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Abstract

The theoretical study of strongly correlated electron systems is both a fascinating and,
at the same time, also a very challenging task. In particular, within the quantum field
theoretic description of interacting many-electron systems, no small parameter can be de-
fined a priori according to which a perturbation expansion could be safely formulated.
As it turns out, already in situations of intermediate coupling among the electrons, this
can have remarkable consequences: the breakdown of self-consistent perturbation theory,
which manifests itself in the divergences of the two-particle irreducible vertex functions
as well as the associated crossings of the physical with unphysical solutions of the (intrin-
sically multivalued) Luttinger-Ward functional. The occurrence of these nonperturbative
effects poses considerable challenges to the state-of-the-art many-body theory and to the
numerical applicability of several forefront approximation schemes.

In this thesis, one aspect of the breakdown of perturbation theory, namely the diver-
gences of the irreducible vertex functions, is analyzed in different respects. In particular,
as a first step, the appearance of these nonperturbative manifestations throughout the
parameter spaces of several fundamental many-electron models is investigated and sys-
tematically discussed for cases with and without particle-hole symmetry. Thereafter, on
a more fundamental level, the physical origin of the divergences of the irreducible vertex
functions is unveiled. To this end, the way the formation of the local magnetic moment
and its Kondo screening impact the generalized susceptibility in the charge channel is care-
fully analyzed. This study reveals the emergence of characteristic structures in Matsubara
frequency space that originate vanishing eigenvalues, which are associated with the ap-
pearance of irreducible vertex divergences. As a remarkable byproduct of this analysis, an
alternative criterion for the determination of the Kondo temperature on the two-particle
level is identified. Further, the physical implications of the occurrence of irreducible vertex
divergences are studied. As it turns out, the sign change of the associated eigenvalues of
the generalized susceptibility in specific scattering channels can lead to effectively attrac-
tive contributions in these sectors. Ultimately, these contributions are responsible for the
divergence of the isothermal compressibility, observed in the proximity of the Mott metal-
to-insulator transition of the Hubbard model solved by the dynamical mean-field theory.
From a more methodological perspective, different algorithmic strategies for circumvent-
ing the computational problems posed by the breakdown of self-consistent perturbation
theory are reviewed. Because of its potential for future method development, a particular
emphasis is given to the multiloop functional renormalization group (mfRG) scheme for
the fundamental case of the Anderson impurity model, where its performance and physical
content are studied from weak- to strong-coupling. Finally, the multifaceted perspectives
for future studies, inspired by the main results presented in this thesis, are outlined in the
final chapter.
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Deutsche Kurzfassung

Die theoretische Untersuchung stark korrelierter Elektronensysteme ist eine faszin-
ierende und gleichzeitig auch sehr herausfordernde Aufgabe. Insbesondere lässt sich in der
quantenfeldtheoretischen Beschreibung wechselwirkender Vielelektronensysteme a priori
kein Parameter definieren, nach dem eine Störungsentwicklung verlässlich formuliert wer-
den könnte. Wie sich herausstellt, kann dies bereits in Situationen mittlerer Kopplung
zwischen den Elektronen bemerkenswerte Folgen haben: den Zusammenbruch der selb-
stkonsistenten Störungstheorie, der sich in den Divergenzen der zweiteilchen-irreduziblen
Vertexfunktionen sowie den damit verbundenen Kreuzungen der physikalischen mit un-
physikalischen Lösungen des (mehrwertigen) Luttinger-Ward-Funktionals manifestiert.
Das Auftreten dieser nichtperturbativen Effekte stellt die heutige Vielteilchentheorie sowie
die Anwendbarkeit modernster Approximationschemata vor immense Herausforderungen.

In dieser Arbeit wird ein Aspekt des Zusammenbruchs der Störungstheorie, nämlich
die Divergenzen der irreduziblen Vertexfuntionen, in vielerlei Hinsicht analysiert. Als er-
sten Schritt wird das Auftreten dieser nichtperturbativen Manifestationen in mehreren fun-
damentalen Vielelektronenmodellen für verschiedenste Parameter untersucht und system-
atisch für Fälle mit und ohne Teilchen-Loch-Symmetrie diskutiert. Danach wird auf einer
grundlegenderen Ebene der physikalische Ursprung der irreduziblen Vertexdivergenzen
geklärt. Zu diesem Zweck wird sorgfältig analysiert, wie sich die Bildung des lokalen mag-
netischen Moments und dessen Kondo-Abschirmung auf die generalisierte Suszeptibilität
im Ladungskanal auswirken. Diese Analyse offenbart die Entstehung charakteristischer
Strukturen im Matsubara-Frequenzraum, die verschwindende Eigenwerte hervorrufen,
welche wiederum mit dem Auftreten irreduzibler Vertexdivergenzen verbunden sind. Als
bemerkenswertes Nebenprodukt dieser Analyse wird ein alternatives Kriterium zur Bes-
timmung der Kondotemperatur auf der Zweiteilchen-Ebene identifiziert. Des Weiteren
werden die physikalischen Implikationen des Auftretens irreduzibler Vertexdivergenzen
untersucht. Wie sich herausstellt, kann der Vorzeichenwechsel der Eigenwerte der gen-
eralisierten Suszeptibilität in bestimmten Streukanälen zu effektiv attraktiven Beiträgen in
diesen Sektoren führen. Letztendlich sind diese Beiträge für die Divergenz der isothermen
Kompressibilität verantwortlich, die in der Nähe des Mott Metall-zu-Isolator-Übergangs
des Hubbard-Modells, gelöst durch die dynamische Molekularfeldtheorie, beobachtet
wird. Außerdem werden verschiedene algorithmische Strategien zur Umgehung der
methodologischen Hürden betrachtet, die der Zusammenbruch der selbstkonsistenten
Störungstheorie darstellt. Aufgrund des Potenzials für die zukünftige Methodenentwick-
lung wird der multiloop-funktionalen Renormierungsgruppe (mfRG) für den fundamen-
talen Fall des Anderson Störstellenmodells besondere Beachtung geschenkt, wobei deren
Performanz sowie deren physikalischer Inhalt von schwacher bis starker Kopplung un-
tersucht werden. Im abschließenden Kapitel werden die vielfältigen Perspektiven für
zukünftige Studien skizziert, die von den hier präsentierten Ergebnissen inspiriert sind.
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CHAPTER 1

Introduction

Preparing a great espresso is no easy task1. On the one hand, one needs to have a good
understanding of the tools needed to make it. This mainly concerns the portafilter machine
and the coffee grinder. On the other hand, its quality is dramatically influenced by various
parameters, such as temperature, pressure, grinding sets, and many others. Nevertheless,
hunting for the perfect solution to this complex problem, depending on so many factors as
well as the subtle interplay among them, is a fascinating challenge for many people – and
if it works out, a very rewarding one.

Arguably, this recalls the challenges posed by the physics of interacting many-electron
problems. In fact, for systems of strongly correlated electrons the electronic interaction
can no longer be neglected, e.g. due to insufficient screening of the Coulomb repulsion. In
the theoretical description of these problems, it is hence impossible to treat the electrons
individually without considering the presence and the mutual influence of all other elec-
trons. In such cases, the electronic correlation needs to be explicitly accounted for. As an
example, consider the double occupancy, i.e., the expectation value for two electrons with
different spins to occupy the same site (e.g., of the lattice system under consideration). If
the interaction among the electrons is sizable, this quantity will significantly differ from
the product of the two individual occupancies ( ni ,↑ni ,↓ ni ,↑ ni ,↓ ). Of course, this
property generally characterizes all quantities of interest in the study of interacting elec-
trons, featuring collective behaviors, which cannot be deduced solely through the analysis
of the mere elementary constituents of these systems. This concept has been summarized
best by P. W. Anderson in his famous article “More is Different” [1], “The behavior of large
and complex aggregates of elementary particles, it turns out, is not to be understood in terms of
a simple extrapolation of the properties of a few particles.”. While the electronic correlation
makes the theoretical treatment of strongly correlated electron systems significantly more
challenging, it is also in these systems that a plethora of intriguing physical phenomena
are found. As E. Dagotto writes in Ref. [2]: “It is the diversity of behavior, namely the many

1For a scientific approach to this problem, consider e.g. M. I. Cameron, et al. , Systematically Improving
Espresso: Insights from Mathematical Modeling and Experiment, Matter 2, 631-648 (2020) or Chapters 15-17 of The
Craft and Science of Coffee (Academic Press, 2016) edited by B. Folmer. For a more practical perspective the
author of this thesis recommends the YouTube channel of James Hoffmann.

1



2 CHAPTER 1. INTRODUCTION

possible metallic, insulating, magnetic, superconducting, and ferroelectric phases of strongly corre-
lated systems, that makes these types of investigations so exciting”. In many cases, an intricate
competition of different phases is observed, depending on slight changes in one of the
systems parameters, such as doping, pressure, temperature, and many others. A single
glance at e.g., the phase diagram of cuprates (see for example Ref. [2] or Ref. [3]) impres-
sively illustrates this fact. However, in the study of strongly correlated electron systems,
many of these intriguing phenomena are not yet completely understood on a microscopic
level, despite the tremendous international research effort. For instance, unconventional
superconductivity [3–5], one of the many “perfect espressi” strongly correlated electron
systems have to offer, remains one of the most exciting puzzles to date. Progress on many
frontiers, both theoretically and experimentally, will be needed to tackle this challenge.

In this thesis, we focus on a crucial aspect of the theoretical description of electronic
correlation. Namely, on the physical and algorithmic implications of the fundamental
nonperturbative nature of interacting electron systems in condensed matter physics.

We recall that due to the vast number of degrees of freedom in many-electron systems,
a quantum field theoretic (QFT) description is indispensable. This formalism, described
in details in textbooks such as Refs. [6–9], shares many similarities with the perturbative,
Feynman-diagrammatic, formalism of quantum electrodynamics (QED). There is however
one crucial difference: For solid-state systems, no small parameter can be defined a priori,
such as the fine-structure constant for QED. In fact, when the electronic interaction is not
sufficiently screened, the corresponding energy scales can be of the same order of magni-
tude as the kinetic energy (or of other relevant energy scales of the system). This makes
a perturbative many-body treatment not rigorously justified and potentially dangerous.
A self-consistent perturbative treatment might even completely fail to describe pivotal as-
pects of the system under investigation, featuring what we define as “the breakdown of
perturbation theory” [10–12]. In particular, fundamental equations of the many-electron
theory, such as the Bethe-Salpeter (BSE) or the parquet equations (both introduced below),
can become non-invertible for specific parameter sets. This corresponds to divergences of
the building blocks of these equations [10] – the two-particle irreducible vertex functions.
The analysis of these divergences will be the central topic of this thesis. As it turns out,
their appearance is related [12] to an intrinsic multivaluedness [11] of the Luttinger-Ward
functional (LWF), a central quantity for the description of many-electron problems. In spite
of the increasing interest for this topic in the last years [10–28], some fundamental ques-
tions remained unanswered, particularly concerning the physical origin and the physical
implication of the breakdown of perturbation theory.

The aim of this thesis can be concisely summarized as the investigation of the following
four questions:

• In which cases are the different manifestations of the breakdown of perturbation the-
ory (irreducible vertex divergences and crossings of solutions of the LWF) appearing,
and how are they connected?

• What is the underlying physical mechanism that triggers the perturbative breakdown?
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• Are there physical implications of the appearance of irreducible vertex divergences?

• What are the algorithmic implications of the breakdown of the perturbative expan-
sions, and are there possible strategies for circumventing them?

The structure of the thesis is organized as follows:

Chapter 2 serves as an introductory chapter, where all the basic concepts needed for the
subsequent discussions are recalled. This concerns, on the one hand, the many-electron
models of interest for this thesis and, on the other hand, the QFT formalism on the two-
particle level, necessary for studying the breakdown of perturbation theory. Finally, the
analytical and numerical methods used to compute the quantities of interest are also
mentioned or briefly discussed.

Chapter 3 focuses on the first central question of this thesis. Here, the subject of the
divergences of the irreducible vertex functions is introduced and thoroughly discussed2.
Subsequently, the other relevant manifestation of the breakdown of perturbation theory,
i.e., the multivaluedness of the LWF, is concisely reviewed and the connection among both
nonperturbative aspects is then summarized. Eventually, the numerous manifestations of
the breakdown of perturbation theory in different many-electron models are discussed in
detail, highlighting their ubiquity in the many-electron physics.

Chapter 4 presents an important theoretical advancement obtained in the course of this
thesis. Specifically, we discuss how fundamental physical effects of many-electron systems
are encoded in the QFT description on the two-particle level and, in particular, in the
frequency structures of the generalized susceptibilities. Thanks to this progress, qualitative
and quantitative insights on the two-particle scattering processes are gained allowing for
a clear-cut answer to the second central question of this thesis.

Chapter 5 targets the third main question of this thesis, i.e., the physical implications of
the irreducible vertex divergences. After discussing how the crossing of a divergence of
the irreducible vertex, can be, to a certain extent, interpreted as a sign-flip of the effective
electronic interaction, we identify a specific physical phenomenon, which is directly linked
to the breakdown of perturbation theory: the increase of the isothermal compressibility in
the proximity of the critical endpoint of the Mott metal-to-insulator transition (MIT) in the
Hubbard model, solved by dynamical mean-field theory.

Chapter 6 discusses the last question listed above: the challenges posed by the break-
down of perturbation theory to algorithmic methods and possible workarounds. Several

2Since the topics of the divergences of irreducible vertex functions as well as the multivaluedness of the LWF
are comparably new subjects, not yet encoded in textbooks or review articles, some sections of this thesis have
partly a review character (namely, parts of Chapter 3 and Secs. 6.1 and 6.2). In these parts, in order to provide a
self-contained reading material, recent literature results are concisely summarized and corresponding figures,
where necessary, replotted.



4 CHAPTER 1. INTRODUCTION

cutting-edge approaches for the description of many-electron systems are summarized,
with a primary focus on the so-called multiloop functional renormalization group, whose
convergence and physical properties are investigated in great detail.

Finally, in Chapter 7, the main achievements of this thesis are summarized and the most
relevant future directions for the research on these topics are outlined.

At the end of the thesis, a list of publications is provided, together with a short summary
of the personal contributions of the author to these publications. Throughout the thesis,
vertical bars mark parts taken from already published work of the author of this thesis.
Please note that these parts were slightly modified, if necessary, to better match the text.
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problem, ranging from dilute magnetic ions dissolved in host metals, up to correlated lattice
systems. For a comprehensive introduction we recommend the following textbooks [9, 30,
31], which also represented the basis for the following discussion.

2.1.1 Anderson impurity model

The Anderson impurity model (AIM) is one of the most fundamental models in the field of
correlated many-electron systems. It was originally introduced by P. W. Anderson [32] in
order to describe magnetic impurities in non-magnetic metallic hosts. In his paradigmatic
work the AIM was introduced and treated by a self-consistent Hartree-Fock method in
order to identify the parameter sets for which a magnetic impurity, i.e., a singly occupied
impurity site, would be realized. The structure of the Hamiltonian of the AIM, which
is given below, reflects the central idea of Ref. [32] that is to distinguish between free
conduction-band electrons and a local interacting site, where both elements are connected
by a hybridization term. In the case of interest for this thesis, the impurity site has a single
non-degenerate level, as in Ref. [32]. Extensions to degenerate impurity levels are of course
possible [9, 30, 32], they are, however, not considered here.

The Hamiltonian of the AIM reads as follows [30]:

H
σ

d c†d ,σcd ,σ + Und ,↑nd ,↓

+

k,σ
kc†k,σck,σ (2.1)

+

k,σ
(Vkc†d ,σck,σ + V∗

kc†k,σcd ,σ)

In the first line the impurity site terms are given, where d corresponds to the one-
particle energy of the impurity level and U is the local interaction strength, which con-
tributes only if the site is doubly occupied. c†d ,σ/cd ,σ creates/annihilates an electron on
the impurity site and nd ,σ is given by c†d ,σcd ,σ. The second line describes the energy of
the non-interacting conduction electrons with k being the dispersion relation and c†k,σ
and ck,σ being the corresponding creation and annihilation operators, respectively. The
wavevector k is restricted to the first Brillouin zone. In the third line the hybridization
onto/off the impurity site (Vk/V∗

k) is given.

The specific AIM considered throughout this thesis is characterized by the following
simplifications and parameters choices: The hybridization strength is assumed to be k-
independent, Vk V , where V is set to V 2 and energy is measured in units of V/2 1.
The non-interacting density of states (DOS) ρ( ) for the conduction electrons is chosen
to be box-shaped, ρ( ) 1/2DΘ(D − | |), where D is the half bandwidth, which is set to
D 10. The AIM is considered in the half-filled case, d −U/2. These choices ensure
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Figure 2.1: A sketch of the Anderson impurity model, showing the basic elements of the Hamil-
tonian in Eq. (2.1) in a schematic fashion: A box-shaped density of states (grey), hybridization
onto/off the impurity site from/to the electron bath (blue) and the interacting doubly-occupied
impurity site (orange). Figure taken from [29].

that the hybridization function Δ(ν),

Δ(ν)
k

V2

iν − k

∫
ρ( ) V2

iν − −i
V2

D
arctan D

ν
, (2.2)

as well as the non-interacting Green’s function,

G0(ν) 1
iν − Δ(ν) , (2.3)

are purely imaginary. A sketch of the AIM with these specific parameter choices can be
found in Fig. 2.1.

In the following, we summarize some important physical effects that are described
by the AIM. Our discussion mainly concerns the formation of a local magnetic moment
on the impurity site and its interplay with the conduction electrons, which will play an
important role throughout this thesis. A thorough review of the physics of the AIM and
the related Kondo problem can be found for example in the textbooks by A. C. Hewson [30]
or P. Coleman [9]. We start by considering simple limiting regimes of the AIM, and focus
on the question in which cases a magnetic impurity site is found.

2.1.1.1 Atomic limit

The atomic limit (AL) of the AIM is obtained by only considering the impurity terms in
Eq. (2.1) (corresponding to setting V 0), for which the Hamiltonian can be diagonalized
straightforwardly. In this case„ the Hilbert space reduces to four states, which are shown
schematically in Fig. 2.2. The non-magnetic states of an empty or doubly occupied impurity
site have the energies 0 or 2 d + U, respectively. The magnetic states of a single electron
with spin ↑ or ↓ in the impurity orbital have the energy d . By setting d −U/2 (ensuring
perfect particle-hole symmetry), the magnetic states become the degenerate ground-states
of the atomic limit of AIM.

Physically, the study of the AL proves to be quite insightful, since it describes a situation
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2.1.1.3 The local moment regimes of the AIM

Evidently, the physics described by the full AIM is significantly richer than the one of
the two limiting cases considered above. In P. W. Anderson’s original calculation [32] the
question of the local moment formation was studied by using a Hartee-Fock treatment.
For this mean-field case the condition U > Uc πΔ0 [9, 30, 32] was identified to control
whether a magnetic solution, i.e., a singly occupied impurity site, was present or not.

Beyond the mean-field picture, this problem can be treated in the strong-coupling limit
by using a Schrieffer-Wolff transformation [9, 30]. This is applicable, e.g., for the following
parameter set [30]: d +U F, d F and | d +U − F |, | d − F | Δ0, where F is the
Fermi-energy [30]. In particular, for the specific AIM studied throughout this thesis these
constrains hold since in most cases U > 2 is considered and

Δ0 πρ0V2 π/5 < 1 ; d −U/2 .

The main results of this canonical transformation can already be obtained by projecting
the Hamiltonian onto the subspace of a singly-occupied impurity site, see Sec. 1.7 of [30].
In this way, the occupation of the impurity site is fixed and an effective Hamiltonian is
obtained, which describes a spin model, the so-called “s-d” model4. The most relevant
part of this Hamiltonian is given in the following and describes the interaction of the local
moment on the impurity site with the spins of the conduction electrons, see Eq. (1.64)
of Ref. [30]. The part not shown, merely represents a potential-scattering term (which
vanishes for half filling) and the energy of the conduction electrons [30].

Hs−d
k,k

Jk,k S+c†k,↓ck ,↑ + S−c†k,↑ck ,↓ + Sz(c†k,↑ck ,↑ − c†k,↓ck ,↓) (2.5)

Here, Jk,k represents the coupling constant between the impurity spin and the spin of the
conduction electrons, which originates from the original hybridization term of the AIM
after the projection onto the singly-occupied subspace. In particular, for a k-independent
hybridization explicitly reads (cf. Eq.(1.73) of [30]):

Jk,k V2 1
d + U − k

+
1

k − d
, (2.6)

which effectively describes an antiferromagnetic coupling of the magnetic moment of
the impurity site, with the spins of the bath electrons. While the relation with the s-d model
is important for relevant aspects of the physics described by the full AIM, naturally the full
AIM represents a physically more complex case, as it also describes charge fluctuations.

2.1.1.4 The Kondo problem and the AIM

In general, the study of impurity magnetic moment interacting with the conduction elec-
trons at different temperature scales represents a fascinating and insightful problem. In

4 Note that this mapping is formally and conceptually similar to the mapping of the half-filled Hubbard
model at strong coupling to an Heisenberg model.
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Figure 2.3: An example for a second order spin flip process, which is responsible for the temperature-
dependent scattering amplitudes, eventually driving the logarithmic increase at low-T in the elec-
trical resistivity. A conduction electron with wave vector k and spin down (↓) is scattered into
an intermediate state k ↑, where the spins of both, the conduction electron and the impurity are
flipped. The conduction electron is then scattered to the final state k ↓. Figure taken from [29].

fact, this underlies the so-called Kondo effect, as well as the Kondo problem, i.e., the highly
non-trivial T → 0 limit of the Kondo effect. In the following, we provide a brief historic
summary targeted at the introduction of the famous Kondo temperature (sometimes also
referred to as Kondo scale), which will be highly relevant for later chapters. We start by
recalling the Kondo effect.

What is nowadays known as the Kondo effect goes back to the theoretical explanation
of the experimentally observed resistivity minimum in metallic alloys of non-magnetic
metals containing small amounts of transition metals. For low-temperatures, instead of
a monotonically decreasing resistivity (as one would expect based on the conventional
electron-phonon and electron-electron contributions, which typically yield a ∝ T5 and a
∝ T2 contribution, respectively), one finds an increase which shows a ∝ − ln(T) behavior.
As J. Kondo first showed in 1964 [34], the − ln(T) term in the resistivity appears due to the
interaction of the conduction electrons with localized magnetic moments. In his work, he
used second order perturbation theory for the s-d model (see Eq. (2.5)), sufficient to also
describe spin-flip processes, which are shown diagrammatically in Fig. 2.3. The solid lines
represent the conduction electron, while the local moment of the impurity site is shown
as a dashed line. There are of course further examples of such a second order scattering
process, which altogether yield a temperature-dependent scattering amplitude [9, 30]. By
considering a dilute random distribution of impurities in the metal, the resistivity of the
conduction electrons is given by

R(T) aT5
+ R0 − cimpR1 ln kBT

D
, (2.7)

, see Eq. (2.58) of Ref. [30], where the concentration of impurity sites in the metallic host is
given by cimp , and R1 contains among other constants the coupling J (assumed here to be
k-independent). This expression yields a minimum of the resistivity (Tmin ∝ c1/5

imp), which
is weakly dependent on the concentration of impurities.

On a more general perspective, while this result correctly describes the resistivity min-
imum, it also poses a new problem, namely the T → 0 behavior. Using the treatment
described above, the limit T → 0 leads to an artificial logarithmic divergences of the resis-
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tivity and other response functions, such as the specific heat or the magnetic susceptibility,
which is not observed in experiment. The study of the T → 0 behavior of the Kondo effect
became known as the Kondo problem, a long-standing problem of theoretical solid-state
physics, whose development is briefly outlined in the following.

The approach followed by A. A. Abrikosov [35] consisted of summing up leading
logarithmic terms of higher order scattering processes. However, this did not solve the
problem, since the different physical response functions diverge even at a finite temperature
in this case: The Kondo temperature, which in the framework of this treatment reads [30]:

kBTK ∝ De−1/2Jρ0 . (2.8)

Here, ρ0 is the constant value of a box-shaped density of states and J is again the k-
independent coupling strength.

In the so-called Poor Man’s scaling method, P. W. Anderson found another way to attack
this problem [36]. In this scaling approach the bandwidth D is gradually reduced, which
is compensated for by a renormalization of the coupling strength J. However, for the
antiferromagnetic case of interest, a divergence of the coupling J is found, as soon as the
scaling reaches energies5 of the order of kBTK.

Nevertheless, this intuitive approach helped to inspire the development of the nonper-
turbative renormalization group approach by K. G. Wilson [37], which eventually provided
definite answers to the problem of the T → 0 limit. In fact, it could be shown that the
Kondo temperature actually represents a crossover temperature [9, 30]: While at higher
temperatures (T > TK but lower than U) the local moment is free, displaying a ∝ 1/T
Curie-behavior, it gets gradually screened by the conduction electrons as the temperature
is reduced. For very low-temperatures of T TK this results in a fully quenched local
moment, as the conduction electron spins and the impurity moment tend to form a spin
singlet state. This results in a temperature-independent contribution to the resistivity and a
constant contribution to the magnetic susceptibility. Furthermore, in this low-temperature
regime all physical quantities turn out to be universal functions of the energy scale kBTK.
Moreover, as the work by P. Nozières from 1974 showed [38], in the very-low-temperature
case, the problem can be analyzed as a Landau Fermi-liquid, due to the presence of a sharp
Kondo resonance at the Fermi level, with a width of the order of kBTK. The resulting phys-
ical picture throughout the full temperature range is best illustrated by the phase-diagram
shown in Fig. 2.4, which was taken from the textbook by P. Coleman [9], see Fig. 16.11
therein.

