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Abstract
The ageing population in many western countries leads to new challenges in our
society. Here, support by robots can be part of the solution, e.g. by providing
assistance for the elderly. However, for this task, robots need to be able to
understand their environment better, where machine vision plays a central
role. Especially being able to perceive and manipulate transparent objects
is essential as they are widely used by humans. To tackle this problem, this
thesis compares different methods for mask prediction of transparent objects
by evaluating the methods on a new annotated dataset. The dataset consists
of RGB-D and infrared images of several scenes with transparent objects. In
addition, the camera poses are recorded to enable the annotation of the object
poses. The annotation is carried out manually and used to render silhouettes
as ground truth images for the comparison. A selection of mask predictions
methods for transparent objects is then evaluated on the dataset and the
results are compared with the ground truth using pixel-wise metrics, namely
F1 score, IoU, precision and recall. The methods for mask prediction selected
in this study are an approach using invalid depth and GrabCut [1], an infrared
image-based approach adapted from Ruppel et al. [2], and the Convolutional
Neural Networks based (CNNs) TOM-Net [3], ClearGrasp [4], TransLab [5]
and Trans2Seg [6]. The results of the respective approaches show a varying
performance, with deep learning-based methods showing a better performance
overall. TransLab, for example, exceeds the other methods with an F1 score of
67.5% and an IoU of 55.8%. The overall performance over the whole dataset is
discussed and, furthermore, an in-depth analysis for selected scenes is provided,
highlighting similarities as well as challenges for the above approaches. While
many approaches successfully predict a rough shape, fine and more complex
details like plastic tubes prove to be quite challenging overall.
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Kurzzusammenfassung
Die alternde Bevölkerung in vielen westlichen Ländern führt zu neuen Heraus-
forderungen für unsere Gesellschaft. Roboter können hier Teil der Lösung sein,
z.B. indem sie zur Unterstützung älterer Menschen eingesetzt werden. Für diese
Aufgabe müssen Roboter jedoch ein gutes Verständnis ihrer Umgebung erlangen,
wobei maschinelles Sehen eine zentrale Rolle spielt. Insbesondere die Erkennung
und Manipulation transparenter Objekte erweist sich hier als schwierig. Zur Un-
tersuchung dieses Problems wird in dieser Arbeit ein Vergleich unterschiedlicher
Methoden zur Maskenerkennung transparenter Objekte durchgeführt. Der zu
diesem Zweck erstellte Datensatz besteht aus Farb-, Tiefen- und Infrarotbildern
transparenter Objekte sowie den zugehörigen Kamerapositionen. Zur Erstellung
der Referenzmasken für die Evaluation erfolgt zudem eine manuelle Annotation
der Objekte. Eine Auswahl an Methoden zur Maskenerkennung transparenter
Objekte wird auf den neu erstellten Datensatz angewandt und die Ergebnisse
werden mithilfe der Referenzmasken unter verschiedenen Metriken, nämlich F1-
Score, IoU, Precision und Recall, auf Pixelebene ausgewertet. Für diese Studie
wurden folgende Methoden ausgewählt: ein Algorithmus, der ungültige Tiefen-
kamerawerte in Kominbation mit dem GrabCut Algorithmus [1] verwendet, eine
Adaption des Algorithmus von Ruppel et al. [2], der auf Infrarotbildern basiert,
sowie die neuronalen Netzwerke TOM-Net [3], ClearGrasp [4], TransLab [5] und
Trans2Seg [6]. Die jeweiligen Ansätze erzielen sehr unterschiedliche Ergebnisse,
wobei die auf maschinelles Lernen basierten Methoden insgesamt am besten
abschneiden. TransLab zum Beispiel erzielt den höchsten F1-Score von 67,5%
und einen IoU von 55,8%. Die Ergebnisse werden ausführlich diskutiert und
darüber hinaus eine eingehende Analyse ausgewählter Szenen erstellt, wobei
sowohl die Gemeinsamkeiten als auch die Schwierigkeiten der oben genannten
Ansätze aufgezeigt werden. Während die meisten Ansätze erfolgreich grobe
Objektmasken erkennen können, erweisen sich feine und komplexere Details
wie Kunststoffschläuche insgesamt als schwierig.
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1 Introduction
The perception of transparent objects shapes can be difficult for humans [7], and
even more so for machine vision applications. Although great progress in object
recognition and reconstruction was achieved in the last decade, solutions for this
specific group of objects are still an ongoing challenge. However, transparent
objects are indispensable in industry, science and many daily human activities,
because they allow easy visibility of their content. Therefore, the ability to
grasp such objects is an important task for robots, especially in the context of
an ageing population as well as a global pandemic.

1.1 Challenges
The recognition of objects is among the most important topics in the field of
robotic vision. To enable robots to grasp unknown objects, precise enough
localization and reconstruction of these objects is necessary. Due to cheap
RGB-D sensors, object reconstruction from depth data has become much easier
recently. Such sensors can already be used for the detection of opaque objects
with good success. Due to their working principle, these sensors, however, fail to
predict depth of objects with non-Lambertian reflection properties, i.e. objects
with transparent or shiny surfaces, like glass and plastic. Here, Figure 1.1
shows an example for images of transparent objects captured with an RGB-D
sensor. The sensor either yields zero or invalid depth values for the transparent
object, e.g. by wrongly predicting the depth of the surface beneath the objects.
Therefore, the raw depth information of such an RGB-D sensor is not suitable
for the direct use in robot grasping applications.

