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Abstract—In social networks, individuals’ decisions are strongly influenced by recommendations from their friends, acquaintances,

and favorite renowned personalities. The popularity of online social networking platforms makes them the prime venues to advertise

products and promote opinions. The Influence Maximization (IM) problem entails selecting a seed set of users that maximizes the

influence spread, i.e., the expected number of users positively influenced by a stochastic diffusion process triggered by the seeds.

Engineering and analyzing IM algorithms remains a difficult and demanding task due to the NP-hardness of the problem and the

stochastic nature of the diffusion processes. Despite several heuristics being introduced, they often fail in providing enough information

on how the network topology affects the diffusion process, precious insights that could help researchers improve their seed set

selection. In this paper, we present VAIM, a visual analytics system that supports users in analyzing, evaluating, and comparing

information diffusion processes determined by different IM algorithms. Furthermore, VAIM provides useful insights that the analyst can

use to modify the seed set of an IM algorithm, so to improve its influence spread. We assess our system by: ðiÞ a qualitative evaluation

based on a guided experiment with two domain experts on two different data sets; ðiiÞ a quantitative estimation of the value of the

proposed visualization through the ICE-Tmethodology by Wall et al. (IEEE TVCG - 2018). The twofold assessment indicates that VAIM

effectively supports our target users in the visual analysis of the performance of IM algorithms.

Index Terms—Information visualization, visualization systems and software, influence maximization, visual analytics, information diffusion

Ç

1 INTRODUCTION

PEOPLE in social networks influence each other in both
direct and indirect ways, through a mechanism often

known as the word-of-mouth effect (see, e.g., [1], [2]). For
instance, individuals’ decisions to purchase a product or
adopt an opinion are strongly influenced by recommenda-
tions from their friends and acquaintances. For this reason
online social networking platforms are becoming the favor-
ite venue where companies advertise their products/serv-
ices and where politicians run their campaigns. In this
context, research on so-called influence maximization focuses
on understanding and leveraging such influence to obtain a
much larger spread of the product or opinion than tradi-
tional marketing campaigns targeted to single individuals.
Formally, the influence maximization problem (IM) asks to
select a seed set of users that maximizes the influence spread,
i.e., the expected number of users positively influenced by

an information diffusion process, triggered by the seeds
and evolving according to some stochastic diffusion model.
The set of seeds should be relatively small, as users in this
set have to be targeted individually. For instance, a classical
application of IM is viral marketing [3], where companies
want to maximize the adoption of a new product starting
from some carefully selected early adopters who represent
the seed set triggering the diffusion process.

Under the most common stochastic diffusion models,
finding the optimal seed set in a network is known to be an
NP-hard problem [1]. On the positive side, a greedy algo-
rithm guarantees that the optimal influence spread can be
approximated within a factor of ð1� 1

eÞ, where e is the base
of the natural logarithm [1]. Besides the problem hardness,
being the information diffusion process stochastic, even the
evaluation of influence spread of any seed set is computa-
tionally intensive [4]. This makes the design of scalable and
effective IM algorithms a great challenge that motivated a
large and still increasing body of literature [5]. To evaluate
an IM algorithm, some commonly adopted key performance
metrics are quality of spread, running time efficiency, and
main memory footprint. In addition, it is desirable for the
algorithm to be robust across diffusion models, networks
(with distinct structural properties), and parameters. Over-
all, analyzing and engineering such algorithms remain diffi-
cult and demanding tasks; as reported by Arora et al. [6],
after a thorough experimental analysis, there is no single
state-of-the-art technique for IM.

Contribution. The objective of the research described in
this paper is to exploit the power of visual analytics (VA) to
support domain experts in analyzing, evaluating, and com-
paring IM algorithms. We present VAIM (Visual Analytics
for Influence Maximization), a system that, besides provid-
ing facilities to simulate an information diffusion process
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over a given network, offers problem-oriented VA tools to
explore the related data. An early version of this research
has been presented as a short paper [7]. The main features
of VAIM are as follows.

� VAIM implements some of the most popular IM algo-
rithms (e.g., HIGHDEG [1] and SDISC [8]) and infor-
mation diffusion models, such as the IC (Independent
Cascade) and LT (Linear Threshold) models. The
modular architecture of VAIM makes it possible to
easily integrate additional implementations, which
can also be executed on distributed cloud-based
infrastructures.

� VAIM offers multiple interactive coordinated views
that make it possible to visually compare and analyze
the performance of a diffusion model over complex
networks with thousands of vertices, for different
choices of the seed sets (i.e., for different IM algo-
rithms or for different choices of the parameters of
the same algorithm).

� Besides the analysis and evaluation of IM algo-
rithms, VAIM allows users to interactively modify
the seed set and iterate the process until a satisfying
spread is achieved. Such feature can be used to either
fine-tune the output of an algorithm or to improve
the design of an algorithm via reverse engineering.

We performed a twofold assessment of the effectiveness of
VAIM: (i) A qualitative guided experiment with two domain
experts on two different data sets; (ii) an evaluation based on
the ICE-T methodology [9], aimed to quantitatively measure
the value of the examined visualization and infer the quality
of the underlying design choices. The assessment indicates
that VAIM effectively supports users in the visual analysis of
the performance of IM algorithms.

Paper Organization. The remainder of this paper is struc-
tured as follows. Section 2 contains a brief review of the liter-
ature related to our research. Section 3 provides basic
background and notation. Section 4 illustrates our approach
and presents the main features of VAIM. Section 5 describes
our twofold assessment process. Section 6 contains a summa-
rizing discussion, outlining the limitations of our approach
and opportunities for further research in this context. Sec-
tion 7 concludes the paper.

2 RELATED WORK

This section reviews the main literature on the visual analy-
sis of diffusion processes that may arise in various contexts
and highlights the main differences with our approach. We
first review the visualization of information diffusion on
social networks and then its applications in other domains.
We refer the reader to the works by Guille et al. [10] and by
Li et al. [5] for surveys about influence maximization and
information diffusion in social networks.