These findings were later confirmed by analytic results for the s-d model obtained by
a Bethe-Ansatz approach [9, 30]. In fact, also the AIM can be treated in this way, which
allows to obtain an analytic expression for the Kondo temperature of the AIM. In the case

5Throughout this work kB is set to unity kB 1 and usually neglected in expressions, however in this part
it is included explicitly for consistency with the referenced literature.
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Figure 2.4: Phase-diagram of the Anderson impurity model, where the local moment regime is
shown in orange, and the Fermi-Liquid regime is shown in blue. This figure was taken from
Ref. [9], see Fig. 16.11 therein.

of D U (i.e., the wide-band limit) it reads

kBTK 0.4107 U
Δ0
2U

1/2
e−πU/8Δ0+πΔ0/2U (2.9)

This equation can be found in the textbook by A. C. Hewson [30] (Eq. (6.109) therein), where
the numerical factor 0.4107 is derived from a comparison with numerical renormalization
group calculations for the AIM performed by H. R. Krishna-murthy et al. [30, 39, 40]. The
Kondo temperature can also be obtained numerically from calculations for the magnetic
response function χm , which is discussed explicitly in Sec. 4.1. A comparison of the analytic
expression for TK given in Eq. (2.9) and the numerical results for the specific AIM used
throughout this thesis can be found in Sec. 3.1.3.

This concludes the concise historic review of the local moment physics of the AIM and
the Kondo problem. Let us point out that even nowadays, several decades after the solution
by Krishna-murthy and Wilson, the AIM still plays an essential role in the description of
the correlated electron systems. For instance, it represents a crucial part of the Dynamical
Mean Field Theory (DMFT) solution of the Hubbard model [41], which is discussed below
in Sec. 2.3.1. On the other hand also the Kondo problem in itself is still a very relevant
research topic, for example for quantum dot applications, see e.g., Ref. [42]. Let us at this
point also refer to a recent experiment performed by I. V. Borzenets et al. [43], where the
spatial extent of the Kondo screening cloud could be experimentally observed and its size
quantitatively estimated to be of the order of micrometers.

2.1.2 Periodic Anderson model

A natural extension of the Anderson impurity model with a single impurity site is the
periodic Anderson model (PAM). The crucial difference to the AIM lies in the fact that now
each lattice site is characterized by a strong local electrostatic interaction U and, at the
same time, a hybridization with a non-interacting conduction band. The PAM plays an
important role in modern solid-state physics, as its application range from e.g., studies
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of heavy-fermion systems [9], to quantum criticality [44] and many more. Further, for
large interaction values, it can be mapped to a spin-lattice model, the so-called Kondo
lattice model [9]. While several versions of the corresponding Hamiltonian can be found
in the literature [9, 30], we provide here the one relevant for the application of the PAM in
Chapter 4, which can be found in the work by T. Schäfer et al. [44] (see Eq. (1) therein) or in
a very similar version also in Ref. [41].

H
iσ

f f †iσ fiσ + U
i

n f ,i↑n f ,i↓

+

k,σ
kc†k,σck,σ (2.10)

+ V
iσ

( f †iσciσ + c†iσ fiσ)

Similarly as for the AIM, the first line of Eq. (2.10) describes the locally interacting
terms, which now also have a lattice site index i. f †iσ/ fiσ refers to the creation/annihilation
operator for electrons on the interacting sites, f is the corresponding energy and U
the strength of the local interaction. In the second line, the term describing the non-
interacting conduction electrons is given, where k is their dispersion relation. The last
line corresponds to the hybridization term, where V is the k-independent hybridization
strength.

For the most relevant application of the PAM in Chapter 4, its specifications read
as follows: The PAM is considered on a two-dimensional lattice with nearest neighbor
hopping only. The corresponding dispersion relation of the conduction electrons reads

k −2t[cos(kx) + cos(ky)], where t is the hopping amplitude and kx and ky are restricted
to the first Brillouin zone ∈ [−π, π] (the lattice constant a is put to unity throughout.) The
interaction strength is fixed to U 4t and instead the hybridization V is varied.

2.1.3 Hubbard model

As the last of the three fundamental models of correlated electron systems considered in
this thesis, the Hubbard model (HM) is discussed. Its introduction goes back to the works
of J. Hubbard [45], J. Kanamori [46] and M. C. Gutzwiller [47]. In the one-band version,
which will be of interest throughout this thesis, it already captures the important interplay
between the kinetic (i.e., the hopping) and the potential (i.e., the interaction) energy of
correlated lattice systems. While its expression might look deceptively simple, no analytic
solution of the HM for the general case is known. Exact solutions exist only for the one-
dimensional and the infinite-dimensional (or infinite lattice coordination number z) case,
which is given by the DMFT solution (see Sec. 2.3.1) but not for the physically most relevant
cases of two and three dimensions.

For a general introduction to the model, and its connection and importance to solid-state
physics, we refer to introductory textbooks, such as e.g., [9] and [8] and for collections of
pertinent works, see e.g., Ref. [48]. A comprehensive analysis more focused on the HM itself
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(s. Chapter 4) as well as the enhancement of the isothermal compressibility (s. Chapter 5)..
Additionally, in this section, we will also introduce the fundamental classes of two-particle
Feynman diagrams, i.e., two-particle reducible and -irreducible ones, and their mutual
relations in the form of the parquet- and the Bethe-Salpeter equations.

The following discussion is based mainly on Ref. [33] (and also Ref. [54]), where the
two-particle correlation functions have been introduced for the local problem, which is
also the most relevant case for this thesis. A more recent introduction of the two-particle
formalism of generalized susceptibilities and Feynman diagrams can be found in Ref. [51],
where the definitions are given for the more general k-dependent case. For textbooks
which introduce the many-body QFT formalism on a more general level (offering also a
detailed treatment of the one-particle level), we refer the interested reader to e.g., Refs. [6,
9, 30, 31]. More specialized treatments of particular aspects of the two-particle formalism
of interest for this thesis, can be found, for example, in the books of the Jülich “Modeling
and Simulation” series, e.g., [49], as well as Refs. [55–59].

We start our introduction of the two-particle (2P) formalism with the definition of the
local one-particle (1P) Green’s function [33, 54]:

G1,σ1σ2(τ1 , τ2) Tτc†σ1(τ1)cσ2(τ2) (2.12)

Here, Tτ represents the time-ordering operator, putting later times to the left, and the
thermal expectation value 1/Z Tr(e−βHO) is denoted by O , where Z is the partition function
Z Tr(e−βH ) and β 1/T the inverse temperature. In Eq. (2.12), c†σ1(τ) and cσ2(τ) refer to
creation and annihilation operators of particles at imaginary time τn with spin σn {↑, ↓}.
While this explicit formulation is directly applicable to the local Green’s functions, one
can easily introduce operators with additional indices representing, e.g., lattice sites i or
momenta k, orbitals l and others, see Refs. [54] or [51]. Hence, while we mostly focus on
the local case throughout this work, where necessary we will provide the definition for the
k-dependent case.

To provide an intuitive understanding for the 1P Green’s function, one can consider the
following cases: For τ1 > τ2 a hole is created at the imaginary time τ2 with spin σ2, which
propagates through the system before being removed from it at τ1. G1,σ1σ2 hence represents
the transition amplitude for such a process, where the hole probes the system along its
propagation, allowing to gain essential information about the physics of the many-electron
system under consideration. For the other case of τ1 < τ2, the same is true for a particle
propagating through the system.

The natural next step, which represents a significant increase in the level of complexity,
is to consider the 2P Green’s function, which describes the propagation of two particles (or
of a particle and a hole) [33, 51, 54].

G2,σ1σ2σ3σ4(τ1 , τ2 , τ3 , τ4) Tτc†σ1(τ1)cσ2(τ2)c†σ3(τ3)cσ4(τ4) (2.13)

Usually, instead of directly working with the 2P Green’s function, one extracts the so-
called generalized susceptibility from G2 and G1 since this is the object which can be most
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tion6 of two different kinds of scattering processes, which are illustrated in Fig. 2.6. In the
left panel the process of a particle scattering with a hole is depicted and the Matsubara
frequencies are correspondingly given in the ph-notation. In the right panel two particles
scatter and the diagram is shown in its natural pp-notation. In both diagrams in Fig. 2.6 a
bosonic frequency ω is transferred (where hole propagators are associated with negative
energies). It is worth noting that though indicated with the same symbol, the transfer
frequencies for the ph- and the pp-processes are defined differently.

The generalized susceptibility in ph-notation χνν ωph ,σσ reads [33, 51, 54] :

χνν ωph ,σσ

β∫
0

dτ1dτ2dτ3 e−iντ1 e i(ν+ω)τ2 e−i(ν +ω)τ3 (2.17)

× χσσ (τ1 , τ2 , τ3)
β∫

0

dτ1dτ2dτ3 e−iντ1 e i(ν+ω)τ2 e−i(ν +ω)τ3

× [ Tτc†σ(τ1)cσ(τ2)c†σ (τ3)cσ (0)
− Tτc†σ(τ1)cσ(τ2) Tτc†σ (τ3)cσ (0) ] .

In the pp-notation the generalized susceptibility is given as follows [33, 51, 54]:

χνν ωpp ,σσ

β∫
0

dτ1dτ2dτ3 e−iντ1 e i(ω−ν )τ2 e−i(ω−ν)τ3

× χσσ (τ1 , τ2 , τ3) .

As one can easily verify, both notations are related by a specific frequency shift: χνν ωpp ,σσ

χνν (ω−ν−ν )ph ,σσ [33, 51, 54]. Note that in the following we focus on the ph channel and hence
omit the subscript χνν ωph ,σσ χνν ωσσ . Where necessary we provide the explicit expression for
the pp channel.

The generalized susceptibility describes all scattering processes, in particular including
also the independent propagation of the particle-hole or particle-particle pair. From a
diagrammatic perspective, it is hence useful to split χνν ωσσ into the following two parts [33,
51, 54]:

χνν ωσσ −βGσ(ν)Gσ(ν + ω)δνν δσσ − Gσ(ν)Gσ(ν + ω)Fνν ωσσ Gσ (ν + ω)Gσ (ν ) (2.18)

Here, Fνν ωσσ represents the so-called full vertex (in the ph channel). It contains all possible
vertex corrections, i.e., all 2P diagrams, where the propagating particle and hole interact
with one another. The specific form of the first term of Eq. (2.18) can be understood

6Of course, all processes are included in χσσ (τ1 , τ2 , τ3), the notation merely concerns which scattering
process is the one that is naturally described in the given notation, such that no frequency shifts are needed.
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− …

Figure 2.10: Diagrammatic representations of the Dyson equation (Eq. (2.23)) (a) and the BSE in the
charge channel (Eq. (2.22)). Upper panel: The dashed line refers to a non-interacting G0, the full to
a full G.

Refs. [33, 54] (Eq. (B6) in Ref. [33]).
In the ph channel the generalized susceptibility is related to the irreducible vertex

Γph ,r Γr as follows [33, 51, 54]

χνν ωr χνν ω0 − 1
β2
ν1ν2

χνν1ω0 Γν1ν2ωr χν2ν ωr , (2.22)

where r c ,m refers to the charge or magnetic channel8.
Structurally, one immediately notes that the BSE expresses the generalized suscepti-

bility in terms of a geometric series of the irreducible vertex Γ in the form of a matrix
multiplication9. Hence, while in the case of Eq. (2.19), the full vertex F is obtained from χ
by a mere subtraction of χ0 and division of the four legs (i.e., the four 1P Green’s functions),
this is not the case for the irreducible vertex. Formally, the BSE needs to be inverted in
order to obtain the irreducible vertex Γ. In fact, this represents a perfect 2P analogue to
the 1P case of the Dyson equation, which relates the Green’s function and the (one-particle
irreducible) self-energy Σ, as follows:

G G0 + G0ΣG → inversion → Σ G−1 − G−1
0 . (2.23)

The structural similarity between the 1P Dyson equation and the 2P BSE also clearly
emerges from the visual comparison of their diagrammatic representations in Fig. 2.10.

By inversion of Eq. (2.22), one thus obtains an explicit expression for the irreducible
vertex in the charge and magnetic channel, which reads [33, 54]

Γνν ωr χ−1
r
νν ω − χ−1

0
νν ω (2.24)

8The ph channel is connected to the ph one by the crossing- and the SU(2) symmetry, and hence Γr for
r c ,m are the only independent functions for the two channels, see further Refs. [33, 54].

9Throughout, the summation over one (or more) fermionic Matsubara frequency indices goes along with
one (or more) 1/β factors [33, 54].



22 CHAPTER 2. MODELS, FORMALISM AND METHODS

Similarly, in the particle-particle channel, we consider the ↑↓ component, which reads
as follows [33, 54]10 (see Eq. (B25) in Ref. [33]):

χ̃νν ωpp ,↑↓ − 1
β2
ν1ν2

χνν1ωpp ,0 − χ̃νν1ωpp ,↑↓ Γ̃
ν1ν2ω
r χν2ν ωpp ,0 , (2.25)

where χ̃νν ωpp ,↑↓ χν(ω−ν )ωpp ,↑↓ and Γ̃ν1ν2ωr Γ
ν1(ω−ν2)ω
r . By inverting Eq. (2.25) for Γ̃ν1ν2ωr one

gets [33, 54]

Γ̃νν ωpp ,↑↓ (χ̃pp ,↑↓ − χpp ,0)−1 νν ω
+ χ−1

pp ,0
νν ω (2.26)

In Chapter 3, Eqs. (2.22), (2.24), (2.25) and (2.26) will play an important role for the
investigation of divergences of the irreducible vertex functions.

2.2.3 Connection to physical response functions

After these general definitions we briefly discuss how the generalized susceptibility is
related to experimentally accessible response functions.

For the already introduced charge and magnetic channel, the corresponding local
physical response functions χc(ω) and χm(ω) are defined as follows [41, 54]:

χc(ω) 1
2

β∫
0

dτe iωτ [n↑(τ) + n↓(τ)][n↑(0) + n↓(0)] − δω,0 n↑ + n↓ 2 (2.27)

χm(ω) 1
2

β∫
0

dτe iωτ [n↑(τ) − n↓(τ)][n↑(0) − n↓(0)] − δω,0 n↑ − n↓ 2 (2.28)

These response functions encode the information whether a fluctuation in the charge
or magnetic channel is long- or short-lived in (imaginary) time11. As a particularly simple
example one can consider the local magnetic moment in the atomic limit case, where χm(τ)
(as well as χc(τ)) stays constant, as the spin operator (the charge operator) is a constant of
motion in the AL, yielding after a Fourier-transform, a Kronecker-delta contribution at the
Matsubara frequency ω 0. A detailed discussion of the temperature dependence of the
local response functions in the charge and spin sector, for the AL as well as the AIM, can be
found in Sec. 4.1. In general, the physical response functions introduced above describe,
within the linear response formalism, how the system reacts to a (not-too-strong) external

10For the pp channel there is also a coupling between different spin components in the BSE. This can however
be decoupled in a different way, by using the crossing symmetry, which also underlies the expressions given
here, see Refs. [33, 54], explicitly Appendix Bc. of Ref. [33], for more details. Alternatively, one can define a
singlet and triplet channel for the pp channel analogously to the charge and magnetic one, which is however
not relevant for this thesis [33, 54].

11For a more quantitative evaluation of the timescales of the physcial (e.g., screening) processes, an analytic
continuation to real time/real frequencies would be needed. The latter would also allow for a direct comparison
with, e.g., inelastic neutron scattering data, which is however not the subject of this thesis. We refer the
interested reader to Refs. [60–63].
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dynamical or static perturbation. For details see, e.g., Chapter 6 in Ref. [64] and Chapter 6
of Ref. [65].

The important case of ω 0 corresponds to the static/isothermal response of the
system [62, 66], and will be mostly relevant throughout this thesis.

The physical response functions can be computed from the generalized local ones
introduced before, by performing a sum over all fermionic Matsubara frequencies [33, 51,
54]:

χc(ω) 1
β2
νν

χ νν ωc T2

νν

(χ νν ω↑↑ + χ νν ω↑↓ ) , (2.29)

χm(ω) 1
β2
νν

χ νν ωm T2

νν

(χ νν ω↑↑ − χ νν ω↑↓ ) , (2.30)

as the double sum over ν, ν corresponds to taking equal times between pairs of fermionic
operators, which is necessary to build the corresponding observables. From the diagram-
matic point of view, this corresponds to closing the external fermionic lines of the diagrams
shown in Fig. 2.7.

2.2.4 Properties of generalized susceptibilities

In this section we focus on the eigenvalues and eigenvectors of the local generalized charge
(r c) and magnetic (r m) susceptibilities χνν ωr in the ph channel and on the ↑↓
component in pp notation (r pp, ↑↓). These eigenvalues and eigenvectors of χνν ωr will
play a central role in the investigation of the appearances of irreducible vertex divergences,
discussed in Chapter 3.

Here, we first recall how symmetries of the underlying Hamiltonian (such as the SU(2)
symmetry) and fundamental relations (such as the complex conjugation) are reflected in
the properties of the generalized susceptibility χνν ωσσ . As a second step, we restrict ourselves
to the static case (ω 0) and separately consider the half-filled and out-of-half-filled case.

In Table 2.1 we reproduce a subset of relations for the generalized susceptibilities, which
can be found listed in Refs. [23, 54]. As mentioned above, these are a direct consequence of
the general symmetries of the underlying Hamiltonian. For example, as discussed in the
previous section, the SU(2) symmetry relates different spin-components of the generalized
susceptibility χνν ωσσ to one another. The “swapping” relation in Table 2.1 can be derived by
applying the crossing symmetry twice, i.e., fully exchanging the outgoing and incoming
particles [23]. Note that the last line holds only in the particle-hole symmetric case, which
coincides with the half-filling (µ U/2) condition for the AIM. Also in the case of the HM,
µ U/2 ensures particle-hole symmetry, since only nearest neighbor hopping terms are
taken into account.

With the help of these general relations forχνν ωσσ precise statements about its eigenvalues
and eigenvectors can be made, as explained in the following. As anticipated before, we
will now set ω 0 for a given channel r, since this is the case studied most frequently
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Symmetry Relation

SU(2) χνν ωσσ χνν ω(−σ)(−σ ) χνν ωσ σ

Complex conjugation χνν ωσσ
∗
χ(−ν )(−ν)(−ω)σ σ

SU(2)
χ(−ν )(−ν)(−ω)σσ

Time reversal χνν ωσσ χν νωσ σ
SU(2)
χν νωσσ

Swapping (ph) χνν ωph ,σσ χ(ν +ω)(ν+ω)(−ω)ph ,σ σ

Swapping (pp) χνν ωpp ,σσ χ(−ν−ω)(−ν −ω)(ω)pp ,σ σ

Particle-hole (µ U/2) χνν ωσσ
∗
χνν ωσσ

Table 2.1: Symmetry relations for the generalized susceptibility χνν ωσσ , see Refs. [23, 54]. If no
subscript referring to the ph or the pp notation is given, the relation for χνν ωσσ holds in the same
way for both notations.

in the literature on the irreducible vertex divergences [10, 12, 13, 17–19, 21, 22, 26, 67,
68], and hence the most relevant for this work. Hereafter, we omit the bosonic frequency
superscript ω to improve the readability, χνν (ω 0)

r χννr . In this way, χννr can be regarded
as a matrix in fermionic Matsubara frequency space. If no specific index regarding the
notation is given, the ph notation is considered.

2.2.4.1 Half filling

Parts of this chapter, marked by a vertical bar, have already been published
in the APS journal Phys. Rev. B. 101, 155148 (2020).

At half filling each lattice site (or the interacting site of the AIM) is on average occupied
once: ni ni ,↑ + ni ,↓ 1. As it can be seen in the last line of Table 2.1, for the
Hamiltonians considered, this ensures that all matrix elements of χννr are real as a result of
the perfect particle-hole symmetry. Further, due to the time-reversal and SU(2) symmetry,
χννr is a symmetric matrix. Both properties are summarized in the following equations [26]
(see Ref. [26] for the more general version for arbitrary ω).

χννσσ
∗ PH

χννσσ (2.31)

χννσσ
TR
χν νσ σ

SU(2)
χν νσσ (2.32)

Mathematically, a real symmetric matrix can be spectrally decomposed in the following
way:

χννr
i

V r
i (ν) λr

i V r
i (ν ) , (2.33)
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where λr
i are the eigenvalues and V r

i (ν) the associated eigenvectors. Note that since χννr

is a real symmetric matrix for the particle-hole symmetric case, it can be diagonalized as
χr VT DV , where D is a diagonal matrix and V an orthogonal matrix. In this case the
eigenvalues are guaranteed to be real and the eigenvectors V r

i (ν) are real and form an
orthonormal basis.

A second crucial equality can be found by using the complex conjugation in combination
with the SU(2)- and the particle-hole symmetry [23, 26].

χννσσ
PH
χννσσ

∗ CC
χ(−ν )(−ν)σ σ

TR
χ(−ν)(−ν )σσ (2.34)

A matrix with the property given in Eq. (2.34) is referred to as a centrosymmetric matrix.
Since χννr fulfills both Eq. (2.32) and Eq. (2.34) at half filling, it is a so-called bisymmetric
matrix:

χννσσ χ(−ν)(−ν )σσ and χννσσ χν νσσ (2.35)

This ensures that the matrix elements of χννr are symmetric with respect to the diagonal
(ν ν ) and, at the same time, with respect to the secondary diagonal (ν −ν ), see also
the schematic representation in Fig. 2.11.

For the sake of a self-contained presentation, we summarize some mathematical liter-
ature on bisymmetric and centrosymmetric matrices [69–71] in the following, since these
properties will be relevant throughout the thesis. First, we focus on centrosymmetric
matrices before taking also the symmetry described in Eq. (2.32) into account in a second
step.

Centrosymmetric matrices In the following we consider the centrosymmetric matrix
H, a 2n × 2n matrix, where n is the number of positive/negative fermionic Matsubara
frequencies. As H is a centrosymmetric matrix it fulfills the following condition

JH J H (2.36)

where J is the counteridentity matrix (J2 1) given in Eq. (2.37)

J

0 . . . 0 1
...

...
... 0

0 1 ...
...

1 0 . . . 0

0 J
J 0

. (2.37)

If J is multiplied from the right, it inverts the columns of a matrix, if it is multiplied from
the left, the rows are inverted. As one can easily see, for χννσσ this implies

Jχννσσ J Jχν(−ν )σσ χ(−ν)(−ν )σσ χννσσ , (2.38)
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which is true for our case, see Eq. (2.34).
If H is a centrosymmetric matrix, the following condition holds, where the submatrices

A, B, C,D are n × n matrices

H
A B
C D

(2.36)
JH J

A B
C D

0 J
J 0

A B
C D

0 J
J 0

0 J
J 0

BJ AJ
D J CJ

JD J JCJ
JBJ JAJ

(2.39)

⇒ D JAJ & B JCJ . (2.40)

This means that the centrosymmetric matrix H can be written in the following form

H
A JCJ
C JAJ

. (2.41)

Eigenvalues and Eigenvectors Centrosymmetric matrices have a very useful property.
Their eigenvalues can be obtained from the diagonalization of specific combinations of the
submatrices A and C, corresponding to either symmetric or antisymmetric eigenvectors.
Consider an eigenvector v of H

Hv λv | · J →
JHv λ Jv

H Jv λ Jv , (2.42)

where we used Eq. (2.36) and J2 1. From this it follows that Jv is also an eigenvector of
H corresponding to the eigenvalue λ, i.e.

Jv av , (2.43)

with a 0, being the eigenvalue of J and since J is an orthogonal matrix: a ±1. This leads
to either antisymmetric or symmetric eigenvectors v. In terms relevant for our discussion
this means that
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v
v
Jv

or
v

−Jv
with

neg. Matsubara
frequencies

pos. Matsubara
frequencies

, (2.44)

where v is a 2n × 1 vector and v is a n × 1 subpart of it.
Next, we consider λS, an eigenvalue corresponding to a symmetric eigenvector HvS

λSvS

A JCJ
C JAJ

v
Jv

λS
v
Jv

(2.45)

⇓
(A + JC)v λSv . (2.46)

In a similar fashion one finds for λA, corresponding to an antisymmetric eigenvector

A JCJ
C JAJ

v
−Jv

λA
v

−Jv
(2.47)

⇓
(A − JC)v λAv (2.48)

This shows that the centrosymmetric matrix H has eigenvalues λS obtained from
diagonalizing A+ JC, which also gives the non-trivial parts v of the symmetric eigenvectors
vS. On the other hand one observes that λA corresponds to antisymmetric eigenvectors
obtained from the diagonalization of the submatrices A − JC.

In the following, a very elegant way to demonstrate this block structure of H is pre-
sented, which will proof to be very practical in Chapter 3.

Block-diagonalization Using the following orthogonal matrix Q (QQT 1)

Q
1√
2

1 −J
1 J

(2.49)
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one can block-diagonalize a centrosymmetric matrix H

QHQT 1
2

1 −J
1 J

A JCJ
C JAJ

1 1

−J J

1
2

1 −J
1 J

A − JC A + JC
C − JA C + JA

1
2

2(A − JC) 0

0 2(A + JC)
A − JC 0

0 A + JC
(2.50)

revealing the previously discussed block structure.

Bisymmetric Matrices As stated above, due to the SU(2)- and the time-reversal symmetry
the centrosymmetric matrix H considered is in fact bisymmetric, see Eq. (2.35). This has
important consequences for the submatrices A and C introduced earlier

H HT (2.51)
A JCJ
C JAJ

AT CT

(JCJ)T (JAJ)T , (2.52)

as J JT one finds A AT immediately. For C the following equation holds

CT JCJ → CT JT JC → (JC)T JC . (2.53)

This means that the combination of submatrices yielding the eigenvalues and the
corresponding symmetric or antisymmetric eigenvectors, is itself symmetric, ensuring
together with the particle-hole symmetry that the obtained eigenvalues are real

(A ± JC)T AT ± (JC)T (2.53)
A ± JC . (2.54)

The discussion of the general properties of bisymmetric matrices reported above and its
specific impact on the generalized susceptibilities χννr can be summarized as follows [26]:
χννr can be block-diagonalized into an antisymmetric and a symmetric block:

QχrQT A 0
0 S

, (2.55)

where A is the submatrix which contains eigenvalues λr
i of χννr with strictly antisymmetric

eigenvectors V r
i (ν) −V r

i (−ν) and S is the block which contains the symmetric ones
V r

i (ν) +V r
i (−ν). Based on these insights the physical response (see Eqs. (2.29) and (2.30))
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can be rewritten using Eq. (2.33):

χr(ω 0) 1
β2
ν,ν

χννr
i

λr
i wr

i , (2.56)

where wr
i refers to a weight factor which is a strictly real non-negative number (wr

i ≥ 0),
whose explicit expression in terms of the corresponding eigenvectors reads:

wr
i

1
β
ν

V r
i (ν)

1
β
ν

V r
i (ν ) . (2.57)

Due to the summation of the eigenvectors V r
i (ν), it is obvious that all weight factors

corresponding to an antisymmetric eigenvector are zero. Hence the associated contribu-
tions λr

i wr
i of the entire antisymmetric block A to the physical response in Eq. (2.56) cancel

and have no contribution at half filling [26].
The properties for the half-filled case are summarized below in Table 2.2 and a schematic

representation of χννr for the lowest Matsubara frequencies is shown in Fig. 2.11.

