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Kurzfassung
Durch Strömungssimulation (CFD) kann der Übergang zu einer nachhaltigen In-
dustrie mittels digitaler Prozessänderungen und Anpassungen unterstützt werden.
Digitale Einblicke in nicht-messbare Zustände helfen den Prozess besser zu ver-
stehen und ihn dadurch zu verbessern. Für solche Untersuchungen sind Modelle
notwendig, die alle relevanten Phänomene abbilden. In der Verfahrenstechnik sind
Reaktionen fundamentale Bestandteile vieler Prozesse, deshalb müssen auch die-
se in den Modellen Eingang finden. Diese Dissertation beschäftigt sich mit der
Entwicklung und Verbesserung von Modellen reaktiver Strömungen.

Ein wichtiger Industriesektor in Europa ist die Stahlindustrie, welche einen
großen Anteil der Emissionen verantwortet. Die Hauptprozessroute über den Hoch-
ofen ist von chemischen Reaktionen bestimmt. Deshalb steht die CFD dieses Pro-
zesses im Fokus dieser Dissertation.

Generell können Herausforderungen in der Modellierung in zwei Rubriken un-
terteilt werden: Einerseits müssen Modelle die wichtigsten Effekte abbilden. Ande-
rerseits soll der numerische Aufwand gering gehalten werden, um deren Anwend-
barkeit zu erlauben. Deshalb ist das Ziel dieser Arbeit Verbesserungen in beiderlei
Hinsicht zu entwickeln, um die Anwendung von CFD für verfahrenstechnische Pro-
zesse mit Reaktionen zu ermöglichen.

Basierend auf der Wirbelzone im Hochofen wurden Verbesserungen für homoge-
ne und heterogene reaktive Strömungen entwickelt. Der numerische Aufwand zur
Berechnung von Gasphasenreaktionen wurde reduziert, indem passende Splitting-
und Tabulationsmethoden identifiziert wurden. Für heterogene reaktive Strömun-
gen wurden algorithmische Verbesserung für das Zweiphasenmodell erarbeitet.

In Bezug auf die Modellgenauigkeit wurde die Anwendbarkeit eines erweiterten
Modells ermöglicht, in dem passende Abschätzungen der charakteristischen chemi-
schen Zeitskala präsentiert wurden. Weiters wurde ein Verfahren zur verbesserten
Kinetikidentifikation für Gas-Festoff-Reaktionen präsentiert.

Für heterogene reaktive Strömungen wurden sowohl Modelle für niedrige (La-
grange) als auch für hohe Feststoffkonzentrationen (Euler) bearbeitet. Der Einfluss
turbulenter Strömung auf die thermochemische Umsetzung kleiner Partikel wurde
modelliert und dessen Effekt auf die Hochofensimulation gezeigt. Im Eulerschen
Bereich wurden passende Modelle für die Wirbelzonenströmung analysiert und
deren Effekte auf die Reaktionen betrachtet.

Die entwickelten Modelle erlauben nicht nur die digitale, genaue und schnelle
Analyse der Wirbelzone im Hochofen, sondern können auch auf andere verfahrens-
technische Prozesse angewandt werden. Deshalb hilft die vorliegende Arbeit nicht
nur den Hochofenprozess zu verbessern, sondern kann auch den Übergang zo einer
emissionsfreien Stahlindustrie unterstützen. Zum Beispiel kann die Direktredukti-
on von Eisen mittels Wasserstoff untersucht werden.
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Abstract
Computational fluid dynamics (CFD) can empower the transition to a sustain-
able industry through digitally testing process changes and adaptations. Digital
insight into non-measurable states helps to understand the process better and con-
sequently improve it. These investigations require models to capture the essential
phenomena of the process. In chemical engineering, reactions are fundamental to
many processes, therefore, they need to be incorporated in the model. This work
is concerned with the development and improvement of models for reactive fluids.

The steel industry is an important industry sector in Europe and causes a large
share of the overall emissions. The main process route over the blast furnace is
largely governed by chemical reactions. Therefore, CFD of this process is in focus
of this thesis.

Generally, challenges in modeling are two-fold: On the one hand, models need
to capture the essential effects. On the other hand, the computational burden to
solve the models needs to be low enough to allow CFD simulations. Therefore,
the aim of this thesis is to develop improvements in both regards to enable the
application of CFD for chemical engineering processes incorporating reactions.

Based on the blast furnace raceway zone improvements for homogeneous reactive
flows and heterogeneous reactive flows were targeted, with a focus on gas phase
and gas-solid reactions.

The computational burden of gas phase reaction modeling was reduced by iden-
tifying appropriate operator splitting and tabulation techniques, and establishing
strategies for efficient partitioning. For heterogeneous reactive flows, algorithmic
improvements for two-fluid modeling were developed.

In terms of modeling accuracy, the application of an extended model was en-
abled through appropriate chemical time scale approximation. Furthermore, an
approach to enhance kinetic model identification for gas-solid reactions was pre-
sented.

For heterogeneous reactive flows, modeling improvements for the Lagrangian
framework – applied to low solid’s concentrations – and for the Eulerian frame-
work – applied to higher solid’s concentrations were developed. The influence of
turbulent clustering in the Lagrangian particle conversion model was incorporated
and the model effects on the raceway prediction and reactions in the Eulerian
framework were evaluated.

The developed models not only enable a digital, accurate and fast analysis of
the blast furnace raceway, but can be also applied to other chemical engineering
processes. Therefore, the work does not only help to improve the blast furnace
process, but can also boost the transition to a net-zero emission steel industry. For
example direct reduction of iron ore with hydrogen – also in this process reactions
need to be modeled.

vii





Danksagung
Auch wenn eine Seite nie darstellen kann, was all die Menschen zu dieser Arbeit
beigetragen haben...

Zu Beginn geht der Dank natürlich an meinen Betreuer Michael Harasek, der
mich für dieses Thema begeistert hat, mir die Möglichkeit gegeben hat in seiner
Forschungsgruppe zu arbeiten und mich bei der Bearbeitung fortwährend unter-
stützt hat. Gleich anschließend ist natürlich Markus Bösenhofer zu nennen, der
mich durch die Betreuung meiner Diplomarbeit an das Thema herangeführt hat,
mich während meiner Dissertation unterstützt hat und ohne dessen Vorarbeiten
ich nie an diesen Punkt gekommen wäre.

Vielen Dank auch an meine Kollegen - stellvertretend hier besonders all jene aus
unserem Büro im Geniegebäude: Florian, Diana, Johannes, Matthias und Thomas.
Ohne die netten Gespräche und Mittagspausen wäre die Hitze in unserem Büro,
aber auch OpenFOAM nie auszuhalten gewesen.

Mein Dank gilt auch an alle Projektpartner außerhalb der TU Wien bei K1-Met,
JKU, voestalpine und Primetals, die mit ihrer Expertise und kritischen Fragen die
Arbeit sehr bereichert haben.

Ein sehr bereichender Teil meiner Dissertation war der Aufenthalt bei der ComKin-
Gruppe in Norwegen. Vielen Dank für die Möglichkeit bei euch mitzuarbeiten, die
herzliche Aufnahme und die Unterstützung. Tusen takk til alle fra ComKin-gruppe,
Nils og Eva.

Neben all der fachlichen und kollegialen Unterstützung möchte ich ganz beson-
ders bei meinen Freunden bedanken. Ohne die Ablenkung oder ein offenes Ohr für
meine Jammerei, hätte ich das nicht geschafft. Ganz speziell darunter natürlich an
die Bierdienstagscrew. In der Felix nicht nur als Freund, sondern immer auch als
fachlicher Coach fungiert hat.

Das Beste kommt natürlich zum Schluss – die Familie. Meine Eltern, die mich
auf all meinen Wegen unterstützt haben und die ich jederzeit um Rat fragen kann.
Danke Schwesterherz! Und danke Flo, du hast gerade noch gefehlt.

Für meine Großmütter...

ix





Contents
Research summary 1

1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . 2
2 State-of-the-Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Homogeneous reactive flows . . . . . . . . . . . . . . . . . . 4
2.2 Heterogeneous reactive flows . . . . . . . . . . . . . . . . . . 8

3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Homogeneous reactive flows . . . . . . . . . . . . . . . . . . 17
4.2 Heterogeneous reactive flows . . . . . . . . . . . . . . . . . . 18

5 Results - Summary of Publications . . . . . . . . . . . . . . . . . . 21
5.1 Homogeneous reactive flows . . . . . . . . . . . . . . . . . . 21
5.2 Heterogeneous reactive flows . . . . . . . . . . . . . . . . . . 22

6 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . 24
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Publications 45
Paper 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Characteristic Chemical Time Scales for Reactive Flow Modeling
Paper 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Importance of considering interstitial fluid effects in the kinetic theory
of granular flow for raceway formation prediction

Paper 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Enhanced kinetic model identification for gas–solid reactions through
Computational Fluid Dynamics

Paper 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
The Effect of Turbulence on the Conversion of Coal under Blast Fur-
nace Raceway Conditions

Conference Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Co-Author Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

xi





Research summary
This introductory chapter provides the context and synopsis of the publications
that constitute this thesis. A general introduction and motivation of the work
is given at the start, which is embedded in the climate challenges we face today.
Based on this global perspective, the motivation is narrowed down to the indus-
try sector and the special role of the steel industry in Section 1. Based on the
mentioned benefits of employing computational fluid dynamics (CFD) for process
improvements and design, the need for reaction modeling is emphasized. Because
of the blast furnace’s importance in steel production it serves as an example pro-
cess, based on which concrete deficiencies in reaction modeling are illustrated.
The different reactions occurring in the blast furnace are discussed and based on
those, a general distinction in modeling homogeneous and heterogeneous reac-
tive flow is made, Section 2. This distinction helps to synthesize state-of-the-art
modeling strategies. With the knowledge of the state-of-the-art and the general
motivation behind the application of CFD, the hindering factors in the application
can be formulated, Section 3. This boils downs to two main points: insufficient
modeling accuracy and too high computational cost. Guided by those general
problems, specific points were targeted in this thesis: speed-up through tabulation
techniques and algorithmic improvements, and modeling improvements through
validated model adaptations summarized in Section 4. The main results were
published in journal and conference publications and are recapped in Section 5.
As an overall conclusion, the presented results help to simulate the raceway zone
in a blast furnace faster and more accurately. Consequently, they enable to test
alternative process conditions to aim for a more sustainable blast furnace opera-
tion and reduced emissions. These concluding remarks are condensed in Section 6
and enriched with an outlook on future pathways in terms of on-line CFD and
zero-emission steel production.
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1 Introduction and Motivation
We have only one earth. One of the slogans of the Friday’s for Future initiative
shows us that we should act now to save our planet. It is our and our children’s
future which is at stake due to the human induced climate change. But how can
each and everyone of us support the transition to a sustainable world? For one,
we have to change our behavior. Use the resources our planet provides efficiently.
A lot of small individual actions will contribute to an overall transition – take
public transportation instead of taking the car, repair electric devices instead of
buying new ones, or buy clothes produced nearby instead of clothes shipped from
the other side of the world. Just to name a few small things. Our small actions feel
useless – but they take a share. Looking for example on our mobility in Austria:
the transportation sector took a 35% share in the overall energy consumption in
2015 (Krutzler et al. 2017) or 25% in European Union (EU) (Eurostat n.d.).

How does this relate to this thesis? Well, similarly as we should reconsider and
change the behavior in our personal life, we can devote our work to the same goal
– combat climate change. How can this small piece of work contribute to reduce
global warming? – Truly it will not stop climate change on its own, but it can be
a small piece. It aims to help the transition to reduced emissions and a carbon
free industry.

To combat climate change policy makers signed a legally binding agreement
to reduce global warming well below 2 degrees – the Paris Agreement (United
Nations n.d.). To achieve this goal the EU has developed a strategy to meet
net-zero emissions 2050 – called the European Green Deal (European Commision
2019).

A strong focus in the strategy is also the transformation of the european industry,
which contributed to 775 Mt green house gas (GHG) emissions in 2021 (European
Environment Agency 2022). A special focus there is the steel production in EU.
It accounts for 221 Mt GHG emissions, which corresponds to 5.7% of the total
EU emissions (Commission of the European Communities 2021). The two main
routes for steel production in the EU are the blast furnace / basic oxygen furnace
route and the electric arc furnace route (Commission of the European Communities
2021), producing 60% and 40% of the steel in the EU respectively.

Guevara Opinska et al. (2021) discusses different scenarios on the way to a net
zero-emission steel industry. They highlight, that for a transition until 2050 several
concepts will play a role: novel technologies, such as hydrogen direct reduction,
as well as improved state-of-the-art technologies, possibly combined with carbon
capture approaches.

To support the transition and improve current processes, computational fluid
dynamics (CFD) can be a precious tool. Runchal (2012) discuss the future of CFD
and emphasize, that it will be embedded in solving engineering design problems.
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This can be done in numerous ways: We can use CFD to estimate not measurable
parameters inside an industrial device and get a virtual view inside. This infor-
mation helps to improve the process – for example, by estimating the end time
of batch processes, or increasing mass flow rates for less wear of the apparatus.
Thus, CFD can help to continuously improve processes, test process variations or
fasten the design of new ones.

To use CFD for chemical engineering processes, we need well suited models to
obtain an accurate estimation in the CFD simulation. A special challenge in many
industrial processes are the reactions and the modeling of these. The reaction
modeling challenges in the blast furnace process – one of the most important
processes in european steel industry today – guide through the work in this thesis.

3
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2 State-of-the-Art
Reaction modeling in CFD is a wide topic and the work presented here focuses on
aspects relevant for chemical engineering devices. Even though my research dealt
with reaction modeling in general, the use case that guided this research were
blast furnaces in steel production, due to their importance in the steel industry
(Commission of the European Communities 2021). The blast furnace will guide
this work to showcase relevant aspects in reaction modeling for CFD. First, I want
to introduce the most important features of the blast furnace process. Figure 1
shows a schematic drawing of the blast furnace with its main parts. The in- and
outflows in the blast furnace are: iron ore, burden, and coke provided from the
top; hot blast and reducing agents through the tuyeres; the top gas leaving above
the throat; and slag and pig iron flowing out from the hearth.

The main reactions occurring in the blast furnace are the iron ore reduction,
the coke conversion and the reducing agents conversion. In the stack, the iron ore
is reduced by reducing gases (e.g. CO, H2) provided through conversion reactions
with the hot blast (O2, N2, H2O) entering through the tuyeres. The hot blast
reacts with the coke supplied from the top and reducing agents added through
the tuyeres. In front of the tuyeres, a cavity forms, which is called the raceway
cavity. The supplied reducing agents react mainly within this cavity. For a good
description of the blast furnace see (Cameron et al. 2019).

In general, one can classify homogeneous and heterogeneous flows – comprised
of one or two different phases, respectively. Similarly, chemical reactions are cat-
egorized into homogeneous and heterogeneous reactions – occurring within one
phase or two different phases, respectively. Within the blast furnace heterogeneous
reactions (iron ore reduction, coke conversion, conversion of solid/liquid reducing
agents) as well as homogeneous reactions (reactions of the hot blast, gaseous reduc-
ing agents and reaction products) play a role. Because of their inherent difference,
current modeling strategies will be discussed in the following sections separately
for the two types:

2.1 Homogeneous reactive flows
Homogeneous reactive flows are flows with one phase and reactions therein. In
blast furnaces only homogeneous reactions in the gas phase are relevant. For this
reason, I will focus the discussion in this section on this type. A lot of research
is devoted to combustion reactions and the reactions occurring within the blast
furnace can also be considered as combustion reactions – be it combustion of
gaseous reducing agents, combustion of volatiles released from solids or combustion
of vaporized liquids.

Before coming to the reaction modeling itself, the motion and energy of the

4
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Figure 1: Schematic drawing of the blast furnace marking the different sections,
the in- and outflows, and the main reactions in the blast furnace

gaseous phase have to be modeled to predict its properties. The governing equa-
tions are the continuity equation and the Navier-Stokes equations. They can be
solved analytically only for a few simple, laminar flows (Versteeg et al. 2007). Us-
ing the finite-volume method they are usually attempted to be solved numerically.
In general, it is possible to compute all the velocity fluctuations – not only the
mean values. This approach is called Direct Numerical Simulation (DNS), but it
requires the resolution of the finest scales and is computationally very demand-
ing. Therefore, it is usually only used for small scales or laminar flow configura-
tions. More commonly for turbulent flows, only the mean quantities are computed
and the turbulent fluctuations are modeled. Those techniques can be categorized
as Large-Eddy Simulation (LES) – resolving up to larger unsteady scales – or
Reynolds-averaged Navier-Stokes (RANS) equations – resolving only the average
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flow scale. A detailed description of modeling approaches in the finite volume
method (FVM) framework is given by Versteeg et al. (2007) and an overview on
general turbulence modeling by Pope (2000).

In this thesis the RANS-approach is used, because it requires less computational
effort than LES. Despite increasing computational powers, it is still important to
keep that in mind when targeting engineering applications. Therefore, reaction
modeling for this framework will be discussed in the following, although many
statements and reaction models are also applicable for LES. Special differences
in combustion modeling between LES and RANS have been addressed by Pitsch
(2006).

As mentioned, a model for the turbulence needs to be applied in conjunction
with RANS. Here, a two-equation model, the k-epsilon model (Jones et al. 1972;
Launder et al. 1974) was chosen. However, the reaction modeling techniques are
not limited to this specific turbulence model (Veynante et al. 2002).

When the turbulent mixing of the reactants is not resolved, the turbulence
effect of this mixing and the interchange with the chemical reactions needs to be
modeled as well. Different approaches to model turbulence-chemistry interactions
exist. According to Poinsot et al. (2012) and Veynante et al. (2002) they can
be distinguished based on their physical approaches into: geometrical analysis,
turbulent mixing and one-point statistics. However, Poinsot et al. (2012) mentions
that no approach is superior to the others.

Some models are based on the assumption that the chemical kinetics are con-
siderably faster than the mixing process, defining the mixing process as the rate
limiting and decisive step, e.g. the eddy-break-up model (Spalding 1971). How-
ever, the possibility to handle finite-rate chemistry is essential if the reactions are
not purely mixing dominated. Additionally, the coupling with source terms is
necessary, when applied to multi-phase processes, such as the blast furnace. For
example gases released from coal, coke, biomass are participating in the gas phase
reactions.

A model satisfying these requirements, is the Eddy Dissipation Concept (EDC)
(Magnussen 1981). It models the interactions between turbulence and chemistry,
taking the mixing as well as finite-rate chemistry into account – using global one-
step chemical mechanisms or detailed mechanisms with several thousand species.
The details of the model and later adaptations have been presented by Magnussen
and his co-authors Magnussen (1989), Gran et al. (1996a), Gran et al. (1996b),
and Magnussen (2005). A detailed derivation of the energy cascade model, which
is the basis of the EDC, was presented by Ertesvåg et al. (1999).

The model derivation is based on highly turbulent phenomena (high Reynolds
and Damköhler number) (Veynante et al. 2002). In the recent years the model
has also been extended to fields with broadened reaction fronts and regimes with
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lower Damköhler and Reynolds numbers in the range of unity (Parente et al. 2016;
Bao 2017; Lewandowski et al. 2020b; Lewandowski et al. 2020a; Romero-Anton
et al. 2020). Mainly because moderate or intense low oxygen dilution (MILD)
combustion (Cavaliere et al. 2004) has become increasingly interesting due to its
reduced emissions. A detailed and critical discussion of those recently proposed
changes was presented by Ertesvåg (2020) and Ertesvåg (2022).

Since the blast furnace process was chosen to showcase reaction modeling tech-
niques within CFD for chemical engineering applications, the approaches for gas
phase modeling in blast furnace simulations were reviewed. Many different ap-
proaches have been used for blast furnace simulations.

Du et al. (2006), Du et al. (2015), and Yeh et al. (2012) applied the probability
density function (PDF) method in simulation studies related to the blast furnace.
They simulated pulverized coal injection (PCI) combustion, assuming only mixing
controlled reactions. Similarly, Andahazy et al. (2006) investigated gas and oil
injection in raceways and their combustion. However, Andahazy et al. (2006) did
not take any solid source terms from solid reducing agents or the coke bed into
account. Therefore, it is not clear, if this approach can be applied when the coke
bed in the blast furnace shall be modeled as well. Vuokila et al. (2017) compared
the EDC and a PDF method for the prediction of heavy oil combustion in a
raceway. They concluded that the EDC model performed better than the PDF
in this application. Additionally, Liu et al. (2021b) stated that the equilibrium
chemistry model – a pdf method – is not suitable to model pulverized biomass
injection. Consequently, the application of the equilibrium chemistry model would
limit the injection studies in a blast furnace and suggests that the EDC would be
a better choice.

The Eddy Dissipation Model (EDM) (Magnussen et al. 1977), a predecessor
of the EDC, is used in many blast furnace studies, e.g. by Nogami et al. (2004),
Zhou (2008), Gu et al. (2010), Shen et al. (2011), Wijayanta et al. (2014b), Majeski
et al. (2015), Wu et al. (2019), Barros des Souza (2020), Liu et al. (2020a), Liu
et al. (2020b), Zhang et al. (2020a), Liu et al. (2020c), Peng et al. (2021), Liu
et al. (2021a), and Wang et al. (2022). The EDM takes a simplified approach to
account for finite-rate chemistry – limiting the overall reaction rate minimum of
the mixing term and reaction term. The main benefit of the EDM is its reduced
computational cost. However, the simplified approach also leads to deficiencies in
the predictions.

The EDM and EDC have been compared for the prediction capabilities for oxy-
fuel combustion by Andersen et al. (2009) and Galletti et al. (2013), who concluded
that the EDM has too many deficiencies to be applied in oxy-fuel combustion. The
similarities to the blast furnace process – the high temperature and consequently
importance of CO2 decomposition reactions – suggest, that also here the supori-
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ority of the EDC predictions is important. For co-firing of biomass Tabet et al.
(2015) evaluate different turbulence-chemistry interaction models. They conclude
that the EDM is not as good as the EDC, and that PDF/mixture fraction are only
applicable for high Damköhler numbers, which are not generally ensured within
the blast furnace raceway zone.

The EDC was applied for blast furnace simulation in the following publications
(Maier 2015; Vuokila 2017; Vuokila et al. 2016; Vuokila et al. 2017; Bösenhofer
2020) and showed good performance in the predictions. To sum up, the reviewed
literature suggests that in terms of accurate predictions and flexibility, the EDC
should be used for blast furnace simulations. Its main downside is the increased
computational cost. Consequently it should be used, if computationally affordable.

2.2 Heterogeneous reactive flows
Multiple phases are present in the blast furnace: iron ore, iron, slag, coke, blast
and reducing agents. The heterogeneous reactions of those phases are iron ore
reduction, coke conversion and reducing agents conversion. Iron ore, iron, and
slag are present in solid and liquid phase, coke in solid and blast in gaseous phase.
The reducing agents, can be either solid, liquid or gaseous. For liquid reducing
agents, the modeling can be reduced to homogeneous reaction modeling, by as-
suming vaporisation and consecutive combustion as by Maier (2015). For gas-solid
reactions this simplification can not be done. Therefore, we focus on gas-solid re-
action modeling within the group of heterogeneous reactive flows. In contrast to
homogeneous reactions the reactants in heterogeneous reactions are not mixed on
a molecular level. Therefore, the modeling of the overall, macroscopic conversion
process in gas-solid reactions will be discussed.

In general, one can distinguish between two approaches in gas-solid reaction
modeling: First, a mechanistic modeling approach based on the important phys-
ical processes (e.g. mass transfer through boundary layer, mass transfer in pores
and intrinsic kinetic) contributing to the overall conversion (Szekely et al. 1976).
Second, the single step approximation – modeling the rate determining step.

The mechanistic based conversion models can be based on a resistance model of
the physical processes contributing to the overall conversion: the reactant diffusion
through the boundary layer, the diffusion of the reactant through the pores/porous
structure and the intrinsic reaction kinetics. Probably the first model of this type
was the shrinking core model presented by Yagi et al. (1955).

The kinetic contribution to the overall conversion is often modeled by the Ar-
rhenius expression, but could be also modeled based on a Langmuir-Hinshelwood
description if adsorption and desorption play a major role for the conversion at
the reaction site, as discussed by Murphy et al. (2006). The bulk diffusion is of-
ten modeled based on a Sherwood correlation for mass transfer, e.g. (Ranz et al.

8



1952), and the probably most common model for the diffusion through the porous
solid is based on the work from Thiele (1939).

On the other hand, the single-step approximation, is based on the assumption
that only one step is rate-limiting and therefore decisive for the reaction. This is
the probably most widely used approach in solid-state kinetics (Vyazovkin et al.
2011), which can be described as following:

dα

dt
= k(T )f(α)h(p, peq) (1)

It combines the temperature effect k(T ), geometrical effects f(α), and the driv-
ing force h(p, peq). The temperature effect is – as in the mechanistic model –
usually modeled based on the Arrhenius equation, which was originally derived
for gas phase reactions. A critical discussion reviewing the concepts from homo-
geneous reaction kinetics for gas-solid reactions was presented by Galwey (2004).

The geometrical effects in the single step approximation are often attempted to
be modeled based on physical relations, for example the volume reaction model,
grain model (Szekely et al. 1970), random pore model (Bhatia et al. 1980) – further
developed as flexibility enhanced random pore model (Lisandy et al. 2017). A
good overview of available models for the geometrical contribution to the single
step approximation was given by Khawam et al. (2006) and Deutsch (2017).

Often, the driving force term h(p, peq) is ignored (Vyazovkin et al. 2011) – may
it be due to its problematic identification or controllability in experiments or the
lack in model identification techniques. A profound discussion on its effects, its
importance and different modeling strategies was presented by Birkelbach et al.
(2020) and Vyazovkin (2020).

Besides the general perspective of reaction models, the modeling of the phases
in heterogeneous reactive flows also needs to be covered. In gas-solid flows, the
gas phase can in principal be modeled in the same way as discussed for the homo-
geneous reactive flows in the previous sections. The modeling of the solid phase
should be discussed specifically, because different approaches exist here.

The focus in this thesis lies on chemical engineering applications, therefore mod-
els resolving the solid are not considered due to their high computational demand.
However, they can provide useful insights in mechanistic effects or help derive
simplified models. That is why, the most important recent approaches in resolved
particle modeling are mentioned here: the SKIPPY code used by Hecht et al.
(2012), Shaddix et al. (2013), and Shaddix et al. (2019), the work from Tufano
et al. (2019) resolving the solid particle as a porous medium, or the approach
by Gómez et al. (2018) and Kiss et al. (2021) describing the solid particle as an
Eulerian phase.

Disregarding the resolved solid models, the solid can be either modeled as dis-
crete particles – modeled with a Lagrangian description – or as a continuous phase
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– with the Eulerian description. Since those modeling techniques are inherently
different and pose restrictions and implications on the reaction modeling, they will
be discussed separately in the following subsections.

Lagrangian description

When the solid phase is treated as discrete particles, it is called a Lagrangian
description. In this case, their movement is described by Newton’s laws of mo-
tion. When the fluid phase is modeled as Eulerian and the solid as Lagrangian
phase, one can generally distinguish approaches based on their complexity. First,
one-way coupling mesthods, where the transport of the Lagrangian particles is
passive. Second, two-way coupling, where the interaction between the two phases
is resolved. Third, four-way coupling, where the interaction between the phases,
as well as particle-particle interactions are resolved. For further information, see
(Jakobsen 2008).

It is commonly agreed, that for low solid concentrations, one-way coupling is
sufficiently accurate, but for larger concentrations, the interactions should be mod-
eled (Jakobsen 2008). For dense particle flows, often a four-way coupling scheme
– probably the most common being the discrete element method (DEM) – is em-
ployed. Insights and a good overview of CFD-DEM modeling are given by Norouzi
et al. (2016).

To avoid the computational expensive four-way coupling, resolving the particle-
particle interactions, an approach to combine the benefits of Eulerian and La-
grangian modeling has been developed: the multiphase particle-in-cell (MPPIC)
method (Andrews et al. 1996; Snider 2001; O’Rourke et al. 2009; O’Rourke et al.
2012). There, the particle-particle interactions are not solved directly, but are
modeled by solving the solid stresses in an Eulerian frame. The method has also
been applied to heterogeneous reaction by Snider et al. (2011). A similar ap-
proach has been presented and implemented by Klimanek et al. (2015) for coal
gasification.

The computational demand increases naturally with increased coupling. Nonethe-
less, also with one- or two-way coupling the computational demand is often pro-
hibitive if a large number of particles needs to be tracked in the system. Then, the
particles can be grouped and only representative parcels – comprised of numerous
particles having the same features – are tracked and solved for (Jakobsen 2008).

The treatment of single particles or parcels, offers the possibility to track distinct
properties. Although the distinct shape of the particles can be tracked, modeling
non-spherical particles poses challenges. An established approach within DEM
modeling is to approximate non-spherical particles by multiple spheres (Norouzi
et al. 2016).

However, within one- or two-way coupling approaches, the particles are often
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approximated as spheres. The simplest approaches to account for non-sphericity
are drag model modifications, e.g. the correlation from Haider et al. (1989). Those
do usually not take into account the particle orientation. Some recent work ac-
counting for spheroidal particles and their orientation has been presented by Guo
et al. (2019) and Guo et al. (2020) for biomass combustion.

In addition to the increased computational demand with increased coupling or
increased number of particles, a special challenge with larger reacting particles
is the source term coupling. Additionally to the momentum and heat transfer
coupling, coupling source terms from the heterogeneous reactions arise. Conven-
tionally – so for example in OpenFOAM or Fluent (ANSYS 2016) – the coupling is
realized on a point basis, called the particle centroid method (PCM) (Zhang et al.
2020b). However, this should only be done when the particles are significantly
smaller than the grid cell. For larger particles, other coupling strategies should
be employed. A profound evaluation of different coupling strategies, their benefits
and drawbacks, has been studied for biomass combustion by Zhang et al. (2020b).

An important topic in blast furnace operation is the application of alternative
reducing agents in the raceway zone. Because the iron ore reduction happens above
this zone, it is usually not investigated in those studies (Maier 2015). The volume
fraction of the reducing agents is usually low, therefore, Lagrangian modeling
without resolving particle-particle interaction is appropriate for those studies.

To study the reducing agents the simulations are often simplified by ignoring
the coke bed (Shen et al. 2008; Shen et al. 2009a; Shen et al. 2009b; Shen et al.
2009c; Yeh et al. 2012; Wijayanta et al. 2014b; Wijayanta et al. 2014a; Majeski
et al. 2015; Du et al. 2015; Vuokila et al. 2016; Zhang et al. 2020a; Zhou et al.
2021). This is suitable, when laboratory equipment for reducing agents is studied,
e.g. by Shen et al. (2008) and Shen et al. (2009b). A closer step to the actual
blast furnace is made, when the the coke bed is included. For simplification, it is
often modeled as a porous, stationary media (Shen et al. 2011; Shen et al. 2015;
Shen et al. 2012; Shiozawa 2013; Liu et al. 2020c; Liu et al. 2021a; Wang et al.
2022) or not directly coupled to the gas phase (Wu et al. 2019; Maier 2015). The
incorporation of non-spherical effects for the reducing agents becomes important
when studying biochar as reducing agent. Liu et al. (2020c) and Wang et al. (2022)
have studied its application and accounted for non-sphericity by shape factors.

When modeling the denser region of the blast furnace – the coke bed – usually
particle-particle interactions should be modeled as well. Full scale studies of the
blast furnace with CFD-DEM, do usually not account for reactions, because they
are already at the limit in terms of computational cost (Nie et al. 2021). Several
full-scale studies of the blast furnace, considering only the flow exist, e.g. (Allert
et al. 2009; Geleta et al. 2018; Bambauer et al. 2018).

The CFD-DEM simulations of the raceway incorporating heterogeneous reac-

11



Research summary

tions are often simplified in other aspects. Cui et al. (2020) study the raceway
zone, but ignore any gas phase reactions, while several other works are limited
to lab-scale raceways, (Wang et al. 2021; E et al. 2021; Nogami et al. 2004), or
lab-scale studies on iron-ore reduction (Kinaci et al. 2020; E 2020).

However, CFD-DEM simulations of other processes including heterogeneous re-
actions (Scherer et al. 2017) have been presented: e.g. waste incineration (Wissing
et al. 2017), or lime stone calcination (Krause et al. 2015).

Eulerian description

Compared to point modeling, modeling the solid phase as a continuous phase is
better in terms of computational effort (Zhou et al. 2016; Jakobsen 2008). In this
case, the two phases are treated as interpenetrating continua, including the phase
volume fraction in the continuity, momentum and energy equation (Gidaspow
1994). This is called a two-fluid model (TFM), but can easily be extended to
a multi-fluid model, by adding additional coupling terms. In general, the cou-
pling is realized by source terms in the continuity equation stemming from phase
transformation or reactions, source terms in the momentum equation coming for
example from drag and lift forces, and in the energy equation from reactions, phase
transformation and/or heat transfer.

For a solid Eulerian phase a closure relation for the solid stress is required. Based
on the kinetic theory of granular gases, the velocity fluctuations of the solid can
be related to a granular temperature and an additional equation for this granular
temperature can be constructed. This approach is called the kinetic theory of
granular flows and has been developed by Lun et al. (1984), Lun et al. (1986),
and Savage (1998). In the past decades different approaches to model the closure
terms of this equation have been developed. A good overview was published by
Van Wachem (2000).

When treating the solid phase as a continuous phase, no discrete particles are
tracked and consequently no distinct properties of the individual particles are
available. The phase properties are averaged values per grid cell and are often
constant, for example the particle diameter of a phase, used to model the drag
force.

This inherent feature of (averaged) values per grid cell leads unavoidably to the
question of how to average the solid phase properties, especially when the phase
mixes. For example, if we model the thermochemical conversion as consecutive
steps, consisting of drying, devolatilization and char conversion: How do moist
particles mix with already partly devolatized ones? Also the mixing in combination
with the single step approximation Eq. (1) is unclear – is an average conversion
state of mixed solids conceptually correct?

Therefore, all models requiring individual particle features, or requiring consecu-
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tive conversion steps, can not be treated within the Eulerian modeling framework.
For example Luo et al. 2022 discuss the biomass pyrolysis modeling in fluidized
beds, emphasizing that the progressive conversion model and the interface based
model can not be applied within this framework.

A trick to circumvent this problem, was proposed by Gerber et al. (2010). They
use a multi fluid approach to model wood gasification (drying, devolatilization,
char conversion) – treating each conversion stage as a separate phase: wood before
devolatilization is one phase, char is one phase and the reacted products are one
phase. However, this increases the computational demand because all the con-
stitutive equations need to be solved for all the phases, requiring coupling terms
between the different phases.

Some problems are resolved, if the solid coke phase is considered stationary.
Then, no solid mixing occurs and the solid properties can be tracked consistently
in each cell, for example for blast furnace modeling by Bösenhofer (2020). There,
the coke is already dried and devolatilized, so only char conversion needs to be
modeled.

Other Eulerian examples in blast furnace modeling are given by Liu et al. (2021a)
and Jiao (2020) considering coke reactions and iron ore reduction, where solids are
treated as an incompressible fluid. Jiao (2020) included additionally the coke and
sinter particle size by correlating it to the conversion degree.

The reducing agents in the blast furnace are mostly modeled as Lagrangian
particles, as discussed in the previous section. However, some studies consider
also those as continuous phase (Okosun et al. 2020; Gu et al. 2010).
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3 Problem Statement
The previous chapter introduced the state-of-the-art in reaction modeling for CFD.
The special focus is lying on modeling the blast furnace, therefore, the focus was
laid on gas phase and gas-solid reaction modeling.

The application of CFD to analyze and improve chemical engineering processes is
increasing, but there are still limitations. The modeling and simulation of reactions
in these systems brings an additional complexity and is also influenced by the
underlying modeling choices. The hindering aspects can be categorized in two
main groups:

First, the computational time of the CFD simulation. To optimize a running
process and investigate operational changes a-priori, it is prohibitive if the CFD
simulation takes several days, weeks or even months. The process operator is not
willing, or simply can not wait to obtain the CFD results. The incorporation of
the reactions into CFD modeling increase those challenges.