2.1 Information Diffusion in Social Networks

There are several visualization systems designed to analyze
information diffusion processes in social networks. Twi-
tInfo [11], [12] aggregates tweets in the spatial, temporal,
and event dimensions supporting the exploration of event
propagation processes. Whisper [13] exploits a flower-like

visualization for real-time monitoring of the diffusion of a
given topic, highlighting the spatio-temporal information of
the process over the world. OpinionFlow [14] uses Sankey
diagrams and density maps to visually summarize opinion
diffusion processes. FluxFlow [15] adopts a timeline visuali-
zation to analyze anomalous information diffusion spread-
ing. D-Map [16] collects data from Sina Weibo (a chinese
microblogging website) and offers a map-based ego-centric
visualization to reveal dynamic patterns of how people are
involved and influenced in a diffusion process. Social-
Wave [17] uses abstract visualizations to explore and analyze
spatio-temporal diffusion of information, taking into account
further factors in the diffusion process such as cultural prox-
imity and linguistic similarity. Visual-VM [18] provides a
visualization system for viral marketing in social networks.
More approaches are elaborated in Chen et al. [19].

All the aforementioned systems and approaches are
designed to reveal different facets of the diffusion processes,
with the resulting visualization merging geographical and
other user-related information. On the other hand, unlike
VAIM, they neither support the user in analyzing the
impact of the seeds (which in fact may be unknown) and of
the network structure in terms of influence spread, nor offer
simulation tools to experiment different diffusion models
and/or IM algorithms. Also, the networks analyzed with
VAIM may come from diverse scenarios and may not con-
tain geographical information about users.

Vallet et al. [20] present a visualization framework to
compare different diffusion models based on a common set
of graph rewriting rules. Different from VAIM, Vallet et al.
do not focus on comparing different IM algorithms. Also
their visualization approach is suitable for networks with
up to few hundreds of vertices and edges.

SpreadViz [21] is a Web-based system that allows users to
visualize a diffusion process by starting from one ormultiple
seeds. The user can choose the number of seeds and the crite-
rion applied by the system to select them, as the most influ-
ential nodes according to one of some predefined centrality
indexes. Also, the user can choose one among three possible
stochastic diffusion processes. The spread is shown by pro-
gressively highlighting vertices in a node-link diagram com-
puted by the force-directed algorithm in the popular D3.js
library [22]. To set up the simulation, the user can upload a
network and select among several diffusion models. The
main view of the user interface presents a node-link visuali-
zation of the network, showing all the nodes and their links.
Each node is assigned a color to represent its status in a spe-
cific time instant of the simulation selected by the user. The
paper presents a demo with a graph with 3k nodes and 8k
edges. While it is an interesting tool to perform simulations,
unlike VAIM it does not provide a direct support to compar-
ing different simulations in the same view and they do not
allow users tomodify the seed set during the visual analysis.

NDLib [23] is a general-purpose simulation framework
written in Python to easily run information diffusion simu-
lations. As a library, it does not provide a visualization com-
ponent that depicts the evolution of the process over the
network graphically, however we include it in this discus-
sion for the sake of completeness.

We finally mention an interesting work by Saito et al. [24],
which describes a new force-directed layout algorithm driven
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by a diffusion process under the LTor the ICmodel. This algo-
rithm incorporates conditional probability of information dif-
fusion between two nodes with the aim of computing
visualizations that guarantee path continuity (i.e., any infor-
mation diffusion path is continuous) and path separability
(i.e., each different information diffusion path is clearly sepa-
rated from each other). This algorithm was evaluated on
graphs with up to 10k nodes and 245k edges. VAIM offers a
simultaneous visual comparison of different diffusion pro-
cesses on the same graph layout, which makes it difficult to
exploit the layout algorithmby Saito et al.

2.2 Applications of Information Diffusion

Information diffusion processes include, among others, dis-
ease spreading in social environments (see, e.g., [25]), mal-
ware diffusion among computers (see, e.g., [26]), and mobile
phone viruses propagation (see, e.g., [27]). The spreading of
these epidemic phenomena are often described as informa-
tion diffusion processes over suitable networks: The visuali-
zation of the “information spread” in the network helps in
understanding the dynamics of the phenomenon.

Afzal et al. [28] propose an interactive VA tool to monitor
the simulation of a disease outbreak. The goal of the system is
to provide a decision support environment in which users
can explore epidemic models and their long and short term
impact. A library of mitigation measures is included, so that
the users can evaluate their effect in containing the epidemic.
The tool is targeted to epidemiologists, local public health offi-
cials and other healthcare officials. This system only shows
the macroscopic effects of the spread, while VAIM also aims
at uncovering the local effects of diffusion processes.

Bryan et al. [29] propose Epidemic Simulation System
(EpiSimS), a modeling tool for analyzing disease spread
within the US. Visual analysis is used to provide guidance
for users with limited knowledge in statistical modeling to
understand the epidemic phenomenon. The system also
provides predictive models which help forecasting the evo-
lution of the disease. The system’s goal is to guide the user
in all the stages of the decision process: from the choice of
the model parameters, to the analysis of the results of the
simulation. Maciejeweski et al. [30] present a system to iden-
tify hotspots and trends in spatio-temporal data. The system
is used with healthcare surveillance data, and the linked
view approach is used to predict and forecast the potential
health threats to a community. The goal of the tool is to find
potential hotspots vulnerable to a disease outbreak. Differ-
ently from VAIM, the systems in [29], [30] allow users to
build models that predict the spread considering their
knowledge of the application domain, thus their focus is not
on the visual analysis of the diffusion process but only on
the outcome of the simulation.

Guo [31] presents a system to visualize interaction pat-
terns for pandemic relief decision support. The system enc-
odes the movements of people between places (“activity
graph”) and whether someone spread the contagion from
one place to the other (“spread graph”). The visualization
combines matrices and flow graphs: differently from VAIM,
the data is not time-dependent, as all the links are contained
in a single instance of the activity and spread graph.