2.2.4.2 Out of half filling

In the more general case, where the system is not at half-filling, ni ni ,↑ + ni ,↓ 1
and/or the underlying Hamiltonian is not particle-hole symmetric, the property of the last
row of Table 2.1 is no longer guaranteed (χνν ωσσ )∗ χνν ωσσ .

In the following, we focus first on the ph channel quantities χννr c ,m for which the
following equality is true [67]

χννσσ
∗ CC

χ(−ν )(−ν)σ σ
TR
χ(−ν)(−ν )σσ . (2.58)

A matrix with this property is a so-called centrohermitian matrix [72], where all matrix ele-
ments are symmetric with respect to the center of the matrix under a complex conjugation.
Further, since time-reversal and SU(2) symmetry evidently hold also out of half filling,
Eq. (2.32) remains valid, and hence χννr c ,m is a symmetric centrohermitian matrix. Note
that this also means that χννr is no longer a hermitian matrix.

In this case, the generalized susceptibility is not guaranteed to be diagonalizable as
χr V−1DV , which is the generalization12 of χr VT DV for matrices with complex
entries. However, in all cases where it can be diagonalized, χr can be expressed as follows:

χννr c ,m
i

V r
i
−1(ν)λr

i V r
i (ν ) , (2.59)

where the eigenvalues λr
i can be either real or complex conjugate pairs [67, 72] (see also

the Appendix of Ref. [73]) and V r
i
−1(ν) refers to an eigenvector of the V−1 matrix. The

corresponding physical response can be then written as in Eq. (2.56) with the weights

12Note that χννr c ,m is not a normal matrix ([χννr c ,m]∗χννr c ,m χννr c ,m[χννr c ,m]∗), and thus cannot be diago-
nalized as V∗DV , with V being a unitary matrix V∗V 1.
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PH symmetry given PH symmetry broken

χνν (ω 0)
r c ,m bisymmetric centrohermitian and symmetric

λr
i ∈ R ∈ R

C as complex pairs λr
i , λ

r
i

V r
i (ν) ∈ Rn V r

i (ν) +V r
i (−ν) symmetric

V r
i (ν) −V r

i (−ν) antisymmetric
∈ Cn

wr
i ∈ R≥0 {x ∈ R | x ≥ 0} ∈ R

C as complex pairs wr
i , w

r
i

Table 2.2: Properties of the static local generalized susceptibility χνν (ω 0)
r , its eigenvalues λr

i ,
eigenvectors V r

i (ν) and weights wr
i in the charge and magnetic channel (r c ,m) for a case with

(first column) and without (second column) particle-hole symmetry (PH). Note that for χνν (ω 0)
pp ,↑↓

the properties of the first column apply also without the PH symmetry, see Eq. (2.61) and (2.62).

defined as [67]
wr

i
1
β
ν

V r
i
−1(ν) 1

β
ν

V r
i (ν ) . (2.60)

We now consider the particle-particle channel for which an important difference in the
swapping symmetry to the ph case, see Table 2.1, becomes crucial when considering the
out-of-half-filling case. In fact, using the swapping symmetry (SP) for the pp channel in
combination with the SU(2) symmetry the following equality can be found [23]:

χννpp ,σσ
SP(pp)

χ(−ν)(−ν )pp ,σ σ
SU(2)
χ(−ν)(−ν )pp ,σσ (2.61)

which means that χννpp ,↑↓ is a centrosymmetric matrix independently of the particle-hole
symmetry. Even more so, taking the complex conjugation and the time-reversal symmetry
into account, it can be shown that the static χννpp ,↑↓ remains a real matrix also out of half
filling:

χννpp ,σσ
(2.61)
χ(−ν)(−ν )pp ,σσ

TR
χ(−ν )(−ν)pp ,σ σ

CC
χννpp ,σσ

∗ (2.62)

Hence, for the static χννpp ,↑↓ all properties and equalities of the highly symmetric half-
filled case are still valid out of half filling. This demonstrates that the violation of the
particle-hole symmetry does not directly affect the general properties of the static pp
sector. With regard to Eq. (2.26), it is straightforward to see that the additional pp bubble
term χνν (ω 0)

pp ,0 −βG(ν)G(−ν)δνν −βG(ν)G∗(ν)δνν is real.

In Table 2.2 we summarized all properties ofχνν (ω 0)
r and the corresponding eigenvalues,-

vectors and weights. In Fig. 2.11, χνν (ω 0)
r is sketched for the lowest Matsubara frequencies,

illustrating the centrosymmetric and centrohermitian properties. Note that throughout this
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Ref. [19]):

Γνν ω 0
σσ β

δΣσ(ν)
δGσ (ν ) (2.65)

While Φ[G] can in general not be obtained in closed form, it can be calculated by a
diagrammatic perturbation expansion as the limit of an infinite series of skeleton dia-
grams [74], or in a nonperturbative manner by using a functional-integral approach, see
Ref. [75].

The LWF plays an important role for fundamental quantum many-body theory, since
e.g., approximations, which are based on an expression for the LWF, so-called "Φ"-derivable
approximations, in which Σ and Γ are obtained as functional derivatives of a given ap-
proximation for Φ[G], are guaranteed to fulfill the conservation laws of the underlying
microscopic theory [76]. Such approaches are referred to as “conserving” [51], where one
of the best known examples is e.g., the self-consistent Hartee-Fock for Σ together with the
random phase approximation (RPA) for the generalized susceptibility [11, 51]. Another
example is the dynamical mean-field theory, see Sec. 2.3.1, where all local diagrams are
included in the corresponding Φ[G] [51, 77]. In this respect, let us also note, that the func-
tional derivatives of Φ[G] and the fulfillment of microscopic conservation laws are related
to the validity of the so-called Ward identities, which are fulfilled in conserving theories,
and broken if the approach is not conserving [51, 56].

2.3 Methods

After the introduction of the many-electron models most relevant for this thesis, providing
the definitions for the two-particle correlation functions, and including a comprehensive
discussion of their spectral properties, we now turn to a concise presentation of the methods
used to treat these models and obtain the two-particle quantities of interest. In the first
part we recall the basic idea underlying the well-known dynamical mean-field theory,
specifying also the impurity solver employed throughout this thesis, before focusing on
diagrammatic approaches that approximate the class of fully irreducible vertices: the
parquet approximation and the functional renormalization group.

2.3.1 DMFT

The dynamical mean-field theory (DMFT) is one of the most important methods available
to the field of strongly-correlated electron systems (for a detailed review see e.g., Ref. [41],
for textbooks see e.g., Refs. [31, 49, 64] and for introductory articles summarizing key
aspects of the DMFT see Refs. [78, 79]). This is due to the fact, that it allows for a
nonperturbative treatment of correlated lattice systems. By using DMFT, intrinsically
strong-coupling phenomena such as e.g., the Mott-Hubbard metal-insulator transition can
be systematically described, see below.

The central approximation of the DMFT lies in neglecting the momentum dependence
of the self-energy Σ(k, ν) → Σ(ν). This approximation can be understood by considering
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Weiss-field [64]. Physically, one obtains in this way an embedded atom connected to a
self-consistently determined bath, which is defined by the following local action [41, 49,
64] (or equivalently by the Hamiltonian defined in Sec. 2.1.1):

Simp −
β∫

0

dτ

β∫
0 σ

c∗d ,σ(τ)G−1
0 (τ − τ )cd ,σ(τ ) + U

β∫
0

dτnd ,↑(τ)nd ,↓(τ) (2.66)

where the c∗d ,σ(τ)/c∗d ,σ(τ) are now Grassman numbers, and the Fourier-transformed effec-
tive bare propagator reads G−1

0 (iν) iν − d − Δ(iν) (cf. Eq. (2.3)).
Based on the impurity action the impurity Green’s function can be obtained in the path

integral formalism as [49]:

Gimp,σ(iν) − 1
Z

∫
σ

Dc∗d ,σDcd ,σcd ,σ(iν)c∗d ,σ(iν) exp(−Simp) (2.67)

with Z being the partition function, which in path integral formalism is given by [49]

Z
∫

σ

Dc∗d ,σDcd ,σ exp(−Simp) . (2.68)

Now, as the impurity Green’s function of the AIM is used as a representation of the local
Green’s function of the lattice model, at self-consistency, one requires that the following
expression holds [64]

Gloc(iν) 1
V

k
G(k, iν) Gimp[iν,Δ] (2.69)

where V corresponds to the volume in the first Brillouin zone, and the k-dependent Green’s
function of e.g., the one-band Hubbard model under consideration reads

G(k, iν) 1
iν + µ − k − Σ(k, iν) . (2.70)

Using the central DMFT approximation of a k-independent self-energy Σ(k, iν)
Σloc(iν) as well as that Σloc(iν) is represented by the self-energy of the AIM: Σloc(iν)
Σimp(iν) Σ(iν), one can write down the following self-consistency equation based on
Eq. (2.69) (see Eq. (11) of Chapter 3 of Ref. [64])

Gimp[iν,Δ]
k

1
G−1

imp[iν,Δ] + Δ(iν) − k
. (2.71)

Here the Dyson equation Σ(iν) G−1
0 − G−1

imp and d −µ was used.
In Fig. 2.13 we provide a sketch of the DMFT algorithm, which is iterated until the

self-consistency condition is fulfilled. The bottleneck in this scheme is the calculation of
the impurity Green’s function based on G0, for which e.g., a continuous-time quantum
Monte-Carlo (CT-QMC) algorithm can be used, as was done throughout this work. The
details of the specific solver applied here can be found in Sec. 2.3.1.2.
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Figure 2.15: Left panel: Schematic representation of the MIT as obtained from DMFT for a Hubbard
model, where a magnetically ordered phase is suppressed to low-temperatures. The first-order
transition ends in a critical endpoint, for higher temperatures a crossover is found. The red line
denotes the parameter sets where the minimum of the free energy is found, the blue region delimited
by the white transition lines Uc1(T) and Uc2(T) represents the coexistence region.Taken from [64]
(see Fig. 5 of Ch. 3). Right panel: Specific DMFT calculation for Hubbard model on a Bethe lattice
(half-bandwidth D 1) at half filling, where the coexistence region is shown in blue. The plot was
provided by M. Pelz based on calculations performed throughout his Master thesis, see Ref. [84].

mostly disregarded by enforcing the symmetries of the paramagnetic phase. The hysteresis
represents a coexistence region, where both, a metallic and an insulating phase can be
found. This first order transition ends in a critical endpoint at Tc . For temperatures larger
than Tc a crossover is found. In the right panel of Fig. 2.15 a specific calculation of the
coexistence region of the Hubbard model on a Bethe lattice at half filling, performed by
M. Pelz, is shown [84].

2.3.1.2 Quantum Monte Carlo

Throughout this thesis to obtain the one- and two-particle quantities a continuous-time
quantum Monte-Carlo (CT-QMC) impurity solver is employed. Specifically, we use the
solver provided by the open-access w2dynamics package [85] in the 1.0.0 version. This
is a CT-QMC algorithm in the hybridization expansion (CT-HYB), where we refer to the
literature [86] for details on the method. In general we exploited the segment sampling
method, which is suited for the density-density type interactions (Un↑n↓) of interest to
this thesis, see Ref. [86] for details. In some specific parts (where mentioned explicitly)
we also use worm sampling [87, 88] together with symmetric improved estimators [89], to
significantly reduce the high-frequency noise for e.g., the self-energy.

2.3.2 Parquet approximation

The diagrammatic methodologies introduced in this and the following subsection will be
used in several occasions throughout this thesis. Both are based on (i) a complete set of
equations, which relates the one- and two-particle level, as well as (ii) an approximation
for the fully 2PI vertexΛ. The goal of these approaches is always to obtain a self-consistent
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specific) way. For comprehensive reviews targeted at problems that are of interest to this
thesis we refer to Refs. [98] and [99], a brief summary can be found in Chapter 11 of Ref. [64]
or also in the Appendix D of Ref. [52]. Central to the fRG method is the introduction of
a scale-dependent non-interacting propagator GΛ0 , which enters the quadratic part of the
action, see e.g., Eq. (2.66). Based on thisSΛ an effective actionSΛeff can be defined which acts
as the generating functional for one-particle irreducible vertices, e.g., the self-energy Σ or
the full vertex F. The fRG flow then refers to an exact functional flow equation forSΛeff, which
can be expanded in terms of fields, yielding an infinite hierarchy of coupled differential
(i.e., flow) equations [64], the so-called Wetterich equation [98, 100]. In this hierarchy, the
flow equation for the one-particle irreducible (1PI) n-particle vertex, depends on the 1PI
(n+1) vertex. In most practical applications, this system of coupled differential equations
is truncated at the two-particle level, hence describing how the self-energy Σ and the full
vertex F evolve as the scale Λ is changed from its initial value Λi to its final one Λ f . The
way this scale dependence is introduced is referred to as “cut-off”, where in this work the
following two cut-offs are considered:

GΛ0
ν2

ν2 +Λ2 G0 with Λi ∞, Λ f 0 , (2.73)

where G0 is the non-interacting Green’s function of the system. Since this cut-off is de-
pending on the frequency ν it is called “frequency” cut-off, or also Ω flow. The second
cutoff acts similarly as switching on an interaction, hence termed U cut-off or U flow.

GΛ0 ΛG0 with Λi 0, Λ f 1 . (2.74)

The fRG flow equation ofΣΛ is determined by the full vertex FΛ contracted with the so-
called single-scale propagator SΛ −GΛ(∂ΛGΛ0

−1)GΛ, which is related to the differentiated
propagator G≡∂ΛGΛ by G SΛ + GΛΣΛGΛ [98]. For simplicity, we omit the superscript Λ
in the following. The flow equation for F further involves the three-particle vertex F(6) [98].
If F(6) was known at all scales, the flow of Σ and F would be exact. This would imply,
in particular, that every specific Λ dependence or cutoff choice, as in Eqs. (2.73) or (2.74),
would yield the same result at the end of the flow. In practice, however, F(6) can hardly
be treated numerically and its effect on the flow of Σ and F can only be accounted for
approximately. As a consequence, the results of such truncated fRG flows will generically
depend on the choice of the cutoff.

The most widely used fRG implementations neglect F(6) entirely, yielding approximate
1 flow equations for Σ and F [98]. The contributions of F(6) that amount to self-energy
derivatives can be added to the vertex flow by substituting S → G. This “Katanin sub-
stitution” [101] is labelled by 1 K throughout. A further refinement, which effectively
incorporates the three-particle vertex to third order in the renormalized interaction, is
obtained by the two-loop (2 ) vertex corrections [101, 102].

Subsequently, the multiloop fRG extension (mfRG) [103–105] was introduced to incor-
porate all those contributions of F(6) to the flow of Σ and F ensuring that their right-hand
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Πl , in Eq. (2.76). Since it includes self-energy (and not vertex) corrections from F(6), the
results of the 1 K flow are plotted between those for 1 and 2 in Chapter 6.

Multiloop flow The multiloop flow further includes the contributions from F(6) which are
generated by vertex corrections. These can be ordered by loops, leading to the expansion
Φl ≥1Φ

( )
l [103, 104]. Here, Φ(1) already includes the Katanin substitution to account

for the self-energy corrections as above. The higher-loop terms, > 1, are determined by

Φ
( )
l Φ

( −1)
l̄

◦Πl ◦ F + F ◦Πl ◦Φ( −1)
l̄

( ≥ 2) (2.77a)

+ F ◦Πl ◦Φ( −2)
l̄

◦Πl ◦ F ( ≥ 3), (2.77b)

where Φl̄ l l Φl . Equation (2.77a) with 2 corresponds to the 2 flow, while the
so-called center part Φ( )

l ,C F ◦Πl ◦Φ( −2)
l̄

◦Πl ◦ F of Eq. (2.77b) contributes only for ≥3.
Both lines of the multiloop contributions to Φl are shown in the second line of Fig. 2.18.

In order to fully generate all parquet diagrams, the self-energy flow also acquires
a multiloop correction [104], where ph is for practical reasons renamed to xph in the
following expression

Σ Σstd + (1 + F ◦Πxph) ◦Φ ¯xph,C · G, (2.78)

where Φ ¯xph,C ≥3Φ
( )

¯xph,C
.

The above-mentioned procedure outlines the “traditional” way of viewing the mfRG
equations as corrections to the fRG flow equations, which restore the total derivative
by taking the effect of F(6) in the flow equations of Σ and F fully into account. Let us
also highlight here the work by F. Kugler and J. von Delft [105], which offers a different
perspective on the mfRG equations, in many ways closer to the concepts already presented
in this thesis: As a starting point the parquet equation is used, see Sec. 2.2.1, which holds
for any propagator. The idea of the authors was hence to replace G → GΛ and derive
the flow equations for the two-particle vertex, given above. Similarly, the SDE introduced
in Sec. 2.3.2, was used to derive the flow equation for the self-energy together with the
multiloop corrections mentioned above. In this way it becomes evident that solving the
mfRG equations is equivalent to calculating the PA solution.

Equations (2.77a),(2.77b) and (2.78) define the mfRG procedure, which will be used in
Chapter 6 of this thesis. The numerical solution of this system of differential equations,
often referred to “flowing”, is done by a Runge-Kutta solver, implemented in a C++ frame-
work designed by N. Wentzell. Details on the implementation can be found in Refs. [94,
96, 106]. Let us note here that, similarly as in the PA case, the mfRG framework can also be
used with a different irreducible vertex as a staring point, as it will be discussed explicitly
in Chapter 6.
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Fig. 3.1. Already at intermediate interaction values (note that U is measured in units of
4t 1 in the referenced work), well below Uc of the corresponding MIT, a divergence of
the irreducible vertex in the charge channel for the static case, Γνν (ω 0)

c , is observed (first
row panels2). As it can be seen in Fig. 3.1, the behavior of Γc completely contradicts the
predictions by second-order perturbation theory, shown in the second row of Fig. 3.1. Not
only the order of magnitude is wrong, as one could have expected, but the sign-flip of the
entire low-frequency structure in Γννc is missed by perturbation theory. The insets in the
second row panels of Fig. 3.1 report an eigenvalue of the static generalized susceptibility
in the charge channel χνν (ω 0)

c χννc , which crosses zero at the divergence of Γc . This
connection can be understood by inserting the spectral decomposition for the half-filled
case of χννr (see Eq. (2.33)) into the inverted Bethe-Salpeter equation for the irreducible
vertex in the charge or magnetic channel r c ,m (see Eq. (2.24)):

Γ
νν (ω 0)
r c ,m

i

V r
i (ν) λr

i
−1

V r
i (ν ) − χ−1

0
νν
. (3.1)

The same equation can also be written in matrix-product form for the pp↑↓ channel, in
which case however the spectral decomposition for χν(−ν )pp ,↑↓ −χννpp ,0 needs to be considered [19,
22], see Eq. (2.26).

Eq. (3.1) represents indeed a crucial relation for the further discussion of this thesis:
By increasing the interaction, the eigenvalues of χννc (which are all positive at U 0) get
gradually suppressed, and some of them can even cross zero and become negative [12].
For repulsive U the same consideration applies to the pp↑↓ channel, for attractive U, this
applies to the magnetic channel [26]. Evidently, each time an eigenvalue λr

i crosses zero,
the irreducible vertex function diverges [10, 12, 13, 17–19, 21–23, 25, 26]. In practice,
searching for singular eigenvalues of χννr is also the way how the divergences of Γr are
traced throughout the phase diagram of the model under investigation, see Refs. [19, 22,
29, 107] for further details on this topic. Let us at this point make a couple of important
remarks concerning Eq. (3.1):

(i) Eq. 3.1 can also be written for ω 0, see e.g., Ref. [19] or Ref. [23]. However, in this
thesis only the irreducible vertex divergences at ω 0 are considered since this is also the
case analyzed most frequently in the literature [10, 12, 17–19, 21, 22, 25, 26]. The interested
reader can find an analysis of the appearance of divergences of Γr also for the case ω 0
in Ref. [23].

(ii) Eq. 3.1 holds for half filling. Using Eq. 2.59, a similar expression can be formulated
for a (diagonalizable) case out of half filling, however, not always the same conclusions can
be drawn, which will be further discussed in Sec. 3.1.4.

(iii) As a last point, we note that a divergence of the irreducible vertices is indeed
produced by singular eigenvalues of χννr , since the second contribution, [χ−1

0 ]νν ([χ−1
pp ,0]νν

in case of r pp ↑↓), is merely the nonsingular inverse of the bubble-term.
Turning back to Eq. (3.1), one must note that, close to a vertex divergence, the eigenvalue

determining the divergence, e.g., λi α is vanishingly small, and hence its inverse is clearly

2In the conventions of this thesis β2Γνν (ω 0)
c is shown in Fig. 3.1, cf. Ref. [10] and Ref. [19].
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Figure 3.3: For the same parameter set used for the calculation shown in Fig. 3.2 a direct comparison
of Γννc (left) and [λα]−1Vα(ν) ⊗ Vα(ν ) (center) is shown, whose difference is plotted in the right
panel (note the difference in the colorbars on the right side of the corresponding plots).

for a categorization of the divergences, discussed further below.

Irreducible vertex divergences and the full vertex F After defining the divergences of
the irreducible vertex functions let us point out a crucial aspect before discussing their
appearance. As discussed above, the divergence of the irreducible vertex functions Γννr is
caused by singular eigenvalues of the generalized susceptibility χνν ωr , i.e., by the inversion
of the corresponding BSE (cf. Sec. 2.2.2) which contains singular contributions. The full
vertex F, on the other hand, remains finite in such a case. How this happens can be
analytically understood by reformulating Eq. (2.19) for the static local full vertex Fννr in
channels4 r c ,m as follows:

Fννr χ−1
0
νν − 1

β2
ν1ν2

χ−1
0
νν1χν1ν2r χ−1

0
ν2ν (3.3)

1
β2
ν1ν2

χ−1
r
νν1 − χ−1

0
νν1

Eq. (2.24)

χν1ν2r χ−1
0
ν2ν

1
β2
ν1ν2

Γνν1r χ
ν1ν2
r χ−1

0
ν2ν .

From the first line, it becomes clear that the singular eigenvalues λr
i → 0 of χννr have

a vanishing contribution to F, since χννr enters directly instead of being inverted. The
reformulation in the second and third line illustrates how the divergence of Γννr , originated
by [χ−1

r ]νν , is compensated for by the matrix multiplication with χννr .
This fact is (presumably) also the reason why the divergences of the irreducible vertex

functions were first fully described only in 20135 in Ref. [10].

4Note that the same argument can be made for the pp ↑↓ channel.
5In fact, the irreducible vertex divergences were observed for the first time 2011 in calculations performed

in the group of M. Jarrell, see the first ArXiv version in Ref. [108]. This result was however discarded in the
published version of this article [109]
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3.1.1 Manifestations of vertex divergences at half filling

In the following parts, we focus on the numerous manifestations of irreducible vertex di-
vergences in different models. To this end, we present an overview of their appearances in
this as well as the following Sec. 3.1.4, whereas in the former, we will address the particle-
hole symmetric case (half filling); in the latter, we will focus on the results obtained for
problems with broken particle-hole symmetry (out of half filling). A particular emphasis
will be naturally given to results where the author of this thesis contributed to the calcula-
tion or the interpretation, while all the other findings of the literature, which are relevant
for this work, are concisely reviewed.

Throughout, we consider two-particle calculations for the static case (ω 0), which is
treated most frequently in the literature [10, 12, 17–19, 21, 22, 25, 26]. In general, for any
model we are going to discuss, we first present the corresponding phase diagram. These
explicitly show the parameter sets for which one (or more) eigenvalue of the generalized
susceptibility in channel r crosses zero, corresponding to the so-called (vertex) divergence
lines. Second, we characterize the irreducible vertex divergences by considering the sym-
metry of the corresponding singular eigenvectors. At the end of each subsection, a short
summary of our analysis is given (colored boxes with bullet points), which highlights the
relevant points for the discussion of this thesis (and allows for a quicker reading of this
chapter).

3.1.1.1 Divergences in the atomic limit

The first model considered, due to its relative simplicity, is the atomic limit (AL), which
has been defined in Sec. 2.1.1.1. At half filling (µ −U/2), the model is fully characterized
by the temperature T and the interaction U, since there is no hopping term included in the
Hamiltonian. The advantage of this simplified model is that analytic expressions for the
full vertex F, the generalized susceptibility and the irreducible vertex are available [23, 33].
Nevertheless, the physics realized by this model is far from being trivial.

In Fig. 3.6 the T-U diagram of the AL for repulsive interaction U at half filling is shown,
which was taken from Ref. [19]. As it turns out, two groups of lines along which the
irreducible vertex diverges are found, which are shown as red and orange lines in the main
panel of the figure. All divergence lines originate form U 0 at T 0, which means
that there is no critical interaction value that needs to be reached before irreducible vertex
divergences start to appear, as opposed to other cases discussed below.

The red divergence lines mark parameter sets where the static irreducible vertex in the
charge channel Γνν (ω 0)

c diverges. These divergences are driven by eigenvalues associated
to eigenvectors with a particular frequency structure [19, 23]:

V c
ν (ν)

1√
2
δνν − δν(−ν) (3.6)

with ν (2n − 1)πT, being a fixed fermionic Matsubara frequency7. These eigenvectors

7Note that in Chapter 2 the fermionic Matsubara frequencies were defined as ν (2n + 1)πT, which does







3.1. THE DIVERGENCES OF THE IRREDUCIBLE VERTEX FUNCTIONS 53

3.1.1.2 Divergences in disordered models

In the next part we summarize the problem of irreducible vertex divergences for disordered
models, solved by DMFT. The advantage of these models is that the divergences can be
analyzed analytically, as in the AL case, in spite of the presence of a nonzero hopping
amplitude t. However, in contrast to the AL, these models essentially describe non-
interacting electrons, between which interaction-like aspects, as the appearance of nonzero
self-energies and vertex functions, are effectively introduced by averaging over random
distributions of impurities. As a result, these models do display a MIT, and, in this way, the
effect of metallic/Fermi-liquid behavior on divergence lines can be studied in a simplified
way.