Second, the accuracy of the simulation results. A simulation will never identi-
cally reflect the reality, but it is necessary that the predictions are accurate enough
to help improve or design a process. The essential effects need to be captured and
the error needs to be limited to an acceptable tolerance. E.g. if the peak temper-
ature shall be analyzed to estimate the influence on the material wear, the error
of the predicted temperature has to be in a tolerable range.

Often it is a trade of between computational performance and accuracy. But it
is not as simple as that. On the one hand, applying speed-up techniques can be ap-
plied, modifying algorithmic structures or changing solution techniques can fasten
the computation without any loss in accuracy. And on the other hand, models can
be reparameterized, modified, or changed – generally speaking improved – without
increasing the computational effort. The question remains how to accomplish this?

fast & accurate models?

reducing agents conversioncoke conversion

gas phase reactions

Figure 2: The problem of fast and accurate models related to the reactions occur-
ring in the blast furnace raceway zone

14



To recap the important reactions to be modeled in the blast furnace, Figure
2 shows the raceway zone of a blast furnace with it’s main reactions. Based on
those two objectives the state-of-the-art in reaction modeling has been analyzed
with focus on the blast furnace raceway zone. The methodology to improve the
modeling of the homogeneous reactive flow with its gas phase reactions and gaseous
reducing agents and the heterogeneous reactive flow with the coke conversion is
discussed in the next section.
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4 Research Approach

Based on the example of the blast furnace raceway, modeling approaches for the
reaction types occurring there are analyzed. Important bottlenecks – based on the
two main hindering factors computational time and modeling accuracy – were iden-
tified. The approach was to first investigate homogeneous – gas-phase reactions –
reactive flows and then heterogeneous – gas-solid reactions – reactive flows. The
details of the identified limitations and the improvement strategies are discussed
in the following section, first for homogeneous reactive flows, second for heteroge-
neous reactive flows and categorized into the improvements regarding either time
or accuracy, see Figure 3.
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Figure 3: Publication work categorized into improvements for time or accuracy
and the reaction type heterogeneous or homogeneous
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4.1 Homogeneous reactive flows
Generally, the modeling effort in homogeneous flows should be kept low when
simulating large scale applications. Therefore, usually RANS modeling is chosen
and the turbulence fluctuations are not resolved. The chemical reactions introduce
additional complexity, since not only the transport of all the species needs to be
modeled, but also their reaction and interaction with the turbulent flow.

Based on the state-of-the-art, section 2.1, the EDC model was chosen as the
most suitable to model the reactions in the blast furnace. Related to the general
problem statement, it was analyzed – first, in terms of computational time and
second, in terms of modeling accuracy.

A computationally intensive part of the EDC is the solution of a set of coupled
ordinary differential equations (ODEs) for the species evolution. To speed-up those
calculations, several strategies have been suggested. For example, the tabulation
of the solution as in-situ adaptive tabulation (ISAT) (Pope 1997). To make use
of this tabulation methodology in conjunction with the original EDC formulation,
operator splitting techniques should be applied (Rehm 2010). Therefore, different
operator splitting techniques and their performance with the EDC were analyzed
and the results were presented in Conference Paper I.

Large scale simulations are usually carried out on multiple processors to re-
duce the calculation time. The speed-up, is however not unlimited and does
not scale linearly with the number of processors. The computational resources
should therefore be used efficiently. For non-reactive flow simulations using the
open-source plattform OpenFOAM partitioning strategies have been reviewed in
literature (Haddadi et al. 2017). The increased computational demand per cell
due to the solution of the reactions, might change those results. Because the cal-
culation demand in each cell increases and the communication between processors
contributes to a smaller part to the overall calculation time. Efficient partitioning
strategies for reactive flows were investigated and the results for optimal partition-
ing were presented in Conference Paper II.

The increasing application of machine learning in all kinds of engineering appli-
cations lead to the idea to make use of this technique to speed-up and improve the
solution of the chemical reactions as well. First approaches to apply neural net-
works for the solution of ODEs in combustion simulations have been presented by
Blasco et al. 1998; Cerri et al. 2003; Laubscher 2017. The application in conjunc-
tion with the EDC in OpenFOAM was investigated in collaboration with a master
student (Cabrera Ormaza 2021) and joint results were published in Conference
Paper IV.

After the improvements in terms of computational time, the model accuracy of
the model was targeted. A very common simplification in the EDC model is the
approximation of the fine structures, in which the chemical species react, as plug
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flow reactors (PFRs) instead of perfectly stirred reactors (PSRs). The treatment
of these fine structures and the effect on the results was assessed for classical
combustion in detail by my colleague and me in Co-Author Paper A.

Besides this modeling choice, studies under MILD combustion regimes have
shown deficiencies of the EDC. The EDC has originally been derived for highly
turbulent flames and its basis relies on high Damköhler number regimes. MILD
conditions are less turbulent and can be characterized by lower Damköhler num-
bers. To overcome the deficiencies of the EDC under these conditions, modifica-
tions have been proposed by Parente et al. (2016), Bao (2017), Lewandowski et al.
(2018), Lewandowski et al. (2020b), and Lewandowski et al. (2020a).

The problems with the EDC were first revealed when applying to MILD com-
bustion, but are true for all combustion regimes characterized by lower Damköhler
numbers. This is also the case for other applications, e.g. gasification as shown by
Rehm et al. (2009). Therefore, we investigated the reaction regime in the raceway
zone of the blast furnace and showed, that the conditions also show regions with
lower Damköhler number in Co-Author Paper C.These results suggested, that
the modified EDC parameters would be beneficial for predicting the gas phase
reactions in the blast furnace raceway zone.

Although, modifications have been proposed in literature, open questions re-
mained with there application. The modified correlations require the Damköh-
ler number calculation – hence the characteristic chemical time scale calculation.
The approximation and estimation of a characteristic chemical time scale in a
multi-reaction system is not straightforward. Therefore, different strategies to ap-
proximate the characteristic time scales have been assessed and their influence on
predictions has been compared to experimental flame results from Flame D (Bar-
low et al. 1998; Masri et al. 1996) and Adelaide Jet-in-hot-coflow, (Dally et al.
2002). The results were presented in Paper 1.

4.2 Heterogeneous reactive flows
The gas-solid reaction modeling was investigated based on the same structure as
introduced in the section 2.2. First, the general reaction modeling was investigated.
This can not be directly related to simulation details, therefore it was studied in
terms of model accuracy only. In section 2.2 it was summarized, that gas-solid
reaction models mostly describe the overall conversion process, including not only
intrinsic kinetics, but also transport effects. Therefore, the identified mechanisms
are usually tailored for specific properties, e.g. porosity and heating rate.

When modeling kinetic reactions, e.g. within CFD, the mechanism should be
related to the conditions in the actual application. Meaning, that the experiments
used to derive the kinetic mechanism should closely resemble the actual reaction
conditions in the application. This issue was extensively discussed for PCI kinetic
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identification for the blast furnace by Bösenhofer et al. (2020a) and Bösenhofer
(2020).

Of course aiming for closer representation of the actual conditions will improve
the specific models. But aiming for more generalizable models – by abstracting
the essential influential factors – can also lead to better kinetic models. Therefore,
work on improving kinetic model identification can be useful to obtain better
kinetic models which can then be used for modeling in CFD.

Therefore, improvements for model identification based on the most widely used
gas-solid reaction model (Vyazovkin et al. 2011) – the single-step approximation
– were investigated. With the single-step approximation, temperature, conversion
and distance to equilibrium are taken into account. Birkelbach (2020) has devel-
oped a mathematical methodology to compute those three effects separately, in
contrast to many other models assuming the distance to equilbrium to be negligi-
ble. However, within the experimental device, those parameters should be tightly
controlled and measured, which is often not possible. Therefore, we developed
a strategy to combine CFD – without making any modeling assumptions for the
simulation – with the kinetic model identification. Through the CFD simulation,
the deviations from set-points can be estimated and taken into account without
using any a-priori assumption on the kinetic model. This combination improves
the derived models. The methodology was presented and show-cased in Paper 3.

Models based on the single step approximation Eq. (1) are also used for coal
conversion modeling (Jess et al. 2010) or for studying blast furnace injection (Ye et
al. 2022). Therefore, this improved methodology could also be used for improved
blast furnace raceway simulations.

Lagrangian description

For the gas-solid reaction modeling using the Lagrangian solid treatment, the
computational time was only targeted by choosing the model framework. A two-
way coupling approach, grouping several particles into parcels, as discussed in
section 2.2 is the method of choice, because it offers a good balance between
computational time and level of detail.

The Lagrangian description is mostly used for modeling the reducing agents in
a blast furnace. There, diffusion and kinetic effects in the conversion play a role.
The raceway zone in a blast furnace is highly turbulent. DNS studies from Krüger
et al. 2017; Haugen et al. 2018 revealed that small particles – e.g. coal – cluster
under turbulent flow conditions in the turbulent eddies. This influences the mass
transfer to the particles, hence the diffusional contribution to the conversion.

Therefore, the question arose, if this effect might be essential when simulating
the reducing agents conversion in the blast furnace raceway zone. An investigation
on the important scales in PCI combustion Co-Author Paper B suggested,
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that the Damköhler numbers are in a range, where this effects are important.
Therefore, the model has been implemented in OpenFOAM to carry out a detailed
investigation. The results showed, that the turbulent clustering is influential in
this regime and should be taken into account. The detailed results are summarized
in the submitted publication Paper 4.

Eulerian description

For gas-solid reaction modeling within a Eulerian-Eulerian modeling framework
the modeling of the solid in densely packed regions is challenging. However, the
reaction and conversion can only be correctly modeled, if the motion is predicted
accurately. In section 2.2 we showed, that the dense bed in blast furnace models is
often modeled as Eulerian phase, when the reaction is computed. Therefore, the
general modeling of the solid phase as Eulerian phase and possible improvements
in terms of computational time and model accuracy were investigated.

For two-fluid models, the discretization and solution of the continuity equa-
tions is challenging. Rusche (2002) and Oliveira et al. (2003) discussed different
approaches to conservatively and boundedly solve the phase-averaged continuity
equations in a TFM. In OpenFOAM this is done by the algorithm called multi-
dimensional universal limiter with explicit solution (MULES). The explicit solution
brings some deficiencies, for example a small time-step requirement (Wardle et al.
2013). Therefore, a new algorithm combining an implicit and explicit solution
step for the phase-averaged continuity equations was proposed, implemented and
evaluated. The details can be found in Conference Paper III.

Besides the computational aspect, also the model accuracy of the TFM was
investigated. The usage of the KTGF to model the motion of the solid phase
was especially investigated for the blast furnace raceway by Mondal et al. (2005)
and Rangarajan et al. (2014). This work was extended by investigating the effect
of different closure models for the KTGF. The study revealed that the choice of
closure models is important for the prediction of the raceway shape. The detailed
results were communicated in Paper 2.

Furthermore, we showed that the prediction of the raceway shape significantly
affects the gas-solid reactions. Consequently also the predictions on the species
concentration profiles in the blast furnace, see Conference Paper V.
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5 Results - Summary of Publications
The research approach to target improvements for reaction modeling in CFD has
been discussed in the previous section. There, the methodology and context of
the publications contributing to the objectives of this thesis has been established.
Figure 4 contextualizes the publications based on the different reactions in the
blast furnace. In the following, a short summary and the most important results
of each paper are presented. My contribution to each publication is stated in the
second part of this thesis and the abstracts of relevant publications as co-author
are added there as well.

reducing agents conversion
Paper 4

coke conversion
Paper 2
Paper 3

Conference Paper III
Conference Paper V

gas phase reactions
Paper 1

Conference Paper I
Conference Paper II
Conference Paper IV

Figure 4: Context of the publications contributing to this thesis within the blast
furnace raceway modeling associate to the different reaction types

5.1 Homogeneous reactive flows
Conference Paper I This paper covers improvements for the EDC to reduce the
computational demand. The model is needed to model the turbulence-chemistry
interactions in turbulent unresolved simulations. It requires the solution of a set
of ODEs for the chemical reactions. To reduce the computational demand, tabula-
tion methods exis, e.g. ISAT. To apply them for the original EDC, it is necessary
to use operator splitting. Two operator splitting techniques from literature were
investigated and applied with the EDC. To evaluate their performance, the simu-
lation results were compared to experimental results from a laboratory-scale flame,
Sandia Flame D. The investigated staggered splitting scheme gave the best results
in terms of computational time and accuracy.
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Conference Paper II This paper deals with the efficient partitioning of com-
bustion simulations on multiple processors. The CFD simulation can be split up
on multiple processors to reduce the computational time. However, the speed-up
does not scale linearly with increasing processors. Therefore, it is important to
use the computational resources efficiently and partition the CFD domain most
effectively on the different processors. The existing guidelines for partitioning can
not be directly applied for reactive flows. This has been revealed and studied in
this publication by examining the partitioning of combustion simulations with the
open-source software OpenFOAM.

Conference Paper IV In this publication the usage of machine learning to speed-
up CFD simulations was presented. The demanding problem of solving the ODEs
resulting from the EDC should be reduced by substituting the solver with an ANN.
Based on previous results from literature and the results from a master thesis, a
trained ANN was used to predict the results of the ODEs, instead of solving
them numerically. The results for single-cell simulations, were accurate and very
promising. The application to flame simulation still showed some deficiencies. The
investigations in this paper showed future directions for our work in this field.

Paper 1 In this paper the determination of characteristic chemical time scales for
combustion simulations was targeted. To use extended EDC models, which employ
relationships depending on dimensionless numbers a good estimate of those dimen-
sionless numbers in each computational cell is needed. Especially the Damköhler
number is needed to characterize the relation between mixing and kinetics in the
system. Therefore, the characteristic chemical time scale is needed to describe
the system. Since the formulation of a single characteristic chemical time scale is
not straightforward in a reaction system, different approaches to approximate this
characteristic chemical time scale were analyzed in this paper. Those time scales
were analyzed based on a simple test problem and flame simulations. The results
show, which of those are capable to correctly characterize the system and are easy
enough to not slow down the simulation significantly.

5.2 Heterogeneous reactive flows
Paper 3 This paper covers improved model identification for gas-solid reactions
based on the single-step approximation. Deficiencies in existing kinetic experi-
ments are shown and their influence on the model identification are discussed.
The implementation of a CFD framework, which does not need any kinetic model
to simulate the experimental conditions in the device enables the estimation of the
reaction conditions. These details can be used to derive enhanced kinetic models
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with the TensorNPK method. The application was showcased with the example
of a CuO/Cu2O reaction system.

Lagrangian description

Paper 4 The effect of clustering on small particles under blast furnace conditions
was analyzed in this paper. A turbulent clustering model which depicts the reduc-
tion of mass transfer to small particles and consequently the effect on conversion
was implemented and test. For the pulverized coal conversion under blast furnace
conditions a reduction of the conversion rate was observed. The results revealed
that the effects are important under blast furnace conditions. Furthermore, it was
shown, that a global a-priori estimation of the turbulence effect is difficult. To
capture does clustering effects, the model should be taken into account in raceway
simulations.

Eulerian description

Conference Paper III In this paper a novel algorithm to solve the phase-averaged
continuity equations in a two-fluid model was presented. A novel algorithm, which
combines an implicit solution step with (an) explicit corrector step(s) was pro-
posed. The details of the implementation in OpenFOAM were discussed and the
differences to the current – explicit – approach. The performance was tested on
different test cases, showing its accurate predictions and its improvement for larger
time steps, which can additionally lead to faster simulations.

Paper 2 This paper targets the modeling of solid flows in the blast furnace
raceway. For this densely packed bed, the KTGF can be used to model the solid
motion. Different closure models are assessed – one accounting for interstitial fluid
effects and one not accounting for them. The comparison with experiments, DEM
simulations and another established TFM code showed, that the incorporation of
interstitial fluid effects in the closure models is essential to predict the raceway
shape in a blast furnace raceway.

Conference Paper V This paper uses the results of the closure model inves-
tigation for the raceway formation and extends it to simulations including coke
reactions. A lab-scale raceway was simulated and compared to detailed measure-
ment of the species concentration from literature. This showed, that the correct
prediction of the raceway shape significantly influences the species concentration
profiles.
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6 Conclusions and Outlook
The obstacles when applying computational fluid dynamics (CFD) to chemical
engineering problems, are on the one hand high computational demand and on the
other hand insufficient model accuracy. Based on the blast furnace raceway zone
current reaction modeling techniques in CFD were reviewed and suitable modeling
techniques were analyzed with respect to these two objectives. The analysis of the
modeling strategies for gas phase and gas-solid reactions – both occurring in the
blast furnace – revealed deficiencies and lead to the work presented in this thesis.

For gas phase reactions the eddy dissipation concept (EDC) was investigated,
which is a suitable model for Reynolds-averaged Navier-Stokes (RANS) simula-
tions. The main share of computational cost is the solution of the ordinary
differential equation (ODE) system. Improvements through operator splitting,
tabulation, and efficient partitioning were analyzed and the best performing ap-
proaches were presented in conference publications. They can now be applied in
the blast furnace modeling framework and enable a faster solution of the EDC.
Further, investigations to substitute the ODE solver with an artificial neural net-
work (ANN) showed promising results and open an interesting topic for further
research. In terms of modeling accuracy, the applicability of an extended EDC for
low Damköhler number regimes is now ensured through appropriate chemical time
scale approximations. This is necessary, because low Damköhler regimes exist in
the blast furnace, where the standard EDC has deficiencies in the predictions.

The presented improved kinetic identification methodology enables enhanced
reaction mechanism extraction from experiments. Thereby the identification of
kinetic models for gas-solid reactions is improved. The method overcomes some of
the deficiencies resulting from set-point deviations in experiments through exother-
mic reactions and reactant depletion. The identified enhanced mechanism can be
applied in CFD, where one-step approximations are appropriate. However, not
only the intrinsic kinetics are relevant in modeling gas-solid reactions with RANS,
but also the turbulence effects the mass transport and consequently the overall
conversion of small (Lagrangian) solid particles. The importance of this effect for
the blast furnace was shown in this thesis and a suitable model incorporating those
effects was implemented. This permits the consideration of turbulent clustering
effects in the conversion of small particles in the blast furnace, or other devices
featuring the thermo-chemical conversion of small particles.

Densely packed solids –like coke in the blast furnace – are usually modeled as
Eulerian phase. A solution algorithm for Eulerian phases was implemented to
improve the accuracy and speed-up the simulations. The algorithm can be applied
in blast furnace simulations with a dynamic raceway, or to other two-fluid model
(TFM) simulations. Furthermore, the closure models for the coke motion were
evaluated to find a suitable model, which predicts the raceway shape correctly.
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Thereby, the accuracy of species predictions in the raceway zone is improved.
These developments improve estimations in the blast furnace raceway zone and

permit the a-priori testing of alternative reducing agents. An accurate estima-
tion of the raceway shape, temperature levels and reactions is essential to predict
the applicability of different reducing agents and estimate the possible coke sub-
stitution rates. This enables a reduction of the CO2 emissions and supports the
transition to a carbon neutral steel production.

The general applicability of the models was always considered during the method
development. Therefore, beside the benefits in the steel production, the methods
can be utilized for other chemical engineering applications. As an example, the
modified EDC enables improved predictions for all low Damköhler number regimes,
e.g. for moderate or intense low oxygen dilution (MILD) combustion. Further,
the algorithmic improvement for the TFM can be used to improve fluidized bed
predictions of any kind, if modeled in the Eulerian-Eulerian framework.

To conclude, several improvements in terms of computational time and modeling
accuracy have been suggested, successfully implemented and tested in the course
of this thesis. Naturally, the presented developments have resolved only some
challenges for reaction modeling in CFD, and there is still room for further research.
The incorporation of the iron reduction in the blast furnace raceway model –
possibly as further Eulerian phase – requires suitable coupling strategies, and is
hindered by the increased computational time. Another point, is the conversion
modeling of reducing agents: the approximation of uniform temperature particles
leads to errors for larger reducing agents and should be taken into account in those
cases.

A general future perspective is the utilization of CFD models including reactions
for process control or the coupling with flow sheeting methodologies. To achieve
such on-line simulations, additional speed-up will be necessary.

With respect to the steel production on the way to reach the climate goals,
intermediately, reduced emissions in blast furnaces are necessary, followed by their
substitution through net-zero-emission technologies. A possible technology could
be the direct reduction of iron ores with hydrogen. The developed method for the
EDC to model gas phase reactions or the model for turbulence effects on gas-solid
conversion can enhance the advancement of this technology.

To conclude, there are definitely interesting times ahead and I hope the work
presented here, can help to enforce the transition to a sustainable industry.
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ABSTRACT
The chemical time scale can be used to characterize a reactive system
(’s behavior). In addition, various dimensionless numbers (e.g.
Damköhler number) rely on a characteristic chemical time scale.
The inverse eigenvalues of a system are regarded as the system’s
time scales. This means, the number of time scales is equal the
numbers of eigenvalues. A formulation for a single characteristic
time scale is required for the system characterization and to calculate
dimensionless numbers. Recently proposed modifications of the Eddy
Dissipation Concept (a turbulence-chemistry interaction model) also
incorporate the Damköhler number in their formulation. Besides
accuracy, the numerical efficiency is important, since the chemical
time scale needs to be computed in each cell at every time step. We
present different chemical time scale definitions found in literature,
evaluate them on simple test problems and use them for flame
simulations in conjunction with the modified Eddy Dissipation
Concept. For the simple test case, most formulations give satisfactory
results. The complexity of the chemical reaction mechanism greatly
impacts the calculated time scale values. Therefore, we suggest to
use a simple global mechanism for the calculation of chemical time
scales to ensure reproducibility and consistency of the results.
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Introduction

Time scales characterize a system and its behavior. Many dimensionless numbers (e.g.
Damköhler, Karlovitz, Stokes number) incorporate time scales and are reported to
describe a system(’s behavior) or are used to design scale-up of plants. Many engineering
processes incorporate reactive flows. In these cases, it is of particular interest to char-
acterize those flows with time scales.

For reactive flows, the flow itself as well as the reaction determines the overall
characteristics. The issue with reaction systems is that their chemical time scale is not
inherently defined. Many different time scale definitions or time scale approximations
exist in literature. Especially for the calculation of dimensionless numbers a characteristic
and representative time scale of the system is needed.

Computational Fluid Dynamics (CFD) can provide detailed information of flows, to
determine, for example, flow time scales. But time scale definitions are also used to
develop and tailor CFD models. For example, the Eddy Dissipation Concept (EDC) is
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widely used for the simulation of reactive flows. A recent proposition for its modification
incorporates the Damköhler number. This poses the need for a numerically efficient
chemical time scale definition to calculate the Damköhler number and apply the suggested
modifications in CFD.

Therefore, we discuss the theoretical background of chemical time scales and test
proposed definitions for a characteristic chemical time scale, possibly suitable for the
application to CFD. These are discussed and applied to simplified test cases, where they
can be compared to an analytical solution.

Furthermore, we apply the most suitable chemical time scale formulations to simula-
tions using the modified Eddy Dissipation Concepts and compare them to available flame
measurement data. This investigates the practical applicability of the formulations.

Chemical time scales of a system

A chemical reaction system can be described by the following set of Ordinary Differential
Equations (ODEs):

dY
dt

¼ _ω with Y 0ð Þ ¼ Y0 (1)

where Y denotes the mass fractions of species and _ω denotes the net production/
consumption rates. If the system is disturbed with a small perturbation in its initial
value (Equation (2)), the change of the ODE can be approximated by the Jacobian J
multiplied by ΔY (Equation (3)), see (Nagy and Turànyi 2009; Tomlin, Whitehouse,
Pilling 2002).

Y 0ð Þ ¼ Y0 þ ΔY0 (2)

dΔY
dt

¼ JΔt (3)

The Jacobian matrix is defined in the following way and assumed to be independent of
time for sufficiently small time intervals:

J ¼ @ _ω

@Y
(4)

Therefore, the time evolution of perturbations of the system is assumed to depend on
the eigenvalues of the Jacobian, which consequently represent the characteristic time
scales of the system. For a more thorough discussion of the connection between time
scales and eigenvalues we refer to (Nagy and Turànyi 2009; Tomlin et al. 2002).

For complex reaction mechanisms this leads to large Jacobian matrices and a time scale
for each species. These time scales describe the chemical system. In the next section we
present formulations to derive one characteristic time scale for chemical reaction systems,
which is necessary for the calculation of dimensionless numbers.
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Characteristic chemical time scale definitions

Different definitions of the characteristic chemical time scale have been proposed in literature
(Caudal et al. 2013; Evans et al. 2019; Golovitchev and Chomiak 2001; Golovitchev and
Nordin 2001; Isaac et al. 2013; Lam and Goussis 1991; Li et al. 2017; Løvås et al. 2002;
Prüfert et al. 2014; Ren and Goldin 2011). Some of them were derived for the purpose of
mechanism reduction and are based on the separation of the chemical system into a slow and
a fast reacting subspace to identify the dominating system time scales. Others are based on
eigenvalue approximations or simple ones only incorporate the reaction rates.

The main objective for the in-situ application to CFD is to obtain a characteristic
chemical time scale which describes the chemical system with sufficient accuracy. The
complexity of existing definitions varies greatly from simple algebraic expressions to
complex eigenvalue problems or principle component analysis (PCA) (Isaac 2014;
Parente et al. 2011). Some of them, for example computational singular perturbation
(Lam and Goussis 1991) or intrinsic-low dimensional manifold (Glassmaker 1999), have
also been developed for a different purpose and have only been recently adapted to
determine a characteristic time scale.

The existing expressions for chemical time scale characterization can be divided into
algebraic and eigenvalue based definitions. Typically the algebraic expressions employ
combinations of species concentrations, chemical reaction rates and/or species consump-
tion/destruction rates. Eigenvalue based formulations require the calculation or approx-
imation of the Jacobian matrix and its decomposition.

Within this wide variety of definitions, the eigenvalue based, for example the CSP
theory, have a solid theoretical foundation, while others try to approximate the character-
istic scales of the system. The aim of this study is to identify sufficiently accurate, but
numerically efficient, characteristic chemical time scale definitions, which can be applied
within CFD. Therefore, selected time scale approximations suitable for in-situ determina-
tion from literature are discussed in the following sections. They are compared to an
analytical solution of a simple reaction system and are employed within simulations of
a “classical” turbulent and a moderate or intense low oxygen dilution (MILD) combustion
flame.

Inverse Reaction Rate Time Scale (IRRTS)

The probably simplest time scale definition is the reciprocal of the chemical reaction rate (kr):

τIRRTS ¼ min
r2NR

1
krj j

� �
(5)

where NR is the number of reactions.
For a global single-step reaction this definition is a good choice, since the chemical time

scale is unambiguously defined. However, for more complex mechanisms, as many time
scales as reactions exist. In this case, the fastest reaction is assumed to dominate the
system, thus, defining the characteristic time scale. A drawback of this approach is that all
reactions are considered equally important, although some might be of minor importance
due to insignificant educt and/or product concentrations.
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Ren Time Scale (RTS)

Ren and Goldin (2011) proposed the minimum ratio of the fuel species mass fraction (Yi)
and the corresponding species consumption rates ( _ωi) as time scale (Equation (6)). Instead
of defining a user-defined set of fuel species, in this work all species with a negative net
production rate are taken into account. Additionally, Ren and Goldin (2011) introduced
an empirical constant Ce to adapt the time scale. Since the numerical value of Ce was not
defined, it is set to unity in this work. However, this definition also assumes that the fastest
time scale is the dominant one.

τRTS ¼ Ce min
i2Ns
_ωi < 0

Yi

_ωi

� �
(6)

Ren Product Time Scale (RPTS)

In analogy to RTS, (section 3.2) the Ren Product Time Scale (RPTS) is defined for the
product species (Equation (7)). This means all species with a positive net production rate
are considered.

τRPTS ¼ Ce min
i2Ns
_ωi > 0

Yi

_ωi

� �
(7)

OpenFOAM Time Scale (OFTS)

Golovitchev and Nordin (2001) defined the chemical time scale as the ratio of the total
species concentration ctot and the sum of the production rate kf ;r times the stoichiometric
coefficient ν of the product species Ns;RHS. For mechanisms consisting of more than one
reaction nR, the ratios of all reactions are summed up, as follows (Li et al. 2018):

τOFTS ¼
XnR

r¼1

ctotPNs;RHS

n¼1 νn;rkf ;r

(8)

Evans Time Scale (ETS)

Evans et al. (2019) suggests to use the major species Nmaj (for example CH4, H2, O2, CO
and CO2) for the time scale definition shown in Equation (9). To avoid using non-reacting
species for the calculation, species with a reaction rate _ωi < 10�16 are neglected.

τETS ¼ max
i2Nmaj

Yi

_ωij j=ρ
� �

(9)

Inverse Jacobian Time Scale (IJTS)

The inverse Jacobian time scale requires the numerically expensive calculation of the
species rate Jacobian (Equation (4)). Since most chemistry solvers need the Jacobian
anyway, the increased numerical effort is negligible. Prüfert et al. (2014) and Caudal
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et al. (2013) interpreted the diagonal elements of the Jacobian as approximation of the
system’s eigenvalues. For diagonal dominant matrices this approximation is valid, see
Gerschgorin’s circle theorem (Gerschgorin 1931). However, if the off-diagonal elements
are relevant, this approximation can give bad results, since oscillating behavior indicated
by complex eigenvalues is not covered. Further information on the quality of the eigen-
value approximation by the Jacobian diagonal can be found elsewhere, e.g. (Prüfert et al.
2014).

One way to get the characteristic time scale is to assume that the inverse of the smallest
absolute diagonal element is the dominating time scale (Equation (10)). However, this
approach does not check the significance of the individual time scales.

τIJTS ¼ min
1
J ii

� �
(10)

Prüfert et al. (2014) defined a relevant sub set of time scales (i 2 I) by comparing the sub
set reaction rate _ωei and the total absolute rate _ω (Equation (11)), where ei is the ith

canonical basis vector. X
i2I

_ωei

 !
� _ω

�����
�����< � (11)

The smallest sub set time scale is then assumed to be the characteristic system time scale.

System Progress Time Scale (SPTS)

Prüfert et al. (2014) also defined a chemical time scale based on the inverse norm of the
Jacobian matrix multiplied by a weighting factor. The normalized species consumption
rates are employed as weighting factor:

τSPTS ¼ J
_ω t0ð Þ
_ω t0ð Þk k

���� ����� ��1

(12)

The SPTS represents the time evolution of the whole system, because τSPTS approximates

Jj jj j�1. Using the von Mises iteration it can be shown that τ�2 converges toward Jj jj j2
(Prüfert et al. 2014). This method incorporates the significance of the different reactions
by considering their contribution to the overall progress.

Inverse Eigenvalue Time Scale (IETS)

The simplest eigenvalue based time scale is the Inverse Eigenvalue Time Scale (IETS),
which assumes that the largest eigenvalue (λi) defines the characteristic chemical time
scale:

τIETS ¼ min
i2Ns

1
λij j

� �
(13)
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This formulation is also described in (Prüfert et al. 2014) and parts of the derivation are
shown in (Caudal et al. 2013; Løvås et al. 2002).

Eigenvalue Time Scale (EVTS)

The Eigenvalue Time Scale (EVTS), also called characteristic time scale identification (CTS-
ID) in (Caudal et al. 2013), is based on a complex-to-real transformation of the, in general,
complex conjugate eigenvalues and eigenvectors. A transformed matrix ~V is constructed as:

~V ¼

L1

. .
.

LNr

LNrþ1

. .
.

LNs�1

0BBBBBBBB@

1CCCCCCCCA
(14)

with L1 to LNr being the sorted real eigenvalues and LNrþ1 to LNs�1 being 2 � 2 block matrices:

Li ¼ Re λið Þ Im λið Þ
�Im λið Þ Re λið Þ

� �
(15)

This matrix describes a transformed system. Then, the system time scales are defined as:

τi ¼ 1
λi

(16)

for the real eigenvalues and

τ2i�1þNr ¼
1

Re λ2i�1þNrð Þj j τ2iþNr ¼
1

Im λ2i�1þNrð Þj j (17)

for imaginary eigenvalues. To obtain the important time scales, an importance criterion γi
is defined for all species Ns in Equation (18) using the definition in Equation (20). In
Equation (18), the transformed vectors bi are used, which originate from the eigenvectors

of the original system ~bi. The vectors corresponding to the real eigenvalues (i ¼ 1:::Nr) are
equal to the original eigenvectors. The ones corresponding to complex eigenvectors
(i ¼ Nr þ 1:::Ns � 1) are defined in Equation (19).

γi ¼
aibik k

maxk2Ns akbkk k (18)

b2i�1þNr ¼ Re ~b2i�1þNr

� �
b2iþNr ¼ Im ~b2i�1þNr

� �
(19)

a ¼ ~V�1 _ω (20)
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Using the importance criterion γi, all time scales greater than a threshold value � are
considered to be important. The characteristic chemical time scale of the system is then
the smallest of the remaining (important) time scales.

Simple test cases

Single-step reaction

The chemical time scale definitions from section 3 are tested on a simple one-step carbon
monoxide (CO) oxidation reaction:

2CO þ O2 � > 2CO2 (21)

According to Westbrook and Dryer (1981) the reaction is reversible; the forward rate (kf )
depends on the CO, H2O, and O2 concentrations (Equation (22)) while the reverse
reaction rate (kr) is a function of the CO2 concentration (Equation (23)). (Units are cm/
s/mol/K)

kf ¼ 3:98 � 1014e�
20129

T|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
k

CO½ � H2O½ �0:5 O2½ �0:25 (22)

kr ¼ 5:0 � 108e�
20129

T CO2½ � (23)

The reverse reaction rate is neglected for this test case. Further simplifying the rate
dependency by removing H2O, a 3 � 3 matrix is obtained for calculating the eigenvalues
of the reaction system:

det J � λð Þ ¼
�2k O2½ �0:25 � λ1 �0:25k CO½ � O2½ ��0:75 0

�2k O2½ �0:25 �0:25k CO½ � O2½ ��0:75 � λ2 0
2k O2½ �0:25 0:25k CO½ � O2½ ��0:75 �λ3

0@ 1A












 (24)

The eigenvalues of this matrix can be easily calculated analytically. Only one none zero
eigenvalue exists:

λ1 ¼ �k O2½ �0:25 � 0:25k CO½ � O2½ ��0:75 (25)

This analytic eigenvalue solution and the resulting chemical time scale is compared to the
previously discussed time scale definitions. The conversion of a stoichiometric CO and O2

mixture at 1500 K and 1 bar is modeled in a plug flow reactor (PFR) with Cantera
(Goodwin, Moffat, Speth 2017). Chemical time scales were calculated at each output time
step using a threshold value of � ¼ 0:00001 where necessary. Figure 1 shows the species
concentration and the species consumption profiles versus time. Obviously, under these
conditions, the CO oxidation is a fast reaction reaching full conversion after around 10�7

seconds.
Figure 2 shows the corresponding time scales during the conversion. At the beginning,

the different definitions span a range between 10�8 and 10�7 seconds, except for RTS.
After around 10�8 second reaction time, different expressions form two groups: one giving
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a steep decrease in chemical time scales reaching values of more than 10�3 seconds, while
the other reaches values around 10�6 seconds, only RTS and RPTS can not clearly be
added to those groups. The analytic eigenvalue time scale is part of the latter group. The
time scale definitions predicting higher values are the IRRTS, ETS, OFTS and IJTS. One
might conclude that the system possesses two distinct time scales. However, since only
a single reaction is considered, there should be a clearly defined system time scale.
Therefore, the deviations between these two groups can be considered inherent to their
definition. A different interpretation could be that the first group represents the current
characteristic system velocity, since the time scales increase at a similar rate as the species

Figure 1. Species concentration (top) and species rates (bottom) for the simplified, one-step three
species carbon monoxide oxidation.
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Figure 2. Chemical time scales for the simplified, one-step three species carbon monoxide oxidation.
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consumption and production rates (compare Figs. 1 and 2). Contrary, the second group
might represent the ability to react on perturbations, meaning that the chemical system
compensates disturbances quickly at high temperatures.

