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Kurzfassung v

Kurzfassung

Die dringend gebotene Dekarbonisierung des Energiesystems und verwandter Sektoren
wie der Mobilität erfordert, den Anteil der volatilen erneuerbaren Erzeugung drastisch
zu erhöhen und gleichzeitig die Systemresilienz zu bewahren oder sogar zu verbessern.
Microgrids und Multi-Microgrids werden gemeinhin als Maßnahme zur Erhöhung der
Widerstandsfähigkeit des Stromsystems und zur engmaschigen Integration erneuerba-
rer Energiequellen propagiert. Proaktive Scheduling-Algorithmen, die den Betrieb des
Multi-Microgrids im Voraus optimieren, können einen Teil dieser Multi-Microgrids dar-
stellen, es fehlt allerdings an einer gemeinsamen Vorgehensweise zur Implementierung
der Algorithmen, die die Systemkomplexität vollständig abbildet. Um die Publikationen
zu bestehenden Scheduling-Ansätzen aufzubereiten, werden zunächst eine detaillierte,
systematische Klassifikation eingeführt und mehrere Modellannahmen anhand eines me-
teorologischen Langzeitdatensatzes bewertet. In weiterer Folge stellt die Arbeit einen auf
hybrider Optimierung basierenden Schedulingalgorithmus vor, der es erlaubt, komplexe
Netzbedingungen abzubilden. Weiters wird eine Methode entwickelt und angewendet,
die es erlaubt, den Nutzen und die Notwendigkeit proaktiver Schedulingverfahren im
Langzeitbetrieb zu beurteilen.
Die anfängliche Literaturstudie zeigt ein breites Spektrum resilienter Multi-Microgrid-
Scheduling-Ansätze mitsamt deren Einschränkungen. Die fehlende Berücksichtigung
komplexer Regelinfrastruktur sowie eine beschränkte Skalierung können jedoch durch
den neuartigen Algorithmus überwunden und somit Probleme gelöst werden, die mit
konventionellen Methoden unlösbar sind. Die umfangreiche Auswertung verschiedener
Algorithmen zeigt weiters, dass selbst auf dem speziell konzipierten Testsystem 87%
bis 99% der Fehlerzeit bereits ohne resiliente Schedulingalgorithmen bewältigt werden
können. Die verbleibenden Energieausfälle werden jedoch um bis zu 41% deutlich durch
resiliente Algorithmen reduziert. Daher kann es durchaus gerechtfertigt sein, sich auf
rein wirtschaftliche Aspekte zu konzentrieren, ohne die Systemresilienz beim Scheduling
zu berücksichtigen. Bei kritischen Anwendungen können solche Algorithmen, einschließ-
lich der neuartigen hybriden Optimierungstechnik, jedoch einen deutlichen Beitrag zur
Steigerung der Resilienz leisten. Diese Arbeit bietet Werkzeuge, um geeignete Algorith-
men auszuwählen und Schedulingalgorithmen weiter zu verbessern.
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Abstract

Driven by the urgent need of decarbonizing the power system and related sectors such
as mobility, it is necessary to drastically increase the share of volatile renewable genera-
tion while maintaining the same or even an improved system resilience. Microgrids and
multi-microgrids are commonly presented as a measure to increase the power system
resilience and to tightly integrate renewable energy sources alike. One lever in such
systems are proactive scheduling algorithms that optimize the multi-microgrid oper-
ation in advance. Still, no common pathway towards the implementation of resilient
scheduling that fully admires the complexity of such systems is known.
To increase the accessibility and comparability of existing scheduling approaches, first
a detailed, systematic classification is introduced. Additionally, several modeling as-
sumptions are assessed on a meteorological long-term dataset and a first estimation on
the effects of common simplifications is given. Based on identified research gaps, a novel
hybrid optimization algorithm that enables the inclusion of complex grid constraints
in resilient scheduling is presented. To further address the value and need of proactive
scheduling formulations, an extensive evaluation method is proposed and applied.
The initial literature study reveals a broad spectrum of available resilient multi-micro-
grid scheduling approaches and common limitations. It is shown that the novel algo-
rithm overcomes limits in scalability and in considering low-level controls at scheduling
time, even when a state-of-the-art reference fails to deliver any feasible solution. The
extensive evaluation of various scheduling formulations further demonstrates that even
on the specifically designed test system, a large share of 87% to 99% of the incident
duration can already be handled without considering resilience at scheduling-time. Nev-
ertheless, when it comes to the remaining unsupplied energy, a considerable reduction
by up to 41% can be reached by proactive scheduling.
The results demonstrate that in some cases, it can be well justified to focus on economic
aspects without considering system resilience in day-ahead scheduling. However, in
critical applications, such algorithms including the novel hybrid optimization technique
can add further value. This work provides engineers and researchers with tools to select
suitable algorithms and to push the limits of proactive resilient scheduling even further.
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Chapter 1

Overview

1.1 Motivation and Problem Statement

A rapid decarbonization of the power system according to international policies [1]
avoiding most hazardous impacts on humans, society and ecosystems is urgently needed
[2, 3]. At the same time, the resilience of critical infrastructure needs to be strengthened
to mitigate increasing risks such as those induced by extreme weather events that cannot
be mitigated by decarbonization anymore [2, 3, 4]. Microgrids are commonly introduced
as a measure to tackle both issues by a tight integration of highly volatile Renewable
Energy Sources (RES) and by extended fault mitigation techniques that strengthen the
resilience of the electricity network [5, 6, 7, 8, 9, 10]. Other commonly listed benefits
include economic payoffs, efficiency gains, and the option to locally overcome upstream
grid limitations. Although there are several competing definitions that also include fully
isolated power systems without any main-grid connection [10], microgrids are herein
defined as tightly integrated electrical networks that can be operated in grid-connected
and islanded mode [4, 11, 12].
Although microgrids show a great potential in integrating volatile RES, several micro-
grid designs still heavily rely on fossil-fueled generation such as gas-fired micro turbines
and diesel engines [7]. Recent literature gives priority on integrating high shares of
RES and on reducing or even eliminating greenhouse gas emissions [6]. Still, several
technical challenges in providing a high level of reliability and resilience while facing
increased shares of volatile load and generation exist. For instance, storage reserves
need to be managed to find adequate balances on operating costs and system resilience.
One measure to meet upcoming challenges and to raise economic benefits even further
is the introduction of multi-microgrids that coordinately operate individual microgrids
[4, 11, 13]. In contrast to single microgrids, multi-microgrids as illustrated in Figure 1.1
allow sharing reserves and balance volatility even in case of contingencies. Neverthe-
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available that well concentrate the settled body of knowledge [18, 11, 19]. Nevertheless,
several areas that are related to microgrids such as coordinated control of individual
microgrids and advanced scheduling formulations are still subject to heavy research
activity addressing a plethora of open research questions [7, 20, 21].

Resilient Microgrid and Multi-Microgrid Operation
Even in the context of power systems, no commonly used and accepted definition of
resilience is found [22, 23, 15, 24]. However, [22] found several common elements such
as the ability to withstand and recover from adverse impacts that are often connected
to resilience. A resilient power system may degrade, for example, by load shedding,
but may not entirely fail in case of unexpected contingencies [23, 15, 24]. On the
contrary, robustness commonly focuses on tolerating a given set of contingencies without
permitting a reduced quality of service. Still, several mismatches, for instance, whether
a robust behavior that does not show a reduced performance is also a resilient reaction
exist among different definitions [24]. An attempt towards a common definition of
resilience is given in [15] that further describes different operating phases concerned
with a resilient operation.

A multitude of operation measures is presented that target resilience and robustness of
microgrids, multi-microgrids, and the power system in general [25, 26]. For instance,
[27] proposes an adaptive load shedding scheme that avoids blackout scenarios by dis-
connecting low-priority loads in case of contingencies. Other measures such as proactive
resilient scheduling prepare the network before any contingency is encountered to re-
duce the potential impacts of such disturbances [28, 29, 30]. As such, [29] presents
an Electrical Energy Storage (EES) operation scheme that manages storage reserves in
preparation of potentially disruptive events. Although the publication considers the in-
herent uncertainties of variable loads and generation, the impact of grid constraints and
low-level controls is not covered in detail. Likewise, several other publications such as
[30, 31] formulate resilient scheduling without taking topological aspects into account.
Other work including [32] extend the classical scheduling formulations by more detailed
constraints on the physical grid operation but still rely on the limited fault mitigation
options of single microgrids.

Although [33] does not consider a detailed grid model, it describes scheduling of pro-
visional microgrids that exceed the borders of single grids. In contrast to microgrids
that can be independently islanded, provisional microgrids require a coupled microgrid
for voltage and frequency control and hence do not have to implement excessive lo-
cal reserves. In contrast, [34] formulates a common scheduling problem of connected
microgrids that can be individually islanded but does not consider detailed grid recon-
figuration options. In classical distribution grids, such topological changes can restore
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power on isolated sections by automatically isolating faults within the system and clos-
ing redundant tie-lines [35]. Research work extends common fault reconfiguration by
utilizing microgrids to power isolated sections of the grid and to participate in grid
restoration after blackout scenarios [36]. For instance, [8] shows a load restoration
scheme based on distributed microgrids. Although reconfiguration actions are com-
monly conducted in response to failures, also proactive reconfiguration techniques such
as loss reduction measures are available [37, 38]. Some publications such as [39, 40,
41] even actively consider reconfiguration options in proactive scheduling. However,
the value in considering such measures to adjust reserve requirements is only loosely
evaluated without considering a broad range of operating scenarios.

Grid and Control Constraints in Scheduling
First results on voltage and reactive power impacts indicate that scheduling decisions
that affect available reserves can have a significant influence on the safe and reliable
microgrid operation [42]. To limit such impacts, several microgrid and multi-microgrid
scheduling approaches consider network constraints such as the permissible voltage
band [43, 44, 45]. For instance, [32] and [45] linearized the highly nonlinear Alternating
Current (AC) power flow equations to consider grid constraints in scheduling. Other
publications avoid the simplification step via a heuristic search procedure that supports
nonlinear models. For instance, [43] implemented a genetic algorithm to solve the
nonlinear optimization problem. Other heuristics include particle swarm optimization
[46] and imperialist competitive algorithm [47].

Despite the ability of solving nonlinear problems, traditional meta heuristics do not
utilize highly developed mathematical programming solvers [48]. Few authors therefore
proposed hybrid scheduling strategies that efficiently join mathematical programming
and heuristics [49, 50]. Notably, [49] considers nonlinear power flows in an inner Mixed
Integer Linear Programming (MILP)-based problem by iteratively updating a power
loss constant. In case a schedule turns out to be infeasible, the entire inner problem
is solved by an Optimal Power Flow (OPF) solver. Since most candidate schedules
are assumed to be feasible, less emphasis is put on the nonlinear OPF implementation.
In contrast, [50] specifically focuses on constraint handling and automatically approxi-
mates nonlinear power flow equations by iteratively adding sensitivity-based constraints
to the outer quadratic problem. Hence, [50] successfully demonstrates the application
of a hybrid optimization algorithm. However, the nonlinear constraints are only consid-
ered at a single time interval of the multi-period scheduling task and scalability issues
are not studied in detail.

Although several approaches include physical constraints [43, 44, 45], only very few of
them actively take the impact on low-level controls and their contribution in managing
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reserves into consideration. The formulation published in [51] includes droop-based
active power control and corresponding reserve requirements that enable a successful
islanding. Nevertheless, voltage control and reactive power requirements are not con-
sidered in detail. Although [51] takes multiple low-level control strategies for active
power into account, it is yet to be studied to which extent these strategies need to be
included at scheduling and whether it is sufficient to focus on active power control, only.

Related Reviews and Classifications
Several authors already summarized the vast body of microgrid-related literature [7].
Initial developments, first practical experiences and field tests are covered by [10, 52, 53,
54]. Several broad reviews of various microgrid and multi-microgrid related aspect in-
cluding economics and protection are available at [7, 21]. More specifically, [6] discusses
major challenges in microgrid control and [16, 17, 55] focuses on energy management
aspects in the context of microgrids. Notably, [16] lists a broad range of optimization
types, objective functions, solution approaches and related tools. Despite a first detailed
categorization of several aspects such as model formulations and objective functions, re-
silience aspects and the scientific evaluation of the reviewed approaches are not covered
in detail. Review [20] gives an extensive categorization of optimization objectives and
constraints but only considers purely islanded grids for review. Additionally, resilience,
multi-microgrid systems, and implementation-related aspects are not covered in detail.

In addition to various other aspects, review [14] specifically covers stability and relia-
bility aspects of microgrids and virtual power plant scheduling. Additionally, the pub-
lication includes a comparative review of several aspects such as considered Distributed
Energy Resource (DER) types and the way uncertain inputs are addressed, but multi-
microgrids are beyond the scope of the review. A broad overview on multi-microgrids
and related concepts is given in [56, 57] and [58] specifically focuses on multi-microgrid
architectures. Nevertheless, no in-depth analysis of scheduling and resilience-related
aspects in multi-microgrids is given. Other reviews such as [22, 26, 59] target power-
system resilience in a broader context but do not specifically focus on scheduling-related
aspects. Resilience-oriented microgrids are particularly discussed in [25]. Although the
authors described various resilience mechanisms including emergency control strategies,
proactive scheduling and its impacts on the emergency operation is only loosely covered.

Assessment of Scheduling Algorithms
Testbeds provide vital facilities to assess various microgrid-related aspects such as is-
landing, synchronization and stability [60, 61]. Depending on the questions at hand,
a broad variety of methods ranging from purely simulation-based assessments to real-
world implementations is applied. Transient phenomena in fully inverter-based grids,
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for instance, are targeted by the purely simulation-based testbed presented in [62],
but a long-term assessment is beyond the scope of the facility. In [63], a laboratory-
scale testbed that specifically focuses on scheduling applications is used to study the
performance of an energy management heuristic and an optimal scheduling approach.
Although the study provides several valuable insights into economic benefits of optimal
scheduling, only 15 operating scenarios derived from five dedicated measurement days
are applied. Additionally, only small, single-bus grids were studied and no focus was
put on grid reconfiguration actions and physical grid constraints.

Dynamic transient simulations are successfully applied in the assessment of low-level
controls [60, 64], but a high computational burden is put on the assessment of long-term
phenomena. Steady-state power flow computations are successfuly applied in various
studies that focus on the long-term grid operation, but classical formulations do not
support islanded microgrids well [65, 66]. Nevertheless, several methods such as the
balanced formulation [65] already support distributed voltage and frequency control
without introducing a dedicated slack node that models the upstream grid connections.
Likewise, [66] introduces a distributed frequency and voltage control but supports both
balanced and unbalanced grids. In particular for unbalanced networks, an extended
Newton Raphson algorithm is proposed that improves the convergence of the power
flow computations. Although significant efforts were conducted in representing islanded
networks in power-flow equations, outage detection, detailed device capabilities and
various control heuristics such as dynamic droop curves of EES are rarely considered.

It was noted that microgrid assessment requires new metrics that well cover resilience-
related aspects [67]. A framework to define resilience metrics as a function of time that
reflects the system state is given in [24]. Most resilience and robustness metrics rely on a
proper definition of considered failure modes. In conventional power systems, the well-
known (N-1)-criterion stating the grid must be robust to the loss of any single system
component is applied [4]. The reliability of islanded microgrids is specifically targeted by
[68] that approximates several reliability indices via broadly available capacity factors.
Other studies such as [69] follow Monte-Carlo-based methods to approximate the reli-
ability metrics in the presence of highly stochastic phenomena. Nevertheless, a strong
focus is put on reliability and robustness without specifically considering resilience.

1.1.2 Problem Statement

As scheduling decisions that influence the amount of available reserves can have an im-
pact on the resilience of microgrids and multi-microgrids [42], several proactive resilient
scheduling approaches are proposed [30, 31]. These algorithms prepare the system be-
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fore an incident is encountered and at the same time balance vital aspects such as
the computational costs to avoid an overly conservative operation. Since in general,
proactive scheduling will require additional resources compared to a purely economic
operation, it is either enabled on first early warning signs or always secures the most
critical applications [29]. Despite the broad body of scheduling-related literature, there
is no comprehensive guidance that leads engineers towards appropriate proactive re-
silient scheduling implementations. First, a comprehensive categorization that increases
the accessibility of current work is missing. Several research gaps hinder efficient en-
gineering workflows and prevent detailed consideration of low-level control aspects in
scheduling. Although most approaches show a first validation [28, 45, 70], replication
and scalability is scarcely covered in detail. Finally, the impact of proactive scheduling
on the resilient system operation is only loosely studied and not fully quantified.

Missing Guidance in Proactive Resilient Scheduling

A huge amount of scheduling-related literature and several approaches that specifically
address resilient scheduling in microgrids and multi-microgrids is already available [7,
16, 17, 55]. Additionally, several reviews cover scheduling-related topics and introduce a
first categorization of related work [16, 20, 14]. It is evident that several approaches use
common techniques such as MILP to formulate and solve scheduling problems. Nev-
ertheless, presented algorithms and implementations such as [70] are far away from a
unified approach to proactive scheduling. Even related reviews do not fully provide an
efficient overview on major design options such as considered failure modes, fault miti-
gation strategies and validation efforts. Additionally, only a minority covers scheduling
of multi-microgrids [56, 57, 58] and none of them provides great details in resilient
multi-microgrid scheduling.

A solid foundation is needed to quickly make necessary engineering decisions such as the
appropriate type of scheduling and available implementation options without the need
of an extensive literature review. Since a broad spectrum of scheduling approaches that
specifically focus on individual aspects are proposed and no common method is currently
on the horizon, additional engineering support is needed. Also, subsequent research
activities call for such supportive guidance in selecting the best available scheduling
and verification techniques to quickly enhance the State-of-the-Art (SotA). To establish
an efficient comparability among scheduling approaches, a fine-grained categorization
including modeling, engineering, and validation aspects is needed. Such a classification
may be based on related reviews [16, 20, 14, 25] to further strengthen comparability by
a step towards a common scheduling nomenclature.
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Common Limitations of Optimized Scheduling

Despite the broad range of optimization-based scheduling literature (cf. Section 2.1),
one can observe several simplifications in scheduling that are commonly introduced but
rarely evaluated. For instance, [43, 71] model meteorological inputs such as wind and
solar irradiation as temporally independent distributions. Nonetheless, related work
[72] indicates a considerable interdependence of meteorological inputs within typical
scheduling horizons of 24 hours. Similar discrepancies can be found in several forecasting
error models that are used to quantify unavoidable deviations to deterministic weather
predictions. For instance, [49] assumed that forecasting errors follow a temporarily
independent Gaussian distribution, but [73] gives strong indication that the assumption
does not hold in practice. Yet, the impact of such simplifications on the scheduling
outcome and the system resilience is not well quantified.

Other widespread simplifications concern the representation of AC power flow mod-
els in optimization problems. To efficiently compute the scheduling outputs (e.g., via
off-the-shelf MILP solvers), the highly nonlinear AC power-flow equations are com-
monly linearized or directly formulated as linear model [32, 45]. However, only very
few publications discuss and quantify the impacts of the simplification [32]. Other ap-
proaches such as [43, 46, 47] rely on heuristic techniques to directly solve the nonlinear
optimization problem, but commonly, such techniques cannot fully exploit the linear
relationships within the model. Notably, [50, 49] presented hybrid optimization ap-
proaches that join mathematical programming and heuristic optimization techniques.
Still, scalability and replicability of the hybrid approaches are not well studied and some
algorithms may be prone to considerable overapproximation of nonlinear constraints.

Although some work on resilient scheduling acknowledges a common control hierarchy
[43], low-level controls such as voltage and frequency droop are rarely considered in
scheduling. Nevertheless, work on grid resilience [42] indicates a considerable impact of
scheduling decisions on the islanded grid operation and consequently on the feasibility
of fault mitigation techniques. At the same time, low-level controls such as real-time
grid reconfiguration techniques [35] may compensate adverse scheduling decisions and
reduce the need of online reserves. Including these control aspects in scheduling may
further improve decisions and avoid outages caused by insufficient control reserves.

Only few scheduling formulations such as [50, 74] reference external models. The ma-
jority explicitly states the problem formulation without relying on proven and well
optimized implementations (cf. Section 2.1). From an engineering point of view, a
reimplementation of grid models creates additional overhead both in implementation
and parametrization of the scheduling algorithm. Such an overhead even increases with
the complexity of scheduling models, for example, in case detailed low-level controls
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and device constraints need to be considered. However, limited information that is ex-
posed to a solver and considerable execution time of external models impose significant
challenges to optimization. Advanced algorithms are needed to fully support complex
external grid models in scheduling.

Need to Quantify Impacts of Proactive Scheduling
Although most contributions on scheduling algorithms present an evaluation thereof
[43, 32, 50], the impact of proactive scheduling on the overall system resilience remains
unclear. In particular, the impact of scheduling decisions on low-level controls and
consequently on the system resilience is not well quantified, yet. Hence, it is not well
understood to which extent such low-level controls can induce resilient system behavior
on their own and to which extent scheduling needs to consider aspects such as grid
and control constraints. Such questions on the share of proactive scheduling become
even more prevailing, in case grid reconfiguration and secondary control heuristics are
deployed that mitigate potential disturbances after an impact is registered. Due to
the missing evaluation work, only few testbeds specifically focus on the interaction of
scheduling algorithms and the physical power grid [63].

Commonly, proactive scheduling operates on a set of forecasts and modeling assump-
tions that describe relevant inputs ahead of time whereas low-level control operates on
real-time measurements only [50]. Nevertheless, the distinctions between information
that is available ahead of time and corresponding measurements is rarely found in the
validation of scheduling algorithms [28, 30, 43]. Often, relevant metrics are directly
calculated from the scheduling outputs and no independent verification of these out-
puts is performed. However, such an assessment step is needed to assess the quality of
inevitable simplifications without relying on the same set of input assumptions. Addi-
tional shortcomings in the assessment of (multi-)microgrids arise from the high share of
stochastic inputs that can be expected in zero-emission grids entirely based on RES [6].
Most attempts to quantify the performance of proactive resilient scheduling rely on a
very limited set of input conditions and operating scenarios. Large-scale simulations
that address the long-term operation and a broad range of failures are needed in a
comprehensive resilience assessment.

It is expected that the need for proactive resilient scheduling highly depends on the spe-
cific grid and system requirements. Hence, an efficient per-case assessment of scheduling
algorithms is needed that allows to quickly determine the eligibility of candidate algo-
rithms. To further support a fluent engineering workflow, such assessment methods
need to be well integrated into existing tool chains and procedures. For instance, sim-
ulation results should be connected to the inputs such as parameters of the algorithms
under test to support iterative development cycles. Special attention needs to be put
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on handling the high computational strains of a large-scale assessment method and
associated system complexity.

1.2 Research Question and Goals

Given the identified research gaps in resilient microgrid and multi-microgrid scheduling,
an overarching research question is formulated as follows [75].

How can a multi-microgrid that includes a high share of volatile RES be
optimally operated, such that a large set of failures can be withstood without
triggering a critical multi-microgrid fault?

Due to the broad focus on optimal operation, interactions between low-level controls
and high-level scheduling are well covered. The scope of microgrid scheduling is thereby
extended to multi-microgrids and studied approaches need to be capable of managing
the increased complexity of such networks. Nonetheless, the scope of multi-microgrids
is not understood exclusively, i.e. scheduling approaches that address both, microgrids
and multi-microgrids are included in the research question as well. To generalize the dis-
tinction between resilience and robustness, the research question introduces a minimal
robustness criterion on the most critical faults without defining the behavior beyond
these incidents. However, the following research work will specifically emphasize a re-
silient behavior that limits the impact of failures on the system performance beyond
avoiding the most critical failures.

The research question is addressed by four goals that broadly reflect required research
efforts from a categorization of existing literature, the development of advanced schedul-
ing and assessment methods up to the quantification of benefits gained from proactive
scheduling. Figure 1.2 illustrates the main research goals and the relationship among
them. Despite considerable scientific advancements that are needed to answer the main
research question, all goals specifically address the impact on current engineering prac-
tice. In particular, the objectives are formulated as follows.

• Guide to Resilient Scheduling: First, a comprehensive guide is to be created that
describes the spectrum of available proactive resilient multi-microgrid scheduling
approaches. To provide added value for engineering and research alike, the guide
shall introduce a broad classification of presented scheduling techniques and sup-
port a comparative analysis among the algorithms. In contrast to related work,
further information on testing and validation efforts concerning the identified key
literature needs to be collected. In case classification schemes from related reviews
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• Value of Proactive Scheduling: The advanced assessment method is to be demon-
strated on a case study that estimates the value of proactive resilient schedul-
ing considering common low-level controls and grid constraints. The evaluation
should include both, the economic costs of scheduling and the impact of the
algorithms on the system resilience. Furthermore, the influence of forecasting de-
viations on the system performance should be covered. Given the results of the
case study, first recommendations on the implementation of proactive scheduling
should be given and further research needs should be identified.

1.3 Methodology

The main research question and the related goals on proactive, resilient multi-microgrid
scheduling are addressed by several consecutive studies that follow the way towards
thoughtfully validated advanced scheduling including novel hybrid optimization meth-
ods. First, the extensive body of literature is processed by a systematic review and
classification that paves the way for advanced research and future engineering tasks
alike. Following the classification, several common modeling assumptions are identified
and independently verified by an initial study on RES modeling and forecasting. As
another piece towards advanced proactive scheduling, a novel hybrid optimization ap-
proach is presented that for the first time allows to efficiently consider complex control
and grid constraints in proactive multi-microgrid scheduling. To fill the validation gap,
first an extensive assessment method allowing to independently address the impacts
of scheduling decisions on the long-term operation and resilience of multi-micorgrids is
proposed. Given the newly developed scheduling algorithm as reference, the developed
testbed is applied to give an initial estimation on the value of proactive resilient schedul-
ing. Additional engineering measures further target an efficient case-specific assessment
of scheduling algorithms in practice.

1.3.1 Comprehensive Classification of Resilient Scheduling

The comprehensive classification of proactive scheduling follows a method based on
the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
statement [76] to reduce the risk of bias and missing out relevant contributions (cf.
Section 2.1). At first, structured database searches are conducted to find relevant
publications. Afterwards, the extensive list of 404 candidates is condensed to 20 key
contributions by an integrated screening and eligibility test step. The key contribu-
tions are then iteratively reviewed to extract a comprehensive fact sheet that describes
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each contribution in detail. In contrast to the original PRISMA method that focuses
on medical studies, this work targets modeling aspects and solution methods instead
of achieved results. In addition, the screening and eligibility test steps were merged
to transparently access the full text in case the abstract does not provide sufficient
information for a founded decision.