Irreducible vertex divergences have been reported for the Falicov-Kimball (FK) model
in DMFT [13, 17, 19], as well as the binary-mixture (BM) model in DMFT in Refs. [19, 23,
26]. Here we focus on the BM, since this allows for particularly transparent calculations
for the discussion made below in Sec. 3.2. The BM is characterized by the following
Hamiltonian [19]:

H −t
i j ,σ

c†iσc jσ +

i ,σ
i c†iσciσ , (3.8)

where i ±W
2 is randomly distributed with equal probability and mimics the effect of an

electron-electron interaction. W refers to the associated disorder strength. More details on
this model and underlying calculations can be found in Ref. [19] (specifically, in Section III
and Appendix D therein).

As in the AL case, also for the BM, frequency localized divergences of the irreducible
vertex function are found, which are completely determined by a characteristic energy
scale ν∗BM [19]:

ν∗BM(W) 2W2 − 1
4W

. (3.9)

More specifically, as soon as a Matsubara frequency ν is equal to ν∗BM , a divergence of
Γc occurs9, the resulting divergence lines are shown in Fig. 3.7 and defined by the previous
relation as [19] (see Eq. (20) therein):

Tn(W) 1
π(2n − 1)

2W2 − 1
4W

. (3.10)

Hence, as for the red lines of the AL, all divergence lines can be rescaled to coincide by a
factor (2n − 1). Note that for the BM, the energy scale ν∗BM can be related to the minimum
of the Green’s function G(ν) [19, 23].

However, the divergence lines for the BM demonstrate a crucial difference w.r.t. the
ones of the AL: They start from a critical disorder strength W 1/√2, which is smaller
than the one associated to the MIT (WMIT 1). This property of the irreducible vertex

9Note that for the BM, Γ↑↓ vanishes [19], hence the “charge” channel for the BM is given solely by the Γ↑↑
contribution, i.e., Γc Γ↑↑.
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T/U of the AL divergences, which determines the behavior of the HM divergence lines at
large U.

As the temperature is reduced, the divergence lines of the HM show a bending (“re-
entrance”), whose shape seems to suggest a relation to the MIT [10, 19]. The bending of
the divergence lines is, however, incomplete, and hence the T → 0 endpoints of the first
divergence lines are found at finite U values, see more explicitly Appendix B of Ref. [19]
and Fig. 13 therein. As in the case of the disordered models, the first vertex divergences are
found already at interaction values significantly smaller than Uc of the MIT. However, other
than in these simplified cases, there is not a single point at T 0 where all divergence lines
emanate from [19]. Moreover, with decreasing temperature, the frequency structure of the
singular eigenvectors along the first red divergence line changes significantly (cf. Fig. 11 in
Ref. [19] and in detail below Sec. 3.1.3.2), deviating strongly from the δνν -form observed
in the AL (cf. Eq. (3.6)).

These results demonstrate important features, which provides the motivation for the
subsequent studies presented10 in Secs. 3.1.2 and 3.1.3:

• As in the AL case, the divergences for the DMFT solution of the HM appear in
channels where the physical fluctuations are suppressed, i.e., for the specific case of
repulsive interactions, in the charge and the pp sector. Thus a natural question arises:
Are irreducible vertex divergences always affecting the scattering channels that are
suppressed?

• So far, all models considered demonstrated a MIT (in the AL case, one can argue
that this is located at U 0). Is the MIT a necessary condition11 to observe vertex
divergences [10, 19]?

• Can the observed symmetry properties of the singular eigenvectors be understood
on a more fundamental level?

3.1.2 Divergences in the Hubbard model on the Bethe lattice at half filling

Parts of this chapter, marked by a vertical bar, have already been published
in the APS journal Phys. Rev. B 101, 155148 (2020).

In this part, by means of the DMFT (cf. Sec. 2.3.1), the local two-particle susceptibilities
and irreducible vertex functions of both, the attractive and the repulsive Hubbard model
(cf. Sec. 2.1.3) on the Bethe lattice (with a semielliptic DOS of half-bandwidth D 2t 1)
are analyzed.

In all studies of models with repulsive interactions (summarized above) negative eigen-
values have exclusively occurred in physical channels that are suppressed upon increasing
the interaction strength U, namely in the charge and in the particle-particle channels.

10Note that for practical reasons, both of these parts are formatted as subsections to allow for a better
structured illustration. However, these cases are also studies performed at half filling, and hence topically part
of Sec. 3.1.1.

11Note also the title of the first publication on irreducible vertex divergences [10]:“Divergent Precursors of
the Mott-Hubbard Transition at the Two-Particle Level”.
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According to this observation, one may expect that vertex divergences in models with
an attractive interaction will occur in the magnetic channel only. This would heuristically be
consistent with the known “mapping" of the physical degrees of freedom (D.o.F./DOF) of
the half-filled Hubbard model. Due to the intrinsic O(4) SU(2) × SU(2) symmetry, the
partial particle-hole, or also Shiba, transformation [111, 112]

ci↑ → ci↑ and ci↓ → (−1)i c†i↓ (3.11)

acts as a mapping of all physical observables between U < 0 and U > 0. In particular,
the two SU(2) spin (S) and pseudospin (Sp) sectors, which are related to the respective
suppressed channels on the attractive and repulsive side, are transformed into each other12

Sx
1
2 [c

†
↑c↓ + c†↓c↑] ↔ 1

2 [c
†
↑c†↓ + c↓c↑] Sp ,x

Sy
i
2 [c

†
↑c↓ − c†↓c↑] ↔ i

2 [c
†
↑c†↓ − c↓c↑] Sp ,y (3.12)

Sz
1
2 [c

†
↑c↑ − c†↓c↓] ↔ 1

2 [c
†
↑c↑ + c†↓c↓ − 1] Sp ,z .

This mapping of physical D.o.F. suggests that a similar “transformation" may as well apply
to the vertex-divergences. However, as already noted in Refs. [33, 113], the mapping of
generalized two-particle quantities, and especially of dynamical irreducible vertices, is
more complex than Eq. (3.12) would suggest. In the following, we will see how this is
reflected in the appearance and the nature of vertex divergences in the attractive Hubbard
model.

3.1.2.1 DMFT results

The main outcome of our DMFT calculations are summarized in Fig. 3.9, where we report
the location of the divergences of the static irreducible vertex Γνν (ω 0)

r found for different
values of the local attraction U < 0 and the temperature T (left side), compared against
the corresponding results for the repulsive case U > 0 (right side), all in units of the
half-bandwidth D 2t 1. In the large |U | regime the numerical results are consistent
with analytical calculations in the AL [23], (as seen above). Furthermore, in the whole
repulsive sector, we also reproduce the outcome of the DMFT studies on the HM on a
square lattice [10, 19], see Sec. 3.1.1.3, finding multiple lines in the U-T plane, where the
irreducible vertex diverges. The small differences arise from the different lattices used
in the DMFT calculations [19]. As already observed in Refs. [10, 19] and outlined above,
the first divergences are located at moderate repulsion values, well before the MIT. With
increasing interaction the occurrence of divergence lines becomes more dense, and the
lines occur in alternating order starting with a divergence in the charge channel (red lines)
followed by a simultaneous divergence in the charge and pp ↑↓ channel (orange lines).

In the case of attractive interaction we find vertex divergences in the charge channel

12Here we assume for the explicit expression a site where (−1)i 1 holds. For a neighboring site on the
lattice, one would have to consider the corresponding (−1), see further Ref. [113].





3.1. THE DIVERGENCES OF THE IRREDUCIBLE VERTEX FUNCTIONS 59

-1-3-5-7-9 1 3 5 7 9
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

N

V
d

β = 5
β = 10
β = 20
β = 30
β = 50

-1-3-5-7-9 1 3 5 7 9
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

N

V
d

β = 5
β = 10
β = 20
β = 30
β = 50

-1-3-5-7-9 1 3 5 7 9

0

0.2

0.4

0.6

N

V
m

β = 5
β = 10
β = 20
β = 30
β = 50

-1-3-5-7-9 1 3 5 7 9

0

0.2

0.4

0.6

N

V
pp

β = 5
β = 10
β = 20
β = 30
β = 50

Figure 3.10: Comparison of the singular eigenvectors V r
α in the repulsive and the attractive case,

plotted as a function of the Matsubara index N ν
β
π . The upper [lower] panels show perfectly iden-

tical singular antisymmetric [symmetric] eigenvectors located at different temperatures along the
first [second] attractive (left) and first [second] repulsive (right) divergence line. The T-dependence
will be studied explicitly in Sec. 3.1.3.2.

A first understanding of this apparent discrepancy is provided by the analysis of
the symmetry of the eigenvectors associated to a vanishing eigenvalue (cf. Eq. (3.1)). In
Fig. 3.10 we compare the shape of eigenvectors following the first and second divergence
lines at different temperatures for U ≶ 0 (the T-dependence is studied explicitly below
in Sec. 3.1.3.2). Evidently, the perfect mirroring of divergence lines is also reflected in
identical shapes of the corresponding eigenvectors. The singular eigenvectors associated
to all divergences in the charge sector only (red lines), display a completely antisymmetric
frequency structure. In contrast, all other divergence lines (green and orange lines) are
associated to frequency symmetric singular eigenvectors.

The symmetry of eigenvectors is essential in the calculation of the physical suscepti-
bility, as discussed in Sec. 2.2.4 (cf. Eq. (2.56) and Eq. (2.57)). Due to the summation over
Matsubara frequencies, the value of χr is independent of any antisymmetric eigenvector,
irrespective of whether associated to a positive or a negative eigenvalue. Hence, the ap-
pearance of negative eigenvalues in a channel is not necessarily associated to a suppression
of the respective physical susceptibility. While in the repulsive model the occurrence of
divergences and the suppression of the respective channel coincide (maybe incidentally),
our calculations of the attractive model provide a clear-cut counter-example: the crossing of
several divergence lines in the charge sector is accompanied by an enhanced susceptibility.

To rationalize the results of our two-particle DMFT calculations on more general
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grounds, we investigate the effect of the attractive-repulsive mapping on generalized
two-particle quantities and its relation to the physical symmetries of the system under
consideration.

3.1.2.2 The role of the underlying symmetries

As mentioned above, the mapping of the generalized two-particle quantities is far less
obvious than the mapping of the physical degrees of freedom.

When considering purely local quantities, the single-particle Green’s function G(τ1 , τ2)
is identical for the repulsive (U > 0) and attractive (U < 0) half-filled model. On the other
hand, the two-particle Green’s function G↑↓(τ1 , τ2 , τ3 , τ4)with anti-parallel spin orientation
transforms [33, 54] according to

G(U)
↑↓ (τ1 , τ2 , τ3 , τ4) −G(−U)

↑↓ (τ1 , τ2 , τ4 , τ3), (3.13)

which, after Fourier transformation of all fermionic variables, reads

G(U)
↑↓ (ν1 , ν2 , ν3) −G(−U)

↑↓ (ν1 , ν2 ,−ν4) (3.14)

with ν4 ν1 − ν2 + ν3. After changing to the ph-notation, as defined in Eq. (2.17) (ν1 ν,
ν2 ν + ω, ν3 ν + ω, ν4 ν ) one can easily see how the transformation maps the
generalized static (ω 0) susceptibility, χν,ν↑↓ G↑↓(ν, ν, ν ) of the ↑↓ sector according to

χνν↑↓
U↔−U⇐⇒ −χν(−ν )↑↓ , (3.15)

while χ↑↑ is obviously invariant under a partial particle-hole transformation.
Hence, in general, the Shiba transformation at the two-particle level will mix the differ-

ent (particle-hole) channels of generalized susceptibilities and the associated irreducible
vertices. Only the mapping of the generalized susceptibility expressed in the pp-notation

χν(−ν )pp ,↑↓ − χνν0,pp
U↔−U⇐⇒ χννm (3.16)

reflects [33, 54, 113] the transformation of the physical (spin/pseudospin) degrees of
freedoms, discussed in Eq. (3.12), in a direct fashion.

As the location of divergence lines is directly encoded in the generalized susceptibilities,
it will also be subject to the mixing of channels, explaining the differences w.r.t. the mapping
of the physical degrees of freedom. To fully rationalize the results demonstrated in Fig. 3.9,
we will focus on the symmetry properties of the generalized susceptibilities. In this respect
we note that Eq. (3.16) already shows why the mirrored divergences of the pp ↑↓ channel
for U > 0 are observed in the magnetic channel for U < 0. Hence, the main question
concerns the behavior of the particle-hole channels.

Since we consider the HM at half filling (with nearest neighbor hopping only), particle-
hole symmetry is given, and thus the considerations made in Sec. 2.2.4.1 fully apply. As
a reminder we recall the most relevant properties here: In this highly symmetric case, the
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static generalized susceptibility is a bisymmetric matrix, which can be block-diagonalized
by the orthogonal matrix Q (defined in terms of the counteridentity (Jνν δν(−ν )) and
identity (1) submatrices):

Q
1√
2

1 −J
1 J

, Qχννr QT A 0

0 S
. (3.17)

The block-diagonalization of χννr is associated with precise symmetry properties: the sub-
space denoted by A represents a submatrix with exclusively antisymmetric eigenvectors,
while S is the subspace of purely symmetric eigenvectors. As a consequence, one can
unambiguously attribute the occurrence of a red divergence line in χννc (i.e., the corre-
sponding vanishing eigenvalue) to the purely antisymmetric subspace A, while all other
divergence lines will be accounted for by the symmetric subspace S.

A crucial ingredient for connecting the bisymmetry of the generalized susceptibilities
to the mapping of divergence lines lies in the equivalence of the Shiba transformation for
χνν↑↓ to a matrix multiplication with the negative counteridentity matrix (−J)

χνν↑↓,(U)(−J) −χν(−ν )↑↓,(U) χνν↑↓,(−U) . (3.18)

Using J2 1, the bisymmetric matrices χ↑↑ and χ↑↓ can be written as follows (the
fermionic Matsubara frequency indices will be partly omitted in the following):

χU>0
↑↑ χU<0

↑↑ χ↑↑
A JBJ
B JAJ

(3.19)

χU>0
↑↓

C JD J
D JCJ

(3.20)

χU<0
↑↓

Eq. (3.18)
χU>0
↑↓ (−J) C JD J

D JCJ
0 −J
−J 0

−JD −CJ
−JC −D J

. (3.21)

Block-diagonalization (described in Sec. 2.2.4.1) of χ↑↑ and χ↑↓ for both cases leads to
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Qχ↑↑QT A − JB 0

0 A + JB
(3.22)

QχU>0
↑↓ QT C − JD 0

0 C + JD
(3.23)

QχU<0
↑↓ QT −JD − J(−JC) 0

0 −JD + J(−JC)
C − JD 0

0 −[C + JD] (3.24)

This immediately shows that the antisymmetric block of χ↑↓, (C − JD), is unchanged,
whereas the symmetric one changes sign for U > 0 ↔ U < 0. Considering χc and χm for
U < 0 and U > 0 the following expressions are obtained, where we use the trivial relation

Qχc+ ,m−QT Q(χ↑↑ ± χ↑↓)QT Qχ↑↑QT ± Qχ↑↓QT ,

QχU≷0
c QT [A− JB]+[C− JD] 0

0 [A+ JB]±[C+ JD] (3.25)

QχU≷0
m QT [A− JB]−[C− JD] 0

0 [A+ JB]∓[C+ JD] . (3.26)

In the charge channel case the + sign corresponds to U > 0 the − sign to U < 0, for the
magnetic case it is the other way around. From Eqs. (3.25) and (3.26) three conclusions can
be drawn:

(i) The antisymmetric block of QχU≷0
c QT is independent of the sign of U. The di-

agonalization of [A − JB] + [C − JD] will yield the eigenvalues and the corresponding
antisymmetric eigenvectors of χννc . Their singularity corresponds to a red divergence line,
independently of the sign of U. This is the mathematical reason for the perfect mapping
of the red divergence lines reported in Fig. 3.9 and the equality of the singular eigenvec-
tors shown in Fig. 3.10. Note that this statement is crucially dependent on the perfect
particle-hole symmetry of the problem. Otherwise the bisymmetry property is lost.

(ii) The antisymmetric block of QχU≷0
m QT is also independent of the sign of U. This

means that, irrespective of the sign of U, the eigenvalues corresponding to antisymmetric
eigenvectors of χm can be calculated by diagonalizing [A − JB] − [C − JD]. However, for
the static cases considered so far none of these eigenvalues were found to be singular (see
further Ref. [23]).

(iii) The symmetric parts of χννc and χννm are mapped in the following way: [A + JB]+
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[C + JD] is the symmetric blockmatrix of χU>0
c and χU<0

m . This explains why the sym-
metric charge channel divergences for U > 0 are mapped to divergences with symmetric
eigenvectors in the magnetic channel for U < 0. Analogously, [A + JB] − [C + JD] is the
symmetric blockmatrix of the enhanced channels χU<0

c and χU>0
m .

Let us concisely summarize the considerations made so far: The antisymmetric sector
A remains invariant under U↔−U for all χννr . This explains why the red divergence lines
(χννc ) in Fig. 3.9 and their associated antisymmetric eigenvectors (Fig. 3.10) are perfectly
mirrored on both sides of the phase diagram. At the same time one finds that the symmetric
parts (S) of χννc and χννm are mapped into one-another for U ↔−U, therefore connecting the
symmetric divergences and the corresponding eigenvectors, appearing in χU>0

c (orange)
and in χU<0

m (green). Let us stress at this point that the proof given here applies not only
to singular eigenvalues, which are connected to divergence lines, but to all eigenvalues
and eigenvectors of χννr . In this way, we have extended the mapping relation known for
χννpp ,↑↓ [33, 54, 113], see Eq. 3.16, to the entire particle-hole sector, clarifying the relation
with the mapping of the physical D.o.F.: The antisymmetric subspace A of all channels r,
which is not contributing to the physical susceptibility (cf. Eq. (2.56)), is invariant under the
Shiba transformation, while the symmetric subspace is found to transform in accordance
with Eq. (3.12).

As we have illustrated, the particle-hole symmetry plays a central role in determining
the mirroring properties of the generalized susceptibilities. If one relaxes this constraint,
the bisymmetry in the particle-hole sector is lost, and the eigenvalues are no longer neces-
sarily real. At the same time, it is important to stress that even in the absence of particle-hole
symmetry (e.g., out of half filling) χννpp ,↑↓ remains [23] bisymmetric, as shown explicitly in
Sec. 2.2.4.2, ensuring the validity of all associated properties (real eigenvalues as well as
bisymmetry and associated properties).

3.1.2.3 Spectral representations of physical susceptibilities

The relation between generalized and physical susceptibilities emerging from our numer-
ical and analytical analysis can be illustrated in a physically insightful way. As, for half
filling, all eigenvalues of χννr are real, we introduce a susceptibility density ρ(χ) defined
(cf. Eq. (2.56)) as

ρr(χ)
i ν

V r
i (ν)

2

δ(χ − λr
i ) ≥ 0 (3.27)

from which the local physical susceptibility is readily obtained as an average over ρr(χ)

χr

∫
χ ρr(χ) dχ . (3.28)

This representation has several advantages: Equations (3.27) and (3.28) enable to distin-
guish immediately between positive (λi > 0, ρ(λi) > 0), negative (λi < 0, ρ(λi) > 0)
and vanishing (λi 0 or ρ(λi) 0) contributions to the static response χr . Further, its
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the results of Sec. 3.1.2.2, not only the physical susceptibility, but the entire distribution
ρr(χ) of the identical charge and pp (pseudospin) sectors are mapped onto the magnetic
(spin) sector and vice versa.

On the contrary, the positions of the gray bars of each channel are unchanged in the
+U and −U cases, reflecting the perfect invariance of the antisymmetric subspaces of all
generalized χr under the mapping. We note that the identical location of the gray bars in
the magnetic and the pp channel reflects the fact that the entire generalized susceptibility
sectors are transformed exactly as the physical degrees of freedom (compare Eq. (3.16)).

On the other hand, the different locations of gray bars in the charge sector compared
to the other channels explain the non-trivial mapping properties of χννc and of the corre-
sponding irreducible vertices.

These general observations allow for a remarkable rationalization of the problem at
half filling. Any suppressed local physical susceptibility can be associated to a unique
susceptibility-density

ρsup(U) ρU<0
m ρU>0

c ρU>0
pp . (3.29)

Obviously, by replacing U with −U in Eq. (3.29), a similar property holds for all enhanced
susceptibility densities

ρenh(U) ρsup(−U) ρU>0
m ρU<0

c ρU<0
pp . (3.30)

The comparison of the attractive and repulsive panels of each channel in Fig. 3.11
indicates as an overall trend that the suppression of a susceptibility is associated to a
systematic shift of the colored bars toward smaller values, as well as to a change of the
weight distribution, where the largest values of ρsup are associated with the smallest
eigenvalues. This supports the physical picture that an interaction-driven suppression of
a static local susceptibility is connected to an increasing number of negative eigenvalues
and therefore with the crossing of multiple vertex divergences.

At the same time, this demonstrates why the “reverse" implication of the physical
picture above is not correct. The perfect invariance of the gray bars under the mapping,
whose physical content is totally decoupled from the static susceptibility, implies the
perfect mirroring of all red divergence lines where only the charge channel is singular
(Fig. 3.9). Hence, the occurrence of red divergence lines is independent of the behavior of
the corresponding susceptibility as well as of the SU(2)×SU(2) symmetry properties of the
model considered.

Finally, important quantitative information can also be gained from Fig. 3.11. By
analyzing the behavior of the enhanced susceptibilities, it is evident that ρenh is dominated
by the contribution of a single term: the one associated to largest eigenvalue λmax . This
property is illustrated in Fig. 3.12, where we compare the actual values of the static response
functions χc and χm obtained from Eq. (3.28) with the case where the summation in
Eq. (3.27) is reduced to the largest eigenvalue only. The contribution from the largest
eigenvalue λmax reproduces the trend across the entire repulsive and attractive regime very
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following. Additionally, note that below we will frequently display the eigenvectors of
χνν1c [χ−1

0 ]ν1ν (χc/χ0)νν . This choice has specific practical reasons: locating vanishing
positive eigenvalues of (χc/χ0)νν is significantly easier13 than for χννc , see also Refs. [19,
22, 29]. Hence, since at half filling, the locations where the eigenvalues of both (χc/χ0)νν
and χννc become singular as well as the corresponding singular eigenvectors perfectly
coincide [22, 29], it is more convenient to directly study (χc/χ0)νν . Out of half filling,
however, these properties are no longer guaranteed, see Ref. [107].

In general, the results for the AIM presented in the right insets of Fig. 3.15 and in
Fig. 3.16 are qualitatively consistent with the AL and HM cases discussed above: Red
divergence lines are associated to antisymmetric eigenvectors, while orange divergence
lines have corresponding symmetric eigenvectors [22].

The symmetry of the singular eigenvectors is, as expected, well reflected in the fre-
quency structure of the irreducible vertex. As another illustration of this connection, a cut
of the irreducible vertex function in the charge channel, Γνn πT,νn

c for two values of the
interaction U at the same temperature (T 0.05) is shown in Fig. 3.15. In fact, in spite of
the proximity between the second red and the first orange divergence line for these param-
eters, it can be clearly seen how the frequency structure of the vertex function is almost
perfectly antisymmetric/symmetric in the case where the lowest eigenvalue corresponds
to a red/orange divergence line (left/right panel).

After discussing this general feature of the singular eigenvectors, we turn to their
intriguing evolution with decreasing temperature, and start by going back to Fig. 3.16.
There, eigenvectors corresponding to the five divergence lines (three red, two orange)
shown in the left panel of Fig. 3.13 are compared for the same low temperature (T 0.025).
We further plot properly rescaled eigenvectors corresponding to the red lines at the highest
temperature employed in the calculations (T 0.5) in gray. The latter show an almost
perfect agreement with the atomic limit: Eigenvectors, localized in Matsubara frequency
space, which have finite weight almost only at one frequency [νn (2n+1)πT] equal to the
energy scale ν∗. For example for the first divergence line (top panel) the gray eigenvector
displays its by far largest contribution at the first Matsubara frequency (n 0, iνn πT).

This specific property of frequency localization, characterizing the singular eigenvec-
tors of the red divergence lines of the AL, and those of the HM and the AIM at high-T,
gets lost when reducing the temperature. At T 0.025 we note that their frequency decay
is even slower than for the singular eigenvectors of the orange lines, which in the litera-
ture were always associated to "global" divergences [19]. In turn, this means that also the
divergence of Γc is no longer restricted to a finite set of frequencies. Such a "frequency-
broadening" of the red singular eigenvectors at low temperatures was so far only observed
in the DMFT solution of the Hubbard model [19] (cf. Fig. 3.10), and seems to be associated
with the presence of coherent quasiparticle excitations.

13This is due to the 1/ν2 contribution originated by the bubble term, which creates many small, but never
singular, eigenvalues of χννc .