Comprehensive reaction mechanism

Comprehensive reaction mechanisms consist of multiple reactions and complex reaction rate
dependencies of concentrations and pressure, e.g. Three-Body reactions, SRI, TROE or TSA
fall-off (Gilbert et al. 1983; Lindemann et al. 1922; Stewart et al. 1989; Troe 1983; Tsang and
Herron 1991). Thus, the calculation of chemical time scales, the Jacobian and eigenvalues
becomes numerically more expensive than for an one-step reaction mechanism.
Furthermore, identifying the relevant time scales is essential to obtain the characteristic
ones. The same initial conditions are employed in combination with the well-known
methane combustion mechanism GRI 3.0 (Smith et al. 2018). Figure 3 shows species
concentration and species consumption/production rates for the involved main species (CO,
CO2, H2O, O2) and radical species (H, O, OH). The CO oxidation process takes longer when
employing the detailed mechanism (10�3 compared to 10�7 seconds). This is caused by an
incubation time necessary for the formation of a radical pool which enables the overall
oxidation reaction. In this test case, water vapor acts as a reaction promoter, since it forms
the radical pool by dissociation. This is clearly visible in the species and consumption rate
profiles. However, Figure 4 shows, that not all chemical time scale definitions depict these
incubation effects. The IRRTS, ETS and OFTS clearly feature a time scale decrease followed
by an increase due to the reaction progress. The SPTS definition indicates a slight decrease,
while the IJTS, and IETS predict almost constant chemical time scales around 10�8 seconds.
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Figure 3. Species concentration (top) and species rates (bottom) for the carbon monoxide oxidation
according to the GRI3.0 mechanism (Smith et al. 2018).
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The RTS and RPTS definitions have quite strong fluctuations, caused by the fast changing net
production and consumption rates of some radical species.

Methods for computational fluid dynamics

A characteristic chemical time scale can also be necessary for CFD models. Recently,
adaptations of the EDC have been proposed, which need a characteristic chemical time
scale (Bao 2017; Parente et al. 2016). Therefore, the EDC is described shortly in the next
section and its modifications are discussed.

Eddy dissipation concept

The physical foundation of the EDC is the assumption that educts react only in the fine
structures (denoted by � ), since they are mixed on a molecular level there (Magnussen
1981). Based on the turbulent energy cascade, the fine structure length scale γL and the
fine structure mass fraction γ� can be calculated (Equation (26)) using the molecular
viscosity ν, the dissipation rate �, the turbulent kinetic energy k and a constant Cγ.

γL ¼ Cγ
�ν

k2

� �1=4
¼ γ�ð Þ 1=3ð Þ (26)

The mass transfer rate between the fine structures and the surrounding divided by the
fine-structure mass is also calculated based on �, ν and a constant Cτ , which was derived
from the turbulence energy cascade (Ertesvåg and Magnussen 1999):

_m� ¼ 1
Cτ

�

ν

� �1=2
¼ 1

τ�
(27)
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Figure 4. Chemical time scales for the carbon monoxide oxidation based on the GRI3.0 mechanism.
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The mass transfer rate per unit volume of species i in the mean cell is calculated based on
the introduced quantities, the concentrations of species i in the fine structures Y�

i and the
mean cell �Yi, and the reacting fraction χ (Equation (28)). This formulation is an adapta-
tion of the original version by (Gran and Magnussen 1996). The different versions of the
EDC and their development over time can be reviewed for example in (Bösenhofer et al.
2018; Ertesvåg 2019).

�Ri ¼ �ρ _m�γ2
Lχ

1 � γ3
Lχ

�Y i � Y�
i

� �
(28)

The reacting fraction χ is often set to unity (Gran and Magnussen 1996). Although this
practice recently lead to some discussion (Ertesvåg 2019; Lewandowski et al. 2017), we
follow this suggestion in our calculations.

The general relation for a quantity Ψ in the fine structures ( � ), surroundings ( � ) and
mean cell values (�) is given as:

�Ψ ¼ γ�χΨ� þ ð1 � γ�χÞΨ� (29)

A perfectly stirred reactor model can describe the actual reaction in the fine structures.
The change in species concentration depends on the reaction term _ωi and the mixing
term 1

τ� Y�
i � Y�

i

� �
:

dYi

dt
¼ _ωi þ 1

τ�
Y�

i � Y�
i

� �
(30)

This leads to a set of ordinary differential equations with as many equations as number of
species in the employed reaction mechanism, which has to be solved to steady-state. This
system can become computationally very expensive to solve. Therefore, many CFD codes
simplify the model to a plug flow reactor model, e.g. in Ansys Fluent (Ansys-Inc., n.d.) or
OpenFoam® (Weller et al. 1998), by dropping the second term on the right-hand side in
Equation (30). The plug-flow reactor simplification is also used within this work.

Parente’s formulation
MILD combustion has been under investigation to reduce emissions in combustion devices.
The reaction zone in MILD combustion is more distributed (Cavaliere and de Joannon 2004)
and differs from the “classical” turbulent combustion, which was the basis of original EDC
(Magnussen 1981) and the turbulent energy cascade model (Ertesvåg and Magnussen 1999).
Many authors suggested to modify the constants Cγ and Cτ when simulating MILD combus-
tion conditions, for example (De et al. 2011; Evans et al. 2015; Farokhi and Birouk 2016;
Rehm et al. 2009). Parente et al. (2016) proposed, that for thickened and distributed flame
structures in MILD combustion regimes, the speed of the fine structures u� could be
approximated by the turbulent flame speed Sturb. Furthermore, the length scale of the fine
structures L� can be related to the laminar flame speed SL. Those assumptions are used for
the derivation of EDC constants and yield relations depending on the turbulent Damköhler
(Equation (33)) and Reynolds number (Equation (34)):
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Cτ / 1

Daη
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Returb þ 1

p (31)

Cγ / Daη
� �1

2 Returb þ 1ð Þ1
2 (32)

Daη ¼
τη

τchem
(33)

Returb ¼ k2

ν�
(34)

τη ¼
ffiffiffi
ν

�

r
(35)

The relations were further developed by the authors (Evans et al. 2019), introducing the
factor 1=2 in Equation 31 and 2=3ð Þ1=2 in Equation 32. The formulation of Cτ is then
equal to Bao’s formulation in the next section, therefore, the original modification was
used in this study.

Bao’s formulation
Bao (2017) used a similar approach as Parente to derive relationships for the EDC
constants. The main difference is, that he derived a quantitative formulation by eliminat-
ing the laminar flame speed:

Cτ ¼ 1
2

1

Daη
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Returb þ 1

p (36)

Cγ ¼ Daη
� �3

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

Returb þ 1ð Þ
r

(37)

Limits of the modified model constants

The model constants Cγ and Cτ are calculated based on the relations given by Bao and
Parente, but are limited to their original values, as suggested by both. Therefore, the
maximum of Cγ is its original value of 2.13 and the minimum of Cτ is 0.4082. To avoid
unreasonable small or large values of Cγ and Cτ and to ensure stability of the simulations
also the Damköhler number was limited between 0.01 and 1000.

Figure 5 shows the model constants depending on the turbulent Reynolds number and
the Damköhler number. The upper limit of the Damköhler number has virtually no effect
on the model constants since they are always in the limit of the classical constant values in
this range.
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Numerical eigenvalue and eigenvector computation

For the chemical time scale definitions IETS and EVTS (see sections 3.8 and 3.9) the
eigenvalues, and for EVTS also the eigenvectors, for a real nonsymmetric matrix have to
be computed. The Jacobian matrix of the reaction system is in general neither sparse nor
symmetric. The numerical calculation is usually done by first transforming the matrix into
Hessenberg form and applying the eigenvalue search to this simplified matrix. The
transformation can be conducted by a sequence of Householder transformations or by
an elimination method analogous to Gaussian elimination with pivoting. Algorithmic
details are presented in (Press et al. 2007; Wilkinson and Reinsch 1971). This algorithm
needs approximately 5 N3=3ð Þ operations (Press et al. 2007).

For the application in conjunction with the EDC, these operations need to be con-
ducted at each time step and in each cell of the computational grid. This leads to long
computational times which hinder practical applications of those eigenvalue based time
scale formulations. Therefore, the IETS and EVTS will not be used in the flame simula-
tions. Furthermore, the simple test cases showed that also simpler formulations approx-
imate the analytically calculated chemical time scale well, section 4.1 and 4.2.

Numerical characterization of flame D

Sandia Flame D, a turbulent jet flame, is used to compare the time scales. Barlow and
Frank (1998), Masri et al. (1996) provided detailed measurement data for this flame.

Although the modifications of the EDC, section 5.1, were suggested to improve the
predictions for MILD combustion, they are also tested for the “classical” turbulent
combustion regime to ensure their generality. As section 5.2 shows, for high turbulent
Reynolds numbers and high Damköhler numbers the EDC model constants fall into the
limit of the original EDC (Magnussen 2005).

The Flame was simulated in OpenFoam-6.x with an in-house code extension, based on
the reactingFoam solver. The solver was modified to use the EDC-models from Parente
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Figure 5. EDC Constants depending on Returb and Damköhler number Daη; Daη is ranging from 0.01
(lightest color) to 1 (darkest color) and plots are logarithmically spaced between.
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and Bao. A wedge of the flame is simulated consisting of 5 170 cells. The k � � turbulence
model (Jones and Launder 1972; Launder and Spalding 1974) was used with its original
constants (Tannehill et al. 1984).

The suggested time scale formulations were tested with both, Parente’s and Bao’s
EDC modification. The flame was simulated with the global Jones-Lindstedt mechan-
ism (Jones and Lindstedt 1988) (see Table 1) and the detailed GRI-3.0 mechanism
(Smith et al. 2018). This was done to study the effects of the difference in chemical
time scale prediction on the flame simulation, because we saw already in the simplified
test cases in section 4 that we get different results using a single-step and
a comprehensive reaction mechanism.

Results using Jones-Lindstedt mechanism

The simulations using the time scale formulations IJTS, IRRTS and ETS failed to ignite the
flame. The calculated characteristic chemical time scales were large and therefore, the
Damköhler number was at the limit of Da = 0.01, which leads to low Cγ and high Cτ

values. This usually happens in MILD combustion and depicts a thickening of the flame
front, (Parente et al. 2016), but is not known to occur in “classical” turbulent flames.

The simulations with the other time scale formulations (SPTS, RTS, RPTS and OFTS)
gave results in line with the experimental data, see Figure 6. The results were also
compared with the original EDC formulation. The original EDC results are not shown
to avoid overlaps. They are very close to the modified ones.

Figure 7 shows the characteristic chemical time scales for the simulation domain.
The profiles show a qualitative agreement of the different definitions. Only the RPTS
method gives a time scale decrease in the flame zone. This is probably caused by
a scarcity of product species/produced species in this region. The differences in the
absolute values can be more clearly seen in Figure 8 and in the deviations of the
Damköhler number.

Figure 8 shows selected profiles of the characteristic chemical time scale and the
Damköhler number. In some regions, especially outside the reaction zone, the Damköhler
number is also at the lower limit with these time scale definitions. Low Damköhler values
occur within the reaction zone for some time scale definitions. OFTS and RPTS even give
Damköhler numbers below unity in this region. However, Figure 5 shows, that Cτ and Cγ

might reach their original values even with these low Damköhler numbers, when the
turbulent Reynolds number is sufficiently large.

Table 1. Methane combustion mechanism from Jones and Lindstedt (1988). Units in cm, s,
cal and mol.
reactions A β Ea reaction orders

CH4 + 0.5 O2 → CO + 2 H2 7:820e13 0 30e3 ½CH4�0:5½O2�1:25
CH4 + H2O → CO + 3 H2 0:300e12 0 30e3 ½CH4�½H2O�
H2 + 0.5 O2 ↔ H2O 1:209e18 −1 40e3 ½H2�0:25½O2�1:5
CO + H2O ↔ CO2 + H2 0:275e13 0 20e3 ½CO�½H2O�
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Results using GRI-3.0 mechanism

The OFTS, the IJTS, the IRRTS and ETS failed to ignite the flame also using the GRI-3.0
mechanism. Similar to the Jones and Lindstedt calculations (section 6.1) the Damköhler
number was at its lower limit using those formulations.

Figure 9 shows the chemical time scales calculated with the methods SPTS, RTS and RPTS.
The left half shows the simulation with Bao’s formulation and the right half with Parente’s.

The SPTS method gives lower chemical time scales in the reaction zone, whereas the other two
methods give higher chemical time scale values in the reaction zone. This might seem unreason-
able, since the reactions proceed faster in the reaction zone and, therefore, τchem should be lower
than in the area surrounding the flame. It can be argued, that the characteristic chemical time scale
can not be estimated properly outside the reaction zone because the reaction rate is close to zero.
Therefore, τchem takes default values in these regions, which do not correspond to the state of the
chemical system. In the actual “flame region”, the SPTS method gives the lowest values inside the

Bao: SPTS RTS RPTS OFTS
Parente: SPTS RTS RPTS OFTS
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Figure 6. Temperature and CO2 concentration profiles at the centerline of Flame D calculated using the
Jones-Lindstedt mechanism.
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Figure 7. Characteristic chemical time scale in Flame D calculated with different methods using the
Jones-Lindstedt mechanism. Upper half: Bao’s formulation, lower half: Parente’s formulation.
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flame andhigher values at theflame fronts, where oxidizer andmethanemix. For theRTSmethod,
τchem is slower at theflame front, while theRPTSmethod gives low values in this region. The trends
of SPTS and RTS are similar in the flame and at the flame fronts.

Figure 10 and Figure 11 underline these observations for certain radial and axial profiles. It has
to be noted, that the SPTSmethod gives time scale values orders ofmagnitudes lower than theRTS
and RPTS method. Therefore, SPTS is shown on the right axis.

In general, the time scale definitions SPTS, RTS and RPTS run into the limits for the
original EDC values Cγ and Cτ with the complex reaction mechanism.

Comparison of the mechanisms

The difference between the formulation of Bao and Parente, section 5.1.1 and 5.1.2, are
negligible compared to the differences induced by the different time scale formulations.

The IJTS, IRRTS and ETS methods modified the EDC constants in a way, that Flame D did
not ignite in the simulation. The same holds true for the OFTS method in conjunction with
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Parente: RPTS RTS SPTS OFTS
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Figure 8. Profiles of the characteristic chemical time scale and the Damköhler number for Flame
D simulated with the Jones-Lindstedt mechanism at different axial location.
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(a) SPTS (b) RTS (c) RPTS

Figure 9. Characteristic chemical time scale in Flame D calculated with different methods (SPTS, RTS,
RPTS). Left: Bao’s formulation, Right: Parente’s formulation.
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Figure 10. Profiles of the characteristic chemical time scale for Flame D simulated with GRI-3.0 at
different radial and axial location(s). τchem calculated by the SPTS method is shown on the right axis in
all the diagrams.
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the GRI-3.0 reaction mechanism. These time scale formulations should not be used in
conjunction with the modified EDC, especially not for “classical” turbulent flames.

When comparing the definitions, which showed good results for Flame D, namely
SPTS, RTS and RPTS, it has to be noted that they are strongly influenced by the reaction
mechanism. Especially RTS and RPTS show different trends for the overall flame.

Numerical characterization of AJHC

To test the suggested EDC modifications for MILD conditions the Adelaide Jet in Hot Coflow
(AJHC) Burner was chosen. It is a laboratory-scale burner, using methane and hydrogen. Dally,
Karpetis, and Barlow (2002) published extensive measurement data of the flame, with different
levels of oxygen in the coflow (3, 6 and 9%). The cases are named HM1, HM2 and HM3. For this
study HM1 was simulated as a wedge with 19 500 cells using the k-� turbulence model with its
original constants.

Compared to the Flame D simulations, a slightly different solver was used here to also
account for differential diffusion effects. Christo and Dally (2005) showed that they play
an essential role in MILD combustion simulations.

As for the classical combustion test case we employed two different reaction mechan-
isms, the Jones-Lindstedt mechanism (Jones and Lindstedt 1988) and the GRI-3.0 (Smith
et al. 2018), as in section 6.1 and 6.2.

Results using Jones-Lindstedt mechanism

The Jones-Lindstedt mechanism (Table 1) was originally derived for methane oxidation,
but it also incorporates hydrogen. It has already been used before for the simulation of
hydrogen-methane flames, for example by Li et al. (2019).
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Figure 11. Temperature and CO2 profiles at the centerline of Flame D calculated using GRI-3.0
mechanism.
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The flame ignited only partially using the IRRTS formulation and extinction occurred,
because the chemical time scales were large and lead to Da ¼ 0:01 in the entire domain.
This seems too low, even for a MILD combustion flame.

Also, the results using ETS were not very satisfactory. The high values of the chemical
time scales lead to extinction of the flame, despite initial ignition. Damköhler numbers
ranged from 0:01 to 1000. Therefore, the failure of this method could not be clearly related
to an incorrect prediction of the Damköhler number.

The temperature profiles using the other characteristic chemical time scale formula-
tions in conjunction with Bao’s and Parente’s EDC modification are shown in Figure 12.
They all show reasonable agreement for the profiles at the z = 4, 30 and 60 mm locations.
For z = 120 mm we see differences between the formulations. Bao’s model in conjunction
with IJTS underestimates the temperature. The flame in this simulation was not fully
ignited. Using OFTS, the temperature peak was overestimated.

Figure 14 shows the Damköhler number for the flame simulations. The method, which
overpredict the temperature peak the most (OFTS), have lower Damköhler numbers,
especially compared to SPTS and RTS definition. OFTS might overestimate the character-
istic chemical time scale leading to Damköhler numbers being too low.

The differences between the temperatures (Figure 12) are related to the chemical
time scale definitions primarily and not to the EDC formulation (Bao vs. Parente).
Only the IJTS method gives significantly different results for the two EDC constant
formulations. Figure 13 reveals that those differences in temperature and other major
scalars are caused by differences in γ� and τ�. The different γ� and τ� originate from
the variable EDC constants Cτ and Cγ (Equation (26) and Equation (27)). The
variation in those constants arises from the different chemical time scale
approximations.
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Figure 12. Radial temperature profiles at different locations for Adelaide Jet in Hot Coflow using the
Jones-Lindstedt mechanism.
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Results using GRI-3.0 mechanism

Similarly to the simulation of Flame D using GRI-3.0 mechanism, only the RTS, RPTS and
SPTS formulations show good results. The OFTS, IJTS, and IRRTS methods run into the
limit of Da ¼ 0:01 which lead to a failed ignition of the flame. Figure 15 shows the time
scale methods which gave accurate results. For comparison, also the results using the
original EDC model are shown. The modified models predict the temperature better for
the profile at z = 120 mm (Figure 15b) but for the profile at z = 60 mm (Figure 15a) and
z = 30 mm the modified models are superior.
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Figure 13. Radial profile for γ� and τ� s at z = 120 mm for Adelaide Jet in Hot Coflow using the Jones-
Lindstedt mechanism.
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Figure 14. Damköhler numbers for the AJHC simulation domain (r = 0–127 mm, z = 0–1 m) using the
Jones-Lindstedt mechanism; left: Parente’s formulations, right = Bao’s formulation.
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Figure 16 shows selected chemical time scale profiles and the Damköhler number
on the computational domain. The Damköhler number obtained with the SPTS
method is not shown, since Da ¼ 1000 in the whole domain. This seems unreasonable
for a MILD combustion flame and suggests that the SPTS method underestimates the
characteristic chemical time scale in combination with the GRI-3.0 mechanism.
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Figure 15. Radial temperature profiles at different locations for Adelaide Jet in Hot Coflow using GRI-
3.0 mechanism.
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Figure 16. Chemical time scale profiles for AJHC using GRI-3.0 ((a) and (b) – SPTS on the right axis) and
the Damköhler number ((c) and (d)) (left: Parente’s formulation, right plane: Bao’s formulation).
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The characteristic chemical time scale profiles for z = 30 mm and z = 60 mm in
Figure 16a and 16b (only the results with Parente’s formulation are shown, since the
results between the formulations do not differ significantly) show that SPTS gives
values, which are orders of magnitudes lower than the others. This leads to the high
Damköhler numbers. The other methods (RTS and RPTS) estimate lower characteristic
chemical time scales and lead to Damköhler numbers, which seem high for a MILD
combustion flame.

The differences between the original EDC formulation and the modified constants
(Figure 15) is related to a difference inγ�. The fine structure residence time values τ�

are nearly equivalent for all the cases. Figure 17 shows the differences in γ� for selected
profiles. (Only the results from Parente are depicted here, because Bao’s formulation
shows very similar results for γ�.) The modified constants yield different results compared
to the original EDC which agrees well with the differences seen in the temperature profiles
(Figure 15).

Comparison of the mechanisms

Figure 18 compares the characteristic chemical time scales calculated with the Jones-
Lindstedt and GRI-3.0 mechanism. For the definitions shown, the characteristic chemical
time scales in conjunction with GRI-3.0 are orders of magnitudes lower than with the
Jones-Lindstedt mechanism.

If we consider the chemical time scale as a value to characterize a flame, this depicts
a problem with the available time scale approximations: They are highly dependent on the
reaction mechanism. These variations could be eliminated by always using global mechan-
isms to approximate the characteristic chemical time scale.
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Figure 17. Radial profiles of γ� at different locations for Adelaide Jet in Hot Coflow using GRI-3.0
mechanism.
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Conclusion

We presented various numerically efficient characteristic chemical time scale definitions –
ranging from simple analytical expressions to complex eigenvalue based formulations.
They were compared for a simple test case, where also an analytical eigenvalue can be
computed. For this case, they all predict the trend of the time scales reasonably well. We
see that, there are two groups, incorporating two different trends, though. One group, with
the eigenvalue based methods approximate the analytic solution better.

Using a more complex reaction mechanism, the time scale predictions vary by several
orders of magnitude and give different trends for the test case. Due to the lack of an
analytical solution, the values can not be verified. Based on the simple test case, a good
choice for the time scale approximation are the eigenvalue based definitions, for example
EVTS, if fast computation of the time scale is not essential.

For CFD applications, such as the EDC model variations, the characteristic chemical
time scale needs to be computed in every cell at every time step. In this case, eigenvalue
based methods are not viable at the moment due to the numerical effort. Therefore, only
the simpler formulations, without the need to compute eigenvalues, were tested for the
flame simulations with the modified EDC.

The RTS, RPTS and SPTS seem to provide a suitable characteristic chemical time scale
definition for combustion simulations. These formulations gave reasonable predictions for
all test cases. Nevertheless, differences were observed and a great influence of the mechan-
ism complexity on the chemical time scale was shown. This also leads to varying EDC
model constants and consequently, differing simulation results.

Therefore, we suggest to use a simple, preferably one-step reaction mechanism, for the
chemical time scale calculation, while using a complex chemical mechanism for the
simulation. This enables comparable and consistent results, even when using chemical
mechanisms with different levels of complexity. A detailed mechanism can be used to
calculate temperatures and species concentrations, and a one step mechanism should be
used to approximate the chemical time scale.

Parente et al. (2011) also used a single-step reaction mechanism for the determination
of the chemical time scale and more complex ones for the calculation of the combustion

Bao: GRI-3.0 Jones-Lindstedt
Parente: GRI-3.0 Jones-Lindstedt
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Figure 18. Comparison of chemical time scale profiles using Jones-Lindstedt and GRI-3.0 mechanism, In
(c) the results from GRI-3.0 are shown on the right axis.
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progress. Computational time was their reason for the global mechanism and no results
using complex mechanisms were presented.

Within the tested time scale methods, the RTS, and SPTS gave the best results. The
RPTS could also be a good choice, but shows some deficiencies since its formulation is
only based on product species. Therefore, we recommend to use the RTS or SPTS
formulation based on a single-step reaction mechanism for the modified EDC.

Disclosure statement

The authors declare no conflict of interest.

Funding

The authors gratefully acknowledge the funding support of K1-MET GmbH, metallurgical
competence center. The research program of the competence center K1-MET is supported by
COMET (Competence Center for Excellent Technologies), the Austrian program for compe-
tence centers. COMET is funded by the Federal Ministry for Transport, Innovation and
Technology, the Federal Ministry for Digital and Economic Affairs, the province of Upper
Austria, Tyrol, and Styria. Apart from funding, the project activities are financed by the
industrial partners Primetals Technologies Austria, voestalpine Stahl and voestalpine Stahl
Donawitz;Österreichische Forschungsförderungsgesellschaft [869295].The authors acknowl-
edge the TU Wien University Library for financial support through its Open Access
Funding Program.

ORCID

Eva-Maria Wartha http://orcid.org/0000-0002-5564-8440
Markus Bösenhofer http://orcid.org/0000-0003-3412-2113
Michael Harasek http://orcid.org/0000-0002-6490-5840

References

Ansys-Inc. n.d.. Ansys fluent theory guide release 17.0. Canonsburg, PA, USA: Ansys Inc..
Bao, H. (2017). Development and validation of a new Eddy Dissipation Concept (EDC) model for

MILD combustion, Master’s thesis, Delft University of Technology.
Barlow, R. S., and J. H. Frank. 1998. Effects of turbulence on species mass fractions in methane/air

jet flames. Twenty-Seventh Symp. (Int.l) Combust. 27:1087–95.
Bösenhofer, M., E.-M. Wartha, C. Jordan, and M. Harasek. 2018. The eddy dissipation

concept-analysis of different fine structure treatments for classical combustion. Energies 11:7.
Caudal, J., B. Fiorina, M. Massot, B. Labégorre, N. Darabiha, and O. Gicquel. 2013. Characteristic

chemical time scales identification in reactive flows. Proc. Combust. Inst. 34 (1):1357–64.
Cavaliere, A., and M. de Joannon. 2004. MILD combustion. Progr. Energy Combust. Sci. 30

(4):329–66.
Christo, F. C., and B. B. Dally. 2005. Modeling turbulent reacting jets issuing into a hot and diluted

coflow. Combust. Flame 142 (1–2):117–29.
Dally, B., A. Karpetis, and R. Barlow. 2002. Structure of turbulent non-premixed jet flames in

a diluted hot coflow. Proc. Combust. Inst. 29 (1):1147–54.
De, A., E. Oldenhof, P. Sathiah, and D. Roekaerts. 2011. Numerical simulation of Delft- Jet-in-Hot-

Coflow (DJHC) flames using the eddy dissipation concept model for turbulence- chemistry
interaction. Flow Turbul. Combust. 87,4:537–67.

24 E.-M. WARTHA ET AL.

Publications

70



Ertesvåg, I. S. 2019. Analysis of some recently proposed modifications to the Eddy Dissipation
Concept (EDC) analysis of some recently proposed modifications to the Eddy Dissipation
Concept (EDC). Combust. Sci. Technol. 1–29.

Ertesvåg, I. S., and B. F. Magnussen. 1999. The eddy dissipation turbulence energy cascade model.
Combust. Sci. Technol. 159 (1):213–35.

Evans, M. J., P. R. Medwell, and Z. F. Tian. 2015. Modeling lifted jet flames in a heated coflow using
an optimized Eddy Dissipation Concept model. Combust. Sci. Technol. 187 (7):1093–109.

Evans, M. J., C. Petre, P. R. Medwell, and A. Parente. 2019. Generalisation of the eddy- dissipation
concept for jet flames with low turbulence and low Damköhler number. Proc. Combust. Inst.
37:4497–505.

Farokhi, M., and M. Birouk. 2016. Application of eddy dissipation concept for modelling biomass
combustion, part 2: Gas-phase combustion modeling of a small-scale fixed bed furnace. Energy
Fuels 30 (12):10800–08.

Gerschgorin, S. 1931. Über die Abgrenzung der Eigenwerte einer Matrix. Bulletin de l’Académie des
Science de l’URSS. Classe des science mathématiques et na 6:749–54.

Gilbert, R. G., K. Luther, and J. Troe. 1983. Theory of thermal unimolecular reactions in the fall-off
range. ii. weak collision rate constants. Berichte der Bunsengesellschaft fr physikalische Chemie 87
(2):169–77.

Glassmaker, N. J. 1999. Intrinsic low-dimensional manifold method for rational simplification of
chemical kinetics.

Golovitchev, V. I., and J. Chomiak (2001). Numerical modeling of high temperature air ”flameless”
combustion, The 4th International Symposium on High Temperature Air Combustion and
Gasification, Rome, Italy.

Golovitchev, V. I., and N. Nordin. 2001. Detailed chemistry spray combustion model for the KIVA
code by. Int. Multidimension. Engine Model. User’s Group Meeting SAE Congr.

Goodwin, D. G., H. K. Moffat, and R. L. Speth (2017). Cantera: An object-oriented software toolkit
for chemical kinetics, thermodynamics, and transport processes, http://www.cantera.org.Version
2.3.0.

Gran, I. R., and B. F. Magnussen. 1996. A numerical study of a bluff-body stabilized diffusion flame.
Part 2. influence of combustion modeling and finite-rate chemistry. Combust. Sci. Technol. 119
(1–6):191–217.

Isaac, B. J. (2014). Principal component analysis-based combustion models, PhD thesis, The
University of Utah. http://content.lib.utah.edu/cdm/singleitem/collection/etd3/id/2932/rec/1962

Isaac, B. J., A. Parente, C. Galletti, J. N. Thornock, P. J. Smith, and L. Tognotti. 2013. A novel
methodology for chemical time scale evaluation with detailed chemical reaction kinetics. Energy
Fuels 27 (4):2255–65.

Jones, W., and R. Lindstedt. 1988. Global reaction schemes for hydrocarbon combustion. Combust.
Flame 78:233–49.

Jones, W. P., and B. E. Launder. 1972. The prediction of laminarization with a two-equation model
of turbulence. Int. J. Heat Mass Transfer 15:301–14.

Lam, S. H., and D. A. Goussis. 1991. Conventional asymptotics and computational singular
perturbation for simplified kinetics modelling. In Reduced kinetic mechanisms and asymptotic
approximations for methane-air flames, chapter 10. Berlin, Heidelberg: Springer Verlag.

Launder, B. E., and D. B. Spalding. 1974. The numerical computation of turbulent flows. Comput.
Methods Appl. Mech. Eng. 3:269–89.

Lewandowski, M. T., I. S. Ertesvåg, and J. Pozorski (2017). Influence of the reactivity of the fine
structures in modelling of the jet-in-hot-coflow flames with the eddy dissipation concept, 8th
European Combustion Meeting, Dubrovnik, Croatia.

Li, Z., A. Cuoci, and A. Parente. 2019. Large eddy simulation of MILD combustion using finite rate
chemistry: Effect of combustion sub-grid closure. Proc. Combust. Inst. 37:4519–29.

Li, Z., A. Cuoci, A. Sadiki, and A. Parente. 2017. Comprehensive numerical study of the adelaide jet
in hot-coflow burner by means of RANS and detailed chemistry. Energy 139:555–70.

COMBUSTION SCIENCE AND TECHNOLOGY 25

Paper 1

71



Li, Z., M. Ferrarotti, A. Cuoci, and A. Parente. 2018. Finite-rate chemistry modelling of
non-conventional combustion regimes using a partially-stirred reactor closure: Combustion
model formulation and implementation details. Appl. Energy 225:637–55.

Lindemann, F. A., S. Arrhenius, I. Langmuir, N. R. Dhar, J. Perrin, and L. W. C. McC. 1922.
Discussion on the radiation theory of chemical action. Trans. Faraday Soc. 17:598–606.

Løvås, T., F. Mauss, C. Hasse, and N. Peters. 2002. Development of adaptive kinetics for application
in combustion systems. Proc. Combust. Inst. 29:1403–10.

Magnussen, B. F. (1981). On the structure of turbulence and a generalized eddy dissipation concept
for chemical reaction in turbulent flow, 19th Aerospace Sciences Meeting, St. Louis, MO, USA.

Magnussen, B. F. (2005). The eddy dissipation concept—A bridge between science and technology,
ECCOMAS Thematic Conference on Computational Combustion, Lisbon, Portugal.

Masri, A. R., R. W. Dibble, and R. S. Barlow. 1996. The structure of turbulent nonpremixed flames
revealed by Raman-Rayleigh-LIF measurements. Progr. Energy Combust. Sci. 22:307–62.

Nagy, T., and T. Turànyi. 2009. Relaxation of concentration perturbation in chemical kinetic
systems. React. Kinet. Catal. Lett. 96 (2):269–78.

Parente, A., M. R. Malik, F. Contino, A. Cuoci, and B. B. Dally. 2016. Extension of the eddy
dissipation concept for turbulence/chemistry interactions to MILD combustion. Fuel 163:98–111.

Parente, A., J. C. Sutherland, B. B. Dally, L. Tognotti, and P. J. Smith. 2011. Investigation of the
MILD combustion regime via principal component analysis. Proc. Combust. Inst. 33 (2):3333–41.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 2007. Numerical recipes - the art
of scientific computing. Cambridge: Cambridge University Press.

Prüfert, U., F. Hunger, and C. Hasse. 2014. The analysis of chemical time scales in a partial
oxidation flame. Combust. Flame 161 (2):416–26.

Rehm, M., P. Seifert, and B. Meyer. 2009. Theoretical and numerical investigation on the EDC-
model for turbulence–chemistry interaction at gasification conditions. Comput. Chem. Eng. 33
(2):402–07.

Ren, Z., and G. M. Goldin. 2011. An efficient time scale model with tabulation of chemical
equilibrium. Combust. Flame 158 (10):1977–79.

Smith, G. P., D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg,
C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner Jr., et al. (2018). GRI-Mech 3.0.

Stewart, P., C. Larson, and D. Golden. 1989. Pressure and temperature dependence of reactions
proceeding via a bound complex. 2. application to 2ch3 c2h5 + h. Combust. Flame 75 (1):25–31.

Tannehill, J. C., D. A. Anderson, and R. H. Pletcher. 1984. Computational fluid mechanics and heat
transfer. Second. Boca Raton: CRC Press.

Tomlin, A. S., L. Whitehouse, and M. J. Pilling. 2002. Low-dimensional manifolds in tropospheric
chemical systems. Faraday Discuss. 120:125–46.

Troe, J. 1983. Theory of thermal unimolecular reactions in the fall-off range. i. strong collision rate
constants. Berichte der Bunsengesellschaft fr physikalische Chemie 87 (2):161–69.

Tsang, W., and J. T. Herron. 1991. Chemical kinetic data base for propellant combustion i. reactions
involving no, no2, hno, hno2, hcn and n2o. J. Phys. Chem. Ref. Data 20 (4):609–63.

Weller, H., G. Tabor, H. Jasak, and C. Fureby. 1998. A tensorial approach to computational
continuum mechanics using object-oriented techniques. Comput. Phys. 12:6.

Westbrook, C. K., and F. L. Dryer. 1981. Simplified reaction mechanisms for the oxidation of
hydrocarbon fuels in flames. Combust. Sci. Technol. 27 (1–2):31–43.

Wilkinson, J., and C. Reinsch. 1971. Handbook for automatic computation, vol. II, linear algebra.
Springer-Verlag Berlin Heidelberg, New York.

26 E.-M. WARTHA ET AL.

Publications

72





Publications

Paper 2
Importance of considering interstitial fluid effects in the kinetic
theory of granular flow for raceway formation prediction
published in Chemical Engineering Science in collaboration with Markus Bösen-
hofer and Michael Harasek.
My contribution: Implementation and validation of the closure models in Open-
FOAM. Formal analysis of the models. Carrying out the simulations and analyzing
the results. Visualization of the results. Conceptualization and writing the original
draft of the paper.

E. M. Wartha, M. Bösenhofer, and M. Harasek (2022b). “Importance of consid-
ering interstitial fluid effects in the kinetic theory of granular flow for raceway
formation prediction”. In: Chemical Engineering Science 247, p. 117026. issn:
00092509. doi: 10.1016/j.ces.2021.117026

74

https://doi.org/10.1016/j.ces.2021.117026


Importance of considering interstitial fluid effects in the kinetic theory
of granular flow for raceway formation prediction

Eva-Maria Wartha a,⇑, Markus Bösenhofer a,b, Michael Harasek a

a Technische Universität Wien, Institute of Chemical Environmental and Bioscience Engineering, Getreidemarkt 9/166, 1060 Wien, Austria
bK1-Met GmbH, Area 4 - Simulation and Analyses, Stahlstrasse 14, BG88, 4020 Linz, Austria

h i g h l i g h t s

Comparison between different closure models for the kinetic theory of granular flow.
Influence of considering interstitial fluid effects in closure models.
Improved raceway shape prediction when considering interstitial fluid effects.

a r t i c l e i n f o

Article history:
Received 10 June 2021
Received in revised form 23 July 2021
Accepted 13 August 2021
Available online 19 August 2021

Keywords:
Kinetic Theory of Granular Flow
Computational Fluid Dynamics
Interstitial Fluid Effects
Raceway Formation
Two-Fluid Model

a b s t r a c t

Owing to its computational efficiency, the two-fluid model is widely used in computational fluid dynam-
ics (CFD) to describe gas–solid flows in large-scale industrial processes. The motion of the solid phase is
commonly modeled by the kinetic theory of granular flow (KTGF). The main conceptual difference
between the two commonly used KTGF closure relations, namely the closure models by Lun e al.
(1984) and Agrawal et al. (2001), is the treatment of the interstitial fluid. We theoretically compare both
models and investigate their effects on simulation results. The interstitial fluid effects are essential during
the raceway shape prediction but can be neglected in the fluidized bed regime. The correct prediction of
the raceway size and shape is essential for predicting the processes in the raceway zone of ironmaking
blast furnaces. Our results show that considering the interstitial fluid effects in the KTGF enables more
accurate predictions in the raceway regime.

