, ξ̇

Ĵ,
˙̂J

v

τ
ωT , RT

Nullspace
Control

Section 3.6
Ĵ

q, q̇
τ n

Figure 3.1: Structure of the PFC control scheme.

and the individual components of σ(θ̄), θ̄ ∈ Θ, are assumed to be differentiable up to the
necessary degree.

For the representation of a pose in the three dimensional Euclidean space, three
parameters for the translational part and at least three parameters for the rotational
part are needed. Therefore, the curve σ(θ) incorporates a translational part σt(θ) and a
rotational part σr(θ) in the form

σ(θ) =

σt(θ)
σr(θ)

�
. (3.4)

The translational part σt(θ) is used to find an optimal position along the path, which
will be specified in more detail later in this section, with the corresponding optimal path
parameter θ∗. Additionally, it is assumed that on any given point along the path, a desired
orientation σr(θ) is given. This desired orientation of the tool frame T w.r.t. the base
frame B can also be represented as a rotation matrix RT ,d

B (σr(θ)) or as a unit quaternion
QT ,d

B (σr(θ)). To simplify the notation, the local desired frame on the path is denoted
by D and the relations RD(θ) = RT ,d

B (σr(θ)) and QD(θ) = QT ,d
B (σr(θ)) are introduced.

This relations are utilized in the discussions of Chapter 4.

3.2 Path-Dependent Frame
The control scheme should behave differently in tangential and transversal direction of
the path. In order to define coordinates in these directions, a new frame is constructed on
every point along the path. A commonly used frame is the Frenet-Serret frame. However,
since it is undefined at points with zero curvature, which is needed for many applications,



3 Path Following Control 3.2 Path-Dependent Frame 11

ξ∥

yt(t0)

σt(θ)

σt(θ0)

σt(θ∗) e∥

e⊥

e⋔ yt(t)

ξ⊥ξ⋔

Figure 3.2: Path-based frame and coordinates.

the parallel transport frame is employed instead (see Figure 3.2). The frame consists
of the path-dependent tangent vector e∥(θ), the normal vector e⊥(θ) and the binormal
vector e⋔(θ). The unit tangent vector e∥(θ) is given by

e∥(θ) = σ′
t(θ)

∥σ′
t(θ)∥2

. (3.5)

This vector points in the direction of the path tangent and always exists due to the
assumed regularity of the curve (3.3).

The normal and the binormal vector, i. e. e⊥(θ) and e⋔(θ), respectively, are orthogonal
to the tangent vector e∥(θ) and span the transversal plane on every point along the
path. The normal vector e⊥(θ) is calculated by solving the differential algebraic system
of equations

e′
⊥(θ) = −(e′

∥(θ))Te⊥(θ)e∥(θ), e⊥(θ) = e⊥,0 (3.6a)
0 = 1 − eT

⊥(θ)e⊥(θ) (3.6b)
0 = eT

∥ (θ)e⊥(θ) , (3.6c)

see [29, 31]. To complete the parallel transport frame, the binormal vector e⋔(θ) is
obtained using

e⋔(θ) = e∥(θ) × e⊥(θ) . (3.7)
With the equations (3.5) − (3.7), the parallel transport frame is completely defined for
any path parameter θ ∈ Θ along the path σ(θ). This parallel transport frame is denoted
by P . The optimal path parameter θ∗ is chosen such that the distance between the TCP
position yt and the corresponding point on the path σt(θ∗) is minimized. By solving the
minimization problem

θ∗ = arg min
θ∈Θ

∥yt − σt(θ)∥2
2 , (3.8)



3 Path Following Control 3.3 Coordinate Transformation 12

the optimal path parameter θ∗ is found. In order to be a solution of the minimization
problem, the necessary first-order condition

∂

∂θ


∥yt − σt(θ)∥2

2

++++
θ=θ∗

= −2(yt − σt(θ∗))Tσ′
t(θ∗) = 0 (3.9)

must hold. Equation (3.9) reveals that the deviation vector yt − σt(θ∗) is orthogonal to
the tangent vector e∥(θ∗) and, hence, lies in the transversal plane, cf. (3.5). Deriving the
sufficient second-order condition yields

∂2

∂θ2


∥yt − σt(θ)∥2

2

++++
θ=θ∗

> 0 (3.10)

2
**σ′

t(θ∗)
**2

2 − 2(yt − σt(θ∗))Tσ′′
t (θ∗) > 0 (3.11)

(yt − σt(θ∗))Tσ′′
t (θ∗)

∥σ′
t(θ∗)∥2

2
< 1 . (3.12)

With the auxiliary variable

α(yt) = (yt − σt(θ∗))Tσ′′
t (θ∗)

∥σ′
t(θ∗)∥2

2
, (3.13)

at the optimal solution θ∗ of (3.8), the relation α(yt) < 1 must hold.
In Section 3.3 and further, an expression for the time derivative of the optimal path

parameter θ̇∗ is needed. It is calculated from the necessary first-order optimality condition
(3.9). Derivating (3.9) w.r.t. time yields

(ẏt − σ′
t(θ∗)θ̇∗)Tσ′

t(θ∗) + (yt − σt(θ∗))Tσ′′
t (θ∗)θ̇∗ = 0 . (3.14)

Using (3.13), equation (3.14) is rewritten as

ẏT
t σ′

t(θ∗) =
**σ′

t(θ∗)
**2

2 − (yt − σt(θ∗))Tσ′′
t (θ∗)


θ̇∗

= (1 − α(yt))∥σt(θ∗)∥2
2θ̇∗ . (3.15)

Finally, introducing the auxiliary variable

β(yt) = (1 − α(yt))−1 (3.16)

and rearranging (3.15), the time derivative of the optimal path parameter θ∗ is obtained
as

θ̇∗ = 1
1 − α(yt)

σ′
t(θ∗)T

∥σ′
t(θ∗)∥2

2
ẏt =

β(yt)eT
∥ (θ∗)

∥σ′
t(θ∗)∥2

ẏt . (3.17)

3.3 Coordinate Transformation
Based on the path-dependent parallel transport frame (e∥, e⊥, e⋔), new coordinates
ξT =



ξ∥ ξ⊥ ξ⋔

�
are introduced in this section, see Figure 3.2. The canonical form to



3 Path Following Control 3.3 Coordinate Transformation 13

parametrize a curve is based on its arc-length. Hence, the tangential coordinate ξ∥ is
chosen as the arc-length of the path at the optimal path parameter θ∗ as

ξ∥ =
� θ∗

θ0

**σ′
t(τ)

**
2dτ , (3.18)

with the initial path parameter θ0 ∈ R at the beginning of operation. The transversal
coordinates ξ⊥ and ξ⋔ are chosen as the projections of the deviation vector (yt − σt(θ∗))
onto the normal and binormal unit vectors, e⊥(θ) and e⋔(θ), respectively, given by

ξ⊥ = eT
⊥(θ∗)(yt − σt(θ∗)) (3.19)

ξ⋔ = eT
⋔ (θ∗)(yt − σt(θ∗)) . (3.20)

Note that the new coordinates ξ only depend on the system output yt, which in turn only
depends on the generalized coordinates q, see (2.4).

The time derivatives of the tangential and the tranversal coordinates are calculated in
the following. For the tangential coordinate ξ∥, the derivative results in

ξ̇∥ =
**σ′

t(θ∗)
**

2θ̇∗ . (3.21)

Using the calculated time derivative of the optimal path parameter θ̇∗, by putting (3.17)
back into (3.21), gives the time derivative of the tangential coordinate ξ̇∥

ξ̇∥ = β(yt)eT
∥ (θ∗)ẏt . (3.22)

The time derivative of the normal coordinate ξ⊥ yields

ξ̇⊥ = ėT
⊥(θ∗)(yt − σt(θ∗)) + eT

⊥(θ∗)(ẏt − σ′
t(θ∗)θ̇∗) , (3.23)

which simplifies to
ξ̇⊥ = eT

⊥(θ∗)ẏt (3.24)
by using eT

⊥(θ∗)σ′
t(θ∗) = 0 and the property ė⊥(θ∗) ∥ σ′

t(θ∗), see (3.6a) and (3.9).
Repeating the above for the binormal coordinate yields

ξ̇⋔ = eT
⋔ (θ∗)ẏt . (3.25)

Putting (3.18), (3.19) and (3.20) together, the path-based coordinates ξ are defined as

ξ =

ξ∥
ξ⊥
ξ⋔

 =


� θ∗

θ0
∥σ′

t(τ)∥2dτ

eT
⊥(θ∗)(yt − σt(θ∗))

eT
⋔ (θ∗)(yt − σt(θ∗))

 . (3.26)

Its derivative w.r.t. time is compactly rewritten as

ξ̇ =

 ξ̇∥
ξ̇⊥
ξ̇⋔

 =

β(yt)eT
∥ (θ∗)

eT
⊥(θ∗)

eT
⋔ (θ∗)

ẏt =

β(yt)eT
∥ (θ∗)

eT
⊥(θ∗)

eT
⋔ (θ∗)

Jt(q)

� �� �
Jξ(q)

q̇ = Jξ(q)q̇ (3.27)

with the transformed translational Jacobian Jξ(q).



3 Path Following Control 3.4 Exact Input-Output Feedback Linearization 14

3.4 Exact Input-Output Feedback Linearization
In order to provide the system with a virtual input that is directly linked to the transformed
coordinates ξ, an exact input-output feedback linearization is applied. This method
transforms the system (2.9) into a system with linear input-output dynamics from a
virtual input v ∈ R6 to the acceleration of the transformed coordinates ξ̈ and the angular
acceleration ω̇T . Combining the transformed dynamics (3.27) and the definition of Jω(q)
from (2.6), the transformed Jacobian Ĵ(q) is introduced as

ξ̇
ωT

�
=


Jξ(q)
Jω(q)

�
q̇ = Ĵ(q)q̇ . (3.28)

The derivative of (3.28) results in
ξ̈

ω̇T

�
= Ĵ(q)q̈ + ˙̂J(q)q̇ (3.29)

and is rearranged to obtain the joint acceleration q̈ as

q̈ = Ĵ†(q)


ξ̈
ω̇T

�
− ˙̂J(q)q̇


, (3.30)

with the right pseudoinverse Ĵ†(q) = ĴT(q)

Ĵ(q)ĴT(q)

−1
. Putting (3.30) back into

the system dynamics equation (2.9) yields the system dynamics w.r.t. the transformed
coordinates

M(q) Ĵ†(q)


ξ̈
ω̇T

�
− ˙̂J(q)q̇


� �� �

q̈ from (3.30)

+ n(q, q̇) = τ + τ e . (3.31)

By choosing the system input τ as

τ = M(q)Ĵ†(q)

v − ˙̂J(q)q̇


+ n(q, q̇) − τ e + τ n , (3.32)

the system dynamics (3.31) simplifies to
ξ̈

ω̇T

�
= v + Ĵ(q)M−1(q)τ n , (3.33)

with the additional nullspace control input τ n ∈ R7. The nullspace controller will be
introduced in Section 3.6 and is chosen such that it has no influence on the coordinates ξ̈
and ω̇T , i. e. its control action lies in the nullspace of Ĵ(q). Hence, (3.33) simplifies to

v =


vξ

vω

�
=


ξ̈

ω̇T

�
, (3.34)

resulting in a linear input-output characteristics from the virtual inputs vξ for transla-
tion and vω for rotation to the accelerations in the transformed coordinates ξ̈ and ω̇T ,
respectively.



3 Path Following Control 3.5 Path-Based Impedance Control 15

ξ∥

ξd
∥

yt(t)

σt(θ)

σt(θ0)

k∥, d∥

k⊥, d⊥

k⋔, d⋔

Figure 3.3: Path-based impedance.

3.5 Path-Based Impedance Control
The next step of the derivation of PFC is to specify the virtual input v. This work
focusses on the interaction between humans and robots. When a human is involved in the
task, the robot should behave in a compliant way. A common way of introducing defined
compliance in the robot behavior is by using an impedance controller [25]. This allows
the compliance of the robot to be set by parameters and be adapted according to the task
at hand. For HRI, the desired behavior of the TCP is a spring-mass-damper system with
tunable impedance parameters in the coordinates e∥, e⊥ and e⋔ of the path-based frame
introduced in Section 3.1, see Figure 3.3.

Thus, the desired impedance dynamics is given by

Md


ξ̈ − ξ̈
d

ω̇T − ω̇D

�
� �� �

mass

+ Dd


ξ̇ − ξ̇
d

ωT − ωD

�
� �� �

damper

+ Kd

ξ − ξd

εD
T

�
� �� �

spring

= f̂e , (3.35)

with the desired mass matrix Md ∈ R6×6, the desired damper matrix Dd ∈ R6×6, the
desired spring matrix Kd ∈ R6×6, the desired path-based position, velocity and acceleration



3 Path Following Control 3.6 Nullspace Control 16

ξd, ξ̇
d and ξ̈

d, respectively. Note that the rotational part of the impedance controller
(3.35) is implemented using unit quaternions, see, e. g., [32], by utilizing the vector part of
the quaternion error εD

T between the orientation of the TCP frame T and the orientation
of the desired frame D and the angular velocity and acceleration of D, i. e., ωD and
ω̇D, respectively. In (3.35), ωD and ω̇D correspond to the desired angular velocity and
acceleration of the TCP frame, see Section 3.1. The vector part of the quaternion error
εD

T in (3.35) is calculated using the quaternion product ⊗ as

{eD
T , εD

T } = QD(θ∗) ⊗

QT −1

, (3.36)

with the desired orientation QD(θ∗) and the TCP orientation QT expressed as unit
quaternions. The vector f̂e describes the external forces and torques transformed to the
parallel transport frame (e∥, e⊥, e⋔) consisting of forces along the path-based coordinates
and torques in the base frame B. It is computed using

f̂e =

Ĵ†(q)

T
τ e , (3.37)

where the generalized external forces τ e are assumed to be measured. The desired
mass-spring-damper dynamics is achieved by setting the virtual input v to

v =


ξ̈
d

ω̇D

�
+


Md

−1


f̂e − Dd


ξ̇ − ξ̇
d

ωT − ωD

�
− Kd


ξ − ξd

εD
T

�
. (3.38)

Putting (3.38) back into the feedback linearization controller (3.32) yields the final control
law

τ = n(q, q̇) − τ e + τ n+

M(q)Ĵ†(q)




ξ̈
d

ω̇D

�
+


Md

−1


f̂e − Dd


ξ̇ − ξ̇
d

ωT − ωD

�
− Kd


ξ − ξd

εD
T

�
� �� �

v from (3.38)

− ˙̂J(q)q̇

 .

(3.39)

3.6 Nullspace Control
The state space of the introduced path-based coordinates

ξ − ξd
T 

ξ̇ − ξ̇
dT 

εD
T

T 
ωT − ωD

T
T

∈ R12 , (3.40)

which are used as new system output, do not cover the complete system state


qT q̇T

�T ∈
R14. Hence, the complete system comprises a nullspace and a nullspace controller is needed
to stabilize the complete system. The nullspace controller allows to consider a secondary
control objective, which can be used to keep the robot configuration away from singularities



3 Path Following Control 3.6 Nullspace Control 17

or joint limits. To this end, a projection matrix is used to project the nullspace control
input vn ∈ R7 onto the nullspace torque τ n, reading as

τ n = M(q)

I − Ĵ†(q)Ĵ(q)


vn , (3.41)

with the identity matrix of matching dimension I. This ensures that τ n is only acting on
the nullspace of Ĵ(q), since (3.33) simplifies to


ξ̈
ω̇

�
= v + Ĵ(q)M−1(q) M(q)


I − Ĵ†(q)Ĵ(q)


vn� �� �

τ n from (3.41)

= v +

Ĵ(q) − Ĵ(q)


vn = v . (3.42)

A common choice for vn is the PD control law

vn = −Dnq̇ − Kn(q − q0) (3.43)

with the virtual resting position q0 ∈ R7 and the positive definite nullspace control
matrices Kn, Dn ∈ R7×7. The nullspace damping matrix Dn parametrizes the virtual
dampers in the nullspace that counteract the joint velocities. The nullspace stiffness
matrix Kn specifies the virtual spring stiffness to push the robot joint configuration q as
close to q0 as possible without influencing the actual TCP pose.

In human-robot interaction, the virtual spring in the nullspace may be counterintuitive.
The nullspace controller (3.43) causes the robot to stabilize to a desired position in its
nullspace due to the spring force term. However, the operator may also want to interact
with the robot in its nullspace, e. g. because a certain elbow position is more convenient dur-
ing the interaction. A more intuitive behavior is implemented by replacing the linear spring
force in (3.43) by a nonlinear spring force τ T

kn(q) =


τkn,1(q1) τkn,2(q2) . . . τkn,7(q7)

�
that is only acting close to the joint limits defined by

τkn,i(qi) =


kn


1

(qi−qmin,i)2 − 1
(∆qi)2


, qmin,i ≤ qi < qmin,i + ∆qi

0, qmin,i + ∆qi ≤ qi < qmax,i − ∆qi

kn


1

(∆qi)2 − 1
(qmax,i−qi)2


qmax,i − ∆qi ≤ qi < qmax,i

. (3.44)

This spring force is designed as a barrier function. In vicinity to the joint limits, the force
increases significantly and pushes the joints away from the respective limitations. On the
contrary, beyond a certain distance ∆qi in the joint space from the joint limits, it has
no effect. Figure 3.4 depicts the spring force τkn,i(qi) over the joint angle qi. Inserting
the nonlinear spring force (3.44) back into the nullspace controller yields the nullspace
controller

τ n = M(q)

I − Ĵ†(q)Ĵ(q)


(−Dnq̇ + τ kn(q)) . (3.45)

Depending on the use case and preference, either the nullspace control (3.43) or (3.45) or
a combination of both may be used.



3 Path Following Control 3.6 Nullspace Control 18

qmin,i qmax,i

qi

τkn,i(qi)

Figure 3.4: Nonlinear virtual spring force τkn,i(qi), i = 1, . . . , 7, acting as a barrier function
on each robot joint in joint space.



4 User Interaction
In this work, two novel user interaction concepts based on PFC introduced in Chapter 3
are presented. These concepts are called Path Snap-In and Path Switch.

The Path Snap-In is similar to the gravity compensation mode. Hence, it lets the
operator freely move the robot TCP in the workspace. As soon as the TCP is moved into
the vicinity of a given path, it snaps on that path and locks in. In this way, often used
targets (e. g. storage of tools) are easily and exactly reached. The idea originates from the
line or edge snap functionality in conventional 2D or 3D CAD software.