Van den Broeck et al. [32] present GLEaMviz, a publicly
available software that simulates the spread of human-to-

human infectious diseases on world scale. The simulations
combine real-world data on populations and human mobil-
ity with stochastic models of disease transmission. In terms
of visualization, the system provides a dynamic geographic
map and charts describing the geo-temporal evolution of
the disease. Also, many recent VA systems focus on the
infection spread related to COVID-19 pandemic (see, e.g.,
[33], [34]). As already mentioned, all these systems differ
from VAIM as they mainly exploit visualizations on geo-
graphic maps instead of network visualizations.

3 BACKGROUND AND NOTATION

We model a social network as a directed edge-weighted
graph G ¼ ðV;EÞ, where each node in the set V represents a
user and each edge in E represents a direct relationship
between two users. Namely, a direct edge ðu; vÞ 2 E means
that u can influence vwith a probability that is related to the
edge weight. Note that, considering directed graphs is not
restrictive, as any undirected relationship can be modeled
with two edges oriented in opposite directions.

A diffusion model M captures the stochastic information
diffusion process among the nodes ofG. During the process,
a node v 2 V can be either active (i.e., already influenced) or
inactive (i.e., not yet influenced). We only consider progres-
sive models, where an inactive node may become active but
not vice versa (this is the scenario adopted by most of the
IM algorithms [5]). Let S � V be the initial set of active verti-
ces of G, called seed set. The influence spread of S, denoted by
sG;MðSÞ, is the expected number of active vertices once the
diffusion process - over the graph G and under the model
M - terminates. More formally, the IM problem asks for a
set S� � V of at most 0 < k � jV j seeds that maximizes the
influence spread, that is:

S� ¼ argmaxfsG;MðSÞjS � V ^ jSj � kg:

The most commonly used diffusion models are the Indepen-
dent Cascade (IC) and the Linear Threshold (LT). Other models
make use of additional parameters but do not differ signifi-
cantly in terms of the underlying iterative framework. In
the IC model, a diffusion instance unfolds through an itera-
tive process: in step 0, only the seed vertices are active; in
step j > 0, each vertex u activated at step j� 1 will activate
each of its inactive neighbors v with probability 0 �
pðu; vÞ � 1. If u activates vwe say that the edge ðu; vÞ triggers
the activation of v. The process halts when no more vertices
can be activated. In the LT model, each edge ðu; vÞ 2 E is
associated with a weight bðu; vÞ � 1, and each vertex v has a
threshold 0 � QðvÞ � 1. A diffusion instance follows again
an iterative process. In step 0 the only active vertices are the
seeds, while in step j > 0 any inactive vertex v becomes
active as soon as the total weight of the edges incident to its
active neighbors (which must be smaller than or equal to 1)
is at least QðvÞ. If v is activated, we say that all the edges
that connect v to its active neighbors trigger the activation
of v. The process halts when no more vertices can be
activated.

Unfortunately, the IM problem is NP-hard under both
the IC and LT models, as well as under other models [1]. A
simple greedy approach to approximate the optimal solu-
tion exists [35], but it does not scale to large networks,
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which motivated the design of faster IM heuristics. We refer
the reader to seminal papers [1], [3] and to recent surveys
[5], [10] for a broad dissertation.

4 THE VAIM SYSTEM

The design of VAIM relies on the “Data-Users-Tasks” model
proposed by Miksch and Aigner [36]. Following this model,
we describe the data (Section 4.1), as well as the users and
the tasks (Section 4.2) driving our design process. Next we
describe we describe the design of VAIM’s visual interface
(Section 4.3), which adopts an overview+detail approach.
Finally, we discuss the main architectural choices of our
implementation (Section 4.4).

4.1 Data

For each step of a diffusion process, we are interested in
estimating the following three quantities: (i) the influence
spread achieved at that step, (ii) the probability that a node
is active at that step, and (iii) the probability that an edge
triggered an activation at that step. Due to their stochastic
nature, we model these quantities as random variables, and
we employ a Monte Carlo method for their estimation.
Namely, given a graph G ¼ ðV;EÞ, a diffusion modelM and
a seed set S, we repeatedly simulate the corresponding dif-
fusion process, until the influence spread converges. The
convergence is obtained when the difference in terms of
influence spread between two consecutive simulations
(over the entire sequence of simulations already computed)
goes below a predefined threshold (which we set at 2%). Let
K be the number of performed simulations and let T be the
maximum number of steps over all simulations. For each
step 0 � j � T and for each node v 2 V , denote by sðv; jÞ the
number of simulations in which v has been activated at any
step i � j. The spread at step j indicates how many vertices
on average one can expect to be active at step j; we define it

as s�ðjÞ ¼
P

v2V sðv;jÞ
K . Also, we define the probability that v

is active at step j as aðv; jÞ ¼ sðv;jÞ
K . Similarly, for each edge

e 2 E, denote by s0ðe; jÞ the number of simulations in which
e triggers an activation at any step i � j. We define the prob-
ability that e triggers an activation either at step j or at some
previous step as bðe; jÞ ¼ s0ðe;jÞ

K . Clearly, for any given vertex
v and for any given edge e, the functions aðv; jÞ and bðe; jÞ
do not decrease as j increases. According to the Monte Carlo
method, we assume that the arithmetic mean is a good esti-
mator for the three quantities we are interested in. Besides
the arithmetic mean, we also store the corresponding stan-
dard deviation.

This procedure yields a triple hG;a;bi that can be viewed
as an uncertain and dynamic graph G, where each node v
and edge e exist at any step 0 � j � T with probability aðv; jÞ
and bðe; jÞ, respectively.

4.2 Users and Tasks

VAIM primarily targets researchers in the influence maxi-
mization and information diffusion domains, investigating
how diffusion models perform under different graph topol-
ogies. VAIM can also support users that require investigat-
ing diffusion processes in their own application domain,
such as epidemiologists. Usually such users are not aiming

to explore the whole network, but rather focus on smaller
sections for more detailed investigations. Consequently, an
overview visualization should support the selection process
and a more sophisticated visual exploration environment
should ease the investigation of the spread and how the
structure of the network influences the diffusion process. To
this end, VAIM is designed to support the following tasks:

T1Simulate: Estimate the outcome of a diffusion process
on a given network under a given diffusion model, with the
seed set computed by an IM algorithm.