Before screening the literature, detailed eligibility criteria based on the research question
were defined. Each key contribution needs to be available in full text, needs to describe a
scheduling algorithm that focuses on normal operation, needs to cover resilience aspects,
needs to include a minimal set of assets, and needs to incorporate the (multi-)micro-
grid topology. Note that none of the criteria explicitly states that the publication
needs to focus on multi-microgrids because a scheduling algorithm that is originally
designed for single microgrids may work as well for multi-microgrids. Nevertheless,
based on [77, 42] it is assumed that the geographic extent of resilient, highly loaded
multi-microgrids needs to be considered either by the algorithm itself or in an evaluation
step. Consequently, an eligibility criterion on topological constraints is added.

To allow for a unified description and detailed comparison of scheduling approaches,
the information from all key contributions is recorded in a comprehensive fact sheet
on resilient scheduling. A first template that defines the initial set of features to be
extracted was set up based on related schemes [16, 14, 25, 20]. The broad range of
objective functions given in [16] was further put into a set of more generic categories to
enable a broad comparison among the formulations. Such objective categories target the
individual terms such as DER operating costs in the objective but abstract the detailed
formulation of each term. In addition to aspects covered in related reviews, the template
was substantially refined to include detailed information on resilience measures, model
formulations and validation actions. Hence, the goal on compatibility to related reviews
is achieved by the basic set of common features and a detailed picture that is needed
for further research and development work is provided by the extensions. The initial
version of the template that specified the main aspects of the review was iteratively
refined as new categories and aspects were encountered.

1.3.2 Initial Verification of Common Modeling Assumptions

Based on the initial literature review presented in Section 1.1.1 and the systematic study
in Section 1.3.1, several common modeling assumptions in scheduling and validation can
be identified. To guide following development and validation efforts, an initial study on
common simplifications on RES models in scheduling is conducted and presented in [78].
Depending on the implemented modeling approach, uncertain inputs are commonly
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represented as stochastic distributions [43, 71], intervals of possible realizations [28,
33], or point estimates based on the best known forecast [74, 50]. Such inputs are
often derived based on historic measurements and, if available, external models such
as numerical weather prediction [73, 72]. Nevertheless, assumptions such as temporal
independence of meteorological inputs and forecasting deviations are commonly found
in literature [49].
Based on an exemplary site and two extensive datasets, the impacts of several modeling
assumptions regarding wind and solar irradiation inputs on the operation of scheduling
approaches is studied. Due to the broad data availability and several closely located
measurement sites, long-term measurements [79] that cover solar irradiation and wind
speed data near Denver, Colorado are selected. A consecutive period of seven years
serves as training data to fit corresponding stochastic models and another seven years
worth of data is used in validation. To additionally cover the impact of numerical
weather predictions, the reforecast dataset [80] is matched with the particular location.
Measurements and sampled data are aggregated over a typical scheduling horizon of
one day to estimate the effects of several modeling assumptions on scheduling problems
independently of the particular asset model. Exemplary Wind Turbine (WT) and
Photovoltaics (PV) models further estimate the effects on electricity generation via
static turbine curves [81] and an ecliptic model that calculates the in-plane irradiation
at the PV array [82], respectively.
In the following, typical assumptions on RES generation are covered by simplified mod-
els and evaluated on the validation dataset. Such models include temporally indepen-
dent parametric models that are commonly used to represent the continuous nature
of the stochastic observations and temporally independent discrete models that avoid
mismatches in the shape of the parametric distribution but still allow to study the
effects of independence assumptions. As references modeling temporal dependencies
among observations, a set of Markov models is included in the evaluation. For each
model, the goodness of fit is assessed by the Cumulative Density Functions (CDFs) of
the accumulated observations and the corresponding generation.
Additional scheduling-time forecasts are covered by extended distributions that out-
put the probability of certain wind speed and solar irradiation values given the most
recent forecast. Again, Markov models are introduced to cover dependencies among
forecasting errors, but these errors are not well quantified by the studied CDFs. To
additionally cover the forecasting quality in terms of prediction errors, for each dis-
tribution, a deterministic counterpart that returns the expected value given available
inputs such as the most recent numerical weather predictions is modeled. Prediction
errors with respect to observed measurements are further contextualized by naive fore-
casts that serve as well-studied references. Since the observed forecasting errors are
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stochastic in nature themselves, the Mann-Whitney U test is applied to compare the
performance of individual forecasts.

1.3.3 Hybrid Optimization for Proactive Scheduling

Following identified research gaps in proactive scheduling, the effective integration of
complex physical and control models into multi-microgrid scheduling is studied (cf. Sec-
tion 2.2). First, a comprehensive scheduling model is defined as optimization problem.
In contrast to related work that commonly linearizes the highly nonlinear grid con-
straints, a formulation that separates the linear part of the scheduling model and the
nonlinear grid constraints is found [50]. The separation is then used to formulate two
hybrid optimization algorithms that solve the problem at hand in a way that automat-
ically extends the MILP problem by constraints derived from the nonlinear equations.
The first algorithm extends a procedure from literature that iteratively adds linear con-
straints [50]. Furthermore, a novel technique that utilizes more powerful decision trees
instead of purely linear approximations is implemented. In a detailed case study, the
performance of both approaches in solving several scheduling formulations is assessed.

Proactive Scheduling Model

To support the development of novel optimization methods, first the generic represen-
tation of the problem formulation is defined (cf. Section 2.2). The definition follows
an implicit partitioning of related work [50] into linear �g l(�x) and nonlinear constraints
�g n(�x). Given the linear single-objective function c(�x), the problem of finding an optimal
schedule �x is defined as (1.1) with �x being a mixed-integer vector.

min
�x

c(�x) s.t.

g l
i (�x) ≤ 0 ∀i = 1, . . . ,

����g l
���

g n
i (�x) ≤ 0 ∀i = 1, . . . , |�g n| (1.1)

Consequently, the problem induced by c(�x) and �g l(�x) can be directly solved by MILP
techniques, whereas on using �g n(�x), the problem cannot directly be solved by off-the-
shelf procedures. To support an efficient engineering process, the nonlinear constraints
may be implemented by an external simulation tool such as a power system simulator.
Hence, computing the nonlinear constraint function �g n(�x) may require the execution
of external solvers and corresponding computational overhead. The performance of the
overall procedure can therefore highly depend on the number of samples drawn from
�g n(�x). Furthermore, it is assumed that only limited static information beyond dynamic
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Figure 1.3: Generalized hybrid optimization scheme (cf. Section 2.2).

samples of �g n(�x) is available. In particular, �g n(�x) does not have to be exposed in closed
form and no derivative information may be available.

The linear base model stated in Section 2.2 follows a deterministic single-bus formula-
tion. To focus on computational aspects of scheduling, only the most essential assets
identified in the preceding literature study are covered without introducing specific
models such as Electric Vehicle (EV) and mobility constraints. In particular, the for-
mulation includes volatile load and generation, as well as generation that can be freely
scheduled within its operating range and storage units that are additionally restricted
by their storage state. Since the base formulation focuses on the normal operation only,
a connection to the upstream grid that allows to sell and buy energy according to a
predetermined day-ahead price is included as well. The objective function aggregates
the overall operating costs of main grid transfers and controllable generation within the
scheduling horizon.

The impact of additional constraints beyond the basic set of equations on the perfor-
mance of scheduling approaches is studied by extensions that introduce further oper-
ating constraints such as startup restrictions and linear reserve models. Although the
reserve ensures that all nominal loads can be supplied by scheduled reserves until further
generation is started, stochastic deviations are beyond the scope of the linear model. In
contrast, the nonlinear grid model that implements a balanced AC power flow and first
control models introduces several static scenarios. Hence, the model covers manually
defined extreme-case deviations of volatile load and generation forecast. Failure scenar-
ios extend the deviation set to consider the detailed system behavior in case of outages.
The nonlinear constraint function �g n(�x) is thereby defined as the directed distance to
voltage and asset loading limits for each individual scenario.

Hybrid Optimization Methods
By a polynomial time reduction from scheduling to the Knapsack problem [83] it is
shown that the (multi-)microgrid scheduling problem is at least weakly NP-hard and
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the nonlinear constraints �g n(�x) may further encode arbitrary decision problems (cf.
Section 2.2). To manage the resulting computational complexity of the problem at
hand, this work develops and studies heuristic methods. These approaches allow the
utilization of highly-developed algorithms to efficiently solve practical MILP and power
flow instances without the need of directly solving monolithic nonlinear optimization
problems. The basic operation of the hybrid schemes is extracted from related work
[50] that implicitly follows the procedure illustrated in Figure 1.3. A MILP problem
consisting of the linear base model c(�x) and �g l(�x) is iteratively extended by synthesized
constraints that approximate the nonlinear function �g n(�x). Therefore, the linear prob-
lem is solved and �g n(�x) is sampled near the candidate solution. Given the previously
drawn samples, the approximating linear constraints are updated and the procedure is
repeated until the termination criterion is met.

The sensitivity-based method that was extended from related work [50] numerically
approximates the Jacobean near the current candidate solution and adds a linearized
approximation of each failing nonlinear constraint. The Jacobean approximation is con-
ducted by systematically introducing small perturbations on the scheduling variables.
To improve the performance and stability of problems that exceed the original scope of
a single scheduling interval, a heuristic is introduced limiting the number of samples.
Additionally, the permitted region defined by the planar constraints is strengthened by
an �-term to further support convergence. Since constraints are never revoked, the feasi-
ble region is always confined and the procedure stops as soon as no nonlinear constraint
is violated anymore or the linear problem is reported to be infeasible.

Since constraints in the sensitivity-based method are never revoked and globally valid,
over-approximation may occur. To study the effects of the approximation model and to
allow for more complex approximations, a model based on decision trees is developed.
In contrast to the globally valid planar approximation, the novel tree-based method
exploits the recursive decision structure and supports more complex boundaries. As a
consequence, all known samples are directly used to approximate the decision trees and
the entire approximation can be replaced in subsequent iterations. To efficiently sample
the nonlinear constraint function, a randomized local search technique is deployed that
aims at drawing samples near the current local optimum of the complete optimization
problem. In a subsequent step, off-the-shelf machine learning methods are applied to
grow the decision trees and an extended method of [84] is used to transform the trees
into MILP form. If needed, the recursive conversion procedure thereby adds additional
discrete variables to the basic MILP problem that encode the active path within the
tree. Hence, the procedure supports more complex approximations than the sensitivity-
based method.
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Case Study on Proactive Scheduling Algorithms

The performance of both scheduling algorithms is assessed by a detailed case study
further described in Section 2.2 that specifically focuses on varying levels of model
complexity. Due to the widespread application in related scheduling literature (cf. Sec-
tion 2.1), an extended Baran testfeeder [37] that hosts several additional assets such as
local generation and storage units is taken as a common base. Several variations such as
a reduced amount of storage units and limited constraint sets are introduced to observe
the scheduling performance with respect to the model complexity. Additionally, one
scheduling run that solely includes the linear economic formulation without incorpo-
rating any nonlinear grid constraints is conducted. The most reduced run serves as a
reference in terms of operating performance, costs and the amount of grid constraint
violations that occur without appropriate scheduling measures.

To give detailed insights into the behavior of the algorithms, each constraint function
sample and each candidate solution is recorded. Given this information, the conver-
gence of the novel tree-based algorithm with respect to the operating costs and distance
to the best known solution can be evaluated and related to the sensitivity-based refer-
ence. In addition to the final operating costs, the number of samples that are needed to
find the first feasible schedule is evaluated. To further generalize the results, to provide
detailed insights into the runtime performance, and to support efficient implementa-
tions, the execution time of various sub-tasks is traced in detail. Since the tree-based
method depends on randomized decisions for local search and the timing of both ap-
proaches is influenced by stochastic effects, all experiments are repeatedly executed and
corresponding statistics are listed.

1.3.4 Extensive Assessment of Microgrid Scheduling

The hybrid scheduling algorithms that allow to incorporate complex physical models
and even the effects of low-level controls in scheduling are thoughtfully validated with
respect to their performance in solving the problem at hand. However, the necessity
and value of such algorithms in complex multi-microgrids are still open for discussion.
It is not well understood which level of detail needs to be considered at scheduling
time and which effects can solely be addressed by the real-time control architecture
below day-ahead scheduling. To close the research gap, first, an extensive simulation-
based method that allows to assess multi-microgrid scheduling approaches in great
detail and under a broad range of operating scenarios is introduced (cf. Section 2.3).
The method itself targets a microgrid-specific assessment of scheduling approaches.
Nevertheless, a case study is conducted to demonstrate the assessment method and to
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well exceeds related work [65, 66] by detailed device constraints such as apparent power
limits, an outage model that allows to detect insufficient supply, and dynamic droop
schemes considering the state of storage units.

It is assumed that in islanded mode, all active schedulable generation and storage units
fully participate in primary control. However, to balance out storage states, it is further
assumed that such units gradually reduce their frequency droop gain in case storage
limits are reached. Additionally, all volatile RES generation units fully participate in
primary voltage control, but similar to [85], only reduce their generation, in case the
frequency of the corresponding island exceeds a given emergency threshold. Outages
are modeled by virtual power sources that inject active power in case critical frequency
deviations are encountered. Hence, nonconverging power flows can be distinguished
from outage situations and an indication on the amount of short or excessive active
power can be given. To further cover secondary control actions that counteract faults
and deviations manifesting in the real-time operation, two heuristics are implemented.
The first one manages generation reserves based on predefined thresholds and the second
one implements a simple grid-reconfiguration scheme that connects separated parts of
the network, if possible.

Extensive Benchmark and Case Study
Another case study is conducted to demonstrate the assessment method and to study
the value of proactive scheduling. Similar to the study covered in Section 2.2, the study
in Section 2.3 is based on a modified Baran testfeeder [37]. Since the study specif-
ically focuses on highly loaded grids with a high share of volatile RES, the amount
of PV and wind generation is significantly increased. To quantify the system perfor-
mance in a broad range of operating conditions, an extensive set of input scenarios is
introduced. The load, meteorological and market information is thereby taken from
long-term recordings without the need of introducing common stochastic assumptions
such as temporally independent distributions in the assessment. System resilience is
covered by introducing an extensive set of failure conditions. In addition to scenarios
that are directly covered by some algorithms under test, failure modes that are not con-
sidered by any of the approaches are included. To avoid quantification of rare events
and corresponding modeling errors, performance metrics are recorded per failure class
without the need of specifying incident probabilities.

Several cases covering a broad spectrum of scheduling algorithms are distinguished.
First, purely economic scheduling is introduced as a deterministic reference that does
not include any resilience aspects. Reserve constraints within the realm of a single-bus
MILP formulation are considered by an extended version of MILP reserve constraints
first formulated in the study on hybrid optimization (cf. Section 2.2). In contrast
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to the initial constraint set, both upwards and downwards reserve as well as multiple
extreme-case deviation scenarios instead of deterministic predictions are covered. The
hybrid scheduling approach considering tree-based approximation is further used to
consider grid constraints and the complex control hierarchy in scheduling. To cover
the more advanced grid model, the original formulation is replaced by the grid and
control architecture used in the evaluation step. Nevertheless, information available
at real-time only is replaced by the corresponding scheduling-time forecasts to still
maintain a separation of inputs. To build a common base, all algorithms are executed
and evaluated on the same set of input scenarios.

1.3.5 Engineering Support for Extensive Assessments

Following the assessment method presented in Section 2.3 requires considerable engi-
neering efforts in implementing and applying the assessment facilities. The high compu-
tational workload of several hundred thousand scenarios needs to be efficiently managed
and distributed to multiple machines. To guide the selection and development of multi-
microgrid scheduling approaches, repeated testing and validation runs are needed to
assess the impacts of changes in the algorithms under test. Such repeated assessments
can lead to a multitude of result sets that need to be properly stored and managed.
To reduce engineering efforts, a software architecture that handles the computational
workload and tightly integrates the assessment into a common development tool chain
is presented in [86].

Testbed Architecture For Distributed Computing

The testbed illustrated in Figure 1.4 is split into a scenario generation facility, the
actual scheduling and validation logic as well as a central evaluation and reporting
infrastructure [86]. Due to the separation of scenario generation and validation facili-
ties, a common set of input scenarios can be generated and applied in the assessment
of multiple scheduling algorithms without the need of frequent and deterministic sce-
nario generation. Figure 1.5 further illustrates the detailed architecture of the scenario
generation utility that accesses a broad variety of input data sources and composes a
comprehensive scenario set. To temporally align the observations and forecasts, first
a common set of study periods is selected. Since the meteorological information also
needs to be spatially aligned, both forecasts and measurements are processed centrally
before the individual RES models are applied. Similarly, a central load scenario selec-
tion component matches the appropriate forecasting profiles and scales them according
to the available meta information.
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Integrated Development and Validation Workflow
A user interface that focuses on a tight integration into existing development and val-
idation workflows is created [86]. First, the complex system description is managed
in an established text-based format that can be well integrated into common version
control systems. The main description links the auxiliary information such as long-term
measurements that cannot be efficiently encoded in the text-based syntax and provides
a common anchor to control the testbed execution. A reference mechanism that re-
cursively includes external information allows to create a hierarchy of single input files
and to share information among related configurations. Since the auxiliary files are
not subject to frequent changes, but are an integral part of the input description, it is
proposed to integrate the auxiliary files into the version control process via appropriate
tools that manage large binary files as well.

Frequent regression tests that assess the quality of scheduling algorithms and allow to
evaluate the impact of algorithmic changes on the system resilience are supported by
a tight integration into Continuous Integration (CI) systems. Therefore, the testbed
provides a user interface that can be easily accessed by external software. For instance,
all tools can be executed without a graphical user interface and advanced configuration
options allow a CI system to dynamically inject information without the need of directly
accessing configuration files. In addition, results can be exported to and managed
by the CI system to efficiently trace impacts on the system resilience and scheduling
performance. To validate the proposed software architecture and the integration into
the engineering process, the proposed workflow was applied in the studies described in
Sections 2.2 to 2.3 and reviewed afterwards.

1.4 Overview on Results

Following the described methodology presented in Section 1.3, a broad range of insights
into proactive resilient scheduling can be given. Such results cover the spectrum of
available resilient multi-microgrid scheduling approaches, include quantitative evidence
on the performance and value of several scheduling algorithms, and support efficient
engineering of resilient multi-microgrid scheduling.

1.4.1 Comprehensive Classification for Engineering Support

Although none of the eligibility criteria formulated in the systematic classification of
existing literature (cf. Section 1.3.1) explicitly stated that the scheduling algorithm
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must follow an optimization-based approach, all key-contributions utilize optimization
techniques (cf. Section 2.1). In consequence, none of the contributions directly formu-
lates heuristic operation procedures. Despite the common aspect, a very broad variety
of problem formulations, optimization approaches and evaluation measures are found.
By definition, all key contributions included EES units, Distributed Generators (DGs),
and volatile RES. Most of the publications implement generic asset models of control-
lable and volatile generation without considering specifc assets in detail. For instance,
only one contribution specifically addressed combined heat and power [45] and one pub-
lication specifically included microturbines [43] in their formulations. Nevertheless, a
minority of six contributions considered specifics of WT and PV models such as turbine
curves and solar irradiation characteristics (such as [43, 88]).
Selected key contributions also demonstrate the spectrum of handling uncertainties in
the energy management problem by listing deterministic [47], stochastic [88, 70] and
robust formulations [32, 33]. In most cases, uncertainties of loads and volatile RES
are considered by stochastic and indeterministic formulations and only few approaches
simplify these models by a purely deterministic representation. To represent multi-
microgrid topologies and topological constraints, engineers find a spectrum of several
methods ranging from connection graphs [88, 39, 89] to detailed balanced and un-
balanced network equations [90, 44, 74]. Most scheduling formulations are concerned
with steady-state phenomena. Nevertheless, one publication specifically constraints the
transient response of the grid [74].
Similar to the model formulations, a broad spectrum of optimization objectives is found.
Although all key contributions include economic costs as one or the primary objective,
a versatile set of terms including the costs of main grid transfers [70, 43], DG operation
costs [29, 33, 70] and the value of lost load [49, 91] is formulated. Following from
the broad range of model formulations, an extensive set of methods is used to handle
the complexity of optimal scheduling. For instance MILP techniques are found as
a common method of choice [70, 45]. Other approaches include genetic algorithms
[43, 49] and particle swarm optimization [46, 40]. To give an indication on relevant
solution approaches, in addition to the detailed tables that categorize available model
formulations, a comprehensive classification of methods is derived. One can note that
several measures such as linearization [32, 89, 41], problem decomposition [28, 45] and
scenario reduction [43, 40] are applied to reduce the computational burden and make
the problem tractable.
One of the main concerns of resilient scheduling are failures and corresponding mit-
igation options that are considered at scheduling time. Given the broad variety of
potential failures that can occur in a microgrid [62], it can be observed that the key
contributions actively address a small subset only. Main grid outages are considered by
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a majority of 17 key contributions such as [90, 88, 91] and eight approaches include the
possibility of line-outage events (for instance, [90, 43, 89]). Other failure modes include
tripping generators [90, 44, 45], bus-related faults [92] and even detailed short circuits
[74], but several failure modes such as communication failures [62] are rarely reflected
in detail [39]. Three main mitigation techniques and their feasibility with respect to a
given schedule are considered in the key contributions. A majority of 18 contributions
disconnects from the main grid to mitigate external faults [46, 45, 40]. Grid splitting
and partial islanding [45, 91, 44] as well as grid reconfiguration that isolates the fault
and establishes alternative paths [39, 90, 89] are also found.

As validation and testing efforts are main aspects towards a successful implementa-
tion, this work categorizes major validation efforts presented in the key contributions.
One can observe that all approaches are validated by numerical simulations such as
[33, 45, 74]. Only one publication additionally presents laboratory tests [70] and no
key contribution reported field trials of proactive resilient scheduling. To aid a quick
implementation of future validation efforts, detailed information on common test sys-
tems and input profiles is collected. Although no single universal benchmark system is
observed, some test grids such as the Baran testfeeder [37] are regularly found [28, 43,
92]. Despite the broad range of contributions, shortcomings in testing and validation,
as well as limits in scheduling that were identified in the initial literature review could
also be observed in the systematic study.

1.4.2 Validity of Common Modeling Assumptions

Following the methodology of the initial verification study described in Section 1.3.2,
Figure 1.7 shows the CDF of the validation dataset and three stochastic models that
operate without any additional scheduling-time information such as numerical weather
forecasts [78]. In addition to the meteorological observables (i.e., the wind speed and
global horizontal solar irradiation), the corresponding CDF values after applying the
RES output models are given. For both observables, exemplary parametric models
(hourly fit Beta-distributions for solar irradiation and one Weibull model representing
wind speed) are taken. To further cover any mismatches in the parametric models
and to focus on the impact of the assumption on temporarily independent observables,
discrete but temporarily independent distributions are fit as well. It can be observed
that all independent models systematically underestimate the probability of days with
exceptionally low and high RES generation.

Temporal dependencies between hourly observations are introduced by an additional
set of discrete Markov models. For solar irradiation, it is assumed that an observation
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failures until secondary control actions take effect. To study the impact of forecasting
deviations on the system resilience, multiple sufficiency-based variations are assessed.
First, a deterministic formulation does not consider any forecasting deviation and a ro-
bust formulation incorporates several extreme-case deviations. As a further reference,
a hypothetical perfect forecast is assumed to bound the effects of improved forecasting
capabilities. While the deterministic sufficiency-based model slightly reduced the ENS
on main grid failures by 7.0%, compared to purely economic scheduling, the robust
variation already achieved a reduction of 15.5%. Notably, only a minor improvement
of 2.5% compared to the robust counterpart is seen, for perfect forecasts.

For the last study cases, the hybrid scheduling approach that includes detailed grid con-
straints is deployed in a robust variation and a reference that assumes perfect forecasts.
Given the robust hybrid approach, an ENS reduction on main grid failures of 40.5%
compared to the purely economic case can be achieved. Similar to the sufficiency-based
formulation, improvements on the forecasting quality only yielded a marginal reduction
of lost load. Notably, only 35% of all main grid outage scenarios that show loss of load
in the perfect reference show infeasible solutions to the scheduling run. All other cases
terminate with a feasible solution but simplifications such as whole-day outages that
are introduced to keep the problem computationally tractable still lead to loss of load.

For all study cases, performance improvements on faults such as single-line outages
that are not considered in the scheduling formulation are less significant or not ob-
served at all. The observed resilience improvements come with a cost increase of 0.7%
and even 30.8% for robust sufficiency and hybrid scheduling, respectively. Despite the
limited impact of forecasting improvements on the system resilience, a considerable po-
tential is indicated by an average cost reduction of 19.8% for hybrid scheduling when
assuming perfect forecasts. Hence, improvements on the forecasting quality can signif-
icantly reduce the cost associated with reserve provisioning.

1.4.5 Engineering Support Experiences

The integrated development and validation methodology introduced in Section 1.3.5
and in the own contribution [86] is applied in the case studies for further validation.
The multi-microgrid testbed implementation of the presented assessment follows the
proposed graph-based architecture. Hence, it is demonstrated that the software design
easily scales to several hundred thousand of scenarios per simulation run and over 120
workers that process the computational workload. Due to the graph-based design,
the parallelization logic could be largely delegated to an external framework [87] and
the testbed implementation mainly focuses on the domain logic. Still, the additional
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Table 1.1: Qualitative comparison of assessment methods
Criteria Integrated Assessment Stand-Alone Workflow
Traceability of results provided missing
Manual assessment effort low medium
Assessment granularity fine coarse
Computational resources high medium
Implementation complexity medium low

engineering overhead needs to be considered in case a fully distributed execution is
not needed to handle the computational workload. The data management strategy
including the result registry proved to be an effective measure to connect aggregated
KPIs and detailed debugging information. Nonetheless, care must be taken to avoid
bottlenecks in the central database due to excessive access of debug information.