The Path Switch enables online switching between multiple given paths by pushing the
TCP towards the target path. At all times, the TCP is locked on and is moving along
an active path. The control scheme is monitoring the applied external force. A belief
system combines the active path with the external force and selects the most likely path
according to the user intent. If the most likely path changes, a transition trajectory to
the new path is generated online and the transition is initiated. The concept is useful
for switching between multiple operating tasks in various order, controlled by the human
operator.

In the following sections, the above concepts are explained in detail. First, the Path Snap-
In, its idea and the control concept are introduced and a special case called Orientation
Snap is discussed. Second, the Path Switch is described. This section covers the external
force estimation, the belief system used to select the active path, as well as the generation
of transitioning trajectories. The concepts introduced in this chapter are demonstrated in
Chapter 5.

4.1 Path Snap-In
A widely used control scheme in HRI is the gravity compensation mode. As the name
suggests, the gravitational forces g(q) are compensated by the robot and the TCP may
be moved in the workspace by the operator by physical interaction with the robot. It is
an intuitive mode of moving the TCP into a desired pose without needing to know any
joint angles. This is especially useful during the teach-in of a robotic task. The flexibility
comes with a lack of accuracy, since the control law does not proactively support the
operator in his/her intentions.

The Path Snap-In mode mitigates this problem. It provides the flexibility of the gravity
compensation and improves accuracy by assisting the operator in certain situations. The
operator can freely move the TCP within the workspace, but as soon as the TCP comes
close to a predefined path, the PFC takes over and the TCP is attracted towards this
path. It stays locked on the path, until the operator pushes it away from the path. In
that case, the TCP becomes free again. Figure 4.1 visualizes the concept. First, the TCP

19



4 User Interaction 4.1 Path Snap-In 20

fe

fe

fe

fe

yt

yt

Σ1

1 locked on Σ1

4 locked on Σ23 free moving

2 locked on Σ1

Σ2

yt

yt

Σ1 Σ2
Σ1 Σ2

Σ1
Σ2

Figure 4.1: Path Snap-In concept with the TCP position yt and the external force fe. The
movement is depicted as blue line. In 1 the TCP is moving along Σ1. After
pushing the TCP away from Σ1 ( 2 ), the robot allows free gravity-compensated
movement ( 3 ). In the vicinity of the path Σ2, it locks in on this path ( 4 ).

is locked on path Σ1 1 . Providing an external force tangential to the path, the TCP
moves along the path Σ1 2 . If the TCP is pushed away from the path strongly enough,
the robot allows free gravity-compensated movement again 3 . In vicinity of the next
path Σ2, the TCP locks on the path Σ2 4 .

4.1.1 Control Concept
The control concept of Path Snap-In considers a set of paths {Σi, i ∈ I} according to
definition (3.2) with an index set I. Snapping in and out of a path is implemented by
considering the virtual input v (3.38) for each path simultaneously. These multiple virtual
inputs are weighted by a distance-dependent weighting factor µ, which selects the active
path and eliminates the non-active ones. A weighted sum of virtual inputs is finally fed
back into the PFC using (3.32). In order to stabilize the system distant from any path, an
additional damping term is added. The individual steps are explained in the following. To
update the weighting factor and select an active path, the shortest distance between TCP
and each path is computed. Thus, the parallel transport frame D and the path-based
coordinates ξ need to be computed for each path simultaneously. To distinguish the
PFC for the different paths, the lower index (.)i is used, where i refers to the respective path.



4 User Interaction 4.1 Path Snap-In 21

Virtual Input Transformation

First, the virtual input vi is calculated for each path i ∈ I according to (3.38). For
each path, an individual optimal path parameter θ∗

i is found, which allows to construct
the parallel transport frames Pi with the corresponding path-based coordinates ξi. The
virtual input vi for each path i ∈ I reads as

vi =


vξ,i

vω,i

�
=


ξ̈

d
i

ω̇Di

�
+


Md

−1


f̂e,i − Dd


ξ̇i − ξ̇
d
i

ωT − ωDi

�
− Kd


ξi − ξd

i

εDi
T

�
. (4.1)

Note that for the translational part, i. e. the first line of (4.1), the actual coordinates ξi

and ξ̇i are different for each path i ∈ I because of the different parallel transport frames
Pi. For the rotational part, i. e. the second line of (4.1), ωT is the same for all paths
i ∈ I, but the desired angular velocity ωDi and the desired angular acceleration ω̇Di are
specified individually for each path. The same applies to the quaternion error εDi

T . The
vector vξ,i in (4.1) represents the virtual input in the path-based coordinate system Pi.
Since the individual virtual inputs vi depend on the corresponding path-based frame Pi,
they cannot be compared directly.

To compare and sum up the virtual inputs of the paths, a common frame has to be
chosen and every virtual input vξ,i must be transformed into this common frame. The
base frame B is an obvious choice for this purpose and thus, the summation and actuation
is formulated in B. The virtual inputs vξ,i transformed into B are denoted by vt,i, i ∈ I.
The joint accelerations q̈t

i resulting from each individual virtual input vξ,i are calculated
in the following. Based on (3.30) and (3.34), q̈t

i is written as

q̈t
i = J†

ξ,i


vξ,i − J̇ξ,iq̇


. (4.2)

The joint acceleration due to vξ,i and vt,i must be the same, since both virtual inputs are
merely related by a transformation. Thus, q̈t

i can also be expressed using vt,i and the
translational geometric Jacobian Jt from (2.6) as

q̈t
i = J†

ξ,i


vξ,i − J̇ξ,iq̇


� �� �

path-based

= J†
t

vt,i − J̇tq̇


� �� �

Cartesian-based

. (4.3)

Solving for vt,i gives the virtual input in the base frame B

vt,i = J̇tq̇ + JtJ†
ξ,i


vξ,i − J̇ξ,iq̇


= JtJ†

ξ,ivξ,i +

J̇t − JtJ†

ξ,iJ̇ξ,i


q̇ . (4.4)

Since Pi is a path-based moving frame depending on the path parameter θ∗
i , (4.4) is

basically a transformation of vξ,i and vt,i between moving frames. The term JtJ†
ξ,ivξ,i is the

static transformation and J̇tq̇−JtJ†
ξ,iJ̇ξ,iq̇ is accounting for the relative movement between

the frames. Equation (4.4) could also be formulated in the unit vectors

e∥, e⊥, e⋔


and



4 User Interaction 4.1 Path Snap-In 22

their time derivatives. However, since these vectors further depend on the time derivative
of the path parameter θ̇∗, the formulation in (4.4) is more compact. Additionally, the
Jacobians Jt and Jξ,i, i ∈ I, and their time derivatives are needed for the control concept
later on.

For the virtual input of the angular acceleration vω,i, no transformation is needed, since
it is already given in the base frame B.

Weighting Factors

The virtual input vi of each path is weighted with a weighting factor µi(di) based on the
distance di to the path, i ∈ I. In the context of the HRI concept Path Snap-In, a suitable
weighting factor µi(di) should

• be 1 for small distances to the path di ≪ d0, with a suitable threshold distance
d0 ∈ R,

• be 0 for large distances to the path di ≫ d0,

• and have a derivation of approximately 0 in the range around di = 0 to ensure that
the applied force matches the original PFC in that range.

In order to satisfy these requirements, the weighting factor is constructed as a sigmoid
function and is defined as

µi(di) = 1 − 1
1 + e−2c(di/d0−1) , (4.5)

where d0 is the distance at which the weighting factor is reduced to µi(d0) = 0.5 and c
specifies the slope of µi. A plot of µi(di) with different slope values c is shown in Figure 4.2.
The sum of weighting factors µ should never exceed 1, i. e.

µ =
(
i∈I

µi(di) ∈ [0, 1] . (4.6)

Therefore, the parameters d0 and c should be chosen such that there is no overlap between
the volume of attraction of two paths, i. e. at maximum one path is attracting.

A translational weighting factor µt,i(dt,i) based on the translational distance dt,i and a
rotational weighting factor µr,i(dr,i) based on the rotational distance dr,i are discussed in
the following. Both weighting factors are defined according to (4.5), but with different
distances dt,i and dr,i as well as different parameters d0,t, d0,r, ct and cr. The sum of the
individual weighting factors according to (4.6) is denoted by µt for the translation and
µr for the rotation. The translational distance dt,i is calculated as the Euclidean norm
of the vector from the projected point on the i-th path σt,i(θ∗

i ) to the system output yt,
i. e. dt,i = ∥yt − σt,i(θ∗

i )∥2. The rotational distance dr,i is computed from the quaternion
error between two rotations and is chosen as

dr,i =
***εDi

T
***

2
(4.7)

{eDi
T , εDi

T } = QDi(θ∗
i ) ⊗


QT −1

. (4.8)



4 User Interaction 4.1 Path Snap-In 23

Depending on the use case, the translational and rotational parts may be controlled as
two separate and decoupled systems or as a combined system. If it is controlled separately,
the position of the TCP can be locked in, while it is freely rotatable and vice versa. If it
is controlled as a combined system, a lock-in of the position enforces also a lock-in of the
orientation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.25

0.5

0.75

1

di/d0

µ
i(d

i)

c = 1
c = 4
c = 8
c = 16

Figure 4.2: Weighting factor µi(di) as a function of the distance di for different slope
values c.

Damping

When the TCP is distant from any path, it is not locked in and its behavior is specified
and controlled using a separate controller. In this case, each weighting factor is close to
zero, µi(di) ≈ 0, ∀i ∈ I, and no force is fed back from any PFC. Consequently, the TCP
behaves like a free-floating mass. That would work in theory, but since the controller
is acting on a real system, an additional damping term vdam is introduced to ensure
closed-loop stability. To dampen the Cartesian movement, vdam is constructed as

vdam = −ν(µ)Ddam


ẏt
ωT

�
(4.9)

with a positive definite damping matrix Ddam ∈ R6×6 and the weighting factor for the
damping ν(µ). The damping term (4.9) should be active, if the TCP is not in the vicinity
of any path, and be zero, if the TCP is in the vicinity of any path. If no path is attracting,
µ ≈ 0 and ν(0) != 1. If any path is attracting, µ ≈ 1 and ν(1) != 0, see Figure 4.3.
Hence, the requirements are similar to the requirements of the weighting factor µi(di) and
therefore the weighting factor for the damping ν(µ) is constructed similar to (4.5) as

ν(µ) = 1 − 1
1 + e−2cdam(µ/0.5−1) (4.10)

with cdam ∈ R specifying the slope of ν(µ) around µ = 0.5. If the translation and rotation
are controlled as two separate systems, the damping term vdam splits into vdam,t and



4 User Interaction 4.1 Path Snap-In 24

vdam,r. The weighting factor for the damping ν(µ) then splits into a translational part
νt(µt) and a rotational part νr(µr), accordingly. In that case, instead of the damping
matrix Ddam ∈ R6×6, a translational damping matrix Ddam,t ∈ R3×3 and a rotational
damping matrix Ddam,r ∈ R3×3 are utilized.

Σ1
Σ2

µ1 = 1
µ2 = 0
µ = 1
ν = 0

µ1 = 0
µ2 = 1
µ = 1
ν = 0

µ = 0
ν = 1

Figure 4.3: Two paths Σ1 and Σ2 with the corresponding weighting factors µ1(d1) and
µ2(d2), the sum µ = µ1(d1) + µ2(d2) and the weighting factor for the damping
ν(µ). In a tube around each path, the corresponding path is active and its
weighting factor µi ≈ 1. If the TCP is not inside any tube, ν(µ) ≈ 1 holds.

Combining and Feeding Back the Virtual Inputs

The virtual input applied to the system is calculated as a weighted sum of the individual
virtual inputs of the PFCs vi, i ∈ I plus the damping term vdam from (4.9). If the
translational and the rotational part of the system should lock in simultaneously, the
virtual inputs are combined as

v =


vt
vω

�
=

(
i∈I


µi(di)


vt,i
vω,i

�
− ν(µ)Ddam


ẏt
ωT

�
. (4.11)

In contrast, for a system where the translational snap-in and the rotational snap-in are
decoupled, the combined virtual input v is chosen as

v =


vt
vω

�
=

(
i∈I


µt,i(dt,i)vt,i
µr,i(dr,i)vω,i

�
−


νt(µt)Ddam,tẏt
νr(µr)Ddam,rω

T

�
. (4.12)

In both cases, the combined virtual input v in the base frame is inserted in the exact
input-output linearization (3.32) as

τ = n + MJ†


vt
vω

�
− J̇q̇


+ τ n − τ e . (4.13)



4 User Interaction 4.1 Path Snap-In 25

Note that in (4.13) and in the following, the function arguments are omitted to improve
the clarity of presentation. It is worth mentioning that the nullspace control τ n in (4.13)
is invariant w.r.t. a transformation to or from a path-based frame. Analogous to (3.41),
the nullspace control τ n,i for each PFC is given by

τ n,i = M

I − Ĵ†

i Ĵi


vn . (4.14)

To further evaluate (4.14), a relation for the pseudoinverse of the path-based Jacobian Ĵ†

is needed, which is found as

Ĵ† = J†
 1

β e∥ e⊥ e⋔ 0
03×1 03×1 03×1 I

�
. (4.15)

The proof of (4.15) is given in Appendix A.1.1. With (4.15), equation (4.14) simplifies to

τ n,i = M(I − Ĵ†
i Ĵi)vn

= M

I − J†
 1

βi
e∥,i e⊥,i e⋔,i 0

03×1 03×1 03×1 I

�
βieT

∥,i 01×3
eT

⊥,i 01×3
eT
⋔,i 01×3
0 I

J

vn

= M


I − J†

e∥,ieT

∥,i + e⊥,ieT
⊥,i + e⋔,ieT

⋔,i 0
0 I

�
J


vn

= M

I − J†J


vn

= τ n , (4.16)

which again yields the nullspace control given in the base frame τ n. The nullspace control
can thus be designed separately and without considering the Path Snap-In functionality
at all.

Parameter Choice

For the Path Snap-In functionality and its usability, the choice of the parameters c and d0
in the weighting functions µi(di), i ∈ I, is crucial. Since a human operator must be able
to push the TCP away from a locked-in path, the maximum attracting force generated
by the Path Snap-In controller must be limited. A given force magnitude of fh,t for
translation and fh,r for rotation are taken as reference values for the maximum admissible
human force. Thus, the force exerted by the controller is not allowed to exceed fh,t or fh,r.
This is only relevant for the force acting transversal to the path (⊥ and ⋔) because the
operator is pushing the TCP away from the path. While the virtual inertial and virtual
damper force are only acting against an active motion, the virtual spring force is causing
the attracting force and is investigated in the following. In other words, the operator will
eventually be able to overcome the inertial and damper force, since they do not depend
on the position. However, the spring force increases with an increasing distance to the



4 User Interaction 4.1 Path Snap-In 26

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1
2 f̂d

k,t(d0,t)

f̂d
k,t(d0,t)

dt,i/d0,t

f̂d
k,t(dt,i)

µt,i(dt,i)f̂d
k,t(dt,i), c = 1

µt,i(dt,i)f̂d
k,t(dt,i), c = 4

µt,i(dt,i)f̂d
k,t(dt,i), c = 8

µt,i(dt,i)f̂d
k,t(dt,i), c = 16

µt,i(dt,i)f̂d
k,t(dt,i), c = 50

Figure 4.4: Transversal spring force f̂d
k,t(dt,i) weighted with the weighting factor µt,i(dt,i)

plotted over the distance dt,i/d0,t for different slope values c.

path. To push the TCP out of the path attraction zone, cf. Figure 4.3, the virtual spring
force has to be overcome. In the coordinates of the i-th path, it is given by, see (3.35),

f̂d
k =


f̂d
k,t

f̂d
k,r

�
= −Kd


ξi − ξd

i

εDi
T

�
. (4.17)

Note that only the transversal part is of importance. Assuming Kd is a diagonal matrix,
i. e. Kd = diag


kd

∥ , kd
⊥, kd

⋔, kd
r , kd

r , kd
r

, and kd

⊥ = kd
⋔ so that the force in the transversal

plane is direction-independent, the magnitudes of the transversal spring force f̂d
k,t(dt) and

rotational spring force f̂d
k,r(dr) yield

f̂d
k,t(dt) =

***f̂d
k,t(dt)

***
2

= kd
⊥∥yt − σt(θ∗)∥2 = kd

⊥dt (4.18)

f̂d
k,r(dr) =

***f̂d
k,r(dr)

***
2

= kd
r

***εD
T

***
2

= kd
r dr . (4.19)

As an example, Figure 4.4 shows the magnitude of the transversal spring force f̂d
k,t(dt,i) as

well as the weighted magnitudes µt,i(dt,i)f̂d
k,t(dt,i) with different slope values c. It shows

that the maximum force for c → ∞ is f̂d
k,t(d0,t). For the rotational spring force, this

corresponds to f̂d
k,r(d0,r), see (4.19). By choosing d0,t and d0,r such that f̂d

k,t(d0,t) < fh,t

and f̂d
k,r(d0,r) < fh,r, it is guaranteed that for any chosen c, the transversal spring force

(4.18) never exceeds fh,t and the rotational spring force (4.19) never exceeds fh,r. This
results in an upper limit for the reference distance d0,t and d0,r of

d0,t <
fh,t
kd

⊥
(4.20a)

d0,r <
fh,r
kd

r
. (4.20b)



4 User Interaction 4.1 Path Snap-In 27

The slope parameter c can be arbitrarily chosen, since (4.20) already ensures that the safety
limits for the interaction with the robot are respected. Selecting a smaller slope value c
makes the transition between free moving and locked-in operation smoother. However, for
a low value of c, e. g., c = 1, the weighting factor µi(di) = 1 is never reached, see Figure 4.2.
Consequently, when the slope parameter c is selected too low, the desired behavior of
the PFC is not achieved even in close vicinity of a path, see also Figure 4.4. Selecting a
larger slope value c makes the transition between free moving and locked-in operation on
a path more abrupt. In HRI, an abrupt change in behavior of the robot should be avoided.
Thus, the slope parameter c should not be selected too large. According to Figure 4.2
and Figure 4.4, a value of c = 4 is a reasonable compromise. Since different operators
may have different preferences, the slope parameter c may be further tuned to adapt the
behavior of the robot.