T2Evaluate: Visually analyze both the quality of spread of
a seed set and the impact of the network structure on the
diffusion process, such as areas with a higher rate of active
nodes, isolated areas, etc. The user can fast forward, rewind,
and pause the process animation.

T3Compare: Visually compare the performance of differ-
ent seed sets computed by different IM algorithms.

T4Feedback: Modify the seed set and iterate the simulate-
evaluate-compare process.

4.3 Visualization Design

The visualization design adopts a focus+context approach.
The interface is organized as a dashboard with multiple
coordinated views (see Fig. 1). The chosen colour schemes
and palettes are colorblind friendly [37].

– Diffusion process control (Fig. 1 A). This area is opened
on demand and hidden during the analysis process. Here
the user can load a graph and the corresponding simulations
onto the visualization. Moreover, from here it is possible to
launch a new simulation, by setting parameters such as the
stochastic model and seed selection technique (Task T1). The
seed set can be computed either randomly or by an IM algo-
rithm by providing the set target size (or “budget”). The ini-
tial seed set can be also selected by modifying a previously
used one available in the system according to the feedback
offered by VAIM (Task T4), as explained later.

–Density matrix view (Fig. 1 B). This component pro-
vides an overview of the network structure. It consists of a
schematic matrix visualization, which is obtained by firstly
computing a node-link layout of the whole network with
some fast algorithms, such as centralized or distributed
force-directed techniques (e.g., [38], [39], [40]), and then by
slicing the plane into cells. The color intensity of each cell
reflects the number of nodes that fall in that cell. This view
gives a high-level idea of how the nodes are distributed in
the drawing area. Since force-directed algorithms tend to
keep close together groups of nodes that are strongly related
to each other, one can assume that cells with high node con-
centration correspond to dense portions of the network.
Structural details of portions of the network that fall in one
or more cells can be obtained through an exploration with
the node-link view (see below), in a focus+context fashion.
The number of cells in the matrix view can be increased/
decreased through a slider. Hovering with the mouse on a
cell (if no simulations are loaded), opens a tooltip with the
number of nodes in that cell. This approach requires very
little data transfer between the server and the client (see Sec-
tion 4.4), it approximates the network structure highlighting
higher density areas, and remains readable as the graph
size increases. The layout for the generation of the matrix
can be computed automatically when the graph is loaded in
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the system the first time or can be pre-computed by the user
(for example to obtain a layout that highlights different
aspects of the topology of the graph), and then loaded in
VAIM. The layout is saved in the database and not recom-
puted to ensure efficiency. In our prototype, we use SFDP
by Hu [41] as the algorithm for the first layout, as its code is
easy to integrate [42] and it is able to scale up to graphs
with millions of nodes and edges (see, e.g., [39]).

– Simulation Control (Fig. 1 C). The controls in this view
allow the user to manipulate the visualizations of the cur-
rently loaded simulations (Task T2), and compare them on
some aggregated metrics and high-level information
(Task T3). Using a time slider, the user can navigate through
time (i.e., the different frames of each simulation), causing all
the loaded simulations to simultaneously animate. Below,
the basic information and statistics about the loaded simula-
tions are aggregated into four distinct subareas arranged

into a grid: these information include the number of seeds,
the algorithm used for seed selection, the diffusion model,
the average number of expected activate nodes (i.e., the
spread) and its standard deviation. The user can select any of
the loaded simulations by clicking on their respective box to
execute additional operations on their individual views. The
part of interface to the right of the Simulation Control is split
into up to four distinct subareas arranged into a grid: Each
subarea corresponds to one of the simulations under com-
parison and consists of different interactive views, which are
described below.

– Diffusion matrix view (Fig. 1 D). For a specific simula-
tion, this view shows the spread distribution over the consid-
ered network (Task T2). The diffusion process is conveyed
using a schematic matrix visualization defined on the same
set of cells as the density matrix. This choice facilitates not
only the association between the diffusion matrix and the

Fig. 1. An overview of VAIM’s visual interface, which shows two distinct simulations on the same network at a specific time step (the interface sup-
ports the simultaneous comparison of up to four simulations, arranged in a 2� 2 grid). The network consists of 4,410 nodes and 12,210 edges. The
components of the interface are the following: (A) Diffusion Process Control; (B) Density Matrix View; (C) Simulation Control; (D) Diffusion Matrix
View; (E) Node-link View; (F) Process Trend View.
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density matrix views, and therefore correlate the spread dis-
tributionwith the structure of the network, but also compari-
sons among diffusion matrix views of distinct diffusion
processes (Task T3). The color of each cell varies in a YlOrRd
scale (yellow to orange to red), and reflects the “amount” of
nodes in the cell that are likely active at the considered step
of the diffusion process. More precisely, for a cell c and for a
given step j of the diffusion process, we compute the mean
of the probabilities aðv; jÞ over all nodes v in c, and we map
this value in the YlOrRd scale to establish the color of c.
When this value is 0, the cell is filled with white. By using the
“Show Low” and “Show High” buttons from the Simulation
Control view, the user can highlight the cells in this view
with low and high efficiency respectively, measured as the
average activation probability over all the nodes in the cell at
the last step of the simulation. When either of the buttons is
pressed, in the corresponding cells a number appears, repre-
senting the efficiency multiplied by a factor 100. By hovering
with the mouse on any cell, a tooltip reveals the cell value,
and the same cell is highlighted in both the density and other
diffusion matrices (along with their corresponding tooltips)
to ease the comparison between different simulations. Simi-
larly to the densitymatrix view (see above)we chose amatrix
to display the spread progress as it scales to larger graphs
with little to no impact on the system’s performance. More-
over, as the node distribution is the same as the density
matrix view, it is possible to directly correlate the temporal
evolution of the spread with the vertex density. We investi-
gated the use of pixel-based representations: however, they
would have likely required further onboarding to the user
and we would have lost the correlation between the spread
dynamics and node density.