Both case studies tightly integrate the simulation runs into a SotA software develop-
ment and CI platform [86]. It is demonstrated that an automatic assessment of code
changes in the system description and the algorithms themselves is feasible. To further
relate the proposed methodology to a hypothetical stand-alone workflow without an
automatized integration, Table 1.1 gives a quantitative comparison. Due to the tight
integration into the software development platform, results are closely connected to the
source configuration. Hence, a high level of traceability can be achieved that cannot
be provided by stand-alone workflows without such records. The high level of automa-
tion in the integrated assessment workflow further reduces manual efforts of a single
simulation run and can consequently lead to more fine-grained assessments.

Nevertheless, the frequent test runs triggered by the integrated assessment method
require a considerable amount of computational resources. Both, machines that handle
the assessment workload and storage resources that manage evaluation results need
to be provided. Since the integration into SotA CI systems shifts the workload from
the development workstation to dedicated servers, impacts on the local workflow such
as blocked workstations can still be reduced. Benefits of the integrated assessment in
automatized testing and validation come with the cost of an increased implementation
complexity. Tooling needs to provide interfaces that can be well accessed by the CI
system and results need to be exposed in a way that can be efficiently managed by
the external software. Still, existing tool chains well support such integration tasks, for
example, by providing facilities that handle even large input files.
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1.5 Summary of Scientific Publications

Publication A
The chronologically first publication (cf. Section 2.1) handles the extensive body of
literature related to multi-microgrids and presents a comprehensive classification of
proactive resilient scheduling. Originating from the need for an accessible listing and
comparison of resilient scheduling approaches, a systematic literature study is con-
ducted. The study first defines multiple eligibility criteria and performs an extensive
search to identify several key contributions that are classified in detail. To estab-
lish comparability among diverse approaches, a high-dimensional classification covering
model formulations, computational methods, resilience features, and validation aspects
is introduced. Although all key contributions follow an optimization-based approach,
it is shown that a broad variety of scheduling formulations and techniques are avail-
able. Nevertheless, several shortcomings of current methods and research needs could
be identified that guide the following scientific studies and future research efforts.

Publication B
One shortfall of existing methods in efficiently integrating nonlinear grid constraints into
the optimization procedure is addressed by the second publication (cf. Section 2.2). In
contrast to related work that commonly requires grid models to be simplified, a novel
hybrid optimization approach allowing to access detailed nonlinear grid constraints as
provided by external simulation tools is introduced. To fully exploit linear substructures
within the optimization problem, the formulation is split into a linear and nonlinear
subset. The nonlinear constraints are then approximated within the MILP problem
by an iteratively refined tree structure deduced from dynamically drawn samples of
the nonlinear constraint function. It is shown that the approach allows to utilize both
highly developed MILP solvers and specialized power system simulators without the
need of relying on purely heuristic optimization techniques. A case study relates the
novel algorithm to a refined reference from literature. Although the modified reference
showed better results in the most simplified cases, the novel algorithm outperformed
the reference on more complex optimization models and even provided feasible solutions
when the reference method failed.

Publication C
The third publication (cf. Section 2.3) addresses research needs on the impact and neces-
sity of proactive and resilient day-ahead scheduling from a system resilience perspective.
Therefore, an extensive simulation-based assessment method is proposed that allows to
quantify the impact of scheduling on the long-term operation of multi-microgrids. In
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contrast to related publications, this work considers the impacts of a control hierarchy
that can balance fluctuations and mitigate faults in real time but may be influenced by
scheduling decisions as well. The method covering a large amount of operating scenarios
is applied in a detailed case study that includes a broad variety of scheduling formula-
tions. It turned out that even on the exemplary multi-microgrid which is specifically
designed to challenge the algorithms under test, a large share of faults can already be
mitigated by low-level controls without considering resilience at day-ahead scheduling.
Nevertheless, the remaining share can be well influenced by day-ahead measures at the
cost of additional operating expenses. It is demonstrated that the proposed method
supports balancing these costs and to find the limits of proactive resilient scheduling.

1.6 Scientific Contributions of this Work

This work advances the design, implementation and validation of proactive and resilient
multi-microgrid scheduling. First, a novel hybrid optimization approach that allows the
inclusion of grid constraints in unprecedented detail is provided. An extensive evalua-
tion method assessing the value of proactive scheduling, and detailed decision support
further advance the engineering process. Given the achievements of this work, the spec-
trum of proactive and resilient scheduling algorithms is well categorized and significantly
extended by a novel hybrid optimization approach. This groundwork enables detailed
assessments considering the need of proactive scheduling and the impacts of several
algorithms on the system resilience. In particular, the following scientific contributions
are achieved.

Classification of Resilient Scheduling

This work condenses the extensive body of scheduling-related literature into a com-
prehensive classification of proactive and resilient scheduling (cf. Section 2.1). In
contrast to related reviews, this work follows a systematic review method to identify a
set of key contributions. Based on related schemes, a fine-grained classification is de-
veloped to establish comparability among scheduling approaches and to showcase the
spectrum of available methods. Nevertheless, both the scope and granularity of the
high-dimensional classification exceed related work by far. In addition to modeling and
solution aspects, the classification includes detailed information on the validation of
presented approaches. Hence, the study contributes an extensive guide to support en-
gineering decisions without the need of extensive literature reviews. Finally, a detailed
analysis on research gaps and future perspectives is conducted that discusses the key
contributions with respect to related research disciplines.
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Hybrid Optimization
This work on hybrid scheduling (cf. Section 2.2) first proves that even the MILP formu-
lation without the generalized constraint function that may encode arbitrary decision
problems is at least weakly NP-hard. Given the motivating observation, a sensitivity-
based hybrid scheduling algorithm that heuristically includes nonlinear constraints in
MILP is significantly extended to serve as a reference for hybrid scheduling. In con-
trast to the initial publication [50], multiple heuristics are introduced to efficiently scale
the algorithm from a single-period problem to a multi-period optimization. Further-
more, this work presents a novel hybrid scheduling algorithm based on decision-trees
to overcome identified limitations of the sensitivity-based method.
A case-study assesses both hybrid methods and gives detailed insights into the eligibility
of both of them. It is demonstrated that sensitivity-based scheduling performs well on
simplified formulations but fails to deliver good or even any feasible results on more
complex systems. It is further demonstrated that the tree-based method outperforms
the reference in the more extensive cases. Additionally, this work delivers detailed
insights into the convergence behavior of both algorithms and the role of individual
algorithmic steps in the optimization procedures. In contrast to related work that
commonly state the overall execution time only, a fine-grained timing analysis shows
the computational effort of individual actions.

Assessment of Multi-Microgrid Scheduling
Finally, several contributions in the long-term assessment of resilient multi-microgrid
scheduling can be reported (cf. Section 2.3). An extensive evaluation method that
addresses the impact of scheduling on the system resilience is presented. In contrast
to related work, the method specifically addresses the effects of day-ahead scheduling
considering a comprehensive control hierarchy and detailed device constraints in a long-
term operation. Therefore, a strict separation of scheduling-time information that is
available to the scheduling algorithm under test and information that is available to real-
time controls only, is introduced. Additionally, power flow models of islanded microgrids
are significantly extended to reflect the impact of dynamic low-level controls and device
constraints. Furthermore, an outage model is introduced to clearly distinguish outage
conditions from non-converging power flows.
Based on the extensive assessment method, first detailed insights into the need and
value of proactive scheduling on top of a comprehensive control architecture are given.
Therefore, this work introduces a broad portfolio of scheduling algorithms to repre-
sent various levels of detail and the impact of forecasting deviations on the system
resilience. For the first time, it is demonstrated that even in the test grid that is specif-
ically designed to challenge algorithms under test, a high share of failures can already
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be mitigated without considering them in scheduling. Nevertheless, it is also demon-
strated that the remaining faults in the test system can be well influenced by day-ahead
scheduling. Due to the independent validation that exceeds related work by far, further
insights into the cost of resilient scheduling formulations and the impacts of forecasting
deviations can be provided. In addition to the potential of proactive scheduling, such
insights also include limitations of SotA algorithms and motivate future research.

1.7 Concluding Remarks

The main research question on the resilient operation of multi-microgrids including a
high share of volatile RES is tackled by detailed studies on proactive multi-microgrid
scheduling. The problem is addressed from different angles including design, implemen-
tation and validation of resilient scheduling algorithms. To support the multi-microgrid
design phase, a broad spectrum of resilient scheduling algorithms is identified and cate-
gorized in detail. The typical proactive resilient algorithm follows an optimization-based
design that reduces the operating costs and adds several constraints targeting successful
fault mitigation. However, a broad variety in modeling and solving the optimization
problem is found. The detailed, multidimensional classification therefore targets the ef-
ficient selection of suitable approaches without the need to review the extensive body of
scheduling-related literature in a typical engineering process. Due to the classification,
comparability among heterogeneous approaches is established. Combining the system-
atic research and classification, the guide to resilient scheduling as requested by the
first research goal is established. Although the presented guide documents the broad
spectrum of resilient scheduling, several research gaps such as restricted grid models
and limited validation can be identified and leave room for further improvements.

Most scheduling algorithms strongly simplify the grid model that typically includes
nonlinear power flows and several low-level controls. Nonetheless, the impacts of such
simplifications on the system resilience is not well studied in related literature. To cre-
ate a reference that allows to largely reduce simplifications in the grid model, hybrid
scheduling approaches are investigated. It is successfully demonstrated that the hy-
bridization of mathematical programming and heuristic optimization techniques can be
used to efficiently include complex nonlinear grid constraints in proactive scheduling.
It is shown that the novel tree-based algorithm allows solving problems that cannot
be solved by a reference extended from literature. Given the advanced capability of
proactively including complex grid and low-level control constraints, the research goal
on creating a novel scheduling technique is achieved. Still, the reference algorithm ben-
efits from simplicity and delivers excellent results on some reduced problems. Hence,
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both algorithms can play a role in considering complex grid constraints as needed in
theoretical studies and practical implementations alike.
The study on available scheduling approaches further reveals that most algorithms are
validated on simple simulation-based test grids without considering long-term oper-
ation. Additionally, most contributions do not independently validate the effects of
low-level controls and forecasting deviations on the system resilience. To close the gap
according to the third research goal, a comprehensive assessment method is presented
that allows to quantify the impacts of day-ahead scheduling decisions on the system re-
silience in presence of other real-time fault mitigation measures. Therefore, an improved
power flow model enables the assessment of day-ahead scheduling algorithms in pres-
ence of a complex control architecture that may impact the performance and necessity
of scheduling-time measures. Still, the assessment method covers long-term operation
under a broad range of operating scenarios without the limits imposed by transient
simulations. Hence, the need to model few representative scheduling scenarios and cor-
responding impacts on the significance of results is drastically reduced. Additionally,
strong simplifications on applied grid and control models are avoided, which can im-
prove the quality of validation studies even further. Given the significant advancements
in assessing the long-term operation of scheduling algorithms, the research goal on the
extensive assessment method is fully met.
Following the assessment method, a case study on the value of proactive scheduling is
conducted. Even in the challenging test grid, a large share of events can already be
handled by low-level controls and real-time fault mitigation measures without consid-
ering them at scheduling time. Hence, it is expected that dedicated scheduling-time
measures are not needed in case the application can tolerate the remaining share of
outages. Consequently, it can be justifiable that day-ahead scheduling solely focuses on
the economic operation without actively considering resilience aspects. Nevertheless,
it is also demonstrated that scheduling time algorithms can have an impact on the
remaining share of events which makes resilient scheduling a viable option for the most
critical applications.
In addition to benefits, the case study also reveals the limits of current proactive schedul-
ing approaches. It could be shown that due to necessary simplifications of failure modes
even the hybrid approach with a hypothetical perfect forecast cannot fully avoid outage
conditions. Given the perfect reference, it is also shown that only little improvements
on the resilience of the test system can be expected by a further improved forecasting
quality. Nevertheless, a considerable influence of prediction errors on the operating
costs is observed. However, in case the assumptions on temporally independent fore-
casting deviations which are invalidated in this work are directly used to compute the
extreme case deviations, a negative impact on the system resilience cannot be excluded.
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In fulfillment of the fourth research goal, this work therefore provides initial guidance
in selecting suitable levers to further improve scheduling results. Still, a case-specifc
evaluation of day-ahead scheduling is needed. The demonstrated assessment method
provides necessary tooling to seamlessly integrate the extensive validation efforts into
the development process and to give one answer to the research question on how to
optimally operate multi-microgrids.

1.8 Outlook

The thoughtful analysis of existing key contributions, hybrid optimization approaches
and impacts of proactive scheduling led to significant insights into a resilient multi-
microgrid operation. Nevertheless, several additional research perspectives could be
identified. Such work includes studies on the robustness of asset models with respect
to inevitable parameter deviations, an improved asset coverage, the scalability of op-
timization approaches, and on common benchmark systems. Furthermore, it is still
open to demonstrate the feasibility of proactive and resilient scheduling in extensive
laboratory setups and practical field trials.
Despite the good performance of the tree-based hybrid optimization algorithm, further
improvements by using more complex tree structures and by deploying advanced ter-
mination criteria may be achieved. Until now, the algorithm is only applied in resilient
scheduling problems. However, the procedure follows a generalized structure beyond
scheduling problems. It is still open to discuss the eligibility of the novel hybrid op-
timization approach in related fields of application such as active distribution systems
and grid capacity management.
The case study on the value of proactive scheduling shows a considerable number of
infeasible optimization runs. To reduce that number, the application of soft-constraints
that permit a certain degradation and additional flexibility can be considered in future
research work. More advanced models such as protection, upstream grid and extended
fault mitigation may further refine the assessment results. To support such models,
additional improvements on the convergence of the power flow computations may be
needed. Until now, gained evidence on the detailed assessment of proactive scheduling
is limited on a single test grid. Future work includes a broad evaluation on a large
variety of test grids to gain more general, quantitative insights into the need and value
of proactive scheduling. It is expected that the presented work lays the foundation of
such future research work.
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normal operation while considering the influence on the system resilience. A sound overview of
design decisions, implementation options, as well as the expected performance is needed to efficiently
guide future research and to conduct the practical implementation of existing algorithms. For instance,
several approaches to enhance resilience are summarized in [3], but an in-depth analysis of resilient
multi-microgrid scheduling approaches, which also analyzes modeling and implementation details is
still missing.

It is expected that a systematic study that covers aspects, such as modeling and validation
approaches, will assist engineers and researchers likewise in selecting suitable methods for resilient
multi-microgrid scheduling. This work addresses the concerns by first establishing a common view
based on related literature in Section 2. The subsequent section specifically focuses on resilient
pre-contingency scheduling in multi-microgrid setups. Section 3 presents the systematic methodology
for selection and in-depth analysis of the identified key contributions. Results of the systematic review
are stated and discussed in Section 4. Based on the review and contributions from related fields,
an outlook on future research opportunities and engineering challenges is given in Section 5. Finally,
the paper is concluded with Section 6.

2. Work Related to a Resilient and Economic Multi-Microgrid Operation

Substantial work has been contributed in related microgrid topics such as scheduling resources in
microgrids, multi-microgrid forming and analyzing failure scenarios in power grids. Additionally,
several contributions target the complexity of optimal asset scheduling in systems which face various
sources of uncertainty (e.g., induced by volatile RES). At the same time, the approaches ensure that
the microgrids can withstand certain failures [2,10].

2.1. Failure Modes and Resilience Metrics

Despite the lack of a common definition of resilience in the context of power systems [8,11–13],
some properties such as the ability to withstand and to recover from disruptive events are regularly
associated with the term [8]. For instance, [11] that studies the definition of resilience in detail,
defined the term with respect to an unexpected set of disturbances as “the system’s ability to reduce
the magnitude and duration of the disruption”. The related term robustness is declared as “the ability
of a system to cope with a given set of disturbances and maintain its functionality” [11]. A resilient
system is associated with the ability of downgrading the performance while a robust one maintains
the desired performance in the presence of potentially disruptive events. A review of 12 resilience
definitions is given in [8]. The authors noted that in addition to restoration aspects, several definitions
also include the avoidance of degraded states that others associate with robustness, only [13].

One attempt towards a common definition of power system resilience was made in [12] which
relates resilience to various other terms such as reliability and robustness. Reliability, i.e., the probability
of a functional system, reflects the performance under given conditions and over a long period of
time, while resilience emphasizes the time-varying conditions in a contained time frame. The authors
concluded that new metrics are needed to reflect resilience and presented a generalized framework to
define such metrics. Similarly, a framework for resilience metrics is proposed in [13], which considers
resilience as a function of time that reflects the recovery from a disruptive event. The framework was
applied to assess the resilience of a road network.

Special attention must be drawn to the definition of considered failure modes. To secure the
operation of conventional power systems, often the (N − 1) robustness criterion—which states that
an operation strategy has to withstand the outage of any single system component—is applied [4].
Nevertheless, more detailed failure scenarios and other reliability indices may be used as well to secure
the operation of microgrids and multi-microgrids. For instance, fault tree analysis, a method which is
commonly used in risk assessment, was applied in [14] to identify critical components and to estimate
the reliability of microgrids.
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To assess the reliability of isolated microgrids without the need for a detailed stochastic
characterization of volatile energy sources, [15] uses easily available capacity factors to approximate
various reliability metrics. Alternative assessment strategies include Monte-Carlo-based methods,
which sample a large number of scenarios to approximate the joint distribution of all uncertainties [16].
Although these methods primarily target robustness and reliability aspects, they may also be
incorporated into scheduling problems to improve the resilience of a particular schedule.

2.2. Resilience-Aware Microgrid Scheduling

A solution for the economic dispatch problem in single microgrids that ensures a stable islanded
operation was presented in [17]. The authors considered the effects of the primary control strategy
on the scheduling decision in detail, but only static security margins were used to reflect forecasting
errors. To guarantee that critical loads can be supplied in islanded mode, Ref. [18] presented a
scheduling method that is based on robust optimization. One deterministic worst-case scenario is
found to define the resilient operation. An optimal normal operation schedule is revised in case it
lacks sufficient online capacity for switching to an islanded operation. Hussain et al. [19] studied
scheduling in multi-microgrids and proposed a robust optimization-based approach to incorporate
inherent uncertainties. Although they also considered the islanded operation schedule, no detailed
physical network model and no grid-reconfiguration options are included.

Some work also directly deploys stochastic optimization. For instance, in [20], a two-stage
stochastic optimization approach that takes various network constraints and the required spinning
reserve into account was presented. The expected cost under the presence of stochastic phenomena
was optimized by mapping the problem into a deterministic linear optimization. Demand-response
actions in a stochastic scheduling problem were studied in [21]. The presented approach also considers
reserve requirements for compensating fluctuations.

2.3. Multi-Microgrid Forming

Conventional outage management systems are designed to automatically locate faults and restore
healthy portions of a distribution grid [22] but an islanded operation is rarely considered. The role
of microgrids in enhancing resilience was highlighted in [23], which describes the option that these
microgrids provide surplus power to restore parts of the distribution grid. A particular method to
control the supply of external loads was presented in [24] considering that the time loads can be
expectedly supplied with available energy reserves.

A Mixed Integer Linear Programming (MILP) formulation of the grid partitioning problem,
which forms each radial partition by a single generator, is additionally given in [25]. Supplied loads
are maximized and switching operations are minimized in [26] by partitioning healthy but islanded
sections of distribution networks into self-sustainable microgrids. Although some of the outlined
approaches study both normal and emergency operation, the impact of grid-reconfiguration options
on local reserve requirements in normal operation mode is not considered. Nevertheless, presented
fault mitigation and reconfiguration options may be used to refine reserve estimation in asset
scheduling problems.

2.4. Resilience-Aware Multi-Microgrid Scheduling

Some work specifically targeting resilience-aware scheduling in multi-microgrid environments is
already available. To reduce the high share of dispatchable DERs, the concept of provisional microgrids,
i.e., less critical microgrids that rely on other microgrids for islanding, was introduced [27]. Notably,
an uncertainty-constrained optimal scheduling model that also includes islanding constraints is given.
In particular, the concept and formulation of provisional microgrids may be used in the planned work
as well. A risk-based model of optimal energy exchange scheduling between networked microgrids is
given in [28]. Multiple strategies to deal with inherent risks connected to the stochastic nature of load
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and generation are presented and evaluated. The presented risk measure may be as well applied to
manage risks in other multi-microgrid setups that cover an extended range of failure scenarios.

2.5. Related Reviews

Since the introduction of microgrids decades ago, a vast amount of work has been contributed [2].
Several authors already presented review papers which summarize the State-of-the-Art (SotA) and
systematize various microgrid-related aspects [2,3,7,9,10,29–41]. Table 1 gives an overview of selected
related reviews and their main topic. First developments and initial field test of microgrids were
covered by [29–31], which describe several experimental sites and practical experiences. In [39],
further developments and test sites with a strong focus on the United States are listed. Major challenges
in including RESs into microgrids, such as scheduling under uncertainty, reliable and economic
operation, as well as market-model designs are identified in [32]. The authors highlighted that
microgrids can benefit from hierarchical control schemes allowing for a compromise between fully
centralized and fully decentralized controls and summarized the SotA in the context of the three-layer
scheme. A comprehensive review of various microgrid-related aspects including economics, protection,
grid-supporting functions and clustered microgrids is given in [2]. Broad and condensed overviews
of microgrids [36] and microgrid management systems [37,41] are also available. The application of
multi-agent control in microgrids and microgrid clusters was specifically reviewed in [34,35] studied
differences in control architectures.

Table 1. Overview of related reviews.

Ref. Publication Date Main Topic

[29] 2007-06-02 Microgrid-related research, development and demonstration effort
[30] 2008-05-02 Testing experiences in experimental microgrids
[31] 2010-10-01 Experimental and simulation-based microgrid test installations
[32] 2014-04-20 Microgrid control strategies
[42] 2015-05-12 Power system resilience
[2] 2015-06-10 Broad review of microgrid-related topics
[10] 2016-02-02 Optimization-based energy management in microgrids
[33] 2016-09-16 DERs scheduling for microgrids and virtual power plants
[9] 2017-06-30 Overview of multi-microgrids and available demonstration platforms
[34] 2017-10-09 Distributed control and optimization of microgrids and multi-microgrids
[7] 2017-12-22 Multi-microgrid architectures
[35] 2018-03-22 Microgrid management system architectures
[36] 2018-04-03 Recent microgrid-related developments and regulations
[37] 2018-04-05 Microgrid energy management systems
[38] 2018-06-11 Resilience of microgrids and multi-microgrids
[39] 2018-06-18 Microgrid achievements in the United States
[40] 2018-11-15 Networked microgrids
[8] 2018-12-10 Impact of microgrids on power system resilience
[43] 2018-12-13 Power system resilience
[3] 2019-02-13 Resilience aspects in microgrids
[41] 2019-03 Energy management in microgrids
[44] 2019-12-09 Optimal planning and operation of islanded microgrids

In [10], a detailed review of energy-management approaches for microgrids is presented.
The authors specifically listed related review work and practical implementations. Additionally,
aspects such as objectives, constraints, solution approaches, as well as tools were reported.
Although the work does not specifically evaluate resilience aspects such as failure modes and
modeling assumptions, it is used as one basis for classifying optimization types and objectives.
Similarly, [44] reviewed and categorized objectives, constraints and variables of optimization problems
in islanded microgrids. The study focuses on islanded systems without considering multi-microgrid,
resilience, and implementation-related aspects in detail, but results are used in the own research as
another basis of classification and to provide a broad context. Scheduling approaches for microgrid and
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virtual power plant concepts are reviewed in [33]. Among other aspects, they addressed scheduling
problems that are associated with reliability and stability issues and listed various reliability metrics.
A comparative review of features such as supported DER types, type of formulation and solving
methods is used as another basis to formulate a common feature set. Multi-microgrids or networked
microgrids are addressed by [9,40], who gave a broad overview of that topic and summarized
several contributions related to planning and operation of multi-microgrids. A detailed study of
multi-microgrid architectures and their impact on various aspects including costs, protection, as well
as business models is given in [7]. One can observe that there are already some reviews targeting
specific multi-microgrid and scheduling topics. However, resilience-relevant scheduling details
such as modeled DERs and grid parameters as well as failure modes and effects are not covered in
detail [2,7,9,30,31,33–36,39–41,44].

Resilience in the broader context of power systems was studied by [42,43], but few details on
resilient scheduling were given. In [8], a study on the definition of power system resilience is given and
the strategies to increase power system resilience via microgrids are briefly discussed. Microgrid and
multi-microgrid concepts that specifically focus on resilience aspects were reviewed in [38]. The authors
introduced mechanisms for a resilient operation such as control strategies for an emergency operation,
and briefly categorized common optimization terms. Although the categorizations are successfully
used as a basis for own refinements, the link between pre-event operation and post-event fault
mitigation techniques is weakly described. Significant details such as considered failure modes and
validation approaches of pre-event scheduling algorithms are missing as well. Work presented in [3]
specifically focuses on resilience-related aspects in microgrid operation. They covered a broad range of
topics such as disaster modeling, outage management, and proactive scheduling. One research gap
that was identified in [3] is the need for proactive scheduling approaches.

2.6. Contributions of This Paper

This paper refines findings of [3] and targets the identified research gap by systematically studying
relevant technical details of work related to proactive, resilient multi-microgrid scheduling. It does
so by applying a systematic review methodology that first assesses a large amount of candidate
contributions and condenses a set of most relevant key contributions. A thoughtful analysis of the
key contributions categorizes various details of the algorithms including modeling, optimization,
validation and resilience aspects. This paper identifies the main design options that were exploited
in resilient multi-microgrid scheduling approaches and highlights the development stage of these
algorithms. It shows the wide variety of optimization-based contributions and illustrates that the work
is on an early development stage that merely exceeds simulation-based validation. Given the detailed
breakdown, this paper may be used to quickly identify related work and select suitable design options
for upcoming research and engineering activities. The extensive outlook on research perspectives
further discusses research gaps and related work that may be successfully applied in proactive resilient
scheduling as well.

3. Systematic Review Method

As review studies always have a chance of giving biased results, the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) statement [45] is used as a basis for the systematic
review process. By following the recommendations, a reduction of bias and an increased transparency
in the quality of the presented study is targeted. Figure 2 outlines the review procedure. At first,
review candidates are identified and screened. Afterwards, eligible literature is iteratively reviewed.
Finally, results from all reviewed papers are discussed and evaluated.