2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Chemical engineering processes often involve gas–solid flows,
such as the flow behaviors of fluidized beds in gasification pro-
cesses, packed beds in adsorption columns, or slowly moving beds
in blast furnaces or grate combustors. Computational fluid dynam-
ics (CFD) can better clarify the intrinsic processes and predict flow
structures and temperatures, pressure, and species concentration
profiles, especially for processes where direct measurements are
unfeasible owing to the conditions. Thus, CFD has become a vital
tool for developing and optimizing complex processes by virtual
experiments.

Different concepts for modeling gas–solid flows are available in
the field of CFD: CFD-DEM (discrete element method), multiphase-
particle-in-cell (MPPIC), or two-fluid models (TFMs). The main dif-
ference between these approaches is related to the solid-phase
description. In CFD-DEM the particle–particle contacts are

resolved, which requires small time steps and leads to high compu-
tational demand, thus, the approach is unfavorable for large-scale
applications (Almohammed et al., 2014; Chiesa et al., 2005;
Lichtenegger and Pirker, 2018). The MPPIC method is an Eule-
rian–Lagrangian method that resolves the particle–particle inter-
action on an Eulerian grid (Snider et al., 1998), but tracking each
parcel increases the computational cost. Contrary to the two
above-mentioned modeling approaches, TFMs treat the solid and
the fluid phase as interpenetrating continua. The kinetic theory
of granular flow (KTGF) is often used to describe the solid rheology
in this modeling approach. Within this framework, a granular tem-
perature is used, which is related to the solid velocity fluctuations.
The granular temperature equation requires closure models for the
production and consumption terms (Gidaspow, 1994; Lun and
Savage, 1986; Savage, 1998; Agrawal et al., 2001).

One conceptual difference among the available closure models
is whether they consider the interstitial fluid effects (Agrawal
et al., 2001) or not (Lun et al., 1984). The models by Agrawal
et al. (2001) and Lun et al. (1984) have been widely used in the lit-
erature (Passalacqua and Marmo, 2009; Schneiderbauer et al.,

https://doi.org/10.1016/j.ces.2021.117026
0009-2509/ 2021 The Author(s). Published by Elsevier Ltd.
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2012; Zhao et al., 2020) and are implemented in simulation codes.
For example, the model by Lun et al. (1984) is implemented in
OpenFOAM, and that by Agrawal et al. (2001) is implemented in
the MFIX code (Syamlal et al., 1993; Benyahia et al., 2012). The
work by Agrawal et al. (2001) is considering the drag force calcu-
lated with the instantaneous fluid and gas velocities in the deriva-
tion of the KTGF closures, as suggested by Balzer et al. (1995); Ma
and Ahmadi (1988). To our knowledge, no in-depth comparison of
these models has been presented thus far. Therefore, we investi-
gate the difference between these KTGF closure models and their
effects on the simulation results for various applications.

A more extensive incorporation of interstitial fluid effects in the
derivation of the KTGF was presented by Garzó et al. (2012). They
also modeled the instantaneous particle acceleration and incorpo-
rated it in the derivation. The original model by Lun et al. (1984) is
derived based on the inelastic particle assumption - as the Agrawal
et al. (2001) model - whereas the solution by Garzó et al. (2012) is
obtained by using the method for states near the local homoge-
neous cooling state. Therefore, we limit our study to the compar-
ison between the Lun et al. (1984) and Agrawal et al. (2001) model.

We examine the differences between the models theoretically
and practically by applying them to classical chemical engineering
applications. A simple bubble formation case, a fluidized bed case,
and raceway formation cases were evaluated. Lab-scale setups
were chosen, where experimental data and DEM results were
available. This work focuses on raceway formation because we
aim to improve the predictive raceway modeling of our open-
source model (Bösenhofer et al., 2019; Bösenhofer, 2020), to
improve the economic efficiency and sustainability of blast fur-
naces (Kuang et al., 2018).

2. Model Description and Theoretical Discussion

In TFMs, both phases are treated as interpenetrating continua,
so that we obtain averaged continuity and momentum equations,
Eqs. (1)–(4), for both phases. In the equations, a refers to the phase
fraction, q to the density, v to the velocity, r to the stress, g to the

gravitational acceleration and t to the time. The subscripts s and g
refer to solid and gas, respectively.
@

@t
agqg þr agqgvg ¼ 0 ð1Þ

@

@t
asqs þr asqsvsð Þ ¼ 0 ð2Þ

The continuity equations have to be reformulated to ensure the
conservativeness as presented by Weller (2005) and Passalacqua
and Fox (2011). We use a blended approach between an implicit
solution and the multidimensional universal limiter with explicit
solution (Tacconi, 2018) presented in (Wartha et al., 2020) to solve
the reformulated phase continuity equations.

The momentum equations, Eqs. (3) and (4), are coupled through
momentum exchange terms; here, the drag b vg vs and the vir-
tual mass force (FVM) terms are considered and other inter-phase
forces are neglected.

@

@t
agqgvg þr agqgvgvg ¼ agr rg b vg vs þqgaggþFVM

ð3Þ

@

@t
asqsvsð Þþr asqsvsvsð Þ¼ asr rsþb vg vs þqsasgþFVM ð4Þ

In addition to the continuity, momentum, and energy equations, a
closure relation for the solid stress is required. This can be the KTGF,
whose development method is analogous to that of the kinetic the-
ory of dense gases. Based on the KTGF, a granular temperature H is
introduced, which is defined as one-third of the mean square of the
particle velocity fluctuations. This pseudo-temperature is balanced
as shown in Eq. (5) and is related to the solid stress rs.
3
2

@
@t asqsHð Þþr asqsHvsð Þ ¼ Js|{z}DissipationorCreationexertedbythegas

rs :rvs|fflfflfflfflfflffl{zfflfflfflfflfflffl}Creationduetoshearþr jsrHð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}DiffusiveTransport
cs|{z}CollisionalDissipation

ð5Þ

Nomenclature

Latin symbols Variable Name Unit
a constant -
CD drag coefficient for a sphere -
ep restitution coefficient -
d diameter m
go radial distribution function -
g gravitational acceleration m s 2

k turbulent kinetic energy m2s 2

p pressure kg m 1s 2

t time s
U circumference m
v velocity vector ms 1

Greek symbols
a volume fraction -
b momentum exchange term kg m 3 s 1

cs collisional dissipation kg m 1 s 3

energy dissipation rate m2s 3

g modified restitution coefficient -
H granular temperature m2 s 2

js solid conductivity kg m 1 s 1

k thermal conductivity kg m 1 s 1

l viscosity Pas
m viscosity m2s 1

q density kg m 3

rs solid stress Pa
U angle of internal friction
/s sphericity coefficient -

Sub- and superscripts
s solid
g gas
b bulk
* modified (to account for interstitial gas effects)
fric frictional
ktgf kinetic theory of granular flow
min minimum
max maximum
rel relative
RW raceway

Abbreviations
RHS right-hand side
LHS left-hand side
CFD computational fluid dynamics
KTGF kinetic theory of granular flow
TFM two-fluid model
DEM discrete element method
MPPIC multiphase particle in cell
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The terms on the right-hand side (RHS) in Eq. (5) represent the dis-
sipation or creation exerted by the gas Js, the creation of fluctuating
energy due to shear, the diffusion of fluctuating energy, and the dis-
sipation due to inelastic particle collisions cs (Agrawal et al., 2001);
js represents the diffusivity of the granular temperature.

Different closure relations exist for the terms on the RHS, but
the most widely used are based on the work by Lun et al. (1984).
They assume binary particle–particle interactions and nearly
inelastic particles, while the role of the interstitial fluid was
neglected. Hereafter, the model based on these assumptions will
be referred to as the Lun model.

Agrawal et al. (2001) proposed modified closure relations for
the equation of granular temperature. The relations are based on
the findings of Balzer et al. (1995),Boelle et al. (1995), Koch and
Sangani (1999), who showed that the effect of the interstitial fluid
is essential in gas–solid flows. These closures relations are here-
after referred to as the Agrawal model.

In the classical derivation of the KTGF, only instantaneous and
binary interactions between the particles are considered, however,
frictional contacts between the particles also exist at high solid vol-
ume fractions. Frictional models have been developed to account
for those effects above a certain solid volume fraction amin. The dif-
ferent frictional models considered in this paper are described in
Section 2.3.

The main focus of this paper is to compare the Lun and Agrawal
closure models for the KTGF. The Lun model neglects interstitial
fluid effects, while the Agrawal model considers them. Additional
models are required to simulate gas–solid flows: frictional models
for high solid volume fractions, and gas–solid drag models for the
momentum exchange. These models are introduced in the next
section. Table 1 summarizes the employed models and indicates
the section in which they are discussed. A general overview on
models for the KTGF can be found in van Wachem (2000).

2.1. Closure Relations for the KTGF

The different terms for the closure of the KTGF from Lun et al.
(1984) and Agrawal et al. (2001) are explained in the next section.
Special emphasis is placed on the difference between the two for-
mulations and how interstitial fluid effects are considered by the
Agrawal model.

2.1.1. Solid Stress
Lun et al. (1984) proposed the following expression to model

the solid stress rs for slightly inelastic particles:

rs ¼ qsas 1þ2 1þep asg0
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

granularpressurecoeff :H glb r v sð Þ I

2l
g0g 2 gð Þ 1þ8

5
asgg0 1þ8

5
g 3g 2ð Þasg0 þ6

5
glb|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}solidviscosityS

ð6Þ

The first part of Eq. (6) represents the granular pressure, where g is
a modified restitution coefficient, Eq. (7), and g0 is the radial distri-
bution function. Different expressions to model the radial distribu-
tion function are discussed in Section 2.2. Alternative closures for
the granular pressure exist, see (van Wachem, 2000) for an
overview.

The second part of Eq. (6) is also called the solid viscosity. The

tensor S is defined in Eq. (8). The expressions for the viscosity l
and the bulk viscosity lb are given by Eqs. (9) and (10),
respectively.

g ¼ 1þ ep
2

ð7Þ

S ¼ 1
2

rvs þ rvsð Þ> 1
3

rvsð ÞI ð8Þ

l ¼ 5qsd
ffiffiffiffiffiffiffiffi
pH

p

96
ð9Þ

lb ¼
256la2s g0

5p
¼ 8
3
qsdsa2s g0

ffiffiffiffiffi
H
p

r
ð10Þ

Agrawal et al. (2001) used the same expression as Lun et al. (1984)
for the granular pressure but substituted l with l , Eq. (12), in the
expression for the solid viscosity to account for the effects of the
interstitial fluid, Eq. (11). Additionally, a factor 2þa

3 was added to
the solid viscosity, which was introduced by Johnson and Jackson
(1987). This leads to the following equation for the solid stress:

rs ¼ qsas 1þ2 1þep asg0
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

granularpressurecoeff :H glb r v sð Þ I 2þa
3

2l
g0g 2 gð Þ 1þ8

5
asgg0 1þ8

5
g 3g 2ð Þasg0 þ6

5
glb|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}solidviscosityS

ð11Þ

The modified viscosity l incorporates the momentum exchange
term b to account for the effects of the interstitial fluid, Eq. (12). Dif-
ferent drag models can be used to calculate b, however, we use the
Gidaspow drag model in this work, which is discussed in
Section 2.4.

l ¼ l
1þ 2bl

qsasð Þ2g0H
ð12Þ

For typical parameters (Table 2) in a gas–solid flow the dimension-
less solid viscosities obtained from the two different closure models
are compared in Fig. 1. At high solid volume fractions, there is only a
slight difference between the solid viscosities, but the difference is
significant at small solid volume fractions and high granular tem-
peratures. The relative velocity Urel does influence the drag, but
has only a minor influence on the solid viscosity in this parameter
space. The Agrawal model gives lower solid viscosities at these con-

Table 1
Overview of the employed models in this publication.

Variable Compared Models Section

Closure Models for the KTGF
rs solid stress With and without interstitial fluid effects (Lun et al., 1984) (Agrawal et al., 2001) 2.1.1
js solid conductivity 2.1.2
cs collisional dissipation 2.1.3
Js dissipation or creation exerted by the gas 2.1.4
g0 (Carnahan and Starling, 1969) 2.2
Frictional Models
ps frictional pressure (Srivastava and Sundaresan, 2003) (Schaeffer, 1987) 2.3
ls frictional viscosity
Momentum Exchange Terms
b momentum exchange term (Gidaspow, 1994) 2.4
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ditions. The dimensionless Lun solid viscosity becomes independent
of the granular temperature.

2.1.2. Solid Conductivity
The solid conductivity was modeled by Lun et al. (1984) as pre-

sented in Eq. (13). A second term occurs in the original publication,
which is supposed to be small compared with the first one and
therefore, is mostly neglected, as done here and in the work by
van Wachem (2000).

js ¼ k
g0

1þ 12
5 gasg0 1þ 12

5 g
2 4g 3ð Þasg0

þ 64
25p 41 33gð Þg2a2s g20

ð13Þ

k ¼ 75qsd
ffiffiffiffiffiffiffiffi
pH

p

48g 41 33gð Þ ð14Þ

Agrawal et al. (2001) used a similar formulation for the solid con-
ductivity. They replaced k with a modified conductivity term (k )
to account for the interstitial fluid effects. Similar to the solid vis-
cosity, the momentum exchange term b was incorporated to
account for the interstitial fluid effects:

k ¼ k

1þ 6bk
5 qsasð Þ2g0H

ð15Þ

Several other solid conductivity models have been proposed in the
literature, and a comprehensive review of common models can be
found in the work by van Wachem (2000). Here, we compare the
models by Agrawal et al. (2001) and Lun et al. (1984), since this
paper focuses on the effect of the interstitial fluid in the KTGF on
gas–solid flows.

Fig. 2 compares the normalized Agrawal and Lun solid conduc-
tivities for the same conditions as Fig. 1 does for the solid viscosity.
Fig. 2 reveals that the differences between the models vanish at
low granular temperatures but become significant at high granular
temperatures and low solid volume fractions. The relative velocity
clearly influences the solid conductivity with the Agrawal model,
which can be seen comparing Fig. 2 (a) and (b).

2.1.3. Collisional Dissipation
The definition of the collisional dissipation rate in (Lun et al.,

1984 and Agrawal et al., 2001) is the same and given by the follow-
ing equation:

cs ¼ 12 1 e2p
a2sqs

ds
ffiffiffiffi
p

p g0H
3=2 ð16Þ

2.1.4. Dissipation or Creation Exerted by the Gas
The following correlation is given by van Wachem (2000):

Js ¼ b 3H
bds vg vs

2

4asqs

ffiffiffiffiffiffiffiffi
pH

p
 !

ð17Þ

Agrawal et al. (2001) used the same closure relation but divided the
second term by the radial distribution function. By introducing the
drag after formulation and using the the drag coefficient relation
(CD ¼ 24=Re), we obtain the following equation:

Js ¼ 3bH
81asl2

g vg vs
2

g0d
3
sqs

ffiffiffiffiffiffiffiffi
pH

p ð18Þ

2.2. Radial Model

Different models for the radial distribution function exist. For
the simulations presented in this paper, the Carnahan-Starling
model is used (Carnahan and Starling, 1969):

g0 ¼
1

1 a
þ 3a
2 1 að Þ2

þ a2

2 1 að Þ3
ð19Þ

van Wachem (2000) provides a good overview of different radial
models. A drawback of the Carnahan-Starling model is that it does
not tend to the correct limit at the maximum solid volume fraction.
In the next section, we show that close to the maximum packing
limit the frictional contribution outweighs that from the kinetic
theory by orders of magnitude. Therefore, the Carnhan-Starling

Table 2
Typical values used to compare the solid viscosity and the solid conductivity.

ep qs lg qg H CD g0

0.8 1200 10 5 1.2 10 4-103 0.44 Carnahan Starling Model

Fig. 1. Comparison of the dimensionless solid viscosity for (a) Urel ¼ 10ms 1 and (b) Urel ¼ 100ms 1 for typical conditions in Table 2.
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model can be applied in conjunction with the chosen frictional
models.

2.3. Frictional Models

At high solid volume fractions, besides instantaneous and bin-
ary interactions, frictional effects become important. A frictional
pressure ps;fric and a frictional viscosity ls;fric are added to the solid
pressure and viscosity above a solid volume fraction threshold amin,
Eqs. (20) and (21), to account for these frictional effects.

ps ¼ ps;ktgf þ ps;fric ð20Þ

ls ¼ ls;ktgf þ ls;fric ð21Þ

Different models describing the frictional pressure and viscosity
have been proposed in the literature. In the following section, we
discuss the frictional models used for the subsequent simulations.
An extensive comparison of different frictional stress models can
be found in (Venier et al., 2018; Passalacqua and Marmo, 2009).

2.3.1. Schaeffer Frictional Model
The Schaeffer frictional stress model (Schaeffer, 1987) defines

the frictional pressure ps;fric and the frictional viscosity ms;fric as
follows:

ps;fric ¼ 1025 as aminð Þ10 ð22Þ

ls;fric ¼ 0:5ps;fric I2Dð Þ 1=2 sin Uð Þ ð23Þ

where I2Dð Þ 1=2 is the second-order deviatoric shear stress tensor
and U is the angle of internal friction, which is usually set to 28 .

Fig. 3 compares the solid pressure given by the kinetic theory
model and the frictional stress models. As shown, the frictional
contribution is dominant above amin, especially for the presented
models. The Johnson and Jackson frictional stress model (Johnson
et al., 1990) has a subtler increase and might lead to a smoother
transition to the frictional regime. We found the use of the
Johnson-Jackson model in combination with the Carnahan-
Starling model does not necessarily ensure the packing limit when
using an implicit solution algorithm for the continuity equation
(Wartha et al., 2020); therefore, we chose to apply the Schaeffer
model to cases close to the packing limit.

2.3.2. Srivastava-Sundaresan Frictional Model
Srivastava and Sundaresan (2003) derived a frictional stress

model based on the work of Johnson et al. (1990). The model by
Srivastava and Sundaresan (2003) considers the strain rate fluctu-
ations for the frictional viscosity while the frictional pressure
remains unchanged. The more robust and reasonably accurate sim-
plification of the frictional stresses was taken here (Srivastava and
Sundaresan, 2003). The frictional viscosity and pressure are given
by

ps;fric ¼ Fr
as aminð Þg
amax asð ÞP ð24Þ

ls;fric ¼ 0:5ps;fric I2D þ H

d2p

 ! 1=2 ffiffiffi
2

p
sin Uð Þ ð25Þ

with the constants Fr ¼ 0:05;g ¼ 2 and P ¼ 5.

2.4. Drag Model

Although there are different momentum exchange models for
the drag (the second term on the RHSs of Eqs. (3)), we use the drag
correlation by Gidaspow (1994), Eq. (29), in this paper. This model
combines the WenYu-model, Eq. (26), and the Ergun model, Eq.
(28), based on the fluid volume fraction.

Fig. 2. Comparison of solid conductivity for (a) Urel ¼ 10ms 1 and (b) Urel ¼ 100ms 1 for typical conditions in Table 2.

Fig. 3. Comparison of the pressure contributions from the kinetic theory and the
frictional model for H ¼ 10 4.
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bWenYu ¼ 3
4
CD

agas vs vg qg

dp
a 2:65
g ð26Þ

CD ¼
24
Re 1þ 0:15Re0:687
h i

Re < 1000

0:44 Re P 1000

(
ð27Þ

bErgun ¼ 150
a2slg

ag dsð Þ2
þ 1:75

qg vg vs as

ds
ð28Þ

bGidaspow ¼ bErgun ag 6 0:8
bWenYu ag > 0:8

ð29Þ

3. Simulation Studies and Results

A customized solver based on OpenFOAM, version 7, was used
for all simulations. OpenFOAM is an open-source C++ CFD library
employing the finite volume method (Weller et al., 1998).

The investigations focus on the influence of the kinetic theory
model closures on the raceway prediction; nonetheless, for consis-
tency, we also include two cases for the classical application of the
KTGF, namely a 2D bubble formation (Section 3.1 and a 2D flu-
idized bed case (Section 3.2); these cases have been widely used
to compare frictional stress models or radial models in conjunction
with the KTGF (Venier et al., 2018; Passalacqua and Marmo, 2009).

To demonstrate the effect of the KTGF closure models on the
raceway formation, we studied three raceway formation cases.
The results of the closure models implemented in OpenFOAM are
compared with DEM results (Section 3.3), another established
TFM code - MFIX - (Syamlal et al., 1993; Benyahia et al., 2012) (Sec-
tion 3.4) and experimental results (Section 3.5).

For all the cases, the gas phase turbulence was modeled by the
k- model. The frictional effects for the solid phase were modeled
using the Schaeffer model, except for the bubble formation case,
where we used the Srivastava model. The wall boundary condi-
tions were set to no-slip for the gas velocity and a Johnson-
Jackson type boundary condition (Johnson and Jackson, 1987) for
the particle velocity. Based on the results by Liu and Hinrichsen
(2014) we used TVD differencing schemes in general and the vanL-
eer scheme for the phase fraction. A cell-based gradient scheme
was chosen based on Liu and Hinrichsen (2014).

3.1. Bubble Formation

The first test case is a simple pseudo-2D bubble growth case,
which was investigated experimentally by Kuipers et al. (1991)
and numerically by Venier et al. (2018) and Patil et al. (2005).
The domain is 0.57 m wide, 1 m high, and discretized by 112 x
200 cells. A single jet of 0.015 m width enters the domain in the
middle. For the simulation, the frictional stress model of
Srivastava and Sundaresan (2003) was used; this model has been
determined to be appropriate for this case by Venier et al.
(2018). The model was used with two different values for the onset
of friction. Mostly a value of 0.5 is employed with this model, but
Passalacqua and Marmo (2009) presented that a value of 0.6 gave
more realistic results. Therefore, both were tested here. Additional
simulation details are given in Table 3. No virtual mass effects were
considered in this simulation and the Gidaspow drag model was
used (Gidaspow, 1994) for the simulations.

Fig. 4 compares the bubble diameter ratio (ratio of the vertical
to the horizontal bubble extension) of the simulation for the single
bubble case. The simulation results agree well with the experimen-
tal results at the beginning of the bubble formation. After approx-
imately 0.15 s, the bubble stretch was overpredicted by the

simulations compared with the experiment results, which was
more profound for alphamin ¼ 0:5. In this regime, no significant
influence of the Agrawal and Lun models was seen. We showed
in Sections 2.1.2 and 2.1.1 that the solid viscosity and solid conduc-
tivity deviate the most for small solid volume fractions between
the two KTGF closure models. The region with small solid volume
fractions is small, which might influence the results. Additionally,
the relative velocity is small and consequently the difference
between the calculated solid conductivities is small (Fig. 2).

The simulated bubble detachment time was well predicted by
the simulations. Kuipers et al. (1991) reported a bubble detach-
ment time of 0.188 s, while the simulations predicted 0.19 s bubble
detachment time.

3.2. Fluidized Bed

The simulated fluidized bed was presented by Patil et al. (2005).
The setup is similar to the bubble formation case from Section 3.1,
except for an additional fluidization air stream of 0.25 ms 1. The
simulation was set up in the same way as the bubble formation
case (Section 3.1).

The experimental results by Patil et al. (2005) were the average
over 60 s. Here, we averaged the simulation results after an initial
start-up time of 10 s over a period of 20 s, since no changes were
observed even for smaller averaging windows.

Fig. 5 depicts time-averaged axial phase fraction profiles at two
distinct vertical lines. The simulated profiles agree well with the
experimental profile (Fig. 5 (a)) for regions close to the central
jet and at the bottom of the fluidized bed. With increasing bed
height, the phase fraction predictions deviate compared with the
experiments. Fig. 5 (b) reveals that the bed expansion was well
predicted but that the fluidization was underpredicted for the
bed bottom.

The simulation results by Patil et al. (2005) agree better with
the experimental results. They either used the Johnson and Jackson
frictional stress model or neglected frictional stresses, which sug-
gests that the Schaeffer frictional stress model overpredicted fric-
tional stresses in the given fluidized bed.

Nevertheless, the main focus is to compare the effects of the
KTGF closure models. The results show that interstitial fluid effects
do not influence the simulation results in the fluidized bed regime.
Similarly to the bubble formation case this seems to be related to
the relatively low relative velocities and consequently small differ-
ences in the solid conductivity (Fig. 2).

3.3. Raceway - DEM Comparison

Lu et al. (2020) presented a novel methodology to analyze the
void morphology in CFD-DEM simulations. DEM offers a possibility

Table 3
Properties for the bubble formation simulation.

Description Value Unit

Gas density 1.225 kg m 3

Gas viscosity 1.85 10 5 Pa s

Solid density 2660 kg m 3

Particle diameter 500 10 6 m

Restitution coefficient 0.95
Initial bed height 0.5 m
Initial packing 0.598 -
Maximum packing 0.63 -
amin 0.5/ 0.6 -
Jet inlet velocity 10 ms 1

Maximum time-step size 10 5 s

Maximum Courant number 0.25 -
Time discretization First-order implicit
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to study the void formation in more detail, since the particle–par-
ticle interactions are resolved. In this study, the investigated
pseudo-2D domain was 2.6 m wide, 3.5 m high, and 88.6 mm deep.
The middle of the gas inlet was positioned 0.4873 m above the bot-
tom, was 88.6 mm times 88.6 mm large, and reached 0.300 m into
the bed.

The used particles had a density of 1200 kg m 3 and a diameter
of 40 mm, and the gas had a viscosity of 1:88 10 5 Pa s and a tem-
perature of 1000 C. Periodic boundary conditions were applied at
the front and back patches, while a fixed pressure of 1 bar was
applied at the top. The depth and height of the formed raceway
were studied for inlet gas velocities ranging from 168 to 232 ms 1.

The maximum packing limit was defined as 0.63 in the Open-
FOAM simulations, while the volume fraction for the onset of fric-
tion was set to 0.61. The simulation using the KTGF was conducted
as a transient simulation for 10 s, and the resulting raceway void
was taken from the average phase fraction over 5 to 10 s.

Fig. 6 compares simulated and published (Lu et al., 2020) race-
way depths and heights. The raceway boundary depth and height
were calculated with aparticle ¼ 0:3 as the boundary. The compar-
ison reveals significant differences in the raceway depth and height
depending on the KTGF closure model. The Agrawal model predicts
the raceway height well for high gas velocities, while the raceway
depth was overpredicted for low gas velocities and underpredicted
for high gas velocities. The Lun model underpredicted the raceway

depth and height at high gas flow rates, while it gave reasonable
predictions at low gas flow rates compared to the DEM results.

Fig. 4. Bubble diameter ratio obtained from experiment and simulation (using different KTGF closure models and radial distribution functions).

Fig. 5. Gas phase fraction from experiment and simulation using Agrawal and Lun models at (a) 0.375 cm from the center and (b) 9.375 cm from the center.

Fig. 6. Raceway depth (circle) and height (cross) for different gas inlet velocities;
Comparison between Agrawal model (green), Lun model (orange), and DEM (red)
results from Lu et al. (2020).
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Fig. 7 gives averaged solid volume fraction contours of all cases.
Comparing the results obtained from the Agrawal model and the
Lun model. Although the raceways may look similar, the figure
shows that a more pronounced raceway was formed using the
Agrawal model. For all cases, the raceway showed a very high
top extension, which was not seen in the results presented by Lu
et al. (2020). This might be due to the averaging of the solid volume
fraction. The high inlet velocities prevent stable-steady states and
cause periodic bubble detachment from the raceway. These
detached bubbles cause reduced solid volume fractions above the
raceway cavity.

3.4. Raceway - TFM Comparison

For the second raceway case, we compared the results from an
established, two-fluid model code - MFIX (Syamlal et al., 1993;
Benyahia et al., 2012). According to Benyahia et al. (2012), MFIX
also employs the Agrawal model. We chose a simple 2D raceway
based on that presented by Feng et al. (2003). The geometry was
0.3 m wide and 1 m high and was discretized by 12000 cells. The
inlet was positioned 0.1 m above the bottom of the bed with a
height of 0.02 m. The bed was initially 0.5 m high with an initial
solids volume fraction of 0.55. The maximum packing limit and
amin were both set to 0.63, which is in accordance with MFIX when
the Schaeffer model is used. The time discretization was chosen in
the same way for MFIX and OpenFOAM. Otherwise, the default
schemes and under-relaxation factors in MFIX were taken (version
20.3.1). The gas phase was modeled as perfect gas with a constant
viscosity of 1:8 10 5 Pa s. The raceway formation was computed
for three different inlet velocities: 20, 25 and 30 ms 1, and 1 s of
physical time was simulated.

Fig. 8 compares the raceway penetration depths obtained from
the MFIX simulations and the OpenFOAM simulations (using
aparticle ¼ 0:3 as boundary) with that presented by Feng et al.
(2003). The correlation between the raceway size and inlet velocity
was reproduced by all simulation models, but the exact depth devi-
ated. The depth is underpredicted by the MFIX simulations and
overpredicted in the OpenFOAM simulations. No clear raceway

cavity was formed for the lowest inlet velocity when the Lun clo-
sure model was used.

Fig. 9 shows the contour plots obtained from the MFIX simula-
tions and the OpenFOAM simulations with Agrawal and Lun mod-
els. Hardly any raceway was formed when the Lun closure model
was used for the lowest inlet velocity; this confirms the result indi-
cated in Fig. 8. The MFIX code results gave lower solid volume frac-
tions in the raceway cavity than the OpenFOAM results.
Furthermore, the contour plots indicate a gas jet next to the wall
in the MFIX results.

One difference between the MFIX results and the OpenFOAM
results is the more distinct raceway, meaning even lower phase
fraction in the actual raceway; this could be related to the high
near-wall gas velocity predicted by MFIX. Possibly the treatment
of the boundary is different in the MFIX code when doing 2D
simulation.

3.5. Raceway - Experimental Comparison

Mojamdar et al. (2018) experimentally studied the raceway for-
mation in a pseudo-2D setup with the dimensions of 500 x 1000 x

Fig. 7. Contour plots of the solid volume fraction obtained using the Agrawal model ((a)-(d)) and the Lun model ((e)-(h)).

Fig. 8. Comparison of raceway penetration depth from MFIX code, DEM simulation
(Feng et al., 2003), and OpenFOAM (using Agrawal .and Lun models).
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60 mm. The slot-type tuyere was positioned 160 mm above the
bottom, reaching 50 mm into the bed. The domain was discretized
by 21500 cells, approximately 90 in the horizontal and 240 in the
vertical direction. Mojamdar et al. (2018) used cylindrical particles
with a density of 940 kg m 3, a length-to-diameter ratio of 1.1, and
equivalent diameter of 4 mm. The particles were approximated as
spherical particles with the same diameter in the simulation. The
approximation of cylindrical particles by spheres could be ques-
tionable, but the KTGF can only model spherical particles. Because
the KTGF is often applied to depict industrial processes with non-
spherical particles, we believe it is also valuable for comparing the
TFM results with the experimental results here.

The inlet velocity was varied between 0.11 and 0.6 ms 1 for the
test cases and was given as the superficial bed velocity. The gas
was modeled as a perfect gas at room temperature. The other
parameters for the simulation setup are summarized in Table 4.
The simulations were conducted for 4 s, since the raceway form
stabilized after approximately 1 s.

Mojamdar et al. (2018) determined the raceway equivalent
diameter in cold model experiments and investigated hysteresis
effects. The raceway equivalent diameter is defined as the diameter
of a circle with the same circumference as the raceway:

dRW ¼ URW

p
ð30Þ

We conducted one transient simulation per set-point velocity, start-
ing from a resting bed. Therefore, we compare the simulated race-
way diameters to the experimental cases obtained at increasing

gas velocity. The porosity level, which defines the boundary of the
raceway, is not clearly defined in the experiments. Therefore, we
determined the raceway equivalent diameter for aparticles ¼ 0:3 and
aparticles ¼ 0:4 as raceway boundaries. In general, the simulations
reproduce the experimental trend given in Fig. 10.

Fig. 10 reveals that interstitial gas effects increase the predicted
raceway size, for example, the Agrawal model gives larger raceway
equivalent diameters than the Lun model.

We also compared the measured pressure distribution from
Mojamdar et al. (2018) with the simulation results (Fig. 11). The
pressure was reasonably predicted for most positions, but hardly
any difference occurred between the Agrawal and Lun KTGF
results. The peak pressure was underpredicted with both closure
models, at higher gas velocity (U ¼ 0:5ms 1).

Fig. 12 compares the solid phase fraction contour plots for the
OpenFOAM simulations and a superficial velocity of 0:5ms 1. The
results indicate higher volume fraction gradients for the Agrawal
closures compared with the Lun closure.

The shape of the raceway is circular and symmetrical. Sarkar
et al. (2003) also conducted a similar study in a 2D cold model
apparatus. The setup was nearly identical, and they concluded that
the raceway shape was almost circular. This undermines the cor-
rect prediction of the raceway by the OpenFOAM simulation.

Fig. 13 displays the particle velocity vectors in the raceway
zone. Two recirculating zones are shown, which agrees with the
findings by Sarkar et al. (2003). The Agrawal model gave a higher

Fig. 9. Comparison between results for inlet velocity of 30 ms 1 (a-c), and 20 ms 1

(d-c) from MFIX simulation (first column) with Lun model (second column) and
Agrawal model (third column).

Table 4
Parameters used for the raceway simulation compared with experimental results by
Mojamdar et al. (2018).

Description Value Unit

Initial bed porosity 0.6 -
Air viscosity 1.8 10 5 Pas

Particle diameter 0.004 m
Particle density 940 kg m 3

Bed height 0.8 m
amin 0.6 -
amax 0.61 -
Virtual mass coeff. 0.5 -
Restitution coeff. 0.95 -
Maximum time step 10 3 s

Maximum Courant number 0.25 -

Fig. 10. Raceway equivalent diameter for experiments by Mojamdar et al. (2018)
and simulation. Raceway boundary calculated with aparticles ¼ 0:3 andaparticles ¼ 0:4
in. the simulation.
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Fig. 11. Pressure along the horizontal and vertical lines in the 2D Raceway.

Fig. 12. Solid volume fraction isolines in the raceway zone for U = 0.5 ms 1.

Fig. 13. Particle velocity in the raceway zone for U = 0.5 ms 1 inlet velocity.
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particle velocity than the Lun model. This was caused by the larger
raceway cavity predicted by the Agrawal model.

4. Conclusion

In this study, the KTGF closure models presented by Lun et al.
(1984) and Agrawal et al. (2001) were systematically assessed.
The difference between these models is that the Agrawal model
considers the effect of the interstitial fluid by incorporating the
drag correlation terms in the solid viscosity and solid conductivity
models. We studied the difference between those formulations and
compared the results with experimental data. In fluidized bed
regimes, the effects of the interstitial fluid can possibly be
neglected, since they do not affect the simulation results.

This study focuses on the prediction of raceway formation. The
correct prediction of the raceway shape and formation is essential
to understand the processes in ironmaking blast furnaces. For
these cases, the influence of the chosen KTGF closure model is sig-
nificant. The interstitial fluid effects become more dominant in the
raceway regime, which can be attributed to the higher gas veloci-
ties and consequently higher contributions from the drag terms in
the modified closure terms. The comparison of the simulation data
with experimental data and DEM data reveals that the model by
Agrawal et al. (2001) predicted the raceway shapes better than
the Lun model (Lun et al., 1984).