– Node-link view (Fig. 1 E). Besides each diffusion
matrix, a detailed node-link diagram of a portion of the
network can be visualized. The user can freely choose this
portion through a brushing selection of any group of k� h
cells in the density matrix. The combination of this view
with the density and diffusion matrix enables a scalable
focus+context exploration and assessment of the diffusion
spread (Task T2). In the diagram, the nodes’ individual
appearance changes according to their current status in
the diffusion process. Inactive nodes are smaller and col-
ored in dark grey; active nodes are larger and colored in a
scale ranging from white to purple; the color reflects the
activation probability up to the considered time step
(white corresponding to probability 0 and purple corre-
sponding to probability 1). To differentiate the seeds from
the other nodes, they are colored blue since the beginning
of the simulation. Similarly, the edges are colored in a
scale ranging from white to red; the color reflects the prob-
ability that the edge is used in the diffusion process up to
the considered time step. Differently from nodes, inactive
edges are normally hidden; by interacting with the Simula-
tion Control, the user can either hide/show the underlying
edge structure (Fig. 1 C) and/or all edges whose activation
probability is not zero. Finally, the node-link view can be
used to modify the current seed set (Task T4), by receiving
suggestions from the system. Namely, the user can select
an area of the view, and the system retrieves data from the
corresponding cell of the diffusion matrix view. If the cell
has high (low) efficiency, the system suggests nodes to be

removed (added) from the seed set, ranked by increasing
(decreasing) out-degree (i.e., the number of nodes they can
influence); the user can choose how many of these nodes
must be selected. This operation can also be done regard-
less of the system suggestions.

– Process trend view (Fig. 1 F). As for the diffusion
matrix view, we have a process trend view for each diffu-
sion process under comparison. Each process trend view
consists of two charts, one located above the corresponding
diffusion matrix view and the other above the node-link
view. The first chart conveys the spread s�ðjÞ at each step j
through a series of box-and-whisker plots. The second chart
is coordinated with the node-link view; namely, when the
user hovers on a node v, the chart shows the activation
probability aðv; jÞ of v within the time instant j and also the
probability that v is activated exactly at j (Task T2). Doing
so highlights the same nodes on the other loaded simula-
tions and triggers their respective trend views (see Fig. 1) to
enable the comparison with other processes (Task T3).

4.4 Architecture

To support task T1, VAIM must simulate multiple diffu-
sion models on networks of various size. On the other
hand, tasks T2–T4 should be supported by an advanced
user interface that makes use of suitably designed visual
abstractions (described in Section 4.3). Based on these
requirements, VAIM has a client-server architecture struc-
tured as follows.

The server side hosts algorithms to simulate common dif-
fusion models, as well as ad-hoc algorithms to visualize the
output data; further diffusion models can be easily inte-
grated by adding the corresponding implementations
thanks to a modular design. The server also hosts IM algo-
rithms for automatic seed selection. The current implemen-
tation of VAIM is written in Java 14 and includes custom
implementations of the IC and LT diffusion models, and
two seed selection algorithms: a strategy based on degree
centrality, introduced by Kempe at al. [1] (HIGHDEG in the
following), and the SingleDiscount (SDISC) heuristic pro-
posed by Chen at al. [4] based on degree discount. The out-
put data are stored in a Neo4j graph database [43]. The use
of a graph database in this context has several advantages.
In particular, retrieving specific subgraphs that match
queries on node and edge attributes is simple and fast with
Cypher, the built-in graph query language of Neo4J.

The client-side is a Web application developed using
React [44] and it depends heavily on the D3 library [22] for
data visualization. Server-side and client-side communicate
via a REST API. The client is designed to accommodate up
to four simulations at once. This bound on the number of
simulations that can be simultaneously handled preserves
interactivity and performance as the graph size increases,
and it guarantees that all simulations can be displayed in a
single view, thus favoring a juxtaposition-based comparison
approach. We designed our system to fit a 16:9 display, and
it was tested primarily on FullHD displays (with a resolu-
tion of 1920x1080).

The VAIM source code, for both the server and client,
a sample database, and the server API description (for
extending the capabilities of the system) are available
online [45].
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5 EVALUATION

In this section we describe the twofold assessment of VAIM,
namely: Section 5.1 reports the results of two case studies
with domain experts; Section 5.2 describes an evaluation
based on the ICE-T method [9].

5.1 Case Studies With Experts

This assessment aims to establish whether VAIM can effec-
tively support domain experts in the execution of
Tasks T1�T4 (described in Section 4.2). Moreover, we look
for insights on the experts’ workflow and interaction pat-
terns when using the system.

Each individual case study is conducted as follows.
Before the session, we select a real network that is of interest
for the expert. The networks used for the two case studies
are shown in Fig. 2. Three simulations are run on the
selected network: one with a random sampling of the seed
set (RANDOM in the following) and the other two with two
well-known heuristics for IM seed set selection included in
VAIM, namely HIGHDEG and SDISC. In all cases, the size
of the seed set is fixed to 10% of the number of nodes in the
network. All the data is loaded onto an instance of VAIM
running on a remote web server, accessible to the expert.
The experiment session is held remotely and recorded (with
the expert’s consensus). The session is opened by a 15-min-
ute presentation in which the system and its design are pre-
sented. The participant is then guided during a first hands-
on session with VAIM. When ready, the participant is asked
to: (i) obtain insights from the readily available simulations
(T2;T3); (ii) modify the seed set of one of the existing simula-
tions and run a new one (T1;T4); (iii) assess the effects of the
new seed set and its impact on the resulting diffusion pro-
cess (T2;T3). The interaction is supervised but unguided by
the examiners. The expert could continue interacting with
the system also after she completed the tasks. The case
study is held with a think-aloud protocol; a critical feedback
is also asked to the expert to summarize her experience.

We remark that the graphs we selected for the following
experiments are real networks whose size is comparable to
the one found in other experiments on graphvisualization [46]
and in other related papers about information diffusion (see,

e.g., [24], [47]). In the following we also report the running
times for our simulations on the datasets used in our case
studies, obtained in a local installation (i.e., server, database,
and client on the same machine) on a laptop with an Intel i7
8750HCPUwith 16GB of RAM.