Due to the strong focus of the PRISMA methodology on medical studies, the process was slightly
adapted to the needs of engineering studies. For instance, instead of focusing on achieved results and
performance metrics, strong emphasis was put on the methodology such as modeling aspects and
solution methods. Additionally, it was decided to merge the screening step that filters work according
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to the abstract and the eligibility test that accesses full-text articles in favor of a combined selection step
that individually meets the review requirement to evaluate the selection criteria, i.e., full-test articles
are accessed as soon as the selection criteria cannot be checked based on the abstract alone. Despite
these modifications from the original PRISMA methodology, the overall process description was taken
from [45].

Literature-Identification:
DB-Search

Literature-Identification:
Other Sources

Screening and
Eligibility Test

Fact Sheet Definition
and Refinement

Detailed Literature
Review

Evaluation and
Discussion

Excluded
Publications

#402 #2

#20

#384

Unconsidereded
Features?
YN

Figure 2. Review methodology workflow based on [45].

First, definitions and the research question are stated in Sections 3.1 and 3.2, respectively. Based on
the study objectives, a broad literature screening was conducted. Section 3.3 describes the literature
identification, screening and initial selection process in detail. For the detailed review of selected key
contributions, a fact-sheet template was developed and in combination with the selection criteria,
iteratively refined. Details on the fact sheet are presented in Section 3.4. The protocol including the
identification steps and screened literature is published as supplementary material.

3.1. Definitions

Resilience is often used in the literature to characterize a system’s capability of sustaining and
recovering from hazardous impacts without an entire loss of functionality [8]. In opposition to other
concepts such as robustness, which do not fully reflect a graceful degradation and service restoration,
this publication defines the term resilience as “the ability to reduce the magnitude and/or duration
of disruptive events” [12]. However, it must be emphasized that no common sense of resilience is
established [11–13]. For instance, [13] defined resilience with respect to a delivery function as the
ratio of recovery at a certain time to the loss at a disruptive event. An event is considered disruptive
if and only if the magnitude of the delivery function is reduced. With respect to microgrids and
the definition of [13], one can argue that a system is robust but not resilient, when no loss of load is
encountered in case of a potentially disruptive event. An algorithm may be able to sustain potentially
disruptive events without encountering a loss of load and consequently would be considered robust
but not resilient with respect to that event. However, deploying that robust algorithm may still have
the potential to increase the security of power supply in the presence of extreme events and failures.
Furthermore, the strict definition may or may not include mitigation techniques, depending on their
impact on the target metric.

In contrast to [13] and to mitigate problems of definition, the systematic review uses the term
resilience in a broader context presented by [12]. This paper explicitly includes approaches which try
to avoid power delivery failures of any kind. Nevertheless, considered algorithms may also permit
a degraded performance in case of disruptive events. Hence, this paper refers to resilience-oriented
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such as costs relevant in normal operation, it is not considered for review. In total, 75 papers were
excluded because they focus on emergency operation only.

• Resilience Aspects Covered: To answer the research question on resilient scheduling, only approaches
which tackle resilience aspects need to be covered. Work is herein considered in case one failure
mode during normal operation is taken into account in a way that tolerance of this failure mode is
ensured (i.e., robustness) or the impact of these failures is minimized (i.e., resilience). Such failure
modes include (main-)grid failures, communication failures, or generation faults. An approach
is not considered to be resilient scheduling, in case it does not actively shape resilience and
only operates on static security margins without deriving them form the microgrid properties
or validating them in an independent simulation. Such static margins include spinning reserve
requirements are not actively adapted to the microgrid state. While screening, 98 papers were
found to neglect resilience aspects considerably.

• Covered Technology: To guarantee a broad applicability of the reviewed approaches and to be able to
compare several detailed aspects, a minimum set of modeled assets is defined [30,31]. In particular,
each approach must at least be able to handle a schedulable energy storage, non-schedulable,
stochastic loads, stochastic generation, and in accordance with the microgrid definition,
an interruptible connection to the main grid. In particular, non-schedulable generation covers a
wide range of RES which can be subsumed under this term [2]. In total, 46 papers do not cover
the required technology and are therefore not considered for further review.

• MG Topology and Topological Constraints: A distribution system, which connects multiple,
coordinated microgrids or which forms multiple, coordinated islands may not be able to handle
every configuration without voltage and current violations [26]. It is, therefore, expected
that network constraints such as topological constraints gain an increasing importance in
multi-microgrids, compared to geographically contained single microgrids. Even if an algorithm
does not actively alter the network topology, controls and scheduling decisions can have a
considerable impact on a reliable operation [47].

Since the study focuses on a resilient operation of multi-microgrids, it is decided that included
work must take topological constraints into account. In particular, power-flow limits and the
topology of the microgrid or multi-microgrid must be taken into account. An algorithm which
assumes a single-bus microgrid is not considered to be multi-microgrid scheduling, even if
power transfer constraints to the main grid are modeled. From the initial set of identified
publications, 31 papers do not consider network constraints at all and 15 papers only model a
single-bus microgrid with limited transfer capabilities to the main grid. Similarly, four papers
were excluded because they only model Alternating Current (AC)/Direct Current (DC) converter
assets without considering transmission constraints within the network.

3.4. Fact Sheet and Feature Extraction

A detailed template was developed to guide the systematic review of selected papers and to
answer the research questions given in Section 3.2. Based on related studies, a basic set of relevant
features that should be extracted from each paper was recorded. The classification of optimization
types such as MILP, and the classification of constraints including storage constraints were taken
from [10]. The initial classification from [10] was further extended by the features of [33,38,44] such as
the additional DER and objective types.

The basic features from literature were substantially refined and new features which are needed
to answer the research question were added. Results listed in [10,33,44] were used to validate findings
from this study. Although [10] lists the formulation of several objective functions in detail, it was
decided to provide a categorized view, thereby easing the comparability of various approaches and the
readability of the study. Hence, the fact-sheet template that defines recorded features was designed
such that most of the features can be specified by assigning a category. For instance, it can be specified
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for each considered DER, whether it was modeled deterministically, indeterministically, stochastically,
or not at all.

The fact sheet is structured in four feature groups. The first group covers model-related aspects
such as details on DER, and in addition to related reviews, aspects related to the grid and load
models. The optimization-related group covers the objectives and solution-related facts. One group
specifically addresses resilience-related facts such as considered failure modes and fault mitigation
techniques, and the last group lists various details on validation-related aspects. Although the overall
structure was defined beforehand, the open-ended research questions such as the one on applied
objective functions require an adaptive approach that allows the evaluation of features which were not
considered beforehand. The fact-sheet template as well as reviewed facts were therefore iteratively
refined as soon as new, relevant features were identified.

4. Results and Discussion of the Systematic Review

Based on the initial screening and eligibility test, the key contributions listed in Table 2
were selected for a detailed review. The first key contribution that leads towards resilient
multi-microgrid scheduling dates back to September 2012. Although [48] already integrated dynamic
grid-reconfiguration options into the resilient scheduling formulation, no dedicated multi-microgrid
setup which potentially distributed ownership and independent islanding capabilities was addressed.
A next step towards the integration of multiple independent microgrids was presented in [27].
The paper introduced the concept of provisional microgrids that use the grid-forming capabilities of a
coupled independent microgrid in case of emergencies.

Table 2. Selected key contributions.

Ref. Publication Date Main Topic

[48] 2012-09-28 Integration of dynamic topology option into economic microgrid operation
[49] 2014-04-09 Optimal scheduling of DER considering the risk of outages
[27] 2014-09-26 Interaction of microgrids with and without independent islanding capabilities
[50] 2016-06-13 Value of reconfigurable microgrids in integrating Electric Vehicles (EVs)
[20] 2016-08-10 Resilient scheduling of microgrids affected by uncertainty
[51] 2016-08-26 Multi-objective scheduling of microgrids considering normal operation costs

and the risk of load curtailment
[52] 2016-10-15 Microgrid scheduling considering operating costs, emissions, and reserve

requirements
[53] 2017-08-17 Robust formulation of the optimal proactive scheduling problem for microgrids
[28] 2017-12-13 Risk-based strategies for multi-microgrid scheduling considering stochastic RESs
[54] 2018-02-16 Optimal scheduling for hybrid AC/DC multi-microgrids
[55] 2018-02-20 Integration of Demand Response (DR) programs and grid reconfiguration into

microgrid asset scheduling
[56] 2018-03-26 Resilient asset scheduling in reconfigurable microgrids
[57] 2018-05-11 Security-constrained dispatch for microgrids using multi-objective optimization
[58] 2018-08-17 Resiliency enhancements by optional scheduling of networked microgrids
[59] 2018-12-28 Impact of scheduling discrepancies on interconnected microgrids
[60] 2019-04-18 Microgrid scheduling combining flexible time frame DER scheduling and single

time interval-based optimal dispatch
[61] 2019-07-02 Resilient scheduling of networked multi-microgrids using a three-stage approach
[62] 2019-08-07 Proactive, resilient scheduling of interconnected microgrids
[63] 2019-08-16 Distributed energy management of interconnected microgrids considering

adversarial actions
[64] 2020-01-06 Optimal, resilient operation of dynamic multi-microgrids

The first selected key contribution that specifically addresses multi-microgrid setups is [28] that
was published at the end of 2017. Evidently, the authors did not present the first multi-microgrid setup,
ever [7,28], but a significant contribution was made in considering resilience aspects in multi-microgrid
scheduling. Since then, several authors also directly considered multi-microgrid setups in resilient
scheduling formulations [54,58,61–64]. Although only in very recent years identified key contributions
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show a tendency to explicitly cover multi-microgrids, literature that focuses on independent microgrids
may be applicable in the extended setting as well.

None of the eligibility criteria directly states that a scheduling approach needs to be explicitly
formulated as an optimization problem. A scheduling algorithm may be as well formulated as
some simple heuristic rules that eliminate the need for an online optimization procedure [37].
For instance, [65] presented a heuristic EV charging strategy that does not require any optimization
steps. The key contributions show a wide variety of different models, resilience features,
and optimization approaches including heuristic optimization. However, every selected publication
follows an optimization-based framework.

4.1. Selected Literature

The screening of identified literature and the eligibility test were performed in an interleaved
process. In case the paper abstracts did not provide sufficient information to classify the work with
certainty, a more detailed screening was conducted. Although the authors tried to define the eligibility
criteria as precisely as possible, some border cases still had to be handled. For instance, the early
work [17] that studies a scheduling problem of distributed generators considering main-grid faults
was excluded due to the fact that energy storage units were insufficiently tackled. Although the work
gives valuable insights into reserve commitment, Electrical Energy Storages (EESs) such as battery
storage systems are considered to be a canonical part of future multi-microgrids. Similarly, the work
in [21] that specifically tackles reserve scheduling was excluded due to the limited consideration of
failure modes. Judging from the formulation, managed reserves are used to balance RES and load
fluctuations only, without considering failure scenarios such as main-grid outages and their mitigation.
Although the paper provides valuable insights into the effects of DR programs, it was excluded from
the list of key contributions because it violates the resilience criteria.

No obvious classification was found for [57] either, which describes a security-constrained optimal
dispatch approach. Although the stochastic behavior of RESs and loads is not explicitly taken into
account, terms in one objective function penalize main-grid transfer and storage usage. Hence,
available reserves that are used to balance fluctuations are systematically maximized and the paper is
considered to be a key contribution. A similar border case is given by [27] that introduces the concept of
provisional microgrids. The provisional microgrid is modeled as a single bus only, but the topological
constraint that provisional microgrids cannot be islanded independently of a coupled microgrid,
is given. The connection to the coupled microgrid including its power-flow limitations is also modeled
in addition to the main-grid connection. Despite the single-bus limitation, some topological constraints
that supplement the main-grid connection are provided and the paper was selected.

In [66], a proactive scheduling approach of hybrid AC/DC microgrids was described.
The microgrid was modeled by two buses, one connecting the AC assets and the main grid as
well as one connecting the DC facilities. Since the paper focuses on independent hybrid microgrids,
no topological constraints, despite one interlinking converter that couples both buses and main-grid
transfer constraints, were given. Unlike [27,66] does not study the scheduling approach in the context
of other microgrids and was therefore not selected as a key contribution. A similar border case was
given by [67] that provides valuable insights into the resilient operation of networked hybrid AC/DC
microgrids. However, the publication does not include any topological constraints such as line capacity
constraints and was therefore not selected as a key contribution either.

4.2. Modeling Approaches and Modeled Assets

Each of the key contributions models a set of controllable and uncontrollable microgrid assets.
Some of them use generic models such as generic unschedulable DERs (e.g., [27,52,64]) while others
specifically model the properties of some assets such as Wind Turbines (WTs) including their turbine
characteristics (e.g., [28,58]). Table 3 summarizes modeled DER parameters and classifies common
DER constraints. In case only a generic model is considered, no specific model is listed although the
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distribution reduces to a set [19] that is often generalized to the set of expected unscheduled power
generation [53,54,62].

Diverse levels of detail are found for the DER models and are briefly summarized in Table 3.
Every key contribution considered active power generation limits for the controllable assets. However,
other limitations such as reactive and apparent power constraints are far less common. For instance,
only eight out of 20 key contributions including [53,56,62,64] explicitly considered reactive or apparent
power constraints. For one publication, [49], not enough details were given to clearly categorize
the constraint. In addition to various power constraints, 12 publications such as [27,51,60] also
include ramping constraints that limit the rate of change of the generated power. In order to avoid
frequent start-up operations, eight key contributions (e.g., [28,52,58]) considered minimum up- and
down-time constraints.

The common EES is modeled as a finite power and capacity constraint storage that accumulates the
charged and discharged energy into a time-dependent SoC. In particular, only three key contributions
did not constrain the energy that can be fed into or drawn from the energy storage [28,49,55].
Eighteen contributions model a constant storage efficiency that limits the energy that can be discharged.
Although most of them assume that, like in [20,64], losses are encountered while charging and discharging
only, one contribution also considers self-discharge of the energy storage unit [63]. None of the key
contributions modeled the storage efficiency as a non-linear relationship of charging/discharging power
or the SoC. However, one paper considers the non-linear charging curve of EVs by modeling the
maximum charging and discharging power with respect to the current SoC [20]. A minority of five
contributions constrained the minimum charging- and discharging time of an EES [27,52], but most of
the contributions did not include any constraints to limit the battery degradation.

In addition to DER types and parameters, Table 3 also lists the implemented load models.
One can see that all the papers consider constant power loads, while only one paper considers
voltage-dependent loads [20]. One type of assets that is commonly found in microgrids is sheddable
loads as discussed in [53,54]. To differentiate sheddable loads from loads that may be unserved by
accident, only loads that can be controlled by the scheduling approach are considered. In case a load
is interrupted because, for instance, line protection trips that load is not considered to be sheddable
load. In addition to loads, that can be interrupted based on a signal from the microgrid controller,
shiftable loads that can be deferred [27,54,56,58] and price-based DR programs [55] are modeled.
However, these load types are only considered in a minority of five papers.

Similar to generic unscheduled DERs, most contributions consider load uncertainties via
indeterministic (e.g., [20,27]) or stochastic (like in [58,59]) models. In contrast, only three out of
15 papers consider an uncertain amount of sheddable loads as well [53,61,64]. Similar observations
can be made for price-based DR loads and shiftable loads as well. No contribution was found that
considers stochastic effects in the latter two load types.

Table 4 lists the evaluated features regarding the grid model and Figure 6 illustrates the listed
model types. The model itself is categorized into several different types of formulations. In the simplest
case, the topology is reduced to one single bus and only energy balances are taken into account.
As described in Section 4.1, there is only a single paper that uses a single-bus model and that still meets
the eligibility criteria of resilient multi-microgrid scheduling. To cover topological constraints without
requiring a detailed physical model, three publications use arbitrary connection graphs [54,58,63]
and one publication restricts that graph to a star topology of microgrids that are connected via a
distribution system [61]. For each node in the graph model, a power balance equation is stated and the
power that is transferred from or to an adjacent grid can be constrained. However, power flows that
result from the physical properties of the network and that may not be fully controllable, are beyond
the scope of the model.
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linearization is often applied to reduce the computational burden and to allow the usage of external
solvers [20,54,56,62]. One contribution also applied an intermediate convexification step before
linearizing the problem [56]. One may note that [62] is listed as MILP model and as presenting a
linearization, because the power-flow model is stated in its linearized version only, but the linearization
procedure is quickly sketched.

Table 5. Optimization approaches (✓: Implemented, ?: Not reported) .

Method Location Formulation Model Type Li
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Ref.

[48] Mathematical Central Stochastic MIP ✓ ✓ ✓

[49] ICA Central Stochastic Unconstrained
[27] Mathematical Central Deterministic MIP ✓

[50] CSA Central Stochastic Unconstrained ✓ ✓

[20] Mathematical Central Stochastic Unconstrained ✓ ? ? ✓

[51] Genetic+Mat. Central Stochastic MILP ✓ ✓ ✓

[52] PSO+Mat. Central Stochastic Unconstrained ✓

[53] Mathematical Central Deterministic Quadratic ✓ ✓

[28] Genetic Central Stochastic MIP ✓ ✓

[54] Mathematical Hierarchical Deterministic Unconstrained ✓ ✓

[55] EMA Central Stochastic MIP ✓

[56] Mathematical Central Stochastic Unconstrained ✓ ✓ ✓ ✓

[57] PaCcET Central Stochastic Unconstrained
[58] Mathematical Central Stochastic MIP ? ?
[59] Mathematical Central Deterministic MILP
[60] Mathematical Central Deterministic Unconstrained ✓ ✓

[61] Mathematical Central Stochastic MILP ✓

[62] Mathematical Central Deterministic MILP ✓ ✓

[63] Mathematical Distributed Stochastic Quadratic ✓ ✓

[64] PSO Central Stochastic Unconstrained ✓ ✓ ✓ ✓

One common measure to increase the computational tractability of the scheduling problem [53,62],
to develop sub-problem-specific solution procedures [51], and to account for the inherent structure
of the scheduling problem [27,54], is to decompose the whole problem into several sub-problems.
Eleven out of 20 papers decompose the scheduling such that the partial problems can be solved
individually and will then be combined into the complete problem. Since the sub-problems are usually
not fully independent, iterative approaches like in [27,52,54] that refine the individual problems are
commonly seen.

Robust and stochastic formulations are by far the most common methods to deal with uncertainty
in scheduling problems. None of the key contributions considered other means such as fuzzy sets
to directly represent uncertainty. In Table 5, the optimization is considered stochastic, in case the
optimum is defined with respect to some probabilistic information. In case a robust algorithm computes
a single worst case, the optimization procedure itself is categorized as deterministic. Although in
some cases, probabilistic models may be optimized without sampling a set of scenarios first [49,52],
most papers that follow a stochastic approach report sampling-based methods to generate a certain set
of scenarios (e.g., [50,51,64]). These samples are either drawn independently [51], or in an approach
which establishes a correlation that is not covered by the sampled distribution and which thereby
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reduces the number of scenarios that need to be considered [55]. To contain the number of samples
and to decrease the computational burden, correlated sampling approaches that directly limit the
number of samples [61] or scenario reduction techniques that reduce a large amount of scenarios [28]
are commonly observed.

On a common ground, all key contributions minimize the operating costs of the controlled
microgrids. Except some common terms such as the cost of controllable DERs; however, a wide
variety of objective terms is observed and summarized in Table 6. The high prevalence and diversity
of cost-based objectives can also be found in other areas of microgrid-related research [10,44].
Despite some broadly used terms including DER operation expenses, some costs such as fees for lost
loads are more specific to resilient and islanded microgrid problems. Other terms including investment
cost are commonly found in planning problems but do not play a major role in operation. All but
four key contributions directly state a single-objective function without considering a multi-objective
formulation, first. Three of the papers that consider a multi-objective formulation apply fuzzy decision
making to obtain a single schedule automatically [28,51,57]. Herein, the decision maker’s satisfaction
with each single-objective value is encoded as fuzzy membership function and used to select the best
compromise solution in the Pareto front. However, uncertainties in the power system are not modeled
as fuzzy sets.

In addition to linear (e.g., [27,59,66]) or non-linear (e.g., [63,64]) generation costs of schedulable
DERs, start-up and shut-down costs like in [60] are frequently considered. Similar to the DER
generation cost, the cost of energy that is sold to or purchased from the main grid (e.g., [28,59]),
as well as the value of lost load (e.g., [51,61]) are included by a majority of 19 and 14 contributions,
respectively. For instance, [53] considered the value of lost loads via elastic load prices while [51]
directly included the value in the unscheduled islanding scenarios. The costs of Vehicle to Grid (V2G)
or EES operation is considered by ten key contributions such as [28,50,51,60]. Presented cost terms
include cost of the charged and discharged energy [53], constant start-up, shut-down and operation
fees [60], as well as detailed EV battery degradation models [50].

In contrast to regularly considered tariffs of transferring energy from or to an external main grid,
trading energy between independent microgrids is considered by a minority of five key contributions
including [27,58]. Other rarely used cost terms include maintenance costs [28], the cost of power
losses [55], the cost of scheduling additional load, for instance in DR programs [20,61], costs or benefits
gained by selling energy to customers [28,53], costs for committing operational reserves without
actually scheduling them [52], and cost terms that penalize uncertainty or security margins [57,62].
Two out of the four contributions that considered remote switches also considered the cost of operating
them [50,55]. Although one key contribution [52] directly considered the emission of pollutants, no
publication added emission costs such as the cost of CO2 emissions.
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Table 7. Resilience features (✓: Implemented, ?: Not reported, St: Stochastic, D: Deterministic,
ID: Indeterministic) .
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Ref.

[48] ✓(St) ✓(St) ✓(St) ✓ ✓

[49] ✓(ID) ✓(St) ✓

[27] ✓(ID) ✓

[50] ✓(St) ✓

[20] ✓(St) ✓

[51] ✓(St) ✓

[52] ✓(ID) ✓

[53] ✓(ID) ✓

[28] ✓(St) ✓(St) ✓ ? ✓

[54] ✓(ID) ✓(ID) ✓ ✓

[55] ✓(St) ✓(St) ✓(St) ✓ ✓

[56] ✓(ID) ✓ ✓ ✓

[57] ✓(ID) ✓(St) ✓

[58] ✓(ID) ✓

[59] ✓(ID) ✓

[60] ✓(ID) ✓

[61] ✓(St) ✓(St) ✓ ✓

[62] ✓(ID) ✓(ID) ✓(ID) ✓ ✓

[63] ✓(St) ✓ ✓

[64] ✓(St) ✓ ✓ ✓

4.5. Validation Approaches

Another aspect in the construction of a resilient scheduling approach is its validation.
Table 8 summarizes the validation approaches of each key contribution. One can see that all key
contributions are validated by numeric simulations. However, only one single key contribution, [59],
also includes a laboratory test setup and none of these publications reported any field tests or
real-world deployments. Most of the publications assessed the performance in one or multiple
failure conditions, either explicitly based on single scenarios [27,57,62] or via some performance metric
that aggregate multiple failure conditions [20,51]. Following the modes summarized in Table 7, mostly
main-grid failures such as in [27] are assessed. However, other failures such as tripping generators [62],
line failures [28], deviated schedules [63], deviations from forecasts or from input parameters [59],
as well as short-circuit events [57] were also included.
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Table 8. Validation approaches (✓: Implemented, ?: Not reported) .

Type Failure Modes Test-Grid
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Ref.

[48] Standard ✓ ✓ ✓ ✓ IIT Standard MG 10 2 2
[48] HRDS ✓ ✓ ✓ ✓ IIT HRDS MG 12 2 2
[49] ✓ CIGRE 12 6 3
[27] Base Case ✓ ✓ - 1 2 1
[27] Extension ✓ ✓ - 1 3 2
[50] ✓ IEEE 33-bus 32 8 5
[20] ✓ ✓ IEEE 33-bus 33 11 6
[51] ✓ ✓ Listed in [75] 34 5 3
[52] ✓ Listed in [76] 38 19 9
[53] ✓ ✓ IEEE 33-bus 33 14 6
[28] ✓ ✓ ✓ IEEE 33-bus 33 10 5
[54] ✓ ✓ ✓ - 4 4 1
[55] ✓ PG&E 69-bus 69 11 5
[56] Case 0 ✓ IEEE 33-bus 33 0 0
[56] Case 0 ✓ IEEE 69-bus 69 0 0
[56] Case 1-3 ✓ ✓ ? 32 7 5
[57] ✓ - 6 4 3
[58] ✓ ✓ - 3 17 12
[59] ✓ ✓ ✓ ✓ - 3 6 3
[60] Case 1 ✓ IEEE 34-bus 34 7 7
[60] Case 2 ✓ IEEE 123-bus 123 15 15
[61] ✓ ✓ ✓ - 3 4 2
[62] ✓ ✓ ✓ ✓ ✓ IEEE 13-bus + 34-bus 47 12 10
[63] ✓ ✓ PG&E 69-bus 69 24 16
[64] ✓ ✓ ✓ IEEE 33-bus 33 ? 9

In most cases, one single test grid is used to assess the scheduling methodology.
Exceptions include [48], which uses multiple variations of a single network and [60] which uses
two different test networks. Six times, including [28,50,53], the assessment was based on a grid called
Baran or IEEE 33-bus test feeder [77]. Other test systems include the official IEEE 34-bus, and 123-bus
test feeders [60], as well as some CIGRE benchmark systems [49]. To be able to test assets that were not
considered in the initial test network, one commonly observed practice is the extension by various
DERs [53,60]. The sizes of assessed networks range from one bus systems that host up to three
DERs [27] to 123-bus grids [60] and networks that host up to 24 DERs [63].

Typically, the scheduling algorithm is executed once per day and the next schedule is calculated.
In particular, 16 key contributions such as [49,54,59], configure a scheduling horizon of 24 h. For [48],
the schedule of a whole year is assessed, but no other information on the scheduling horizon was given.
The observed time resolution ranges from minutely scheduling intervals [59] to hourly set-points like
in [52,57] that are used in 14 key contributions.

A minority of two publications implements a scheduling scheme that updates or installs set-points
before the end of one scheduling horizon. A scheduling function that updates parts of the optimization
both in real time and as soon as new forecasts are available, is presented by [60]. A fully cyclic
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5. Future Perspectives

Several key publications, as summarized in Table 2, demonstrated the feasibility of resilient
scheduling in multi-microgrids or provided significant contributions that may also be applied in
such an environment. Several design choices were successfully explored, and a broad spectrum
of scheduling approaches was presented. However, none of the key contributions reported a field
implementation. Additionally, practical aspects such as the availability and quality of input data are
rarely discussed. To guide future research towards practical implementation and alternative options
that may be applied as well, a list of open points is given.