While there are sensors that are more suitable for this task, such as light-field
cameras, the usage of RGB-D cameras remains attractive due to their ubiquity
and lower cost. Until now only few approaches exploit the available depth data
to obtain more reasonable shape information. However, various approaches
have been proposed in the literature, which predict silhouettes of transparent
objects solely from RGB data. These silhouettes combined over multiple views
can subsequently be used to reconstruct 3D shapes. 3D reconstruction is
expected to be easier and faster via the detour using silhouettes than direct
depth prediction.
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1 Introduction 2

Figure 1.1: RGB image (left) and depth image (right) of transparent objects
captured with a RealSense D435 camera. The depth image shows
that the depth pixels corresponding to transparent objects are
mostly invalid.

1.2 Contribution
This work is focused on providing a comparison between different approaches
to find the most suitable segmentation method for several application sce-
narios. First, common household goods with different geometric complexity
are selected as objects, but also a special case of a more complex medical
object is investigated. Many approaches in literature are trained on simple,
rotationally symmetric objects. Here, the performance on more complex objects
is highly interesting, as they are often very common in real applications. In our
dataset, these objects are arranged in various scenes, which are captured with
a commercial RGB-D sensor. The data is then annotated and used as ground
truth for the comparison of different segmentation approaches. Here, classical
as well as deep neural network based methods are employed (i.e. [1] [6]). It is
investigated which approach for silhouette acquisition has the best performance
on our dataset. For evaluation, common performance parameters like recall,
precision and F1 score are used in this study.

Our aim is to provide a more concise picture on which approach to choose for
various case scenarios with transparent objects. In this work, a vast difference in
performance of the different approaches is observed. Best overall performance is
obtained by deep learning-based methods. All methods used in the comparison
struggle more or less with details like transparent tubes or handles, but also with
simpler geometries, especially if the objects’ material is thin plastic. Figure 1.2
displays some examples of the evaluation results.
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1 Introduction 3

Figure 1.2: Preview of evaluation results. Each column shows a different scene
with the respective RGB image, groundtruth mask and an example
of a mask prediction. In the last row, for visualisation, correctly
predicted pixels are marked green, while incorrect pixels are marked
either red (background, i.e. false-positive) or grey (object, i.e.
false-negative).

1.3 Outline
In Chapter 2, the task definition is provided as well as background information
on the metrics used for the comparison. Furthermore, a detailed literature
review on work dealing with detection and segmentation of transparent objects
is given. Chapter 3 deals with the experimental aspects of dataset acquisition
and annotation. Furthermore, details on invalid depth-based and infrared-
based mask prediction are given. The results and their discussion is found in
Chapter 4. Here, the main focus lies on the evaluation of the transparent object
segmentation of different scenes. These findings are subsequently summarised
in Chapter 5 and finally an outlook on possible future work is given.
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2 Background
This chapter provides background information on mask prediction of transparent
objects. First, a task definition is given and several metrics for the evaluation
of image segmentation are presented. In the main section, existing literature
on image segmentation is discussed with a special focus on work dealing with
the detection and segmentation of transparent objects.

2.1 Task Definition
The segmentation of transparent objects is still an active research area and a
key challenge. Although there are already numerous approaches introduced in
the literature, a comparison is difficult since they are all trained and evaluated
on completely different datasets. In this work, existing methods and algorithms
for transparent object segmentation are to be applied on the same real-world
dataset, measuring performance using recall, precision, F1 score and intersection
over unit (IoU), see Section 2.2. The new dataset introduced in this work is
described in Section 3.1. The results are then compared in order to evaluate
which approach works best on a dataset with household objects and medical
devices. In addition, it is evaluated if the predicted silhouettes are suitable for
3D reconstruction via Shape-from-Silhouette (SfS) techniques to allow tasks
like robot grasping.

2.2 Metrics
The prediction of binary segmentation masks is a pixel-wise classification
problem. Therefore, similar metrics as for object classification can be applied.
To each pixel of a predicted mask one of four labels can be assigned by
comparison of the predicted pixel value with the ground truth pixel value.
These labels and their descriptions are described in Table 2.1.

A visualisation of these pixel labels for mask prediction is shown in Figure 2.1.
Here, green pixels correspond to TP pixels, black pixels to TN pixels, red pixels
to FP pixels and grey pixels to FN pixels.
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2 Background 5

Label Description
TP - true positive predicted pixel and ground truth pixel both true
FP - false positive predicted pixel true and ground truth pixel false
TN - true negative predicted pixel and ground truth pixel both false
FN - false negative predicted pixel false and ground truth pixel true

Table 2.1: Pixel labels and their descriptions used for the evaluation of mask
predictions.

Figure 2.1: Classification of pixels obtained by mask prediction in comparison
to ground truth mask pixels. The colours indicate TP (green), TN
(black), FP (red) and FN (grey) pixels.