78 CHAPTER 3. ASPECTS OF THE BREAKDOWN OF PERTURBATION THEORY

3.1.4 Manifestations of vertex divergences out of half filling

In the last section, the irreducible vertex divergences for different models at half filling
were discussed in great detail. Here, instead, we consider the vertex divergences in cases
out of half filling, where the perfect particle-hole symmetry is broken. For this analysis,
it is essential to differentiate between the ph channels r c ,m and the ↑↓ component
of the pp channel. As established at the end of Sec. 2.2.4.2, χνν (ω 0)

pp ,↑↓ remains real and
bisymmetric (with real eigenvalues and perfectly (anti)symmetric eigenvectors), even if
particle-hole symmetry is broken. Thus, for the r pp ↑↓ channel, Eq. 3.1 stays valid
and continues to determine the divergences of Γνν (ω 0)

r pp ,↑↓ also out of half filling. For the ph
channels r c ,m, this is not the case, as the generalized susceptibility χννr c ,m is now a
symmetric centrohermitian matrix, see Sec. 2.2.4.2, with either real or complex conjugated
pairs of eigenvalues. The associated eigenvectors are no longer guaranteed to be real
or to demonstrate strict symmetry properties. Hence, for the r c ,m channels, the
defining Eq. 3.1 and the corresponding conclusions needs to be re-examined and several
modifications need to be taken into account. First of all, as discussed in Sec. 2.2.4.2, the
static generalized susceptibility can be written as V−1DV if it is diagonalizable, which is
now no longer guaranteed a priori. When χννr is diagonalizable, the analogous equation
to Eq. 3.1 reads [67, 73]:

Γ
νν (ω 0)
r c ,m

i

V r
i
−1(ν) λr

i
−1

V r
i (ν ) − χ−1

0
νν
, (3.33)

whereas, different from Eq. (3.1), λr
i is not guaranteed to be real. This has important

consequences for the understanding obtained so far: Even if the real part of a specific
eigenvalue λr

α Re[λr
α] + iIm[λr

α] would vanish, Γr would not diverge, as long as the
imaginary part Im[λr

α] is nonzero.
In the following we summarize the few existing numerical results, which demonstrate

that there indeed exists a doping regime close to half filling, where divergences in the
ph-channels are still found, because a subset of eigenvalues remains real. On the other
hand, as soon as a doping becomes large enough, these eigenvalues become complex and
no true divergence of the irreducible vertex can be found any longer.

A first understanding can already be gained by considering a 2 × 2 submatrix15 of
χ(ν ±πT)(ν ±πT)

c ,m :

a + ib c
c a − ib

⇒ λ1,2 a ±
√

c2 − b2 . (3.34)

From this simplified analysis (see Ref. [118]) one can already outline a plausible expectation.
Since for the ph-channels out of half filling, the eigenvalues are either real or complex
conjugate pairs, while they are strictly real at half-filling, when going out of half filling, the
real eigenvalues need to “meet”, i.e., become complex pairwise. In the quite recent literature

15Note that the off-diagonal element c stays real, due to the centrohermitian and symmetric property of the
generalized susceptibility.
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G0 → G is not injective.
An intuitive, but strongly simplified, sketch of the multivaluedness is presented in

Fig. 3.25, taken from Ref. [12]. Here the full Green’s function G and it’s non-interacting
counterpart G0 are treated as simple numbers. The red lines illustrate the functional
dependence G[G0] for different values of U, where the specific physical Green’s function is
represented by the blue line. At the point where the physical Green’s function crosses the
red line, a suitable non-interacting Green’s function is found. For U 0, only one solution
can exist as G G0.At larger values of U, due to the multivaluedness of Φ[G], several G0’s
may be in principle identified that fulfill the map G0 → G, and hence, consistent with the
Dyson equation (cf. Eq. (2.23)), several possible Σ’s (green dashed lines). These additional
solutions are characterized by unphysical behaviors. However, their existence in itself does
not pose a problem, until these unphysical solutions cross the physical one, i.e., an equality
of the physical G0 with one (or more) of the unphysical G0’s is found, as illustrated in the
3rd sheet in Fig 3.25. These so-called “branching”-points can have dramatic effects. For
instance, (i) methods and algorithms that are based on diagrammatic resummations of
Φ[G] might select the wrong branch. As observed in several applications [11, 14, 15, 21,
24, 27, 28], these methods do converge also after the branching points, but to an unphysical
result. On the other hand, (ii) at these branching points, the irreducible vertex diverges [12,
19], suggesting the existence of a precise link between the two aspects, which is addressed
further below in Sec. 3.3.

This rather abstract problem can be understood in a very transparent manner by going
back to the BM model (see Sec. 3.1.1.2), which allows for analytic calculations, reproduced
here from Ref. [19]:

In DMFT (i.e., the coherent potential approximation for the BM) the Green’s function
of the BM reads:

G(ν) 1
2

1
G−1

0 (ν) + W
2

+
1

G−1
0 (ν) − W

2
, (3.35)

where G0 (ν − Δ(ν))−1 and Δ is the self-consistently determined hybridization function
(half filling is assumed in the calculation).

Using the Dyson equation one can express the self-energy as a functional of G0:

Σ[G0] W2

4 G0 , (3.36)

which yields the exact solution. However, one can also calculate Σ[G], i.e., as a functional
of the full G:

Σ2
+ G−1Σ − W2

4 0 (3.37)

⇓
Σ±[G] ±√1 + W2G2 − 1

2G
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results corresponding to the perturbative branch, i.e., the one connected to U 0 [14, 15,
27, 28] (Σ+ in the simple BM example, see Ref. [19]). However, the physical solution is not
always given by this branch, as seen for the simple BM example at larger disorder strength.

We split the subsequent presentation in this thesis along the following lines: In this
section the appearance of the multivaluedness is addressed. The focus lies, in particular,
on the locations of branching points of the LWF solutions in the phase diagrams of different
models, as well as on their general connection to the divergences of the irreducible vertex
function (see Sec. 3.3). We postpone to Sec. 6.1 instead, the treatment of the corresponding
algorithmic implications: How does the multivaluedness affect numerical calculations and
what can be done to find workarounds and enter parameter regimes beyond the branching
points.

In the following, we summarize the appearance of the multivaluedness of Φ[G] for
cases at half filling and out of half filling, respectively. In the literature, two strategies have
been chosen for the identification of unphysical solutions. On the one hand (i), comparisons
between results of diagrammatic resummations based on Φ[G] to those of benchmark
methods are performed (such bold diagrammatic Monte-Carlo [123, 124] versus QMC,
respectively). Where significant differences17 are observed, a branching point is identified.
On the other hand (ii), iteration schemes [11], or also “reverse” solvers [21], and even
reformulated Hirsch-Fye methods [12], follow a different path. In these approaches the
exact Green’s function G is known a priori and instead G0 candidates are identified that
correspond18 to this physical G. Evidently, in order to identify unphysical G0’s, one needs
to allow for some freedom, e.g., real parts in cases where they should be zero due to
symmetry reasons, see further Ref. [12] and the corresponding supplemental material.

3.2.1 The multivaluedness of the LWF at half filling

As already pointed out at the beginning of this section, the first observation and character-
ization of the multivaluedness was made in the work by E. Kozik et al. in 2015 [11]. In this
work the multivaluedness was described for the AL, the AIM (both at half filling at out
of half filling) and the HM (not discussed explicitly here, we refer the interested reader to
Ref. [11]).

In Fig. 3.27 we show the results of Ref. [11] for the AL at half filling, where the double
occupancy is plotted as a function of U for β 2. Scheme A and B refer to iteration
schemes, along strategy (ii) discussed above, where A represents the natural choice, which
coincides with the results of diagrammatic Monte-Carlo calculations. Scheme B is an ad-hoc
modification of Scheme A. The exact solution for the AL is known, and demonstrates a
decreasing double occupancy with increasing interaction U. However, at a large enough in-
teraction U∗, Scheme A converges, but yields increasing double occupancies – an evidently
unphysical trend. Instead, after the branching point, Scheme B produces the expected

17Significant differences refer in this context to deviations in the results that go beyond numerical ones that
can be attributed to choosing different methods.

18In particular, if a G0, which was identified by such a “reverse” procedure, is used as an input for a
numerically exact solver, the physical G is obtained again.
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physical Green’s function, could be connected to the divergences of the irreducible vertex
functions for the AL. The precise behavior in U for the different Matsubara frequencies even
determines the kind of divergence that is found - localized or non-localized in frequency
space.

On a more general perspective, the question arises whether such a connection exists also
for more general situations. Considering, e.g., the results for the HM solved by CDMFT
presented in Fig. 3.29, it seems that the direct link between the crossings of physical and
unphysical solutions and the divergences of irreducible vertex divergences extends also to
cases without particle-hole symmetry. Hence, in future studies, it remains to be seen how
the formal relation presented here for the AL can be extended to describe, e.g., cases where
the eigenvalues of χνν have nonzero imaginary parts and form complex conjugated pairs.
In fact, as Fig. 3.29 impressively demonstrates, also in cases where the divergence itself
is absent, due to imaginary parts of the singular eigenvalues, a branching of the LWF is
found. Further, an extension of the direct link described here for the AL, accounting also
for the symmetry property of the associated singular eigenvectors, would be of interest
(cf. the summaries of Secs. 3.1.1, 3.1.2 and 3.1.3). In this way, this extension of the proof of
Ref. [12] would also apply to the irreducible vertex divergences of the AIM and the DMFT
solution of the HM throughout the entire temperature regime.

As the last (rather specialist) topic let us recall the crossing of divergence lines, observed
in the case of the AIM in Figs. 3.13 and 3.14. Based on the results for the crossings of
the physical with unphysical solutions in the AL represented in Fig. 3.30, this can be
rationalized. In particular, in Fig. 3.30 at U ≈ 1,Re Tr(ΣG/βU) ≈ −0.1, one observes a
crossing of two unphysical solutions (here referred to as A). One can easily imagine a
situation where this crossing (A) takes place between the first orange and the second red
unphysical branch at the point where they cross also the physical solution. This would
characterize a parameter set with two simultaneous divergences of two kinds – a crossing
of a red and an orange divergence line, such as the ones observed in Figs. 3.13 and 3.14.
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Presently, one can rely on a solid textbook interpretation [6, 8] of the QFT formalism
describing the single-particle (1P) processes, measurable e.g., by (angular resolved) direct
and inverse photoemission [125] or scanning tunneling microscopy [126, 127]. Crucial in-
formation about the metallic or insulating nature of a given many-electron problem, as well
as quantitative information about the electronic mass renormalization Z and quasiparticle
lifetime τ is encoded in the momentum/energy dependence of the electronic self-energy
Σ. If the temperature T is low enough, even a quick glance at the low-energy behavior of
Σ, either in real or in Matsubara frequencies, yields a qualitatively reliable estimate of the
most important physical properties.

The situation is clearly different on the two-particle (2P) level, which can be exper-
imentally accessed by e.g., inelastic neutron scattering [128, 129]. Due to the complex
physical mechanisms at play, the related textbook knowledge is mostly limited to general
definitions [6–9]. For this reason, corresponding analytical/numerical calculations are
often performed with significant approximations or with a black-box treatment of the 2P
processes. However, the last decade has seen a rapid development of methods at the
forefront of the many-electron theory [51, 98, 121], for which generalized 2P correlation
functions are the key ingredient. This is reflected in an increasing effort to develop the
corresponding formal aspects and algorithmic procedures [18, 33, 51–53, 58, 59, 67, 94, 96,
98, 104, 105, 121, 122, 130–142]. At the same time, the rather poor physical understanding
of the 2P processes remains largely behind the requirements of the most advanced QFT
methods. Interesting progress has been recently reported [25, 57] on the relation of 1P
Fermi-liquid parameters to 2P scattering functions. Ideally, however, one would like to be
able to interpret the physics encoded at the 2P level with a similar degree of confidence as
for the 1P processes.

In this chapter, we make a significant step forward in this direction: We identify
the fingerprints of two major hallmarks of strong correlations in the generalized charge
susceptibility. In particular, we pinpoint the frequency structures encoding the formation
of local magnetic moments as well as of their Kondo screening. In this perspective, we also
show how the Kondo temperature TK corresponds to a specific property of the generalized
charge susceptibility, allowing for an alternative, simple path of extracting its value directly
from the lowest Matsubara frequency data.

We recall that the Kondo problem [30] provides a paradigm for a variety of physical
effects [143–147] involving strong electronic correlations. Local moment formation and
Kondo screening are also a crucial ingredient of the physics described by the dynamical
mean-field theory (DMFT) [41] through the solution of a self-consistently determined
auxiliary Anderson impurity model (AIM).

Learning how to extract important physical information from the generalized suscep-
tibility represents a substantial improvement for the understanding of quantum many-
electron physics at the 2P level. Further, having this information at hand also enables us to
draw conclusions on two relevant theoretical questions: (i) The relation of the multifaceted
manifestations [12] of the breakdown of perturbation theory, discussed in great detail in
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scale Δ0 πV2ρ0, see Sec. 2.1.1. Since in our case Δ0 π/5, U 5.75 corresponds to
U/Δ0 ≈ 9.15.

Starting this step-by-step analysis by inspecting the HA results for χm at high temper-
atures, one observes a well-defined and expected trend: The magnetic susceptibility rises
as the local moment begins to form for T ∼ U. For higher temperatures, in the so-called
free-orbital regime [39, 40], all states are thermally populated, leading to Tχm 1/8 (not
shown). In the local moment regime T < U, the susceptibility shows a Curie-Weiss ∝ 1/T
behavior, which can be clearly noticed in the plot as a constant. Comparing the HA re-
sult with the QMC calculations for the AIM one observes a qualitatively similar trend at
high-temperatures, as expected. However, the AIM contains also the physics of the Kondo
screening, originated by the coupling to the conduction electron bath. This coupling leads
to a deviation of the plain ∝ 1/T dependence found in the HA case. After the local moment
is formed at about T ≈ 1, where the maximum of Tχm is found, the moment begins to get
screened as the temperature is decreased. At low-T the screening of the local moment is
fully effective, which leads to a constant-in-T behavior of χm , seen as a steep decrease of
Tχm in the left panel of Fig. 4.1.

While the local moment formation as well as its screening for magnetic response func-
tions is a thoroughly studied topic, the corresponding behavior of χc is, in comparison,
less frequently analyzed. The temperature dependence of χc is shown in the right panel
of Fig. 4.1. At first, we focus again on the HA case: Here, one readily observes a signif-
icant decrease of the charge fluctuations as the local moment is formed at temperatures
of the order of U (note the linear x-scale instead of the logarithmic one of the left panel).
Similarly, also for the AIM a decrease is found in the temperature regime where χm shows
predominantly a Curie-Weiss behavior. However, at low-temperatures the local moment
is screened and hence the charge fluctuations get partially revived. This is reflected in the
observed low-temperature increase of χc of the AIM, which is completely absent in the HA
case.

It is important to recall here that the changes from one regime to the other are continuous
crossovers in the AIM, i.e., there is no abrupt change of phase as that observed at the MIT
in the Hubbard model. This also applies to the Kondo temperature TK, which represents a
crossover temperature. Thus, let us present the precise definition adopted throughout this
work for computing TK.
Specifically, the value of the Kondo temperature for the AIM has been determined from
the overall temperature dependence of the static magnetic susceptibility χm(ω 0) on the
impurity site. This (well-known) procedure was described in a work by H. R. Krishna-
murthy, et. al [39, 40] and is also summarized in Ref. [30]. It is based on comparing
the temperature evolution of χm(ω 0) for a fixed interaction value U to a universal
renormalization group solution for a Kondo-Hamiltonian [39, 40]. Note that the constants
used in Refs. [39, 40] are included in our definition of the static magnetic susceptibility,
leading to χm χRefs. [39, 40]

m /(gµB)2, where g 2 and µB is the Bohr magneton. In practice,
one must (i) compute Tχm(ω 0) in a quite large temperature range and (ii) shift the data



4.2. HOW TO READ TWO-PARTICLE QUANTITIES 97

10−2 10−1 100 101

T

0.05

0.10

0.15

T
χ
m
(ω

=
0)

TK

10−3 10−2 10−1 100

T

0.05

0.10

0.15

T
χ
m
(ω

=
0)

TK

AIM

Univ.

Figure 4.2: Extracting the value of TK of the AIM for a given interaction value (U 5.75) from the
numerical data for the static local magnetic susceptibility χm(ω 0) (QMC, green), by shifting the
universal result (red) onto it (highlighted by the red arrow), obtained from the renormalization-
group solution of a Kondo-Hamiltonian [39, 40]. The value for TK obtained in this way is shown as
the vertical grey dotted line.

of the universal result [39, 40], plotted as a function of log(T/TK) with TK 1, onto the
numerical result for Tχm(ω 0). This way, one obtains the effective Kondo temperature
of the AIM for this value of U. The procedure is shown in Fig. 4.2 for U 5.75, where
the unshifted case is plotted in the left panel, the shifted one in the right. This shift is
applied in such a way that the agreement between the universal result for the Kondo-
Hamiltonian (red) and the numerical one for the AIM (green) is the most precise for low
temperatures T TK. For the specific case of U 5.75, the Kondo temperature results to
TK 1/65 ≈ 0.015. Throughout this thesis this procedure was used to obtain the value
of TK for several interaction values of the AIM, in particular, also the ones depicted in
Fig. 3.14, where they were shown to agree well with the analytic estimate of Eq. (2.9) for
TK corresponding to the wide-band limit of the AIM.

4.2 How to read two-particle quantities

After discussing the behavior of the response functions of the AIM, we now turn to the
generalized susceptibilities, defined in Eq. (2.17). Note that a minor change of notation is
made in the following. To facilitate the distinction between the static response functions
χr(ω 0) χr and the generalized susceptibilities χννr (ω 0) in channel r, the latter will
be highlighted by adding a tilde: χννr (ω) → χ̃ννr (ω) throughout the rest of this chapter.

More on a physical note, it is worth underlining already at this stage that, for repulsive
on-site interactions, the local generalized charge susceptibility χ̃ ννc (ω) χ̃ νν↑↑ (ω) + χ̃ νν↑↓ (ω)
allows for a particularly high readability of the underlying physics at the 2P level. While
this statement will be substantiated by the numerical analysis we discuss below, we can
already note–on a general level–that correlation functions in the charge channel capture
fundamental properties of any interacting electron system. In particular, they describe
the fluctuations of its charge carriers, which are crucial, for example, to characterize the
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different mobility properties of metallic and (Mott) insulating phases.
As already mentioned in Sec. 2.2.3, the corresponding physical charge response func-

tion, χc(ω), can be directly obtained from the generalized susceptibility χ̃ννc (ω) by sum-
ming over the fermionic Matsubara frequencies ν, ν (cf. Eq. (2.29)). For convenience we
reproduce Eq. (2.29) here for the static case (ω 0) regarded throughout this chapter:

χc χc(ω 0) T2

νν

χ̃c
νν T2

νν

(χ̃ νν↑↑ + χ̃ νν↑↓ ) (4.1)

After this general considerations, we start by analyzing the arguably simple case of the
Hubbard atom. In Fig. 4.3 (upper panels), we show an intensity plot of χ̃ννc (normalized
by T2) for U 5.75, half filling (where χ̃ννc is real [23, 33], cf. Sec. 2.2.4.1) and different
temperatures. At high temperature (Thigh 2, left panel), the overall frequency structure
consists of a large positive-valued diagonal (yellow/red) and a weak negative cross struc-
ture (blue). This corresponds to a typical perturbative behavior [33, 96], dominated by the
diagonal bubble term χ̃ νν0 χ̃ νν0,↑↑ −δνν G(ν)2/T: Correlation effects are washed out for
T U, consistent with the feasibility of high-T expansions.

The situation changes radically when reducing T: in the intermediate (Tint 0.1) and
low (Tlow 1/60 ≈ 0.017) temperature regime (central and right panel), one observes a
strong damping of all diagonal elements of χ̃ννc . The effect is more pronounced at low
frequencies, as the sign of χ̃ν νc becomes even negative (bluish colors) for |ν | √

3/2 U [23]
(black square). This major feature is accompanied by the appearance of small positive off-
diagonal elements (yellow). The net effect is a suppression of the physical susceptibility χc ,
see Eq. (4.1), which occurs when the thermal energy is no longer large enough (T∼ν<U) to
counter the formation of a local moment driven by U, eventually yielding an exponentially
small χc ∼ e−U/2T for T → 0, as seen in Fig. 4.1.

As opposed to the HA case, we now consider the case of the perturbative random phase
approximation (RPA, central row). The RPA results were obtained by using the simplest
possible approximation for the irreducible vertex (Γνν↑↓ U, Γνν↓↓ 0∀ ν, ν ) and the non-
interacting G0 of the AIM as propagator. Instead of sign changes of the diagonal of χ̃ννc ,
for all temperatures no qualitative deviations from the perturbative structure, i.e., from the
one identified at high-T in the HA case, is observed.

Altogether, the low-T HA results illustrate, on a single glance, how the onset of a
pure local moment is encoded in the charge sector: A progressive emergence of a non-
perturbative sign structure in χ̃ννc (strong negative diagonal, light positive background),
which qualitatively appears as the opposite image of the perturbative one seen for the RPA
(strong positive diagonal, light negative background). This also induces several negative
eigenvalues of χ̃ννc , responsible for the breakdown of perturbative expansions [12] (see
Sec. 3.1).

Let us now examine how this picture changes when the HA system is connected to
an electronic bath, corresponding to the full Anderson impurity model. By comparing
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Figure 4.3: Upper part: Matsubara frequency structure of T2χ̃ννc (ω 0) for the HA (top row), the
RPA (center row) and the (numerically exact) QMC (bottom row) solution of the AIM for U 5.75
and various temperatures. A fixed number of Matsubara frequencies is plotted (note that the
readability is improved here by hiding the corresponding labels). The main frequency structures,
as described in the text, are marked by black and white squares. Lower panel: Lowest Matsubara
frequency elements of T2χ̃ννc (ω 0): χ̃D T2χ̃ πT, πT

c (violet) and χ̃O T2χ̃ πT,−πT
c (green) as a

function of temperature. They coincide at Thigh at the divergence of Γc (red (I)), as well as at low-
temperatures at T TK (black triangle). The inset shows a zoom for T ∼ TK (vertical blue line).
The local moment and the Kondo screened regime are sketched by the arrows without and with
the surrounding screening cloud, respectively.

the results of T2χ̃ννc (bottom-row panels of Fig. 4.3, computed with w2dynamics [85],
see Sec. 2.3.1.2) to those of the HA, we observe almost no difference at Thigh. This is not
surprising, as thermal fluctuations prevail over both correlation (U) and hybridization
(V) effects in this case. Upon lowering T to Tint, we enter the local moment regime of
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the AIM, see also Fig. 4.1. This is reflected in a qualitatively similar evolution as seen
in the HA: a progressive suppression of the diagonal entries of χ̃ννc , turning negative in
the low-energy sector (black square), accompanied by positive, yet smaller, off-diagonal
contributions, with an overall freezing effect on the local charge fluctuations (see Eq.(4.1)
and more explicitly below). This is how the formation of a local moment affects the charge
sector, thus representing its fingerprint. However, due to the screening effects of the bath, its
features get weakened, explaining the quantitative differences to the HA (e.g., the reduced
size of the black square).

The most interesting situation is encountered when reducing T further down to Tlow

TK (right panel), where the Kondo screening induces qualitative differences w.r.t. the HA.
We observe that the low-frequency diagonal elements of χ̃ννc (white square) are flipped
back to positive, as in the perturbative regime and the RPA. This trend is driven by the
low-energy correlations between electrons with antiparallel spins (χ̃ ν ν↑↓ ), as we explicitly
show in Sec. 4.3. The weakening of their negative contribution increases the physical
charge susceptibility χc , see Eq. (4.1), and simultaneously mitigates the magnetic response.
However, in the intermediate frequency regime, the diagonal elements of χ̃ννc are still
negative, reflecting the underlying presence of a (partially screened) local moment. The
fingerprint of the Kondo regime is, thus, the onion-like frequency structure of χ̃ννc , which
is clearly recognizable in the rightmost bottom panel of Fig. 4.3: (i) a high-frequency
perturbative asymptotic, (ii) a local moment driven structure (with suppressed diagonal)
at intermediate frequencies, (iii) an inner core (with a similar sign structure as (i)) induced
by the Kondo screening. A quick glance at the sign structure of χ̃ννc therefore allows for an
immediate understanding of the underlying physics. This nicely illustrates the balanced
competition in the charge sector between the freezing effects of the local moment and the
defreezing effects of its low-energy screening, which characterizes the Kondo regime.

The connection between the frequency structure of χ̃ννc and the corresponding behavior
of the physical response χc in the local moment and the Kondo regime, can also be traced in
the results of partial summations of the generalized charge susceptibility. Specifically, we
consider the ν, ν summation of χ̃ννc over frequency boxes of increasing sizes, as detailed
by the following expression:

χpartial(νmax) T2
νmax

ν,ν −νmax

χ̃ ννc (4.2)

Evidently, for νmax → ∞, χpartial corresponds to χc , and Eq. (4.2) reduces to Eq. (4.1). At
the same time, by inspecting the results obtained for finite νmax, the energy-selective effects
of different nonperturbative/perturbative features in χ̃ννc can be clearly individuated.

In Fig. 4.4 the result of this partial sum is displayed as a function of νmax for the three
different temperatures regimes discussed in Fig. 4.3.

At high-temperature (Thigh), i.e., in the perturbative regime, χpartial (red circles) is always
positive and increases monotonically toward its asymptotic value for νmax → ∞ (red dashed
line).
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Chapter 3. At high T, where ν0 πT V,U, t, the 2 × 2 submatrix encodes all relevant
energy scales, the rest being nonsingular high-frequency asymptotics. In this case χ̃D χ̃O

corresponds to a singular eigenvalue of the entire χ̃ννc and hence to a divergence of the irre-
ducible vertex function Γννc [χ̃ννc ]−1−[χ̃νν0 ]−1, specifically to the first (I) one encountered
when reducing the temperature (red line in Figs. 4.3 and 4.6) [10, 19, 22, 23, 26], shown
also in several instances in Secs. 3.1.1, 3.1.2 and 3.1.3. For intermediate temperatures, the
2×2 submatrix is controlled by the local moment, leading to a strongly negative χ̃D and
negative eigenvalues of the submatrix (as in the HA case). At TK the eigenvalue flips sign
and one finds again χ̃D > χ̃O for T TK, as in the perturbative regime (s. Fig. 4.3, lowest
panel). Here, however, because of the onion-like structure of χ̃ννc , the positive-definiteness
(and thus the invertibility) is guaranteed only for an inner submatrix describing the Fermi
liquid regime, but not for the full χ̃ννc . This explains why divergences of irreducible vertex
functions can occur also at low temperatures [22] even in the presence of a Fermi liquid
ground state, as shown explicitly in Sec. 3.1.3. Indeed, such vertex divergences mark the
distinction between a Fermi liquid in the weak- and in the strong-coupling regime, which
mostly affect the intermediate frequency/energy domain.