5.1. Modeling Approaches and Modeled Assets

Although one can observe a broad variety of asset models, there are various research opportunities
to refine knowledge of the effects of modeling assumptions. These opportunities include the following
perspectives on modeling approaches and asset models.

• Level of Abstraction: Most assets such as loads, generation and grid facilities were modeled by
different levels of abstraction. For instance, some papers consider a graph model and active
power-flow constraints, only [54], while others include a detailed grid model [20] that considers
reactive and apparent power flows, as well. Choosing the right level of abstraction may drastically
influence the system performance [56], but few papers present the impact of simplification on a
resilient schedule in detail.

• Hidden Aspects: To get a concise view on the required level of abstractions, several aspects, that
are usually not modeled but that may impact an algorithm, should be considered. For instance,
storage losses are commonly modeled via constant efficiencies. However, battery storage systems
including their power electronics converters show various non-linear effects that strongly depend
on the point of operation [89,90]. A more detailed model may cover system effects that potentially
hamper supply security in critical part-load situations [3]. Similarly, few papers consider the
effects and reserve requirements of low-level controls such as Q-of-U and P-of- f droop curves
that may implement short-term power sharing and voltage control [17].

• Stochastic Effects: Following one of the eligibility criteria, all key contributions trivially consider
stochastic effects such as volatile load and RESs. Some of these contributions directly use stochastic
models of meteorological observables and forecasting deviations. On a common basis, errors and
the observables themselves are assumed to be independently distributed as concerns points in
time, i.e., one sample does not depend on previous samples. Such assumptions may be valid for
yearly assessments, but may fail at short-term horizons [70] of scheduling problems. Work [91]
studies forecasting errors and indicates that a commonly assumed normal distribution does not fit
either. Some research is needed to quantify the effects on the performance of a resilient scheduling
algorithm and to study alternative models.

• Robustness of the Asset Models: Asset models may be subject to parameter deviations and
degradation. For RESs and loads, such phenomena are commonly considered, but for controlled
assets, the effects of parameter deviations such as EES capacities are hardly covered. Future work
may tackle the robustness of asset models by studying the effects of inevitable parameter
deviations. A feedback mechanism may be included to assure a sufficient model quality [92]
and further insights regarding the impact of inaccuracies may be gained.

• Covered Assets: Current scheduling algorithms focus on a specific set of assets such as generic DER,
EES, and constant power loads. Other components such as transformers that are equipped with
On-Load Tap Changers (OLTCs) are not included in the key contributions. However, these assets
may impact the system performance and may even be actively controlled by the scheduling
algorithms, e.g., to support voltage control via OLTCs [93]. In case specific plant types such as
hydro turbines and hydrogen-based EES may be subsumed by generic models, the eligibility of
these models needs to be assessed as well.
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• Engineering Aspects: One open point that is beyond the scope of all key contributions is the
efficient engineering of scheduling approaches. All approaches require a large amount of input
information such as network and DER parameters that may not be easily available. Methods that
inherently include a system and model identification process such as reinforcement learning [94],
as well as common data sources and engineering support systems [95] may be used to assist
practical implementation.

5.2. Optimization Objectives and Methods

Optimization procedures and objectives are an integral part of each key contribution. Due to that
relevance, significant impact may be gained by refining optimization-related aspects and by applying
findings from related fields.

• Distributed Optimization: Out of 20 contributions, only a single one followed a fully distributed
approach [63]. Most other publications implemented a centralized approach that requires
extensive knowledge of the assets of various microgrids. Future work may include resilience
aspects in distributed scheduling approaches more often [34] or may distribute centralized
algorithms to tackle privacy, fault tolerance, and governance issues [35].

• Hybrid Optimization: Traditionally, optimization approaches either use mathematical programming
or heuristics to obtain a feasible and possibly optimal solution [73]. However, there is a class
of algorithms called hybrid optimization that tries to combine several complementary methods,
for instance both mathematical programming and heuristic procedures. Some key contributions
already successfully use hybrid approaches, e.g., for problem decomposition [27,53] or to interface
external solvers [51,57]. Future work may improve the interaction between different solvers and
study the application of hybrid optimization methods in detail. A particular focus may be put on
the integration of detailed models that are solved by external tools.

• Scalability: Some papers such as [53] indicate that techniques to improve the performance are
needed, but as listed in Table 9, few publications actually assess the execution time. Furthermore,
no systematic scalability study is given that relates the execution time to the system size and
complexity. It is still open to assess the scalability of scheduling approaches and to document the
performance limits with respect to practical systems. A fine-grained evaluation may highlight
performance trade-offs and assist future engineering work.

• Regulatory Frameworks: Although the key contributions include a wide variety of cost terms,
including resilience and operating costs, few references to regulatory regimes that imply certain
cost structures are given. Such frameworks may dictate when price information is available, how
prices are determined and whether a market can be accessed [96]. Furthermore, energy transfer
and trading within multi-microgrids or local energy communities may be restricted by various
regulations that need to be considered in the design and operating phase. Some key contributions
already consider regulatory measures by assuming certain market price structures [20,62], but a
broad discussion is missing.

5.3. Resilience Features

One major aspect of this review is the resilience of scheduling algorithms that manage normal
operation. As such, all key contributions already consider some failure modes and fault mitigation
techniques. However, the analysis revealed several research opportunities that may increase the
resilience and robustness of microgrids even further.

• Extended Failure Modes: In most key contributions, only a few failure classes that must be withstood
are considered. Typically, main-grid faults [27,52] and line tripping events [28,64] are tackled.
Few papers also include other modes such as short-circuit failures [57] and no paper directly
considers faulty DER set-points, invalid switching actions, or load disconnections. Open research
includes the systematic identification of relevant failure modes that need to be considered in the
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scheduling problem. Additionally, the flexibility of algorithms in considering new and previously
unknown failures may be assessed. Future work may further rely on the integration of external
simulation tools to tackle both flexibility and the level of detail.

• Generic Failure Modes: Some failure modes may be subsumed by another class. For instance,
main grid failures may be covered by a fault in the line that connects the point of common
coupling [28,55]. However, a systematic study of prototypical failure modes in scheduling
problems is still open. In particular when increasing the number of considered failure modes,
a proper generalization may be needed to contain the computational effort of finding an
optimal solution.

• Effects of Low-Level Controls: Low-level controls such as voltage and frequency control that are
installed to provide immediate action in terms of disturbances [5] are commonly beyond the scope
of key contributions. However, a high-level schedule may impact the feasibility of certain control
actions, e.g., in case a generator is already close to a limit, and may hamper a successful mitigation
action. Some emergency actions such as fault rerouting can also be implemented by a dedicated
controller to guarantee a fast response. Future work may focus on the interaction of low-level
controls and the scheduling algorithm to ensure a consistent behavior and a valid emergency
response. Insights into the proper abstractions of low-level controls may decrease the complexity
of the scheduler without impacting the resilience of the system.

• Fault Mitigation Techniques: The key contributions deploy three different classes of fault mitigation
techniques: Main-grid disconnection [27], rerouting [48], and grid splitting [28]. However,
practical issues such as protection, inertia, grid-forming, and legal requirements [36] are hardly
considered on assessing mitigation options. Some work may be conducted to increase the
knowledge of feasibility aspects of mitigation techniques and to explore further options such as
mobile generators and batteries that may quickly replace other units [97].

5.4. Validation Approaches

The key contributions mostly focus on simulation-based validation, only. Considerable work
is needed until the reviewed algorithms can be safely and efficiently applied in real-world setups.
The following research opportunities target the progression of technological readiness.

• Common Benchmark System: All key contributions include a simulation-based validation, but each
of them uses different benchmark systems or diverging configurations to demonstrate their
approaches. One of the most common test feeders is the Baran test feeder [77]. However,
to demonstrate the algorithms, several independent modifications were introduced to account for
DERs that were not considered in the original test feeder. Consequently, results from different
papers cannot be directly compared. Existing benchmark systems [31] such as SimBench [98,99]
and IEEE test feeders [100] may be evaluated and refined towards a unified multi-microgrid
scheduling test bed. In addition to common typologies, a wide variety of assets, unified input
profiles, and detailed DER parameters may reduce the need for custom modifications.

• Common Metrics: To be able to compare results from different studies, common metrics are
required. While most papers provide operating costs, resilience-based metrics such as energy not
supplied, are less common. Future work may profit from an increased focus on unified resilience
metrics [48] and may intensify the discussion on their significance.

• Independent Validation: Rising from the need for comparable results, a fine-grained assessment of
multiple algorithms may be conducted. In addition to common benchmark systems that are used
by multiple authors, more detailed insights may be gained. A common execution platform may,
for instance, enable detailed assessments on the computational performance. Some publications
including [56,64] already compare their methods to a reference, but future implementations may
profit from a more extensive study.
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• Readiness and Practical Implementation: Although the first multi-microgrid test sites are already
implemented [9], only one key contribution demonstrated the practical implementation of resilient
scheduling [59] and no one went beyond laboratory experiments. Hence, considerable effort
is needed until the approaches can demonstrate practical use in real-world situations [101].
Future testing and validation work may highly profit from previous experiences [9,31,102] and
structured testing methodologies such as holistic testing [101,103].

• Resilience Assessment in the Field: One particular challenge towards a safe deployment is the
resilience assessment in productive operation. Unlike in laboratory-based setups, testing the
resilience may impact the overall performance of the grid. However, undiscovered failures in
the control strategies may have fatal consequences as well [30]. Future work may include save
strategies to verify resilience against low probability, high impact events in operation.

6. Conclusions

Resilient, proactive scheduling in the context of multi-microgrids is currently at a development
stage that bears a manifold variety of optimization-based approaches but lacks practical experiences
in implementing these methods beyond simulation-based test beds. However, practical experiences
in related fields such as first insights into the operation of multi-microgrids in general, show a
considerable potential in enhancing both security and cost of conventional electricity supply. The study
systematically identifies the main contributions in proactive, resilient multi-microgrid scheduling
and provides an in-depth analysis of selected literature. The typical scheduling approach uses an
optimization-based framework that minimizes the running costs while meeting several resilience
and operation constraints. However, the wide variety in modeling, solving, and validation of these
scheduling problems raises the need for the presented detailed discussion. Several design decisions
and the current spectrum of approaches are identified to aid future refinements and to back first
practical implementations alike.

Corresponding to the current stage of development, several open issues and future perspectives
were identified. Considerable work needs to be done in validating existing approaches and assessing
the performance in practical implementations. Research work that compares various scheduling
algorithms on a common ground is needed to establish a common view on the scheduling performance
and to guide towards field tests. Similarly, engineering aspects should be emphasized to ease a future,
widespread application. Also, a considerable potential of methodological improvements was identified.
For instance, the quality of asset models may be raised by studying the robustness, limits, and practical
applicability of common modeling assumptions. Solution approaches such as distributed optimization
that show benefits in related fields may be increasingly applied for resilient multi-microgrid scheduling
as well. Other potential improvements include systematic studies on extended failure models and
novel fault mitigation measures that may strengthen the resilience of the scheduling outcome even
further. Finally, a broad discussion on opportune applications of multi-microgrid scheduling in
comparison to various other approaches such as purely economic scheduling in web of cells, needs to
be held. This paper contributes to the discussion on finding the sweet spot of multi-microgrid systems
by highlighting the SotA in resilient proactive scheduling.
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The following abbreviations are used in this manuscript:

AC Alternating Current
CHP Combined Heat and Power
CSA Clonal Selection Algorithm
DC Direct Current
DER Distributed Energy Resource
DR Demand Response
EES Electrical Energy Storage
EMA Exchange Market Algorithm
PaCcET Pareto Concavity Elimination Transformation
EV Electric Vehicle
FA Firefly Algorithm
ICA Imperialist Competitive Algorithm
MILP Mixed Integer Linear Programming
MIP Mixed Integer Programming
MT Micro Turbine
OLTC On-Load Tap Changer
PCC Point of Common Coupling
PV Photovoltaics
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PSO Particle Swarm Optimization
RES Renewable Energy Sources
SoC State of Charge
SotA State-of-the-Art
SRQ Sub-Research Question
V2G Vehicle to Grid
WT Wind Turbine
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– Limited Asset Types: 46 publications, [19,27,61,63,109,161,199,205,215,221,236,250,254,256,
262,264,265,274,281,296,305,306,308,309,316,324,326,329,331,341,344–347,352,354,370,375–
377,379,384,385,387,390,398]

– Limited stochastic considerations: 41 publications, [8,13,21,35,42,124,164,167,199,208,240,242,
243,245,246,255,260,262,265,269,286,292,296,300,305,317,326,328,332,342,346,354,360,373,
377,379,385,390,394,399,400]

• Limited Resilience Aspect Coverage: 98 publications, [4,12,16,17,23–25,29,32,33,36,39,50,53,58,65,
66,70,71,73,75,76,79,82,83,88,91,92,100,101,103,104,106,108,113,115–118,121,126,128–134,136,139–
142,147–149,152,166,171,174,184,185,202,204,210,219,224,226,233,240,243,245,249,251,253,260,
261,263,265,284,285,316,319,328,361,364,365,375,377,379–382,387,399,400,403,404]

• Limited Focus on Normal Operation: 75 publications, [3,14,15,20,34,37,38,40,44,67,74,89,90,93,98,
110,119,123,151,168,170,187,199,200,203,213,227,234,238,246,248,264,267,273,274,282,283,288,290,
293,295,299,300,304–306,317,324,329,332,335,339,340,344,345,347,348,350,351,353,355,359,369,
370,372,373,384,388–390,392,393,395,397,398]

• No Scheduling Algorithm Available: 140 publications, [7,9,10,22,26,28,31,45–49,51,52,54,56,59,60,62,
64,68,69,72,77,84,85,96,105,111,114,120,122,125,127,135,137,145,146,150,153–160,163,165,169,172,
173,175–183,186,188–198,201,206,209,218,231,235,239,242,244,247,258,259,266,268,270–272,276–
279,283,286,287,289,291,294,297,298,301–304,309,311–315,318,320–323,325,327,330,333,334,336–
338,343,349,356,358,362,363,366–368,374,386,391,396,401,402]

• Limited Full-Text Availability: 6 publications, [55,78,143,162,378,383]
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oTRi i-th auxiliary variable to encode tree con-
straints.

Pv
i,t,s, Q

v
i,t,s Total active/reactive power of asset i at

time t and in scenario s, having type v ∈
{DG,ST,PV,WT}.

Si,t,s Total apparent power of asset i at t in s.
Ui,t,s Voltage at bus i at time t and scenario s .
Ii,t,s Current in line i at time t and scenario s .
ṽ Normalized counterpart of variable or

parameter v.

FUNCTIONS
c(�x) Costs of a schedule �x.
�g l(�x) Set of linear constraint functions.
�g n(�x) Set of nonlinear constraint functions.

�g z,H
h Heuristically defined partition of �gz.

Gz(�x) Constraint violation level of �gz.
P(e) Probability of event e.
dec(T ) Root decision of subtree T .
left(T ) Active subtree of tree T , iff dec(T )(�x) ≤ 0.
right(T ) Active subtree of tree T , iff dec(T )(�x) � 0.

PARAMETERS AND CONSTANTS
v̄, v Upper and lower limit of variable v.
�T Duration of a single scheduling interval.
pLDl,t Expected active power demand of general-

ized load l at time t .
oCHGb,−1 Initial charging mode of storage b.
µST

b Average round-trip efficiency of storage b.
eSTb,−1 Initial energy in storage b.
eSTb,|T| Energy in storage b at the end of the time

horizon.
oDGa,−1 Initial operational status of DG a.
cDGa Cost of producing one unit of energy in DG

a.
cBUYt Cost of buying one unit of energy at time t .
cSELLt Cost of selling one unit of energy at time t .
pOPa,t Forced operating point of asset i at time t .
nSTAi Number of permitted starts on asset i.
K v

a Droop gain or function of asset a and type v.
M A sufficently large big-M constant.
� A small but strictly positive constant.

I. INTRODUCTION
Microgrids are considered as one solution to increase power
system resilience, to tightly integrate volatile Renewable
Energy Sources (RES) and to fully leverage the economic
potential of Distributed Energy Resources (DERs) [1].
Although there are other definitions as well, this work fol-
lows [2] and considers microgrids as tightly controlled elec-
trical networks that can be operated in both grid-connected

and islanded mode. Due to the great flexibility that is pro-
vided by many microgrids, considerable potential is given
for a scheduling algorithm to optimize the operation [3].
Resilient scheduling in emergency mode, for instance, often
reduces the impact of a contingency without primarily target-
ing operating costs. In contrast, proactive resilient scheduling
algorithms minimize the normal operation cost while no fail-
ure is observed, but at the same time, they prepare the network
to gracefully degrade in case of contingencies. According to
related work, resilience is considered as the ability to reduce
the impact of potentially harmful events and includes both a
fully robust but also a gracefully degraded operation [4].
A detailed review of proactive scheduling approaches is

published in [4] noting that, although every algorithm fol-
lows an optimization-based methodology, a broad variety of
solution approaches is observed. Common scheduling tech-
niques include mathematical methods (like Mixed Integer
Linear Programming (MILP) formulations) that can be solved
by generic software components and heuristic approaches
such as genetic algorithms [5]. As demonstrated in this
work, the broad variety of approaches directly relates to
the high computational complexity of microgrid scheduling
that leaves room for various specialized methods including
heuristics.
Since control and scheduling decisions can have a consid-

erable impact on the safe operation of a microgrid [6], some
authors included physical constraints such as voltage limits
in their scheduling formulations. Due to the inherently non-
convex nature of physical power flows, mostly linearization
is used to fit the MILP or heuristic optimization techniques
to solve the nonlinear mixed-integer problem [4]. The former
technique can suffer from linearization errors causing overap-
proximation or reduced confidence in the eligibility of results
while the latter approach cannot fully utilize the potential
of highly-developed solvers for mathematical programming
problems. However, literature sparsely indicates under which
circumstances one merit outweighs the other.
Most work formulates the proactive scheduling problem

as one monolithic set of equations without discussing exter-
nal implementations of asset models in detail [4], [7]. For
instance, in [8], a linearized version of the power flow equa-
tions is directly integrated into the scheduling model. Several
studies including [9] using Benders decomposition, are parti-
tioning themodels into subproblems to efficiently solve them.
Although the monolithic formulation and its decomposition
gives full access to details such as derivatives, engineering
efforts of formulating system constraints can be considerably
eased by relying on well-proven and accepted external simu-
lation models [10], [11].
In [10], a security-constrained optimal dispatch approach

is presented that uses a heuristic multi-objective optimization
technique. An external power system simulator and normal-
ized constraint violation levels are used to filter infeasible
candidate solutions. In addition to static voltage and cur-
rent margins, which are also reflected in related works, [10]
includes transient voltage and frequency stability constraints.
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However, the problem formulation is restricted to unit com-
mitment without considering the operational status of DER.
A manual decomposition into an outer multi-objective

problem that manages storage schedules and inner optimiza-
tions scheduling the other resources, both in normal and
emergency operation, is presented in [12]. The nested MILP
problems consider power flows by iteratively updating a
power loss constant, in case the power flow does not indi-
cate any physical constraint violation. In case a violation
is encountered, the whole subproblem including its linear
equations is solved by an optimal power flow solver. Despite
using the external power flow optimization, less emphasis is
put on the complexity of handling nonlinear constraints as
most schedules are assumed to be feasible.
Also [11] described the integration of an external power

system simulator to enforce voltage and current constraints
in resilient scheduling. In contrast to [10], a quadratic-
programming formulation with linear constraints is extended
by constraints derived from a sensitivity analysis on the grid
model. Both, the iterative scheme as well as the structure of
added constraints can also be found in Benders decomposi-
tion as applied in [9]. However, [9] uses (integer) linear pro-
grams that cannot handle the nonlinear power flows in [11],
and both approaches differ in their constraint generation.
Given the interaction of mathematical programming

and the constraint enforcement heuristic, [11] success-
fully demonstrates the application of a hybrid optimization
approach, i.e., a combination of diverse algorithmic compo-
nents [13], in resilient microgrid scheduling. Still, the exter-
nal constraints were only applied in a single time interval of
the multi-period optimization problem. Questions regarding
applicability in multi-period constraints and approximation
errors remain open. Despite the detailed power system mod-
els, the effects of low-level controls such as voltage and
frequency droop on the feasibility of a particular candidate
schedule are hardly covered [10], [11].

A. CONTRIBUTIONS TO MICROGRID SCHEDULING
This work studies the application of external constraint mod-
els in proactive, resilient microgrid scheduling and proposes a
novel hybrid optimizationmethod to solveMILPmodels with
external, nonlinear constraints. A common MILP basis for-
mulation for microgrid scheduling in conjunction with exter-
nal nonlinear constraints is developed. Based on the com-
mon formulation, two scheduling approaches are presented.
The first one addresses the state-of-the-art by extending the
sensitivity-based constraint learning technique of [11] to
multi-period resilience constraints. The second one explores
novel paths in hybrid scheduling by utilizing machine learn-
ing techniques to approximate the constraint surface within
the MILP. To the best of our knowledge, an adapted version
of the constraint synthesis technique in [14] for the first time
iteratively links a stochastic local search and the global MILP
scheduling problem.
A case-study is used to thoughtfully evaluate and compare

both approaches on common ground. In contrast to related

work, the case study demonstrates both the application of
external grid models to formulate constraints and the influ-
ence of low-level controls on the feasibility of schedules.
Further insights into the effects of problem formulation and
decomposition are presented. Following the unavailability of
a universal optimization strategy [15], several cases in which
the sensitivity-based approach fails to deliver good or even
any feasible solutions could be identified. At the same time it
is demonstrated that due to the more powerful approximation
model, the novel scheduling approach can deliver excellent
results, even if the sensitivity-based one fails.

B. ORGANIZATION
This work is organized as follows. In Section II, the prob-
lem of proactive, resilient microgrid scheduling is described
and the formulation of the subsequent study is developed.
Section III utilizes the problem definition to define two
methods of solving the scheduling task including external
resilience constraints. A case study in Section IV compares
the approaches and studies their performance under several
problem variations. In Section V, results are discussed and
finally, Section VI concludes the findings.

II. RESILIENT SCHEDULING PROBLEM FORMULATION
In this study, it is assumed that a proactive, resilient schedul-
ing algorithm centrally computes the set points of all con-
trollable assets based on the current operational status and
the most recent forecasts. In contrast to the related work that
presents a broad variety of different assets including Electric
Vehicles (EVs), micro turbines, and controllable loads [9],
[16], [17], this work focuses on the most generic assets in
order to facilitate performance analysis and comparability.
It is assumed that the microgrid hosts exactly two types
of schedulable assets. The first one groups generic DERs
that can be independently scheduled for each time interval.
The second one comprises Electrical Energy Storages (EESs)
that do have an internal state of charges that depends on
previous scheduling decisions. Furthermore, it is assumed
that the microgrid includes volatile RES, which are providing
basic voltage control capabilities. However, the active power
output and demand of volatile RES and loads, respectively,
are assumed to show a stochastic behavior. For each stochas-
tic quantity, it is assumed that appropriate deterministic fore-
casts are available, but that the realizations are unknown at
scheduling time.
Each scheduling run optimizes the asset set points over

a finite time horizon. Although some authors presented an
iterative scheme that repeats a scheduling operation and only
applies the most recent set points [11], this performance anal-
ysis avoids any bias due to erroneously correlated updates.
Hence, it focuses on one single scheduling run without taking
update mechanisms into account, but it does not prevent the
application in an updating scheme. The proactive algorithm
itself is executed before any contingency is encountered [18].
However, in the presence of general security policies or early
warning signs, the microgrid is actively prepared to sustain
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a single market and that power flows in the simplified MILP
formulation are bound by total transfer capabilities. To model
different prices for buying and selling energy, the power
transfer from or to the main grid is split into two variables,
pBUYt ∈ R and pSELLt ∈ R, respectively. The directional
indicator variable oSELLt ∈ B, as well as constraints (7)
and (8) ensure mutual exclusiveness.

0 ≤ pBUYt ≤ p̄BUY ·
�
1 − oSELLt

�
∀t ∈ T (7)

0 ≤ pSELLt ≤ p̄SELL · oSELLt ∀t ∈ T (8)

The economic evaluation of a schedule follows a determin-
istic single-node power balance (9) scheme without consid-
ering losses.�
a∈DG

pDGa,t −
�
l∈LD

pLDl,t + pBUYt − pSELLt

+
�
b∈ST

�
pDCHb,t − pCHGb,t

�
= 0 ∀t ∈ T (9)

Variable day-ahead market prices cBUYt and cSELLt that are
known at scheduling time, as well as the average production
costs cDGa of each DG a determine the operation expenses
cTOTt at each time instant t . Equations (10) and (11) define
the cost function c(�x) of a schedule �x. Constraints (3) to (9)
describe the base set of linear constraints �g l(�x).

cTOTt = cBUYt · pBUYt − cSELLt · pSELLt

+
�
a∈DG

cDGa · pDGa,t ∀t ∈ T (10)

c(�x) =
�
t∈T

cTOTt (11)

C. EXTENDED MILP FORMULATION
Starting from the scheduling basis formulation that focuses
on the most basic model, a set of optional constraints is devel-
oped to study the impact of model complexity on the per-
formance of heuristic approaches. The first set of constraints
limits the operating region of specific assets to incorporate
needs that do not directly follow from technical asset limits.
Practical applications of these additional operating limits p̄OP

a,t
and pOP

a,t
include thermal demand of a Combined Heat and

Power (CHP) plant and local reserve policies. Although the
operation constraints are defined on a subset X of assets and
time, X ⊆ DG×T, (12) does not model any interdependence
between assets a and time instants t .

pOP
a,t

≤ pDGa,t ≤ p̄OP
a,t ∀a, t ∈ X ⊆ DG × T (12)

A set of dynamic constraints that link variables among
instants of time is introduced by restricting the number of
startup and charging operations to avoid excessive wear out.
Similarly, a minimum number of startups may force an asset
into operation. For both, DG and storage units, the auxiliary
variable oSTAi,t ∈ B indicates whether asset i activated its
operation mode at time instant t . Given the indicator con-
straints (13) and (14), the number of startup operations can

be restricted by (15).

oDGa,t − oDGa,t−1 ≤ oSTAa,t ≤ 1
2

�
1 + oDGa,t − oDGa,t−1

�
∀a ∈ DG, t ∈ T (13)

oCHGb,t − oCHGb,t−1 ≤ oSTAb,t ≤ 1
2

�
1 + oCHGb,t − oCHGb,t−1

�
∀b ∈ ST, t ∈ T (14)

nSTAi ≤
�
t∈T

oSTAi,t ≤ n̄STAi ∀i ∈ DG ∪ ST (15)

A linear reserve model is introduced to ensure that critical
loads L ⊂ LD can be supplied in case of main grid failures.
To simplify the discussion, it is assumed that storage units are
grid following devices that are only used for energy arbitrage.
The reservemodel itself consists of threemetrics, the nominal
power of all DGs in the primary reserve, pNDGt ∈ R, the up-
spinning reserve pUPt ∈ R at time t , and the minimum
up-spinning reserve in the entire scheduling horizon pMinUP ∈
R. The modeled metrics can be used to manually enforce
sufficiency or to link external models as shown in Section III.
To study the latter use-case, a verbose formulation that does
not use a relaxed lower-bound of pMinUP was chosen. Con-
straints (16) to (18) consequently model the basic primary
reserve requirements.

pNDGt =
�
a∈DG

p̄DG
a · oDGa,t ∀t ∈ T (16)

pUPt = pNDGt −
�
l∈LD

pLDl,t

+
�
b∈ST

�
pDCHb,t − pCHGb,t

�
∀t ∈ T (17)

pUP
t

≤ pUPt ≤ p̄UP
t ∀t ∈ T (18)

To model the minimum spinning reserve on the scheduling
horizon, a set of binary auxiliary variables oMinUP

t ∈ B are
indicating whether the minimum reserve is reached at time t
and constraints (19) to (21) are introduced.

pMinUP ≤ pUPt ∀t ∈ T (19)

pUPt − pMinUP ≤ M ·
�
1 − oMinUP

t

�
∀t ∈ T (20)�

t∈T
oMinUP
t = 1 (21)

Constant M needs to be chosen such that it exceeds any
left-hand-side value of (20). Note that the nonlinear con-
straints may imply the MILP reserve formulation and there-
fore (13) to (21) are also used to study the effects of redun-
dancies.