We recommend the use of the Agrawal model, which incorpo-
rates the interstitial fluid effects when simulating raceway forma-
tion. The Agrawal model gives more accurate predictions in the
raceway regime than the Lun model; nonetheless the results of
both are almost identical in the fluidized bed regime.
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A B S T R A C T
Gas–solid reactions often play key roles in chemical engineering applications. To understand and design
processes featuring such heterogeneous reactions, kinetic models are crucial. One way to identify kinetic models
is via thermal analysis experiments. Even if those experiments are carried out meticulously, there will be some
deviation between nominal reaction conditions and the actual reaction conditions directly at the reaction site.
For situations, where these deviations are not negligible, we propose a new approach to compute the reaction
conditions directly at the sample, based on the experimental data. A key feature of our approach is that no
kinetic model is required for the simulation. For this reason, the enhanced data can be used for kinetic model
identification. Though, a kinetic modeling method that can process arbitrary data is required, because the
enhanced kinetic data will not obey the idealized assumptions of constant temperature or constant heating
rate.

To showcase our approach, we applied it to the reaction system CuO/Cu2O. Kinetic models with nominal
and simulated values are derived with the TensorNPK method, showing the influence of the enhanced kinetic
data on the identified reaction kinetics.

1. Introduction

Interest in kinetic models is two-fold: On the one hand, kinetic mod-
els allow us to predict the reaction rate for given reaction conditions.
This information is indispensable for reactor design and operation. On
the other hand, they provide us with a frame to interpret kinetic data
and to gain insights into the reaction mechanism. Regardless of the
model purpose, the starting point is always a kinetic data set that
contains reaction rate values at various reaction conditions. The quality
of the kinetic data set directly determines the quality of the kinetic
model. For this reason, collecting kinetic data is a critical step in the
modeling process. From the viewpoint of kinetic modeling there are –
generally speaking – two main types of experimental error: Error in the
reaction rate values and error in the reaction conditions. In this paper,
we will focus on the latter.

The most widely used method for measuring the kinetics of gas–
solid reactions is thermal analysis (TA). A sample is exposed to con-
trolled reaction conditions (temperature and partial pressure of the
reactant gas) and the reaction progress is measured.

To obtain reliable kinetic data, the reaction conditions in TA devices
have to be controlled very precisely. This is challenging for three

∗ Corresponding author.
E-mail address: eva-maria.wartha@tuwien.ac.at (E.-M. Wartha).

main reasons: First, there are various other processes occurring simul-
taneously with the chemical reaction under consideration, which are
interfering with the control of the reaction conditions. Typical examples
are self-heating/cooling, depletion/accumulation of reactant gas or
limited gas diffusion. Second, temperature and partial pressure can
usually not be measured directly at the sample. The distance between
the sample and the sensor leads to a deviation of the measured value
from the actual value at the sample. Third, the reaction conditions may
not be the same across the whole sample. These effects are the hardest
to quantify. Nevertheless, it has been shown in various studies that
these inhomogeneities can significantly affect the measurements [1–3].

Most of these measurement errors can be eliminated or at least min-
imized by conducting the experiments carefully. To guide researchers
in this task and establish a reference of best-practices, the ICTAC [1,4]
has published a set of recommendations on how to conduct kinetic
experiments. Nevertheless, measurement errors cannot be eliminated
completely. The effect of mass transfer limitations in TA devices on
kinetic analysis was studied by various authors [5–8]. Also deviations
of the measured temperature and the temperature of the sample due
to thermal lag or due to self-heating/self-cooling have been observed
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in many experimental studies [9–12]. When those deviations cannot
be eliminated completely by adjusting the experimental procedure,
computational methods can help to make kinetic data more precise.

The temperature distribution in a TA device has been studied by
several authors [2,13–20] using Computational Fluid Dynamics (CFD).
Even though it is commonly assumed that the temperature is uniform
in the TA device, all of these studies revealed deviations between the
assumed or set – further referred to as nominal – temperature assump-
tion, and the actual temperature at the probe. Additionally, Benedetti
et al. [21] showed that the gas consumption of the reaction itself leads
to reduced concentrations and partial pressures at the reaction site com-
pared to the nominal values. Despite these numerous detailed studies
on non-idealities in a TA device, only one work suggested an approach
for dealing with these deviations and for deriving more accurate kinetic
models: An et al. [22] used a CFD model of a reacting particle in a drop
tube furnace to adjust the kinetic rate devolatilization parameters by
an iterative procedure, in which they fitted the computational results
to the experimental values.

A feature that all the above studies have in common is that they
use a reaction model to incorporate the effect of the reaction in the
simulation and compute the temperature distribution in the TA device.

If we wanted to use the simulation results for kinetic model iden-
tification, we run into a chicken-and-egg situation: in order to do the
CFD simulation, a model for the reaction kinetics is needed — but to
get enhanced kinetic data for kinetic model identification, the results of
the CFD simulation are needed. In this paper we propose an approach
that bypasses the need for a kinetic model in the CFD simulation.

The next section discusses the methods that our study is based on.
In Section 3 our virtual experimentation approach is introduced. We
describe how the experimental data is fed into the simulation model,
and we discuss the expected impact on kinetic models. To demonstrate
our approach, we chose a kinetic study of the reaction system Cu2O/
CuO (cuprous oxide/cupric oxide). The experimental setup and the
experiments conducted in that study are described in Section 4. There,
we also describe in detail the simulation model that we employed to
recreate the experiments from the study. In Section 5, we first discuss
the simulation results and then compare the kinetic model derived from
the enhanced data from the virtual experiment with the kinetic model
derived based on nominal values for the reaction conditions. We show
that dynamic effects in the TA device can affect the kinetic modeling
result despite adhering to quality standards for kinetic experiments.

2. Methods

This paper presents an enhanced kinetic modeling approach. For
this novel approach, two established methods are employed: CFD for
the virtual experimentation and the TensorNPK method for kinetic
model identification. This section discusses the basic principles of these
methods.

2.1. Computational fluid dynamics

A finite-volume method is used to model the gas–solid reaction pro-
cess in the experimental setup. We use the open-source object-oriented
library OpenFOAM [23], version 7.

The gas phase is modeled as an Eulerian phase, which is described
by the continuity equation Eq. (1) and the momentum equations
Eq. (2), where 𝜌𝑔 is the density, 𝐔𝑔 the velocity, 𝜏𝑔 the deviatoric stress
of the gas phase. Additionally, the mass source term 𝑆𝑚 resulting from
reaction and the momentum source term 𝑆𝑢 resulting from interaction
with the solid phase are used in the equations.
𝜕𝜌𝑔
𝜕𝑡

+ ∇ ⋅
(
𝜌𝑔𝐔𝑔

)
= 𝑆𝑚 (1)

𝜕
(
𝜌𝑔𝐔𝑔

)
𝜕𝑡

+ ∇ ⋅
(
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)
− ∇ ⋅

(
𝜏𝑔
)
= −∇𝑝 + 𝜌𝑔𝐠 + 𝑆𝑢 (2)

Besides the continuity and momentum equation, the energy equa-
tion Eq. (3) and the species equation Eq. (4) are also needed to describe
the multi-component gas flow:
𝜕
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where ℎ is the enthalpy, 𝐾 the kinetic energy, 𝛼eff the effective thermal
diffusivity, 𝑌𝑖 the mass fraction of species 𝑖, 𝜇eff the effective viscosity,
Sc the Schmidt number and 𝑆ℎ and 𝑆𝑖 the energy and species source
terms, respectively.

Eq. (1) to Eq. (4) describe the gas phase. The coupling with the
solid phase is realized by the source terms 𝑆. To compute the species
and heat source term 𝑆𝑖 and 𝑆ℎ the reaction kinetics are needed which
are usually obtained from a kinetic model. In our new approach, we
use the experimental data directly to avoid the need of a kinetic model
(see Section 3). The solid phase is described within the Lagrangian
framework. The particles are regarded as point centers of mass and
Newton’s law of motion is used to describe their movement:
d
d𝑡

(
𝑚𝑝𝑢𝑝

)
= 𝐹 (5)

where 𝑚𝑝 is the particle mass, 𝑢𝑝 is the particle velocity, and F is the
sum of the forces acting on the particle.

We use a two way coupling approach, which means the velocity
of the Eulerian phase directly impacts the Lagrangian particles and
vice versa [24]. For the momentum source term, the drag is calculated
according to the Gidaspow model [25].

The coupling of the energy equations is done using the Nusselt
correlation developed by Ranz and Marshall [26]:
Nu = 2 + 0.6 Pr1∕3Re1∕2 (6)

2.2. Kinetic modeling

For the kinetic modeling in this paper we employed the TensorNPK
method [27,28]. It is a data-driven method that is based on the General
Kinetic Equation (GKE)
d𝛼
d𝑡

= 𝑓 (𝛼) 𝑘(𝑇 )ℎ(𝑝, 𝑝eq) , (7)
where 𝑓 (𝛼) is the effect of the conversion 𝛼, 𝑘(𝑇 ) the effect of tempera-
ture 𝑇 and ℎ(𝑝, 𝑝eq) the effect of the driving force, usually expressed
as a function of the partial pressure 𝑝 and the equilibrium pressure
𝑝eq. The GKE is by far the most commonly applied formula to model
gas–solid reactions [4]. Essentially, it is a synthesis of solid-state and
homogeneous reaction rate models. 𝑓 (𝛼) models effects in the solid,
𝑘(𝑇 ) an Arrhenius-like temperature effect and ℎ(𝑝, 𝑝eq) concentration
and equilibrium effects.

The parameter of the ℎ(𝑝, 𝑝eq) term depends on the rate limiting
step [29]. In [28] we showed that equilibrium effects in gas–solid
reactions are best modeled based on the partial molar Gibbs enthalpy
of the reaction 𝐺𝑧(𝑇 , 𝑝). It is defined as the stoichiometric sum of the
chemical potentials of the reacting substances. For simple gas–solid
reactions, such as the oxidation of Cu2O in our use case, the partial
molar Gibbs enthalpy can also be expressed as a function of the partial
pressure and the equilibrium partial pressure. The partial molar Gibbs
enthalpy is the driving force of the chemical reaction. It is zero at the
equilibrium and increases with distance from the equilibrium. For the
kinetic models in this paper, we use the reduced Gibbs enthalpy as a
measure for the equilibrium distance.

𝛥eq =
𝐺𝑧

𝜈𝑔𝑅𝑇
= ln 𝑝

𝑝eq
(8)

Here, 𝜈𝑔 is the stoichiometric coefficient of the gaseous reactant.
The TensorNPK method extracts the effect of each variable (i.e. con-

version, temperature and equilibrium distance) on the reaction rate

Publications

90



Chemical Engineering Journal 430 (2022) 132850

3

E.-M. Wartha et al.

Fig. 1. Flow pattern through the TA device, the mesh and a close-up of the crucible
holding the probe (from left to right).

from experimental data. The output of the TensorNPK method are
vectors that describe the effect of each variable. These output vectors
can be used to predict the reaction rate at given reaction conditions,
further analyzed to get more insight into the kinetics or be used to
fit reaction models. In this paper, we use the 𝑘(𝑇 ) vector to fit the
Arrhenius equation and determine the apparent activation energy 𝐸𝑎.
Also, we approximate the ℎ(𝛥eq) vector with a second order polynomial
to describe the effect.

3. Virtual experiment

Modern thermal analysis (TA) devices use sophisticated strategies
to control the reaction conditions as precisely as possible. The sample
is placed in a crucible with thin walls made of a material with high
thermal conductivity. The temperature sensor measures the temper-
ature directly at the crucible to get a temperature reading as close
to the sample as possible. This temperature is controlled to achieve
the required temperature profile (isothermal or constant heating rate,
usually). Though, the reaction itself will interfere with this temperature
control: While the reaction progresses, the heat of reaction has to be
compensated by the temperature control. Due to the heat of reaction
and thermal lag, the temperature below the crucible can differ from
the local temperature in the sample [11].

The reactant partial pressure is usually set by mixing the reactant
gas with an inert gas, because most TA devices operate at ambient
pressure. The gas flow is controlled with mass flow meters and (ideal)
plug flow is assumed. Though, local concentration in the crucible may
deviate from the bulk gas flow, because of mixing effects and diffusion
effects of the reactant in the inert gas. If the reaction consumes the
reactant faster than it can be replenished from the bulk gas flow, the
local concentration will drop. Similarly, for reactions that produce gas,
reactant gas can accumulate in the crucible.

The experimental procedures have to be carefully designed to re-
duce or eliminate those deviations. Though, for some reaction systems
this might not be possible.

What can be done, when the limits of meticulous experimentation
are reached, but the reaction conditions still do not meet the re-
quirements of idealized experimental conditions? For these situations,
we propose to couple the experimental analysis with a simulation to
quantify the deviations and get accurate estimates of the actual reaction
conditions in the sample.

A spatially resolved 3D model of the TGA is generated to recreate
the experiment with a CFD simulation — this simulation procedure
will be referred to as the virtual experiment. To model the motion
of gas and solid phase, and its interaction with the solid reactant,
we use established physical CFD models (Section 2.1). When it comes

to modeling the reaction, we are confronted with a chicken-and-egg
problem: we need a kinetic model for the simulation, but we also need
the simulation to derive the kinetic model. This obstacle is overcome by
applying the conversion rates obtained from the experiments directly
in the simulation. Then, no kinetic model is needed. The measured
conversion rates are set as fixed conversion rates in the CFD simulation.
The only assumption required is that all particles react uniformly.
This is inherently ensured within TA experiments, where uniform re-
action progress needs to be ensured by choosing a sufficiently small
sample mass [1,30], since the conversion rate is determined by one
measurement only.

Regarding kinetic model identification, a caveat of our approach
is that the simulated reaction conditions will generally deviate from
idealized reaction conditions such as ‘‘isothermal’’ or ‘‘constant heating
rate’’. Consequently, most established kinetic modeling methods cannot
be used with the presented approach, because they are based on
exactly these idealized assumptions. To take advantage of the simulated
reaction conditions from the virtual experiment for kinetic model iden-
tification, the kinetic modeling method needs the capability to process
arbitrarily distributed data points. The TensorNPK method [27,28]
meets these requirements. Another option would have been to use
direct model fitting methods [31], but they require an a-priori selection
of the model terms, which could conceal important information. For
this reason, we chose the data-driven approach with the TensorNPK to
process the data from the virtual experiments. The only requirement
for the TensorNPK, is that the reaction obeys the GKE.

4. Use case

In general, the proposed approach can be applied to any gas–solid
reaction system. To demonstrate the suggested approach and make the
effects on kinetic model identification palpable, we use a set of kinetic
measurements for the reaction system cuprous oxide/cupric oxide
2Cu2O + O2 ⇄ 4CuO

that were conducted by Setoodeh Jahromy et al. [32]. This reaction
system is of interest, because it is a promising candidate for ther-
mochemical energy storage systems [33,34]. The experiments were
recreated using OpenFOAM. In this section we will first describe the
experimental setup that was used for the measurements, and then we
will describe the simulation setup that was used to recreate these
measurements.

4.1. Experimental setup

The reaction Cu2O/CuO was studied via simultaneous TA mea-
surements on a NETZSCH STA 449 C JUPITER. The apparatus has a
combined TGA-DSC (thermogravimetric analysis — differential scan-
ning calorimetry) sample holder. For the measurements aluminum
oxide crucibles were used. Experiments were conducted at ambient
pressure. The total gas flow (N2 and O2) was set to 100mL/min always,
using red-y smart series mass-flow controllers by Voegtlin. The reaction
was initiated by switching from pure N2 to a mix of O2 and N2. The
mixing ratio was adjusted to achieve the studied oxygen partial pres-
sures. The sample temperature was measured right below the crucible
and controlled by the TA software.

To rule out inhomogeneous reaction conditions within the probe,
the sample mass was adjusted so that no effect on the reaction progress
could be observed. A sufficiently small sample mass should ensure that
there are no concentration or temperature gradients within the probe;
this means that the conversion progress is not influenced by the mass
itself. This was experimentally confirmed for the experiments in our use
case [32].

The experiments were conducted with a Cu2O sample mass of
8.26mg and for a combination of nominal temperatures (800, 830, 880
and 930 ◦C) and nominal oxygen partial pressures (0.1, 0.2, 0.5 and
1 bar).
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Fig. 2. Temperature and partial pressure at the probe. Nominal values (black dots) and
simulated trajectories (in color — color-coded with the nominal temperature). Reaction
equilibrium (dash-dotted) and equidistant lines (dotted) are marked.

Fig. 3. Comparison between the nominal partial pressure and the actual partial
pressure at the probe.

4.2. CFD setup

The TA apparatus was discretized with 30 600 hexahedral cells,
displayed in Fig. 1. The solid walls were excluded in the simulation, and
the wall temperature was fixed to the nominal-temperature, because
this is controlled in the TA device. The mass flow and composition at
the inlet were fixed according to the experimental setup. The sample
was initialized as Cu2O at the beginning of the experiment. The solid
reactant was modeled by 209 Lagrangian parcels, with 105 particles per
parcel with a particle diameter of 5 μm. The experimental particle size

Table 1
Thermodynamic properties of the solid reactants.

𝑊 𝐻f 𝑐𝑝 𝜌 𝜅
gmol−1 Jmol−1 J kg−1 K−1 kgm−3 Wm−1 K−1

Cu2O 143.091 −1 192 248 609 6000 0.78
CuO 79.545 −1 958 639 600 6480 0.78

Fig. 4. Oxygen partial pressure of the virtual experiment at 1153.15K and 0.5 bar
oxygen partial pressure (nominal conditions) after 27 s experimental time, at 25%
conversion.

distribution obtained with a Mastersizer 2000 [32] showed a bi-modal
distribution. For this reason, the median diameter of the experimental
particle size distribution was used.

The gas phase is modeled as perfect gas, the viscosity is calculated
based on the Sutherland model, with the Sutherland coefficients (𝐴𝑠 =
1.512𝑒 − 6 and 𝑇𝑠 = 120) from [35]. The heat capacity 𝑐𝑝 is calculated
from JANAF polynomials from [35], see Table 2.

For the solid species the thermal conductivity 𝜅, density 𝜌 and heat
capacity 𝑐𝑝 are assumed constant. They are given in Table 1 along with
the heat of formation 𝐻f and the molecular weight.

5. Results and discussion

In the previous sections we introduced the virtual experiment and
explained how it is coupled with the real experiment to make use of
the enhanced data. Now, we will showcase the method by applying
it to the use case of Cu2O oxidation. First, we discuss the deviations
between nominal values and the values from the virtual experiment as
well as the causes for these deviations. Then, we examine the effect on
the identified kinetic model.

Fig. 2 shows the change of the reaction conditions during the virtual
experiment in relation to the nominal values. Even though a very small
sample mass has been used in the experiments (8.26mg), the distance
to the equilibrium reduces drastically compared to nominal values due
to self-heating of the probe and a drop of the partial pressure. The
temperature at the start of the reaction corresponds to the nominal
temperature, but during the experiment the temperature increases due
to the rapid release of reaction heat that cannot be dissipated instantly.
This temperature increase also reduces the distance to equilibrium and
consequently the driving force of the reaction. The drop in the oxygen
partial pressure also contributes to the reduction of the equilibrium
distance.

Fig. 3 shows the oxygen partial pressure in more detail. Initially,
the partial pressure is zero, because the TA device is flooded with N2
before the experiment. When the gas flow is switched to the O2∕N2
mixture, the partial pressure quickly rises. Though, it does not do so
immediately. This deviation from ideal plug-flow can be attributed to
back mixing and diffusion. Once the reaction starts, there is an obvious
drop in the partial pressure that is caused by the reactant depletion
in close vicinity of the sample. Comparing the partial pressure drops
in Fig. 3, it can be seen that the drop is more pronounced the faster
the reaction proceeds, but in pure O2 atmosphere, where the reaction
is fastest, there is no drop in the partial pressure. This observation
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suggests that the drop in partial pressure is caused by limited O2
diffusion in N2 atmosphere. This is in accordance with similar findings
for gasification processes [36,37].

To visualize the reactant depletion at the sample, we chose the
experiment with the nominal values 1153.15K and 0.5 bar oxygen par-
tial pressure, where the effect of reactant depletion is especially pro-
nounced. Fig. 4 gives a close look on this effect inside the TA device.
The partial pressure near the solid reactant is drastically reduced and
the partial pressure gradient is clearly visible. Similar effects have been
observed by [2,16,17].

The deviations between the idealized assumptions of constant tem-
perature or partial pressure have been studied extensively, for example
by [2,15–18]. A central take-away point of our study is, that it is
possible to quantify these effects by setting up a CFD simulation and
performing a virtual experiment. The results from the virtual exper-
iment can be used to estimate the sample temperature and partial
pressure in situations, when it is not feasible to improve the exper-
imental design to the point where unwanted effects are eliminated
completely and no deviations between the measured or nominal con-
ditions and the actual conditions at the probe occur. Though, this
approach is not meant to replace careful experimentation.

To make the impact on the kinetic model palpable, we used both the
nominal values and the simulated values to derive kinetic models for
the oxidation of Cu2O with the TensorNPK method. Fig. 5 shows the
contributions of conversion, temperature and distance to equilibrium
according to the GKE. The simulated temperature and partial pressure
affects the estimation of the 𝑘(𝑇 ) and ℎ(𝛥eq) terms in the GKE. With
simulated values, the temperature sensitivity is considerably lower than
with nominal values. This is, because high reaction rates are attributed
to higher temperatures when self-heating is taken into consideration
(Fig. 2). A similar observation can be made for the effect of the
equilibrium distance: With simulated values it is less steep in close
proximity to the equilibrium, because high reaction rates are attributed
to smaller distances to the equilibrium.

This larger temperature sensitivity can also be seen in the activation
energies that are derived from the 𝑘(𝑇 ) values: With nominal values the
apparent activation energy is 218.9 kJ/mol; with simulated values it is
197.5 kJ/mol.

The estimation of the contributions to the GKE and the effect on the
fitted models – such as the Arrhenius equation – show a significant
impact of self-heating and reactant depletion. If these effects are not
taken into account when deriving a kinetic model, this can have a
practical meaning for chemical engineering applications. To illustrate
this, we plotted the effective temperature dependency in Fig. 6. It
shows the predicted reaction rate as a function of temperature at fixed
oxygen partial pressures and 𝛼 = 0.5. These curves have been generated
with the Arrhenius function and the second order polynomial fit to
the effect of the equilibrium distance (solid lines in Fig. 5). Note, that
the temperature input values to the kinetic models were in the range
from 1070K to 1200K. The effective temperature dependency beyond
these values is extrapolated. Even though the diagram should not be
overinterpreted for this reason, it is a good illustration of the impact of
self-heating and reactant depletion on the kinetic model nonetheless.

Fig. 6. Effective temperature dependency based on the two kinetic models in Fig. 5.
The models were evaluated at 𝛼 = 0.5 and three partial pressures.

Table 2
Coefficients for the heat capacity calculated based on JANAF polynomials taken from
[35].
N2 3.531 01 −0.000 123 661 −5.029 99 ⋅ 10−7 2.435 31 ⋅ 10−9

−1.40881 ⋅ 10−12 −1046.98 2.967 47
O2 3.782 46 −0.002 996 73 9.8473 ⋅ 10−6 −9.6813 ⋅ 10−9

3.243 73 ⋅ 10−12 −1063.94 3.657 68

The most striking difference between the two predictions is that the
model based on enhanced kinetic data shows a much higher reaction
rate peak. In general, the rate is dominated by the exponential Arrhe-
nius function far away from the equilibrium, and then drops sharply
towards the equilibrium. Thus, the later the drop, the higher the peak.
The position of the drop depends mainly on the steepness at which the
equilibrium dependency ℎ(𝛥eq) approaches zero. Fig. 5 shows that the
model derived from simulated values is much steeper and, thus, it fea-
tures higher peaks in the effective temperature dependency. The reason
for this difference in steepness is, that the simulation showed that the
experimental conversion rates need to be attributed to temperatures
and partial pressures much closer to the equilibrium than the nominal
values suggested.

This change of the peak has practical implications: It means that op-
timal (in the sense of highest rate) reaction conditions can be achieved
much closer to the equilibrium than the nominal model would suggest.
In fact, the peak reaction rate can be achieved at about 40K above
the prediction with nominal values. For applications in thermochemical
energy storage, for example, this is good news. If the storage material
can be operated at higher temperatures, the thermal efficiency can be
expected to be considerably higher.

The observations on the CuO/Cu2O reaction system demonstrated
the possible effects of incorporating enhanced data in kinetic model
identification, which could be done in the proposed way for any
gas–solid reaction system. Although careful experimentation is still
indispensable, the suggested approach to couple a virtual experiment
with kinetic model identification paves the way towards more precise
analysis of gas–solid reactions.

Fig. 5. Output of the TensorNPK method using the nominal reaction conditions and the simulated values as input.
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6. Conclusion

Accurate readings of the actual reaction conditions of the sample
are essential for deriving reliable kinetic models. Even if experiments
are conducted meticulously, nominal temperature and partial pressure
values are known to be deviating from the actual conditions at the
sample due to effects such as self-heating and reactant depletion.

These effects are inherent to gas–solid reactions and can never
be eliminated completely. Though, with the presented method, the
deviations can be quantified through a virtual experiment and the
kinetic data can be enhanced. In the virtual experiment the temperature
and partial pressure at the probe-site are determined with a CFD
simulation which also takes into account the effect of the chemical
reaction itself. The key novelty of our approach is that no kinetic model
is required for the simulation. Instead, the reaction is modeled by using
the experimentally determined conversion rates as direct input into the
CFD simulation. In this way, the result of the virtual experiment can be
used for kinetic model identification.

Since the enhanced data does not necessarily obey any simplified
reaction conditions, e.g. isothermal or constant heating rate, a method
to process arbitrary data for kinetic model identification is necessary.

To demonstrate our approach, we applied our approach to the
oxidation of Cu2O and used the TensorNPK method to derive two
kinetic models: one using the classical approach with nominal values,
and one using the reaction conditions directly at the sample calculated
in the virtual experiment. The difference in the derived models can be
critical for chemical engineering applications such as reactor design.

The results show that virtual experiments are a versatile tool to
enhance experimental results when measured values are expected to
be affected by effects such as self-heating/cooling and reactant deple-
tion/accumulation. However, it is not meant to replace precise exper-
imentation. Carefully planning, preparing and conducting experiments
should still have highest priority. Our approach allows to quantify non-
idealities in the virtual experiment and incorporate them in the kinetic
model identification.

List of acronyms

CFD Computational Fluid Dynamics
DSC Differential Scanning Calorimetry
GKE General Kinetic Equation
NPK Non-parametric Kinetics
TA Thermal Analysis
TGA Thermogravimetric Analysis

List of symbols

symbol name unit
𝑐𝑝 heat capacity J kg−1 K−1

𝐠 gravitational acceleration m s−2
ℎ enthalpy J kg−1
𝐻f heat of formation J kg−1
𝐾 kinetic energy m2 s−2
𝑝 pressure Pa
𝑆ℎ energy source term Jm−3 s−1
𝑆𝑚 mass source term kgm−3 s−1
𝑆𝑢 momentum source term Nm−3 s−1
𝑡 time s
𝐔 velocity vector m s−1
𝑊 molecular weight gmol−1
𝑌𝑖 mass fraction of species 𝑖 kg kg−1
𝛼eff effective thermal diffusivity m2 s−1
𝜅 thermal conductivity Wm−1 K−1

𝜇eff effective viscosity Pa s
𝜌 density kgm−3

𝜏 deviatoric stress tensor Nm−2
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Abstract

The main production route for steel in Europe is still via the blast furnace. Computational fluid dynamics

(CFD) can be used to analyze the process virtually and thus improve its performance. Different reducing

agents can be used to (partially) substitute the coke and consequently reduce overall emissions. To analyze

different reducing agents effectively using CFD, their conversion process has to be modeled accurately. Under

certain conditions, coal particles can cluster as the result of turbulence effects, which further reduces the

mass transfer to the coal surface and consequently the conversion rate. We analyze the effect of turbulence

under blast furnace raceway conditions on the conversion of coal particles and on the overall burnout. The

model is applied in RANS to polydisperse particle systems and this is then compared to the simplified

monodisperse assumption. Additionally, the model is extended to gasification reactions. Overall, we find

that the turbulent effects on coal conversion are significant under blast furnace raceway conditions and

should be considered in further simulations. Furthermore, we show that an a-priori assessment is difficult

because the analysis via averaged quantities is impractical and the effects of turbulence need to be correlated

to the regions of conversion.

Keywords: coal combustion, blast furnace, turbulence effects, kinetic-diffusion limited, computational

fluid dynamics

1. Introduction1

Blast furnaces together with basic oxygen furnaces account for around 60 % of current steel production2

in Europe [1]. Due to its very large energy consumption and high CO2 emissions, the process is subject3

to ongoing improvements. Computational fluid dynamics (CFD) can help to better understand the process4
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Nomenclature

Acronyms

CFD Computational Fluid Dynamics

DNS Direct Numerical Simulation

EDC Eddy Dissipation Concept

RANS Reynolds Averaged Navier-Stokes

Greek symbols

α mass transfer rate

α̃ correction factor

ϵ turbulent dissipation rate, m2 s−3

ν viscosity, m2 s−1

ρ density, kgm−3

τ time scale, s

Roman symbols

A1/2 parameters in the cluster model

A surface area, m2

Ar,1/2 pre-exponential factor

Asr parameter for the CO/CO2 ratio

C concentration, kmolm−3

cp specific heat capacity, J kg−1 K−1

Da Damköhler number

D Diffusion coefficient, m2 s−1

d diameter, m

d̄p,1 average diameter on number basis, m

d̄p,3 average diameter on mass basis, m

Ea/1/2 activation energy

e emissivity

f scattering factor

h retention coefficient

I (α̃) Index as a function of the correction fac-

tor

k turbulent kinetic energy, m2 s−2

L length, m

m number of particles

n parameter in Rosin-Rammler dist.

np particle number density

p pressure, Pa

Re Reynolds number

R ideal gas constant, Jmol−1 K−1

RR (α̃) cumulative conversion rate

Sc Schmidt number

Sh Sherwood number

St Stokes number

TA Ea/R, K

Tsr parameter for the CO/CO2 ratio

T temperature, K

v stoichiometric coefficient

W molecular weight, kJ kmol−1

Sub- & superscripts

0 initial condition / at time 0

b bulk

chem chemical

cl cluster

daf dry ash free

f fluid

g gas

hom homogeneous

i iteration index

L integral

p particles

q quiescent

rel relative

s surface

t turbulent
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and obtain detailed information about the process conditions inside the blast furnace. Reducing agents can5

be supplied in the blast furnace raceway zone to reduce coke consumption [2, 3]. Fig. 1 shows a schematic6

blast furnace with its in- and outflows and the raceway zone highlighted. The raceway is the cavity formed7

in the vicinity of the tuyere.8

iron ore,
coke

top gas

hot blast,
reducing agents

slag,
pig iron

raceway zone

raceway cavity

tuyere

Figure 1: Schematic description of the blast furnace with in- and outflows marked by arrows. Raceway zone is marked by

dashed rectangle, two raceway cavities by dashdotted lines and tuyere position by dashed arrow.

A commonly used reducing agent is pulverized coal. Pulverized coal particles have high heating rates,9

a short residence time in the raceway zone, and can withstand highly turbulent conditions. Because the10

experimental reconstruction of the raceway conditions is difficult [4], CFD can be used to test the conversion11

of different coals in the raceway zone virtually. Shen and Yu [5], Liu and Shen [6] and Liu et al. [7] presented12

studies modeling the coal as Lagrangian particles in the raceway zone. To gain useful insight in blast furnace13

operation through CFD, suitable models covering the essential effects of conversion need to be applied.14

Many approaches to model the turbulent effects on homogeneous reactions, for example combustion15

reactions [8], exist. They can be applied to model the homogeneous reactions in the blast furnace and have16

been reviewed by [9]. On the contrary, the work on turbulent effects on heterogeneous reactions is relatively17

sparse. First attempts to study those effects have been made by Krüger et al. [10] and Haugen et al. [11].18

In direct numerical simulations (DNSs) they showed that turbulence can significantly influence the mass19

3

Paper 4

101



transport to small particles and consequently reduce their conversion rate. They published a correction20

factor to model this effect based on the turbulent flow conditions. Later on, the work has been extended to21

polydisperse particle systems by Karchniwy et al. [12] and first unresolved simulation studies for industrial22

scale applications have been presented by Karchniwy et al. [13]. Therefore, the question arises whether the23

conditions in the raceway are such, that the influence of turbulent clustering should be taken into account24

when modeling reducing agent conversion. Providing insight on these objectives is the main focus of this25

paper.26

To ground the ensuing discussion, the necessary models to describe the thermochemical conversion27

process of Lagrangian particles in the blast furnace are introduced. This is followed by a recap of the28

correlation for the turbulent effects on the conversion by Krüger et al. [10], Haugen et al. [11]. To obtain a29

better understanding of the effects, their influence is illustrated in the theoretical considerations in Section 2.30

We first studied the effect of the clustering in an injection rig. The particle diameter size was varied31

and, additionally, the importance of the gasification reactions were also investigated. Following this, the32

turbulent clustering effect was studied in a model of a real blast furnace, reported on in Section 3. Finally,33

in Section 4, we summarize our results and present concluding remarks on the importance of clustering for34

the coal conversion under blast furnace conditions.35

2. Models and Implementation36

We used a finite volume approach to simulate the flow and the combustion in the domain of interest.37

The software OpenFOAM [14] - version 9 - was used as a basis, adding the necessary gasification and38

devolatilization models and the model for the influence of turbulence on the mass transfer to the particles.39

The model details are discussed in the following and the code amendments for the clustering model can be40

found in [15].41

2.1. Gas phase42

Industrial processes, such as the blast furnace, are usually large in size. Therefore, the spatial resolution43

used in CFD is limited and the turbulence scales are not resolved on the numerical mesh. In this study, we44

used a Reynolds Averaged Navier Stokes Equation (RANS)-approach to model the fluid flow in the domain45

of interest. A two-equation turbulence model was chosen - the k-ϵ model [16, 17], which is widely applied46

in blast furnace simulations [9].47

The gaseous phase is a multi-component mixture, which reacts with the solid particles. The volatile48

components are released from the solid combust in the gas phase. The turbulent combustion process needs49

to be modeled by a turbulence-chemistry interaction model. We used the Eddy Dissipation Concept (EDC)50

from Magnussen [18], with the simplification of treating the fine structures as plug flow reactors (PFR)51

4
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instead of partially stirred reactors (PSR) due to its reduced computational cost. The implications of this52

modeling choice have been thoroughly discussed by Ertesv̊ag [19] and Bösenhofer et al. [20].53

2.2. Solid particles54

The combustible particles were treated as Lagrangian particles – modeled according to Newton’s laws55

of motion. The interaction between the solid and gas phase was modeled by a drag model for the momen-56

tum (spherical drag model) and a heat transfer model [21, 22] for the energy. The species and momentum57

equations were coupled through the source terms from the thermo-chemical conversion. The coal conver-58

sion was treated as a consecutive process consisting of: drying of the moist coal (vaporization of water),59

devolatilization, and char conversion. The modeling details of each conversion step are described in the60

following subsections.61

2.2.1. Drying62

The drying process of the coal was modeled according to:63

dmH2O

dt
= Sh

DH2O

dp
(CH2O, s − CH2O,b)πd

2
pWH2O (1)

where the Sherwood correlation according to Eq. (9) was used - with the standard relative velocity urel for64

the particle Reynolds number, Eq (11). DH2O is the diffusion coefficient for water, dp the particle diameter,65

WH2O the molecular weight of water, and CH2O, s and CH2O,b the vapor concentration at the surface and66

in the bulk, respectively, calculated by the ideal gas law at film temperature. For the calculation of the67

concentrations CH2O, s and CH2O,b the saturation pressure and bulk pressure, and the mass fraction at the68

surface and in the bulk were used.69

2.2.2. Devolatilization70

A two-step kinetic model was used to model the devolatilization process above a temperature of 400 K.71

In this model, the release rate of volatiles for a given particle is given by:72

dmvol

dt
=

�
α1Ar,1 exp

E1

RT
+ α2Ar,2 exp

E2

RT

�
mvol,0 (2)

where mvol,0 is the initial volatile content of the particle, and Ar,1, Ar,2, E1, E2 are the kinetic parameters73

taken from Shen et al. [23], see Table A.3. Shen et al. [23] compared different devolatilization models for coal74

combustion under blast furnace conditions and concluded that this two competing step model is sufficiently75

accurate. The parameters α1 and α2 were calculated based on the volatiles content:76