4.1.2 Orientation Snap
The teach-in of a robotic task is a possible use case for the Path Snap-In. Conventional
methods based on teach pendants are precise, but lack flexibility. Methods based on
gravity compensation on the other hand are more flexible, but lack precision. The proposed
Path Snap-In closes the gap between both mentioned teach-in methods. It is flexible
because the user may freely move the TCP in the workspace of the robot and it is precise
when snapped in on any given path.

Instead of using geometric paths in Cartesian space, a given set of paths may also be a
set of different predefined orientations in the general workspace of the robot. In such a way,
the operator may for example move the TCP close to the vertical orientation, from which
the TCP snaps precisely into the vertical orientation. In this work, this HRI function is
referred to as Orientation Snap and is derived as a special case of the Path Snap-In. The
Orientation Snap is introduced by defining a set of predefined orientations, such that the
TCP locks into these predefined orientations. The goal is to have an orientation raster
that is equally spaced w.r.t. application-specific Cartesian orientation angles. In that case,
the translational and rotational snap are controlled separately, i. e. µt,i ≠ µr,i, see (4.12).
In the special case of the Orientation Snap, there is no projected path position σt,i(θ∗

i ) in
which the TCP could possibly lock in. Additionally, the translational weighting factor
µt is set to zero, which yields a virtual translational input vt = 0 . For the rotational
weighting factors µr,i, i ∈ I, the set of valid orientations must be defined. The orientations
are chosen based on the classical Euler angles. A single orientation is thus given by

RD(φ, ϑ, ψ) = Rz,φRy,ϑRz,ψ , (4.21)

with the rotation matrices

Ry,ϑ =

 cos ϑ 0 sin ϑ
0 1 0

− sin ϑ 0 cos ϑ

 and Rz,φ =

cos φ − sin φ 0
sin φ cos φ 0

0 0 1

 . (4.22)

The three Euler angles φ, ϑ and ψ are used to parametrize the TCP orientation. With this
parametrization, the angles φ and ϑ orient the z-axis of the TCP, while ψ parametrizes the



4 User Interaction 4.1 Path Snap-In 28

x y

z

φ
φ

x′
y′

z′

x′′

y′′

z′′

ψ

ψ

x′′′

y′′′

z′′′
ϑ

ϑ

Figure 4.5: Euler angle parametrization of the TCP.

rotation around the z-axis of the TCP, see Figure 4.5. To define a set of fixed orientations
to snap in, the range of the angular parameters φ ∈ [0, 2π), ϑ ∈ [0, π] and ψ ∈ [0, 2π) is
discretized with an equidistant grid with the intervals ∆φ, ∆ϑ and ∆ψ. With Nφ, Nϑ

and Nψ specifying the number of orientations for each angle, the intervals ∆φ and ∆ψ are
calulated by ∆φ = 2π

Nφ
and ∆ψ = 2π

Nψ
. The set {Rz,i∆φ|i = 0, . . . , Nφ − 1} defines a set of

equally spaced rotations for φ. Similarly, the set for ψ results in {Rz,k∆ψ|k = 0, . . . , Nψ−1}.
The angle ϑ has a reduced range of π instead of 2π. Since 0 and π represent different
rotations, they must both be included in the set of valid orientations for ϑ. For a number of
Nϑ orientations, the range [0, π] is split into Nϑ −1 intervals and this results in ∆ϑ = π

Nϑ−1 .
This gives a set of orientations for ϑ of {Ry,j∆ϑ|j = 0, . . . , Nϑ − 1}. Combining the sets
of orientations for the individual axes φ, ϑ and ψ according to the Euler representation of
(4.21) yields the set of all valid orientations for the Orientation Snap

Ros =


RDi,j,k = Rz,i∆φRy,j∆ϑRz,k∆ψ | i = 0, . . . , Nφ − 1,

j = 0, . . . , Nϑ − 1,

k = 0, . . . , Nψ − 1


. (4.23)

Figure 4.6 shows the influence of each angular step. A change in ∆φ causes a rotation of
the TCP around the vertical axis, a change in ∆ϑ causes a rotation of the TCP around
the horizontal axis and a change in ∆ψ causes a rotation of the TCP around the z-axis of
the TCP. For ϑ = jπ, j ∈ N, the rotations Rz,ψ and Rz,φ rotate around the same axis.
This is per se no problem, since the rotations serve different purposes (aligning the TCP
normal vs rotating the TCP) and the intervals may be different ∆φ ̸= ∆ψ. However,
it must be ensured that each orientation is unique, otherwise (4.6) cannot be satisfied.
Therefore, each element of (4.23) that occurs more than once must be eliminated from
Ros.



4 User Interaction 4.2 Path Switch 29

x y

z

x′

y′

z′

(a) A change in ∆φ causes
a rotation of the TCP
around the vertical axis.

x y

z

x′

y′

z′

(b) A change in ∆ϑ causes
a rotation of the TCP
around the horizontal
axis.

x y

z

x′

y′

z′

(c) A change in ∆ψ causes
a rotation of the TCP
around the z-axis of the
TCP.

Figure 4.6: Change of orientation caused by the angular steps ∆φ, ∆ϑ and ∆ψ.

The combination of the general Path Snap-In mode with the Orientation Snap builds
the foundation for a more intuitive robot programming interface. Experiments validating
the proposed concepts follow in Chapter 5.

4.2 Path Switch
With the introduced Path Snap-In concept, the operator can snap into different paths by
moving the TCP into their vicinity and freely move the TCP in between. This is suitable
for the teach-in of new tasks and for assisting a manual human operation. The downside
is the limited force that can be applied by the robot to keep the TCP on the path, since a
human operator must be able to push the robot away from the path it is currently locked
into. To mitigate this downside, another mode called Path Switch is introduced in this
section.

The general idea of Path Switch is that during a normal operation exactly one path is
active at all times. By monitoring the external force applied to the TCP, the controller
estimates the desired human action. If the TCP is pushed in the direction of a new path,
the intent to switch to the new path is recognized. A belief system accumulates this intent
while staying on the currently active path. If the accumulated intent to switch to the new
path exceeds a given threshold, a transition trajectory is generated. The TCP follows
the transition trajectory to the new path, after which the PFC of the new path becomes
active. Figure 4.7 illustrates such a transition. First, the TCP moves along the path Σ1.
The applied external force, and thereby the intention of the operator, is accumulated by
the belief system 1 . Since the applied force stays active for a longer period of time, the
belief system assumes that the operator wants to switch to Σ2 and a transition trajectory
is planned 2 . The TCP moves along the transition trajectory 3 and after completing
the transition, the PFC of the new active path Σ2 becomes active again 4 .

In this section, the control concept for the Path Switch is explained in detail. First,



4 User Interaction 4.2 Path Switch 30

1

ytfe

fe

κt

κt κt

yt

yt

yt

Σ1

Σ2

Σ1

Σ2

Σ1

Σ2

Σ1

Σ2

2

3 4

Figure 4.7: Path Switch concept with the TCP position yt and the external force fe. The
motion is depicted as blue line. In 1 , the TCP is moving along Σ1 while being
pushed towards Σ2. Due to the external force fe, the belief system is updated
in the background. The external force is maintained until a transition to Σ2
is initiated ( 2 ). The TCP moves along the transition trajectory κt ( 3 ) and
moves along Σ2 after finishing the transition ( 4 ).

a detection algorithm for the intention of switching to a new path is introduced. This
is done by estimating the external force, geometrically searching for suitable paths that
might be considered as possible switching candidates and updating the belief system
responsible for the selection of the active path. Second, the generation of the transition
trajectory is discussed. The general shape of the trajectory and the needed boundary
conditions for a smooth transition between two paths is explained. The experimental
validation of the concepts introduced in this chapter is given in Chapter 5.

4.2.1 Detection of the Intention to Switch
To react to the input of the human operator, the corresponding human intent must be
estimated. To detect the intention of the operator to switch to a new path, multiple steps
are involved. First, the applied force is estimated. The external force direction indicates
which path the human wants to switch to. Second, based on that information, a belief
system selects the most likely path and is responsible for initiating the transition to the
new path.

External Force Estimation

It is assumed that the robot has no additional F/T sensor attached to its TCP. To estimate
the external force applied to the TCP, the measurements of the joint angles, joint velocities
and torques are utilized. The external torque is estimated via a momentum observer, see
[33].



4 User Interaction 4.2 Path Switch 31

The generalized momentum p(t) is given by p(t) = M(q)q̇. The time derivative of the
generalized momentum ṗ(t) yields

ṗ(t) = Ṁ(q, q̇)q̇ + M(q)q̈
= CT(q, q̇)q̇ − g(q) + τ + τ e , (4.24)

by using (2.9) and the identity Ṁ(q, q̇) = C(q, q̇) + CT(q, q̇) (see, e. g., [33]). Since the
external torque τ e is not known, (4.24) can not be evaluated directly and an observer is
used to estimate the generalized momentum pest(t) as well as the external torque τ est

e .
Choosing the observer dynamics as

ṗest(t) = CT(q, q̇)q̇ − g(q) + τ + τ est
e (4.25a)

τ est
e = KO


p(t) − pest(t)


, (4.25b)

with the positive definite observer matrix KO ∈ R7×7, yields the dynamics of the external
torque estimation

τ̇ est
e = KO


ṗ(t) − ṗest(t)


= KO


τ e − τ est

e


. (4.26)

Thus, the momentum observer (4.25) provides a linear first-order estimation of the external
torque τ est

e .
In order to use the estimated force for finding path switching candidates, the force

direction in the task space is needed. The estimated force in the base frame B is calculated
as the projection of the estimated torque τ est

e , yielding

f est
e =


J†(q)

T
τ est

e =

f est
e,t

f est
e,r

�
. (4.27)

The direction of the external force ef is calculated by dividing the force by its magnitude

ef =
f est
e,t***f est

e,t

***
2

. (4.28)

In this work, a minimum force of
***f est

e,t

***
2

= 5 N is needed to be considered as a valid
applied force. Otherwise, it is assumed that no exernally applied force is present.

Search for new Path Candidates

A belief system is responsible for choosing an active path and is introduced in this section.
The belief system is updated according to the human intent. If the human operator wants
to switch to a new path, the TCP is pushed in the direction where the new path is found.
Successively, any suitable path that could be intended by the human operator has to be
found based on the direction of the external force ef . Ideally, the push direction and
the selected path would intersect at some point. In reality, the push direction will never
be that exact. Thus, a path is defined to be a candidate, if it lies within a cone with



4 User Interaction 4.2 Path Switch 32

Σ1 Σ2

fe

fe

Σ3

Σ1
1 Σ1 candidate 2 Σ3 candidate 3 no candidate

Σ2

Σ3

Σ1 Σ2

Σ3

fe
ytyt

yt

ϕ

ϕ

ϕ

Figure 4.8: Search for new path candidates depending on the external force fe. The TCP
yt is currently on Σ2. In 1 , fe points in the direction of Σ1, making Σ1 a
candidate for an intended switch. In 2 , the same goes for Σ3. In 3 , no path
is found in the cone with the opening angle of ϕ, resulting in 0 candidates.

an opening angle of ϕ around the push direction ef with the cone tip at the position of
the TCP yt, see Figure 4.8. For a path Σi defined by σt,i(θi), i ∈ I, this condition is
mathematically formulated as

∃ θi ∈ Θi s. t. eT
f ed,i = eT

f
σt,i(θi) − yt

∥σt,i(θi) − yt∥2
> cos ϕ , (4.29)

with ed,i being the normalized distance vector from the TCP position yt to the point on
the path σt,i(θi). If the path is a valid candidate, the closest point to the actual TCP is
chosen as the reference point on the new path. It is found as a solution of the constrained
minimization problem

θ̄∗
i = arg min

θi∈Θi

∥yt − σt,i(θi)∥2
2, i ∈ I

s. t. eT
f ed,i > cos ϕ . (4.30)

Hence, the optimal path parameter θ̄∗
i satisfies (4.29) while minimizing the distance. To

distinguish the solution of the constrained minimization problem (4.30) from the solution
of the unconstrained minimization problem for the optimal path parameter θ∗ (3.8), the
optimal path parameter with constraints is denoted by an additional bar, i. e. θ̄∗. If a
solution of the minimization problem (4.30) can be found, it is considered a candidate for
a switch. Otherwise, it is omitted during the path selection. The admissible paths are
selected by their indices and are stored in the set

J =
�

j | j ∈ I, ∃ θ̄∗
j and j ̸= iact

�
⊂ I . (4.31)

The index of the active path iact is excluded from the set J , since it is not an admissible
option for a switching path.

Belief System

The belief system is used to select the active path and detect the operator’s intent to
switch to a new path. It is inspired by the work of Khoramshahi and Billard [20]. It is



4 User Interaction 4.2 Path Switch 33

assumed that the index set I is given as I = {1, 2, . . . , n}, which simplifies the following
notation. The belief system stores beliefs bi for each path {bi ∈ [0, 1] | i ∈ I}, where the
sum of all beliefs must be one, i. e. )n

i=1 bi = 1. A belief of bi = 1 means that the system
beliefs by 100% that the path i is the intended one. A value of bi = 0 means that the
belief system is certain that the path i is not intended by the human operator. At each
time step exactly one active path is selected and its index is denoted by iact. The beliefs
of all paths are collected in the belief vector bT =



b1 b2 . . . bn

�
, which is updated

in each time step. The main difference between the belief system in this work and the
belief system in [20] is that the belief system presented here is force-based, while the
belief system in [20] is distance-based. The force-based system aggregates the intentions
(provided by externally applied forces) in the background, while staying fixed on the active
path. In distance-based approaches, however, a deviation from the path is needed to know
that the intention has changed.

If the belief of a non-active path is rising, it is likely that the operator wants to switch to
this path. If the belief of a path exceeds a given belief threshold bth and the corresponding
path is not active i ̸= iact, a transition is initiated. In the next section, the needed
transition trajectory is generated.

The belief system distinguishes two cases. In the first case, no external force is applied.
In that case, the best guess is comparing the distances between the TCP and each path.
The closest path is most likely the intended path, and its belief thus increases the most.
In the second case, an external force is applied. In that case, the direction of the applied
external force is compared to the direction from the TCP to each adimissible path. The
path with the most similarity gets the largest belief increase. The belief system performs
updates based on the external force when the input exceeds the threshold of f est

e,t = 5 N.
External forces below that threshold are assumed to originate from noise.

Starting with the first case, it is assumed that no external force is present. Hence, the
minimization problem according to (4.30) does not apply and cannot be solved, since ef is
undefined. The best update that can be taken is based on the distances between the TCP
and the closest points on the paths. To this end, the optimal path position for each path
is calculated by solving the unconstrained minimization problem

θ∗
i = arg min

θi∈Θi

∥yt − σt,i(θi)∥2
2, i ∈ I . (4.32)

Based on the solutions θ∗
i , the distances to the TCP are calculated as

di = ∥σt,i(θ∗
i ) − yt∥2, i ∈ I . (4.33)

These distances are the basis for the belief update law. A small distance means the TCP
is close to the given path. Its belief should therefore increase. On the other hand, a large
distance should cause the corresponding belief to decrease. The belief update should thus
be directly proportional to the negative distance. Based on these considerations, the belief
update law is introduced as

ḃ =


ḃ1
...

ḃn

 = Ω


b1

...
bn

, −εd

d1
...

dn


, εd > 0 , (4.34)



4 User Interaction 4.2 Path Switch 34

with the adaptation gain for the distance-based belief update εd ∈ R. The function
Ω : Rn × Rn → Rn implements a winner-takes-all (WTA) algorithm, which takes the
current beliefs and the negative distance as arguments. It is needed to keep the belief
system and its beliefs consistent and in the range between 0 and 1. Since there can only
be one active path iact, only one belief should be increasing, while all the others are
decreasing. As a result, only one belief update ḃi in (4.34) should be positive, while all
the others are negative. For a sample implementation of the WTA algorithm Ω(·, ·), see
Appendix A.3.1. The final beliefs b are calculated by integrating the belief updates (4.34)
as

b(t) =
� t

t0
ḃ(τ)dτ . (4.35)

In the second case, the belief system uses the external force as main input. It compares
the direction of the applied external force f est

e,t with the direction from the current TCP
position yt to each admissible path σt,j


θ̄∗

j


, j ∈ J . The belief system accumulates these

matching directions and aggregates thereby the intentions. The system can therefore
update its beliefs in the background while staying fixed on the active path.

To estimate the intentions, the direction of the external force ef is compared to the
directions from the TCP position yt to the positions on the paths σt,j


θ̄∗

j


, j ∈ J . A

good match in the direction should cause a large belief increase and vice versa. However,
there may be multiple paths lying in the same direction, but at different distances from
the TCP. The comparison of the normalized direction vector ed,i with the external force
direction ef does not account for the different distances. To include that information
in the comparison, a scaling is applied before comparing the directions. The scaling
must ensure that at least the closest admissible path in any direction is reachable by the
admissible human force fh,t introduced in Section 4.1.1. With this scaling, each admissible
path j ∈ J gets a switching force fs,j , which is basically the direction vector, scaled such
that the closest admissible path has ∥fs,j∥2 = fh,t. In that way, no matter how large
the distance between the TCP and the paths is, at least one is always reachable by the
admissible human force in any possible direction, see Figure 4.9. This switching force
fs,j is then compared to the applied external force f est

e,t . Non-admissible paths i /∈ J are
assigned a switching force of fs,i = 0. To find the scaling, the distance from the TCP yt
to the closest admissible path j ∈ J is needed and calculated by

dmin = min
j∈J

***σt,j

θ̄∗

j


− yt

***
2
, j ∈ J . (4.36)

The switching force fs,i, i ∈ I, for every path is then calculated by

fs,i =

fh,t
σt,i(θ̄∗

i )−yt
dmin

i ∈ J
0 i /∈ J

. (4.37)

Multiple paths may lie along the same force direction (e. g. Σ3 and Σ4 in Figure 4.9).
To select the path further away (Σ4 in Figure 4.9), a larger force than fh,t needs to be
applied by the operator or the switch must occur in multiple steps.