D. GRID MODEL AND LOW-LEVEL CONTROLS
In contrast to other publications such as [8] that presented
a linearized form of the static power flow equations, it is
assumed that the grid model is covered by the nonlinear
constraint set �g n in detail. As long as the constraint function
is computable, the algorithms do not require any specific
model structure and may include balanced and unbalanced
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steady-state models to assess asset loading and voltage limits,
as well as transient models to ensure a stable operation in
case of failures [10]. However, to support a detailed perfor-
mance analysis, grid constraints based on a series of static
power flows are derived. Due to inherent uncertainties, it is
assumed that the grid constraints extend the deterministic for-
mulation of the linear subproblem by considering forecasting
deviations and failure conditions via a set of scenarios SC.
Methods to find a few representative scenarios such as [21],
are, however, beyond the scope of this work and manually
selected boundary-cases are added.
For each scenario s ∈ SC and each time step t , the balanced

AC power flow equations are solved by a Newton-Raphson
algorithm as described in [22]. In addition to the scheduled
active power pDGa,t of each asset a, it is assumed that each
active unit a on island c participates in frequency control
and provides steady-state balancing power according to its
droop gain K f

a and the frequency deviation �fc,t,s. Note that
�fc,t,s is set such that the active power on each island c
is balanced [22]. The reactive power QDG

a,t,s of each genera-
tor is determined based on a piece-wise linear droop curve
K u

a (Ua,t,s), where Ua,t,s is the voltage at the bus connecting
asset a [23]. Equations (22) and (23) summarize the injected
power for each DG.

PDG
a,t,s = pDGa,t + oDGa,t · K f

a · �fc,t,s ∀a ∈ DG (22)

QDG
a,t,s = oDGa,t · K u

a (Ua,t,s) ∀a ∈ DG (23)

In contrast to DGs that participate in both primary fre-
quency and voltage control, it is assumed that all inverter-
based DERs IG as given in (24) limit voltage control if the
nominal apparent power S̄ IG

l is exceeded.

QIG
l,t,s =

�
K u

l (Ul,t,s) Sl,t,s ≤ S̄ IG
l

Q̄ IG
l,t,s otherwise

∀l ∈ IG (24)

Given the results of the AC power flow, including the
currents in each line i, Ii,t,s, the apparent power Sa,t,s of all
assets a, and the voltage magnitudeUj,t,s of all buses j, the set
of constraints �g n can be summarized as (25).

�g n =

��
Ii,t,s − Īi i ∈ LI, t ∈ T, s ∈ SC

Sa,t,s − S̄a a ∈ IG ∪ DG, t ∈ T, s ∈ SC
Uj,t,s − Ūj j ∈ BS, t ∈ T, s ∈ SC
U j − Uj,t,s j ∈ BS, t ∈ T, s ∈ SC



 (25)

To increase the expressiveness of the constraint model and
to guide a heuristic procedure, the constraints z can be divided
into several partitions, �g z,H

h , h ∈ H ∪ {∅}, z ∈ {l, n, ln} of
�gz, to express the heuristic dependence on values of H. For
instance, �g n,T

t groups all nonlinear constraints that strongly
depend on the state at time instant t or do not show any
such heuristically defined dependency (t = ∅). Without loss
of generality, the external constraints do not expose internal
model variables such as voltage levels and phase angles, that
need to be solved by the optimization procedure. Instead,
nested solvers can be used to efficiently determine the solu-
tion of the constraint model.

FIGURE 2. Component interaction of the hybrid optimization scheme.

III. SCHEDULING SOLVING METHODS
A first intuition on the complexity of solving microgrid
scheduling is given in Appendix A, showing that the prob-
lem is at least weakly NP-hard, by providing a polonomial
time reduction from the Knapsack problem to scheduling.
Although several algorithms are available that solve practical
instances of Knapsack [24], the reduction demonstrates that
in particular the integer states of DG units raise the compu-
tational complexity. Additionally, the nonlinear constraints
�g n(�x) may encode arbitrary decision problems that further
rise the computational complexity. Hence, complexity must
be considered to keep practical instances computationally
tractable, for example by using heuristics that approximate
an exact solution and by efficiently using highly-developed
tools such as MILP and power-flow solvers.
The main idea of the problem decomposition presented

in Section II-A is to separate those models that can be
efficiently handled by existing MILP solvers, i.e., c(�x) and
�g l(�x), from those that need to be linearized first. Instead
of requiring a differentiable closed form representation of
�g n, the heuristic approach samples the nonlinear constraint
function near the linear optimum and iteratively extends �g l

by a local approximation. Due to the complexity of evalu-
ating �g n, samples must be drawn efficiently to generate the
MILP constraints. Fig. 2 illustrates the heuristic optimization
scheme.
One may note that the MILP scheduling formulation con-

tains several variables such as pCHGb,t , pDCHb,t , and oCHGb,t that
show a strong interdependence. To reduce the number of vari-
ables when sampling, a normalized representation is intro-
duced. Each schedule is thereby represented by the DG status
oDGa,t , as well as the normalized power output p̃DGa,t , and storage
level ẽSTb,t as defined by (26) and (27), respectively.

p̃DGa,t = pDGa,t − pDG
a

p̄DG
a − pDG

a

∀a ∈ DG, t ∈ T (26)

ẽSTb,t = eSTb,t − eSTb

ēST
b − eSTa

∀b ∈ ST, t ∈ T (27)

To simulate a schedule and to synthesize constraints,
the original MILP variables are obtained by clipping invalid
values (e.g., p̃DGa,t � 0 in case oDGa,t = 0) to the operation
ranges implied by (3), (4), and (5). Note that the repair
heuristic and the normalization step eliminate some, but not
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all infeasible configurations, for instance in case the extended
reserve requirements (16) to (18) are enabled.

A. SENSITIVITY CONSTRAINT SYNTHESIS
The sensitivity-based method repeatedly extends the MILP
model by local approximations of the nonlinear constraints
until either the candidate solution of the MILP model does
not show constraint violations anymore or the MILP model
becomes infeasible. If the latter applies, no schedule can be
generated. Since the constraint synthesis approach presented
in [11] addresses a single time interval only, nonlinear con-
straints �g n(�x) that cover multiple intervals cannot be directly
integrated into the online optimization of the multi-stage
scheduling method. Therefore, the input vector is extended
to the entire scheduling horizon and the sensitivity-based
synthesis is directly integrated into the scheduling problem at
once. Furthermore, the approach in [11] is limited to voltage
and current limits. This work generalizes the methodology to
arbitrary constraints.
In case the candidate solution �x C of the linear subproblem

turns out to be infeasible andV is the set of violated nonlinear
constraints, the set of MILP constraints (28) is added.

gni (�x C) + ∂gni
∂�x (�x C) · (�x − �x C) + � ≤ 0 ∀i ∈ V (28)

To feature convergence even if �g n(�x) or its partial deriva-
tives are affected by numerical inaccuracies, a strictly positive
constant � is introduced that strengthens the permitted region.
According to [11], ∂�g n

∂�x is numerically approximated in case
the Jacobean is not directly available. For each scheduling
variable x̃i, the sampling control block introduces a small per-
turbation ρ on that variable and samples �g n(x̃1, . . . , x̃i−1, x̃i+
ρ, x̃i+1, . . . , x̃|�g n|) anew. For discrete variables, a state change
is enforced.
To contain the number of samples and to reduce numeri-

cal errors, two sampling heuristics are introduced. The first
one skips the perturbation of p̃DGa,t in case the DG is not
operational, i.e., oCHGb,t = 0 and no effect is expected.
The second heuristic uses the partitioning �g n,T

t with respect
to scheduling time t to skip those variables that most likely do
not influence the outcome of failing constraints. Scheduling
variables at a time instant t are considered if and only if
�g n,T
t ∩ �

gni |i ∈ V
� �= ∅ or �g n,T

∅ ∩ �
gni |i ∈ V

� �= ∅.
After sampling the neighborhood of �x C, the constraint

synthesis routine approximates (28) via the observed changes
in the output metric. Note that following [11], constraints
from previous iterations are never revoked and that the local
approximation of �g n(�x) is not restricted to any particular
neighborhood. Hence, considerable overapproximation may
be observed, in case the adjusted schedule largely deviates
from the candidate solution.

B. TREE-BASED CONSTRAINT APPROXIMATION
An alternative model to approximate �g n(�x) as MILP prob-
lem is to encode the decisions implied by (2) as decision
trees. Instead of enforcing local approximations (28) globally,

a divide-and-conquer approach is implemented that recur-
sively splits the set of schedules [25]. The tree structure which
can model even nonconvex sets is then transformed into a
MILP representation by adding new binary variables [14].
The tree-based method uses two mechanisms to find feasible
solutions of the scheduling problem. First, a global MILP
search that includes an approximation of �g n(�x) is used to find
initial solutions. Secondly, a stochastic local search is used to
sample �g n(�x) near the candidate solution and improve it even
further. Considering all known samples, a new approximation
of the nonlinear constraint function is generated in each
global iteration and replaces previous approximations in the
MILP. Due to the replacement, subsequent global iterations
can further improve the operating costs. In the following
evaluations, two global termination criteria, a static number
of maximum iterations and a threshold on the improvement
rate are applied.
A single decision tree Ti consists of a series of splits that

recursively divide the solution space into feasible and infea-
sible regions [14]. Each binary split on the subtree Tj is based
on a decision dec(Tj) that involves a subset of the scheduling
variables �x. In order to transform the tree into MILP form,
each split must follow the linear form dec(Tj)(�x) = �wT · �x +
w0 ≤ 0, where �w and w0 are constant weights. To simplify
the training procedure that generates Ti, the linear form can
be further restricted to decisions that only involve a single
scheduling variable at once.
Each individual nonlinear objective gni may be directly

approximated by a single decision tree Ti. Similar to each
constraint that is added in (28), each tree introduces an over-
head in terms of additional constraints and possibly some
auxiliary variables. To reduce the size of the MILP prob-
lem and the amount of redundant constraints, the heuris-
tic partitioning scheme H is used to consolidate nonlinear
constraints that are likely to share dependencies. For each
partition �g n,H

h , h ∈ H, a decision tree Th is grown that
approximates the conjunction of each constraint in �g n,H

h .
Clearly, the conjunction of all classification results in the
forest Th, h ∈ H approximates the entire set of nonlinear
constraints (2).
Similar to approximation of ∂�g n

∂�x , a sampling-based
approach is proposed to grow the decision trees Ti without
requiring insights into �g n(�x). The sampling control logic now
directly addresses the decision boundary of �g n(�x) near the
candidate solution �x C instead of approximating the Jacobean
at �x C and deducing the decision boundary in a subsequent
step. Given all samples, a classification tree algorithm such
as C4.5 and CART is deployed to fit the corresponding
trees [25]. Note that in case the hybrid optimization algo-
rithm includes linear, multivariate splits, the corresponding
learning method must support that model as well. To ease
analysis and reduce the complexity of generated splits, this
work uses a CART-based algorithm as implemented in [26]
that does not include multivariate splits. The training algo-
rithm itself recursively divides the set of samples into two
partitions such that the impurity considering feasible and
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infeasible members is minimized according to the Gini
index [25].
The accuracy, size and complexity of generated trees

largely depends on the input features they are trained on. For
instance, a constraint on the total up-spinning reserve, pUPt
may either directly access that variable or approximate it via
all status variables oDGa,t , in case pUPt is not exposed to the
decision tree. To boost the expressiveness and interpretability
of generated trees, additional heuristics beyond the basic state
variables oDGa,t , p

DG
a,t , and eSTb,t can be included in the feature set.

For each sample x̃, all features that are exposed to the decision
tree algorithm need to be calculated. Likewise, the MILP
problemmust model corresponding variables in order to auto-
matically transform the decision tree. In this study, the linking
variables oDGa,t , pDGa,t , eSTb,t , pCHGb,t , pDCHb,t , pNDGt , and pMinUP

have been manually selected. An automated feature selection
process that can improve the approximation even further is
considered to be out of scope.
Several classification tree algorithms include pruning steps

that reduce the number of nodes in favor of a less com-
plex and more general decision tree [25]. While for classi-
cal machine-learning use cases, robustness against outliers
and overapproximation plays an important role, hybrid opti-
mization requires a constraint model that reliably excludes
infeasible regions. Since it is assumed that the function �g n(�x)
itself, except for some small numeric errors, is deterministic,
no outliers are expected in the training set. Moreover, mis-
classification can prolong convergence in case an infeasible
candidate solution is not excluded. Hence, the algorithm traits
accuracy for simplified trees by excluding any pruning step
that would introduce misclassified training samples.

C. SAMPLING STRATEGY
Arising from the need of drawing samples from �g n(�x) effi-
ciently while determining the feasible region near the linear
candidate solution �x C, a randomized local search strategy is
introduced. Starting from �x C, samples are generated towards
the next local optimum. In case �x C is already feasible,
the local search may further refine the optimum and the
local approximation of �g n(�x). Otherwise, the search proce-
dure first needs to find samples in the feasible region in
order to subsequently approximate the boundary. Although
it is, in principle, sufficient to approximate the feasibility of
all nonlinear constraints well, without considering the linear
ones, the region of interest largely depends on the linear
subproblem. Hence, the full problem (1) and (2) is considered
for local search and all linear constraints that are not already
implied by the normalized representation x̃ are added to the
constraint set for local search as well.
According to the separation technique described in [19],

the total constraint violation level Gln(�x) as defined by (29)
is given priority on comparing candidate solutions.

Gz(�x) =
|�g z|�
i=1

min(gz
i (�x), 0), z ∈ {n, l, ln} (29)

In case no precedence on the violation level is observed,
the objective value is taken into account. Local search itera-
tively samples from a neighborhood that contains all sched-
ules deviating by at most n variables from the currently best
local schedule x̃L. In case a better solution is sampled, x̃L is
updated accordingly. To further guide local search, the prob-
ability P(alter x̃i,t ) of altering a single variable x̃i,t at time
instant t is chosen as (30) proportionally to the total violation
level, or the operating cost at that time.

P(alter x̃i,t ) ∝
�

cTOTt (x̃) Gln(x̃) = 0
G ln,T

t (x̃) + G ln,T
∅ (x̃) otherwise

(30)

The deviation of each selected continuous variable will
be sampled from a centered normal distribution N (0, σ ) and
clipped to the boundaries [0, 1] of each normalized variable.
Starting from a large neighborhood, both, the number of
altered variables n and the standard deviation σ are sys-
tematically decreased to support convergence. As soon as
the moving average number of improvements drops below a
given threshold, the next set of neighborhood parameters is
applied or sampling is stopped.

D. TREE CONSTRAINT SYNTHESIS
Given the decision tree T , the algorithm [14] is extended
to generate a set of, up to an arbitrarily small tolerance
�, equivalent MILP constraints. A subtree Tj is considered
feasible in case it contains a path to a feasible leaf node.
For each decision dec(Tj) that leads to both feasible sub-
trees, an unbounded binary variable oTRk is introduced that
encodes the outcome in subsequent decisions. Specifically,
oTRk = 1, if Tj is active, dec(Tj)(�x) ≤ 0, and the left branch
is taken. Given a single tree, the set of previously added
auxiliary variables encodes the active path within that tree
and determines whether a constraint is considered. In case
only one subtree is feasible, given the path to that constraint is
active, it must always be satisfied and no auxiliary variable is
added. Inactive constraints are masked by introducing a large
constant M that exceeds any feasible value of |dec(Tj)(�x)|.
Algorithm 1 defines the tree constraint synthesis in detail.

Initially, the procedure is called on the entire tree given an
empty masking term v = 0. It recursively adds linear con-
straints until all feasible subtrees are enumerated. In order to
generate MILP constraints, [14] relaxes the strict inequality
dec(T )(�x) � 0 to a soft one. However, such a transforma-
tion can include values that the decision tree T classifies
as infeasible and convergence of the hybrid optimization
algorithm can be adversely affected. To support convergence,
this work introduces an � offset to model strict inequalities
instead of relaxing the decision. In addition, the application
of Algorithm 1 in a closed-loop optimization setup instead of
an open-loop constraint learning task is demonstrated.

IV. CASE STUDY ON SCHEDULING ALGORITHMS
From a design point of view, both methods for solving
the nonlinear scheduling problem have their own merits.
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TABLE 3. Optimization results of all cases covering the tree-based and the sensitivity-based method.

TABLE 4. Computation time until the termination criterion is met.

still excluded, but all operational constraints are enabled.
Due to the cycle restrictions, considerable interdependence
among scheduling variables is added and the nonlinear con-
straints do not imply the linear ones anymore. Additionally,
the minimum generation requirements of DG3 directly affect
the sampling procedures and further increase the chance of
selecting a linearly infeasible solution.
Fig. 8 illustrates the convergence of one schedul-

ing run using tree-approximation and adds the bounds
achieved by the sensitivity-based method. One can
note that tree-constraint approximation outperforms the
sensitivity-based method both in terms of final operating
costs and the number of samples until a first feasible solution
is found. As listed in Table 3, sensitivity-based scheduling
returns a solution that shows 7.5% higher costs than the
average (and simultaneously best known) tree-based solution
after 20 iterations of $1981.28. Similarly, all tree-based
optimization runs delivered an initial solution within the
first 111 samples, having an average of 44.0 samples while
the sensitivity-based approach required 114 samples to obtain
the first feasible schedule and 120 samples to finish its
computation.
Compared to sensitivity-based scheduling that terminates

within 12.44 minutes wall clock time, the average tree-
based run requires a larger number of 644 samples until the

convergence criterion is met and therefore shows an increased
computational effort of 64.24 minutes. However, using the
same number of samples that are needed to finalize the
sensitivity-based algorithm, the average cost of $2126.27 for
the tree-based method only marginally differs from the final
sensitivity-based result. The increased effort could therefore
be used to improve the final solution. Giving the distance
to the optimum and the operating costs drawn in Fig. 8,
it can be seen that due to the intended overapproximation
of the decision tree and the randomization of local search,
new regions of the solution space are explored, even after a
feasible MILP solution was found. Although that first feasi-
ble and best known solution was found in the fourth MILP
run, subsequent search shows distances of up to 27 changed
variables to the optimum.

F. SCHEDULING OF THE COMPLETE MICROGRID
The last study case includes the full set of assets and oper-
ational constraints as described in Section IV-A and IV-B.
Despite the moderate size of the problem covering six
controllable assets, the state-of-the-art reference algorithm,
sensitivity-based constraint approximation, failed to deliver
any feasible solution at all. After adding the constraint plane
approximation at the initial solution, the solver reported the

124752 VOLUME 9, 2021

109





M. H. Spiegel, T. I. Strasser: Hybrid Optimization Toward Proactive Resilient Microgrid Scheduling

The original sensitivity-based algorithm as presented
in [11] is integrated into one stage of a multi-stage energy
management system and originally does not include any
scheduling decisions that involve multiple instants of time.
In particular, no multi-period operational constraints such
as the startup restrictions (15) are involved in the presented
MILP model. Despite significant differences in the experi-
mental setup, this study supports the reported effectiveness
of sensitivity-based constraint approximation [11] for some
cases and in addition to the original work, clearly demon-
strates the limits in case of more complex setups.
In contrast to the sensitivity-based method that samples

the nonlinear constraints for the sake of approximation only,
the tree-based method features a sampling strategy that both
quickly finds a feasible local optimum and provides the
training data to extend the linear model. As a result, all
experiments show that tree-based scheduling requires fewer
samples to provide an initial feasible solution. Early solutions
specifically enable use cases that quickly require a feasible
schedule but tolerate later updates towards better solutions.
Over all sensitivity and tree-based experiments, 88% and

96%, respectively, of the process time is spent on the grid
simulation performed once per sample. With the share being
that high, the number of samples has a substantial impact
on the total processing time. In the tree-based algorithm,
the number of samples that need to be drawn strongly depends
on the targeted accuracy that can be balanced by the ter-
mination criterion. However, the study case in Section IV-E
demonstrates that tree-based scheduling only draws a few
hundreds samples more to get significantly improved results
and performs equally well, on the same number of samples.
Still, the additional samples considerably prolong the execu-
tion time and need to be weighted in the accuracy tradeoff.
Due to the local search procedure, the tree-based method

does not require the MILP subproblem to generate a feasible
solution at all, as long as the local search finds suitable
solutions and the generated tree properly restarts the heuristic
search procedure. However, all cases showed that at least
some valid solutions are generated by the extended MILP
model and several times including iteration number 17 in
Fig. 9, the MILP solution even improved the global opti-
mum. In average over all tree-based experiments having a
constant number of 20 global iterations, 7.4% of the MILP
runs improved the global optimum.
It was demonstrated that several proactive scheduling prob-

lems can also be solved by purely heuristic approaches
that do not include mathematical programming [4], [7].
Although the experimental setup shows significant differ-
ences (a smaller test system without considering discrete DG
states but dynamic grid constraints are used), comparison
to [10] indicates a considerably reduced number of evaluated
samples by using hybrid optimization techniques. In contrast
to purely heuristic approaches, the presented hybrid optimiza-
tion techniques show a reduction in the number of samples by
one order of magnitude. However, a detailed comparison on
common ground is beyond the scope of this work.

Although the test system was specifically designed to
challenge the algorithms under test and to trigger physical
constraints, all study cases demonstrate that scheduling deci-
sions can have adverse effect on the grid, if the assets are
operated close to their limits. Given the modeled conditions,
no algorithm delivered an initial MILP solution that satisfied
all grid constraints which aligns well with results from related
studies that highlight the need of detailed grid constraints [6],
[34]. The first case on purely economic scheduling provided
an in-depth analysis of the encountered constraint violations
and showed that even without considering any contingencies,
low-level controls can induce some overload conditions that
are not predicted by the simplified scheduling formulation.
However, the large majority of grid constraint violations is
related to the feasibility of fault mitigation techniques.

VI. CONCLUSION AND OUTLOOK
Motivated by the high computational complexity of proac-
tive scheduling as well as the need of efficiently consid-
ering low-level controls and nonlinear grid constraints, this
work presents two hybrid approaches that successfully com-
bine mathematical programming and heuristic optimization.
A case study demonstrates that the novel optimizationmethod
based on decision trees can solve the scheduling problem,
even in case a sensitivity-based method extended from liter-
ature fails to deliver results at all. However, the study also
identifies a simplified case in which the sensitivity-based
approach returns slightly better results and therefore gives
indication which method may be best suited for a problem
at hand. Detailed insights into the convergence of both algo-
rithms show that the tree-based approach quickly delivers
first feasible solutions and that the sensitivity-based method
can suffer from considerable overapproximation of infeasible
states.
The hybrid optimization techniques enable the usage of

external grid models that cannot be included in classical
mathematical programming and a first comparison to purely
heuristic approaches indicates a considerably improved per-
formance of hybrid scheduling. Similar to most related
work [4], the study gives qualitative answers concerning
the performance of presented algorithms. However, large-
scale evaluation that covers a broad variety of grid con-
figurations and operating conditions is needed to quantify
the performance on a common ground and give final prece-
dence over the studied algorithms. To ease analysis, the study
deploys only manually defined worst-case heuristics and few
fault mitigation techniques. Future work includes a refined
stochastic or robust model to better quantify reserve require-
ments, the assessment of transient phenomena and additional
fault mitigation techniques such as rerouting or load shedding
to reduce local reserve needs.
In the presented experiments, decision trees are restricted

to axis-parallel splits, i.e., each decision involves a single
coupling variable only. Future work may also assess the
effect of arbitrary linear splits [14], study the parametriza-
tion of local search in more detail and may include more
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advanced termination criteria that further reduce the number
of samples. Other techniques such as generalized Benders
decomposition [35] may also be used in proactive scheduling.
Despite the focus on microgrids future work includes the
application of hybrid scheduling in other contexts such as
active distribution systems. By presenting the algorithms and
studying various details on solving scheduling tasks with
nonlinear constraints, this work also contributes to a broader
discussion on hybrid optimization methods.
.