α1 = Yvol,daf α2 = 1.25α2
1 + 0.92α1. (3)

5
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The volatiles were modeled as one pseudo-species according to the elemental analysis for the coal. The77

thermophysical properties of that volatile species were modeled as for CH4 and the heat balance was closed78

by adjusting the latent heat of devolatilization Ldevol. The same approach was used e.g. by Petersen and79

Werther [24] in combination with a gasification model.80

2.2.3. Char conversion81

The remaining char after drying and devolatilization was modeled as carbon and ash. The carbon reacts82

according to the shrinking particle model [25], taking boundary diffusion limitation and kinetic limitation83

into account, while neglecting any pore diffusion effects, such that the conversion of char is given by:84

dmchar

dt
= ηAppi

kkinkdif
kkin + kdif

(4)

with the particle surface area Ap, the partial pressure of the reactant pi, the effectiveness factor η - a model85

parameter - and the reaction contributions, taken as a resistance model between the kinetic reaction rate86

kkin and the diffusion rate kdif .87

The kinetic reaction rate was modeled according to an Arrhenius expression:88

kkin = Ar exp
Ea

RT
(5)

where Ar is the pre-exponential factor, Ea the activation energy, R the ideal gas constant and T the89

temperature, see Table A.4. The diffusion rate determined through mass transfer to the boundary was90

modeled as:91

kdif =
C

dp

�
Tp + Tf

2

�0.75

(6)

where C is a diffusion constant (Table A.4), dp the particle diameter, and Tp and Tf the particle and fluid92

temperatures, respectively.93

2.3. Turbulence effect94

The models presented for the thermochemical conversion process of a coal particle are based on single95

particle models. Krüger et al. [10] and Haugen et al. [11] showed that small particles cluster in turbulent96

eddies. Consequently, since particles consume oxygen, the local oxygen concentration in the particle sur-97

roundings is typically significantly lower than the average oxygen concentration in the larger control volume.98

This leads to reduced mass transfer to the particle surface and consequently to reduced conversion rates.99

For the derivation of the turbulence effect, several dimensionless numbers were used, which are introduced100

here. First, the Damköhler number, which relates the integral time scale:101

τL =
2

3

k

ϵ
(7)
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to the chemical time scale τchem:102

Da =
τL

τchem
= τLαhom,q. (8)

The chemical timescale was approximated as the inverse of the reaction rate in a homogeneous quiescent103

flow αhom,q. Furthermore, the Sherwood number was used, which represents the rate of convective mass104

transfer to diffusive mass transfer. It can be expressed in analogy to the Nusselt number for heat transfer105

by the following correlation:106

Sh = 2 + 0.69Re1/2Sc1/3 (9)

where the Schmidt number (Sc) is defined as the ratio of the viscous (dynamic viscosity ν) to the mass107

diffusion rate (diffusion coefficient D):108

Sc =
ν

D
. (10)

Special care needs to be taken for the particle Reynolds number, because no true relative velocity exists109

between the velocity fluctuations of the turbulent fluid and the Lagrangian particles [11]:110

Re =
ureldp

ν
. (11)

The true relative velocity velocity was approximated according to Haugen et al. [11]:111

urel = min

�
0.41

2

3
k, 0.41

2

3
k

Stk
−2/3
L − k

−2/3
η

k
−2/3
L − k

−2/3
η

�
(12)

including the turbulent kinetic energy k, the wave number of the integral scale112

kL = 2πϵ

�
3

2k

�3/2

(13)

and the Kolmogorov scale113

kη = 2π
ϵ0.25

ν0.75
. (14)

The Stokes number114

St =
τP
τL

(15)

is the ratio of the integral to the particle time scale, where115

τP =
ρpd

2
p

18µ
. (16)

Let us now turn to the actual turbulence effect on the mass transfer rate to the particles. Krüger et al.116

[10] proposed a correction factor to define the relationship between the reaction rate in turbulence-induced117

clusters, α, in relation to the reaction rate in a homogeneous quiescent flow, αhom,q:118

α̃ =
α

αhom,q
. (17)
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The reaction rate in homogeneous, quiescent flow, based on pure diffusion limitation is given as:119

αhom,q = Anpkeff = Anpkdiff (18)

where A is the mean external surface area of the particles, np the particle number density and keff the120

effective reaction rate, which in case of diffusion limitation is equal to the diffusion rate kdiff .121

To investigate the effect of turbulent clusters, two cases can be considered: First, for small Damköhler122

numbers (Eq. (8)), referred to as the individual particle combustion regime, the oxygen consumption rate123

scales linearly with the particle number density and is enhanced by the turbulence, scaling with the Sherwood124

number (Eq. (9)) as:125

αhom,t = αhom,q
Sh

2
. (19)

Second, for large Damköhler numbers, referred to as sheath combustion, the conversion is independent126

of the particle number density:127

αcl =
(A1A2) Sh

τLSt
. (20)

The correlation for A1A2 was derived by Haugen et al. [11] as A1A2 = 0.08 + St
3 , where St is the Stokes128

number (Eq. (15)) and τL is the integral time scale (Eq.(7)). The regimes for high and low Damköhler129

numbers were connected by taking the harmonic mean:130

α =
αclαhom,t

αcl + αhom,t
. (21)

Combining Eq. (17), Eq. (19), Eq. (21), and Eq. (8) yields the correction factor, which was also obtained131

by Krüger et al. [10], as:132

α̃ =
αcl

αcl +DaSh/ (2τL)

Sh

2
. (22)

The models shown were derived based on the assumption of isotropic turbulence. This was expected to133

be a relatively good approximation for the char conversion phase and the correlation for the clustering could134

be applied to RANS. Karchniwy et al. [13] presented the application of the model in RANS simulations.135

However, since the correlation was only applied for single particle diameters in different cases and for136

polydisperse particles in RANS, some clarification should be made. The Sherwood and Stokes numbers can137

be calculated on a particle or parcel basis, as for a single diameter. However, we suggest using averaged138

values on a cell basis for the Damköhler number and for the theoretical combustion in a quiescent flow.139

This strategy seems justifiable because Karchniwy et al. [12] showed that polydisperse particles cluster in140

the same regions and in a similar way. Furthermore, the Damköhler number is an average measure for the141

overall conversion process of the particle cloud without clustering.142
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2.4. Theoretical considerations143

If a blended reaction model as in Eq. (4) is used, the clustering only influences the mass transport to the144

particles and therefore only the diffusion reaction rate and not the intrinsic kinetics, Karchniwy et al. [13]145

showed, that even if the turbulence correction factor α̃ is low in some cases, the clustering is less influential146

if the conversion is mainly controlled by kinetics. To illustrate the two regimes, Fig. 2 shows the diffusion147

reaction rate, the kinetic reaction rate and the effective reaction rate as a function of temperature for the148

char oxidation parameters used in this study (see Table A.4).149

500 1000 1500 2000 2500 3000
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Figure 2: Reaction rates - kinetic effect (orange), diffusional effect (blue) and effective (black) - over temperature for different

particle sizes (varying line width)

As can be seen from Fig. 2, the regime change is not only influenced by temperature, but also by the150

particle diameter. This is because the kinetic reaction rate is not influenced by the diameter but the diffusion151

rate varies with 1/dp. Therefore, the thermochemical conversion of smaller particles is usually less diffusion152

controlled. Although, specific parameters were used for Fig. 2, a kinetic-diffusion limited reaction model153

will always show similar characteristics.154

Fig. 3 shows the correction factor α̃ as a function of the particle diameter for a range of turbulent kinetic155

energy and particle number density values. The temperature was fixed to 2500K and the particle density to156

1300kgm−3, because only minor effects of those parameters were observed. The most influential parameter157

seems to be the particle number density. The reason for this is that for large particle number densities the158

chemical timescale becomes comparable and eventually also larger than the life time of the particle clusters.159

The volume occupied by the cluster will therefore be void of oxygen, while the surrounding volumes will160

contain much oxygen.161
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Figure 3: Correction factor as a function of particle diameter, computed for ρ = 1300kgm−3, T = 2500 K, p = 1 bar

3. Results162

3.1. Injection Rig163

To study the turbulent clustering effects on coal under raceway conditions an injection rig was first164

investigated. The setup was designed to resemble blast furnace conditions from Mathieson et al. [26]. A165

preheated coflow was injected to mimic the blast, and coal was injected through a lance inclined by 6◦ to166

resemble the injection lance in a blast furnace, see Fig. 4. The walls around the combustion chamber were167

insulated.168

blast
coal + conveying gas

cooling gas

Figure 4: Schematic drawing based on the experimental setup from Mathieson et al. [26] and publications from Shen et al.

[23, 27, 28]

For the CFD simulation, the domain was discretized by approximately half a million, mainly hexahedral,169

cells using snappyHexMesh from OpenFOAM-9 [29]. The boundary conditions were set according to the170

experiment and are summarized in Table 1. The case setup can be found in the following repository [15]. At171

the outlet, the pressure was set to 1 bar and Neumann boundary conditions used for the other quantities.172

For the turbulent kinetic energy, a 5% turbulence intensity inlet condition was used and for the dissipation173

rate a turbulent mixing length model with wall function models at the wall boundaries.174

The coal with the lowest volatile content from Shen et al. [27] was chosen to investigate the turbulence175
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Table 1: Boundary conditions for the injection rig simulations

temperature inflow type

K Nm3/h

blast 1473 300 air

conveying gas 298 2 N2

cooling gas 298 3.2 air

chamber walls 1800 - -

effects on char combustion. The mass flow rate of the coal is 31.6 kg h−1. The particles were injected with176

an inlet velocity of 20 m s−1 and an initial temperature of 300 K. The proximate and ultimate analysis177

of the coal are given in Table A.4. The particles are reflected at the wall boundaries and the velocity is178

multiplied by a restitution coefficient, which was set to 0.9. Additional constant particle parameters are179

given in Table A.4.180

Different cases were investigated to study the effect of clustering on coal conversion in the injection rig.181

In Section 3.1.1, we study the effect with a fixed particle diameter, equal to the mean diameter on mass182

basis (d̄p,3 = 30µm) or the mean diameter on number basis (d̄p,1 = 6.2µm). In Section 3.1.2, the case is183

then extended by employing a diameter distribution of the particles to compare it to the single diameter184

approximation. Finally, the effect of turbulence on additional gasification reactions is shown in Section 3.1.3.185

3.1.1. Injection rig - fixed diameter186

Fig. 5 shows the conversion averaged over the downstream position for the two different particle diameters.187

For both cases the result is plotted with the standard conversion model (“standard”) and the model including188

the turbulent clustering effects (“clustering”). For the larger particles d̄p,3, we see a slight reduction in189

conversion caused by turbulence. This is especially pronounced in the downstream part of the rig. The190

results agree with the average turbulence correction factor, shown in Fig. 6, which is below one until z=1.2 m191

of the domain. At the beginning, we have lower correction factors for this case, but the coal still dries and192

devolatizes and, therefore, no influence on the char conversion can be seen. The char conversion for the d̄p,3193

particles is mainly diffusion controlled, because the particles are already heated up above 1200 K when char194

conversion begins, as shown in Fig. 2.195

For the small particles (d̄p,1 = 6.2µm), we observe a reduction in conversion at the first section (up to196

0.2 m), followed by no influence of turbulence at approximately 0.4 to 0.6 m downstream. Fig. 6 shows the197

average turbulence correction factor, which is below 1 for the small particles in the whole domain. This198

confounds the observation from Fig. 5, where the conversion seems not to have been influenced or even199

enhanced by the turbulence for the small particles between 0.45 and 0.6 m.200
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Figure 5: Char conversion in the injection rig averaged over the downstream position for the case with particle diameter

d̄p,3 = 30µm and d̄p,1 = 6.2µm.

Therefore, in Fig. 7 we take a closer look at the combination of the turbulence correction factor and the201

CO source term in the cross section of the rig. In the first part of the rig (up to 0.2 m), the turbulence202

correction factor is virtually everywhere well below unity, corresponding to a reduction in the conversion.203

Further downstream, α̃ is still well below unity in the jet center, but approaches unity in the outer parts.204

This shows that for this particular case, the regions where most of the char conversion occurs are correlated205

with the regions where the correction factor is approaching unity. Furthermore, the overall conversion of206

the smaller particles is less diffusion controlled than for the larger particles, see Fig. 2, which leads overall207

to few turbulence effects.208

To quantitatively evaluate the effect of clustering, let us organize all particles in increasing order with209

respect to their correction factor α̃. The particle with the lowest correction factor is identified by the index210

i = 0 and the particle with the highest correction factor with i = m, where m is the total number of211

particles. We now define the index I (α̃) as the index of the particle with the highest correction factor that212

is still below α̃. The cumulative conversion rate RR (α̃) to quantitatively evaluate the turbulence effect is213

then given by:214

RR (α̃) =

i=I(α̃)�
i=0

dmchar,i

dt

 �
i=m�
i=0

dmchar,i

dt

�
(23)

In Fig. 8 this cumulative conversion rate is plotted over the correction factor. The point for RR (α̃) = 50%215

is marked by circles. This evaluation gives a better estimate of the overall turbulence influence than the216

average calculation of α̃ as a function of the downstream position in Fig. 6. However, whether the conversion217

is diffusion or kinetic controlled will also influence the overall turbulence effect. Fig 8 suggests that the218

reduction in mass transfer is stronger for the d̄p,1 = 6.2µm particles than for the d̄p,3 = 30µm particles,219

but it is less according to Fig. 5 because the conversion of the d̄p,1 particles is less diffusion controlled than220
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Figure 6: Turbulence correction factor in the injection rig averaged over the downstream position for the case with particle

diameter d̄p,3 = 30µm and d̄p,1 = 6.2µm.

for the d̄p,3 particles (see Fig. 2). Overall, the relation shown in Fig. 8 gives a quantitative estimate of the221

possible influence of turbulence, but is still dependent on the conversion regime.222

3.1.2. Injection rig – diameter distribution223

We now look at the effect of the particle size distribution for the same setup as studied in Section 3.1.1. In224

real applications, and in the experiments by Shen et al. [27], coal particles are present in certain size ranges.225

Karchniwy et al. [12] showed that polydisperse particles experience the effects of clustering in the same way226

as monodisperse systems do. Therefore, the turbulence correction factor for monodispersed particles was227

applied directly to all the particles here.228

Fig. 9 shows the overall char conversion as a function of downstream position for different size groups229

– comparing the standard model and the model with turbulent clustering effects. Similarly, as for the230

d̄p,3 particles, the char conversion is effectively reduced through the reduced mass transfer to the clusters.231

Compared to the char conversion for the d̄p,3 particles (30µm) as shown in Fig. 5, the char conversion starts232

earlier and overall is slightly reduced. This is related to the difference in the char conversion rate for the233

differently sized particles. The reduction in the average conversion at approximately 1.2 m downstream234

might seem unreasonable at first. However, this is related to the averaging of all the particles and the fact235

that particles of different size hit the wall at different positions where the injection rig’s cross-section is236

reducing. This is also undermined by the conversion rates of the grouped particles in Fig 9. They have237

been grouped by size and their average conversion has been plotted. The smallest particles are converted238

quite fast, with only a minor influence of turbulence – similar to the d̄p,1 particles before. The influence239

of clustering becomes more pronounced for the larger particles. The largest particles are only converted240

slightly before they reach the end of the injection rig. Overall, the conversion behavior and influence of241
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Figure 7: The turbulence correction factor α̃ (top) and the CO source term from char oxidation (bottom) for the simulation

with d̄p,1 = 6.2µm

clustering is similar to the conversion of the d̄p,3 particles, but also the effects of smaller and larger particles,242

contributing to the average char conversion marked by the green average lines in Fig. 9.243

3.1.3. Injection rig – oxidation & gasification244

In the blast furnace, besides char oxidation, gasification reactions play an important role. According to245

Maier [30] a kinetic-diffusion approach can be chosen to model the gasification reactions using the kinetic246

parameters given in Table A.4. For the effect of turbulence, the same relation, as derived by Krüger247

et al. [10], was used for the gasification reactions. This is justifiable since the derivation was not limited248

to oxidation reactions. For the H2O and CO2 gasification reactions, the assumption of diffusion limited249

reactions is reasonable for high temperature, since these reactants also need to be transported to the char250

surface. However, for lower temperatures and in the presence of O2, the assumption of the model does not251

hold, since for these conditions CO2 can be present right at the surface due to char oxidation. Nevertheless,252

for the blast furnace application the temperatures are high and, in general, the gasification reactions are253

mainly kinetically limited for low temperatures.254

Fig. 10 shows the conversion as a function of downstream position for the diameter distribution with255

oxidation and oxidation and gasification reactions. Naturally, the overall conversion is higher if gasification256

is considered. The overall trend is similar for both cases, but the effect of turbulence is slightly higher when257

gasification reactions are included. This is related to the fact that oxygen depletion plays only a minor role258

for the gasification reactions. This means that reactions also occur in the regions with lower turbulence259

correction factors. Additionally, temperatures are quite high, and therefore the gasification reactions are260
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Figure 8: Cumulative reaction rate over turbulence correction factor α̃

also partly diffusion controlled.261

For simplicity, the same relation used to compute the diffusion parameter for the Schmidt number262

was employed for the turbulence effect for oxidation and gasification reactions. The diffusion parameter263

was approximated by a third order polynomial depending on temperature, based on the diffusion model264

for oxygen in nitrogen. The diffusional parameter is slightly different for CO2 and H2O. However, the265

differences are negligible, especially in the regimes were mass transfer is reduced by turbulence. However, if266

the model were applied to H2 gasification, the differences might be significant and an independent Sherwood267

number should be calculated.268

3.2. Blast Furnace Raceway269

To study the effect of turbulence under real blast furnace conditions, the raceway zone of a blast furnace270

was simulated with pulverized coal injection. A description of the simulated blast furnace and the boundary271

conditions is given by Maier [30]. In the raceway zone, not only are the blast and the reducing agents present,272

but also the coke supplied from the top and the liquid iron and slag. Because the coke also reacts with the273

blast, it is also modeled as an Eulerian phase in the raceway zone. The conversion of coke is modeled by274

oxidation, and H2O, H2 and CO2 gasification reactions. The coke bed has a porosity of 0.5 and is assumed275

stationary, with a prefixed raceway shape and size, because the focus is on the reducing agents. Details on276

the chosen coke conversion models can be found in [31].277

To study the turbulence effect on the coal conversion, 680 kg/h of the same coal as in the lab scale278

simulation were injected into the blast furnace. Fig. 11 shows the gas phase temperature profile in the279

central plane of the simulated raceway zone. The projected position of the coal particles is marked by points280

and scaled by their mass. The Lagrangian coal particles are deleted when they hit the stationary coke bed.281

This simplification is made because a lot of coal is converted before hitting the coke bed and there is a lack282
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Figure 9: Char conversion of polydisperse coal particles averaged over downstream position. The average (Ø) conversion in

dashed (with clustering) and dash-dotted lines (without clustering). The conversion for different size groups are marked by

circles and crosses for the standard model and model with clustering effects, respectively.

of validated interaction models for coke and reducing agents, therefore the interaction is often neglected,283

e.g. by [32].284

The temperature in the beginning of the coal plume decreases first due to drying and devolatilization.285

In the raceway zone around the coal jet, the temperature increases due to volatile combustion and oxidation286

reactions. Predicting the thermal state of the lower blast furnace influenced by the pulverized coal helps to287

understand the influence of different coal flow rates and types on blast furnace operation [3]. According to288

Babich [3] the full burnout of pulverized coal within the raceway zone is hardly possible for high coal flow289

rates. However, an accurate prediction of the burnout helps to gain insight on the maximal possible coal290

rate for coke substitution.291

The average char conversion of the dried and devolatilized coal particles is plotted in Fig. 12. Similar to292

the char conversion in the injection rig for the polydisperse particles, we see a clear reduction in conversion293

of the coal particles when the clustering effect is considered.294

4. Conclusion295

The presented results show that the reduction in mass transfer rate to small particles plays a crucial296

role under blast furnace raceway conditions. The highly turbulent flow leads to strong clustering, which297

is determined by the calculated correction factor α̃. Additionally, the high temperatures lead to high298
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Figure 10: Char conversion as a function of the downstream position using oxidation (green), and oxidation and gasification

(pink) reactions. The results from the standard model are shown by dash-dotted lines and from the model including clustering

effects with dashed lines.

kinetic rates and consequently to diffusion controlled conversion regimes. The incorporation of the model299

significantly influenced the overall predicted char conversion of pulverized coal particles in the raceway zone.300

The correct estimation of coal conversion is important to predict the maximum possible coal flow rate301

and consequently the coke substitution rate. Furthermore, an accurate prediction of the coal burnout helps302

to estimate the thermal state of the blast furnace raceway zone which is beneficial to support process303

control. Additionally, further studies to substitute the coal by renewable reducing agents, such as biochar,304

will benefit by the inclusion of the turbulent effects on conversion. In the future, an improvement of the305

model by including the interactions between reducing agents and the coke bed, and a moving coke bed306

could be beneficial. From a general perspective, the results indicate that an a-priori estimation through307

the calculation of average correction factors is impractical because the regions of correction factors have308

to be correlated to regions of actual reaction. Additionally, the simplified representation of small particles309

by particles with a mean diameter strongly influences the prediction of the correction factors and should310

therefore be avoided.311

Finally, we would like to emphasize that the models used to account for the effect of turbulence used312

here, which were developed by Krüger et al. [10] and Haugen et al. [11], are based on the assumption of313

isotropic turbulence. This is expected to be a relatively good approximation for the char conversion phase,314

but care should nevertheless be taken.315
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Figure 11: Raceway with temperature distribution and pulverized coal particles
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Appendix A. Parameters328

The reaction rate parameters used in the different cases presented in this paper and details about the329

modeled coal are summarized here. The gas phase reactions are shown in Table A.2 based on the work from330

Westbrook and Dryer [33]. The parameters for the devolatilization model (Eq. (2)) are given in Table A.3.331

Table A.2: Gas-phase reactions: Reaction rate parameters taken from Westbrook and Dryer [33] - first reaction modeled same

as methane combustion

Vol + 2.806O2 −−→ CO+ 4.887H2O+ 0.0382 SO2 + 0.1658N2

CO+ 0.5O2 −−→ CO2

CO2 −−→ CO+ 0.5O2

Table A.3: Devolatilization reaction: Kinetic parameters for the two-competing step devolatilization model according to [23]

A1 A2 E1 E2

unit s−1 J kmol−1

value 3.7e5 1.46e13 1800 30189

For the coal particles studied in this paper, the proximate analysis, the ultimate analysis from Shen332

et al. [27] and the conversion rate parameters are summarized in Table A.4. The conversion rate parameters333

are given according to Eq. (4). Kinetic parameters for oxidation are from Silaen and Wang [34] and for334

gasification from Maier [30]. The diffusion parameter set as by Karchniwy et al. [13] and the effectiveness335

factors as by Maier [30]. The stoichiometric coefficients for the char oxidation products (vCO = 2ϕ−1
ϕ and336

vCO2 = 2−ϕ
ϕ ) are calculated as suggest by Shen et al. [27]:337

φ =
2Asr exp

�
Tsr

Tf

�
+ 2

2 +Asr exp
�

Tsr

Tf

� (A.1)

using Asr = 2500 and Tsr = 6240.338
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Table A.4: Proximate analysis, ultimate analysis, particle parameters and reaction rate parameters.

moisture vol. ash fixed c. HCV

% % % % MJkg−1

0.9 12.4 8 78.7 32.98

elemental analysis in %

C H N S O

91.3 4 1.9 0.5 2.3

constant particle parameters

epsilon f h ρp cp

- - - kgm−3 J kg−1 K−1

0.9 0.5 0.3 1300 1500

reaction rate parameters

Ar Ea C η

sm−1 J kmol−1 sK− 3
4 -

oxid. 0.052 6.1 · 107 5 · 10−12 0.6

CO2 gasif. 20230 3.304 · 108 5 · 10−12 0.7

H2O gasif. 606.9 2.697 · 108 5 · 10−12 0.6
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Abstract
The Eddy Dissipation Concept (EDC) is a well working concept for turbulent reacting
flows, which depicts the influence of chemical reactions as well as turbulence. The problem
when using detailed chemical mechanisms - necessary for more information about radical
species and pollutants - is the vastly increased computational demand. Operator splitting
and in situ adaptive tabulation (ISAT) can be a way to reduce the computational effort
and improve the application of detailed chemical mechanisms with the EDC. Two operator
splitting mechanisms are presented and used for the simulation of Sandia Flame D. The
computational time can be decreased and the results fit well to the experimental results.

Keywords: turbulent combustion, OpenFOAM, Eddy Dissipation Concept (EDC), opera-
tor splitting, in situ adaptive tabulation (ISAT)

1. Introduction

Simulation can be a great tool to improve the understanding of complex processes and
consequently enhance efficiency and reduce emissions. In many systems, such as biomass
combustion, pulverized coal combustion or blast furnaces, gas phase combustion occurs
and needs to be modeled.

The Eddy Dissipation Concept (EDC) (Magnussen, 1981) is a widely used combustion
model, which couples the effect of chemical reactions and the effect of turbulence. It has
been widely used for many applications, e.g. by Zahirović et al. (2010), Stefanidis et al.
(2006) and Rehm (2010). When using detailed chemical mechanisms the computational
demand increases significantly compared to global or skeletal mechanisms. Therefore,
computational improvements for the EDC are necessary to make use of detailed chemical
mechanisms possible to enable additional insight on radical species or NOx formation.

In situ adaptive tabulation (ISAT) has been proposed by Pope (1997) to decrease the
computational time for reactive flow calculations. Originally, it has been used in combi-
nation with PDF methods, but it can also be used in conjunction with the EDC. In the
EDC the species concentration in the reacting structures can be described by an ordinary
differential equation (ODE)-system. Mixing and chemical reactions are taken into account
there. ISAT can only be used for the chemical part of the equations, since taking both into
account would distort the table and make a look-up inefficient, (Pope, 1997) and (Rehm,
2010). Therefore, operator splitting has to be used to split the ODE and enable ISAT.

Rehm (2010) presented two operator splitting methods for the EDC. The computational
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Anton Friedl, Jiří J. Klemeš, Stefan Radl, Petar S. Varbanov, Thomas Wallek (Eds.)
Proceedings of the 28th European Symposium on Computer Aided Process Engineering 
June 10  to 13 , 2018, Graz, Austria. © 2018 Elsevier B.V. All rights reserved.th th

Conference Paper I

125



time could not be reduced there, but also no results with regard to the accuracy were
presented.

In the following the EDC and operator splitting methods are explained. These methods are
then used to simulate Sandia Flame D in OpenFOAM, a turbulent methane-air jet flame.
Experimental flame data from Barlow and Frank (1998) and Schneider et al. (2003) is
used to validate the simulation results. Moreover, operator splitting and direct integration
results are compared.

2. Model Description
2.1. Eddy Dissipation Concept

The EDC models the interaction between turbulence and chemical reactions. It assumes
that the fluid consists of surroundings and fine structures, whose size is in the order of
the Kolmogorov length scale (Magnussen, 1981). Since educts need to be mixed on a
molecular scale to react, reactions only occur in the fine structures.

Magnussen (1981) derived the description of the fine structures based on an energy cascade
model. The fine structure fraction γ∗ is expressed by the turbulent kinetic energy k, the
dissipation rate ε, the kinematic viscosity ν and a constant Cγ = 2.13, Eq.(1). The mass
transfer between the fine structures and the surroundings per unit of mass of the fine
structures and time can also be expressed by ν , ε and Cτ = 0.41, Eq.(2). The residence
time in the fine structures τ∗ is the reciprocal of ṁ∗. The mass transfer per unit of fluid
ṁ can be calculated by the mass transfer per unit of mass of the fine structures and the
fine structure fraction, Eq.(2).

γ∗ = Cγ
3
�νε

k2

� 3
4 (1)

ṁ∗ =
1

Cτ

� ε
ν

� 1
2
=

1
τ∗

= γ∗
1
ṁ

(2)

To obtain the mass transfer rate for one species Ri
∗ per unit volume of the reacting fine

structure fraction χ, the species concentration in the fine structures and the surroundings
is required, Eq. (3). The concentration and the density in the fine structures and the
surroundings are also taken into account. When using the detailed chemistry approach,
the fraction of the reacting fine structures χ is usually set to one, as suggested by Gran
and Magnussen (1996). The relation between some property Ψ in the surroundings (◦),
the fine structures (∗) and the fluid average ( ¯ ) is given in Eq.(4).

Ri
∗ =

ṁ∗ρ∗

1− γ∗χ

�
c̄i

ρ̄
− c∗i

ρ∗
�

(3)

Ψ̄ = γ∗χΨ∗+(1− γ∗χ)Ψ◦ (4)

Different concepts exist to model the chemical reactions in the fine structures: the fast
chemistry approach (Magnussen, 1981), the local extinction approach (Byggstoyl and Mag-
nussen, 1983) or the detailed chemistry approach (Gran and Magnussen, 1996). To use
a detailed chemical mechanism, the latter has to be used. There, the fine structures are
treated as adiabatic and isobaric perfectly stirred reactors (PSRs). This leads to the
following set of ODEs, Eq.(5). Where h∗ is the enthalpy, p∗ the pressure and Y ∗

i the
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mass fraction of species i in the fine structures. ω̇i denotes the reaction rate and Y ◦ the
concentration of species i in the surroundings.

dh∗

dt
= 0

dp∗

dt
= 0

dY ∗
i

dt
= ω̇i +

1
τ∗

(Y ◦
i −Y ∗

i ) (5)

2.2. Operator Splitting

Operator splitting splits the species conservation equation in Eq.(5) into a chemical and
a mixing part, solves them separately and combines the solutions to get a solution of
the original ODE. Two second order operator splitting methods, Strang splitting and
Staggered splitting, which are used for the simulation in OpenFOAM are presented here.

2.2.1. Strang Splitting

YA

YB

YA

t

n

n

n

n+ 1
2

n+ 1
2

n+ 1
2

n+1

n+1

n+1

Figure 1: Strang splitting scheme

The chemical subproblem is denoted by A
and the mixing one by B. Strang splitting
(Strang, 1963), shown in Figure 1, provides
a solution of the original ODE by first solv-
ing subproblem A on a time interval Δt/2,
Eq.(6). Then subproblem B is solved on a
time interval Δt with the solution from A
as its initial condition, Eq.(7). The final
solution, marked by a circle, Eq.(9) is ob-
tained by solving subproblem A again on
the remaining time interval Δt/2, Eq.(8).

d(Y ∗
i )A

dt
= ω̇i with (Y ∗

i )A (t = 0) = Y ∗
i (t = 0) (6)

d(Y ∗
i )B

dt
=

1
τ∗

(Y ◦
i −Y ∗

i ) with (Y ∗
i )B (t = 0) = (Y ∗

i )A (t = Δt/2) (7)

d(Y ∗
i )A

dt
= ω̇i with (Y ∗

i )A (t = Δt/2) = (Y ∗
i )B (t = Δt) (8)

Y ∗
i (t = Δt) = (Y ∗

i )A (Δt) (9)

2.2.2. Staggered Splitting
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t

n+ 3
2

n+ 3
2

n- 1
2

n- 1
2

n

n

n+ 1
2

n+ 1
2

n+1

n+1

Figure 2: Staggered splitting, adapted from
Ren and Pope (2008)

Figure 2 shows the solution procedure of
the Staggered splitting scheme. Subprob-
lem A is solved for a time step Δt from n to
n+1 and subproblem B is solved from n+ 1

2
to n+ 3

2 , taking the solution from subprob-
lem A as initial condition. The solution is
approximated by the mean of the solutions
of subproblem A and B marked by circles
in Figure 2, Eq.(10). The initial time step,
needs special treatment: the mixing sub-
problem is solved on a time interval Δt/2 to obtain the initial conditions for subproblem A.
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Y ∗
i (t = n) =

1
2

�
(Y ∗

i )A (t = n+1)+(Y ∗
i )B

�
t = n+

3
2

��
(10)

3. Simulation Details
Sandia Flame D was simulated in OpenFOAM using the in-house solver rhoEdcFoam. A
2D-wedge was simulated with a grid of 4329 cells (4218 hexahedras and 111 prisms). A
transient simulation was conducted for 0.5 seconds to achieve a description of the steady-
state of the flame. Radiation was neglected due to studies showing, that radiation has a
minor impact on the results (Li et al., 2017).
For the chemical reactions the detailed chemical mechanism GRI-3.0 from Smith et al.
(2017), including 53 species and 325 reactions, was used. The simulations have been con-
ducted with direct integration and the presented operator splitting methods in conjunction
with ISAT. The retrieval tolerance for ISAT was set to 10−4. The results from a simulation
using a global mechanism are also added for comparison.
The presented operator splitting methods are second order methods, i.e. the error is
proportional to O(Δt2). To improve the predictions and limit the error done by operator
splitting, a maximum operator splitting time step size of Δt = 10−3 s and Δt = 10−4 s was
tested.

4. Results and Discussion
Figure 3(a) to Figure 3(c) show the centerline profiles of temperature, CO2 and NO mass
concentration for the different simulations (x/d represents the axial position normalized by
the jet diameter d=7.2 mm). The results from direct integration fit best to the experimen-
tal results for temperature and CO2 mass concentration. The profiles show, that operator
splitting approximates the solution well, but is a bit less accurate. For the NO mass
concentration the solution from Staggered splitting fits even better to the experimental
results than the direct integration.
To quantify the accuracy of the predictions, the sum of squared errors (SSE) was calculated
for all available data points and for different quantities (temperature T, velocity u, and
different species concentrations). The SSE was normalized to the SSE of direct integration
to compare the different simulation settings (Figure 3(d)). Staggered splitting seems to be
even more accurate than direct integration. The improved predictions could result from
increased stability or be due to error compensation resulting from taking the mean in
Eq. (10). Strang splitting gives in general better predictions than the global mechanism
but gives less accurate predictions than the other simulations.
Figure 3(e) to Figure 3(h) show results from Staggered splitting and Strang splitting with
and without limited time step size. The time step size was limited to 10−3 s and 10−4 s
for Staggered splitting. The profiles of the temperature at the centerline (Figure 3(e)
and Figure 3(g)), show that the limited splitting schemes give a bit improved, especially
smoother, predictions. The SSE was calculated and normalized to the simulations without
time step limitation. For Staggered splitting, the limited case gives improved predictions
for all quantities, except methane. The smaller limit for the time step, i.e. 10−4 s, did not
lead to a significant improvement. Therefore, the time step limit was only set to 10−3 s
for Strang splitting.
For Strang splitting the improvement is not as big and also for methane no improvement
is achieved through the limited time step size. In general the limited time step size gives
a bit more accurate predictions, with only minimally increased computational demand.
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Figure 3: Comparison of simulation results and experimental data for (a) temperature (b)
CO2 and (c) NO mass concentration and (d) comparison of the normalized SSE for all
data points; Results using limited time steps in (e) to (h)
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Since the simulations were not carried out on the same computers, the computational time
can only be roughly compared. Using Strang splitting with an ISAT-tolerance of 10−4,
the computational time could be reduced by approximately 23 % compared to direct
integration. Further comparisons on the computational time with different ISAT settings
and without ISAT are presented by Wartha (2017).
Staggered splitting is even faster than Strang splitting, since it needs less function calls for
one operator splitting step. The reduction of computational time for Staggered splitting
compared to Strang splitting is around 20 %.

5. Conclusion and Outlook
The use of a detailed chemical mechanism is important to predict species like radicals or
pollutants, which are not present in global mechanisms. The presented operator splitting
methods, Strang and Staggered splitting, work and can reduce the computational demand
when detailed chemical mechanisms are used in conjunction with the EDC. Good pre-
dictions for temperature and concentrations have been achieved for Sandia Flame D. For
some cases Staggered splitting gives even better results than direct integration. Further-
more, the computational demand is smallest for Staggered splitting. Therefore, Staggered
splitting seems to be the best choice.
To substantiate those findings, further test cases with other flames should be conducted
to ensure, that the presented findings are also valid for other combustion regimes.
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Abstract
Despite continuously increasing computational power, an efficient use of the available resources remains important. 
Reactive flow simulations differ from other simulations due to their high complexity. For efficient use of 
computational resources for reactive flow simulations we conducted a case study in OpenFOAM®, an open-source 
code for computational fluid dynamics. For coupling turbulence and chemistry the well-known Eddy Dissipation 
Concept was chosen. Guidelines on how to choose optimal partition size depending on reaction mechanism size were
derived and interesting speed-up behavior for small meshes was observed. The influence of common speed-up 
techniques, such as tabulation are presented as well.