4 User Interaction 4.2 Path Switch 35

fs,1

d3
d4

d1

fh,t fh,t

fe,t

∥fs,1∥2 = fh,t

Σ1 Σ2
Σ3

Σ4

yt

fs,3
fs,4

fe,t

∥fs,3∥2 = fh,t∥fs,4∥2 > fh,t

Σ1 Σ2
Σ3

Σ4

yt

Figure 4.9: The switching force fs,i is scaled, such that for the switching force of the
closest admissible path ∥fs,i∥2 = fh,t applies. On the left, J = {1} and thus
∥fs,1∥2 = fh,t. On the right, J = {3, 4} instead, because of the different
direction of the external force fe,t. The path Σ3 is closer to yt than Σ4. Thus,
∥fs,3∥2 = fh,t and ∥fs,4∥2 > fh,t.

Based on the adaptation law in [20], the belief updates are calculated using the actually
applied external force f est

e,t as

ḃ = Ω

b, −εf

fe,1
...

fe,n


, εf > 0 with fe,i =

***f est
e,t − fs,i

***
2

(4.38)

and the adaptation gain εf ∈ R.
The presented belief update (4.38) can only be applied, if a suitable switching path is

found, i. e. J ̸= {}. If the external force f est
e,t points in a direction where no path is located,

(4.30) cannot be solved for any i ∈ I. In this case, the distance-based update law (4.34) is
used again.

4.2.2 Transition Trajectory Generation
In order to switch from the current path and position (indexed by i) to the new path
(indexed by i′) without any sudden torque jumps, a transition trajectory is computed
online. This transition trajectory is denoted by κ(t). During the transition, the robot
is controlled by a trajectory tracking controller (TTC) formulated w.r.t the base frame.
The translational part κt(t) and rotational part κr(t) of the trajectory κ(t) are designed
separately, i. e.

κ(t) =

κt(t)
κr(t)

�
. (4.39)

Figure 4.10 provides a visualization of such a transition from Σi to Σi′ . The movement
of the TCP yt(t) is depicted in blue, the paths Σi and Σi′ are shown in black and the
transition trajectory κt(t) is depicted in green. At first, the TCP is moving along Σi.
The external force fe is depicted in red. As soon as the external force fe is applied, the



4 User Interaction 4.2 Path Switch 36

Σi

fe(t0)

yt(t)

yt(t0)

κt(t)

κt(t0)

κt(t1)

yt(t1)

Σi′

starting from here fe ̸= 0
yt deviates from the path

fe removed, because transition is initiated
yt returns to κt

Figure 4.10: Trajectory of the TCP position yt(t) during a transition from Σi to Σi′ with
the online-generated transition trajectory κt(t) and the external force fe(t).

TCP slightly deviates from the path Σi, since the system is impedance controlled by the
PFC. The belief system is updated in the background and at t = t0 the belief system
decides that a transition to Σi′ is initiated. The online-computed transition trajectory
κ(t) must be designed in a way that the TTC brings the TCP from Σi to Σi′ , that there
are no torque jumps at t = t0 and t = t1 and the motion should be close to a human-like
motion. These requirements define the shape of the trajectory κ(t) and specify boundary
conditions at t = t0 and t = t1. The boundary conditions are especially important at
t = t0, where a deviation from the path Σi is unavoidable due to the external force fe that
initiated the transition in the first place, see Figure 4.10.

Shape of the Trajectory

Studies have shown that human motions are performed in a jerk-minimizing way [34].
Thus, to make the robot movement as similar as possible to a human motion, the transition
trajectory should be jerk-minimizing. It can be shown that a polynom of order 5 provides
such characteristics [34].

The translational part of the transition trajectory κt(t) is chosen as a 5th− order



4 User Interaction 4.2 Path Switch 37

polynomial, reading as

κt(t) =
5(

k=0
at,k


t − t0

Tκ

k

, t ∈ [t0, t0 + Tκ] (4.40)

with the transition duration Tκ, the start time of transition t0 and the coefficients at,k ∈ R3,
k = 0, 1, . . . , 5. For the rotational part, a simple polynomial is not feasible. It would
not preserve the needed structure to represent an orientation, i. e. direcly interpolating
quaternions would not give a unit quaternion and directly interpolating matrices would not
give a valid rotation matrix in between the interpolation points. Hence, a spherical linear
interpolation (SLERP) is used instead [35]. This interpolation can be constructed in unit
quaternions as well as in rotation matrices. In this work, the interpolation is formulated
as rotation matrix, since it simplifies the satisfaction of the boundary conditions in the
next section. Thus, the rotational part of the trajectory (with respect to B) is given by

Rκ(t) = exp

[ar(t)]×


Rκ0 (4.41a)

ar(t) =
5(

k=0
ar,k


t − t0

Tκ

k

, t ∈ [t0, t0 + Tκ] , (4.41b)

with the coefficients ar,k ∈ R3, k = 0, 1, . . . , 5 and the initial rotation matrix Rκ0 . The
matrix exponential exp(A) of a square matrix A ∈ Rn×n used in (4.41) is given by the
power series

exp(A) =
∞(

m=0

1
m!A

m , (4.42)

with A0 = I.

Boundary Conditions

As described in Section 4.2.1, an external force is used to initiate a Path Switch. This
force is of course still applied at the beginning of the transition. Because the PFC
is based on an impedance control law, a certain deviation from the desired path is
inherently present, see Figure 4.10. This deviation results in a virtual spring force that
is counteracting the external force and attracts the TCP towards the path. To obtain a
smooth transition, the virtual spring force must be kept consistent when switching from
the PFC control to the trajectory control. This requirement yields boundary conditions
for the generated trajectory. An impedance controller formulated in inertial coordinates
(of which the impedance parameters may differ from the PFC) is used as TTC. This
controller is denoted by τ κ. The positive definite TTC impedance matrices are denoted
by (Md

κ, Dd
κ, Kd

κ). Based on the PFC law (see (3.39))

τ = n + τ n − τ e + MĴ†




ξ̈
d

ω̇D

�
+


Md

−1

f̂e − Dd


ξ̇ − ξ̇
d

ωT − ωD

�
� �� �

damper

− Kd


ξ − ξd

εD
T

�
� �� �

spring

 − ˙̂Jq̇

 ,

(4.43)



4 User Interaction 4.2 Path Switch 38

the TTC for the transition trajectory is given by

τ κ = n+τ n−τ e+MJ†




κ̈t
ω̇K

�
+


Md

κ

−1

fe − Dd
κ


ẏt − κ̇t

ωT − ωK

�
� �� �

damper

− Kd
κ


yt − κt

εK
T

�
� �� �

spring

 − J̇q̇

 .

(4.44)
Note that the desired coordinates (ξd, ξ̇

d
, ξ̈

d) in (4.43) are replaced by the transition
trajectory (κt, κ̇t, κ̈t) in (4.44) during the transition, the path-based coordinates ξ and ξ̇
are replaced by the system output yt and its derivative ẏt, respectively, and the Jacobian
J described in the base frame is used instead of the path-based Jacobian Ĵ. The vectors
ωK and ω̇K denote the desired angular velocity and desired angular acceleration of the
trajectory, respectively, and εK

T is the vector part of the quaternion error between the TCP
frame T and the trajectory frame K. Note that the desired impedance parameters change
from (Md, Dd, Kd) to (Md

κ, Dd
κ, Kd

κ). The original impedance parameters (Md, Dd, Kd)
may not be suitable for the TTC, since the transition trajectory has to be executed
consistently. While Kd = diag(kd

∥ = 0, kd
⊥, kd

⋔, kr) is a valid option for the PFC, it cannot
be used for the transition, as it would not guarantee that the robot follows the tangential
motion of the transition trajectory.

For a smooth transition, the torques τ and τ κ must match at the beginning of the
transition t = t0 and at the end of the transition t = t1, i. e. τ (t0) − τ κ(t0) = 0 and
τ (t1) − τ κ(t1) = 0. Using (4.43) and (4.44), rearranging these matching conditions in a
way that the according derivatives appear next to each other, yields

−Ĵ†



Md

−1
Kd


ξ − ξd

εD
T

�
� �� �

virt. spring PFC

 + J†



Md

κ

−1
Kd

κ


yt − κt

εK
T

�
� �� �
virt. spring TTC

+

−Ĵ†



Md

−1
Dd


ξ̇ − ξ̇

d

ωT − ωD

�
� �� �
virt. damper PFC

 + J†



Md

κ

−1
Dd

κ


ẏt − κ̇t

ωT − ωK

�
� �� �
virt. damper TTC

+

Ĵ†


ξ̈
d

ω̇D

�
+


Md

−1
f̂e − ˙̂Jq̇


− J†


κ̈t
ω̇K

�
+


Md

κ

−1
fe − J̇q̇


= 0, t ∈ {t0, t1} .

(4.45)

The closed-loop system for the PFC takes ξd, ξ̇
d
, ξ̈

d
, RD, ωD and ω̇D as input and provides

a torque τ according to (4.43) as control input to the plant. In the same way, the closed-
loop system for the TTC takes κt, κ̇t, κ̈t, Rκ, ωK and ω̇K as input and provides a torque
τ κ according to (4.44) as control input to the plant. To match the influence of each
input, the torque τ originating from ξd and the torque τ κ originating from κt must be
the same at the boundaries between the PFC and the TTC. The same holds true for
the other inputs of the closed-loop system for the PFC and the closed-loop system for



4 User Interaction 4.2 Path Switch 39

the TTC, i. e. ξ̇
d ↔ κ̇t, ξ̈

d ↔ κ̈t, RD ↔ Rκ, ωD ↔ ωK and ω̇D ↔ ω̇K. In another
way of interpreting these matching conditions, the torque τ originating from the virtual
spring, damper or inertial force of the PFC must be the same as the torque τ κ originating
from the virtual spring, damper or inertial force of the TTC, respectively, at t = t0 and
t = t1. Since (4.43) and (4.44) are linear equations in the inputs ξd, ξ̇

d
, ξ̈

d
, RD, ωD, ω̇D

and κt, κ̇t, κ̈t, Rκ, ωK, ω̇K, this approach is valid. With these considerations, each line
in (4.45) is individually set to 0, which certainly is a solution to (4.45). The first line of
(4.45) represents the virtual spring forces. Setting this line to 0 yields

−Ĵ†



Md

−1
Kd


ξ − ξd

εD
T

�
� �� �

virt. spring PFC

 + J†



Md

κ

−1
Kd

κ


yt − κt

εK
T

�
� �� �
virt. spring TTC

 = 0, t ∈ {t0, t1} . (4.46)

Equation (4.46) is solved for the interesting boundary values of the transition trajectory
κt and εK

T , resulting in a mapping from (ξd, εD
T ) to (κt, εK

T ) of
κt

−εK
T

�
=


yt
0

�
−


Kd

κ

−1
Md

κJĴ†


Md
−1

Kd

ξ − ξd

εD
T

�
, t ∈ {t0, t1} . (4.47)

Additionally, with the assumption of diagonal impedance parameter matrices Md, Dd, Kd,
Md

κ, Dd
κ, Kd

κ ∈ R6×6 with positive entries, combined with the identity for the pseudoinverse
of the path-based Jacobian Ĵ† (4.15), the translational and rotational part of (4.47) are
decoupled and provide one matching condition for the translational part ξd ↔ κt and one
matching condition for the rotational part εD

T ↔ εK
T . Hence, with (4.47) the mapping

for the inputs ξd ↔ κt and εD
T ↔ εK

T of the closed-loop system for the PFC and of the
closed-loop system for the TTC is found.

Repeating the above procedure for the second and third line of (4.45) yields the boundary
conditions

κ̇t
ωK

�
=


ẏt
ωT

�
−


Dd

κ

−1
Md

κJĴ†
Md

−1
Dd


ξ̇ − ξ̇

d

ωT − ωD

�
, t ∈ {t0, t1} ,

(4.48)
κ̈t
ω̇K

�
= JĴ†


ξ̈

d

ω̇D

�
+


J̇ − JĴ† ˙̂J


q̇ + JĴ†

Md
−1

f̂e −

Md

κ

−1
fe

cf. (4.4)=


ÿt
ω̇T

�
− JĴ†


ξ̈ − ξ̈

d

ω̇T − ω̇D

�
+ JĴ†

Md
−1

f̂e −

Md

κ

−1
fe, t ∈ {t0, t1} .

(4.49)

The equations (4.47), (4.48) and (4.49) provide in total 36 boundary conditions, which is
enough to specify the 36 components of the coefficients at,k in (4.40) and ar,k in (4.41).

For t = t0, the equations (4.47), (4.48) and (4.49) are directly evaluated, since the state
of the system is known. However, to evaluate (4.47), (4.48) and (4.49) at t = t1, the future
state of the system would be needed, since the trajectory generation is done at t = t0 and



4 User Interaction 4.2 Path Switch 40

t1 > t0, which is not known beforehand. To this end, it can be assumed that the external
force fe, which initiated the transition, has vanished until the end of transition and there
is no external force fe applied at t = t1. This is a reasonable assumption, since an operator
will stop to push the TCP, once it starts to move in the desired direction, cf. Figure 4.10.
Without any external force fe, the actual path-based coordinates ξi′(t1) and the actual
orientation RT (t1) are expected to match the desired path-based coordinates ξd

i′(t1) and
the desired orientation RDi′ (t1), respectively. The same assumption holds true for the
derivatives of the path-based coordinates ξ̇i′(t1), ξ̇

d
i′(t1) and ξ̈i′(t1), ξ̈

d
i′(t1) as well as for

the angular velocity ωT (t1) and ωDi′ (t1) and angular acceleration ω̇T (t1) and ω̇Di′ (t1).
Thus, with

ξi′(t1) − ξd
i′(t1) = 0 , (4.50a)

ε
Di′
T (t1) = 0 , (4.50b)

ξ̇i′(t1) − ξ̇
d
i′(t1) = 0 , (4.50c)

ωT (t1) − ωDi′ (t1) = 0 , (4.50d)

ξ̈i′(t1) − ξ̈
d
i′(t1) = 0 , (4.50e)

ω̇T (t1) − ω̇Di′ (t1) = 0 , (4.50f)

the evaluation of (4.47), (4.48) and (4.49) at t = t1 simplifies to
κt(t1)
Rκ(t1)

�
=


yt(t1)

RT (t1)

�
(4.51)

κ̇t(t1)
ωK(t1)

�
=


ẏt(t1)
ωT (t1)

�
(4.52)

κ̈t(t1)
ω̇K(t1)

�
=


ÿt(t1)
ω̇T (t1)

�
. (4.53)

That means, the position of the TCP yt, the velocity of the TCP ẏt and the acceleration
of the TCP ÿt, as well as the orientation of the TCP RT , the angular velocity of the TCP
ωT and the angular acceleration of the TCP ω̇T , at the end of transition t = t1 directly
correspond to the corresponding quantities of the transition trajectory.

For the position yt(t1), the parallel transport frame Pi′ is positioned at the point on
the path that was selected in Section 4.2.1, i. e. in the most general case it is

κt(t1) = yt(t1) = σt,i′

θ̄∗

i′


+ e⊥,i′

θ̄∗

i′

ξd

⊥,i′(t1) + e⋔,i′

θ̄∗

i′

ξd
⋔,i′(t1) . (4.54)

Note that the calculation of ξ∥ is based on an integral equation (3.18). Since the calculation
of ξ∥,i′ only provides a useful value, if Σi′ is the active path (i. e. regarding the transition
only if t ≥ t1), the integral equation for ξ∥,i′ starts at t = t1 with an initial value of
ξ∥,i′(t1) = ξd

∥,i′(t1). The time derivative of the translational part of the transition trajectory
at the end of transition κt(t1) is given according to (3.27) as

κ̇t(t1) = ẏt(t1) =



1
βi′ e∥,i′


θ̄∗

i′


e⊥,i′

θ̄∗

i′


e⋔,i′

θ̄∗

i′
�

ξ̇
d
i′(t1) , (4.55)



4 User Interaction 4.2 Path Switch 41

see Appendix A.1.2. Time derivative of (4.55) yields

κ̈t(t1) =



d
dt


1

βi′


e∥,i′


θ̄∗

i′


+ 1
βi′ ė∥,i′


θ̄∗

i′


ė⊥,i′

θ̄∗

i′


ė⋔,i′

θ̄∗

i′
�

ξ̇
d
i′(t1)

+



1
βi′ e∥,i′


θ̄∗

i′


e⊥,i′

θ̄∗

i′


e⋔,i′

θ̄∗

i′
�

ξ̈
d
i′(t1) . (4.56)

Equations (4.54), (4.55) and (4.56) specify the boundary conditions of the translational
part of the trajectory at the end of transition κt(t1) in the general case, in which the
expected parallel transport frame Pi′ needs to be constructed for t = t1 beforehand.
In a special case, the desired path coordinates in the transversal plane ξd

⊥, ξd
⋔ (and

their time derivatives ξ̇d
⊥, ξ̇d

⋔, ξ̈d
⊥, ξ̈d

⋔) are zero ξd
⊥ = ξd

⋔ = ξ̇d
⊥ = ξ̇d

⋔ = ξ̈d
⊥ = ξ̈d

⋔ = 0,
i. e. the only desired motion is along the path. In this case, (4.54), (4.55) and (4.56)
simplify and the construction of the parallel transport frame Pi′ at t = t1 is not needed
to be done beforehand. With these assumptions, α(yt(t)) = 0 follows from (3.13) and
β(yt(t)) = 1 = const. due to (3.16). Consequently, (4.54), (4.55) and (4.56) simplify to

κt(t1) = σt,i′

θ̄∗

i′


(4.57)

κ̇t(t1) = e∥,i′

θ̄∗

i′

ξ̇d

∥,i′(t1) (4.58)

κ̈t(t1) = ė∥,i′

θ̄∗

i′

ξ̇d

∥,i′(t1) + e∥,i′

θ̄∗

i′

ξ̈d

∥,i′(t1) . (4.59)

The tangential unit vector e∥,i′(θ∗) is directly given by the defintion of the path (3.5). The
time derivative of the tangential unit vector ė∥,i′(θ∗) additionally needs the time derivative
of the optimal path parameter θ̇∗

i′ , which is specified by ξ̇∥,i(t1) = ξ̇d
∥,i(t1) and (3.21).

For the rotational part, the orientation of the path RDi′

θ̄∗

i′

, the angular velocity of

the path-based frame ωDi′

θ̄∗

i′ , θ̇∗
i′


and the angular acceleration of the path-based frame

ω̇Di′

θ̄∗

i′ , θ̇∗
i′ , θ̈∗

i′


are directly evaluated, resulting in the boundary conditions

Rκ(t1) = RDi′

θ̄∗

i′


(4.60)

ωK(t1) = ωDi′

θ̄∗

i′ , θ̇∗
i′


(4.61)

ω̇K(t1) = ω̇Di′

θ̄∗

i′ , θ̇∗
i′ , θ̈∗

i′


. (4.62)

The time derivatives of the optimal path parameter θ̇∗
i′ , θ̈∗

i′ are specified by the assumptions
(4.50), the path definition σt,i′(θi′) and the desired path-dependent coordinates ξ̇d

∥,i(t1),
cf. (3.21).