APPENDIX A COMPLEXITY OF SCHEDULING
To give a first intuition on the computational complexity
of microgrid scheduling, a polynomial-time reduction from
the Knapsack problem, a weakly NP-hard problem [24],
to scheduling is provided. The Knapsack problem PKN is
defined as (31), given the positive integers vi, wi, and W .

max
�x∈Bn

n�
i=0

vixi

s.t.
n�

i=0

wixi ≤ W (31)

The scheduling problem PSCH is now defined as finding
oDGa,t , oCHGb,t , oSELLt ∈ B and pDGa,t , pCHGb,t , pDCHb,t , pBUYt , pSELLt ∈
R that minimize c(·) s.t. (3) to (11) are satisfied. Hence,
a relaxed version with an empty set of nonlinear constraints
is studied. Let IKN = (�v, �w, W ) be an arbitrary instance of
PKP, then the mapping to PSCH is defined as (32) to (40).

T = {0} (32)

DG = {1, . . . n} (33)

LD = ST = ∅ (34)

pDG
i

= wi ∀i ∈ DG (35)

p̄DG
i = wi ∀i ∈ DG (36)

p̄SELL = W (37)

p̄BUY = 0 (38)

cSELL0 = max
i∈DG

vi

wi
+ � (39)

cDGi = cSELL − vi

wi
∀i ∈ DG (40)

Clearly, (32) to (40) can be computed in polynomial time.
From (3), (35), and (36), it follows that

pDGi,0 = wi · oDGi,0 ∀i ∈ DG. (41)

From the original power balance (9), as well as the map-
ping (32) to (34), and (38), the balance simplifies to�

i∈DG

pDGi,0 = pSELL0 . (42)

Consequently, the power transfer constraint (8) transforms
to constraint (43) with the first inequality trivially fulfilled.

0 ≤
�
i∈DG

wi · oDGi,0 ≤ W (43)

Similarly, it can be concluded from (7) and (38), that the
only valid solution of pBUY0 = 0. Note that the transfer mode
oSELLt can therefore be freely set to oSELLt = 1, without loss
of generality.
Given the cost definition of PSCH , (11), the defined map-

ping, as well as (41) and (42), the objective function simpli-
fies to (44).

c(�x) = cTOT0

= −cSELL0 · pSELL0 +
�
i∈DG

cDGi · pDGi,0

=
�
i∈DG

�
cDGi − cSELL0

�
· pDGi,0

=
�
i∈DG

−vi · oDGi,0 (44)

One can see that for any valid solution of PKN, xi, a sched-
ule oDGi,0 = xi, oSELL0 = 1, pBUY0 = 0, and pSELL0 , pDGi,0
according to (42) and (41), respectively, that satisfies, con-
straints (3) to (9) can be found. At the same time, (43) ensures
that each valid schedule of the mapped scheduling instance is
mapped to a valid instance of Knapsack in polynomial time.
On using the relation (44), it can be seen that any solution
that maximizes the Knapsack gains minimizes the scheduling
costs and vice versa.
From the polynomial time reduction from PKN to PSCH

and the fact that PKN is weakly NP-hard [24], it can be
concluded that PSCH is at least weakly NP-hard, as well.

ABBREVIATIONS
CHP Combined Heat and Power
DER Distributed Energy Resource
DG Distributed Generator
EES Electrical Energy Storage
EV Electric Vehicle
MILP Mixed Integer Linear Programming
PCC Point of Common Coupling
PV Photovoltaics
RES Renewable Energy Sources
WT Wind Turbine
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SCHEDULING VARIABLES

pva,t Active power of asset a at time t , having type
v ∈ {DG,ST,PV,WT,LD}.

oDGa,t Operational status of generators a at time t .

pCHGb,t Active charging power of storage b at time t .

pDCHb,t Active discharging power of storage b at
time t .

eSTb,t Energy in b stored after time step t .

oCHGb,t Charging indicator of storage b at time t .

pBUYt Bought active power at time t .

pSELLt Sold active power at time t .

oSELLt Selling mode of the upstream grid at time t .

cTOT Overall operating costs.

pE,DCH
b,t Emergence power, storage b can provide at t .

pE,CHG
b,t Emergence power, storage b can absorb at t .

pNetLDt Volatile net load at time t .

ui,t Predicted voltage at bus i and time t .

ιi,t Current magnitude in line i at time t .

vs Assignment of variable v in scenario s.

PARAMETERS AND EXTERNAL INPUTS

v̄, v Upper and lower limits of variable v.
v∗ Nominal value of variable v.
v�
t Volatile maximum of variable v at time t .
v̄∗, v∗ Nominal range (min, max) of variable v.
|Y |i,j, θi,j Admittance matrix entry (magnitude and

angle) between bus i and j.
T St Duration of a single time step.
T Sta Maximum generator startup time.
T Sto Maximum generator stopping time.
νw,t , Vw,t Wind speed forecast and measurement at

WT w and time t .
gc,t , Gc,t Irradiance forecast and measurement in

plane of the PV array c at time t .
τPVc,t , T PV

c,t Temperature forecast and measurement of
PV array c at t .

kPVc Temperature coefficient of PV array c.
k f,va , ku,va Frequency and voltage droop of asset a, type

v.

k f,EMIB , k f,EMOB Emergency frequency droop constants.
ks,REa Reserve coefficient for asset a in scenario s.
cBUYt , cSELLt Cost of buying and benefits from selling

electricity from the upstream grid at time t .
cDGa Operating cost of generation unit a.
�v
i Bus, asset i of type v is connected to.

�IL
i Island, asset i is connected to.

FUNCTIONS

µCHG
b (P) Charging efficiency curve of storage b.

µDCH
b (P) Discharging efficiency curve of storage b.

ρWT
w (ν) Turbine curve of WT w.

S(·) Scheduling function under test.

P̄E
b (E,T ) Maximum power of storage b at (E,T ).

PE
b (E,T ) Minimum power of storage b at (E,T ).

E(e) Observed share of event e.

I. INTRODUCTION
Most power systems are faced with fundamental transitions
that will drastically alter the way electricity grids are planned
and operated. Microgrids and multi-microgrids provide one
solution to facilitate an increasing number of volatile Renew-
able Energy Sources (RES), to rigorously exploit the eco-
nomic potential of Distributed Energy Resources (DERs),
and simultaneously to strengthen the system resilience [1].
In favor of other competing definitions, this work defines
microgrids as tightly integrated electrical networks that
can be both operated as islanded and grid-connected
systems [2], [3]. Multi-microgrids extend the concept of
individual microgrids by jointly operating them within a
distribution system. Despite the high potential in integrating
renewables, several microgrid designs still heavily rely on
the presence of fossil-fueled generation [4]. Due to policies
towards a net-zero CO2 economy, the integration of large
shares of RES in microgrids and further reduction of CO2
emission became a priority in research [5]. In literature, a
multitude of control approaches are presented to preserve
or even increase system resilience while incorporating sig-
nificant amounts of stochastic generation. Several proactive
scheduling approaches, for instance, are presented which bal-
ance increasing reserve needs and strengthen the microgrid
operation before faults are encountered [3], [6].
Although most of the proactive algorithms follow an

optimization-based framework, a broad diversity of problem
formulations and solution methods are found. Common dif-
ferences between algorithms include the level of detail, i.e.
the number and abstraction of phenomena that are considered
at scheduling time. For instance, [7] focused on provisional
microgrids that depend on the grid-forming capabilities of
adjacent microgrids, but did not include physical power flow
restrictions beyond static bounds. On the contrary, [8] con-
sidered detailed voltage and current constraints based on
the highly nonlinear AC power flow equations. Commonly,
scheduling algorithms are deployed on top of a complex
control architecture that manages short-term disturbances,
coordinates transitions from and to the islanded mode, and
ensures a stable operation of the system [9]. It was shown
that scheduling and control decisions can have a significant
impact on the stable and safe operation of microgrids [10].
Therefore, several algorithms included physical constraints
in their scheduling decisions [11]. However, only very few
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of them considered the low-level control such as primary fre-
quency regulation or fault reconfiguration algorithms. One of
these approaches is introduced by [12] that includes primary
frequency control constraints to ensure successful island-
ing, but did not consider reactive power and voltage control
requirements. More recently, [3] proposed a hybrid schedul-
ing mechanism that considers both frequency and voltage
control requirements in day-ahead scheduling. Yet, storage
units are excluded from primary control and saturation effects
due to power limits are not covered in detail.
To evaluate such algorithms, several testbeds are imple-

mented that enable the assessment of critical aspects such as
islanding, synchronization, and stability [9], [13]. A broad
range of assessment methods including purely simulation-
based approaches, hardware-in-the-loop solutions, and field
trials can be found. For instance, [14] implements a purely
simulation-based testbed to study transient phenomena in
exclusively inverter-based microgrids, but does not focus
on long-term operation and scheduling. A laboratory-scale
testbed that specifically focuses on scheduling is described
in [15]. The authors compare the performance of an energy
management heuristic to an optimal scheduling formulation
and provide first insights into the economic benefits of the
optimization-based approach. Yet, only 15 operating scenar-
ios originating fromfive independentmeasurement dayswere
used in the economic assessment. Due to the focus on a small,
single-bus microgrid, grid reconfiguration actions and the
impact of scheduling on physical grid constraints are beyond
the scope of [15].
In general, very few approaches specifically target the

evaluation of scheduling algorithms in long-term operation.
Commonly, the approaches are evaluated on a very limited
set of environmental conditions without taking the impact of
failure scenarios, detailed forecasting models, and low-level
controls on the physical grid operation into account [11], [15].
Due to the limited evaluation, little quantitative evidence on
the long-term benefits of proactive and resilient scheduling
is collected. Specifically, in the presence of low-level con-
trols such as primary frequency control and heuristic grid
reconfiguration schemes, it is not well understood as to how
much intelligence regarding modeling details and solution
methodologies is needed on scheduling level to resiliently
operate microgrid and multi-microgrid systems. Still, pre-
vious studies give a first indication on possible resilience
improvements but also increased operation costs and consid-
erable computational burden [3], [4], [11], [16].
Dynamic, transient simulations are well suited to assess the

performance of low-level controls in detail [9], [14], but high
modeling efforts and the considerable computational costs
hinder their application in long-term assessment. Steady-
state power flow computations are a common method to
reduce the computational burden, but classical formulations
are not well suited for islanded microgrids [17], [18]. Several
methods that allow modeling of distributed frequency and
voltage control without dedicated slack nodes are already
developed. For instance, [17] presents a balanced power flow

formulation. Similarly, [18] introduces droop-based voltage
and frequency control for both balanced and unbalanced
grids. To improve convergence of the unbalanced net-
work equations, an extended Newton Raphson algorithm is
developed. Despite considerable effort, device constraints,
RES curtailment, dynamic droop coefficients, and out-
age conditions are rarely considered in islanded power
flows. However, detailed assessment methods covering these
aspects are needed to guide future implementation and
research efforts in proactive multi-microgrid scheduling.

A. CONTRIBUTIONS TO POWER SYSTEM RESILIENCE
This work investigates the operation performance of various
scheduling algorithms on a comprehensive simulation-based
testbed and specifically addresses the proactive consideration
of network failures, low-level controls and physical con-
straints. To the best of our knowledge, for the first time,
the impact of day-ahead scheduling formulations on system
resilience is quantified based on a large-scale assessment that
handles a broad range of operating conditions. A dedicated
focus is put on phenomena such as voltage constraints and
low-level controls that can, but may not be considered at
scheduling time. Due to the large-scale evaluation covering
hundred-thousands of scenarios, detailed quantitative insights
into the impacts of proactive scheduling are provided. Such
impacts include the system performance in case of asset
failures and the costs in normal operation. All performance
metrics are based on an independent set of simulation runs
and do not rely on indicators that are directly returned by the
scheduling algorithms.
To efficiently cover a broad range of operating condi-

tions traditional power flow computations are significantly
extended to consider dynamic droop controls, RES curtail-
ment, detailed device capabilities, and outage conditions in
an islanded grid. In contrast to dynamic simulations, the
presented steady-state formulations do not require modeling
of dynamic aspects such as time constants and were success-
fully applied in long-term assessments. Additional real-time
controls that are hardly considered in the related scheduling
literature include heuristic secondary control and fault rerout-
ing. Hence, this work provides a first indication whether such
facilities can reduce the need for resilience considerations at
scheduling time and the resulting computational burden.
In contrast to the state-of-the-art that commonly consid-

ers only simple statistical models to characterize forecast-
ing deviations, separate measurement and forecasting data
sources are used. Required scheduling inputs are based on
numerical weather prediction, while independent measure-
ment data are taken to assess the real-time performance.
Due to the clean separation, systematic and correlated fore-
casting deviations can be considered and common simplifi-
cations such as temporally independent errors are avoided.
A rich set of failure scenarios that far exceeds the conditions
reflected in the scheduling algorithms is induced. Such fail-
ures include single line outages that can be tackled by real-
time control but may result in unexpected topologies and
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are available in real-time only. It is assumed that load fore-
casts and measurements are directly available, e.g. in terms
of standard load profiles and smart meter measurements,
whereas the amount of PV and wind power is computed
based on meteorological forecasts and observations. Due to
the broad availability of meteorological measurements, this
study calculates both forecast and measurement based on
asset models. Nevertheless, the real-time RES models can be
substituted by direct power measurements, in case sufficient
on-site data is available.
The available output power of WT w, is calculated by

the turbine curve ρWT
w that translates the wind speed into

the turbines output power. Given the wind speed forecasts
and measurements at time t , νw,t and Vw,t , respectively, the

available power is given by p�,WT
w,t = ρWT

w (νw,t ) andP
�,WT
w,t =

ρWT
w (Vw,t ). Following related work [21], the PV output of

plant c is modeled proportionally to the in-plane irradiance
forecast gc,t and measurement Gc,t . Furthermore, outputs are
corrected by an optional temperature coefficient kPVc utilizing
the deviation of the array temperatures τPVc,t and T PV

c,t , respec-

tively from the nominal temperature T ∗,PV
c . Equations (1)

and (2) show the PV generation model.

p�,PV
c,t = P∗,PV

c · gc,t
G∗ ·

�
1 + kPVc ·

�
τPVc,t − T ∗,PV

c

		
(1)

P�,PV
c,t = P∗,PV

c · Gc,t

G∗ ·
�
1 + kPVc ·

�
T PV
c,t − T ∗,PV

c

		
(2)

B. SCHEDULING MODEL
Based on the forecasts p�,WT

w,t , p�,PV
c,t , and p�,LD

l,t as well as
the initial storage conditions eSTb,−1, the scheduling algorithm
S(·) calculates the control setpoints pDGa,t , oDGa,t , and pSTb,t .
To model the level of details that are considered by an algo-
rithm S(·) and to assess the impact on themicrogrid operation,
different formulations based on prior work [3] are considered.
A detailed formulation of the algorithms can be found in the
original publication that assesses the computational perfor-
mance but does not focus on operational aspects.

1) ECONOMIC SCHEDULING SEC(·)
The least level of detail is modeled by a purely economic
Mixed Integer Linear Programming (MILP) formulation of
the scheduling problem that neither includes grid constraints
nor considers reserves that are needed for a successful island-
ing transition. Storage units b ∈ BS modeled in (3) to (7) are
constrained by their charging mode oCHGb,t ∈ B, the stored
energy eSTb,t and its bounds, as well as the device limits p̄CHG

b

and p̄DCH
b . Storage losses are included in a constant round-

trip efficiency µST
b .

0 ≤ pCHGb,t ≤ p̄CHG
b · oCHGb,t (3)

0 ≤ pDCHb,t ≤ p̄DCH
b ·

�
1 − oCHGb,t

	
(4)

eSTb ≤ eSTb,t ≤ ēSTb (5)

eSTb,t = eSTb,t−1 +
�
pCHGb,t · µST

b − pDCHb,t

	
· T St (6)

pSTb,t = pDCH
b,t − pCHG

b,t (7)

DG units a ∈ DG are constrained by theminimal andmaximal
active power, pDG

a
and pDG

a
as given in (8).

pDG
a

· oDGa,t ≤ pDGa,t ≤ p̄DG
a · oDGa,t (8)

Loads and RES are included by their expected power demand
and output without considering any emergency measures.
Main grid transfers are considered by directional variables
pBUY, and pSELLt as well as a directional indicator oSELLt ∈ B
as shown in (9) and (10).

0 ≤ pBUYt ≤ p̄BUY ·
�
1 − oSELLt

	
(9)

0 ≤ pSELLt ≤ p̄SELL · oSELLt (10)

For each time step, a simple active power balance (11)
reduces the topology to one single bus without including
topological information of physical effects such as losses.


a∈DG

pDGa,t +


b∈ST

pSTb,t +
�
pBUYt − pSELLt

	
+



c∈PV

p�PV
c,t +



w∈WT

p�WT
w,t −



l∈LD

p�LD
l,t = 0 (11)

The overall objective is to minimize the operating costs cTOT

determined by the power setpoints and theDG operating costs
cDGa as well as main grid transfer costs cBUYt and benefits
cSELLt within the scheduling horizon.

cTOT =


t∈T

�
cBUYt · pBUYt − cSELLt · pSELLt

+


a∈DG

cDGa · pDGa,t
	

· T St (12)

All computations are based on deterministic forecasts without
considering stochastic fluctuations and associated risks.

2) RESERVE-AWARE SCHEDULING SRE(·)
In addition to economic scheduling, SRE(·) includes further
constraints which ensure that enough storage capacity and
spinning reserve is available to sustain a main grid outage
until further DG can be started. The reserve constraints in [3]
are slightly extended by a scenario-based formulation that
introduces safety coefficients and accounts for secondary-
control delays. For each time step t ∈ T and storage b ∈ ST,
the emergency power pE,DCH

b,t that can be provided until addi-
tional generation is started and the power that can be maxi-
mally absorbed pE,CHG

b,t until excess generation is stopped is
modeled. Both variables are constrained by the storage state
and its power ratings as shown in (13) to (16).

0 ≤ pE,DCH
b,t ≤ eSTb,t−1 − eSTb

T Sta (13)

pE,DCH
b,t ≤ p̄DCH

b (14)

0 ≤ pE,CHG
b,t ≤ ēSTb − eSTb,t−1

T StoµST
b

(15)

pE,CHG
b,t ≤ p̄CHG

b (16)
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Given the reserve coefficients kv,REa of asset a and scenario v,

the net load including RES pv,NetLDt is first defined by (17).

pv,NetLDt =


l∈LD

kv,REl · p�,LD
l,t −



c∈PV

kv,REc · p�,PV
c,t

−


w∈WT

kv,REw · p�,WT
w,t (17)

The reserve requirements are then modeled as (18) and (19).

a∈DG

p̄DG
a,t · oDGa,t +



b∈ST

pE,DCH
b,t ≥ pv,NetLDt (18)


a∈DG

pDG
a,t

· oDGa,t −


b∈ST

pE,CHG
b,t ≤ pv,NetLDt (19)

3) PHYSICS CONSTRAINED SCHEDULING SPH(·)
In addition to the economic and reserve-constrained formula-
tion, the physics-constrained algorithm asserts that the power
flow must converge for the given setpoints and that voltage,
frequency, and loading limits are met. In contrast to [3]
that uses a commercial power system simulator to execute
the embedded power flow calculations, this work includes
the extended formulation as given in Sections II-C to II-G.
Nevertheless, all volatile inputs ps,PVc,t , ps,WT

w,t , ps,LDl,t are based
on a static set of worst-case scenarios s that is generated from
the available forecasts only. For each scenario, the AC power
flow is solved. The resulting bus voltage levels usi,t , i ∈ BS

and line current magnitudes ιsi,t , i ∈ LI are constrained as
u ≤ usi,t ≤ ū and ιsi,t ≤ ῑi, respectively. In addition, the
frequency f si,t on each island i and scenario s needs to be
within its permissible limits f ≤ f si,t ≤ f̄ .

C. SECONDARY CONTROL
To assess the impact of day-ahead scheduling decisions
on the emergency operation, the steady-state impact of the
most essential low-level controls is modeled. Primary con-
trol alters the active power generation setpoints to balance
out short-term fluctuations. Secondary control provides a
reserve heuristic that schedules new generation or shuts down
running DGs in case existing generation units are operated
close to their limits. For each DG a, the requested reserve
is defined by the power that exceeds the nominal operating
range P∗,DG

a to P̄∗,DG
a . The upwards reserve PR,UP

a,t calculates
as PR,UP

a,t = PDG
a,t − P̄∗,DG

a and the downwards reserve as
PR,DO
a,t = P∗,DG

a − PDG
a,t . For storage units b, additionally,

the maximum power that can be supplied or absorbed until
secondary control actions take effect, is considered.
To estimate the maximum power that can be provided or

absorbed for a period of T , (20) and (21) define the power
limit heuristics, P̄E

b (E,T ) and PE
b(E,T ), at a storage state E

and the efficiency curves µCHG
b (P) and µDCH

b (P).

P̄E
b (E,T ) =

�
E − EST

b

� · minP
�
µDCH
b (P)

�
T

(20)

PE
b(E,T ) =

�
E − ĒST

b

�
T · maxP

�
µCHG
b (P)

� (21)

Algorithm 1 Secondary Control Heuristic Matching the
Reserve Requests of a Single Island

1: function Sec(Status OIN
i , nominal P∗

i and reserve P
R)

2: OOUT ← OIN

3: repeat
4: M ← {i,¬OOUT

i ∧ P∗
i ≤ PR}

5: ifM �= ∅ then
6: n ← argmaxi∈M(P∗

i )
7: OOUT

n ← 1
8: PR ← PR − P∗

n
9: end if

10: untilM = ∅
11: return OOUT

12: end function

Since the storage efficiency depends on the output power
itself, a worst-case efficiency is assumed to limit convergence
issues while solving the equations. Given the dynamic power
limits based on the storage state, the reserve requests (22)
and (23) are calculated by the nominal output power range
and the power that cannot be provided due to energy limits.

PR,UP
b,t = max

�
P̄ST
b − P̄E

b (E
ST
b,t ,T

Sta),PST
b,t − P̄∗,ST

b

	
(22)

PR,DO
b,t = max

�
PE
b(E

ST
b,t ,T

Sto) − PST
b ,P∗,ST

b − PST
b,t

	
(23)

To compute the secondary control actions, first, the reserve
power requests for each island i, PR,v

i,t are computed by (24).

PR,v
i,t =



j,�IL

j =i

max(PR,v
j,t , 0) v ∈ {UP,DO} (24)

The secondary control algorithm SEC implements a greedy
heuristic that changes the DG status setpoints oDGa,t to closely
meet the reserve request. In each iteration, one DG status is
altered that shifts the remaining reserve requirement closest
to zero. Algorithm 1 defines the procedure for a single island
and one reserve request direction in more detail. Since the set
of candidate machines M decreases monotonically, it can be
seen that the computations terminate within polynomial time.
In case an island i shows a power surplus, i.e. fi > f ∗, SEC

is applied to the inverted operating status ¬oDGi,t of all DG
units on that island to compute the assets that need to be shut
down. Equation (25) models the secondary control outputs of
the operating status O◦,DG

i,t .

O◦,DG
i,t =

����
SEC

�
oDGi,t ,P∗,DG

i ,PR,UP
i,t−T Sta

	
fi,t < f ∗

¬SEC
�
¬oDGi,t ,P∗,DG

i ,PR,DO
i,t−T Sto

	
fi,t > f ∗

oDGi,t fi,t = f ∗
(25)

In case a DG unit a is newly scheduled, (26) will apply the
nominal output value as power set point P◦,DG

a,t .

P◦,DG
a,t =

�
P∗,DG
a if O◦,DG

a,t ∧ ¬oDGa,t
pDGa,t · O◦,DG

a,t otherwise
(26)
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D. PRIMARY CONTROL
In islanded operation, short-term fluctuations are com-
monly balanced by droop-based real-time control [17], [18].
As illustrated in Fig. 1, the steady-state impacts of primary
control are considered in the extended load flow. Each oper-
ational DG a adjusts its active power setpoint P•,DG

a,t accord-
ing to the locally measured frequency fi,t . Since the model
focuses on the steady state, for each electrically connected
island in the microgrid, a single frequency variable is intro-
duced. Given the topology function�IL

j that returns the island
of asset j as well as the droop coefficient k f,DGa the primary
frequency control is modeled as (27).

P•,DG
a,t = P◦,DG

a,t − k f,DGa · (f�IL
a ,t − f ∗) (27)

In addition to DG, also storage units b directly contribute to
primary frequency control. However, the units implement a
dynamic scheme that gradually reduces the droop k f,STb,t in
case the nominal SoC limits E∗,ST

b and Ē∗,ST
b are exceeded.

To quickly enter the nominal operating range again, the
reduction further depends on the sign of the frequency devi-
ation as given in (28) and (29).

k f,STb,t =

������������
k∗,f,ST
b · E

ST
b,t−1 − EST

b

E∗,ST
b − EST

b

if f
�ILb ,t

≤f ∗∧

EST
b,t−1≤E∗,ST

b k∗,f,ST
b ·

ĒST
b − EST

b,t−1

ĒST
b − Ē∗,ST

b

if f
�ILb ,t

≥f ∗∧

EST
b,t−1≥Ē∗,ST

b k∗,f,ST
b otherwise

(28)

P•,ST
b,t = P◦,ST

b,t − k f,STb,t · (f�IL
b ,t − f ∗) (29)

In contrast to DG and storage units, it is assumed that
volatile RES do not participate in regular frequency con-
trol. However, a limited frequency sensitive mode for over-
frequency events following [22] is implemented to reduce the
infeed in case of severe over-frequency events. Considering
the nominal operating boundary f̄ ∗, the output power of asset i
type v ∈ {PV,WT} is calculated as (30).

P•,v
i,t =

�
P�,v
i,t

�
1 − k f,vi (f�IL

i ,t − f̄ ∗)
	

f�IL
i ,t > f̄ ∗

P�,v
i,t otherwise

(30)

For each asset j having type v, the topology function �v
j

specifies the bus j is connected to. The reactive power setpoint
Q•,v
i,t of all generation units i typed v ∈ {DG,ST,PV,WT}

is controlled by a static Q-of-u droop ku,vi and the locally
measured voltage magnitudes U�v

i ,t
as modeled by (31).

Q•,v
i,t = ku,vi ·

�
U∗

�v
i
− U�v

i ,t

	
(31)

E. DEVICE CONSTRAINTS
For each generation unit i of type v a set of active and apparent
power limits is introduced to model saturation effects in
the power flow computations. In general, the active power
setpoints from the primary control,P•,v

i,t are directly limited by
the minimal and maximal supported active power Pv

i and P̄v
i ,

respectively. The active power takes precedence over reactive
power outputs that are curtailed to limit the total apparent
power S̄vi , given |Pv

i|, |P̄v
i | ≤ S̄vi . The active power output

of volatile RES is specifically defined by (32) that considers
optional inverter constraints by an additional limit P̄v

i .