Introduction
Industrial processes often incorporate reactive flows, 
such as gasifiers, blast furnaces or rotary kilns. There, 
many physical phenomena occur at the same time, which 
influence the overall process. Computational fluid 
dynamics (CFD) has become increasingly important in 
designing and improving plants and apparatus in the
chemical and process industry. Capturing the involved 
phenomena is essential when simulating these processes. 
This can lead to complex and computationally expensive 
calculations. Nowadays, huge clusters are available for 
parallelized CFD simulations. Nevertheless,
computational time is still valuable and the 
computational resources need to be used wisely to ensure
fast calculations.
For parallel calculations on multiple processors the 
computational domain is split into subdomains. Useful
domain partitioning strategies for flow simulations have 
been presented in literature, f.ex. in [1], but 
computational routines for reacting flows differ 
fundamentally from flow simulations. The solution of the 
chemical reaction system is computationally more 
expensive and, therefore partitioning strategies might 
differ. Dynamic mesh partitioning strategies have also
been suggested to enhance fast chemistry calculations, 
[2,3], but no guideline, besides some minor remarks by 
Harasek [4], has been found on how small a reactive flow 
calculation can be partitioned while still gaining essential 
speed-up.
Therefore, this paper focusses on efficient mesh 
partitioning strategies for reacting flows and partitioning 
sizes depending on the complexity of chemical reaction 
mechanisms and tabulation. The study was carried out 
using the open source CFD code OpenFOAM® [5]. The 
gas phase is modeled with the Eddy Dissipation concept
(EDC), a method for coupling turbulence and chemical 
reactions.
In the following section a short overview on the EDC is 
given and strategies for speed-up and their influence on 
parallelization is discussed.
The results section compares speed-up and 
computational time for different test cases with different 
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Proceedings of the European Combustion Meeting 2019

mechanism size. Additionally, the influence of tabulation 
on the computational time and speed-up is discussed.

The Eddy Dissipation Concept
One of the most common methods for simulating reactive 
gas flows is the EDC. It provides a strategy for coupling 
chemical reactions and turbulence. The basic assumption 
is that reactions occur only in the fine structures (denoted 
by *), where the educts are mixed on a molecular scale. 
Based on the turbulence energy cascade, Magnussen [6]
derived expressions for the fine structure fraction 𝛾∗ (and 
the dimensionless fine structure length scale 𝛾𝐿) , 
Eq. (1), and the mass transfer rate to the fine 
structures �̇�∗, Eq. (2), depending on the turbulent kinetic 
energy 𝑘, its dissipation rate 𝜀, the kinematic viscosity 𝜈
and two constants 𝐶𝛾 and 𝐶𝜏. The fine structure residence 
time 𝜏∗ is inversely proportionate to �̇�∗.

𝛾∗ = 𝐶𝛾 (𝜀𝜈𝑘2)3/4 = 𝛾𝐿1/3 (1)

�̇�∗ = 1𝐶𝜏 (𝜀𝜈)1/2 = 1𝜏∗ (2)

The change of mass in the mean cell (denoted by -) for 
species i is given by Eq. (3), where 𝑌𝑖 denotes the mass 
fraction of specie i and 𝜒 the reacting fraction of the fine 
structures. Eq. (4) shows the relation between the fine 
structures, the surroundings (denoted by °) and the mean 
cell for any quantity Ψ , such as temperature, mass 
fraction (𝑌) or density (𝜌).

�̅�𝑖 = �̅��̇�∗𝛾𝐿3𝜒(1 − 𝛾𝐿3𝜒) (�̅�𝑖 − 𝑌𝑖∗) (3)

Ψ̅ = 𝛾∗𝜒Ψ∗ + (1 − 𝛾∗𝜒)Ψ° (4)

In later publications Magnussen proposed different 
exponents for 𝛾𝐿 to account for the reaction space 
extending to surroundings [7,8].
Eq. (3) describes the mass transfer between the fine 
structure and the surroundings, but the chemistry in the 
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fine structure still needs to be modeled. There are various
approaches: the fast chemistry approach, which assumes 
infinitely fast reactions [6], the local extinction approach, 
presented in [9], or the detailed chemistry approach [10], 
which is the most complex but probably the most 
common nowadays.
The fine structures are assumed to behave like perfectly 
stirred reactors (PSRs), Eq. (5). This leads to complex 
systems of Ordinary Differential Equations (ODEs), but 
arbitrary chemical mechanisms can be applied with this 
modeling approach.𝑑𝑌𝑖∗𝑑𝑡 = �̇�𝑖 + 1𝜏 (𝑌𝑖 ° − 𝑌𝑖∗) (5)

Therefore, the PSR model is often simplified to a plug 
flow reactor (PFR) model and the mixing term in Eq. (5) 
is neglected to reduce the numerical effort. The
commercial CFD code ANSYS Fluent® applies this 
approach. Although this simplification is often made, the 
difference in the formulation is apparent, for a more 
thorough discussion see [11].
The reacting fine structure fraction 𝜒 is usually set to one 
in conjunction with the detailed chemistry approach [10], 
which may only be valid in regions with high turbulence 
[12].

Tabulation and Operator Splitting
Reactive flow simulations are computationally 
expensive, but there are methods to reduce the 
calculation time, including mechanism reduction or 
tabulation. A common tabulation method is in situ 
adaptive tabulation (ISAT), which was introduced by 
Pope [13]. Here, in situ means, that the table is built up 
during the calculation. Thus, no table needs to be 
prepared beforehand and only the accessed region of the 
composition space is tabulated. 
The ISAT table has the form of a binary tree. It is 
assumed that a tabulation point Φ0 is enveloped by the 
so-called ellipsoid of accuracy (EOA). Given a query 
point Φ𝑝, the binary tree is searched and when a leaf is 
reached it is checked if the query point lies within the 
EOA. If this is true, the search results in a retrieve.
Otherwise, the ODE is solved to obtain the new
composition and it is checked if it is within the given 
tolerance. If it is, the EOA expands – a growth. 
Otherwise, an additional leaf is added to the table. For a 
more thorough discussion we refer to [13].
ISAT is only efficiently viable in conjunction with the 
PFR formulation, because tabulation including the 
mixing term and the reaction term, Eq. (5), would make 
a look-up inefficient and deteriorate the table [13,14]. 
Operator splitting can enable tabulation for the PSR 
formulation, but reduces the accuracy to some extent. 
Operator splitting methods have been presented and 
discussed in [15,16].
In the conducted simulations the staggered splitting 
scheme was used [15]. Operator splitting methods split 
the problem, Eq. (5), into two subproblems, the mixing 

problem (subproblem A) and the chemical problem
(subproblem B), Eq. (6) and Eq. (7). 𝑑(𝑌𝑖∗)𝐴𝑑𝑡 = �̇�𝑖 (6)

𝑑(𝑌𝑖∗)𝐵𝑑𝑡 = 1𝜏 (𝑌𝑖 ° − 𝑌𝑖∗) (7)

The staggered splitting scheme works as follows: First, 
subproblem A is solved for ∆𝑡 from n to n+1. Then, 
subproblem B is solved from n+1/2 to n+3/2 using the 
solution from subproblem A as initial condition, Figure 
1. The solution after a given time step is taken as the 
mean of the two subproblem solutions. 

Figure 1: Staggered splitting scheme adapted from [15]

OpenFOAM®

OpenFOAM® is an open-source CFD-tool distributed 
under the General Public License. It is fully object-
oriented and written in C++. For parallelization the 
public domain openMPI [17] is used, which is based on 
the concept of message passing interface (MPI).
This parallelization is realized with the halo layer 
principle in OpenFOAM®. The mesh is split into 
subdomains and data for cells next to the boundary is 
duplicated, see Figure 2.

Figure 2: Parallelization in OpenFOAM® based on the halo 
layer principle, adapted from [1]

Only the information of the cells in the halo layer is 
passed between the processor cores with this approach.
Therefore, each processor core creates its own ISAT
table and the build-up time and the number of retrieves 
depends on the number of cells per processor.

Simulation Set-up / Test Cases
Sandia Flame D, a piloted methane-air jet flame, which 
is widely used for validation cases due to the 
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experimental data available from [18,19], was chosen as 
a test case. The flame is highly turbulent with a jet 
Reynolds number of 22 400, a jet diameter of 7.2 mm and 
a pilot diameter of 18.2 mm.
Two solvers have been used for the test cases. First, the 
reactingFoam solver from OpenFOAM® version (6.0). 
With this solver the PFR formulation is used and 
different versions of Eq. (3) can be chosen. Here we 
chose the formulation from [7], where the exponents of 𝛾𝐿 change to 2.
Second, the rhoEdcFoam [20] solver was used, which is 
an in-house code based on OpenFOAM®. There, the PSR 
formulation is available and the ISAT tabulation can be 
used in combination with the staggered splitting scheme 
[15].
Two different meshes were constructed. A 2D 
axisymmetric mesh and a full 3D mesh. The 2D mesh has 
been used when the full 3D simulation was not possible 
due to the high computational requirements and the 2D 
and 3D simulation have also been compared.
Four different chemical mechanisms for the combustion 
of methane flames have been used (Table 1): the GRI-3.0
[21], two reduced GRI-3.0 mechanisms and a one-step 
mechanism [22]. The first reduced GRI-3.0, hereafter 
referred to as “Reduced”, is distributed with 
OpenFOAM® (Version 6.0). In the code a reference to 
the original GRI-3.0 is made, but apparently it is the GRI-
3.0 without NOx reactions used by [23]. The second 
reduced mechanism is referred to as “DRGEP”, which is 
short for directed relation graph with error propagation, 
and was reduced based on the DRGEP method presented 
by Pepiot-Desjardins [24].

Table 1: Mechanisms used in the simulation for Sandia 
Flame D

No. of species No. of reactions
GRI-3.0 53 325
Reduced 36 219
DRGEP 19 48
One-Step 5 1

Results
Due to the open-MPI architecture of OpenFOAM® the 
ISAT table is built and stored per processor core. One 
might expect that simulations using ISAT are not as well
parallelizable as simulations without tabulation. This is 
only partially correct. Using a small number of cores the 
speed-up with tabulation is even greater than without it. 
Only with a larger number of cores the tabulation 
overhead becomes an issue and the implementation 
without ISAT starts outperforming the one with ISAT.
Figure 3 shows simulations conducted with 
reactingFoam comparing tabulation and no tabulation 
with the different reaction mechanisms for the 3D mesh.

Figure 3 Speed-up of reactions with and without ISAT using 
reactingFoam

The same result can be observed for the 2D mesh and for 
rhoEdcFoam simulation in Figure 4. The speed-up is
plotted against the number of processor cores to 
emphasize the difference between 2D and 3D mesh. Even 
when the number of cells per processor is already quite 
low (~5000 cells for 2D simulation) the speed-up with 
ISAT is quite high when distributed to only 2-4 cores.

Figure 4 Speed-up of simulations with a 2D and 3D mesh using 
reactingFoam and rhoEdcFoam (labeled by PSR)

To analyse the effect of mechanism size, we compare
reactingFoam simulations using ISAT in Figure 5. For 
the partitioning for up to 8 processor cores (this means 
~60 000 cells), the speed-up is good for all mechanisms. 
For more processor cores the speed-up drops 
significantly for small mechanisms. For more complex
mechanisms, such as GRI-3.0, more processors still 
improve the performance. This leads to the conclusion, 
that it is ok to partition reactive flow calculations well 
below ~50 000 cells per processor, if a complex reaction 
mechanism is used.
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Figure 5 Speed-up of simulations with different reaction 
Mechanisms using reactingFoam and ISAT

Figure 6 shows the speed-up of the simulations with a 2D 
mesh, where the GRI-3.0 was used with reactingFoam 
and the DRGEP mechanism with rhoEdcFoam. The plot 
indicates that speed-up trends are similar for the PFR and 
PSR formulation. For the DRGEP with PSR formulation 
we see good speed-up for up to 2 processors (2 800 
cells/processor core). For GRI-3.0 with PSR the speed-
up was reasonably good for even fewer cells.

Figure 6 Comparison of PSR (rhoEdcFoam) and PFR 
(reactingFoam) formulation for the 2D mesh

Figure 7 shows the total CPU time versus cells per 
processor core for all simulations conducted with the 
reactingFoam solver with the 3D mesh. The speed-up 
gained by tabulation can be seen, which is significant for 
any mechanism size. The reduction in CPU time through 
tabulation is more pronounced for more complex reaction 
mechanisms.

Figure 7 Total CPU time for all reactingFoam simulations –
GRI_NoISAT_3D is plotted on the right y-axis

Figure 8 shows the CPU time per cell versus the cells per 
processor core for all simulations of Figure 7. Except of
the GRI-3.0 without ISAT and the DRGEP without 
ISAT, the CPU time per cell stays constant for low 
numbers of cells per processor. 

Figure 8 Comparison of CPU time per cell for all the 
simulations done with reactingFoam – GRI without ISAT is 
plotted on the left y-axis

Figure 9 also shows that the communication between the 
processor cores already consumes an evident part of the 
CPU time when distributed to more than 8 processor
cores for the 3D simulations with the simplest reaction 
mechanism, having less than ~60 000 cells per processor
core.
Interestingly, the CPU time per cell is decreasing for the 
GRI-3.0 without ISAT when switching from 3D to 2D 
simulation. Up until now the reason remains unclear.
Figure 9 shows the actual execution time for the test
cases. The high execution time for complex mechanisms 
is still limiting to full-scale industrial reactive flow 
simulations. Faster calculation can be achieved by 
tabulation, but the size of the reaction mechanism has still 
the biggest influence.
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Figure 9 Total Execution time for the simulations with 
reactingFoam – GRI_NoISAT_3D plotted on the left y-axis

Conclusions
The influence of the mechanism on the total computation 
time of reactive flow simulations becomes evident in the 
presented results. Choosing the partitioning size 
accordingly can greatly improve the efficiency of the 
simulations. Thus, an elaborated partitioning strategy is 
needed. We showed that tabulation has a greater impact 
on simulations with complex reaction mechanisms than 
on simpler ones.
Our results suggest to split up reactive flow calculations 
to approximately 60 000 cells per processor. This agrees 
well with the suggestion in [1], who suggested to use
between 50 000 and 100 000 cells per processor core and 
aim for the lower value for more complex simulations. 
For more complex mechanisms, a noticeable speed-up 
can be achieved by reducing the number of cells as low 
as to 5 000 cells, as similarly suggested in [4]. 
When the mesh is already quite small, e.g. 5 000 cells, a 
partitioning is still useful up to 2 cores and speed-up can 
be gained, although the number of cells per processor 
gets very low.
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ABSTRACT
To model two-phase flows in industrial applications, for example
the raceway zone in a blast furnace, an Eulerian two-fluid model is
usually the method of choice. It has proven to predict the behavior
of gas-solid flows well and has a justifiable computational demand.
Although, it is already widely used, there are still some deficiencies
which arise from the averaged equations. Especially the continuity
equation needs some special care compared to single phase flows.
The consistency and boundedness need to be ensured, which is not
straightforward. One widely used approach to target this problem is
to use the relative velocities in the continuity equation. A drawback
is, that this modified equation is non-linear in the phase fraction
and therefore needs to be solved iteratively if solved implicitly. We
propose to solve the discretized equation by combining an implicit
solution step with (an) explicit corrector step(s). This new approach
was implemented in the open source software OpenFOAM® and
compared with the standard implementation. The new algorithm
gives good prediction results for several test cases and this implicit
approach could lead to larger time steps through better stability of
the solution procedure.

Keywords: Two-Fluid Flow, Euler-Euler Approach, Raceway
Simulation .

NOMENCLATURE

Greek Symbols
α Phase fraction, [−]
η Constant = 2 [−]
κ Solid conductivity [kg/ms]
λ Blending coefficient [−]
ξ Coupling term, [s−1]
ρ Density, [kg/m3]
τ Stress tensor, [kg/ms2]
φ Angle of internal friction [◦]
ϕ Velocity, [m/s]

Latin Symbols
p Pressure, [Pa].
t Time, [s]
A Diagonal contributions
F Flux [m/s]
Fr Constant = 0.05 [−]
K Drag coefficient [kg/m3s]
P Constant = 5 [−]

S Source term
V Cell volume[−]

(I2D)
−1/2 2nd-order deviatoric shear stress tensor

g Gravitational acceleration [m/s2]
S Surface normal vector [−]
U Velocity, [m/s]

Sub/superscripts
e Explicit
f Face value
g Gas
i Implicit
n Time step
p Center value
r Relative value
s Solid
C Convective
H High order
L Low order
fric Frictional
ktgf Kinetic theory of granular flows
min Minimum for frictional effects
max Maximum (packing) limit
∗ Quantity enlarged with decoupling terms

INTRODUCTION

Industrial processes often incorporate two- or multi-phase
flows, for example: fluidized beds for pyrolysis (Papadikis
et al., 2008) or the blast furnace for pig iron production (Ab-
hale et al., 2020). The simulation of such processes using
computational fluid dynamics (CFD) helps to understand and
improve them. To accurately and efficiently predict the phe-
nomena dominating the operation, well calibrated models and
numerical procedures are essential.
In general, the solid phase in a two-phase flow could be
described by using Lagrangian or Eulerian models. The La-
grangian models offer more detail, since they are able to
resolve particle interactions on a per particle basis (van der
Hoef et al., 2008; Agrawal et al., 2001). Although, com-
puter power is and has been increasing, the computational
demand is still limiting. Therefore, this approach is usu-
ally only applied to small scales or low solid concentrations.
For the many two-phase flows in industry, which incorporate
dense solid flows, the Eulerian models are the way to go,
(van der Hoef et al., 2008). Here, both (gas and solid) phases
are treated as interpenetrating continua. Particle interactions
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can not be resolved using those models but the models have
proven to correctly predict phenomena in two-phase flows.
Compared to single-phase flows, the coupled equations are
more difficult to solve and need special treatment, (Passalac-
qua and Fox, 2011; Weller, 2005). To further speed-up sim-
ulations the community is constantly trying to improve the
algorithms to solve the equations. In this paper we suggest
an alternative algorithm for the solution of the continuity
equation in two-phase flows.
The algorithmic approach is described in the following sec-
tion. The new approach was implemented in OpenFOAM®
and tested on several test cases. The results are presented
and provide promising results for the application of the new
algorithm.

THEORY

Two-Fluid solvers are widely used for dense gas-solid sys-
tems. They treat both the phases as interpenetrating continua
and use the Navier-Stokes equations for their description.
Compared to a single-fluid system, the phase fraction is added
to the descriptive equations. The phase-averaged equations
for the solid phase are given in the following. Eq. 1 shows
the continuity equation and Eq. 2 the momentum equation,
where αs is the solid phase volume fraction, Us the solid
velocity and Ug the gas velocity, ρs the solid density, τs the
solid stress tensor, p the pressure, ps the solid pressure, g
the gravitational acceleration and Ksg the drag interaction
coefficient. The solid pressure ps is modeled based on the
Kinetic Theory of Granular Flows, which is shortly described
in a following section.

∂

∂t
(αsρs) +∇ · (αsρsUs) = 0 (1)

∂

∂t
(αsρsUs) +∇ · (αsρsUsUs) = ∇ · (αsτs)

−αs∇p−∇ps + αsρsg +Ksg (Ug −Us)
(2)

The equations for the gas phase are formulated similarly by
using the quantities of the gas phase (gas volume fractionαg ,
gas density ρg and gas stress tensor τg):

∂

∂t
(αgρg) +∇ · (αgρgUg) = 0 (3)

∂

∂t
(αgρgUg) +∇ · (αgρgUgUg) = ∇ · (αgτg)

−αg∇p+ αgρgg +Ksg (Us −Ug)
(4)

The two phases are coupled through the momentum exchange
terms. In Eq. 2 and Eq. 4 only the drag term is consid-
ered (Ksg (Ug −Us)). Furthermore, the following condi-
tion links the phases:�

αi = αs + αg = 1 (5)

With the phase-averaged equations, some problems arise in
the solution procedure, because the conservativeness of the
solution and the boundedness of the phase volume fraction
need to be ensured. Rusche (2002) and Oliveira and Issa
(2003) recap different approaches of the discretization of the
continuity equation. Here (and in OpenFOAM® ) we use
an approach presented by (Weller, 2005) and (Passalacqua

and Fox, 2011) where the equation is reformulated in the
following way:

∂

∂t
(αs) +∇ · (αsU) +∇ · (αgαsUr) = 0 (6)

using the average phase velocity U

U = αsUs + αgUg (7)

and the relative phase velocity Ur

Ur = Us −Ug (8)

The derivation of the coupling terms and the phase pressure
yields the modified phase continuity equation, derived by
(Passalacqua and Fox, 2011):

∂αs

∂t
+∇ · (αs,fϕ

∗) +∇ · �αgαsϕ
∗
r,s

�
−∇ ·

�
αs,fξs,f

�
1

ρs

∂ps
∂αs

�
|f |S| ∇⊥αs

�
= 0

(9)

Where S is the surface normal vector and the averaged flux
(ϕ) (Eq. 11) and the relative flux (ϕr,s) (Eq. 13) are used.
The fluxes (ϕ∗ and ϕ∗

r,s) are modified by a term resulting
from the decoupling of the momentum equations:

ϕ∗ = ϕ+ αs,fξs,f

�
1

ρs

∂ps
∂αs

�
f

|S| ∇⊥αs (10)

ϕ = αsϕs + αgϕg (11)

ϕ∗
r,s = ϕr,s + ξs,f

�
1

ρs

∂ps
∂αs

�
f

|S| ∇⊥αs (12)

ϕr,s = ϕs − ϕg (13)

ξs,f =
1

As +
Ksg

ρs

(14)

The partially implicit algorithm (explained by (Weller, 2005)
and (Venier et al., 2018)) is used for the decoupling. The term
ξs,f results from this decoupling of the momentum equations
- in Eq. 14 only the drag term (Ksg) is mentioned, but also
the implicit part of the virtual mass force term can be added
to ξs,f . As is the coefficient matrix arising from the discreti-
sation of the momentum equation.
Boundedness can only be ensured, if a fully implicit so-
lution algorithm is chosen (Rusche, 2002; Passalacqua and
Fox, 2011), but the non-linearity in α (Eq. 9) requires sub-
iterations when using an implicit approach.
An upwind differencing scheme can also ensure the bound-
edness of the solution of Eq. 9. A drawback from the upwind
schemes is numerical diffusion and consequently unsatisfy-
ing results. Therefore, an algorithm, called MULES (Mul-
tidimensional Universal Limiter with Explicit Solution) for
blending high-order and upwind solution has been introduced
in OpenFOAM® . The MULES algorithm is described in the
next section.
Since this MULES algorithm requires quite small time step-
ping, ≤ 0.25 (Wardle and Weller, 2013), we wanted to sug-
gest a new algorithm to possibly combine the benefits of a
fully implicit and the MULES algorithm. This suggested and
newly implemented algorithm, named ICMULES, is intro-
duced afterwards and tested on several benchmark cases.
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MULES Algorithm

MULES is the abbreviation for "Multidimensional Universal
Limiter with Explicit Solution" and is an iterative algorithm
to solve hyperbolic equations (Tacconi, 2018). The method
explicitly integrates in time and uses a blending of first-order
upwind and high-order schemes for the calculation of the
fluxes. This ensures the boundedness while keeping the in-
fluence of numerical diffusion low.
In the OpenFOAM® Code the MULES:explicitSolve function
is used to partly solve the modified continuity Eq. 9. The
function solves Eq. 9 without the consideration of the last
term, see Eq. 15. Fn

Cf denotes the convective fluxes, which
correspond to the second and third term in Eq. 9. The fluxes
are calculated with consideration of the lower (α = 0) and
upper (αmax) limits of the phase fraction. Si andSe represent
the source terms of the continuity equation arising from f.ex.
phase change or compression.

αn+1
sp − αn

p

Δt
Vp +

�
f

Fn
Cf = αn+1

sp Si + Se (15)

The fluxes are blended by fluxes calculated with a low order
discretisation scheme FL

C and fluxes calculated with a high
order discretisation scheme FH

C . The low order and an antid-
iffusive flux A are summed up, see Eq. 17. The antidiffusive
flux is calculated as:

A =
�
FH
C − FL

C

�
(16)

A limiter function λ, based on the limits of αs and the neigh-
boring cell values is computed, which determines the degree
of blending.

αn+1
sp − αn

sp

Δt
Vp+

�
f

Fn,L
Cf +

�
f

λfA = αn+1
sp Si+Se (17)

More details on the computation of the limiter λ are given in
(Tacconi, 2018).

ICMULES Algorithm

The suggested new algorithm combines an implicit solution
step with a corrector step using MULES. Therefore, it will
be called ICMULES (Implicit Corrected by MULES) in the
following. The implicit step solves Eq. 9. In the present
paper the following discretization schemes are used: implicit
Euler in time, limited linear for the convective term with the
relative flux, pure upwind for the other flux, a linear scheme
for the gradient and linear with correction for the laplacian
term.
The MULES algorithm is used in the next step to calculate an
antidiffusive flux A, as previously, to ensure the boundedness
of the solution. This antidiffusive flux is used to correct alpha
similarly to Eq. 17:

αcorr
sp − αi

sp

Δt
Vp +

�
f

λfA = αn+1
sp Si + Se (18)

If the corrector step is used multiple times, an underrelaxation
factor of 0.5 for all but the first iteration is introduced. It is
usually applied three times in the following test cases.

Kinetic Theory Models

The solid phase fraction and its movement are modeled by
the Kinetic Theory of Granular Flows (KTGF) (Gidaspow,
1994). A granular temperature Θs is used to model the solid
phase viscosity and the particle pressure. Usually, a par-
tial differential equation (PDE) for the granular temperature
is constructed and solved (see (Gidaspow, 1994) or (Venier
et al., 2018) for further details).
If dissipation is assumed to be equal to production of the gran-
ular temperature, an algebraic equation is derived and solved
instead of the PDE. (This is denoted in the OpenFOAM®
settings by equilibrium=on).
For the solid viscosity µs,ktgf and the solid conductivity κs

different models using the radial distribution function g0, the
granular temperature Θs and the restitution coefficient es
exist.
Different models were proposed in literature for the calcu-
lation of the granular pressure, the frictional stress and the
radial distribution function. A short recap of the used models
is given below:

Granular Pressure Models

(a) Lun

ps = ρsαsΘs + 2ρsα
2
sg0Θs (1 + es) (19)

For the granular pressure the relation presented by (Ding and
Gidaspow, 1990) is used, which is derived based on Lun’s
velocity relations in a collision (Lun et al., 1984).

Frictional Stress Models

The kinetic theory of granular flows does not model parti-
cle interactions with multiple neighboring particles near the
packing limit, (Srivastava and Sundaresan, 2003; Venier et al.,
2018). Therefore, models to account for friction, frictional
stress models, were introduced near the packing limit (when
αs > αmin). A frictional pressure and a frictional viscosity
are added to the solid pressure and the solid viscosity:

ps = ps,ktgf + ps,fric (20)

µs = µs,ktgf + µs,fric (21)

Passalacqua and Fox (2011) and Venier et al. (2018) compare
different frictional stress models and their influence on the
simulation. Commonly used models are:
(a) Johnson Jackson (Johnson et al., 1990)

ps,fric = Fr
(αs − αmin)

η

(αs,max − αs)
P

(22)

µs,fric = 0.5ps,fric sin(φ) (23)

(b) Schaeffer (Schaeffer, 1987)

ps,fric = 1025 (αs − αs,min)
10 (24)

µs,fric = 0.5ps,fric (I2D)
−1/2

sin (φ) (25)

The angle of internal friction Φ was set to 28 for the Schaeffer
model and to 28.5 for the Johnson Jackson model in the
simulations.
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Radial Models
Different models to calculate the radial distribution function
g0 used in the granular pressure formulation (Eq. 19) have
been proposed: (a) Carnahan Starling (Carnahan and Starling,
1969)

g0 =
1

1− αs
+

3αs

2 (1− αs)
2 +

α2
s

2 (1− αs)
3 (26)

(b) Lun Savage (Lun and Savage, 1986)

g0 =

�
1− αs

αmax

�−2.5αmax

(27)

(c) Sinclair Jackson (Lun and Savage, 1986; Sinclair and
Jackson, 1989)

g0 =

�
1−

�
αs

αmax

�1/3
�−1

(28)

It has to be noted, that the Carnahan Starling model does
not take the maximum packing limit αmax into account, also
emphasized by (Venier et al., 2016). Therefore, the choice of
the frictional stress model in conjunction with this model is
essential, which will also be shown in the Results section.

RESULTS

Common test cases for two-fluid models are chosen to test
the stability of the newly proposed algorithm. The results
are compared to simulations with MULES. Furthermore, the
influence of different frictional stress and radial models was
tested to ensure the applicability of the ICMULES with dif-
ferent settings.
The test cases and the corresponding models used are sum-
marized in Table 1. The abbreviations there correspond to the
test cases: falling block=f.b., settling suspension=s.s., bubble
growth=b.g. and raceway=r.w.. The letters (a)/(b)/(c) corre-
spond to the models described in the section about the kinetic
theory.
In the following subsections the chosen test cases are de-
scribed and their results are presented.

Table 1: Models for the kinetic theory used for the different test
cases and the chosen parameters

Model f.b. s.s. b.g. r.w.
equilibrium off off off off
viscosity (a) (b) (b) (b)
conductivity (a) (b) (b) (b)
granular pressure (a) (a) (a) (a)
frictional stress (a) (a)/(b) (b) (b)
radial (a) (c) (a)/(b) (c)
Parameters
packing limit 0.63 0.60 0.63 0.63
αmin 0.60 0.55 varying 0.6
restitution coeff. 0.80 0.80 0.95 0.95

Falling Block (f.b.)

The falling block test case is chosen to check the stability
of the algorithm. It was also used by (Passalacqua and
Fox, 2011) and (Venier et al., 2013). A block (dimensions:
0.026 m x 0.08 m) with a solid volume fraction of 0.58 is in-
troduced at a height of 0.012 m in a 2D-domain with 0.05 m
width and 0.2 m height. It falls down solely by gravity. A

hexahedral mesh with 10 x 40 cells is used for the simulation
in OpenFOAM® .
The particles have a diameter of 0.4 mm and a density of
2000 kg/m3. The fluid phase viscosity is 1.84·10−5 Pa·s and
a Prandtl Number of 0.7 is used. No virtual mass effects are
taken into account and the drag is modeled as suggested by
(Gidaspow, 1994), blending the Ergun and the Wen-Yu drag
models.
The velocity boundary conditions are set as Dirichlet bound-
ary conditions at the bottom and top for particle velocity and
at the walls and the bottom for the air velocity. A Neumann
boundary condition is set for the air velocity at the top and
the particle velocity at the walls.

(a) 0 s (b) 0.1 s (c) 0.15 s (d) 0.2 s

Figure 1: Falling block using MULES algorithm

The results using MULES and ICMULES are shown in Fig-
ure 1 and Figure 2, respectively. The results are very similar
for the both algorithms. The particles are slightly denser
packed when using the ICMULES algorithm. The snapshot
at 0.2 s is not the finally settled bed.
The difference in the maximum packing could be related to
the chosen radial and frictional stress model. The used radial
model (Carnahan Starling) does not take the maximum pack-
ing limit into account. It is also discussed by (Schneiderbauer
et al., 2012), that the maximum packing limit is ensured by
the divergence of the frictional stresses, when the Carnahan
Starling or a similar model is used for the radial distribu-
tion function. The MULES algorithm is still enforcing the
packing limit by accounting for it in the flux reconstruction.
The correction step in the ICMULES is not enforcing this
limit. The question remains if this property is related to a
physical model or it is a "numerical" trick in the MULES
algorithm. Probably, one should anyways aim to choose a
physically valid combination of radial model and frictional
stress model, which ensures the packing limit.

Settling Suspension (s.s.)

The settling supension case uses also a 2D-setup with 0.05 m
width and 0.3 m height and is discretized by 8 x 40 hexahedral
cells. The whole column is initialized with a solid volume
fraction of 0.3. Through gravity, the particles settle after time
until they reach the packing limit (αmax = 0.6). Passalacqua
and Fox (2011) use this case to test an implicit solution.
Venier et al. (2016) use it to compare partial elimination
with partially implicit approach for the decoupling of the
momentum equations.
The properties of the solid and fluid fraction are the same as
for the falling block case, except that the Prandtl number was
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(a) 0 s (b) 0.1 s (c) 0.15 s (d) 0.2 s

Figure 2: Falling block using ICMULES

set to unity for both phases. The boundary conditions as well
as the virtual mass and drag effects are treated in the same
way as for the falling block case.
The solid void fraction profiles after different settling times
are shown in Figure 3. The two algorithms are compared
to the literature data from (Passalacqua and Fox, 2011) and
(Venier et al., 2016). Here, two different frictional stress
models, the Johnson and Jackson (a) and the Schaeffer (b)
model were applied.
Figure 3 shows, that the MULES and ICMULES case agree
very well at the later settling times. In the beginning, at
t = 0.1 s, there is a difference at the top of the column.
We are not entirely sure, what is causing those differences
between the MULES and ICMULES results. Because the
ICMULES algorithm fits better to the presented literature
data the presented algorithm seems valid. One reason for
the differences at the beginning and the top of the column
could be that numerical diffusion is more pronounced when
applying the MULES algorithm.
At later times, the major difference between the solutions
results from the different frictional stress models. The Scha-
effer (b) model limits the phase fraction already to the αmin

value. The results from the JohnsonJackson (a) model agree
well with the results from literature and the results from IC-
MULES and MULES are virtually identical for the later time
steps (t = 0.6 seconds).

Bubble Growth (b.g.)

The 2D bubble growth case checks the bubble growth in a
fluidised bed with a central jet. Venier et al. (2018) studied
the influence of the third dimension and did not find a signif-
icant impact, therefore, we only use the 2D case here. The
geometry is 0.57 m wide and 1 m high and is discretized by
112 x 200 cells, which was determined to be the "best" mesh
regarding the trade-off between calculation time and accuracy
(Venier et al., 2018).
First, the bubble formation with no frictional stress - or more
preciselyαmin > αmax to avoid the contribution of frictional
stresses was studied, see previous section about the frictional
stress models. This was done to eliminate the influence of the
chosen frictional stress model on the test results and solely
study the influence of the radial model.
When using the ICMULES algorithm, the choice of the radial
model determines if the packing limit is ensured, as discussed
in the previous section. The ICMULES can enforce the pack-
ing limit when using the radial distribution models of Lun
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Figure 3: Solid volume fraction αs after t = 0.1, 0.15 and 0.6 sec-
onds settling time (from top to bottom), (a) and (b) refer
to the frictional stress model
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Savage or Sinclair Jackson, because there αmax is used in
the formulations. The contribution of the radial function g0
has a singularity at the packing limit and avoids overpacking
in that way. When the Carnahan Starling model is used, the
ICMULES cannot enforce the packing limit, see Figure 4 (d).
The results in Figure 4 (d) show clearly, that the ICMULES
is not applicable without a proper frictional stress model near
the packing limit.
The MULES algorithm can always enforce the packing limit,
because αmax is given as an input parameter for the flux
calculation and ensuresα values between 0 andαmax through
the algorithmic implementation.
When the results without frictional stress with the Lun Savage
radial model are compared, they are identical for the explicit
and implicit algorithm, see Figure 4. The agreement with the
experiments seems though to be best for the Carnahan Starling
model using the explicit algorithm. Comparing the simulated
and measured bubble detachment time, Table 2 indicates that
the Lun Savage model agrees better with the experiments.