Parameter Calculation

In this section, explicit values for the coefficients at,k and ar,k, k = 0, 1, . . . , 5, of the
polynomials (4.40) and (4.41) are found. Starting with the translational part, the time



4 User Interaction 4.2 Path Switch 42

derivatives of the transition trajectory κt(t) are needed and calculated from (4.40),

κt(t) =
5(

k=0
at,k


t − t0

Tκ

k

(4.63a)

κ̇t(t) =
5(

k=1
at,k

k

Tκ


t − t0

Tκ

k−1
(4.63b)

κ̈t(t) =
5(

k=2
at,k

k(k − 1)
T 2

κ


t − t0

Tκ

k−2
. (4.63c)

Evaluating (4.63) at t = t0 and t = t1 = t0 + Tκ yields

κt(t0) = at,0 (4.64a)

κ̇t(t0) = at,1
Tκ

(4.64b)

κ̈t(t0) = 2at,2
T 2

κ

(4.64c)

κt(t1) = at,0 + at,1 + at,2 + at,3 + at,4 + at,5 (4.64d)

κ̇t(t1) = at,1 + 2at,2 + 3at,3 + 4at,4 + 5at,5
Tκ

(4.64e)

κ̈t(t1) = 2at,2 + 6at,3 + 12at,4 + 20at,5
T 2

κ

. (4.64f)

Together with the boundary conditions (4.47), (4.48) and (4.49), the system of equations
(4.64) fully define the coefficients at,k, k = 0, 1, . . . , 5, of the translational transition
trajectory κt(t).

The above procedure is repeated for the rotational trajectory Rκ(t) in (4.41). To
satisfy the rotational part of the boundary conditions (4.47), (4.48) and (4.49), the angular
velocity ωK(t) and the angular acceleration ω̇K(t) of the rotational path of κ(t) are needed.
The angular velocity is calculated as


ωK(t)
�

× = Ṙκ(t)(Rκ(t))T = exp

[ar(t)]×


[ȧr(t)]×Rκ0(Rκ0)Texp


[ar(t)]×

T

= exp

[ar(t)]×


[ȧr(t)]×exp


[ar(t)]×

T
. (4.65)

Differentiating (4.65) w.r.t. the time and using the skew symmetric identity [·]T× + [·]× = 0
yields 


ω̇K(t)
�

× = exp

[ar(t)]×


[är(t)]×exp


[ar(t)]×

T
. (4.66)

Evaluating (4.41), (4.65) and (4.66) at t = t0 yields the set of equations

Rκ(t0) = exp

[ar(t0)]×


Rκ0 (4.67a)


ωK(t0)
�

× = [ȧr(t0)]× (4.67b)

ω̇K(t0)

�
× = [är(t0)]× , (4.67c)



4 User Interaction 4.2 Path Switch 43

from which the initial conditions for ar(t) at t = t0 follow as

ar(t0) = 0 (4.68a)
ȧr(t0) = ωK(t0) (4.68b)
är(t0) = ω̇K(t0) . (4.68c)

Evaluation of the same equations (4.41), (4.65) and (4.66) at t = t1 and the introduction
of the abbreviation Rκ1 = Rκ(t1) yields another set of equations

Rκ(t1) = exp

[ar(t1)]×


Rκ0 = Rκ1 (4.69a)


ωK(t1)
�

× = Rκ1RT
κ0 [ȧr(t1)]×Rκ0RT

κ1 (4.69b)

ω̇K(t1)

�
× = Rκ1RT

κ0 [är(t1)]×Rκ0RT
κ1 . (4.69c)

The equations (4.69) are solved for the initial conditions of ar(t) at t = t1 resulting in

[ar(t1)]× = log

Rκ1RT

κ0


(4.70a)

[ȧr(t1)]× = Rκ0RT
κ1



ωK(t1)

�
×Rκ1RT

κ0 (4.70b)

[är(t1)]× = Rκ0RT
κ1



ω̇K(t1)

�
×Rκ1RT

κ0 . (4.70c)

With the above sets of equations (4.68) and (4.70), together with the boundary conditions
(4.47), (4.48) and (4.49), the coefficients ar,k of the rotational transition trajectory (4.41)
are completely specified.

Transition Duration

The specification of the transition duration Tκ is discussed in this section. To keep the
TCP velocity within its limits, the transition to a more distant path needs a longer
transition duration Tκ than a transition to a closer path. A transition is always composed
of a simultaneous translation and rotation, for which the independent transition durations
Tt for the translation and Tr for the rotation are introduced.

Based on the distance between the current position yt(t0) and the goal position σt,i′

θ̄∗

i′

,

the translational transition duration Tt is chosen as

Tt = ct
***σt,i′


θ̄∗

i′


− yt(t0)
***

2
, (4.71)

with the translational transition duration parameter ct ∈ R. In the same way, based on
the quaternion distance between the unit quaternion representation of the orientation of
the TCP QT (t0) and the unit quaternion representation of the desired orientation Di′

QDi′ , a rotational transition duration Tr is calculated by

Tr = cr
***ε

Di′
T

***
2

(4.72)�
e

Di′
T , ε

Di′
T

�
= QDi′ ⊗


QT (t0)

−1
, (4.73)



4 User Interaction 4.2 Path Switch 44

with the rotational transition duration parameter cr ∈ R.
The transition duration is found by taking the larger value of the translational transition

duration Tt and the rotational transition duration Tr. Hence, the transition duration Tκ

is chosen as
Tκ = max(Tt, Tr) . (4.74)

At this point, the transition trajectory κ(t) is completely specified.



5 Experiments
This chapter presents three experiments for the human-robot interaction modes introduced
in Chapter 4. A drilling task with three drilling paths is chosen as representative scenario
to demonstrate the teach-in process as well as the collaborative task execution. The
presented experiments are based on the same drilling task.

In the first experiment (Section 5.1), the teach-in process is presented, in which the
operator can freely move the cordless drill within the workspace of the robot, while the
robot carries the load of the drill. Using the Orientation Snap introduced in Section 4.1.2,
the orientation of the cordless drill snaps exactly into predefined orientations and the
operator programs the paths for the drilling task. The collaborative task execution is
presented in two separate experiments. The goal of the task is to drill three consecutive
holes in the three mounted plywood panels, which are mounted in different orientations
in the robot workspace, see Figure 5.1b. The human operator performs the drilling and
operates the cordless drill, while the robot stabilizes the drill on the paths.

In the second experiment (Section 5.2), the drilling task is executed with the Path
Snap-In mode introduced in Section 4.1 and in the third experiment (Section 5.3), the
same drilling task is executed with the Path Switch mode introduced in Section 4.2. In
the collaborative task execution, the robot stabilizes the drill on the drilling paths, while
the human operator controls the drill and selects the drilling sequence. With the Path
Snap-In mode, the robot only locks in the vicinity of a drilling path. Distant from the
drilling paths, the robot only carries the load of the cordless drill, while the movement is
controlled by the human operator. Thus, the transition between different drilling paths
mainly depends on the human interaction. With the Path Switch mode in contrast, the
cordless drill is never freely movable. The drill is either stabilized on a drilling path, along
which it can be moved, or it is transitioning between two drilling paths, in which case it
moves along a defined trajectory.

The experimental setup is depicted in Figure 5.1 and consists of the robot Kuka LBR
iiwa 14 R820, a power supply, three plywood panels mounted on a table and a desktop
computer. The cordless drill Makita DHP446 is attached to the robot endeffector with a
3D-printed drill mount, which uses a clamping mechanism to hold the cordless drill, see
Figure 5.1a. With this mount, the cordless drill is completely operable by the human,
while being attached to the robot flange. The drawings of the drill mount is found in
Appendix A.4. The robot is controlled via the industrial fieldbus system EtherCAT. The
controller is implemented in Matlab/Simulink and runs in the real-time automation
software Beckhoff TwinCAT on the desktop computer. In the experimental setup,
no F/T sensor is available. Thus, the external torque τ e is not fed back in the control
concept. For the belief system, however, the estimation of the external force f est

e according
to (4.25) and (4.27) is used.

45



5 Experiments 5.1 Teach-In Experiment 46

Robot

TCP

T

drill mount

cordless drill

(a) Cordless drill attached to the robot endef-
fector with a 3D-printed drill mount.

Panel 1

Panel 2
Panel 3

(b) Experimental setup with the cordless drill
and the three plywood panels mounted
in different orientations in the robot
workspace.

Figure 5.1: Experimental setup for the selected drilling task.

5.1 Teach-In Experiment
The first experiment demonstrates the teach-in of the robotic task. To teach the drilling
paths to the robot, the tip of the drill must be positioned at the desired drill hole location
of each plywood panel in the correct drilling orientation. The Orientation Snap introduced
in Section 4.1.2 assists the operator to exactly match the alignment of the drill bit with
the desired drilling direction.

To be able to snap into the desired drilling orientations, Nφ, Nϑ and Nψ must be chosen,
such that the drilling orientations are included in the set Ros of (4.23). Figure 5.1b shows
the orientations of the mounted plywood panels. To snap into the orientation of panel
2, an angular grid of ∆ϑ = 45° = π

4 is needed, thus Nϑ = 5. For φ and ψ, an angular
grid of ∆φ = ∆ψ = 90° = π

2 is chosen, hence, Nφ = Nψ = 4. With the selected values
Nφ = 4, Nϑ = 5 and Nψ = 4, all of the desired drilling orientations are included in Ros,
cf. (4.23). Based on the pose of the drill when the tip of the drill touches the respective
plywood panel in the desired drill hole location, the paths Σ1, Σ2 and Σ3 are constructed
as straight paths in the direction of the drill axis starting at the corresponding plywood
panel. Figure 5.2 depicts the paths resulting from the teach-in process Σ1, Σ2 and Σ3 as
well as the plywood panels. To ease the three-dimensional imagination, Figure 5.2 and
the following three-dimensional figures include projections of the 3D-depictions onto the
xy-, yz- and xz-planes. Table A.3 summarizes the chosen controller parameters for this
experiment.

The movement of the drill during the teach-in process is depicted in Figure 5.3. The
color of the traversed trajectory indicates the rotational weighting factor µr. A low
rotational weighting factor µr, i. e. where the trajectory is blue, indicates that the robot is
only carrying the load of the drill and does not proactively support the operator otherwise.
In that case, the drill is freely moveable and rotatable within the workspace of the robot.



5 Experiments 5.1 Teach-In Experiment 47

−1
−0.8

−0.6

−0.4

−0.4
−0.2

0
0.2

0.4
0.6

−1.2

−1

−0.8

−0.6

Σ1

Σ2

Σ3

xz-project
ions

yz-projections

xy-projections
x[m]

y[m]

z
[m

]

Figure 5.2: The drilling paths Σ1, Σ2 and Σ3 resulting from the teach-in process together
with the mounted plywood panels.

A large rotational weighting factor µr, i. e. where the trajectory is red, indicates that the
drill is snapped into a defined orientation. In that case, the robot stabilizes the orientation,
while a translational movement of the drill is still allowed. To teach a new pose, at first
the orientation of the TCP RT is aligned with the desired orientation of the path to teach.
In the second step, the position of the tip of the drill yt is moved to the position to teach,
while the assistance from the Orientation Snap keeps the TCP in the same orientation.

The complete teach-in process for the drilling task is split into multiple steps, specified
by encircled numbers · in Figure 5.3. The tip of the drill starts at 1 and is approached
to the first plywood panel 2 . The position of the drill tip yt and the orientation of the
drill RT are stored in the robot program and then the robot is moved towards panel 2 by
the operator. Between 2 and 3 , the orientation of the drill has to be adjusted because
the drill orientation for panel 2 is different than the drill orientation for panel 1. Thus,
the operator releases the orientation snap by turning the TCP orientation away from the
currently stabilized orientation and the color of the trajectory in Figure 5.3 changes to
blue. At 3 , the drill snaps into the orientation for panel 2, which is indicated by the color
change of the trajectory to red, and thus µr ≈ 1. Note that the position of the drill yt
and the orientation of the drill RT are controlled separately. Thus, the orientation of the
TCP RT can be snapped, although the position of the TCP yt is not snapped. At the
position 3 , the orientation is already snapped correctly, while the drill head still needs



5 Experiments 5.1 Teach-In Experiment 48

−1

−0.5

−0.4
−0.2

0
0.2

0.4
0.6

−1.2

−1

−0.8

−0.6

1

2

3

4

5

6

7

x[m]
y[m]

z
[m

]

0

0.2

0.4

0.6

0.8

1
µr

Figure 5.3: Trajectory of the TCP yt in the workspace during the teach-in of the robotic
task, where the color represents the value of the rotational weighting factor µr.

to be approached to the plywood panel 4 . At the contact point 4 , the position of the
drill tip yt and the orientation of the drill RT are stored in the robot program. Finally,
the same procedure is repeated for panel 3. Between 4 and 5 , the Orientation Snap is
inactive, at 5 the orientation snaps into the desired drilling orientation for panel 3 and
the tip of the drill is approached to the desired drill hole location of the plywood panel 6 .
At this point, the values of yt and RT are stored in the robot program. At the end of the
teach-in process, the drill is taken back from the panels and yt ends at 7 .

After the teach-in process, the stored positions yt at 2 , 4 and 6 in combination with
the stored orientations RT at 2 , 4 and 6 are used to construct the paths Σ1, Σ2 and
Σ3 as depicted in Figure 5.2.

To further analyze the behavior of the system during the teach-in process and the
corresponding signals, Figure 5.4 plots the rotational weighting factor µr,i for the relevant
orientations of panel 1 (i = 1), panel 2 (i = 2) and panel 3 (i = 3), the norm of the
corresponding vector parts of the quaternion errors

***εDi
T

***
2
, the norm of the estimated

external rotational force
***f est

e,r

***
2

and the estimated external translational force
***f est

e,t

***
2

and the rotational damping weighting factor νr over time. The encircled numbers 1 −
6 in Figure 5.4 correspond to the locations in Figure 5.3. Analyzing the progression
of the rotational weighting factor µr,i, one can see that the rotational weighting factor
µr,i alternates between µr,i = 0 and µr,i = 1 for the individual orientations. It raises



5 Experiments 5.1 Teach-In Experiment 49

when the orientation of the TCP RT moves close to the respective predefined orientation
RDi , i ∈ {1, 2, 3}. At first, between 1 and 2 , the norm of the rotational error between
the TCP RT and the desired orientation RD1 for panel 1, displayed in the plot for

***εDi
T

***
2
,

decreases, because the operator rotates the drill close to the desired drilling orientation for
panel 1. In reaction to the decreasing error

***εD1
T

***
2
, the rotational weighting factor for the

specfic drilling orientation µr,1 increases and reaches 1. The larger rotational weighting
factor µr,1 means that the robot now takes control over the orientation of the TCP and
thus controls the rotational error

***εD1
T

***
2

for the orientation of panel 1 to
***εD1

T
***

2
≈ 0.

The same behavior is visible for the transition into the drilling orientation of panel 2
(transition from 2 to 3 ), and for the transition into the drilling orientation of panel 3
(transition from 4 to 5 ).

The rotational weighting factor µr,i decreases when the drill is rotated out of the
respective predefined orientation from the set Ros. To rotate the drill out of a snapped
orientation RDi , the external force fe applied by the human operator has to increase,
which causes the error

***εDi
T

***
2

to raise and consequently µr,i to fall. Although this increase
in the external force fe at the transition from µr,i = 1 to µr,i = 0 at t = 17 s and at
t = 30 s is slightly recognizable in the estimation f est

e in Figure 5.4, it is not as significant
as expected. This peak is even smaller than at the transition from µr,i = 0 to µr,i = 1 at
t = 8 s and at t = 22 s. This leads to the conclusion that the estimation of f est

e according
to (4.25) and (4.27) is not accurate in a dynamic transition when the TCP is not locked
onto a distinct path. Especially the estimation of the external force f est

e at the transition
between µr,i = 0 and µr,i = 1 seems inaccurate. This deviation from the real value may
result from the increasingly dynamic motion, as soon as an orientation is attracting. To
validate the estimation of the external force f est

e in the given scenario, a F/T sensor may
be attached to the endeffector and the values of the F/T sensor may be compared to
the estimation f est

e . However, since the external force f est
e is only included as additional

information in Figure 5.4 and is not fed back into the system, such a validation is not
included in this work.

The rotational weighting factor for the damping νr evolves exactly opposite to the
sum of rotational weighting factors µr. It is decreasing with decreasing error

***εDi
T

***
2

and

increasing with increasing error
***εDi

T
***

2
. From a control perspective, this means the virtual

input for the rotational damping vdam,r according to (4.9) takes over when the Orientation
Snap is not active, cf. (4.12). This matches the desired behavior described in Section 4.1.1.
The different behavior of the controller when the orientation is snapped-in compared
to the behavior when the rotation is damped is visible in the shape of the error signals***εDi

T
***

2
in Figure 5.4. When the orientation is snapped-in, e. g. between 3 and 4 , the

errors
***εDi

T
***

2
for all orientations are approximately constant. The orientation is stabilized

during these time periods. When the orientation is not snapped-in and only the damping
is active, i. e. νr ≈ 1, e. g. between 2 and 3 , the errors

***εDi
T

***
2

vary, since there is no
preferred orientation to be stabilized by the controller.



5 Experiments 5.2 Path Snap-In Experiment 50

5 10 15 20 25 30 35 40 45 50
0

0.5

1

1

2 3 4 5 6
µ

r,
i i = 1

i = 2
i = 3

5 10 15 20 25 30 35 40 45 50
0

0.2
0.4
0.6
0.8

* * *εD i T
* * * 2

i = 1
i = 2
i = 3

5 10 15 20 25 30 35 40 45 50
0

20

40

* * fes
t

e
* * 2

***f est
e,r

***
2

[Nm]
***f est

e,t

***
2

[N]

5 10 15 20 25 30 35 40 45 50
0

0.5

1

t [s]

ν r

Figure 5.4: Rotational weighting factor µr,i, norm of the rotational error
***εDi

T
***

2
for the

relevant orientations of panel 1, 2 and 3, norm of the estimated external force**f est
e

**
2 and rotational weighting factor for the damping νr plotted over time

during the robotic teach-in process.