5.1.1 Case Study 1: Co-Authorship Network

The participant is a graph drawing and network visualiza-
tion expert with notable experience in social network analy-
sis. The network used for the case study is derived from a
co-authorship network about papers published in the IEEE
InfoVis conference from 1995 to 2015 [48]. In this network,
the nodes represent authors and the edges represent co-
authorship relationships. We processed the network in such
a way that each edge ðu; vÞ receives a weight proportional to
the number of papers co-authored by u and v. We then nor-
malize the edge weights such that they range in the interval
[0,1]. We can interpret the edge weights as a measure of
how much an author can influence another author (average
0.33, median 0.30). Indeed, it is reasonable to assume that a
strict collaboration between two researchers results in a
higher probability that one of the two researchers influences
the other in spreading or exploiting scientific ideas/results
on topics of common interest. Each edge is then oriented in
one of the two possible directions, to reflect a scenario in
which one of the two co-authors (e.g., the more expert) is
more likely to influence the other. An alternative choice is to
create, for every co-authorship relation, two edges of the
same weight with opposite direction; we did not make this
choice to avoid doubling the original density of the net-
work. The resulting network has 698 nodes and 1,806 edges,
and an average degree of 5. VAIM computes a full simula-
tion, comprised on average of 4 different rounds, with the
IC model in 6 seconds starting from a randomly sampled
seed set of 10% the size of the vertex set (70). It takes 12 sec-
onds with a seed set of 20% of the number of vertices. Most
of the time is spent in database I/O.

A schematic illustration of the interaction workflow fol-
lowed by the expert in this case study is shown in Fig. 3a.
The participant began by inspecting the density matrix view.
Since she was aware that the graph was a social network, she

Fig. 2. The two networks used for the case studies with experts — (a) co-authorship network and (b) Bitcoin trust network. For each network, the
figure depicts the density matrix visualization as shown in VAIM and the corresponding node-link representation with the edge weights encoded in
color from yellow (low weight) to blue (high weight). The legend above the matrix represents the number of nodes per matrix cell.
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could hypothesize a scale-free structure, in which the hub
nodes belong to cells with higher density. This hypothesis
could be easily confirmed by looking at the diffusion matrix
view, namely at the distribution of the seeds chosen by the
heuristic algorithms (and HIGHDEG in particular), with the
majority of the seeds (70 for each IM algorithm) placed in
areas with high density (see Fig. 4b). Afterwards, the partici-
pant used the process trend view and focused on the number
of time steps taken by each simulation to reach convergence.
SDISC converged in 3 steps, HIGHDEG in 4, and RANDOM
in 6. To explain this behavior, the user focused on the densest
portions of the network using the node-link view. As
expected, the heuristics (SDIS andHIGHDEG) had picked the
majority of the hubs, while RANDOM mostly missed them.
Hubs are unlikely to be close to each other, with the majority
of hubs’ neighbors having low degree and therefore a low
chance to influence other nodes. Once hubs are active, the dif-
fusion process subsides fast, but with a high activation rate.

Once satisfied with the acquired knowledge about the net-
work and the simulation trends, the participant decided to
use the VAIM tools to improve the spread of the RANDOM
seed selection. She focused on cells with low coverage,

searching for them using the “Show Low” button in the simu-
lation control area. The participant sampled a few of them,
and for each one she applied the following procedure. First,
she compared the seed selection of RANDOM with SDISC
and HIGHDEG using the node-link view. If RANDOM seeds
were insignificant (i.e., with out-degree 0, therefore com-
pletely unable to influence other nodes) or with low out-
degree, the participant replaced them with either the same or
a smaller number of nodes suggested by VAIM. The result of
this processwas a selection of 67 seeds that yielded an average
coverage of 120.20 nodes, with a 52% improvement over
RANDOM, that had an average spread of 78.83 nodes. SDISC
and HIGHDEG achieved an average spread of 148.20 and
145.60, respectively (with the original 70 seeds). Fig. 5 shows a
portion of the network in the Node-Link view, in which it
appears evident the increase of the spread using the modified
seed set with respect to the RANDOMone.

5.1.2 Case Study 2: Bitcoin Trust Network

In this case study, we recruited an information visualiza-
tion expert knowledgeable in cyber-security and blockchain

Fig. 3. The different interaction workflows followed by the expert users in the two case studies.

Fig. 4. Coverage matrices from Case Study 1. In each subfigure the left matrix represent the average activation probability per cell at step 0 (only
seeds are active) and the right one shows the diffusion process at the last time step. Close-ups of the areas circled in green are shown in Fig. 5.
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technology. We chose, as base network, the Bitcoin OTC
weighted trust network [49], [50], a dynamic graph in which
nodes represent people and edges represent the relation of
trust/distrust between them, on a scale from -10 to +10, at a
specific moment in time. We simplified the network by
removing the negative-valued edges. Afterwards, we rep-
laced multiple edges with a single edge whose weight is the
sum of the individual trust weights. We applied a common
logarithm to all the resulting weights, which we later nor-
malized to bring them in the [0,1] interval. Finally, degree-1
nodes and edges whose weight is smaller than 0.3 or equal to
1 were removed, and only the largest connected component
is considered. The result of this process is a static weighted
network with 1,549 nodes and 4,656 edges, with an average
degree of 3. Weights represent a value of trust, or influence,
between two elements of the network. The average weight is
0.55, with a median value of 0.48. With this dataset, VAIM
computes a full simulation, comprised on average of 4 differ-
ent rounds, with the IC model in 31 seconds starting from a
randomly sampled seed set of 10% the size of the vertex set
(155). It takes 34 secondswith a seed set of 20% of the number
of vertices. Compared to the running times in case study 1
(see Section 5.1.1), we observe that the running times grow
slower with the number of seeds, mostly due to the lower
average degree of this graph, ultimately resulting in less ver-
tices being pinged for activation.