Table 2: Bubble detachement time in seconds. Experimental values
from (Kuipers et al., 1991). Simulations without frictional
stress model

Exp. MULES ICMULES
(a) (b) (a) (b) radial model

0.17 0.19 0.15 0.31 0.15

The simulations without frictional stress model were con-
ducted to highlight the differences of the algorithmic ap-
proaches. For simulations near the packing limit it is usually
not advised to ignore the frictional stresses, because the ki-
netic theory can not account for multiple particle interactions.
Therefore, we also studied the bubble formation with a fric-
tional stress model. We chose the Schaeffer frictional stress
model, because it can be applied with the Carnahan Starling
radial model. The results of the bubble formation at t = 0.1,
0.14 and 0.18 s are also shown in Figure 4. The minimum
frictional packing was set to αmin = 0.6.
Kuipers et al. (1991) presented also the bubble diameter ratio
of the experiments. Figure 5 compares those ratios with the
ones from the simulation without frictional stress. In the
simulation the bubble was measured as the region with a void
fraction below 0.2. The bubble shape with the Lun Savage
radial model and no frictional stresses is predicted in line with
the experiments for the first 0.15 seconds. Then, the vertical
stretch is over and/or the longitudinal stretch under predicted.
The same comparison was made for the bubble prediction us-
ing the Schaeffer frictional stress model, see Figure 6. Here
the longitudinal stretch of the bubble seems way overpre-
dicted. This is already visible in Figure 4. Nevertheless, the
bubble diameter ratio shows, that the algorithm is not influ-
encing the results. The deviations between simulation and
experiments are most likely related to the models and settings
chosen therein.

2D Raceway (r.w.)

The last studied test case in this paper is a 2D Raceway
formation test case. The test case was first presented by
(Feng et al., 2003). They studied the raceway formation in
a simple 2D-setup by DEM simulation. Here, we test the
applicability of an Euler-Euler algorithm in the prediction of
the raceway formation in comparison with those DEM results.
Furthermore, we test the proposed algorithm ICMULES and
study the simulation time in comparison with the original
algorithm.

Experiments from (Kuipers et al., 1991)

(a) MULES algorithm without frictional stress, Lun Savage model

(b) ICMULES algorithm without frictional stress, Lun Savage model

(c) MULES algorithm without frictional stress, Carnahan Starling model

(d) ICMULES algorithm without frictional stress, Carnahan Starling model

(e) MULES algorithm with Schaeffer frictional stress model, Carnahan
Starling model

(f) ICMULES algorithm with Schaeffer frictional Stress model, Carnahan
Starling model

Figure 4: Single Bubble after 0.1, 0.14 and 0.18 seconds (column-
wise).
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Figure 5: Comparison of the diameter ratio for the experiments
from (Kuipers et al., 1991) and the simulations using No
Frictional Stress and Lun Savage radial model
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Figure 6: Comparison of the diameter ratio for the experiments
from (Kuipers et al., 1991) and the simulations using
Schaeffer and Carnahan Starling model

The raceway is simulated as a 2D raceway, same as by (Feng
et al., 2003). The bed is 1 m high and 0.3 m wide. It was
discretized by a uniform mesh using 200x60 cells. The jet
inlet is positioned 0.1 m above the bottom of the bed and is
0.02 m wide. Table 3 lists the physical parameters for solid
and gas phase used in the simulation.
Neumann boundary conditions for the air velocity are set at
the walls and bottom. The inlet velocity is set to 20, 25 and
30 m/s for the different cases studied. At the top, the air pres-
sure is fixed and no inflow is allowed. The particle velocity is
set to zero at the inlet and outlet and a partial slip condition is
used at the wall and bottom (Johnson and Jackson, 1987) with
a specularity coefficient of one. The specularity coefficient
defines the degree of frictional interaction between walls and
particles (specularity coefficient = 0 corresponds to friction-
less walls). The velocity at the boundary is calculated based
on this interaction coefficient. The granular temperature at
the walls and bottom is also treated by the JohnsonJackson-

Table 3: simulation parameters for the raceway case

Solid phase
diameter m 0.004
density kg/m3 2500
Gas phase
density kg/m3 1.205
viscosity kg/(ms) 1.8·10−5

ParticleTheta conditions, described in (Johnson and Jackson,
1987), using the same specularity coefficient and a restitution
coefficient of 0.95.
As a result of the previous test cases, we decided to use the
Schaeffer frictional stress model and the Carnahan Starling
radial model for the simulations. The maximum packing limit
was set to αmax = 0.63 and the minimum frictional velocity
to αmin = 0.6.
Figure 7 and Figure 8 show the results from the raceway for-
mation for two different inlet velocities: 25 and 30 m/s. For
the 20 m/s practically no raceway is formed, which qualita-
tively agrees with the presented results in (Feng et al., 2003).
For the case with 25 m/s inlet velocity, the raceway is reaching
a steady state after some time. For 30 m/s inlet velocity the
bed performs more like a bubbly bed and the raceway does
not seem to reach a steady state. The MULES and ICMULES
algorithms give the same results for the raceway formation.
For these cases a fixed time step of 10−5 s was used.

(a) (b)

Figure 7: Raceway formation for 25 m/s inlet velocity after 1 s
simulation time for the different algorithms: (a) MULES
(b) ICMULES

We also compare the raceway penetration depths from (Feng
et al., 2003) and the simulations. It is not entirely clear,
how the raceway penetration depth is defined by Feng et al.
(2003). Here it was calculated as the distance from the air
inlet to the region with a void fraction above 0.3. Table 4
shows the results from the simulation and literature. The
penetration depth agrees well for the cases of high velocity
(30 and 25 m/s). For 20 m/s no raceway is formed in the
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(a) (b)

Figure 8: Raceway formation for 30 m/s inlet velocity after 1 s
simulation time for the different algorithms: (a) MULES
(b) ICMULES

OpenFOAM® simulations. Better agreement might be ob-
tained, by also accounting for virtual mass effects, which were
neglected here.

Table 4: Raceway penetration depth in mm in comparison

paper explicit implicit
0.30 m/s 42 41 41
0.25 m/s 30 32 32
0.20 m/s 25 - -

The above test cases were all tested with the same time step
sizes for MULES and ICMULES and consequently resulted
in approximately the same computational time. To give an in-
dication on the possible computational improvements through
the ICMULES, we also tested the Raceway case with vari-
able time step using a maximum Courant number of 0.6. The
computational time of the two cases yields 13805 s using
MULES and 4008 s using ICMULES.
Figure 9 shows the results of the simulations with bigger time
steps. This reveals, that the results from MULES with a
bigger time step are not consistent with the results with lower
time step. Contrary, the results from ICMULES agree well
with the results in Figure 8.

CONCLUSION

In nearly all the test cases the newly introduced algorithm
ICMULES gave similar results as the MULES algorithm.
Only for certain model combinations, where the packing limit
is not ensured through the radial or frictional stress model, the
results differ significantly. There, the ICMULES algorithm
fails to enforce the packing limit. This might be a limitation of
the newly proposed algorithm. On the contrary, the question
remains, if the packing limit should be enforced purely by
numerical treatment, if the frictional or the radial model does
not depict this packing limitation.

(a) (b)

Figure 9: Raceway formation for 30 m/s inlet velocity after 1 s
simulation time for the different algorithms using vari-
able time stepping with maxCo = 0.6: (a) MULES (b)
ICMULES

First results were presented, showing that the ICMULES en-
ables considerable speed-up, since it produces consistent re-
sults also for higher Courant numbers, i.e. time steps.
In conclusion, the introduced algorithm can be used for the
simulation of gas-solid systems, also near the packing limit,
if suitable frictional and radial models are chosen.
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Abstract
The Eddy Dissipation Concept is often applied to couple turbulence and chemistry in computational fluid dynamics, 
because it can be coupled with any chemical mechanism. The solution of a system of ordinary differential equations 
is required to calculate the mass fraction changes. We present an approach to substitute the ODE-Solver by multiple 
artificial neural networks for speed-up. The training and validation results from plug flow reactor simulations are very 
promising in terms of accuracy and speed-up, but the results from Flame D show, that a network with arbitrary time 
step is necessary for speed-up and a variable for characterization of the solution space seems to be required.

Introduction
First theories building the foundation for artificial 

neural networks (ANNs) have been developed in the 40s 
but has lost attention around the millennial [1]. Due to 
better available hardware and datasets research on ANNs
has gained attention in the past 15 years. The 
advancement in ANNs paved their way into many 
applications. Besides well-known application fields, such 
as image or speech recognition, ANNs can also be 
applied for chemical problems [2], f.ex. search for 
reaction components [3] or in combination with 
computational fluid dynamics (CFD), f.ex.: [4,5].

CFD is a widely used tool in chemical engineering 
and many processes can be investigated by CFD 
simulations. Many simulations are numerically too 
expensive despite the ever increasing computational 
power. Solving detailed chemistry is the most expensive 
part of such CFD simulations. Consequently, speed-up of 
the chemistry solution is an important objective and we 
aim to achieve the required speed-up through the use of 
artificial intelligence.

ANNs have been applied in combination with the 
flamelet model [6,7], the probability density function [8],
or for tabulation [5].

An alternative model for combustion simulations, 
which describes the interaction between is the Eddy 
Dissipation Concept (EDC). Its benefit is that it can be 
used with any chemical reaction mechanism, but the 
solution of the system of ordinary differential equations 
(ODEs) describing the species mass fraction changes can 
become computationally very expensive. This system of 
ODEs is often considered stiff and therefore requires 
small time stepping in the solution and sophisticated 
ODE-solvers.

The substitution of the ODE-Solver by one or 
multiple ANNs to approximate the solution of the 
chemistry system could speed-up the simulation and has 
been already proposed in literature [9,8,10].

* Corresponding author: eva-maria.wartha@tuwien.ac.at
Proceedings of the European Combustion Meeting 2021

Theory
Turbulence-chemistry interactions are modeled by

the Eddy Dissipation Concept (EDC) [11,12]. The EDC 
divides the fluid into fine structures (*) and surroundings 
(°). Because the educts only mix on a molecular scale in 
the fine structures, they react only there. Based on the 
turbulence energy cascade, the fine structure mass 
fraction 𝛾∗ can be described by:𝛾∗ = 4.6 (𝜈𝜀𝑘2)12 (1)

where 𝜀 is the turbulent dissipation rate, 𝜈 the 
kinematic viscosity and 𝑘 the turbulent kinetic energy.
The residence time in the fine structure 𝜏∗ is modeled by: 𝜏∗ = 0.41 (𝜈𝜀)12 (2)

The mean mass transfer between the fine structures 
and the surroundings is defined as: �̅�𝑖 = 𝜌𝛾∗𝜏∗(1 − 𝛾∗) (�̅�𝑖 − 𝑌𝑖∗) (3)

Where 𝜌 is the density in the computational cell and 𝑌𝑖 is the mass fraction in the fine structure, surroundings 
or the mean cell (-). The reaction of species in the fine 
structures is modelled by a perfectly stirred reactor (PSR)
[12]. Because the additional mixing term significantly 
increases the numerical effort the model is often 
simplified to a plug flow reactor (PFR). Discussion about 
this simplification can be found in [13,14]. Within this 
paper we use the PFR simplification.

Eq.(4) describes the concentration evolution of 
species i in the fine structures, where �̇�𝑖 describes the 
chemical reaction rate of species i. The reaction rate is 
determined by the chemical mechanism, more precisely 
the reactions therein.𝑑𝑌𝑖∗𝑑𝑡 = �̇�𝑖 (4)

The set of ODEs, as described in Eq.(4), can be 
computationally expensive to solve because it can be 
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stiff. Therefore, we aim to substitute the solution 
obtained with an ODE-solver by an ANN.

Although, we use the PFR model for the fine 
structures here, the concept could be used in the same 
manner for application to the chemical subproblem when 
using the PSR model. The ODE equation for the PSR is
typically solved by operator splitting approaches, see 
f.ex.: [15–17].

Methods
An ANN can in general approximate the solution to 

any continuous multivariate function with a certain 
architecture and specific activation function [18]. In this 
work we apply a feedforward neural network with 
multiple layers. The input parameters are species mass 
fractions and the temperature, the output parameters are 
the species mass fractions after a fixed time step, see 
Figure 1.

The calculation of one output is given as: 𝑦𝑙 = 𝜎(𝑥𝑙(𝑤𝑙)𝑇 + 𝑏𝑙) (5)

where 𝑥𝑙 is the input to layer 𝑙, 𝑤𝑙 is the matrix of 
weights, 𝑏𝑙 is the vector of biases, 𝜎 is the activation 
function and 𝑦𝑙 is the output of layer 𝑙.

Therefore, different ANNs are trained for different 
time steps. This was done similarly to the work in [9]
because it reduces the size of the dataset and allows for 
faster training.  

To train an ANN one needs a representative training 
and validation data set. Here we can easily generate an 
arbitrarily large data set by solving the chemical system, 
Eq.(4), for arbitrary initial conditions. In any case, we 
need to ensure that the data is representative for the 
solution space, where the ANN shall be used.

Therefore, we decided to follow an approach 
suggested by [9]. Laubscher uses the Bilger’s mixture 
fraction, Eq.(6), described in [19], where Z denotes the 
elemental mass concentration of 𝑐=carbon, 𝑜=oxygen, ℎ=hydrogen and 𝑊 denotes the elemental mass of the 
respective element. The initial conditions are constructed 
based on uniformly distributed mixture fractions over a 
mixture fraction range between 0.1 and 1. The calculation 
of the mixture fractions relies on an underdetermined 
system. For 50% of the mixture fraction calculations we 
use the least-squares algorithm and for the other 50% the 
non-negative least squares algorithm. This is done to 
ensure uniformly distributed mass fractions, but also 
obtain zero mass fractions. For a more detailed 
discussion and explanation of the data generation see 
[20].

Additionally, the temperature is also uniformly 
distributed in a range between 𝑇𝑚𝑖𝑛and 𝑇𝑚𝑎𝑥 . Here they 
were chosen as 300 and 3000 K respectively. These 
initial conditions are then used for integration (until 
steady state or a maximum integration time) where each 

time-step pair represents an input-output pair. The 
obtained data set is split into a training and validation set 
(split factor = 0.9). For a more detailed explanation of the
used procedure see [20]. 

To evaluate the training of the network, the quality of 
the approximation is estimated by the loss function. We 
use the mean squared error, Eq.(7) as a loss function here. 
Where 𝑛𝑠 is the number of species, 𝑌𝑖𝑂𝐷𝐸 the mass 
fraction of species i calculated by the ODE-Solver and 𝑌𝑖𝐴𝑁𝑁 the mass fraction of species i calculated by the 
ANN. ∑(𝑌𝑖𝐴𝑁𝑁 − 𝑌𝑖𝑂𝐷𝐸)2𝑛𝑠𝑛𝑠 (7)

In the training of the ANN the weights and biases are 
adjusted in a way to minimize this loss function. In this 
work, the adaptive moment estimation algorithm 
(ADAM) [21] is used to adjust the parameters of the 
ANN.

A common choice as activation function is tanh. 
When applying tanh it is especially important to scale the 
input values between -1 and 1. Since the tanh is quite 
expensive in its evaluation and suffers from the vanishing 
gradient problem [22], the Rectifier Linear Unit (ReLU) 
has become more popular to use as activation function:𝑅𝑒𝐿𝑈(𝑥𝑖) = { 𝑥𝑖 𝑖𝑓 𝑥𝑖 ≥ 00 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (8)

A nice property of ReLU is, that it enforces the non-
negativity constraint for the mass fractions. Therefore, it 
will be applied as activation function in the last layer. 

Unfortunately, the “dying ReLU” is a problem which 
arises when using ReLU as activation function [23]. 
Therefore, the LeakyReLU was used as activation 
function in all layers in the training, see Eq.(9). The 

𝑍 = 2 (𝑍𝑐 − 𝑍𝑐,𝑜𝑥 ) 𝑊𝑐⁄ + (𝑍𝐻 − 𝑍𝐻,𝑜𝑥) 2𝑊𝐻⁄ + 2(𝑍𝑂 − 𝑍𝑂,𝑜𝑥) 𝑊𝑂⁄2 (𝑍𝑐,𝑓𝑢 − 𝑍𝑐,𝑜𝑥) 𝑊𝑐⁄ + (𝑍𝐻,𝑓𝑢 − 𝑍𝐻,𝑜𝑥 ) 2𝑊𝐻⁄ + 2 (𝑍𝑂,𝑓𝑢 − 𝑍𝑂,𝑜𝑥 ) 𝑊𝑂⁄ (6)

Figure 1: Schematic representation of the used 
architecture including input and output parameters
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LeakyReLU ensures a small gradient when 𝑥𝑖 < 0. The 
parameter 𝛼 was set to 0.01 in this work.

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥𝑖) = {𝑥𝑖 𝑖𝑓 𝑥𝑖 ≥ 0𝛼 𝑥𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (9)

The ANN shall be applied in conjunction with the 
EDC to speed up reactive flow simulations. For the CFD 
simulation we use the open-source Code OpenFOAM® 
[24] in combination with an in-house ANN chemistry 
library. The customized chemistry model reads the 
previously trained weights and biases of the network(s) 
and uses them instead of the ODE-Solver to approximate
the PFR-model for the fine structures.

The integration time of the ODE, Eq.(4), is defined 
by the fine structure residence time, Eq.(3). Since we 
only train ANNs for fixed time step sizes, we 
approximate the integration time by combining multiple 
of those steps. 

Besides the validation in python using the validation 
data set, we also apply the ANNs for combustion 
simulation. As a test case Sandia Flame D [25,26], a 
piloted methane-air jet flame, was chosen.

We use the reaction mechanism from [27] for the 
flame simulation, which is based on the well-known 
Jones-Lindstedt mechanism [28]. It consists of 4
reactions and 7 species.

The computational grid consists of 5170 cells. The 
P1 radiation approximation was used. ANN and the 
ODE-Solver are only applied in cells, where the 
temperature is greater than a threshold reaction 
temperature. Additionally, the ANN is only applied in 
cells with a mixture fraction above 0.1.

Figure 2: Training and validation loss for the training of 
the ANN with time step size 1e-4 s

The data generation and training of the ANNs was 
done using python-3.8 [29]. To handle the reaction 
mechanisms cantera was used [30]. The pytorch [31]
package was used, for the machine learning part. Other 
packages used were pandas [32] for reading, writing and 
handling in- and output data and scipy [33].

The ANN training was done on an AMD FX(tm)-
8350 (8 cores) with 30 GB RAM and a NVIDIA GeForce 
GT710. 

Results and Discussion
Based on the findings from [20] we trained three 

networks with 4 layers and 64 neurons in each layer for 
time step sizes of 1e-3, 1e-4 and 1e-5 seconds. 

Figure 2 shows the evolution of the loss for training 
and validation over the epochs of training. The training 
and the validation losses decrease in the same manner, 
which indicates that overfitting is not an issue.

Figure 3: Solver time and solution of the network in 
comparison (Python)

The execution time was tested with the neural 
network and compared to pythons VODE solver. The 
solver is provided via the scipy package [33]. It uses a 
stiff ODE-solver based on the backward differentiation 
formula (BDF). For the ANN trained for the different 
time steps the result is shown in Figure 3. The execution
time was tested for plug flow reactor simulations. As 
expected the improvements increase for larger time steps 
because the matrix multiplication is executed less often.

The reason, why the solver time is also increasing 
drastically for smaller time steps is probably related to 
the type of the solver. The first internal time step after 
restart is small while they increase for subsequent 
iterations, compare f.ex. [34].

Figure 4: Error between the simulation using the 
standard ODE solver and the one with the approximated 
integration time

The integration time of the fine structures, defined by 
the fine structure residence time, can only be 
approximated by the ANNs with fixed time steps. To 
verify, that this approximation of the integration time 
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does not influence the solution (too much), we simulated 
Flame D with the ODE solver using the same 
approximation for the integration time. To quantify the 
difference, we calculated the Mean Squared Error 
between the standard ODE solver and this approximation 
for the species concentrations on the axial profiles (r/d = 
1,2,3,7.5,15,30,45,60). Figure 4Errore. L'origine 
riferimento non è stata trovata. shows the errors 
associated with this integration time approximation. 
They are very small for all species. Therefore, we
concluded that the approximation error of the residence 
time is negligible. 

Figure 5: Error between the simulation with ODE solver 
and the simulation using the trained ANNs based on 
mixture fraction training data

The trained ANNs were used to simulate Flame D. 
We also calculated the MSE for the different species on 
the axial profiles, Figure 5Errore. L'origine 
riferimento non è stata trovata.. The MSE is orders of 
magnitude larger than for the comparison between the 
standard ODE-Solver and the “time-clipped” ODE-
Solver. Especially, the CO production and O2

consumption rate seems to be off. 
Figure 7 also shows the temperature distribution in 

the Flame for the simulation with the ODE-Solver and 
with the ANN approximator. The difference here can be 
clearly seen, although the training and validation gave 

very good results and the errors for the ANN were 
minimal. 

Comparing Laubscher’s [9] work, we see that also his 
ANN approximation was off, when the start initial 
conditions and the temperature field was not obtained 
from the ODE-Solver. This indicates, that a one-time step 
prediction by the ANN works well, but the error 
accumulates over multiple time steps. This accumulation 
is not considered in the training, because the loss function 
takes only into account the error between one input and 
one output.

Besides this circumstance, a difference between the 
training data space and the actual solution space could
also be a reason for the deviations. To test this 
assumption, we trained three additional neural networks, 
using Flame D data from a previous simulation as initial 
conditions to generate the training data.

Figure 7: Error between the simulation with ODE solver 
and with ANN trained with simulation data

The predicted temperature field seems to be more 
accurate than the one obtained with the other ANN, see
Figure 7. Calculating the mean squared errors for the 
species at the axial profiles results in higher errors than 
for the ANNs trained based on the generated data, Figure 
7. The error could be again related to the error 
propagation. Based on the temperature distribution this 
network seems to be better, but no final conclusion can 
be drawn here.

Figure 8: Number of times the ANN is used per cell 
count

Figure 6: Temperature distribution of the simulation 
(from left to right) using the ODE solver, the ANN based 
on mixture fraction data and the ANN based on 
simulation data
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The reason for this investigation was to speed-up 
reactive flow simulations. We showed the speed-up 
through the ANN in python. Similar results were shown 
in [9], who showed a significant speed-up through the 
usage of ANNs. The current implementation does not 
bring any speed-up in the OpenFOAM® simulations. 
One reason could be the efficiency of the seulex solver in 
OpenFOAM®, which is supposed to be more efficient
than solvers based on BDF [34].

Another reason could be the inefficient 
approximation of the integration time. Laubscher [9] only 
approximated the integration time by the closest ANN, 
but we applied the ANNs multiple times to approximate 
the integration time better. This leads to a lot of 
applications of the ANN and consequently to a lot of 
matrix multiplications Figure 8 shows the distribution of 
the number of executions over the number of cells.

Conclusions
We presented a framework to generate and train a 

neural network to substitute the ODE-Solver in reactive 
flow simulations. 

The tests on the sole approximation of the chemistry 
part brought significant speed-up compared to the ODE-
Solver. Unfortunately, this speed-up could not be 
transferred to the combustion simulations, because the 
fixed-time step networks need to be applied multiple 
times to approximate the integration time in the 
simulation. 

One approach to overcome this issue would be to train 
a network, with the time step as input parameter. It has to 
be investigated, if a similar network architecture can be 
capable to fulfill this task, or if either the network 
complexity has to be increased or some kind of progress 
variable needs to be introduced to measure the 
advancement of the reaction and distinguish between 
reaction pathways. 

An alternative to generate training data, was for 
example presented by [35,36], who used DNS data for 
the training of their neural networks and later on used 
those in LES combustion simulations.
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INTRODUCTION 

The main steel production route is the blast furnace route, which accounts for ~60% of the overall steel production in Europe [1]. 
Although being used for centuries, the process is still under intensive investigation. The large energy consumption and the high 
carbon emissions in the blast furnace process increase the need for process optimization and offer possibilities for 
improvements. The heart of the blast furnace is the raceway zone, where the hot blast enters, forming the raceway cavity. The 
blast oxidizes the coke and the auxiliary reducing agents providing the necessary heat and creating reducing gases to reduce 
the iron oxides. 
Due to the high temperatures, detailed measurements inside or near the raceway zone are practically impossible. Therefore, 
computational modeling techniques can be an excellent opportunity to study the processes in the raceway zone and gain insight 
into the processes occurring. 
However, the large scale of the plant, its high temperatures and reactions, and the interaction between solid and gas flow also 
pose challenges in modeling and computational cost. Therefore, a sensitive choice of models, balancing the computational cost 
and the needed accuracy, is essential for profound predictions. In the following, we will demonstrate a strategy that can be 
applied to large-scale applications, i.e., the blast furnace raceway. The model setup is validated based on comparison with 
experimental data, and we exemplify the importance of the model choice for predicting the raceway shape and consequently 
the species concentrations. 
 

MODELING THEORY 

The discrete-element-method (DEM) is probably the most detailed way to model solid particle movement, and their interaction 
is the discrete-element-method (DEM). Because the particle-particle interactions are resolved there, the description is very 
accurate but leads to high computational demand. Therefore, the application of DEM to large-scale applications, such as the 
blast furnace, is still hindered by its high computational cost [2,3]. 
An Eulerian description of the solid flow reduces detail but can describe dense solid flows on large scales. The sub-models 
used to model solid movement in such a framework need to be carefully chosen to maintain reasonable prediction accuracy. In 
this paper, we exemplify the influence of such model choices on the prediction of solid’s movement and distribution and how 
it also influences the species concentration prediction in the gas phase. 
In the Eulerian framework, all phases are modeled as interpenetrating continua. The momentum equations of both phases are 
coupled with interaction terms, e.g., drag. 
Since the model under investigation aims to be applied to industrial scale plants, the gas phase is modeled with Reynolds-
Averaged-Navier-Stokes (RANS) equations. The model is closed by modeling the turbulence with the k-𝜖 model [4].  
To close the phase-averaged momentum equation for the solid flow, the kinetic theory of granular flows (KTGF) [5–7] is the 
method of choice. Based on the resemblance between a dense gas and a dense solid flow, the KTGF was derived with the 
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knowledge of the kinetic theory of dense gases. A granular temperature is introduced, which describes the particle velocity 
fluctuations. The equation for the granular temperature needs to be closed by modeling terms. Different concepts to close those 
model terms exist, see, e.g. [8] for an in-depth summary. We focus on two approaches introduced by [5] and [9], which can be 
distinguished by not considering or considering the interstitial fluid effects, respectively. In a previous study based on cold 
model experiments, the difference in those two approaches significantly impacts the shape of the predicted raceway form [10]. 
In the following, we study the impact of these models and the raceway shape on the reactions and consequently the species 
distribution in the raceway zone. 
In addition to the forces accounted for in the KTGF models, frictional effects come into play when the solid fraction becomes 
large. Those effects are modeled above a specified volume fraction 𝛼  by adding the frictional pressure and frictional 
viscosity to the solid pressure and solid viscosity, respectively. In the presented work, we apply the models from [11]. For a 
detailed discussion on this modeling choice we refer to [12,13] or our previous work [14]. The radial distribution function was 
modeled according to [15]. 

 
To model the gas-solid reactions a mechanistic model for porous media, accounting for the intrinsic reaction rate, mass transfer 
through the boundary layer, and the mass transfer through the porous structure is chosen. Figure 1 shows a qualitative 
representation of the three different regimes contributing to the effective reaction rate for coke conversion. The effective 
reaction rate is modeled as follows: 𝑘 = 11𝛽𝑐 + 1𝜂𝑘 𝑐  (1) 

 
Where 𝑘  refers to the kinetic reaction rate, which is reduced by the effectiveness factor 𝜂 to account for the mass transfer 
through the pores to the actual reaction sites. The mass transfer limitation through the boundary layer is expressed through 𝛽 
and c is the concentration of the gaseous reactant with its coefficient 𝑣. The kinetic reaction rate is modeled based on an 
Arrhenius approach: 

 
where 𝐴 is the pre-exponential factor, 𝐸  the activation energy, 𝑅 the specific gas constant and 𝑇  the particle temperature. 
The effectiveness factor to account for pore diffusion is modeled according to [16]: 

 
where 𝛷 is the Thiele modulus, which was derived by [17] for the relation of catalytic activity and the size of particles. It is 
given as: 

𝑘 = 𝐴 ⋅ 𝑒𝑥𝑝 −𝐸𝑅𝑇  (2) 

𝜂 = 1𝛷 1𝑡𝑎𝑛ℎ(𝛷) − 1𝛷  (3) 

Figure 1: Schematic representation of the gas-solid reaction model and its different regimes from [25] 
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with 𝑑  being the particle diameter, 𝜌  the particle density and 𝐷  the effective diffusion coefficient, which is computed from 
the pore Diffusion coefficient based on Knudsen diffusion [18] 𝐷  , porosity 𝜖 and tortuosity 𝜏: 

The mass transfer through the boundary layer is modeled as follows: 

with the diffusion coefficient 𝐷  computed based on the model from [19], the particle diameter, the surface area calculated 
as  and the Sherwood correlation according to [20]: 

 
Additionally, the gas phase reactions need to be modeled to obtain a reasonable estimate of the gas phase concentration. In 
turbulent flows, the turbulence-chemistry interaction needs to be taken into account. This is done by employing the Eddy 
Dissipation Concept [21]. The fine structures where the actual reaction occurs are assumed to behave as perfectly stirred 
reactors (PSRs). To reduce the computational demand, we choose a plug flow reactor (PFR) model instead, which has been 
discussed by [22] and is also employed in this way in many commercial CFD codes, e.g., Fluent [23]. 
 
Implementation details 
The simulations were conducted in OpenFOAM. The framework has been presented by [24]. In addition to the standard 
functionalities in OpenFOAM, a generic multiphase chemistry framework has been implemented [25], which has been used to 
model the aforementioned gas-solid reactions. 
The solution of the continuity equations in multi-fluid Euler-Euler-simulations poses a special challenge. In [14] we proposed 
a different algorithm to solve the continuity equation of a two-fluid system. This has computational improvements compared 
to the original version. Therefore, we use this algorithm to predict the raceway shape for the three-dimensional cases in the 
following and solve for the chemistry in the stationary bed. For the two-dimensional cases, the standard algorithm in 
OpenFOAM, version 9, has been used, where the algorithm was generalized to treat multiple Eulerian phases. 
 
Model Cases 
Nogami et al. [26] studied the raceway formation in a coke bed under high temperature conditions. They reported the 
experimental results from this small-scale apparatus, which resembles the raceway conditions in the blast furnace. Since the 
species concentration profiles have been measured in this setup, this case will be used to validate our simulation cases. The 
comparison between the experimental case is first made in the full-scale 3D geometry, see Figure 2 (a). The mesh was refined 
near the tuyere inlet to save computational cost. 
Additionally, the 3D model is abstracted to 2D, as similarly done by [27], see Figure 2 (b). Often, 2D models are used to 
investigate real processes. Therefore, it is crucial that our 2D simplifications predict the process accurately enough. 
According to the experiment, the blast temperature and mass flow rate were set at 800°C and 710 Nm3/h with oxygen enriched 
air (10Nm3/h pure oxygen). The coke inflow from the top was set to be equivalent to the coke consumption to maintain a 
constant bed height, as done in the experiment. 

𝛷 = 𝑑2 1 + 𝜈2 𝑘 𝜌 𝑐𝐷  (4) 

𝐷 = 11𝐷 + 1𝐷 𝜖𝜏 

 

(5) 

𝛽 = 𝑆ℎ𝐷𝑑 𝐴  

 
(6) 

𝑆ℎ =  0.3751 − 𝛼 (𝑅𝑒) . (𝑆𝑐) /  

 
(7) 
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Table I: Parameters for the modeled coke  

Name Value Unit 
pore diameter 200e-9 m 
tortuosity 3.7 - 
particle diameter 0.03 m 
particle density 1081 kg/m3 

heat capacity 200 + 2 ⋅ 𝑇 − 0.001 ⋅ 𝑇 +  1.7 ⋅ 10 ⋅ 𝑇   J/(kgK) 
heat transfer coefficient −0.76 + 6.3 ⋅ 10 ⋅ T + 10 ⋅ 𝑇  W/(m2K) 
heat of formation coke -609393 J/kg 

 
 

The considered heterogeneous reactions in the simulations are given in Table II, where the kinetic parameters for the oxidation 
and CO2 gasification are taken from [28] and the gasification with H2O from [29]. The gas-phase reactions considered are 
shown in Table III and are based on the work from [30]  
 
Table II: Reactions and their parameters for the heterogeneous reactions. A is the pre-exponential factor in m3ν/(kg s molν-1) 
and 𝑇  is the activation energy divided by the specific gas constant in K, and 𝜈 is the power for the gas phase species 
concentration in the reaction rate expression. 

reaction A 𝑻𝑨 𝝂 𝑐𝑜𝑘𝑒 + 1.0475𝑂 → 𝐶𝑂 + 0.146𝐻 𝑂 
 

4.8e9 16731 0.59 𝑐𝑜𝑘𝑒 + 0.949𝐻 𝑂 → 𝐶𝑂 + 1.095𝐻  
 

3.42 15600 1 𝑐𝑜𝑘𝑒 + 𝐶𝑂 → 2𝐶𝑂 + 0.051𝐻 𝑂 + 0.095𝐻  2.7e5 18520 0.13 
 
Table III: Reaction rate parameters for the gas phase reactions. A is the pre-exponential factor in mol/m3 and 𝑇  defined as for 
the heterogeneous reaction. The power of the species concentration is given if not equal to the stoichiometric coefficient. 

reaction A 𝑻𝑨 𝝂 𝐶𝑂 + 0.5 𝑂 → 𝐶𝑂  
 

1.25908e10 20446 𝑂 : 0.25, 𝐻 𝑂: 0.5 𝐶𝑂 → 𝐶𝑂 + 0.5 𝑂  
 

5e8 20446  𝐻 + 0.5𝑂 → 𝐻 𝑂 9.87e5 3728 𝑂 : 1 

Figure 2: Left: 3D representation, Right: 2D representation of the setup under investigation 
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RESULTS 

 

 
Figure 3 shows the species concentration profiles of the conducted simulations. On the left side of the figure, the results of the  
3D simulations are compared to the experimental results from [19]. Interestingly, the modeling choice of the closure terms of 
the KTGF does not significantly affect the raceway shape or the species concentrations. In all the cold model studies presented 
in [10], the choice of the closure terms had a significant influence on the raceway shape. Probably, the change to a full 3D 
representation of the geometry makes the difference. In general, the simulation results agree very well with the experimental 
results. The drop of the oxygen concentration is slightly underpredicted, and consequently, also the peak of the CO2 
concentration. This could also be related to a deficiency of the reaction model chosen for the coal (Table II). These were taken  
from [28] because no details about the type of coal were given in [19]. The results might be even more accurate if the reaction 
parameters are specifically derived for the used coke. 

On the right-hand side of Figure 3, the results from the 2D case are shown. Here, the modeling choice for the KTGF closure 
models has a significant influence on the raceway shape and the species concentrations. Only the closure terms proposed by 
[9] predict the raceway shape and consequently the species concentrations reasonably well. This is in agreement with the results 
from the cold model experiments presented in [10]. These results suggest that for 2D simulations using the KTGF, one should 
use the closure models proposed by [8]. Therefore, we study the influence of further oxygen enrichment of the blast with this 
setup.  
The oxygen enrichment of the blast was increased to 27 vol-%. Figure 4 shows the resulting oxygen mass fractions for the base 
case and the one with additional oxygen enrichment. Naturally, the oxygen concentration is increased in the overall domain.  

Figure 3: Species concentration profiles from [26] and simulation results, left from 3D setup and right from the 2D 
setup 

Figure 4: Species mass fraction O2 contours for the base case (left) and the case 
with oxygen enrichment in the blast (right) 
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The CO and CO2 mass fractions show the same trend because the increased amount of oxygen leads naturally to an increased 
reaction. The zone of CO2 around the raceway broadens, see Figure 5, which depicts a widened reaction zone of the coke. 
Interestingly, the peak concentration of CO2 does not significantly increase.  

Figure7 shows the coke consumption rate in the studied cases. It might seem as the reaction zone was broadened on the right 
side in the figure, but this is mainly due to the different scaling. Overall, the coke consumption rate is increased in the case with 
increased oxygen enrichment, which is in alignment with the shown species mass fractions in Figure 55 and Figure 5.  
 

CONCLUSIONS 

We presented a modeling framework to be applied to large-scale blast furnace geometries. The use of an Eulerian description 
of the solid phase allows for larger geometries but poses additional challenges on the chosen model. Based on a comparison 
with experimental results, we could show that our modeling choice is sufficiently accurate and that choosing the closure terms 
in the KTGF is especially important when a simplified two-dimensional representation is chosen.  
With the simplified model, the influence of oxygen enrichment in the blast was studied. The presented models can easily be 
applied to larger scale to study process variations in an existing blast furnace.  
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