4.5 Limitations of perturbative approaches

The direct link between the 2P fingerprints of local moments and vertex divergences,
sets also precise physical limitations for self-consistent perturbative methods, where–per
construction–Γ is finite (with the only exception of second-order phase transitions to long-
range ordered phases, not relevant here). Hence, the impact of the characteristic physics
emerging from the magnetic sector onto the charge channel, cannot be described by such
self-consistent perturbative methods. We substantiate this statement by considering two
advanced perturbative schemes, the functional renormalization group (fRG) [98] (in the
1 K truncation, see Sec. 2.3.3) and the parquet approximation (PA) [55, 90–92, 96, 151–
157], both introduced in Chapter 2, where per construction Λνν U holds. The results
obtained for the AIM with U 5.75 and T Tint are shown in Fig. 4.7. χ̃ννc computed by
the fRG and PA (upper panels) appear qualitatively different from the (numerically) exact
one of Fig. 4.3 (AIM, bottom-row): The diagonal elements are all positive and substantially
larger than the off-diagonal ones, resembling more the case of the RPA (central-row).
This ensures the positive-definiteness of the entire χ̃ννc , preventing the strong suppression
effects of the charge response, which characterize the local moment regime. This drawback
qualitatively affects the physical description. In particular, the temperature dependence of
the numerically exact charge susceptibility χc (Fig. 4.7 lower panel) exhibits a clear minimum
for intermediate Thigh>T>TK, as discussed in Sec. 4.1. This emerges from the competition
between the suppression induced by the local moment (see the extreme HA case) and
the low-energy screening. Both features are not captured by the fRG (blue pentagons)
and PA (brown squares), which display a monotonous behavior as T is decreased. At
the same time, as we show in the following, the perturbative approaches are able to
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Figure 4.11: Similarly as in Fig. 4.3, AIM results for T2χ̃νν (ω 0) in the charge (upper) and the
magnetic (lower) channel for a broad temperature range and fixed U 5.75.

the perturbative from one in the nonperturbative regime. The negative eigenvalues of
the low-T QMC solution are also reflected in the characteristic structure of the partial
summation, introduced in Sec. 4.2, which is explicitly reported in Appendix A.1.1. From
a more general perspective, this finding underlines that the “onion structure” in χ̃ννc is a
rather selective hallmark of the Kondo regime, i.e., of T ∼ TK.

To complete the description of our numerical results, we also consider smaller values of
U, i.e., where less negative eigenvalues are present. In particular, in Fig. 4.12 we report Tχm

(left panel) and χc (right panel), similarly as in Fig. 4.1, for U 3.0 and U 4.2, as indicated
in the phase diagram shown in the inset of the right panel. Evidently, U 3 corresponds
to a borderline case, where only the first divergence line is crossed for a limited T-range
as T is varied. For both interaction values, the magnetic channel displays the behavior
already discussed in Sec. 4.1, where U 3 corresponds to a weaker local magnetic moment
than U 4.2. In the charge response for the case of U 4.2, a clear minimum can be
still identified, as already discussed throughout this chapter (see explicitly Fig. 4.9). In
the borderline case of U 3, one observes the precursor of the minimum of χc , which
corresponds to the occurrence of an almost “stationary” point in the temperature range of
the local moment formation. This analysis indicates that in the perturbative regime, where
no vertex divergences are present, the suppression of the charge fluctuations is too weak
to produce a minimum in the T-dependence of the local charge response. More systematic
investigations of a possible strict link between the minimum formation and the presence
of divergences in correlated metallic systems is left for future studies. A fist step in this
direction, inspired by the results shown in this thesis, have been performed in Ref. [158],
where the temperature-behavior of χc was studied for the DMFT solution of the Hubbard
model (see also the discussion at the end of the section).

Finally, we turn to the central question of this chapter: What is the underlying physical
mechanism that triggers the perturbative breakdown?

Based on the insights gained so far, the local moment formation can be clearly identified
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the intermediate-to-strong coupling regime. In fact, our “fingerprint”-criterion coherently
applies in the parameter regions where a description of the local properties in terms of
the Kondo physics becomes appropriate. To summarize, the consistent comparisons of
Refs. [63, 158, 159] support the remarkable agreement of TK and the “fingerprint”-criterion
in the Kondo regime. In our opinion, this represents a clear hint for a profound and rigorous
connection between the vertex functions (generalized susceptibilities, or also reformulated
as full vertices F) and the Kondo temperature, which goes beyond the general one related to
the numerical determination of TK based on χm , see Sec. 4.1. In particular, we speculate that
a specific analytic relation may exist between the Kondo singlet formation and the lowest-
frequency entries of the vertex functions, analogous to the one between the quasiparticle
weight Z and the low-frequency range of the self-energy. It remains left for future studies
to investigate whether such an analytical connection can be formulated, e.g., by starting
from newest NRG two-particle calculations of the scattering amplitude of Ref. [141] (see
Fig. 9 therein).
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susceptibility has a vanishing contribution there, ruling out the most natural connection
with observable physical effects.

Nonetheless, in this chapter, we demonstrate that significant physical implications
exist, and thus, entering the nonperturbative regime is not only a mere mathematical
pathology of the QFT description of many-electron systems. In particular, as we will
show, the eigenvalues and eigenvectors that determine the occurrence, the location, and
the mathematical properties of the irreducible vertex divergences, also play an essential
role for physical response functions.

First, by restricting ourselves to purely local physics, we discuss the interplay of the
suppression of physical response functions and the suppression of eigenvalues of the
corresponding generalized susceptibilities.

As a second step, we leave the purely local level and consider the uniform (q → 0) charge
response of the system (in the framework of DMFT), which is related to the isothermal
compressibility κ. As we will show, the negative eigenvalues of the local charge suscepti-
bility can have significant effects on this quantity: they encode a sign-flip of the effective
interaction, which leads to attractive contributions that enhance the uniform charge re-
sponse. In some cases, e.g., in the proximity of the Mott MIT, these attractive contributions
can even lead to a divergence of the isothermal compressibility κ. Note that this topic
was first addressed in the Master thesis of M. Reitner [73] (which the author of this PhD
thesis has co-supervised) and then extended in Ref. [67] (which represents the basis for
this chapter).

5.1 Is it all just suppression?

Parts of this chapter, marked by a vertical bar, have already been published in the APS journal
Phys. Rev. Lett. 125, 196403 (2020) and the corresponding supplemental material.

To improve the pedagogical character of this chapter, both sources are mixed accordingly.

As already mentioned in previous chapters, the possible link between irreducible vertex
divergences in channel r and the corresponding suppression of the physical response in the
same channel r was considered in several works [12, 18, 22, 26]. In this context, the more
recent results obtained in the attractive case of the HM solved in DMFT (see Sec. 3.1.2),
have cast some doubt on the generality of this interpretation, because of the occurrence of
divergences in the enhanced charge sector of the attractive case [26]. On the other hand, as
mentioned at the end of Ref. [26], the analysis of that study was limited by the particle-hole
symmetry constraint, which we are going to release in the course of this chapter.

In particular, we will focus on the charge channel. Let us begin our discussion by briefly
recapitulating the literature results for the half-filled case of Refs. [12, 18], relevant for our
analysis. We start with the definition of the static local charge response χloc

c (ω 0), which
can be obtained from χνν (ω 0)

c by a summation over all fermionic Matsubara frequencies,
see Sec. 2.2.3. By recasting the corresponding summation for the general case without
particle-hole symmetry in terms of the eigenbasis of χννc (see Sec. 2.2.4 and in particular



5.1. IS IT ALL JUST SUPPRESSION? 115

Eqs. (2.56) and (2.59)), one obtains [67]:

χloc
c

1
β2
νν

χνν (ω 0)
c

i

λc
i wc

i . (5.1)

Note that here a slightly different notation1 is used: χloc
c 2χEq. (2.27)

c . Consequently,
also the generalized susceptibility is defined here as χννc 2(χνν↑↑ + χνν↑↓ ). Further, the
1
β2 factor is directly included in the eigenvalues λc

i . Accordingly, the weights read as:
wc

i ν V c
i
−1(ν) ν V c

i (ν ) (cf. Eq. (2.60)). Since we only consider the charge channel
in this chapter, the c superscript will be omitted in the following.

In order to investigate the possible implications of the appearance of vertex divergences,
we start with an observation, based on the findings of Chapters 3 and 4: The occurrence
of sign-changes of the eigenvalues of the generalized susceptibility, at least of those with
an associated symmetric eigenvector, was always found in cases where the corresponding
response function was suppressed (cf. Sec. 3.1.2). By inverting this logic, one may ask
how crucial the role of negative eigenvalues is for determining the correct behavior of the
physical response function. In general, their importance was already noted when analyzing
the two-particle calculations for the AIM, for which methods such as the fRG (in the 1 K

truncation) and the PA, which lack–per construction–the possibility to describe irreducible
vertex divergences and sign-flips of the corresponding eigenvalues, did not capture the
minimum of the charge response as a function of T (see Sec. 4.5).

A focused study of this role of the negative eigenvalues of χννc has been performed in
Ref. [12], where the authors considered a HM solved by DMFT on a square lattice (4t 1 is
the unit of energy). Fig. 5.1 illustrates their results for the local charge response χloc

c (black
line) at half filling for an intermediate temperature of β 40. Altogether one observes a
progressive suppression of the charge response as a function of U, as one would expect.
The local magnetic response increases with U as the local moment is formed, whereas the
charge fluctuations are significantly suppressed. The kink observed at about U ≈ 2.35
was attributed to the MIT. As outlined in Eq. (5.1), χloc

c can be analyzed by using the
eigenbasis of χννc . In Fig. 5.1 the sum of those contributions which correspond to positive
eigenvalues, is illustrated as the orange area and “+” signs. The contribution related to
negative eigenvalues is shown in blue and marked by “-” signs. This separation clearly
demonstrates the role played by the eigenvalues of χννc : As the interaction increases,
the positive eigenvalues reduce in value up until U ≈ 1.9. After this point, negative
contributions appear, which become crucial for the correct description of the suppressed
response function. Neglecting them would lead to a significant overestimation of the local
charge response (orange “+” for large U), and also the kink associated with the MIT would
be absent. Naturally, at half filling, each appearance of a negative contribution corresponds
to a zero-crossing of an eigenvalue and hence a divergence of Γννc (cf. Sec. 3.1). The inset
shows the value of the eigenvalues with associated symmetric (antisymmetric) eigenvectors

1All changes of notation are made in order to relate the susceptibilities in a more elegant way to the isother-
mal compressibility, see below (otherwise a factor of 2 would appear in several terms) [67, 73], consistently
with Ref. [67].





5.2. THE ISOTHERMAL COMPRESSIBILITY κ 117

Figure 5.2: Sketch representation of the Hubbard model phase diagram in DMFT, based on
Ref. [163]. The coexistence region of the MIT at n 1 as well as the phase separation at n < 1
is represented by shaded blue regions, the corresponding critical endpoints by the blue dot / the
blue dotted line. First(I)/Second(II) lines of divergences of Γ at half filling: red/orange curves. The
calculations performed in this analysis are illustrated by the green arrow.

Hence, a sign-change of Γ0 would induce an enhancement, instead of a suppression, of the
corresponding susceptibility with increasing interaction.

Though intriguing, this interpretation [160] raises additional questions: It seems hard to
be reconciled with the suppression of charge fluctuations at half filling discussed. Further,
if taken too literally, it would lead to rather bizarre physical predictions: One might then
expect the multiple divergences of Γ, found in the phase diagram of the Hubbard model
(cf. Sec. 3.1), to be reflected in a series of maxima (maybe even of divergences) of the lattice
charge and pairing susceptibilities by increasing U. However, such a peculiar oscillatory
behavior has never been reported [160–169].

5.2 The isothermal compressibility κ

As known [160–163], DMFT calculations show only one major enhancement of the charge
fluctuations: the uniform charge response, which corresponds to the isothermal compress-
ibility κ, is strongly enhanced in the proximity of the critical endpoint of the MIT of the
Hubbard model (blue dot, topping the blue-shaded area in the n 1 plane of the phase
diagram sketched in Fig. 5.2). Specifically, while at half filling the isothermal compress-
ibility κ decreases monotonically with increasing U, a strongly enhanced compressibility
is observed in the crossover region at finite doping on both sides of the MIT. In fact, κ even
diverges along two curves in the parameter space embracing the critical endpoint of the
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MIT (blue dotted line in Fig. 5.2, shown on one side only) and marking the onset of a phase
separation at lower T [163].

As we will show, this behavior of κ is directly linked to the divergences of the irreducible
vertex Γc and, specifically, to the first ones encountered [10, 19, 26] in the correlated metallic
region, much before the MIT itself. The location is sketched as red (I) and orange (II) curves
in the n 1 plane of Fig. 5.2 (cf. Sec. 3.1.1.3).

In general, the compressibility κ can be defined (i) at the one-particle level, as the
derivative of the density w.r.t. the chemical potential3( dn

dµ )or (ii) at the two-particle level, as
the static limit (q→0, ω 0) of the momentum and frequency dependent charge response
function χωc ,q χωq , obtained through the lattice BSE in the DMFT framework [41]

χωq
1
β2
νν

χ0
q

−1
νν ω

+ Γνν ωc

−1
, (5.3)

where the bubble term reads χ0,νν ω
q −2β k G(k, ν)G(k+q, ν+ω)δνν . Here q is the

transferred crystal momentum. In DMFT, where the self-energy and the irreducible vertex
Γ are both extracted from a (self-consistently determined) auxiliary impurity model [41],
the two definitions yield per construction the same value of κ (see Ref. [170] and [56, 57,
160]).

Let us briefly recall the derivation of the momentum and frequency dependent charge
response function in DMFT obtained through the BSE, following Ref. [41]. We discuss its
analytical properties for the Hubbard Model on a Bethe-lattice, by going into the eigenbasis
of the generalized local two-particle susceptibility.

In the limit of infinite dimensions d → ∞ the irreducible vertex Γνν ω can be expressed
in terms of the local quantities of the auxiliary impurity model (cf. Eq. (2.24))

Γνν ωc χ−1
c
νν ω − χ−1

0
νν ω

, (5.4)

where χνν ωc 2(χνν ω↑↑ +χνν ω↑↓ ), and χνν ωσσ is defined in Eq. (2.17) [33]. Note that although in
d → ∞, Γ itself has a residual momentum dependence, this residual dependence vanishes
if Γ is inserted into a BSE [171]. Hence, Eq. (5.4) can be used to rewrite Eq. (5.3) in the
following way:

χωq
1
β2
νν

χ−1
c
νν ω

+ χ0
q

−1
νν ω

− χ−1
0
νν ω −1

, (5.5)

where the bubble term reads explicitly

χ0,νν ω
q

−2β
V

k

1
ζν − k

1
ζν+ω − k+q

δνν , (5.6)

3 In thermodynamics, the isothermal compressibility κ is defined as κT − 1
V

dV
dp

1
n2

dn
dµ . For an immediate

comparison with χq 0, we define here κ ≡ dn
dµ in accordance with earlier literature [41, 161], see also Ref. [73].

This does not crucially affect the results, since the doping regions considered here are very close to half filling
n 1.
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with ζν iν + µ − Σ(ν) and k − 2t√
2d

d
i cos ki . The 1

V -factor normalizes the momen-
tum sum over the first Brillouin zone. Note also that the correct scaling of the hopping
amplitude t for d → ∞ is included in the dispersion relation k (cf. Sec. 2.3.1). We can
reformulate the bubble terms with the Hilbert transform defined as:

H(ζ)
∫

+∞

−∞
d D( ) 1

ζ − , (5.7)

where D( ) is the non-interacting density of states. By summing over all momenta q we
obtain the local bubble term. Here, the sums over the two different momenta factorize and
we get

χνν ω0
1
V q

χ0,νν ω
q −2βH(ζν)H(ζν+ω)δνν . (5.8)

In our case, the static charge response (q → 0, ω 0) is of interest, where the q-dependent
bubble reads

χ0,νν (ω 0)
q 0 −2β

∫
+∞

−∞
d D( ) 1

(ζ − )2 δνν

2βdH(ζν)
dζν

δνν .

(5.9)

5.2.1 Bethe-lattice

For the Bethe-lattice with a semi-elliptic density of states the Hilbert transform simplifies
to

H(ζ) ζ − sgn(Imζ) ζ2 − 4t2

2t2 , (5.10)

and the difference between the two inverted bubble terms for ω 0 is equal to a con-
stant [172] :

χ0
q 0

−1
νν

− χ−1
0
νν t2

2β δνν . (5.11)

We note that this result does not depend on the frequency ν or on the filling (or the chemical
potential µ which is encoded in ζ).

The compact expression for the difference of the bubble inverses is inserted into Eq. (5.5).
By recasting the resulting expression in the eigenbasis of the generalized susceptibility χννc ,
which is straightforward due to the δνν frequency-dependence of Eq. (5.11), one obtains:

κ χω 0
q 0

i

1
λi

+
βt2

2

−1

wi . (5.12)

By a similar derivation, but inserting the particle-particle DMFT bubble at q 0 or
the particle-hole bubble at q (π, π, π, ...) into Eq. (5.11), one can show that one gets an
additional minus sign for t2

2β [172] in Eq. (5.11) and correspondingly also in Eq. (5.12).
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endpoint of the MIT (at U 2.33, β 38), where the minimum of λI becomes a cusp, before
one starts observing a coexistence of two solutions at lower T (not shown). At half filling,
however, the divergence of (1/λI + βt2/2)−1 does not have any physical effect on κ, because
the associated spectral weight wI in Eq. (5.12) is always zero, due to the perfect antisym-
metry of VI(ν). We note that this behavior can alternatively be understood from the critical
properties of the MIT, as independently proven in a work by E. van Loon et al. [140]. The
second lowest eigenvalue (λII), associated with a symmetric eigenvector (VII(ν) VII(−ν))
becomes also negative (after the orange curve in Fig. 5.2), but it never reaches the critical
condition βλII − 2

t2 . In fact, as its spectral weight is positive, it contributes to a progressive
suppression of κ.

5.4 Out of half filling

The results above crucially depend on the high-symmetry properties [26, 113] of the (non-
frustrated) half-filled case. As soon as those are lifted, e.g. by doping the system and/or
adding a next-to-nearest neighbor hopping term (t ) striking changes are observed. Here,
we consider explicitly the case of a hole doped system (µ− U

2 < 0, n < 1, t 0) on a square
lattice4(with half-bandwidth D 4t 1) in the crossover region of the phase separation
near the critical endpoint of the half-filling MIT (i.e., U 2.4, β 53, as schematically
indicated by the green arrow in Fig. 5.2).

In Fig. 5.4, we report the behavior of the local (χloc) and the uniform (κ) charge susceptibility
as a function of the chemical potential, varying it toward half filling (µ U

2 on the
right side). Our data show a clear dichotomy in the behavior of χloc and κ. While χloc,
directly evaluated from Eq. (5.1), gets monotonically suppressed toward half filling, where
correlations are stronger, κ, evaluated both as numerical derivative as well as from Eq. (5.3),
displays a prominent maximum at a finite doping: This indicates that the parameters
correspond to the crossover region5, just slightly above the critical endpoint of the phase
separation (dotted line in the sketch of Fig. 5.2).

5.5 Diagnostics of κ

A clear-cut theoretical insight into this phenomenology is obtained by decomposing χloc

and κ, computed at several dopings, in terms of the contributions stemming from the
different eigenvalues λi of χννc , in the spirit of Refs. [18, 58, 59, 122, 138, 153, 156, 173, 174].
Here, this procedure, which is always possible numerically, allows for a very transparent
analytical understanding, based on the Bethe-lattice expression, Eq. (5.12). In fact, the

4In principle, one could have also chosen the Bethe lattice case out of half filling, obtaining similar results
as those presented here. However, the choice of a two-dimensional square lattice allowed to perform a
q-dependent analysis and also make closer contact with previous literature studies on the HM [10, 12, 19, 160].

5Note that this property of the chosen parameter set was carefully checked in various ways, see further
Appendix A.2.2 and the supplemental material of Ref. [67]. In particular, when converging DMFT solutions
as a function of µ from both limiting cases shown in Fig. 5.4, i.e.,half filling and µ − U/2 < −0.15, always only
a single solution could be converged [67].
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interaction changes from repulsive to attractive. The origin of this effective attraction is thus
directly related with the breakdown of self-consistent perturbation theory [12], formally
marked by the first divergence of the irreducible vertex (cf. Appendix A.2.2). For a positive
weight, such as the one characterizing the orange divergence lines at half filling, the
associated negative eigenvalues have a suppressing effect onto κ.

This effective attraction due to negative eigenvalues (and weights) has significant phys-
ical and conceptual implications. In particular, we have demonstrated that if the lowest
negative eigenvalue of the local charge susceptibility becomes negative enough, a diver-
gence of the isothermal compressibility, and hence a thermodynamic instability of the
systems toward a phase separation, will be triggered [67]. The specific details of the lat-
tice system under investigation determine the negative value that needs to be reached
(cf. Appendix. A.2.1).
It is insightful to generalize our considerations by further extending Eq. (5.12) to the other
physical sectors, specifically to those which are mostly reactive to attractive interactions.
One can show [172] that the corresponding DMFT expressions for the Bethe lattice for any
static particle-hole susceptibility at q Π (π, π, π, . . .) (describing charge-density-wave
(CDW) instabilities in the charge or antiferromagnetic (AFM) instabilities in the magnetic
sector), as well as of the pp susceptibility at q 0 (describing s-wave pairing instabilities)
read

χq Π χ
pp
q 0

i

1
λi

−βt2

2

−1

wi , (5.14)

independently of the filling.
The sign of the constant shift rules out the possibility of inducing CDW or s-wave pair-

ing instabilities merely through a strong local repulsion: divergences of the corresponding
responses can only originate from a large and positive λi , a typical hallmark [26] of pre-
formed local pairs, and hence, of the presence of a bare attractive interaction U <0. Here,
we clearly see the difference between a bare (and frequency-independent) attractive inter-
action and an effective one, originating from nonperturbative mechanisms: The effect of
the latter can be regarded as truly attractive only in specific sectors and parameter regions.

In this way, in the DMFT framework, two alternative routes for thermodynamic instabil-
ities are identified, on the basis of the perturbative or nonperturbative mechanisms through
which the corresponding transitions are realized. Fig. 5.8 summarizes and illustrates these
two possibilities for a generic local generalized susceptibility.

The first kind of instabilities (right side in Fig. 5.8) are triggered when the largest positive
eigenvalue λmax of the generalized local susceptibility for the scattering channel under
consideration (e.g. charge, magnetic, pp) becomes large enough, leading to a divergence of
Eq. (5.14). Since for U 0 (and ω 0), where χννloc reduces to the bare bubble term, all λα
are positive, it is clear that these kind of transitions can also occur in the weak-coupling
regime. Their description is indeed possible by means of perturbative schemes such as,
e.g. the RPA, the fRG [98, 99] or the PA [55, 90–92, 96, 153–157]. One example for this
mechanism is the antiferromagnetic instability for the repulsive Hubbard model [41, 98,
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existing, are certainly not applicable for the description of the phase-separation instabilities
in the proximity of the Mott MIT. This topic will be further discussed in Chapter 7.

Nevertheless, in the DMFT framework, our study provides a clear-cut positive answer
to the third central question of this thesis: Are there physical implications of the appearance of
irreducible vertex divergences? In fact, on a broader perspective, one could even suspect to
find similar relations of negative eigenvalues of local generalized susceptibilities to other
response functions. While these connections together with possible extensions of our
analysis to cases beyond the DMFT framework will be addressed in Chapter 7, we briefly
mention here a very immediate generalization: For parameter sets further in the crossover
region of the MIT, e.g., at temperatures higher than β 53 in the DMFT calculation
considered in Sec. 5.4, neither a divergence nor a strong enhancement, but a maximum of κ
as a function of µ (or U) at fixed T can be expected [73, 161, 165, 167–169, 181]. In fact, at
finite doping, the maximum of κ for different values of µ (or equivalently n) and T in the
crossover region is used to trace the so-called Widom line [166–169, 181, 182]. This concept,
originally introduced for fluids, was first applied to strongly correlated electron systems
in a work by G. Sordi et al. [166]. The Widom line emanates from the critical endpoint
of a first order transition through the crossover regime, and hence can be used to identify
a transition that might be hidden by a symmetry broken phase (e.g. superconductivity in
the CDMFT applications of Refs. [181, 182]). For this parameter regime, at the maximum
of κ, one can expect the distance between the lowest eigenvalue λI and the constant βt2

eff/2
term to be smallest, but not vanishingly small. This means, that the location of the Widom
line throughout the crossover region could be traced by an analysis based on Eq. (5.12),
similarly as above. Naturally, calculations which explicitly confirm this connection, should
be performed in the future.
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the perturbative breakdown has an effect on perturbative methods, and which strategies
can be followed to circumvent these issues.

As discussed in Chapter 3, we briefly recall here that the perturbative breakdown man-
ifests itself in two ways. On the one hand, it is directly associated with the multivaluedness
of the Luttinger-Ward functional (LWF) [11, 12, 14–16, 19–21, 23, 24, 27, 28]. On the other
hand, at the branching points of the LWF [12], divergences of the irreducible vertex func-
tions are observed [10, 13, 17–19, 21–23, 25, 26]. At the beginning of this chapter, we
discuss the implications of the multivaluedness of the Luttinger-Ward functional Φ[G] for
numerical treatments, while the second part focuses on the algorithmic issues that arise in
handling infinite vertex functions.