5.2 Path Snap-In Experiment
With the performed teach-in process of Section 5.1, the drilling paths Σ1, Σ2 and Σ3 are
defined and this section presents the collaborative task execution. First, the collaborative
task execution is performed with the Path Snap-In introduced in Section 4.1. The task
execution utilizing the Path Switch mode follows in Section 5.3.

In this experiment, a hole is drilled in each of the three plywood panels in one consecutive



5 Experiments 5.2 Path Snap-In Experiment 51

procedure. The robot provides support during the drilling process by keeping the drill on
the path, while the operator’s task is to operate the drill and move it along the path. The
drilling paths Σ1, Σ2 and Σ3 are defined as combinations of translation and rotation (in
contrast to the teach-in experiment in Section 5.1). Therefore, translation and rotation
are controlled simultaneously according to (4.11). To keep the robot within its limits, the
weighting factor µi is chosen as

µi = max(µt,i, µr,i) , (5.1)

such that the corresponding virtual inputs vt,i and vω,i according to (4.11) are only
applied if both weighting factors originating from the translational distance dt,i and the
rotational distance dr,i are large enough.

For the task execution, the impedance matrices Kd, Dd and Md are chosen to be diagonal
and the same for every path, see Appendix A.2.2. Especially, the tangential virtual spring
parameter kd

∥ is chosen as kd
∥ = 0, which allows the operator to move the drill along the

path without a restoring force along the path direction. Additionally, the drill should be
positioned on the path and thus, the desired path-based coordinates in transversal direction
ξd

⊥, ξd
⋔ and their derivatives ξ̇d

⊥, ξ̇d
⋔, ξ̈d

⊥, ξ̈d
⋔ are chosen as ξd

⊥ = ξd
⋔ = ξ̇d

⊥ = ξ̇d
⋔ = ξ̈d

⊥ = ξ̈d
⋔ = 0.

Figure 5.5 shows the traversed trajectory of the TCP yt in the workspace during the
collaborative drilling process. The color of the traversed trajectory corresponds to the
sum of weighting factors µ from (4.6), which is µ = 1 when snapped into any of the paths
(red) and µ = 0 distant to all paths (blue). Similar to the teach-in process presented in
Section 5.1, a large value of µ ≈ 1 means that the controller stabilizes the drill on a path.
If µ ≈ 0, the robot does not actively stabilize the robot on a path. Comparing Figure 5.5
with Figure 5.3, two major differences are noticable. During the teach-in process, only the
Orientation Snap was used and hence, the TCP position yt never had a desired position to
snap into. The traversed trajectory of the TCP yt in Figure 5.3 has a curvy and random
shape. This aspect only partially applies to the traversed trajectory of yt in Figure 5.5
with the Path Snap-In mode. The trajectory has a similar curvy and random shape as
long as the weighting factor µ is close to zero µ ≈ 0. However, the trajectory is distinct
when the weighting factor µ is close to one µ ≈ 1, i. e. in the vicinity of the drilling paths
Σ1, Σ2 and Σ3. This demonstrates the desired behavior of the Path Snap-In mode: The
TCP remains freely moveable and rotatable within the robot’s workspace distant from
any path, while providing support in the vicinity of the paths. Comparing the projections
onto the xz- and xy- plane of Figure 5.5 with the projections onto the xz- and xy- plane
of Figure 5.3, one can see that the trajectory pierces through the panels of Figure 5.5,
while it just touches the panels of Figure 5.3. This shows that the holes were actually
drilled in the collaborative execution of the drilling task.

To further analyze the drilling process, the evolution of the position of the drill yt along
the paths Σ1, Σ2 and Σ3 is discussed in the following. Figure 5.6 shows the evolution of
the tangential path parameters ξ∥,i and their derivatives ξ̇∥,i for the three drilling paths
Σi, i ∈ {1, 2, 3} together with the corresponding weighting factors µi over time.

Note that the PFC updates each optimal path parameter θ∗
i , all of the path-based

coordinates ξi and all of the derivatives of the path-based coordinates ξ̇i, i ∈ {1, 2, 3}, in
every time step. However, their values only become relevant, if the corresponding belief



5 Experiments 5.2 Path Snap-In Experiment 52

µi has risen. Otherwise, i. e. if µi = 0, the PFC for the specific path Σi is not acting on
the robot, and thus, the path-based coordinates ξi and their derivatives ξ̇i of that specific
path Σi provide no relevant information. To highlight this fact, the values of ξ∥,i and
ξ̇∥,i, i ∈ {1, 2, 3} in Figure 5.6 are plotted as dashed lines when no path is selected, and
emphasized as thick lines with colored background if the distinct path is selected, i. e. the
according weighting factor is µi ≈ 1. Since the calculation of ξ∥,i is based on an integral
equation, cf. (3.18), the initial values θ0,i define the further evolution of ξ∥,i. In the plot
of Figure 5.6, the initial values are chosen, such that ξ∥,i = 0 as soon as the path Σi gets
selected. This eases the comparison between the different paths Σi and has no influence
on the control behavior, since kd

∥ = 0.
Figure 5.6 shows the distinct steps of the drilling task execution. The operator drills

the first hole on the path Σ1 at t = 6 s and at t = 17 s, moves on the the second panel on
path Σ2, where the corresponding weighting factor µ2 rises between t = 21 s and t = 34 s,
and finally goes to Σ3 at t = 45 s to end the execution. Comparing the waveforms in
Figure 5.6 of the tangential path parameters ξ∥,i and the derivatives ξ̇∥,i, i ∈ {1, 2, 3} of
the individual paths Σ1, Σ2 and Σ3 during the emphasized active time spans, similarities
are clearly noticeable. Since the act of drilling is the same along the individual drilling
paths Σ1, Σ2 and Σ3, these similarities are not surprising. Extracting a single drilling

−1

−0.5

−0.4
−0.2

0
0.2

0.4
0.6

−1.2

−1

−0.8

−0.6

Σ1

Σ2

Σ3

x[m]
y[m]

z
[m

]

0

0.2

0.4

0.6

0.8

1
µ

Figure 5.5: Trajectory of the TCP yt in the workspace during the task execution with the
Path Snap-In, where the color represents the sum of the weighting factors µ
from (4.6).



5 Experiments 5.2 Path Snap-In Experiment 53

0 5 10 15 20 25 30 35 40 45 50 55 60 65
0

0.5

1

Σ1 Σ2 Σ3

µ
i

µ1
µ2
µ3

0 5 10 15 20 25 30 35 40 45 50 55 60 65−0.1

0

0.1

0.2

Ev
ol

ut
io

n
al

on
g

Pa
th

Σ
1

ξ∥,1[m]
ξ̇∥,1[m/s]

0 5 10 15 20 25 30 35 40 45 50 55 60 65−0.1

0

0.1

0.2

Ev
ol

ut
io

n
al

on
g

Pa
th

Σ
2

ξ∥,2[m]
ξ̇∥,2[m/s]

0 5 10 15 20 25 30 35 40 45 50 55 60 65−0.1

0

0.1

0.2

t [s]

Ev
ol

ut
io

n
al

on
g

Pa
th

Σ
3 ξ∥,3[m]

ξ̇∥,3[m/s]

Figure 5.6: Weighting factor µi for each path Σi with the tangential path parameter ξ∥,i

and its derivative ξ̇∥,i during the Snap-In.



5 Experiments 5.2 Path Snap-In Experiment 54

0 2 4 6 8 10 12 14

−0.1

0

0.1
approaching drilling

breakthrough

retreating

t [s]

Ev
ol

ut
io

n
al

on
g

th
e

dr
ill

in
g

pa
th

ξ̇∥[m/s]
ξ∥[m]

Figure 5.7: Path evolution of a single drilling process with four distinguishable phases.

process, four different phases are distinguishable, plotted in Figure 5.7. In the first phase,
the tip of the drill is approached to the plywood panel. This can be seen by a rather fast
increase of ξ∥ in Figure 5.7, which means the tip is moving rather fast along the path
in comparison to the subsequent phases. The second phase is the actual drilling, during
which the position of the drill only changes gradually, i. e. ξ∥ is increasing slowly as the
drill cuts through the plywood. At the same time, the interaction forces between the drill
head and the plywood are noticeable in the variations and fluctations of ξ̇∥. The end of
the actual drilling process is visible as a steep increase of ξ∥ and a large value of ξ̇∥. This
signalizes the breakthrough through the panel. This steep evolution of the path parameter
at the breakthrough is caused by the operator, who keeps on pushing the drill through
the plywood. As soon as there is no plywood anymore to counteract the operator’s force,
the force causes an abrupt increase in the path parameter. At the end, the drill is taken
back through the drilled hole, recognizable at the decreasing value of ξ∥ in the last phase.

After the analysis along the direction of the paths, the error in transversal direction as
well as the rotational error are analyzed next. Figure 5.8 plots the norm of the vector part
of the quaternion error

***εDi
T

***
2
, as an absolute value for the rotational error and the norm

of the transversal deviation from the path, ξ̃i =
'

ξ2
⊥,i + ξ2

⋔,i, i ∈ {1, 2, 3}, as an absolute
value for the transversal error, and the weighting factor µ over time.

In subplots 2 and 3, the rotational error
***εDi

T
***

2
and the transversal error ξ̃i are plotted

over the complete time horizon and in subplots 4 and 5, the rotational error
***εDi

T
***

2
and

the transversal error ξ̃i are only plotted during the time span of the drilling process on
the respective path Σi (more precisely, when µi > 0.95). Comparing Figure 5.8 with
Figure 5.4, similarities between the Orientation Snap in Section 5.1 and the Path Snap-In
discussed here, are noticeable. The weighting factor µ in Figure 5.8 behaves analogous to
µr in Figure 5.4, meaning it alternates between µ = 0 and µ = 1 in the same way. The



5 Experiments 5.2 Path Snap-In Experiment 55

0 10 20 30 40 50 60 70
0

0.5

1
µ

µ1
µ2
µ3

0 10 20 30 40 50 60 70
0

0.2
0.4
0.6
0.8

* * *εD i T
* * * 2

i = 1
i = 2
i = 3

0 10 20 30 40 50 60 70
0 m

0.2 m
0.4 m
0.6 m
0.8 m

ξ̃ i

i = 1
i = 2
i = 3

10 20 30 40 50 60
0

2

4
×10−2

* * *εD i T
* * * 2

w
he

re
µ

i
>

0.
95 i = 1

i = 2
i = 3

10 20 30 40 50 60
0 mm
2 mm
4 mm
6 mm
8 mm

10 mm

t [s]

ξ̃ i
w

he
re

µ
i

>
0.

95 i = 1
i = 2
i = 3

Figure 5.8: Rotational error
***εDi

T
***

2
and transversal error ξ̃i between the TCP and the

drilling paths Σi as well as the corresponding weighting factor µi plotted over
time.



5 Experiments 5.2 Path Snap-In Experiment 56

rotational error
***εDi

T
***

2
in Figure 5.8 first approaches

***εD1
T

***
2

= 0 for panel 1 at t = 7 s,

while µ = 1, then for panel 2
***εD2

T
***

2
= 0 at t = 22 s, and finally for panel 3

***εD3
T

***
2

= 0 at
t = 47 s, similar to the waveforms in Figure 5.4. Since the drilling task and the drilling
paths Σi are the same as during the teach-in, these similarities between

***εDi
T

***
2
, µ and µr

are not surprising.
The difference between the execution with the Path Snap-In and the Teach-in with the

Orientation Snap lies in the translational part. Figure 5.8 shows an additional waveform,
i. e. the translational error in the transversal direction ξ̃i, which was not included in
Figure 5.4 for the teach-in process. When µi = 1, i. e. the Path Snap-In for Σi is active,
both the rotational error

***εDi
T

***
2

and the transversal error ξ̃i are controlled to
***εDi

T
***

2
≈ 0

and ξ̃i ≈ 0. This shows that the controller stabilizes the position and the orientation of
the drill on the drilling path. Consequently, to snap into a path Σi, the drill must be
positioned close to the path in the correct orientation. A position yt close to the path
σt,i(θ∗

i ) or an orientation RT close to the path orientation RDi alone is not enough. To
prove this statement with measurement data, in the subplots 4 and 5 of Figure 5.8 only
values of the rotational error

***εDi
T

***
2

and the transversal error ξ̃i are plotted for time spans
in which the respective weighting factor µi > 0.95. Thus, subplots 4 and 5 contain the
same signals as subplots 2 and 3, with a scaled-up y-axis. This representation shows that
a change in the weighting factor µi is caused by a change in the rotational error

***εDi
T

***
2
,

the transversal error ξ̃i or both. In subplot 4 and 5 at t = 16 s, both the rotational error
and the transversal error increase, causing the TCP to be released from the Path Snap-In
of Σ1. At t = 33 s on the contrary, an increase in the rotational error alone is enough for
the TCP to be released from the Path Snap-In of Σ2, see subplots 4 and 5 in Figure 5.8.
When the belief drops below µ2 = 0.95 (i. e. when the depictions of

***εD2
T

***
2

in subplot 4

and ξ̃2 in subplot 5 end), the rotational error
***εD2

T
***

2
has increased, while the translational

error ξ̃2 has not. This leads to the conclusion that the Path Snap-In was released due to
the rotational error alone. Thus, the data proves that as soon as the operator significantly
increases the error in either the orientation or the position, the Path Snap-In is released.
To keep the TCP locked on a path both the orientation and the position must match.

The error during a single drilling process of this experiment lies at a maximum of about
ξ̃i = 5 mm for the translation and about 0.01 for

***εDi
T

***
2
, see Figure 5.8. In axis-angle

representation, the total deviation angle is obtained by ϕDi
T = 2 atan2

***εDi
T

***
2
, eDi

T


which
is a more intuitive value for the rotational error. The deviation angle ϕDi

T thus reaches
a maximum of ϕDi

T = 1.1° during the drilling process. To release the Path Snap-In for
a path, a deviation of about ξ̃i = 5 mm from the path in translation combined with a
deviation of about

***εDi
T

***
2

= 0.04 or ϕDi
T = 4.6° from the path orientation is required. This

causes a decrease of the weigthing factor µi to µi = 0.95. These values will be compared
with the values for the Path Switch in the next section.



5 Experiments 5.3 Path Switch Experiment 57

5.3 Path Switch Experiment
In this section, the collaborative execution of the drilling task with the Path Switch
introduced in Section 4.2 is discussed. The experiment presented in this section is similar
to the Path Snap-In experiment of Section 5.2, i. e. three holes are drilled in the three
plywood panels. This time, the assistance of the Path Switch is utilized, which stabilizes
the drill on the programmed paths Σ1, Σ2 and Σ3, specified during the teach-in process
in Section 5.1. The chosen control parameters are given in Appendix A.2. With the
same considerations as for the experiment with the Path Snap-In in Section 5.2, the
desired virtual spring in tangential direction kd

∥ is chosen as kd
∥ = 0 and the desired

path-based coordinates in transversal direction as well as their derivatives are chosen as
ξd

⊥ = ξd
⋔ = ξ̇d

⊥ = ξ̇d
⋔ = ξ̈d

⊥ = ξ̈d
⋔ = 0.

Figure 5.9 shows the traversed trajectory of the TCP yt during the collaborative
execution of the drilling task with the Path Switch mode. Since the Path Switch mode
does not use weighting factors µi for its control concept, the color of the traversed trajectory
in Figure 5.9 does not correspond to a weighting factor µi. Instead, the color signalizes
the currently active controller. A red section of the traversed trajectory signalizes that
the PFC (4.43) is applied, while a blue part of the traversed trajectory indicates that
the TTC (4.44) is applied. The change from stabilizing the TCP on a drilling path to
transitioning the TCP between two drilling paths is a continuous transition for the Path
Snap-In, while it is a discrete switch for the Path Switch. The color palettes of Figure 5.5
and Figure 5.9 underline this circumstance. While the color palette in Figure 5.5 is a
continuous transition from red to blue, there are only two distinct colors in Figure 5.9.

Comparing the traversed trajectory yt on the drilling paths Σ1, Σ2 and Σ3 of the Path
Switch (red part of the trajectory in Figure 5.9) to the traversed trajectory yt on the
drilling paths Σ1, Σ2 and Σ3 of the Path Snap-In (red part of the trajectory in Figure 5.5),
hardly any differences are noticeable. A more detailed comparison of the rotational errors
and transversal errors follows below. The significant difference lies in the system behavior
while transitioning from one drilling path Σi to another drilling path Σi′ . As already
discussed in Section 5.2, the traversed trajectory between two drilling paths of the task
execution with the Path Snap-In has a curvy and random shape, because the human
operator is responsible to move the drill from one drilling path Σi to the next drilling
path Σi′ . During the Path Switch in contrast, the transition trajectory κ(t) is explicitly
generated by the system, according to the considerations in Section 4.2.2. Thus, the
transition between two drilling paths Σi and Σi′ follows a smooth and direct trajectory,
as depicted in Figure 5.9.

The transition between two drilling paths Σi and Σi′ is initiated by the human operator
with the external force fe,t. This applied force is also depicted in Figure 5.9. The green
arrows show the estimation of the external force vector f est

e,t according to (4.25) and (4.27).
The plotted force in Figure 5.9 shows only forces influencing the control concept, i. e.
where

***f est
e,t

***
2

> 50 Nm. Note that the external forces f est
e,t in Figure 5.9 are applied at

the beginning of each transition and they point towards the desired drilling path Σi′ to
which the TCP transition occurs. The practical experiment revealed that it is difficult for
the human operator to align the applied force direction ef with the direction in which



5 Experiments 5.3 Path Switch Experiment 58

−1
−0.8

−0.6
−0.4

−0.4
−0.2

0
0.2

0.4
0.6

−1.2

−1

−0.8

Σ1Σ2

Σ3

x[m]
y[m]

z
[m

]
PFC
TTC
f est
e,t

Figure 5.9: Trajectory of the TCP yt in the workspace during the task execution with the
Path Switch mode, where the color represents the currently acting controller
(PFC or TTC). The externally applied force f est

e,t is depicted as green arrows.

the desired path Σi′ lies. The paths Σ1, Σ2 and Σ3 are not visible to the human and the
operator can only estimate the correct direction for the push. To help the human operator,
the search angle ϕ is chosen rather large at a value of ϕ = 45 °. This eases the initiation
of a transition. As the paths are rather distinct in the presented drilling scenario, the
value of ϕ = 45 ° is still reasonable. In Figure 5.9, it is noticeable that for the transition
from Σ2 to Σ3, the vectors of the external force f est

e,t do not exactly point in the same
direction as the TCP yt is moving during the transition. Referring to the minimization
problem (4.30), θ̄∗

i′ and thus the position σt,i′

θ̄∗

i′


where the transition trajectory κt(t)
ends, is selected as the closest point on the new path that lies in a cone with the angular
opening ϕ. With increasing values for the angular opening ϕ, larger deviations from the
push direction ef are allowed. This is visible at the transition from Σ2 to Σ3.