A schematic illustration of the interaction workflow fol-
lowed by the expert in this case study is shown in Fig. 3b.
The participant began by inspecting the density matrix
view (shown in Fig. 2b); she observed the typical scale-free
structure of the network, with a very dense core surrounded

by a large fraction of peripheral nodes. The participant then
focused on the process trend view, from which it was rather
clear that the diffusion process quickly unfolded in few
steps. She then used the simulation control to move forward
the simulation over time. While interacting with the simula-
tion control (see Fig. 6), the participant watched the diffu-
sion matrix view and observed a rather expected pattern:
most of the seeds where taken from the core of the network,
where the diffusion process remained mostly confined.
However, the participant also observed that SDISC also
picked a significant amount of seeds from the less central
cells of the matrix. She then used the node-link view to fur-
ther analyze the effect of these peripheral seeds on the diffu-
sion process and she observed that they were able to
activate several nodes that were not reached by the seeds in
the core of the network. Instead, HIGHDEG did not pick
many such seeds and reported slightly worse performance
in terms of spread (54% versus 52% respectively). See
Figs. 6a and 6b.

Once the correlation between network structure and
seeds was clear to the participant, she started modifying the
seed set of SDISC, by using the diffusion process control
and the node-link view, in a similar fashion as in the previ-
ous case study. The participant picked a cell with low cover-
age placed far from the core of the network and added two
seeds from that cell (see Fig. 7). She then run a new simula-
tion with 157 seeds (rather than 155) and waited few sec-
onds to get the new results. Unfortunately, the overall
spread decreased from 686 to 677, although it remained
higher than the spread reached with HIGHDEG (see
Figs. 6b and 7). While this behaviour may be counter-intui-
tive (a larger set of seeds led to a worse performance), it is
most probably due to some statistical fluctuation together

Fig. 6. Coverage matrices from Case Study 2. In each subfigure the left matrix represents the average activation probability per cell at step 0 (only
seeds are active) and the right one shows the diffusion process at the last time step.

Fig. 7. Diffusion matrix for the user defined seed set in Case Study 2.
The participant modified the SDISC seed distribution visible in Fig. 6a.Fig. 5. Close-up of the diffusion matrix in Figs. 4c (left) and 4d (right)

using the Node-Link view of VAIM. The modifications and improvements
over the RANDOM seed set distribution are evident; the different
choices of the seeds made a difference in this area of the network.
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with a poor choice for the new seeds. The participant con-
cluded that the very dense core of the network plays a fun-
damental role in the diffusion process and that a further
optimization of the performance of SDISC using few more
seeds would require several attempts.

5.2 ICE-T Evaluation

Typical usability studies focus on the ability of a system to
provide answers to questions about data. Stasko [51] intro-
duced a framework to identify the value of a visualization,
defined as its ability to convey a true understanding of data.
This value is a linear combination of four components, each
pertaining a specific ability of the visualization:

� Time: minimize the time to answer a wide variety of
questions about the data;

� Insights: discover insights or insightful questions
about the data;

� Essence: convey an overall essence of the data;
� Confidence: generate confidence, knowledge, and

trust about the data, its domain and context.
Wall et al. [9] developed a methodology, referred to as

ICE-T, that enables a quantitative assessment of the value of
a visualization according to Stasko’s equation. This method-
ology introduces a hierarchical extension of the original
value framework: each of the four components of Stasko’s
equation comprises one to three guidelines, which capture
the core-concepts of the corresponding components; each
guideline contains one to three heuristics. A heuristic is an
actionable and rateable statement that reflects how the visu-
alization achieves the corresponding guideline. These heu-
ristics will be individually rated by visualization (not
necessarily domain) experts on a 7-point rating scale from 1
(strongly disagree) to 7 (strongly agree). This rating is collected
using a survey1 with a total of 21 heuristics. In the context of
evaluating VAIM, we aim to obtain an average score equal
or greater than 5 on all components, for it to be considered a
valuable visualization [9].

According to the ICE-T methodology, we set the experi-
ment as follows. We recruited 5 visualization experts; all of
them had at least a basic familiarity with the concept of the
IM problem and with the data set(s) used during the experi-
ment. Each individual session started with a preliminary
presentation and cold demo of VAIM, in order to make sure
the participant was up to speed about its purpose and fea-
tures. Afterwards, the participant began interacting with
the system, making herself familiar with the controls. When
ready, the participant was given a set of tasks to solve using
the system. This set of tasks was meant to bootstrap her
interaction with VAIM, but it was clarified that it was not
mandatory to complete them to conclude the experiment.
The system was made available as a Web application, and
each participant could take as much or as little time to make
up her mind about the quality and value of the visualiza-
tion, and could continue interacting with the system and
complete the evaluation offline. The evaluation process was
considered completed when the ICE-T survey was filled
and sent to the evaluators; we also recorded some post-eval-
uation feedback to complement their ratings.

A condensed view of the results is presented in Table 1;
the complete score sheet is available as supplemental mate-
rial. We aggregate the scores at each level of the hierarchy
by averaging them. VAIM places itself on the higher end of
the scoreboard, with the average rating on the Insight aspect
close to the maximum (with a 6.4 out 7), followed by
Essence (6.1), Time (6), and Confidence (5.9). A high score
on the Insight and Essence components suggests that VAIM
embodies the following guidelines: “provides a new or bet-
ter understanding of the data, opportunities for serendipi-
tous discoveries, and facilitates answering questions about
data” and that “provides a big picture perspective of the
data and an understanding of the data beyond individual
data cases” [9]. Confidence, on the other hand, got the low-
est score, but still well above our target of 5. In particular,
the Confidence heuristic about data quality (“The visualiza-
tion helps understanding data quality”) got the lowest
score, averaging 4.8. Differently from the other heuristics,
this average was calculated on 4 scores only since one par-
ticipant provided a “N/A” value to that question. This sug-
gests that a limitation of our system resides in its capability
of conveying information about the quality of the underly-
ing data. However, data quality verification was not
included in our design requirements.

Overall, on all components VAIM received an average
score greater than 5, with a global average of 6.1, thus reach-
ing our goal for this evaluation.