6.1 Multivaluedness of the LWF and algorithmic approaches

Concerning the multivaluedness of the LWF, let us briefly summarize here its manifesta-
tions (see the corresponding Sec. 3.2 for more details). The multivaluedness of Φ[G] has
a peculiar implication: While the physical Green’s function G is always unique, several
non-interacting Green’s functions G0 exist that correspond to it, i.e., the map G0 → G is
not injective [11, 12, 14–16, 19–21, 23, 24, 28]. One of these G0’s represents the physical one
whereas all other show unphysical behaviors, e.g. for the atomic limit (AL, cf. Sec. 2.1.1.1) at
half-filling they may have a nonzero real part or violate the general relation G0(ν) G∗

0(−ν),
see Ref. [12]. Evidently, due to the (inverse) Dyson equation, the existence of these vari-
ous G0’s is directly reflected in the existence of several corresponding self-energies Σ, of
which only one is the physical one. In other words, the intrinsic multivaluedness of the
LWF can be viewed, heuristically, as different “ways” to split the physical Green’s function
between the G0- and the self-energy-terms consistent with the Dyson equation. However,
the existence of unphysical solutions for G0 and Σ would remain essentially irrelevant, if
it was not for crossings between unphysical and the physical values of these quantities. In
fact, there exist several parameter sets where one of the unphysical (or also multiple) and
the physical branch of the LWF “touch”, so-called branching points, which were discussed
in great detail in Sec. 3.2 (see explicitly Fig. 3.27 and 3.30 for the AL). At such branching
points the solution of numerical algorithms, e.g. the ones which directly sample the no
longer single-valued Σ[G], might jump onto the wrong branch. This would, in turn, lead
to qualitatively incorrect results of calculations of physically observable quantities, e.g. an
increase of the double occupation with increasing interaction U for the HA [11, 12]. The
underlying issue is that the perturbative Feynman diagrammatic series turns out to be not
absolutely convergent [11, 16]. In this respect, exploiting a dressed propagator, e.g., for
self-consistently summing skeleton diagrammatic series (so-called “bold schemes”), cor-
responds to a specific reordering of the original series, which becomes highly problematic
in the nonperturbative regime.

From an algorithmic perspective, the multivaluedness of the LWF presents a twofold
challenge: On the one hand, one needs to handle (a) the misleading convergence aspect of
the bold diagrammatic schemes [11], which means that without a warning the numerical
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summation of a skeleton diagrammatic series might converge to an unphysical result. In
the pioneering work by Kozik et al. [11] the bold diagrammatic Monte Carlo method [123,
124] for the atomic limit was investigated. In this work, the authors found that the bold
diagrammatic resummation converged also beyond the first branching point ofΦ[G], yield-
ing an unphysical result. Without a “warning-signal”, the numerical approach showed
convergence in a regime where the summation of the skeleton diagrammatic series is no
longer trustworthy. This issue evidently poses a huge problem to applications of these
method to problems more complex than the AL, where the location of branching points
is not known a priori. On the other hand (b), it is evidently crucial to find a way to apply
the diagrammatic Monte-Carlo and other methods based on the summation of skeleton
diagrammatic expansions also beyond the branching points of Φ[G]. As it turns out in
bold diagrammatic Monte Carlo calculations [11] as well as the so called nested cluster
scheme [21] the numerical calculations jumps onto the unphysical branch after crossing
the first branching point. This can be attributed to the unphysical solution becoming the
attractive fix-point of an iterative scheme to e.g., calculate the self-energy Σ[G] and the
Green’s function G [11]. During such a scheme, unlike in methods as DMFT, or its cluster
extensions, the non-interacting G0 is not fixed to the physical one, leading to noncausal
hybridization functions and, eventually, to unphysical results [21].

Given the importance and versatility of diagrammatic series summations in the last
years a huge effort was made to circumvent the algorithmic issues discussed above, which
is briefly (and without claiming completeness) summarized in the following. Evidently,
as for (a), the identification of a simple and practical criterion that signals the misleading
convergence would be desirable. Important progress in this direction was made in a
work by R. Rossi et al. [16], where, among other advancements, a specific criterion was
introduced, based on which the reliability of a diagrammatic series can be determined.
This criterion was used in a recent study of the bold diagrammatic Monte-Carlo to the
two-dimensional Hubbard model [27], where the unphysical or physical character of the
numerical solution was explicitly determined for different parameter sets. Moreover, based
on the analysis of Ref. [16], further advancements were made in a work by K. Van Houcke
et al. [28]. In an application to the Hubbard atom (i.e., the AL), the authors discuss
a simplified criterion which signals the problematic misleading convergence behavior of
the diagrammatic series, by means of a slight modification of it. The divergence of the
modified series is a direct marker of misleading convergence of the original series. Problem
(b) can be circumvented, instead, by using bare diagrammatic expansions, i.e., undressed
propagators G0 instead of full G’s [11, 16, 19]. As a complementary route, in Ref. [16], the
authors introduce a shifted-action approach which permits to devise a so-called “semibold”
scheme, where the bold series is only performed up to a truncated finite order. We note
that, regardless of the method chosen, there has been a immense effort in developing
efficient algorithms to determine the expansion coefficients of the diagrammatic series
for the observable under consideration [183–188] as well as techniques to properly treat
its possibly divergent resummation [186, 189, 190], see also a recent work by A. J. Kim
et al. [191] for an approach combining shifted-action and resummation techniques. We
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refer the reader to Appendix D1 of Ref. [52] to obtain an overview of the current technical
advances in this field.

By using the above-mentioned strategies the diagrammatic Monte Carlo method is able
to overcome the perturbative breakdown, making it possible to apply this approach to
cutting-edge problems, as exemplified by a subset of very recent Refs. [52, 192–195].

Throughout the remaining part of this chapter, we focus on the algorithmic challenges
posed by the other, directly related, manifestation of the breakdown of perturbation theory:
the appearance of divergences of irreducible vertex functions. To this end, we consider the
so-called diagrammatic extensions of DMFT [51], as these use nonperturbative vertices of
converged DMFT solutions as a main input.

6.2 Vertex divergences and diagrammatic extensions of DMFT

The heart of the algorithmic challenge posed by the divergences of the irreducible vertex
functions can be summarized as follows: Since the irreducible vertex in channel r, Γr , as well
as the fully irreducible vertex Λ diverge along infinitely many lines in the phase diagrams
of many-electron models, methods that use these irreducible quantities are expected to fail
along these divergence lines. Of course, in practice, calculations are performed at most
in the proximity to a vertex divergence line, but typically not exactly at the parameter set,
where the divergence occurs. Nevertheless, even in their proximity, the irreducible vertices
will assume huge values, posing considerable problems to their numerical treatment (see
e.g., Fig. 3.2, which shows Γνν ω 0

c close to a vertex divergence). Additionally, one should
also consider as additional difficulty the increasing “density” of divergence lines at larger
interaction values, see, e.g., Fig. 3.20.

Evidently, diagrammatic methods that do not rely specifically on the irreducible ver-
tices, but only on the full vertex F are, in principle, free of this issue.

It is worth noting a recent work by F. Krien et al. [137], where an alternative strategy for
circumventing this issue for parquet-based methods was pushed forward. The main idea
is to group the different classes of vertices according to another criterion for reducibility:
This is no longer based on cutting two fermionic lines (two-particle reducibility), but on
cutting one interaction line (U-reducibility). We discuss the details and advantages of this
method in Sec. 6.2.2.

In the following we consider explicitly a subset of three pertinent examples of cutting-
edge diagrammatic extensions of DMFT, discussing in particular, how these methods
circumvent the problem posed by the ubiquitous presence of vertex divergences.

6.2.1 DΓA

The basic idea of the dynamical vertex approximation (DΓA) [95], as well as the QUADRILEX [196]
approach, is to raise the central DMFT approximation to the next level of complexity. In-
stead of the one-particle irreducible vertex, i.e., the self-energy Σ, which is purely local in
DMFT, it is the fully irreducible two-particle vertex which is assumed to be local (within
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Subsequently the BSE together with the equation of motion (EOM) is used to obtain Σk.
Evidently, close to a vertex divergence, the crucial step of the inversion of the parquet or

Bethe-Salpeter equations becomes problematic, hindering a reliable numerical treatment
of all vertex functions in the following steps of the algorithms. To circumvent this issue, a
reformulation of the corresponding equations would be necessary, preventing the explicit
manipulation of irreducible vertices. So far no such reformulation has been found for
the full/parquet DΓA or the QUADRILEX approach. The situation is more favorable for
ladder DΓA, whose equations can be completely recast in terms of the full vertex F instead
of Γr [51, 54].

This formal property has been exploited in a recent work by J. Kaufmann et al. [199],
where the self-consistent version of the ladder DΓA algorithm was implemented and
tested. As the authors explicitly showed, the reformulation using full vertices, instead of
irreducible ones, allowed for applying a fully self-consistent version of ladder DΓA also at
interaction values larger than those of the first vertex divergence lines. It should be noted,
however, that just in the direct proximity of the divergence lines, the convergence of the
self-consistent method could not be achieved, for reasons which are not fully clarified yet.

6.2.2 Dual fermion

The dual fermion approach [200–202] is based on rewriting the lattice problems in terms
of a collection of Anderson impurity models, which are each numerically exactly solvable,
and whose mutual coupling is treated in a perturbative manner [51]. To this end the
original lattice action S is expressed in terms of a local reference action Sloc and decoupled
by introducing new fields, the so-called dual fermions. In particular, this is achieved
by applying a Hubbard-Stratonovic transformation to the Gaussian part of S. In order to
obtain a generating functional W , which is completely expressed in terms of dual variables,
W is expanded in terms of the local coupling between physical and dual fermions. This
introduces the effective dual fermion interaction Veff, which is fully determined by the
local n-particle vertices of the impurity systems. In principle, Veff includes interaction
terms of higher particle order than the usual two-particle one. In practical applications,
however, usually only the two-particle terms are retained. Using the generating functional
W expressed in dual variables, relations between dual and original correlation functions
can be identified, allowing one e.g. to obtain the physical self-energy from the dual one.
The main advantage of this procedure lies in the improved starting point for perturbative
expansions, which produces nonlocal correlations on top of the nonperturbative local ones
already included via the auxiliary impurity models. The central approximation of the dual
fermion method, beyond the choice of the dual interaction, is the diagrammatic expansion
made in dual space. For a concise review of dual-fermion-based approaches we again refer
the reader to Ref. [51].

Concerning the subject this thesis, the crucial advantage of the dual fermion method
lies in the form of Veff, where only the full local vertices enter, e.g., on the two-particle
level, the full (one-particle-irreducible) local vertex F of an AIM, corresponding to a self-
consistent DMFT solution. In this way the dual fermion approach automatically circumvents
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similarly as for the parquet decomposition a system of self-consistent equations for a given
ϕfirr,α can be defined [139] as well as simplified schemes based on approximations of ϕfirr,α

can be formulated [204].
It is important to stress that in the SBE decomposition all vertices are obtained from

algebraic relations, hence not requiring any kind of inversions [137]. In this way the
SBE approach should be protected from the problem of vertex divergences, allowing for
a decomposition of the full vertex also in the nonperturbative regime, as opposed to the
parquet decomposition [18, 58, 59] (see Sec. 3.1.4.2).

In the BEPS method [203] the full vertex encoding the two-particle interaction between
the dual fermions, is decomposed into SBE diagrams and the corresponding U-irreducible
part, as discussed above. For the U-irreducible part the parquet equations are used,
splitting it into multi-boson exchange processes and a remaining irreducible part. This
formulation proved to be advantageous concerning the numerical performance, allowing
for several interesting applications [205, 206] (for an formulation of this idea for real
fermions see Ref. [207]). Among them the BEPS approach has recently offered a new
viewpoint on the still highly controversial topic of the strong-coupling pseudogap in the
2D Hubbard model [206]. In particular this BEPS-based study allowed to identify the
emergence of a non-negligible imaginary part of the spin-fermion coupling, which acts as
a key player in the opening of the gap close to the antinodal point and, at the same time,
in the protection of the Fermi arcs.

6.2.3 DMF2RG

The DMF2RG method [51, 208–211] is an extension of DMFT, which exploits the functional
renormalization group approach, for a review see Ref. [98], as a means to systematically
include nonlocal correlations on top of the nonperturbative local ones already included in
the DMFT starting point.

As summarized in Sec. 2.3.3, in the fRG method [98] a scale dependenceΛ is introduced
in the bare propagator and hence in the many-body action SΛ. This defines aΛ-dependent
generating functional, which can be used to obtain an infinite hierarchy of coupled differen-
tial equations for one-particle irreducible quantities, the so-called Wetterich equations [98,
100]. In practical applications, this hierarchy is typically truncated at the two-particle level,
i.e., only the differential equations for the self-energyΣ and the full vertex F are considered.
These coupled equations are however not closed, because the latter still explicitly depends
on the three-particle vertex. Different approximation schemes of the fRG approach usu-
ally concern the extent to which the three-particle vertex is included in the differential
equation for F and Σ. For example, a commonly used scheme, the so-called one-loop (1 )
approximation, neglects the effect of the three-particle vertex entirely.

Eventually, once the set of differential equations is defined, it is solved starting from
an initial condition, which often corresponds to an explicitly known limiting case. By
doing so, the approximate fRG solution of the many-body problem under consideration is
obtained. This process is often referred to as “flowing”.

In the case of DMF2RG the fRG method is formulated to represent the "turning on"
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Figure 6.3: Schematic representation of the DMF2RG method. At the scale Λini the flow starts from
the DMFT solution by using the bare local Green’s function of the corresponding AIM, GAIM(ν),
as bare propagator GΛini

0 of the initial action SΛ Λini . As Λfin is reached, nonlocal correlations are
included and the bare lattice Green’s function (Glatt(k, ν)) is fully included in the final actionSΛ Λfin .
The figure is taken from Ref. [211] (see Fig. 2 therein).

of non-local correlations as Λ flows from the initial Λini to the final value Λfin [208]. For
instance, during the DMF2RG flow, the scale-dependent bare propagator GΛ0 is turned from
the one corresponding to the AIM of the self-consistent DMFT solution [GAIM(ν)] to the
one corresponding to the full lattice problem [Glatt(k, ν)], as illustrated schematically in
Fig. 6.3, reproduced from Ref. [211]. To avoid double-counting of local correlations GΛ0 is
chosen such that the following condition for the interacting Green’s function is preserved
throughout the flow [210, 211]:

GΛloc(ν) ΣΛ ΣDMFT

∫
k

GΛ(k, ν)|ΣΛ ΣDMFT GDMFT(ν) (6.2)

Importantly, similarly as in the dual fermion method, the DMF2RG requires the Green’s
function and the full vertex F of DMFT as an input. They provide the initial conditions
for the differential equations describing the fRG flow of the self-energy and the one-
particle irreducible vertex F. Evidently, in this way, the problem of vertex divergences
is also automatically circumvented, as the irreducible vertex functions are never explicitly
manipulated in any step of the procedure.

While the DMF2RG approach combines two very powerful methods, extending the
applicability of truncated fRG to the strong coupling regime [208, 210, 211], its current
implementations, exploiting the 1 fRG, face an important limitation at low-temperatures.
In particular, a magnetic instability is found below a so-called “pseudocritical” temperature,
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the flow, up to the performance of the mfRG loop resummation at intermediate to strong
coupling.

As a crucial preliminary step, we investigate in the following how the simple mfRG
scheme performs when applied to a fundamental case: the AIM, used throughout this
work (see Sec. 2.1.1 for details) for increasing interaction values from weak to intermediate
to strong coupling, as explicitly marked in Fig. 6.5 by turquoise stars. Regarding the choice
of the model, we emphasize that using the AIM has the following advantages: (i) no further
approximations for the application of the mfRG procedure are necessary. This is different
w.r.t the Hubbard model case, where the mfRG algorithm needs to be adapted to account
for an approximate treatment of the k-dependence, see further Ref. [94]; (ii) the numerically
exact CT-QMC solution of the AIM provides a rigorous benchmark for the overall accuracy
of the mfRG scheme. In this way our investigation allows for a systematic inspection of
the multiloop convergence in different coupling regimes, which is a particularly important
aspect for future applications of the DMF2RG in the non-perturbative regime.

Beyond these mostly “practical” issues, we also investigate a more profound feature
of the mfRG resummation and different loop-truncated versions of it (see Sec. 2.3.3): We
analyze to which extent the solutions of these approximate methods fulfill fundamental
properties of the exact solution, specifically sum rules associated with the Pauli principle
as well as Ward identities. This investigation represents an important comparison not only
in respect of future DMF2RG applications, but also for approximate quantum many-body
approaches in general.

Parts of the following section that are marked by a vertical bar, are taken from Ref. [215].
We note as a side remark that in this work a different convention for the diagrammatic
channels as well as the sign of the vertex function was used. The parts, which are taken
from this reference, have been adapted to match the conventions chosen in this thesis.
Additionally, negative vertices (e.g., −Φm) are shown in the following figures, to match
more closely the plotting conventions of Ref. [215].

6.3.1 Multiloop fRG solution of the AIM
In this section, we present a detailed discussion of the results obtained by applying the
mfRG approach, summarized in Sec. 2.3.3, to the half-filled AIM introduced in Sec. 2.1.1
at the inverse temperature β 10. For further details on the implementation, we refer
the reader to Refs. [96, 106]. We just note here that, for the reducible vertices, we adopt
the parametrization Φr(ν, ν , ω) K1r(ω)+K2r(ν, ω)+K2 r(ν , ω)+K3r(ν, ν , ω) proposed in
Ref. [96]. The K1r and K2( )r functions with one and two frequency arguments, respectively,
describe the high-frequency asymptotics, while the remaining full dependence, relevant
at low frequencies, is contained in K3r . This reduces the computational cost, allowing for
the calculation of the vertices on a larger Matsubara frequency range (see Ref. [215] for
computational details). The flowing susceptibilities are conveniently extracted through
χr −K1r/U2.

We start the presentation of our numerical results by showcasing the central quanti-
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more details on how the oscillations observed for U 2 are reflected in the restfunc-
tion K3m(ν, ν , ω) for ω 0, where the full fermionic frequency dependence is taken into
account.

As a first step we fix ω 0 and ν −πT and show cuts in ν for different loop orders
using the Ω-flow in Fig. 6.10. Starting from the upper left panel it can be seen how the
results oscillate as a function of loop order around the PA result (black dashed lines). The
last loop order seen in each panel is replotted again in the following one for all panels
but the last, where a comparison across several loop orders is shown. In the upper right
panel the maxima and minima of the multiloop oscillations are particularly visible, as the
loop orders 5, 6, 7, 8 almost coincide. In the lower left panel we also report the 32
result, which shows a convincing agreement with the PA for the rest function, but not for
all other quantities such as ImΣ(ν πT) (not shown), indicating that, as discussed before,
the multiloop convergence is not fully reached.

As a second step we analyze the full fermionic frequency dependence of K3m(ν, ν , ω).
In Fig. 6.11 and 6.12 we present the results corresponding to the loop orders shown in
the lower right panel of Fig. 6.10 as a function of both ν and ν for ω 0. Fig. 6.11
exploits a color map, which is optimized for highlighting differences in the range of small
values of −K3m(ν, ν , ω 0). This allows to easily identify the qualitative changes in ν
and ν , where the shape of K3m(ν, ν , ω 0) changes from a diamond-like structure at
low loop orders toward the butterfly-like structure of the PA solution. In Fig. 6.12, for
a more quantitative analysis, we plot the differences of the Ω-flow results and the PA
solution, i.e., − KmfRG

3m (ν, ν , ω 0) − KPA
3m(ν, ν , ω 0) . One readily notices that the trend

observed in the fixed-ν cuts is coherent with the evolution of the full ν, ν dependence of
K3m(ν, ν , ω 0).

Overall we essentially obtain the same picture for the multiloop oscillations of K3m(ν, ν , ω
0) as for the ones of ImΣ(ν πT) and χm(ω 0) discussed in the section above: One ob-
serves how the low-loop order results quickly approach the PA solution as well as the
residual oscillations around it for larger loop orders. Since the entire K3m(ν, ν , ω 0)
function oscillates around the PA result, we figuratively refer to these multiloop oscilla-
tions as “breathing” of the restfunction.

The corresponding plots for the U-flow calculations are shown in Appendix A.3.2,
where qualitatively the same behavior is observed, albeit with quantitatively larger oscil-
lations.

Our results of Figs. 6.10, 6.11 and 6.12, which demonstrate how the multiloop oscil-
lations affect K3m(ν, ν , ω 0), have also important practical implications. Specifically,
the usage of the high-frequency parametrization of the reducible vertex [96] allows for a
speed-up of the numerical calculations as the full frequency-dependent restfunction needs
to be taken into account only for a small finite frequency box (the so-called boxsize). In
the choice of the number of frequencies to be included the “breathing” behavior of the
restfunction needs to be carefully considered, since the boxsize might vary significantly
during the multiloop procedure (see Ref. [215] for the specific choice made for this work).
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Figure 6.11: Ω-flow mfRG results for −K3m(ν, ν , ω 0) as a function of ν and ν for the AIM with
U 2 and β 10. The color map is optimized to better highlight the range of small values.
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On a more general perspective, we note that the loop convergence of the mfRG proce-
dure is mostly controlled by the ratio between the local interaction U and other relevant
energy scales of the system under consideration (e.g., in the case of the AIM: πΔ or the
temperature T) rather than by the ratio between the temperature and the Kondo tem-
perature [68]. In future dedicated studies, it may be interesting to verify to what extent
the grade of the loop convergence itself might be regarded as an additional independent
marker of central physical aspects of the underlying exact solution of the problem.

After analyzing the performance of the multiloop scheme and its convergence behavior
for the different parameter sets shown in Fig. 6.5, we now turn to the investigation of the
fulfillment of fundamental properties of the exact solution in approximate methods.

6.3.6 Pauli principle and Ward identity
Both the Pauli principle and the Ward identities (WIs) are fundamental features of the
many-electron physics. They are deeply rooted in quantum mechanics and pose important
constraints on many-body correlation functions. An exact solution must evidently obey all
such constraints. In approximate treatments, however, their fulfillment is not guaranteed a
priori. It is commonly reckoned [55] that approximate many-body approaches either obey
sum rules imposed by the Pauli principle or satisfy WIs. Hence, fulfilling both the Pauli
principle and the WIs would represent a specific hallmark of the exact solution. On a
more formal level, a pertinent example of such a trade-off in the context of parquet-based
approximations can be obtained by exploiting explicit relations between the self-energy
and four-point vertices [105, 217, 218] in the parquet formalism.

In the following, we utilize our converged numerical results for the AIM to analyze, on a
quantitative level, to what extent the Pauli principle and WIs are fulfilled for the important
class of approximate many-body approaches ranging from the conventional fRG to the
mfRG and PA.

6.3.7 Pauli principle

Sum rule of χσσ: Formal aspects — The Pauli exclusion principle states that two electrons
cannot occupy the same quantum state. On the operator level, this corresponds to the fact
that a fermionic occupation-number operator can only have eigenvalues zero and one. On
the diagrammatic level, such a constraint affects the many-body correlation functions in
several ways, e.g., through sum rules they must obey.

In this context, a relevant correlation function for the physics of the AIM is the equal-
spin density-density susceptibility (cf. Sec. 2.2.3),

χσσ(τ) Tτ n̂σ(τ)n̂σ − n2
σ . (6.3)

Here, nσ n̂σ , and Tτ denotes (imaginary) time ordering, as discussed in Sec. 2.2 (for
brevity, we omit here the particle-hole channel label). This susceptibility is directly affected
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by the Pauli principle through the operator identity n̂2
σ n̂σ. Indeed, an evaluation at τ 0

yields

χσσ(τ 0) n̂2
σ − n2

σ nσ(1 − nσ), (6.4)

a value, which is fully determined by the single-particle expectation value nσ. Further-
more, as the equal-time correlator χσσ(τ 0) is identical to the sum over all its Fourier
components χσσω , the following sum rule [219] must hold:

1
β
ω

χσσω χσσ(τ 0) nσ(1 − nσ). (6.5)

At SU(2) spin symmetry and half filling, the result is 1/4.
For the purposes of the subsequent discussions, it is useful to elaborate on the quantum-

field-theoretical relations which underlie Eq. (6.5). To this end, we recall that the Pauli
principle can be translated from an operator identity ({ĉσ , ĉσ } 0, {ĉσ , ĉ

†
σ } δσσ ) to the

crossing symmetry of four-point correlators. For illustration, let us briefly use a compact
notation where all arguments of an electronic operator are summarized in a single index
i. Then, for G2,i1 ,i2 ,i3 ,i4 ∝ Tτc†i1 ci2

c†i3 ci4
(cf. Eq. (2.13)), the crossing symmetry implies

G2,i1 ,i2 ,i3 ,i4 −G2,i3 ,i2 ,i1 ,i4 −G2,i1 ,i4 ,i3 ,i2 .

Furthermore, the susceptibility can be represented through (full) propagators G and
the (full) two-particle vertex F by

χσσω −1
β
ν

Gσν+ωGσν

− 1
β2
νν

Gσν+ωGσνGσν +ωGσν Fσσνν ω , (6.6)

see Sec. 2.2 for details. The first term of Eq. (6.6) summed over all frequencies ω, i.e., taken
at τ 0, gives

χσσGG(τ 0) −Gσ(τ 0−)Gσ(τ 0+). (6.7)

Upon inserting Gσ(τ) Tτ ĉ†σ(τ)ĉσ , one finds

χσσGG(τ 0) cσc†σ c†σcσ (1 − nσ)nσ , (6.8)

which yields already the entire sum rule, see Eq. (6.5). Consequently, the vertex contribu-
tions must vanish when summed over all frequencies ω. This is indeed guaranteed by the
crossing symmetry, as we show below.

Consider the summed vertex contribution of Eq. (6.6),

1
β
ω

χσσvtx;ω − 1
β3
ωνν

Gσν+ωGσνGσν +ωGσν Fσσνν ω . (6.9)
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The left panel displays νImΣν/U as a function of for a fixed, large value of νl ≈ 19.16.
At this frequency, νImΣν is expected to be slightly lower (in absolute value) than the
corresponding asymptotic value of −1/4 for ν→∞. The correct asymptotic description
of the mfRG results (red circles) for large is demonstrated by their perfect match with
the corresponding PA results, as the latter yield the correct high-frequency asymptotic by
construction. As explained above, this would have not been the case without multiloop
corrections to the self-energy flow. In fact, the gold pentagon line shows results which are
obtained by Σstd without multiloop additions to the self-energy flow (these start at 3)
and notably deviate from the correct value.