To analyze the evolution of the state of the system over time, Figure 5.10 depicts the
beliefs b1, b2 and b3 for the individual drilling paths Σ1, Σ2 and Σ3, the translational
part of the external force estimation f est

e,t in x-, y- and z- direction (f est
e,t,x, f est

e,t,y and f est
e,t,z,

respectively) and the tangential path-based coordinate ξ∥,iact and its derivative ξ̇∥,iact .
The gray areas indicate a transition controlled by the TTC. During the transition, the

beliefs b1, b2 and b3 as well as ξ∥,i and ξ̇∥,i, i ∈ {1, 2, 3} do not exist or have no significant
meaning, so these signals are not included in the plot. The path evolution represented by
ξ∥,iact and ξ̇∥,iact , when PFC is active, shows the analogous drilling pattern compared to
Figure 5.7. This is not surprising, since the executed task is the same.

The transition behavior between the paths is discussed next. Figure 5.10 shows that



5 Experiments 5.3 Path Switch Experiment 59

0 10 20 30 40 50 60 70 80 90
0

0.5

1
Be

lie
fs

b1
b2
b3

0 10 20 30 40 50 60 70 80 90

−50

0

50

Ex
te

rn
al

Fo
rc

e
[N

] f est
e,t,x

f est
e,t,y

f est
e,t,z

0 10 20 30 40 50 60 70 80 90−0.1

0

0.1

0.2

t [s]

Pa
th

Ev
ol

ut
io

n

ξ∥,iact [m]
ξ̇∥,iact [m/s]

Figure 5.10: Beliefs of each path bi, i ∈ {1, 2, 3} with the external force applied f est
e,t and

the evolution along the path. White background means the PFC is active
and gray background means the TTC is active.

before each transition block (i. e. at t = 22 s and t = 51 s), the magnitude of the external
force f est

e,t increases. The belief system checks the applied forces and calculates the values
of the beliefs bi, i ∈ {1, 2, 3}. After about 2-3 s (i. e. at t = 25 s and t = 53 s, respectively),
the new belief bi′ (where i′ = 2 at t = 25 s and i′ = 3 at t = 53 s, respectively) has risen to
bi′ = 0.8, causing the initiation of the transition to Σi′ . At the same time, the operator
does not note the initiation of the transition right away and keeps pushing the robot for
another 2-3 s (i. e. until t = 27 s and t = 55 s, respectively). Then, the human operator
notices that the robot started to move towards the desired path Σi′ . At this time, the
human operator starts to remove the applied force and f est

e,t decreases. This matches the



5 Experiments 5.3 Path Switch Experiment 60

assumptions taken in Section 4.2.2 that the transition-initiating force is still present at
the beginning of the transition and is released towards the end.

Figure 5.11 shows the norm of the transversal error of the PFC ξ̃iact =
'

ξ2
⊥,iact

+ ξ2
⋔,iact

,
the norm of the translational error of the TTC ỹt =

***yt − yd
t

***
2
, the norm of the velocity

error of the PFC in transversal direction ˙̃ξiact =
'

ξ̇2
⊥,iact

+ ξ̇2
⋔,iact

, the norm of the velocity
error of the TTC ˙̃yt =

***ẏt − ẏd
t

***
2
, the norm of the vector part of the quaternion error***ε

Diact
T

***
2

and
***εK

T
***

2
, respectively, and the norm of the angular velocity error ω̃iact =***ωT − ωDiact

***
2

and ω̃ =
***ωT − ωK

***
2
, respectively, during the task execution.

For the translational part of the errors, it makes a difference, if the PFC or the TTC is
applied. As long as the PFC is applied (white background in Figure 5.11), ξ̃iact and ˙̃ξiact

are plotted and when the TTC is applied (gray background in Figure 5.11), ỹt and ˙̃yt are
plotted. For the rotational part of the errors, no distinction is needed.

The positional error during a single drilling process reaches a value of maximum
ξ̃iact = 3.8 mm. For the initiation of a transition, a maximum error of ξ̃iact = 3.5 mm is
measured. Although both mentioned values are in the same range, the belief system does
not react to the deviations caused by the drilling process, cf. Figure 5.10. The interaction
forces caused by the drilling force fluctuate more and at higher frequencies than the
constantly held exernal human force fe,t, which is applied to start a transition. Therefore,
the external force estimation f est

e,t depicted in Figure 5.10 only reacts to the human applied
force. During the drilling process, a maximum rotational error of

***ε
Diact
T

***
2

= 0.008 or

ϕ
Diact
T = 0.9° is measured. At the start of a transition, a maximum rotational error of***ε

Diact
T

***
2

= 0.01 or ϕ
Diact
T = 1.1° is found. These values for the transversal and rotational

errors are close to the values for the errors during the experiment with the Path Snap-In
in Section 5.2. Since the compliance parameters chosen for the experiment with the Path
Switch are about twice as large as the compliance parameters chosen for the experiment
with the Path Snap-In, a smaller error in the experiment with the Path Switch is expected.
This is not visible in the measured data because the errors during the experiment with
the Path Switch and the errors during the experiment with the Path Snap-In are both
about ξ̃iact ≈ ξ̃i ≈ 3.5 mm − 5 mm and ϕ

Diact
T ≈ ϕDi

T ≈ 0.9° − 1.1° during the drilling
process. A possible explanation is that the human-robot collaboration and interaction is
not a task with high repeatability. The behavior of the human changes from experiment
to experiment. The same errors in both experiments may result from different applied
external forces. For a more sophisticated comparsion, a F/T sensor is required to be
attached to the endeffector. In this way, the actual force applied by the human is measured
exactly. Only the combination of the known exciting force and measured errors ξ̃iact , ξ̃i

and
***ε

Diact
T

***
2
,

***εDi
T

***
2

or ϕ
Diact
T , ϕDi

T enables a complete analysis of the resulting behavior
of the system.



5 Experiments 5.3 Path Switch Experiment 61

0 10 20 30 40 50 60 70 800

2

4
Po

sit
io

n
er

ro
r

[m
m

]

ξ̃iact
ỹt

0 10 20 30 40 50 60 70 800

10

20

Ve
lo

ci
ty

er
ro

r
[m

m
/s

]

˙̃ξiact
˙̃yt

0 10 20 30 40 50 60 70 800

0.5

1

1.5
×10−2

* * *εD i
ac

t
T

* * * 2
* * *εK T

* * * 2

0 10 20 30 40 50 60 70 800

0.02

0.04

0.06

0.08

0.10

t [s]

* * *ωT
−

ω
D i

ac
t
* * * 2

* * *ωT
−

ω
K

* * * 2[ra
d/

s]

Figure 5.11: Translational position and velocity errrors as well as rotation and angular
velocity error for the PFC and TTC during the execution of the drilling task
with the Path Switch mode.



6 Conclusion and Outlook
In this work, three novel methods for human-robot interaction (HRI) are introduced,
which are called Path Snap-In, Path Switch and Orientation Snap. These methods can
either be used for the teach-in of a robotic task or during the collaborative execution of a
robotic task. The findings of the work are validated in an exemplary drilling scenario. In
this scenario, the robot carries the load of a cordless drill and stabilizes it on the desired
drilling paths, while the human operates the drill and guides it through the drilling process.
In this experiment, three drilling paths are defined between which the human operator
moves the robot in arbitrary sequence.

In Chapter 2, the mathematical model of the robot is derived. The used notation for
the remainder of the work is explained and the coordinate frames are introduced.

The HRI modes are based on the concept of path following control (PFC), which is
explained in Chapter 3. First, a definition of parametrized paths and the distinction
between PFC and trajectory tracking control (TTC) is given. To make use of the path
representation, a local coordinate frame is introduced. In order to define this local frame,
the optimal position along the path must be found, which is formulated as a minimization
problem for the path parameter. After obtaining the path-based coordinates, an exact
input/output feedback linearization transforms the nonlinear system dynamics to a linear
behavior from the new virtual input to the desired control variables. Path-based impedance
control is introduced, with which the TCP behaves like a spring-mass-damper system
with user-defined dynamics in the path-based frame. Finally, a nullspace controller is
designed to stabilize the nullspace.

Based on the PFC, the novel HRI modes are introduced in Chapter 4. The Path Snap-In
is assisting the operator in the vicinity of a given path and has no influence distant to
the paths. In the Path Snap-In mode, the robot TCP is attracted to and snaps into a
path in close vincinity. The human operator can release the locked-in state by manually
pushing the TCP away from the path. For a robotic teach-in process, a special case of the
Path Snap-In mode, called Orientation Snap, is used. The Orientation Snap attracts and
stabilizes the TCP on predefined orientations, once the human operator turns the TCP to
a certain proximity of a predefined orientation. Additionally, the Path Snap-In can be
used in a collaborative task execution. For the control concept, the virtual inputs of each
individual PFC are combined in a weighted sum with a distance-dependent weighting
factor. In contrast, the Path Switch mode always stabilizes the TCP on an active path.
It estimates the external force provided by the human operator and evaluates the force
direction and magnitude w.r.t. other paths known to the system. This way, the system
updates its belief about which path is intended by the operator and should be selected.
To transition between two paths, a transition trajectory is planned online and traversed
using a TTC, bringing the TCP to the new path intended by the human.

The introduced concepts are validated in a laboratory experiment in Chapter 5, in

62



6 Conclusion and Outlook 63

which three drilling paths are programmed with the support of the Orientation Snap. The
collaborative execution of the drilling task is demonstrated with the Path Snap-In mode
and the Path Switch mode.

The experiments demonstrate the working principle of the novel interaction modes, but
there are still some open topics to be further analyzed. In future work, a more in-depth
analysis of the impedance parameters and the interaction thresholds may be done. The
parameter choice strongly depends on human preference, and there is no single choice that
fits for all. Some operators may like a more responsive behavior of the robot while it may
intimidate others. Additionally, during the design of the drilling experiment, the limited
range of the used Kuka robot has been noticed. The control allows the movement into
any possible pose and the cordless drill mounted to the endeffector has a large distance
between the TCP and the robot wrist. Consequently, the robot sometimes ends up in joint
limitations. Thus, in a future setup, the robot arm should be mounted on a 2-dimensional
gantry system, which increases the range of motion and provides more flexibility to the
human-robot interactions. Regarding the Path Switch mode, the currently used trajectory
generator does not take possible obstacles into account. In a real working environment,
a more sophisticated trajectory generator is needed. The design of such a trajectory
generator may be included in future work.

Overall, the concepts introduced in this work open up possibilities for a more intuitive
programming as well as collaborative execution of robotic tasks. This makes robotic
systems more interesting for small- to medium-sized enterprises because it decreases
the need for highly skilled robot programmers and significantly increases flexibility and
productivity. The collaborative task execution combines the accuracy and the physical
support of the robot with the reasoning of the human, providing an accurate and smart
solution at the same time.



A Appendix

A.1 Proofs
A.1.1 Pseudoinverse of path-based Jacobian
In the following, the pseudoinverse of the path-based Jacobian is discussed. The pseu-
doinverse of the path-based Jacobian Ĵ† = ĴT


ĴĴT

−1
is a right pseudoinverse, such that

ĴĴ† = I, but Ĵ†Ĵ ̸= I. With the given path-based Jacobian Ĵ, see (3.27) and (3.28)

Ĵ =


βeT

∥ 01×3
eT

⊥ 01×3
eT
⋔ 01×3
0 I

J , (A.1)

it can be shown that

Ĵ† = J†
 1

β e∥ e⊥ e⋔ 0
03×1 03×1 03×1 I

�
(A.2)

holds. Multiplying (A.1) with (A.2), gives

ĴĴ† =


βeT

∥ 01×3
eT

⊥ 01×3
eT
⋔ 01×3
0 I

 JJ†����
I

 1
β e∥ e⊥ e⋔ 0

03×1 03×1 03×1 I

�

=


βeT

∥ 01×3
eT

⊥ 01×3
eT
⋔ 01×3
0 I


 1

β e∥ e⊥ e⋔ 0
03×1 03×1 03×1 I

�

=


eT

∥ e∥ βeT
∥ e⊥ βeT

∥ e⋔ 01×3
1
β eT

⊥e∥ eT
⊥e⊥ eT

⊥e⋔ 01×3
1
β eT

⋔e∥ eT
⋔e⊥ eT

⋔e⋔ 01×3
03×1 03×1 03×1 I



=


1 0 0 01×3
0 1 0 01×3
0 0 1 01×3

03×1 03×1 03×1 I

 = I , (A.3)

which shows that (A.2) is indeed the pseudoinverse.

64



A Appendix A.1 Proofs 65

A.1.2 Transformation from path-based velocity to cartesian velocity
Analogous to the explanations in Appendix A.1.1, the equation

ξ̇ =

βeT
∥

eT
⊥

eT
⋔

ẏt , (A.4)

given in (3.27), is solved for ẏt, yielding

ẏt =



1
β e∥ e⊥ e⋔

�
ξ̇ . (A.5)

To prove (A.5), reinserting (A.5) in (A.4) gives

ξ̇ =

βeT
∥

eT
⊥

eT
⋔

ẏt

=

βeT
∥

eT
⊥

eT
⋔



1
β e∥ e⊥ e⋔

�
ξ̇

=

 eT
∥ e∥ βeT

∥ e⊥ βeT
∥ e⋔

1
β eT

⊥e∥ eT
⊥e⊥ eT

⊥e⋔
1
β eT

⋔e∥ eT
⋔e⊥ eT

⋔e⋔

ξ̇

=

1 0 0
0 1 0
0 0 1

ξ̇ = ξ̇ . (A.6)

This shows that (A.5) holds.



A Appendix A.2 Parameters 66

A.2 Parameters
A.2.1 System Parameters

i di,y [mm] di,z [mm] αi [rad]
1 0 152.5 0
2 0 207.5 −π

2
3 −232.5 0 π

2
4 0 187.5 π

2
5 212.5 0 −π

2
6 0 187.5 −π

2
7 −79.6 0 π

2
8 − 72.4 −

Table A.1: Kinematic parameters of the robot Kuka LBR iiwa 14 R820.

Mass m [kg] 1.96

Center of Gravity (cog)
dcog,x [mm] 54
dcog,y [mm] 0
dcog,z [mm] 119

Origin position dT
E of the TCP T

w.r.t. the endeffector frame E
dT

E,x [mm] 0
dT

E,y [mm] 0
dT

E,z [mm] 130

Table A.2: Parameters of the cordless drill Makita DHP446 used as the tool for the
experiments.



A Appendix A.2 Parameters 67

A.2.2 Controller Parameters

Symbol Value Unit
Md diag([0, 0, 0, 1, 1, 1]) kg
Dd diag([0, 0, 0, 30, 30, 30]) N s/m
Kd diag([0, 0, 0, 200, 200, 200]) N/m
d0,t 0.04 m
ct 2.5

d0,r 0.1 m
cr 2.5

Ddam,t diag([10, 10, 10]) N s/m
cdam,t 16
Ddam,r diag([10, 10, 10]) N s/m
cdam,r 16
Kn 0.1 · I7 N/m
kn 10 N/m
Dn 40 · I7 N s/m
∆qi 0.2 (qmax,i − qmin,i) rad
Nφ 4
Nϑ 5
Nψ 4

Table A.3: Controller parameters for the Teach-in experiment.



A Appendix A.2 Parameters 68

Symbol Value Unit
Md diag([1, 1, 1, 1, 1, 1]) kg
Dd diag([10, 60, 60, 60, 60, 60]) N s/m
Kd diag([0, 500, 500, 500, 500, 500]) N/m
ξd

∥ 0 (arbitrary, since kd
∥ = 0) m

ξ̇d
∥ 0 m/s

ξ̈d
∥ 0 m/s2

d0,t 0.04 m
ct 2.5

d0,r 0.1 m
cr 2.5

Ddam,t diag([10, 10, 10]) N s/m
cdam,t 16
Ddam,r diag([10, 10, 10]) N s/m
cdam,r 16
Kn 0.1 · I7 N/m
kn 10 N/m
Dn 40 · I7 N s/m
∆qi 0.2 (qmax,i − qmin,i) rad

Table A.4: Controller parameters for the Path Snap-in experiment.



A Appendix A.2 Parameters 69

Symbol Value Unit
Md diag([1, 1, 1, 1, 1, 1]) kg
Dd diag([5, 100, 100, 100, 100, 100]) N s/m
Kd diag([0, 1000, 1000, 1000, 1000, 1000]) N/m
Md

κ diag([1, 1, 1, 1, 1, 1]) kg
Dd

κ diag([50, 50, 50, 50, 50, 50]) N s/m
Kd

κ diag([1000, 1000, 1000, 1000, 1000, 1000]) N/m
ξd

∥ 0 (arbitrary, since kd
∥ = 0) m

ξ̇d
∥ 0 m/s

ξ̈d
∥ 0 m/s2

εd 1 m−1 s−1

εf 4 N−1 s−1

bth 0.8
fh,t 80 N
ϕ 45 °
ct 20 s/m
cr 20 s

Kn 0.01 · I7 N/m
kn 40 N/m
Dn 30 · I7 N s/m
∆qi 0.2 (qmax,i − qmin,i) rad

Table A.5: Controller parameters for the Path Switch experiment.