Pv
i,t = min

�
P̄v
i ,max(0,P•,v

i,t )
	

, v ∈ {PV,WT} (32)

The DG model (33) additionally considers the operating
status O◦,DG

i,t returned by secondary control to enforce zero
output power, in case the unit is switched off.

PDG
a,t = min

�
P̄DG
a O◦,DG

a,t ,max(PDG
a O◦,DG

a,t ,P•,DG
a,t )

	
(33)

The state of each storage plant b is modeled by the energyEST
b,t

that is stored at time t . Given the charging and discharging
efficiency curves µCHG

b (P) and µDCH
b (P) the storage state is

advanced by (34).

EST
b,t =

��EST
b,t−1 − PST

b,tT
St

µDCH
b (PST

b,t )
if PST

b,t ≥ 0

EST
b,t−1 − PST

b,tT
StµCHG

b (PST
b,t ) otherwise

(34)

Limited storage capacity is accounted for by the energy-
dependent power boundaries PE

b(E,T ) and P̄E
b (E,T ) as mod-

eled in (21) and (20), respectively. Hence, the active output
power is modeled as (35).

PST
b,t = min

�
P̄ST
b , P̄E

b (E
ST
b,t ,T

St),

max(PST
b ,PE

b(E
ST
b,t ,T

St),P•,ST
b,t )

	
(35)

Given the active output power of asset i, the reactive power
limit Q̄v

i,t of all asset types v is calculated as (36) and the
reactive output power Qv

i,t as (37).

Q̄v
i,t =

�
(S̄vi )

2 − (Pv
i,t )

2 (36)

Qv
i,t = min

�
Q̄v
i,t ,max(−Q̄v

i,t ,Q
•,v
i,t )

	
(37)

F. PHYSICAL GRID MODEL
In case an electrically connected part of the grid i is itself con-
nected to the main grid, a Point of Common Coupling (PCC)
is modeled by two slack variables PEX

i,t , Q
EX
i,t and a constant

voltageU�EX
i ,t on the connected bus. Simultaneously, the fre-

quency is fixed to fi = f ∗ in order to model inactive primary
and secondary controls. In case the electrically connected
island i is not itself connected to any external grid, fi is kept as
a free variable that models a distributed slack. To reduce non-
converging power flows due to the detailed saturation model,
for each island, an emergency model is introduced. As soon
as the system frequency exceeds the permitted range, the
virtual emergency power PEM

i,t models the power that would
be needed to stabilize the system. To support the conver-
gence of the entire power flow, (38) introduces an emergency
droop k f,EMOB that determines the power in case the frequency
exceeds the permitted band and a small but positive droop
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heuristic k f,EMIB , k f,EMIB 
 k f,EMOB , that additionally supports
convergence.

PEM
i,t =

��
k f,EMOB (f̄ − fi,t ) if fi,t > f̄
k f,EMOB (f − fi,t ) if fi,t < f



+k f,EMIB (f ∗ − fi,t ) (38)

The injected active and reactive net power of each bus,
PBS
i,t and QBS

i,t , respectively is calculated as (39) and (40).
Note that V is defined as the set of all generation units
V = {DG,ST,PV,WT,EX,EM} including any external
grid connections and the virtual emergency power source.

PBS
i,t =



v∈V



j,�v

j =i

Pv
j,t −



l,�LD

l =i

PLD
l,t (39)

QBS
i,t =



v∈V



j,�v

j =i

Qv
j,t −



l,�LD

l =i

QLD
l,t (40)

The basis of the microgrid model is then given by the well-
known AC power flow equations. To strengthen the compa-
rability to related work [3], [11], [21], the balanced power
flow model is used. For each bus i ∈ BS, a voltage magnitude
Ui,t and angle ϕi,t is introduced. Given PBS

i,t and QBS
i,t as well

as the admittance matrix entries for the buses i, j ∈ BS,
|Y |i,j � θi,j, the power flow equations can be given by (41)
and (42) [17], [18].

PBS
i,t = Ui,t



j∈BS

|Y |i,j Uj,t cos(ϕi,t − ϕj,t − θi,j) (41)

QBS
i,t = Ui,t



j∈BS

|Y |i,j Uj,t sin(ϕi,t − ϕj,t − θi,j) (42)

G. EMERGENCY GRID RECONFIGURATION
A grid reconfiguration scheme models the effect of real-
time topology reconfiguration actions that isolate faults and
reconnect the remaining sections, if possible. It is assumed
that all tie-line switches can be remotely controlled well
below the simulation step size T St. Furthermore, it is assumed
that all faults can be located and isolated such that no healthy
section of the network is directly affected. At the beginning of
each scenario and after each topological change (i.e., faults or
repair actions), the reconfiguration heuristic is executed. The
main goal is to establish a maximally connected, healthy, and
radial network. Hence, islanding will be avoided, in case an
external grid connection is feasible and each island will be as
large as possible to share available power reserves. Since the
study focuses on the steady-state effects only, it is assumed
that all configurations can be stably operated and that grid
forming and black-start is adequately addressed within each
island having at least one operational DG or storage unit.
The grid reconfiguration task is mapped to a minimal

spanning forest problem that is solved in polynomial time
using Prim’s algorithm [23]. Each line l is mapped to an edge
of the graph and the edge weight cLIl,t is guided by the line
admittance after clearing the fault Yl,t . To limit the number of
switching operations and to account for lines that cannot be

isolated by remotely operated switches, the initial operating
status of line l connecting bus j and i, OLI

l,0 is considered in
the weight heuristic (43) as well.

cLIl,t =


���� 1
Yl,t

���� if ¬OLI
l,0

0 otherwise
(43)

III. BENCHMARKING METHODS
One of the research goals is to quantify the impact of schedul-
ing algorithms on the complex operation of a multi-microgrid
and the resulting system resilience. To study the long-term
effects, a simulation-based study that focuses on steady-
state phenomena is chosen. Fig. 1 shows the main com-
ponents of the assessment method including the dedicated
grid simulation. For all algorithms under test, a common
set of input conditions (e.g., forecasts and the corresponding
measurements) is generated and the impacts of the scheduling
decisions are independently evaluated. Due to the identical
inputs, the results can be directly compared without consid-
ering stochastic fluctuations among test runs. In contrast to
the preliminary work [24] that describes the concepts of a
microgrid testbed, this work significantly refines the models,
drastically increases the number of considered conditions,
and presents detailed results on several algorithms.
Since fault mitigation options and consequently the impact

on the system resilience largely depend on the considered
grid and included assets, the scheduling algorithm needs to
be chosen according to local requirements. For instance, a
network that is designed to accept all scheduling states needs
less consideration than a grid that is operated close to its lim-
its. The presented method targets the efficient case-specific
evaluation by a generalized assessment framework that solves
the system model given in Section II.

A. SCENARIO GENERATION
The assessment requires an extensive set of inputs including
dynamic grid prices, environmental conditions and load pro-
files. Since several inputs such as solar irradiation and wind
speed [25], [26] show a considerable temporal correlation,
first, a subset of scheduling time frames is selected from the
available days in the long-term measurement and forecast
series. According to each of the absolute time frames, the
input measurements and forecasts will be selected without the
need of reducing the long-term time series to a consecutive
period. Since the inputs are based on common time frames,
the correlations among different data sources such as seasonal
effects on energy consumption are modeled as well.
In contrast to the RES generation forecasts that are based

on numerical weather predictions targeting the particular
measurement time and location, generation forecasts are
based on generic profiles. Hence, possibly sensitive informa-
tion that is needed to model user behavior and load forecasts
can be kept at aminimum. Such information on loads includes
the type of load (e.g., households and agricultural load) and
the yearly energy consumption, only.
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The environment conditions are amended by a detailed set
of failure scenarios that are exposed to the real-time models
only. Each failure scenario temporarily alters the operating
status of selected assets such as lines and the external grid
connection and may trigger real-time actions such as grid
reconfiguration. All failure scenarios are considered as rare
events that cannot be well quantified in a limitedMonte Carlo
simulation. To specifically focus on the system resilience in
such rare events, for each set of environmental input con-
ditions, all failure scenarios as well as a reference scenario
without any fault are applied.

B. SIMULATION-BASED ASSESSMENT
For each previously defined input scenario, the RES gener-
ation is predicted and a dedicated scheduling run using the
algorithm under test is conducted. All algorithms under test
follow an optimization based approach and therefore the cost
minimization problems defined in Section II-B are solved. All
MILP formulations are directly solved by exact mathematical
programming techniques. In case a problem turns out to be
infeasible (e.g., due to its reserve requirements), a default
output that does not schedule any generation at all is returned
and the microgrid is operated by its real-time controls, only.
The highly nonlinear physical constraint formulation cannot
be solved by a MILP solver and therefore the hybrid heuristic
optimization technique defined in [3] is applied. In case no
feasible solution that satisfies all constraints is found by the
heuristicmethod, the best known schedule that may still result
in some constraint violations is used in the assessment.
Given the results of the scheduling run, the failure sce-

narios are applied and for each set of real-time conditions,
the independent evaluation of the real-time operation is con-
ducted. At the beginning of each scenario and after sta-
tus changes, the fault reconfiguration algorithm is executed
and the topological information including the admittance
matrix Y and connected assets are computed. Afterwards,
the system model including primary and secondary control is
solved in a series of power flow computations. For each time
step, a dedicated computation is triggered and the internal
states such as the secondary control setpoints as well as the
storage states are updated. The set of equations that describe
the system state as defined in Section II are numerically
solved by the hybrid root-finding algorithm of [27].

C. PERFORMANCE METRICS
The quality of all scheduling algorithms is quantified by the
impacts on real-time operation of the network and whether
the most important grid constraints can be met. As such, it is
evaluated whether the bus voltages are within the permitted
voltage range and whether overloading of assets such as
lines is observed. The occurrence of such constraint violation
events is addressed by the rate E(e) that counts the share
of events e on the total number of time instants in the set
of interest. For instance, E(U s

i,t < U i) gives the ratio of
undervoltage events to the total number of time steps at

bus i. Similar aggregations are conducted for overload events
E(I si,t > Īi) of line i as well.
Additionally, the fault mitigation rateE(mtg), i.e., the share

of time steps in the fault duration that can fully avoid any
voltage, frequency, and loading violation is defined as (44).

E(mtg) = E(∀i ∈ BS,U ≤ U s
i,t ≤ Ū ∧ f ≤ f si,t ≤ f̄ ∧

∀j ∈ LI, I sj,t ≤ Īj) (44)

The mitigation rate indicates performance improvements
compared to statically operated distribution systems that
cannot automatically mitigate any fault. In contrast to the
other event rates, E(mtg) specifically focuses on the system
performance in times of induced failure conditions without
considering other outages due to improper operation and
scheduling decisions.
Although the event rates E(e) well quantify the number of

constraint violations, the impact of such events is not well
covered. One common metric to describe the impact of any
violation on the supplied loads is the (expected) energy not
served ENS,s that describes the amount of energy that cannot
be supplied due to outage conditions in scenario s [11], [28].
Since this work does not rely on probabilistic failure models,
the unsupplied energy ENS,s is always aggregated given a
certain failure mode such as main-grid outages. Following
the definition of E(mtg), outage conditions include severe
voltage and frequency band violations beyond a given thresh-
old as well as overload events that are assumed to trigger
an immediate shutdown of electrically connected subgrids.
Note that a detailed model of the protection system that
includes cascading faults exceeds the scope of this work by
far. Therefore, it is assumed that the status of all assets is
tightly monitored and that any constraint violation immedi-
ately triggers a complete loss of load on the subgrid without
considering further degraded states.
To assess the economic performance of any scheduling

algorithm, the total operating costs as encountered in the
independent grid simulation, CTOT,s of scenario s are taken.
Hence, CTOT,s incorporates forecasting deviations and does
not rely on the cost estimate committed at scheduling time.

IV. CASE STUDY
The case study aims at demonstrating the large-scale assess-
ment method and giving first detailed insights into the per-
formance of several scheduling algorithms. Three base algo-
rithms are selected that represent different levels of detail
and complexity. The first one implements simple economic
schedulingwithout considering resilience or forecasting devi-
ations, the second one includes linear sufficiency constraints
that target a successful islanding, and the most complex
algorithm adds nonlinear grid constraints. In addition, sev-
eral algorithmic variants that study the impact of worst-case
formulations and forecasting deviations are considered.
All algorithms were evaluated on a common test system

that is specifically designed to challenge the algorithm under
test and to trigger extreme cases thatmay not be found in other
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FIGURE 4. Distribution of the total real-time load in the input scenarios.

FIGURE 5. Distribution of the main grid transfer price for selling
electricity in the input scenarios.

TABLE 1. Forecasting error statistics relative to the nominal power.

line fault can always be compensated by grid reconfiguration.
According to related work, a fault clearance time of three
hours was modeled [21], [30]. For each faulty asset, eight
different incident times covering the entire scheduling period
result in 144 failure cases and one normal operating case.
Given the sample size of 365 environmental scenarios, a total
number of 52,925 scenarios per algorithm is covered. Similar
to the related work on complex power flow computations
in islanded systems [17], [18], a total share of 0.016% of
all power flows does not converge. Consequently, scenarios
with non-converging power flows were removed from the
evaluation and are not considered in the metrics.

B. ECONOMIC SCHEDULING
A purely economic scheduling algorithm SEC(·) that does not
include any resilience constraints at all establishes the base-
line for resilient multi-microgrid scheduling. Fig. 6 to 8 show
the constraint violation rates for overvoltage E(U s

i,t > Ū∗),
undervoltage E(U s

i,t < U∗), and overload events E(I si,t > Īi),
respectively. Note that the voltage-related events consider the
tighter scheduling-time bounds of Ū∗ = 0.95 p.u. and U∗ =
1.05 p.u. aligning to the same safety margins as physics-
constraint scheduling. Nevertheless, average unserved energy

TABLE 2. Faulty assets per contingency.

ENS shown in Fig. 9 considers the wider protection-related
limits to compute the amount of lost load. In case an algo-
rithm avoids all constraint violations of a particular type, no
statistics are shown in the graphics.
One can observe that the purely economic algorithm does

not adhere to the tight voltage band used for scheduling and
consequently shows a considerable number of overvoltage
events near WT2 for all failure types and normal operation.
Given the wider safety-related voltage limits, no violation in
normal operation mode and only a marginal maximum rate
event of 0.029% per asset in case of single-line faults are seen.
Similarly, only a few undervoltage events that mostly occur
on islanding faults are observed for both bounds. Since the
network is designed to host nominal loads without overload
events, all failures that do not involve grid reconfiguration
actions can be tolerated without overload events. However,
for single-line faults, a considerable overload rate of up
to 0.11% is observed. Fig. 8 indicates that due to the reconfig-
uration actions and the nature of the test grid in challenging
algorithms under test, small sized lines such as line 18 as well
as tie lines 35 and 36 are mostly affected. Similar overload
events can be observed on whole-branch failures that include
grid reconfiguration actions as well.
Fig. 9 shows the average unserved energy ENS per day

and failure type. No unserved load is observed in normal
operating scenarios and single-line faults do not trigger as
much loss of load as incidents that result in islanding actions.
To relate the observed loss ENS to the best known solutions, a
lower bound given all assessed algorithms is calculated. For
each input scenario, the best known solution having the least
unserved energy is taken. The lower bound itself also includes
reference runs that cannot be practically implemented and
therefore only serves as a theoretical guidance metric that
describes the best known system performance.
The fault mitigation rates of the economic scheduling

algorithm and all failure types are listed in Table 3. It can
be seen that a large share of single line faults are handled
by the grid reconfiguration algorithm without any indicated
voltage, frequency band, and loading violation but that some
failure conditions cannot be avoided. Specifically, for main-
grid and whole-branch failures that operate parts of the grid in
islandedmode, slightly reducedmitigation rates are observed.
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FIGURE 6. Share of overvoltage events on all time steps considering the tight scheduling-time limits.

FIGURE 7. Share of undervoltage events on all time steps considering the tight scheduling-time limits.

FIGURE 8. Share of overload events on all time steps.
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comprehensive constraints, in total, 74.25% and 82.19% of
all hybrid and perfect hybrid runs, respectively, converge to a
feasible solution. For all other cases, the best known solution
instead of a generic default schedule is taken as a basis for
further evaluations.
Both hybrid variations show few violations of the

scheduling-related tight overvoltage bound, but none of the
algorithms manages to avoid constraint violations at all.
On the contrary, both configurations avoid undervoltage con-
straint violations except for whole-branch failures. Given the
wider voltage bounds, only a few overvoltage events (with a
maximum event rate of 0.011% per asset) in case of single-
line failures and even less undervoltage events (with a max-
imum rate of 0.0020% per asset) in whole-branch failures
actually lead to loss of load. Again, one can observe a con-
siderable number of overload events in case fault reconfigu-
ration actions are taken. In particular, the hybrid and perfect
hybrid algorithms show overload rates of up to 0.13%, 0.12%,
respectively in case of single line faults that are not covered
by the worst-case assumptions.
Fig. 9 still shows a considerable amount of lost load for

both algorithms in case of main-grid and whole-branch faults.
Nevertheless, only 40.18% and 34.80% of the main-grid
fault scenarios that show lost load for hybrid and perfect
hybrid scheduling can be accounted for by infeasible and
nonconvergent cases. In particular the hybrid optimization
run which uses perfect forecasts demonstrates the impact
of worst-case assumptions on the scheduling performance.
Although the real-time measurements in the reference run are
known, hybrid scheduling assumes a full-time outage asworst
case while the validation step asserts three hour fault duration.
Hence, the system state in the validation runs can differ from
the tolerable worst-case assumption and may lead to loss of
load.
As illustrated in Fig. 10, the hybrid and perfect hybrid

evaluation show the average operating costs of $883.01 and
$737.11, respectively. Despite the tight resilience constraints,
both variants still show several scenarios in which earnings
from selling excess energy or consuming electricity in case
of negative grid prices outweigh the cost of generating and
buying electricity.

V. DISCUSSION
In contrast to related work, this assessment covers a large
variety of operating conditions and failure modes. The
method includes an independent evaluation step cleanly sep-
arating the information that is available at scheduling and
real-time. Hence, this work shows several detailed effects
on the system resilience, such as the impact of failures that
are not directly covered by the scheduling algorithms. The
large-scale assessment is driven by an extended power flow
formulation considering a high level of detail such as indi-
vidual device constraints and low-level controls in partially
islanded power systems. Since the method is based on steady-
state power flows, an efficient replication without the need for
dynamic models is expected.

Due to a common set of input scenarios and system con-
figurations, the outcomes of each algorithm can be directly
compared without considering stochastic fluctuations among
single validation runs. Although the highly loaded benchmark
system that is specifically designed to challenge algorithms
under test does not show any safety-relevant events under nor-
mal operating conditions, the implemented fault mitigation
measures call for active grid capacity management in abnor-
mal cases. For instance, severe line overloading events of up
to 380% are observed after grid reconfiguration measures.
Since the grid is operated beyond static worst-case bound-
aries, either the scheduling algorithm or a dedicated dynamic
grid capacity management needs to assign save operating
limits for all relevant assets to avoid such violations.
Given the high fault mitigation rates of economic schedul-

ing ranging from 87.0% at whole-branch faults that include
partially islanded grids to 98.6% at single-line faults that
can be rerouted, it can be seen that even in the challenging
test grid a large share of events can already be handled by
appropriate low-level controls. Nevertheless, a considerable
influence of scheduling-time algorithms on the remaining
events that cannot be fully handled by low-level control
alone is found. For instance, the algorithmic choice shows
significant impact on the unserved energy ENS that incor-
porates severe voltage and frequency violations leading to
loss of load. Hybrid scheduling reduces the average lost load
in case of main-grid outages by 40.5% with respect to the
purely economic baseline. Similarly, robust sufficiency-based
scheduling already achieves an ENS reduction of 15.5% and
a slight decrease of 7.0% can still be seen in the deterministic
sufficiency-constrained case.
Note that all algorithms, except the purely economic base

case directly consider main grid outages but introduce dif-
ferent levels of abstraction to formulate the corresponding
constraints. As such, the least level of abstraction including
the highest level of detail (i.e., the hybrid scheduling formu-
lation) achieves the least unserved load. Nevertheless, even
in case of hybrid scheduling, necessary simplifications such
as whole-day grid outages lead to a significant lost load of in
average 66 kWh on all feasible hybrid scheduling runs. The
increasing share of nonconverging or infeasible scheduling
runs of up to 25.75% in hybrid scheduling and corresponding
lost load further indicates a considerable amount of unserved
energy, that cannot be avoided by studiedmeasures. The same
observation can be made by the lower bound shown in Fig. 9
indicating a significant amount of lost load scenarios that
cannot be avoided by any of the scheduling algorithms.
In contrast to failures that are directly considered by the

scheduling formulations, only a reduced impact of the algo-
rithms on the system performance in case of unconsidered
incidents is observed. Still, hybrid scheduling can reduce the
amount of lost load by 24.3% and 15.5% for single-line and
whole-branch faults, respectively. Nevertheless, other algo-
rithms show even less performance improvement and some
variations such as deterministic sufficiency-based scheduling
with whole branch faults even show a reduced performance.
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From a resilience point of view, all robust formulations can
well handle forecasting deviations and only show marginal
degradation to the idealistic counterparts that assume a per-
fect forecast. For instance, on main-grid faults, only a reduc-
tion in lost load of 2.5% and 2.4% for sufficiency-based and
hybrid scheduling is observed when eliminating forecasting
errors. In the overvoltage chart of Fig. 6, an average over-
voltage rate reduction of 27.9% and 56.0% was observed
for sufficiency-based and hybrid algorithms when assuming
perfect forecasts, but due to safety margins needed to account
for fluctuations such as those induced by the upstream grid,
no major reduction in the loss of load is observed.
A more severe impact of forecasting deviations can be

observed on the operating costs drawn in Fig. 10. Specif-
ically the hybrid scheduling algorithm shows a consider-
able increase in the average operating costs of 19.8% for
the robust variant compared to the perfect forecast. Hence,
advanced forecasting techniques that reduce corresponding
errors can have an impact on the economic performance of
hybrid scheduling. In case of the linear formulation, only a
cost increase of 5.9% of the robust variant compared to the
perfect reference is seen. In general, the observed resilience
gains come with an additional cost for robust sufficiency-
based and hybrid scheduling of 0.7% and 30.8%, respec-
tively. The presented large-scale evaluation method allows
balancing additional costs and benefits on a detailed per-case
basis.

VI. CONCLUSION AND OUTLOOK
Driven by the need of assessing the performance of resilient
(multi-)microgrid scheduling algorithms, this work presents
an extensive assessment method that specifically focuses
on resilience aspects and the impact of scheduling deci-
sions on real-time operation. It is successfully demon-
strated that despite the complex power system model that
includes primary and secondary control as well as emergency
response measures, a large variety of input conditions such as
failure scenarios and RES generation can be practically
covered. Hence, the need for strong simplifications includ-
ing limited operating scenarios is drastically reduced in
practice. Although the method focuses on the individual
assessment of microgrid installations, a detailed case study
already provides several insights into the resilient opera-
tion of (multi-)microgrids, the impact of scheduling algo-
rithms on the system performance, and promising research
perspectives.
Even on the test system that is specifically designed to

challenge scheduling algorithms under test, a large majority
of the assessed failures including 94.2% of all main grid
and 98.6% of all single-line faults can already be mitigated by
low-level control and real-time mitigation techniques alone
without considering resilience aspects in scheduling. Sev-
eral practical applications that tolerate the remaining chance
of lost load therefore justify to focus on purely economic
scheduling without considering resilience aspects.

Nevertheless, the choice of the scheduling algorithm shows
a considerable influence on the remaining outages that can-
not be avoided by low-level controls alone. Specifically, an
influence of the scheduling formulation including the rep-
resentation of physical phenomena and failure modes on
the remaining lost load is found. The advanced hybrid opti-
mization algorithm that considers physical grid constraints
and low-level control at scheduling time shows the greatest
potential in reducing the impact of failures. Hence, it can be
concluded that both future work on and evaluation of resilient
scheduling algorithms needs to put a strong focus on the
representation of physical aspects and on accurately model-
ing failure modes in scheduling. The independent validation
step of the presented assessment method allows to address
such modeling aspects without the need of directly relying
on scheduling-time metrics.
Given the results from references using perfect forecasts,

it can be seen that the forecasting quality has little impact on
the system resilience and that the stochastic phenomena such
as forecasting deviations can be well handled by a few worst-
case scenarios and static safety margins. However, a consid-
erable influence of forecasts on the economic performance
is found. To further reduce operating costs, future work can
put a lever on improving the accuracy of forecasts and on an
improved stochastic representation. Even under perfect fore-
casting conditions, the strict scheduling constraints that target
a full avoidance of any impacts lead to a considerable number
of infeasible problems. Further research on the assessment
of soft constraints permitting a certain level of degradation
and additional flexibility such as load shifting needs to be
undertaken to quantify the impact of such measures.
Future work on the assessment method itself includes

an advanced model of the protection system that allows
to consider cascading faults, more detailed models of the
upstream grid affecting the (multi-)microgrid, as well as
the implementation of additional real-time fault mitigation
and control techniques that can integrate further flexibility.
To include more detailed control and component models,
further improvements on the convergence of islanded power
flow computations are needed. Additionally, work on the
large-scale integration of dynamic simulations can further
raise the confidence in a stable operation in case stability
cannot be assured otherwise. Finally, the presented evidence
on the value of resilient scheduling is limited to a single
thoughtfully evaluated test grid. Further research is needed to
study the proactive scheduling on a large variety of networks
including related benchmarks and real-world systems. This
work in presenting the large-scale assessment framework lays
the foundation of such investigations and provides a tool for
an efficient case-specific analysis.

ABBREVIATIONS

DER Distributed Energy Resource
DG Distributed Generator
ENS Energy Not Supplied
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EV Electric Vehicle
MILP Mixed Integer Linear Programming
PCC Point of Common Coupling
PV Photovoltaic
RES Renewable Energy Sources
RMSE Root-Mean-Square Error
SoC State of Charge
WT Wind Turbine
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