The right panel shows the frequency dependence of νImΣν in a frequency window
around νl (νl is represented by the vertical blue line). For fRG results at lower loop order,
the high-frequency asymptote is incorrect, reflecting the fact that the SDE relation is not
fulfilled. For the same reason, all approaches satisfying the SDE lie on top of each other,
i.e., the PA (black dashed line), mfRG (orange solid line), and QMC (green line) yield
the correct high-frequency behavior of Σ. Note that the QMC result was obtained using
w2dynamics [85] with Worm sampling [87, 88] and symmetric improved estimators [89],
designed to reduce the high-frequency noise. However, the noise cannot be suppressed
completely, and thus the QMC result oscillates around the PA and mfRG solution. While
the improvement of the high-frequency results is not monotonous for the lowest loop
orders, we observe that rather accurate results are obtained already at the 3 level, where
the first multiloop corrections to the self-energy flow appear.

6.3.8 Ward identities

Formal aspects — The WIs play an essential role in the many-electron theory as they
define how the information encoded in the continuity equations at a microscopical level
is reflected onto response functions and macroscopic quantities. More specifically, a
continuity equation is an operator relation of the form ∂τ ρ̂ −[ρ̂, Ĥ]. If ρ̂ is a symmetry
of the Hamiltonian, [ρ̂, Ĥ] 0, then ρ̂ is a conserved quantity, ∂τ ρ̂ 0. In this case, the
continuity equation describes a conservation law. However, even if this is not the case,
continuity relations can be used for deriving relevant WIs, in particular when [ρ̂, Ĥ]—
albeit nonzero—yields a simple expression. Let us point out, that WIs are closely related
with the Luttinger-Ward functional and the notion of Φ-deriveability, see Sec. 2.2.5.

In practice, WIs can be derived for n-point correlation functions of arbitrary n. If ρ̂ and
[ρ̂, Ĥ] involve n1 and n2 n1 + δn fermionic operators, respectively, then

Tτ ĉ1 · · · ĉ†n−n1∂τ ρ̂ − Tτ ĉ1 · · · ĉ†n−n1[ρ̂, Ĥ] (6.16)

relates an n to an (n+δn)-point function. Typically, one mostly considers the WI connecting
two- and four-point functions (i.e., the WIs ensuring the physical consistency between the
one- and the two-particle description) and restricts oneself to the (local or global) charge
or spin operators, substituting them for ρ̂. A recent derivation, applicable to lattice and
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the flow of the DMF2RG scheme, see Sec. 6.2.3, is generating non-local correlations on
top of the local ones already included in the DMFT starting point. Consequently, one
could expect that a swift convergence in loop order is found, in all cases where non-local
correlations remain reasonably well treatable by an advanced perturbative approach, even
in a context of strong (nonperturbative) local correlations. Evidently, this might boost the
applicability of truncated fRG methods well beyond the regime of small-to-intermediate U.
On the other hand, by increasing U and/or reducing the temperature, one might encounter
similar oscillation patterns as a function of loop order, since the local DMFT vertices on
which the DMF2RG is build are large compared to the bare interaction U. It remains to
be seen in practical calculations, which scenario will be eventually realized. Nevertheless
let us emphasize that, even in the case of multiloop oscillations and slow convergence
in loop order, the multiloop scheme leads to systematic improvements of fundamental
properties of the approximative solution, as clearly observed in our case for the sum rule
at intermediate coupling in Sec. 6.3.7.



CHAPTER 7

Conclusion and Outlook

... Take a walk on the wild side
– Lou Reed

In this thesis, significant aspects of the divergences of irreducible local vertex func-
tions were thoroughly discussed, including their occurrence in several fundamental many-
electron models, their connection to the multivaluedness of the Luttinger-Ward functional
(LWF), their physical origin, and, finally, their physical and algorithmic implications. Based
on the presentation made, the following conclusion can certainly be drawn: Irreducible ver-
tex divergences are more than a mere mathematical peculiarity of the QFT formalism applied for
describing correlated electron systems. In fact, at the beginning of this thesis, one could
have had the misconception that the main topic was essentially hunting mathematical
ghosts [223] without any deeper physical meaning or impact. In the end, however, one is
certainly convinced of the opposite (or at least the author hopes so).

In this respect, let us summarize the essential insights gained throughout this work by
concisely answering the central questions of this thesis, which were posed in the Introduc-
tion.

• In which cases are the different manifestations of the breakdown of perturbation theory (ir-
reducible vertex divergences and crossings of solutions of the LWF) appearing, and how are
they connected?

Following the detailed discussion in Chapter 3, one would be almost tempted to
answer: Everywhere, where there is correlation. Indeed, after the analysis of several
fundamental many-electron models in cases with and without particle-hole symme-
try, the following systematic seems to emerge: On the two-particle level, in channels
whose local fluctuations are suppressed by the electronic interaction, this suppression
is reflected in the decrease of eigenvalues of the local generalized susceptibilities. De-
pending on zero or nonzero imaginary parts of the singular eigenvalues, divergences
of the corresponding irreducible vertices are triggered or not. This scenario is, how-
ever, not the whole story since a second kind of irreducible vertex divergences exists,
which can even affect the dominant fluctuation channel. While at perfect particle-
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hole symmetry, these divergences are decoupled from the corresponding physical
response, out of half filling they are related to its enhancement.

Moreover, the divergences of the irreducible vertex functions are related to the mul-
tivaluedness of the LWF [11]. The corresponding branching points, i.e., crossings of
unphysical and physical solutions, were similarly observed ubiquitously throughout
all models studied in this thesis [11, 19, 21]. For half filling, the connection among
these nonperturbative manifestations is even understood on an analytic level [12].
Out of half filling, an analytic proof is still missing, but overwhelming hints to a
possible underlying connection are found [21].

• What is the underlying physical mechanism that triggers the perturbative breakdown?

Here, a clear-cut picture emerges from Chapter 4: On the local level for repulsive
interaction, the formation of the local moment is reflected in a characteristic frequency
structure of the generalized charge susceptibility–its fingerprint: strongly suppressed
diagonal entries and an emerging off-diagonal structure. This is the way how the local
moment formation originates the appearance of negative eigenvalues in the charge
channel and, hence, the associated irreducible vertex divergences. Additionally,
thanks to this investigation, another characteristic frequency structure–labeled as
the “onion” structure–could be identified and related to the screening of the local
moment in the Kondo regime. Based on this analysis, an alternative criterion for the
determination of the Kondo temperature TK on the two-particle level in the charge
channel could be identified.

• Are there physical implications of the appearance of irreducible vertex divergences?

Yes! The associated negative eigenvalues of the local generalized susceptibilities are
crucial for the correct description of the local physical response function, as pointed
out in Chapters 4 and 5. Even more so, these negative eigenvalues can trigger a
strong enhancement and ultimately the divergence of the uniform charge response
of correlated electrons on a lattice. In particular, in Chapter 5, the divergence of
the isothermal compressibility in the proximity of the Mott-MIT of the Hubbard
model [161] (solved by DMFT) could be directly linked to a negative enough eigenvalue
of the local generalized charge susceptibility. Such an effect can be interpreted, to a
certain extent, as a sign flip of the effective interaction in the charge channel, from
repulsive to attractive, representing a mechanism of purely nonperturbative nature.

• What are the algorithmic implications of the breakdown of the perturbative expansions, and
are there possible strategies for circumventing them?

While the multivaluedness of the LWF poses significant hurdles to the application
of corresponding bold diagrammatic resummation techniques [11], the associated
divergences of the irreducible vertices hinder their direct usage for diagrammatic
extensions of DMFT [51]. Concerning the former, working with bare propagators
instead, allows to go beyond the many branching points of the LWF [11]. For
the diagrammatic extensions of DMFT, the solution can be summarized briefly as:
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“do not open Pandora’s box”–i.e., rewrite or base the diagrammatic approach upon the
full one-particle irreducible vertex F, instead of its irreducible counterparts. In Chap-
ter 6, several examples of approaches that circumvent the explicit usage of the irre-
ducible vertices were presented, with a particular focus on the DMF2RG method [208].
In this respect, the performance of the multiloop fRG [103, 104], as applied to the
AIM, was thoroughly analyzed, as it can represent an important basis for possible
applications of a multiloop DMF2RG method [105] (or D(MF)2RG) in the future.

The considerations of all these results outline, for the local case with repulsive inter-
action, the emergence of a well defined mechanism associated to nonperturbative physics,
which we refer to as “the circle of suppression and enhancement”.

The circle of suppression and enhancement Enhanced magnetic fluctuations1 are re-
flected in a suppressed local charge response with associated suppressed positive or even
negative eigenvalues of the generalized charge susceptibility. The communication between
these channels is “transmitted” via irreducible vertices, which diverge if the corresponding
eigenvalues are real and undergo a sign change. These negative eigenvalues of the local
generalized susceptibility, after becoming negative enough, can trigger an instability in the
uniform charge response, representing a nonperturbative pathway to phase transitions.

In this way, a true nonperturbative feat, or similarly, another “perfect espresso” of strong
local electronic correlation, could be identified throughout this thesis.

7.1 Outlook

In this section, we elaborate on possible future investigations, which are directly inspired
by the different results presented throughout this work.

Beyond DMFT The intuitive picture of the “circle of suppression and enhancement” we
have presented above naturally calls for extensions to cases beyond the DMFT treatment
of the single-band HM.

On the one hand, one can think to include nonlocal correlations on top of DMFT. As a
pertinent example, let us consider the two-dimensional (2D) HM solved by cluster exten-
sions of DMFT, e.g., CDMFT or DCA [121]. In these cases, several studies have highlighted
the crucial role played by antiferromagnetic fluctuations for the physics of the 2D HM [51,
52, 58, 59, 122, 173, 174, 224–226]. In this particular case, also all other basic “ingredients”
for the mechanism described above are present: (a) In the study by J. Vučičević et al. [21],
which was summarized in Sec. 3.1.4.2, the occurrence of irreducible vertex divergences in
the charge channel at intermediate coupling was identified in a CDMFT treatment. Simi-
larly, in the DCA analysis performed in Ref. [18], negative eigenvalues in the generalized

1Here, this role is played by the local moment formation, which effectively increases the magnitude of χ↑↓,
see Fig. 4.5. In this way, the magnetic response (χm χ↑↑−χ↑↓) is increased and, at the same time, the charge
response is suppressed (χc χ↑↑+χ↑↓), due to the overall negative sign of χ↑↓.
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momentum-dependent charge susceptibility were found, and related to corresponding di-
vergences of irreducible vertex functions. At the same time, (b) CDMFT calculations for
the 2D HM have shown a strong increase of the compressibility κ in the proximity of the
corresponding MIT, see e.g. Refs. [166–168]. Based on these cornerstones, one can safely
assume to find an extension of the “circle of suppression and enhancement” to cases where
strong nonlocal correlations are included.

On the other hand, extending the study to a multiorbital system, where the Hund’s
coupling can be taken into account, certainly represents another case where strong local
magnetic fluctuations can be expected [61, 227, 228]. As the Refs. [229, 230] have shown,
also in these situations, an increase of the compressibility can be observed in the proximity
of the Hund’s-Mott MIT. Hence, the study of a multiorbital HM would represent another
possible extension of the “circle of suppression and enhancement”.

Let us underline that one should not limit these investigations to the charge sector
and the associated phase-separation instabilities only: The impact of negative eigenvalues,
occurring also in the particle-particle sector, should be also systematically inspected in all
cases where nonlocal correlations beyond DMFT or multiorbital systems are considered.

Some of these possible extensions are currently being worked on by Matthias Reitner
in the group of Alessandro Toschi, aiming to identify the link between phase instabilities
and negative eigenvalues of the local or short-ranged generalized susceptibility in the more
general situations. In this context, we also want to stress that for both cases an analysis
of the frequency and the momentum/orbital structures of the generalized susceptibilities
would certainly be of interest. In this way, a similar identification of characteristic structures
might be pursued, as the ones presented in this work.

On a more general perspective, it would be interesting to see, whether the “circle of
suppression and enhancement” really is a pathway to phase transitions of purely non-
perturbative nature. In this respect, one would need to analyze the fully k-dependent
case, without starting from a local/short-ranged perspective. Here, one needs to clarify
whether a situation of a diverging negative eigenvalue with a corresponding negative weight
of the fully k-dependent generalized susceptibility, leading to an instability of a general
q-dependent response χq, would be imaginable. This naturally seems likely, following
also the discussion of the case of cluster extensions of DMFT made above. As a second
step, it would be necessary to check if such negative eigenvalues λq

α could be, in principle,
obtained in a self-consistent perturbative treatment such as, e.g., fRG or PA. In particu-
lar, one would need to investigate whether such negative eigenvalues are always preceded
by a divergence of the corresponding momentum- and frequency-dependent irreducible
vertex. From the analysis presented so far, this seems indeed possible. As another hint
for the existence of this mechanism for the fully k-dependent case, without using DMFT
as a starting point, consider also Fig. 4 of Ref. [11]. Here, unphysical solutions, i.e., the
existence of branching points of the LWF, are observed in the fully k-dependent result
obtained by bold diagrammatic Monte-Carlo calculation for a 2D-HM at half-filling. This
result underlines that the multivaluedness, and likely also the divergences of irreducible
vertex functions, will indeed affect also the fully k-dependent solution of e.g., the 2D-HM.
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Physical implications of vertex divergences – Widom line and Fermi-Liquid theory As
already discussed at the end of Chapter 5, the connection of negative eigenvalues of the local
generalized charge susceptibility to the maximum of the isothermal compressibility for
temperatures further in the crossover region, which defines the Widom line [166–169, 181,
182], would be an interesting extension of the work presented there. As another possible
future project, let us also mention the Fermi-Liquid parameters of the AIM [30]: It would
be interesting to clarify on a fundamental theoretical level, whether in these quantities
an impact of negative eigenvalues of χννc could be identified. This investigation would
follow the direction of defining a distinction between a perturbative and a nonperturbative
Fermi-Liquid.

Fingerprints of the local moment formation – unequivocally identifying the culprit
While at the moment, fluctuation diagnostic techniques are mostly defined and applied
to the electronic self-energy [58, 59, 122], one could exploit the single-boson exchange
decomposition [137] (introduced briefly in Sec. 6.2.2), to analyze directly, how the diagonal
(ν ν ) as well as the counter-diagonal (ν −ν ) of χνν (ω 0)

c are determined by the
different diagrammatic channels. The goal here would be to relate χν ±ν (ω 0)

c to the
physical magnetic response function χm(ω 0), in which the local moment formation is
explicitly encoded. In this way, the impact of the progressive enhancement of χm(ω 0) as
the local moment is formed, could be directly connected with the appearance of negative
entries in the diagonal of χννc . Further, one could also attempt to identify the microscopic
processes responsible for the increase of the off-diagonal elements of χν −ν (ω 0)

c , which
was shown for the first Matsubara frequency (χ(ν πT)(ν −πT)(ω 0)

c χO) in Figs. 4.3 and
A.4. In an upcoming work by Severino Adler, working in the group of Alessandro Toschi,
several aspects of this question will be investigated.

Irreducible vertex divergences – extending the “zoo” Chapter 3 already discussed the
appearance of irreducible vertex divergences in many situations – representing a diverse
“zoo” of nonperturbative manifestations throughout various many-electron models in dif-
ferent physical channels. However, it would be intriguing to extend the analysis to more
complex cases. Here we have in mind: (i) a more focused study of the case of bro-
ken particle-hole symmetry, for example, at different temperatures or larger values of U
(e.g. what happens to the multiple negative eigenvalues seen in Fig. 3.20, when the half fill-
ing constraint is lifted). In this respect, let us also note the relevant extension of the proof
linking a crossing of the physical with unphysical solutions to the occurrence of vertex
divergences [12] to cases out of half filling. This goes hand in hand with a closer inspec-
tion of the boundaries of the nonperturbative regime, as identified by bold resummation
techniques [11, 21, 28], and the different divergence lines observed for this case.

On a more general perspective (ii), a systematic investigation of vertex divergences for
symmetry broken phases (e.g., the antiferromagnetic solution of the HM in DMFT) would
be very intriguing, which is currently being worked on by Matthias Reitner.

Finally, let us in this respect also mention (iii) the idea to investigate vertex divergences
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directly on the real frequency axis, as already outlined at the end of Sec. 3.1.3. Here, the
pioneering Refs. [141] and [142], certainly play an important role as a possible starting
point.

Two-particle criterion for TK Naturally, it would be also interesting to investigate whether
the two-particle criterion for TK can be adapted and applied to more complex cases, e.g., out
of half filling, multiorbital systems, or even cases of nonlocal correlations, all discussed
at the beginning of this section (hand in hand with the hunt for possible fingerprints, see
“Beyond DMFT”). Here, the temperature identified by this criterion would most likely
provide an estimate of the coherence temperature. More generally, an analytic foundation
of the two-particle criterion pinpointed in Chapter 4 in the general QFT formalism would
be most desirable, as already discussed at the end of Sec. 4.6. Here a possible connection
to the full vertex F could represent a first step, also in light of the NRG results presented
in Fig. 9 of Ref. [141].

Existence of the minimum of the charge response in the perturbative regime Following
the analysis made in Chapter 4 and the latest results of Ref. [158], the question arises
whether a more strict statement about the presence of vertex divergences and the minimum
of the local charge response χc as a function of T can be made. In particular: At which
interaction value does the minimum of χc as a function of T vanish and is this related to
the lowest U value where irreducible vertex divergences are found?

Multiloop DMF2RG A clear future perspective of the mfRG analysis presented in Sec. 6.3
is to perform multiloop DMF2RG calculations for, e.g., the two-dimensional Hubbard
model. Based on the arguments presented in Secs. 6.2 and 6.3, one should expect a
significant decrease of the pseudocritical temperatures with increasing loop orders. First
steps into this direction are currently made by Aiman Al-Eryani and Sarah Heinzelmann in
the group of Sabine Andergassen, by applying the mfRG (without a DMFT starting point)
to the attractive Hubbard model.

As a much more speculative outlook (following mainly the author’s gut feeling), it
would also be interesting to investigate further the “node”-structure of the multiloop
oscillations described in Sec. 6.3.3. On the one hand, one could analyze how robust the
position of the “nodes” is as the parameters of the system change, e.g., the temperature
(in a broader range than discussed in Chapter 6). On a more general level, however, the
question arises whether resummation techniques [16, 191], introduced to handle divergent
resummations of bare diagrammatic series (see Sec. 6.1), could be in some way applied to
the multiloop series. Here, the challenge would certainly be to connect these resummation
techniques, which work mainly on the level of the action S and concern summations of
diagram orders, to a summation of loop orders on the level of one-particle irreducible
vertices Σ and F.
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This rich and multifaceted list of possible future research developments, inspired by
the investigations made in this work, highlights the significance of the results obtained
for the forefront description of correlated many-electron systems and their puzzling but
fascinating physics.
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APPENDIX A

Additional results and considerations

In order to provide an insightful and focused reading experience of the main text, some
supplemental results and additional considerations are shown in this Appendix.

A.1 Additional results for Chapter 4

Parts of this chapter, marked by a vertical bar, have already been published in the APS journal
Phys. Rev. Lett. 126, 056403 (2021), specifically as the corresponding supplemental material.

A.1.1 Frequency structures in χ̃ννc

In this section, additional results on the frequency structures of χ̃ννc , discussed in the main
text, are provided. First, the fingerprints of the local moment formation and the Kondo
regime are shown for the case of the AIM at a different value of U than the one considered
in Chapter 4. Second, the presence of the characteristic Matsubara frequency structures
is confirmed also for the cases of the PAM and the HM. Finally, the particular structure
of the partial summation of χ̃ννc , which was discussed in Sec. 4.1, is reported also for the
lowest-T (Tcold) case shown in Fig. 4.11.

We start by showing in Fig. A.1 a similar analysis as made in Sec. 4.2, but for a different
value of U 7.25 (U/Δ ≈ 11.54). As the temperature is reduced, the same characteristic
qualitative changes of the Matsubara frequency structure of χ̃ννc are observed, confirming
the generality of our discussion made in the main text. We note that for this interaction
value, the Kondo temperature is TK 1/158, which is very close to the calculation of
β 160 shown in central bottom panel of Fig. A.1, where the equality of the 2×2 submatrix
elements of χ̃ννc can be seen immediately. For temperatures slightly below TK (β 200,
bottom row right panel), the onion structure is still clearly visible.

As already mentioned in Chapter 4, the specific frequency features, coined fingerprints,
can also be observed for the PAM and the HM, as shown in Fig. A.2. The top panels
display the results for the generalized charge susceptibility χ̃ννc (again normalized by T2)
at intermediate temperatures (U/D/V > Tint > TK), the bottom panels nicely show the
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Figure A.1: Similarly as Fig. 4.3 of the main text, T2χ̃ννc (ω 0) for the AIM at different inverse
temperatures β 1/T and fixed U 7.25, where TK 1/158.

“onion-structure" observed for both, the PAM (left column) and the HM (right column), in
the Kondo regime (Tlow ≈ TK).
The precise parameters of the DMFT calculations for the HM and the PAM shown in
Fig. A.2 are the following: For the PAM the hybridization constant was fixed to V 0.91t
and Tint 1/52, Tlow 1/100. For the HM on the Bethe-lattice the interaction was fixed to
U 2.2 in units of the half-bandwidth D, and Tint 1/40, Tlow 1/50.

Finally, in Fig. A.3, the result of a partial summation of χ̃ννc , as defined in Sec. 4.2, is
shown for the Tcold case presented in Sec. 4.6. As discussed therein, the fingerprints of the
suppression of the charge channel due to the local moment are no longer directly visible in
χ̃ννc . Nevertheless, as Fig. A.3 shows, the overall suppression due to negative eigenvalues
is still present, and distinguishes the Tcold case clearly from perturbative cases, e.g. the one
of Thigh discussed in Sec 4.2.

A.1.2 Low-frequency criterion of χ̃ννc for TK

As we discussed in the main part, at T ≈ TK the generalized charge susceptibility acquires a
typical “onion"-structure. Beyond this qualitative feature, the value of TK can be extracted
for large interaction values, by a precise condition on the lowest frequency entries of χ̃ννc :
χ̃D χ̃O, where χ̃D T2χ̃ πT,πT

c and χ̃O T2χ̃ πT,−πT
c . We note in passing, that a practical

quality of this criterion resides in the possibility of performing a bisection.
Since the singularity of the innermost 2 × 2 submatrix of χ̃ννc is a precise reference-

point on the two-particle level, TK can be obtained either by a scan in temperature for
fixed interaction values (as shown in the lower panel of Fig. 4.3), or vice versa. The second
possibility is shown in Fig. A.4, where the temperature is fixed to T 1/80 0.0125, and
the interaction value is varied in a broad range. By monitoring the value of χ̃D − χ̃O (black
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Figure A.2: Comparison of the frequency structure of T2χ̃νν for the PAM (left column) and the
HM (right column). At intermediate temperatures Tint > TK (top panels) one observes the local
moment structure, described above for the AIM. The same holds for the Tlow ≈ TK regime (bottom
panels), where one recognizes for both cases the characteristic “onion-structure".

line) as a function of U, one can readily identify the singularity of the 2 × 2 submatrix of
χ̃ννc (black triangle), see also the inset, where a zoom around U(TK) (blue vertical line) is
shown. The value U(TK) refers in this context to the interaction value where TK is equal to
the temperature T 0.0125.

As mentioned in Sec. 4.3, the condition χ̃D χ̃O turns out to be the most accurate one
to match the value of TK for large interaction values and low-temperatures. Here, we
compare the criterion (i) χ̃D χ̃O to other reasonable low-frequency criteria one could
think of, in particular (ii) χ̃D −χ̃O and (iii) χ̃D 0. The results of this comparison are
shown in Fig. A.5. The second singularity of the 2×2 submatrix, χ̃D −χ̃O, is represented
by the grey plus symbols. We note that, for high temperatures, this coincides with the
singularity of the whole matrix χ̃ννc , which leads to the second vertex divergence observed
in the AIM (orange divergence line, cf. Fig. 3.13 or 3.14). At the same time, the brown
diamonds denote the parameter set where χ̃D 0 holds, which lies in between (i) and (ii).
As one notices readily in the inset shown in Fig. A.5, all these low-frequency criteria are
fairly close to the Kondo temperature for large interaction values and low-temperatures.
However they can be clearly distinguished from χ̃D χ̃O, which lies on-top of TK.
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Figure A.8: Upper: Gradual evolution of the eigenvector VI(ν), corresponding to λI, from half filling
(µ−U/2 0) to finite doping (µ−U/2 −0.15). Lower: Evolution of the symmetrized eigenvector
1
2 (VI(ν) + VI(−ν)), corresponding to λI, highlighting the antisymmetry of VI(ν) at half filling. At
finite doping, the condition VI(ν) −VI(−ν) is violated, and the symmetrized eigenvector shows
non-zero values. Left: corresponding real parts. Right: corresponding imaginary parts.

extremely localized in the frequency domain.
As both, the overall frequency dependence and the µ-dependence are weak compared

to | λI − λII | the approximation based on the Bethe-lattice expression works reasonably
well for the square lattice. As a result, the fulfilment of the condition for the enhance-
ment/divergence of κ matches to a good approximation the minimum value of λI.

A.2.2 Correspondence with vertex divergences
In this section we demonstrate that the eigenvalues λI and λII, discussed in the main text,
are directly related to the first and second vertex divergence lines of the Hubbard model,
respectively (line I and II in Fig. 5.2 of the main text).

A first indication is the smooth behaviour ofλI/II and wI/II, seen in Fig. 5.5. Nevertheless,
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real or form complex conjugate pairs, due to the centrohermitian property of χνν (ω 0)
c [72]

(cf. Eq. (2.58)). At the same time, the corresponding weights are either real (non necessarily
positive) or complex conjugates.

Hence, we briefly discuss, which terms originate the negative weights.
Focusing on the case of a real eigenvalue λI its real weight [67] reads:

wI Re
ν

V−1
I (ν) Re

ν

VI(ν )

− Im
ν

V−1
I (ν) Im

ν

VI(ν ) ,
(A.1)

and is thus determined by both, the real as well as the imaginary part of the corresponding
eigenvector. In the numerical calculations, both parts were found to yield negative con-
tributions, where the imaginary part was found to be the dominant one (not shown), see
further Ref. [73].
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Figure A.14: U-flow results for −K3m(ν, ν , ω 0) as a function of ν and ν , as for Fig. 6.11 for the
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