A Appendix A.3 Algorithms 70

A.3 Algorithms
A.3.1 Winner Take All Algorithm

Algorithm 1: Winner Take All Algorithm ḃ = Ω

b,

˙̂b


Input: bT =


b1 b2 · · · bn

�
, current belief vector

Input: ˙̂bT =

 ˙̂
b1

˙̂
b2 · · · ˙̂

bn

�
, vector of desired belief updates

Output: ḃT =


ḃ1 ḃ2 · · · ḃn

�
, vector of computed belief updates that keeps the

belief system consistent
/* Find the index w of largest belief increase ˙̂

bi */

1 w = arg max
i∈{1,...,n}

˙̂
bi

/* If the belief at the largest belief increase bw is already 1, nothing should
change */

2 if bw = 1 then
3 ḃ ← 0
4 return ḃ
5 end

/* Otherwise, find the index v of second largest belief increase ˙̂
bi */

6 v = arg max
i∈{1,...,n}\w

˙̂
bi

7 for i ∈ {1, . . . , n} do
/* Subtract the mean value of the two largest belief increases, such that ˙̂

bw ≥ 0
and ˙̂

bv ≤ 0 */

8 ḃi ← ˙̂
bi − (˙̂

bw + ˙̂
bv)/2

/* Do not decrease beliefs, that are already zero */
9 if ḃi < 0 and bi = 0 then

10 ḃi ← 0
11 end
12 end

/* Ensure that sum of belief changes is zero */
13 ḃw ← ḃw − )

i∈{1,...,n} ḃi

14 return ḃ



A Appendix A.4 Drawings 71

A.4 Drawings

Figure A.1: Assembly drawing of the holder for the cordless drill - side.

Figure A.2: Assembly drawing of the holder for the cordless drill - front.



A Appendix A.4 Drawings 72

Figure A.3: Assembly drawing of the holder for the cordless drill - top.



Bibliography
[1] International Federation of Robotics, “Executive summary world robotics 2021 in-

dustrial robots,” 2021. [Online]. Available: https://ifr.org/img/worldrobotics/
Executive_Summary_WR_Industrial_Robots_2021.pdf (visited on Jun. 2, 2022).

[2] L. Probst, L. Frideres, B. Pedersen, and C. Caputi, “Service innovation for smart
industry: Human–robot collaboration,” 2015. [Online]. Available: https://ec.
europa.eu/docsroom/documents/13392/attachments/4/translations/en/
renditions/native (visited on Jun. 2, 2022).

[3] J. E. Colgate, J. Edward, M. A. Peshkin, and W. Wannasuphoprasit, “Cobots:
Robots for collaboration with human operators,” in Proceedings of the ASME
International Mechanical Engineering Congress and Exposition, 1996, pp. 433–439.

[4] V. Villani, F. Pini, F. Leali, and C. Secchi, “Survey on human–robot collaboration
in industrial settings: Safety, intuitive interfaces and applications,” Mechatronics,
vol. 55, pp. 248–266, 2018. [Online]. Available: https://doi.org/10.1016/j.
mechatronics.2018.02.009 (visited on Jun. 2, 2022).

[5] T. Ende, S. Haddadin, S. Parusel, T. Wüsthoff, M. Hassenzahl, and A. Albu-
Schäffer, “A human-centered approach to robot gesture based communication within
collaborative working processes,” in Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2011, pp. 3367–3374. [Online]. Available:
https://doi.org/10.1109/IROS.2011.6094592 (visited on Jul. 4, 2022).

[6] A. Pettersson, T. Ohlsson, S. Davis, J. O. Gray, and T. J. Dodd, “A hygienically
designed force gripper for flexible handling of variable and easily damaged natural
food products,” Innovative Food Science & Emerging Technologies, vol. 12, no. 3,
pp. 344–351, 2011. [Online]. Available: https://doi.org/10.1016/j.ifset.2011.
03.002 (visited on Jun. 7, 2022).

[7] J. Krüger, R. Bernhardt, D. Surdilovic, and G. Spur, “Intelligent Assist Systems for
Flexible Assembly,” CIRP Annals, vol. 55, no. 1, pp. 29–32, 2006. [Online]. Available:
https://doi.org/10.1016/S0007-8506(07)60359-X (visited on Jun. 7, 2022).

[8] A. Hentout, M. Aouache, A. Maoudj, and I. Akli, “Human–robot interaction in
industrial collaborative robotics: A literature review of the decade 2008–2017,”
Advanced Robotics, vol. 33, no. 15-16, pp. 764–799, 2019. [Online]. Available: https:
//doi.org/10.1080/01691864.2019.1636714 (visited on Jun. 3, 2022).

[9] L. Peternel, T. Petric, E. Oztop, and J. Babic, “Teaching robots to cooperate with
humans in dynamic manipulation tasks based on multi-modal human-in-the-loop
approach,” Autonomous Robots, vol. 36, no. 1, pp. 123–136, 2014. [Online]. Available:
https://doi.org/10.1007/s10514-013-9361-0 (visited on Jun. 3, 2022).

73

https://ifr.org/img/worldrobotics/Executive_Summary_WR_Industrial_Robots_2021.pdf
https://ifr.org/img/worldrobotics/Executive_Summary_WR_Industrial_Robots_2021.pdf
https://ec.europa.eu/docsroom/documents/13392/attachments/4/translations/en/renditions/native
https://ec.europa.eu/docsroom/documents/13392/attachments/4/translations/en/renditions/native
https://ec.europa.eu/docsroom/documents/13392/attachments/4/translations/en/renditions/native
https://doi.org/10.1016/j.mechatronics.2018.02.009
https://doi.org/10.1016/j.mechatronics.2018.02.009
https://doi.org/10.1109/IROS.2011.6094592
https://doi.org/10.1016/j.ifset.2011.03.002
https://doi.org/10.1016/j.ifset.2011.03.002
https://doi.org/10.1016/S0007-8506(07)60359-X
https://doi.org/10.1080/01691864.2019.1636714
https://doi.org/10.1080/01691864.2019.1636714
https://doi.org/10.1007/s10514-013-9361-0


Bibliography 74

[10] S. Chen, T. Qiu, T. Lin, L. Wu, J. Tian, W. Lv, and Y. Zhang, “Intelligent
technologies for robotic welding,” in Robotic welding, intelligence and automation,
Berlin, Heidelberg: Springer, 2004, pp. 123–143. [Online]. Available: https://doi.
org/10.1007/978-3-540-44415-2_8 (visited on Aug. 1, 2022).

[11] M. V. Andulkar and S. S. Chiddarwar, “Incremental approach for trajectory genera-
tion of spray painting robot,” Industrial Robot: An International Journal, vol. 42,
no. 3, pp. 228–241, 2015. [Online]. Available: https://doi.org/10.1108/IR-10-
2014-0405 (visited on Jun. 3, 2022).

[12] H. N. Huynh, H. Assadi, E. Rivière-Lorphèvre, O. Verlinden, and K. Ahmadi,
“Modelling the dynamics of industrial robots for milling operations,” Robotics and
Computer-Integrated Manufacturing, vol. 61, p. 101 852, 2020. [Online]. Available:
https://doi.org/10.1016/j.rcim.2019.101852 (visited on Jun. 3, 2022).

[13] I. Iglesias, M. A. Sebastián, and J. E. Ares, “Overview of the State of Robotic
Machining: Current Situation and Future Potential,” Procedia Engineering, vol. 132,
pp. 911–917, 2015. [Online]. Available: https://doi.org/10.1016/j.proeng.
2015.12.577 (visited on Jun. 3, 2022).

[14] T. Faulwasser, T. Weber, P. Zometa, and R. Findeisen, “Implementation of Non-
linear Model Predictive Path-Following Control for an Industrial Robot,” IEEE
Transactions on Control Systems Technology, vol. 25, no. 4, pp. 1505–1511, 2017.
[Online]. Available: https://doi.org/10.1109/TCST.2016.2601624 (visited on
Aug. 1, 2022).

[15] C. Nielsen, C. Fulford, and M. Maggiore, “Path following using transverse feedback
linearization: Application to a maglev positioning system,” Automatica, vol. 46, no. 3,
pp. 585–590, 2010. [Online]. Available: https://doi.org/10.1016/j.automatica.
2010.01.009 (visited on Jun. 3, 2022).

[16] N. Hogan, “Impedance control of industrial robots,” Robotics and Computer-
Integrated Manufacturing, vol. 1, no. 1, pp. 97–113, 1984. [Online]. Available: https:
//doi.org/10.1016/0736-5845(84)90084-X (visited on Jun. 3, 2022).

[17] A. Ajoudani, A. M. Zanchettin, S. Ivaldi, A. Albu-Schäffer, K. Kosuge, and O.
Khatib, “Progress and prospects of the human–robot collaboration,” Autonomous
Robots, vol. 42, no. 5, pp. 957–975, 2018. [Online]. Available: https://doi.org/10.
1007/s10514-017-9677-2 (visited on Jun. 2, 2022).

[18] A. De Santis, B. Siciliano, A. De Luca, and A. Bicchi, “An atlas of physical
human–robot interaction,” Mechanism and Machine Theory, vol. 43, no. 3, pp. 253–
270, 2008. [Online]. Available: https://doi.org/10.1016/j.mechmachtheory.
2007.03.003 (visited on Jun. 7, 2022).

[19] F. Vicentini, “Collaborative Robotics: A Survey,” Journal of Mechanical Design,
vol. 143, no. 4, 2020, 040802. [Online]. Available: https://doi.org/10.1115/1.
4046238 (visited on Aug. 30, 2022).

https://doi.org/10.1007/978-3-540-44415-2_8
https://doi.org/10.1007/978-3-540-44415-2_8
https://doi.org/10.1108/IR-10-2014-0405
https://doi.org/10.1108/IR-10-2014-0405
https://doi.org/10.1016/j.rcim.2019.101852
https://doi.org/10.1016/j.proeng.2015.12.577
https://doi.org/10.1016/j.proeng.2015.12.577
https://doi.org/10.1109/TCST.2016.2601624
https://doi.org/10.1016/j.automatica.2010.01.009
https://doi.org/10.1016/j.automatica.2010.01.009
https://doi.org/10.1016/0736-5845(84)90084-X
https://doi.org/10.1016/0736-5845(84)90084-X
https://doi.org/10.1007/s10514-017-9677-2
https://doi.org/10.1007/s10514-017-9677-2
https://doi.org/10.1016/j.mechmachtheory.2007.03.003
https://doi.org/10.1016/j.mechmachtheory.2007.03.003
https://doi.org/10.1115/1.4046238
https://doi.org/10.1115/1.4046238


Bibliography 75

[20] M. Khoramshahi and A. Billard, “A dynamical system approach to task-adaptation
in physical human-robot interaction,” Autonomous Robots, vol. 43, no. 4, pp. 927–
946, 2019. [Online]. Available: https://doi.org/10.1007/s10514-018-9764-z
(visited on Jan. 13, 2022).

[21] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dynamical
Movement Primitives: Learning Attractor Models for Motor Behaviors,” Neural
Computation, vol. 25, no. 2, pp. 328–373, 2013. [Online]. Available: https://doi.
org/10.1162/NECO_a_00393 (visited on Aug. 1, 2022).

[22] B. Nemec, N. Likar, A. Gams, and A. Ude, “Human robot cooperation with compli-
ance adaptation along the motion trajectory,” Autonomous Robots, vol. 42, no. 5,
pp. 1023–1035, 2018. [Online]. Available: https://doi.org/10.1007/s10514-017-
9676-3 (visited on Apr. 7, 2022).

[23] R. J. Ansari and Y. Karayiannidis, “Task-Based Role Adaptation for Human-Robot
Cooperative Object Handling,” IEEE Robotics and Automation Letters, vol. 6, no. 2,
pp. 3592–3598, 2021. [Online]. Available: https://doi.org/10.1109/LRA.2021.
3064498 (visited on Aug. 1, 2022).

[24] D. P. Losey and M. K. O’Malley, “Trajectory Deformations From Physical Hu-
man–Robot Interaction,” IEEE Transactions on Robotics, vol. 34, no. 1, pp. 126–138,
2018. [Online]. Available: https://doi.org/10.1109/TRO.2017.2765335 (visited
on Aug. 1, 2022).

[25] B. Siciliano, O. Khatib, and T. Kröger, Springer Handbook of Robotics. Berlin:
Springer, 2008, vol. 200. [Online]. Available: https://doi.org/10.1007/978-3-
540-30301-5 (visited on Aug. 1, 2022).

[26] C. Hartl-Nesic, Surface-Based Path Following Control on Freeform 3D Objects.
Shaker Verlag, 2020.

[27] A. Albu-Schaffer, C. Ott, U. Frese, and G. Hirzinger, “Cartesian impedance control of
redundant robots: Recent results with the DLR-light-weight-arms,” in Proceedings of
the IEEE International Conference on Robotics and Automation, vol. 3, 2003, 3704–
3709 vol.3. [Online]. Available: https://doi.org/10.1109/ROBOT.2003.1242165
(visited on Aug. 1, 2022).

[28] C. Ott, Cartesian Impedance Control of Redundant and Flexible-Joint Robots, 1st ed.
Berlin: Springer, 2008. (visited on Aug. 1, 2022).

[29] B. Bischof, T. Glück, and A. Kugi, “Combined Path Following and Compliance
Control for Fully Actuated Rigid Body Systems in 3-D Space,” IEEE Transactions on
Control Systems Technology, vol. 25, no. 5, pp. 1750–1760, 2017. [Online]. Available:
https://doi.org/10.1109/TCST.2016.2630599 (visited on Aug. 1, 2022).

[30] C. Hartl-Nesic, B. Bischof, T. Glück, and A. Kugi, “Pfadfolgeregelung mit Konzepten
für den Pfadfortschritt: Ein Assemblierungsszenario,” at - Automatisierungstechnik,
vol. 68, no. 1, pp. 44–57, 2020. [Online]. Available: https://doi.org/10.1515/auto-
2019-0114 (visited on Aug. 1, 2022).

https://doi.org/10.1007/s10514-018-9764-z
https://doi.org/10.1162/NECO_a_00393
https://doi.org/10.1162/NECO_a_00393
https://doi.org/10.1007/s10514-017-9676-3
https://doi.org/10.1007/s10514-017-9676-3
https://doi.org/10.1109/LRA.2021.3064498
https://doi.org/10.1109/LRA.2021.3064498
https://doi.org/10.1109/TRO.2017.2765335
https://doi.org/10.1007/978-3-540-30301-5
https://doi.org/10.1007/978-3-540-30301-5
https://doi.org/10.1109/ROBOT.2003.1242165
https://doi.org/10.1109/TCST.2016.2630599
https://doi.org/10.1515/auto-2019-0114
https://doi.org/10.1515/auto-2019-0114


Bibliography 76

[31] R. L. Bishop, “There is More than One Way to Frame a Curve,” The American
Mathematical Monthly, vol. 82, no. 3, pp. 246–251, 1975. [Online]. Available: https:
//doi.org/10.2307/2319846 (visited on Jan. 18, 2022).

[32] F. Caccavale, C. Natale, B. Siciliano, and L. Villani, “Six-DOF impedance control
based on angle/axis representations,” IEEE Transactions on Robotics and Automa-
tion, vol. 15, no. 2, pp. 289–300, 1999. [Online]. Available: https://doi.org/10.
1109/70.760350 (visited on Aug. 1, 2022).

[33] S. Haddadin, A. De Luca, and A. Albu-Schäffer, “Robot Collisions: A Survey on
Detection, Isolation, and Identification,” IEEE Transactions on Robotics, vol. 33,
no. 6, pp. 1292–1312, 2017. [Online]. Available: https://doi.org/10.1109/TRO.
2017.2723903 (visited on Aug. 1, 2022).

[34] T. Flash and N. Hogan, “The coordination of arm movements: An experimentally
confirmed mathematical model,” Journal of Neuroscience, vol. 5, no. 7, pp. 1688–
1703, 1985. [Online]. Available: https://doi.org/10.1523/JNEUROSCI.05-07-
01688.1985 (visited on Jan. 19, 2022).

[35] K. Shoemake, “Animating rotation with quaternion curves,” in Proceedings of the
Conference on Computer Graphics and Interactive Techniques, 1985, pp. 245–254.
[Online]. Available: https://doi.org/10.1145/325334.325242 (visited on Jul. 4,
2022).

https://doi.org/10.2307/2319846
https://doi.org/10.2307/2319846
https://doi.org/10.1109/70.760350
https://doi.org/10.1109/70.760350
https://doi.org/10.1109/TRO.2017.2723903
https://doi.org/10.1109/TRO.2017.2723903
https://doi.org/10.1523/JNEUROSCI.05-07-01688.1985
https://doi.org/10.1523/JNEUROSCI.05-07-01688.1985
https://doi.org/10.1145/325334.325242


Eidesstattliche Erklärung
Hiermit erkläre ich, dass die vorliegende Arbeit gemäß dem Code of Conduct & Regeln
zur Sicherung guter wissenschaftlicher Praxis (in der aktuellen Fassung des jeweiligen
Mitteilungsblattes der TU Wien), insbesondere ohne unzulässige Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Hilfsmittel, angefertigt wurde. Die aus anderen
Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe der
Quelle gekennzeichnet. Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher
oder in ähnlicher Form in anderen Prüfungsverfahren vorgelegt.

Wien, im September 2022

Elias Pritzi


	Contents
	1 Introduction
	1.1 Industrial Processes with Cobots
	1.2 Human-Robot Interaction in Collaborative Robotics
	1.3 Aim of this Work
	1.4 Overview of this Thesis

	2 Mathematical Model
	2.1 Kinematics
	2.2 Dynamics

	3 Path Following Control
	3.1 Path Definition
	3.2 Path-Dependent Frame
	3.3 Coordinate Transformation
	3.4 Exact Input-Output Feedback Linearization
	3.5 Path-Based Impedance Control
	3.6 Nullspace Control

	4 User Interaction
	4.1 Path Snap-In
	4.1.1 Control Concept
	Virtual Input Transformation
	Weighting Factors
	Damping
	Combining and Feeding Back the Virtual Inputs
	Parameter Choice

	4.1.2 Orientation Snap

	4.2 Path Switch
	4.2.1 Detection of the Intention to Switch
	External Force Estimation
	Search for new Path Candidates
	Belief System

	4.2.2 Transition Trajectory Generation
	Shape of the Trajectory
	Boundary Conditions
	Parameter Calculation
	Transition Duration



	5 Experiments
	5.1 Teach-In Experiment
	5.2 Path Snap-In Experiment
	5.3 Path Switch Experiment

	6 Conclusion and Outlook
	A Appendix
	A.1 Proofs
	A.1.1 Pseudoinverse of path-based Jacobian
	A.1.2 Transformation from path-based velocity to cartesian velocity

	A.2 Parameters
	A.2.1 System Parameters
	A.2.2 Controller Parameters

	A.3 Algorithms
	A.3.1 Winner Take All Algorithm

	A.4 Drawings