6 DISCUSSION: LESSONS LEARNED

In the following, we elaborate about the lessons learned and
observed limitations, outlining directions for future work.

Computational Scalability. It is well-known that finding an
optimal seed set in a network for influence maximization is
NP-hard [1]. Analyzing and comparing the performance of
different IM algorithms on real-world complex networks, by
also highlighting the effects of network topology, pose vari-
ous kinds of scalability issues. We stress-tested our system on
a who-trust-whom network from the general consumer
review site “Epinions.com” [52], with 75k nodes, 405k edges,
and an average degree of 10; we left all the edge weights at 1,
meaning that the maximum number of activations and the
longest diffusion processes possiblewould occur in any simu-
lation (i.e., worst case scenario). Moreover, this makes each
process deterministic for a specific seed set, removing the
need for multiple Monte-Carlo iterations. We used a laptop
with an i7 8750HCPU and 16GB of RAM, and ran simulations
with IC model and random sampling for seed selection (as in
the data we reported in Section 5.1). We tested seeds sets
being the 2.5%, 5%, and 10% of the size of the graph: running
times averaged 33, 36, and 41 minutes respectively. This con-
firms our observation, as we already partly discussed in

TABLE 1
Results of ICE-T Evaluation on a 1 (Lowest) to 7 (Highest) Scale

Parameter Average Std. Dev.

Insight 6.4 0.71
Time 6 0.87
Essence 6.1 0.97
Confidence 5.9 1.15

1. Available on http://visvalue.org
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Section 5.1, that simulation running times increase with the
number of activations per round, which, in turn, depends on
the average activation probability of the edges, graph connec-
tivity, and the number of seeds. In our implementation, each
new activation entails a (slow) database access, thus faster
running timesmight be achieved bymovingmore of the com-
putation onto systemmemory, rather than expressing the dif-
fusion models using the Neo4J cypher language. Advanced
programming paradigms, such as distributed/parallel com-
puting on large scale graph processing platforms (see, e.g.,
[38], [39], [53]), might help tackling networks with millions of
nodes. Nonetheless, we assume the simulation is done offline
to support the interactive nature and responsiveness of the
VA solution.

Conversely, also in this scenario, when exploring the dif-
fusion process the system remained responsive also with
few cells displayed in the node-link view and with multiple
simulations. The choice of matrices as the main medium to
display information about the network layout and the diffu-
sion process allows VAIM to handle larger or comparable
graphs with respect to existing approaches (see Section 2).
Displaying larger portions of such a large graph in the
node-link view (i.e., selecting a larger area on the density
matrix view) can slow down the user interaction; this limita-
tion can be partially overcome with a local installation,
which in terms of time necessary for data transfer has a sig-
nificant advantage over remote clients.

Visual Scalability. VAIM offers multiple coordinated views
(compare, density matrix, diffusion matrix, node-link, and
process trend views), and leverages juxtaposition to enable
comparison between the different simulations (see Sec-
tion 4.3). Juxtaposition allows us to compare multiple concur-
rently loaded simulations at once on all of their dimensions,
without requiring new diagrams. However, this places the
comparative burden on the user: we mitigate this issue by
using coordinated views that provide visual cues that directly
point to the user where to look (e.g., when highlighting a cell
or node on the diffusion matrix/node-link view of a simula-
tions, the same cell/node is highlighted in all the loaded sim-
ulations). We favored this approach as superimposition may
suffer from clutter [54], especially when several objects have
to be displayed in the same shared space. This technique
would be applicable to compare our matrices and node-link
visualizations as they share the same spatial context, but we
believe juxtaposition provides amore flexible experience, giv-
ing the users the possibility of comparing only a subset of the
loaded simulations without the need to remove them from
view. Explicit encodings would unload the user from the
comparative burden [54] (see e.g., [55], [56]), however they
tend to suffer from decontextualization, that is the inability of
tracing back from the relationship to the elements themselves,
which could make it difficult to understand the differences
between choosing a seed set over another. Further research is
needed to come up with guidelines that would support
designing a specialized comparison methodology for this
application domain.

Our experiments showed that picking seeds from the
node-link view can be challenging with very dense graphs.
Hybrid visualization models can help in dealing with
locally dense portions (see, e.g., [57], [58], [59], [60]), while
sparsifying the network through edge filtering techniques

and edge bundling seem to be needed when the network
exhibits a global hairball effect (see, e.g., [61], [62]).

Interaction Techniques and Data Semantics. VAIM’s design is
performed according to specific tasks (Tasks T1�T4 described
in Section 4.2), which ask for context-specific and task-ori-
ented interaction techniques, almost completely focused on
the network topology alone. Other semantic information rele-
vant to the network, such as text and numeric node/edge
attributes that leverage the domain knowledge of the users,
may play a beneficial role in the analysis, and would require
more advanced and context-specific interaction methods.
These could be enriched by guidance and knowledge-assisted
visual analytics [63] to improve the quality of the insights-
gaining process.

Different Interaction Workflows. As illustrated in our two
case studies, the experts follow different interaction work-
flows (see Figs. 3a and 3b). Consequently, it is crucial that
VAIM provides the right level of flexibility needed to accom-
plish the various types of tasks for which it is designed.

Learning Curve to Use VAIM. Within our evaluation, we
observed that the use of VAIM’s interface requires a quite
steep learning curve. However, once this initial price is
payed, the interface becomes generally easy to use. We
expected such a learning curve because of the intrinsic com-
plexity of the VA problem we address, with many inter-
leaved points of views and perspectives.

Data Quality. The ICE-T methodology [9] captures vari-
ous dimensions. Confidence got the lowest score, because
our VA approach does not tackle data quality. Conse-
quently, the results of the ICE-T need to be contextualized
according to the dimensions addressed.

7 CONCLUSION

We presented the use of VA concepts to support the analy-
sis, comparison, and fine tuning of IM strategies, which also
focus on the effects of network topology. A twofold evalua-
tion of the proposed system (namely, two case studies and
the use of the ICE-T methodology) gives evidence of the
usefulness of our approach.
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