A simple measure for the percentage of correctly classified pixels is represented
by the pixel accuracy (PA), which is calculated by

PA = TP + TN

TP + FP + TN + FN
. (2.1)

However, this metric is not very meaningful, if the number of pixels for each
class is unbalanced. In a binary image this would be the case, if the biggest
part of an image is occupied by the background. Therefore, other types of
metrics have to be considered to overcome this problem.

Further widely used metrics for classification evaluation are precision and
recall, which can also be used to evaluate pixel-wise labeling. The precision tells
how many of the predicted true pixels are actually true positives (Equation 2.2).
It is, therefore, an indicator for the quality of the true pixel prediction.

Precision = TP

TP + FP
. (2.2)

In contrast, the recall is a measure for the sensitivity of the recognition of
positives: It shows the proportion of correctly classified true pixels to all true

5



2 Background 6

ground truth pixels:
Recall = TP

TP + FN
. (2.3)

These two metrics can be combined into the F1 score, which is the harmonic
mean of precision and recall (see Equation 2.4). Thus, the F1 score is more
suitable for unbalanced classes than pixel accuracy.

F1 score = 2 · Precision · Recall

Precision + Recall
(2.4)

Another relevant metric is the Intersection over Union (IoU) or Jaccard
Index, which is a measure for the overlapping area of the ground truth mask
positives and the predicted mask positives (Equation 2.5). Although usually
bounding boxes are used for this metric, it also can be calculated at pixel level.

IoU = TP

TP + FP + FN
. (2.5)

2.3 Related Work
The detection and segmentation of objects is highly relevant in the field of
computer vision and therefore subject to a wide range of studies in literature.
In this section, previous work related to the task investigated in this thesis
is presented. First, a short overview of state-of-the-art image segmentation
approaches is given and then the field of transparent object recognition is
discussed in more detail. In particular, literature dealing with transparent
object detection, segmentation, 3D reconstruction and pose estimation is
summarized. Finally, various existing datasets containing transparent objects
are presented.

2.3.1 Image Segmentation
The easiest methods to achieve segmentation include e.g. thresholding and
morphological operations [8]. Other early segmentation techniques are region
splitting and merging, watershed, and clustering. More advanced approaches
formulate the segmentation task as an energy minimization problem, e.g. with
Markov Random Fields (MRFs) or Conditional Random Fields (CRFs), that
can be solved with graph cuts [9] or loopy belief propagation (LBP) [10]. A
widely used interactive approach based on iterative graph cuts was presented
with the GrabCut segmentation algorithm [1].

With the rapid development of neural networks, most of recent literature
focuses on solving the problem of object detection and segmentation with deep
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2 Background 7

learning networks. Here, the prediction of a segmentation task is treated as a
pixel-wise labelling problem. One of the first deep learning networks for image
segmentation was a fully convolutional network (FCN) introduced by Long
et. al [11] that allows end-to-end learning of arbitrary-sized images. However,
conventional FCNs are too slow for real-time inference, have low resolution and
do not take advantage of global context [12].

Most deep-learning image segmentation methods are based on some kind of
encoder-decoder architecture. An early approach uses a convolutional network
like the VGG16 [13] as the encoder while the decoder is a mirrored deconvolu-
tional network for the prediction of the segmentation map [14]. A well-known
model developed for medical image segmentation is U-Net [15], in which fea-
ture maps from the encoder are copied to the decoder network to preserve
pattern information. A more recent work with encoder-decoder architecture is
the DeepLabV3+ network [16], which uses dilated ("atrous") convolutions to
balance the resolution of features. As encoder the DeepLabV3 model [17] is
adapted, which includes parallel atrous convolutions at different dilation rates,
called Atrous Spatial Pyramid Pooling (ASPP).

Another way to address the issue of a small receptive field of CNNs is to
include attention mechanisms, e.g. by adding an attention module [18]. Recent
work showed that the transformer architecture can achieve state-of-the-art image
classification results and therefore is promising for image segmentation [19]. This
idea was adopted in [20], introducing a transformer-based encoder combined
with an FCN decoder. Furthermore, in [21], a pure transformer-based encoder-
decoder model for semantic segmentation is presented.

2.3.2 Detection of Transparent Objects
The detection of transparent objects is a special case in the wide field of object
detection and reconstruction. The non-Lambertian properties of transparent
objects cause difficulties for general object detection algorithms. Many applica-
tions use RGB-D sensors, which are common due to their low cost and high
flexibility. However, their infrared-based depth calculation frequently fails in
the case of transparent and highly reflective objects. Here, different possible
solutions for the detection of transparent objects are identified: McHenry et
al. [22] were among the first to exploit the properties of glass for the detection
of edges and regions of transparent objects, using cues like the distortion of the
background texture or highlights to train a Support Vector Machine (SVM)
classifier. Alt et al. [23] compared depth maps from multiple views to detect
points with depth inconsistencies that indicate the presence of a transparent
surface. Hagg et al. [24] combined multiple sensor modalities to enable the
recognition of diffuse, reflective, or transparent objects. In particular, they use

7



2 Background 8

the distortion of the infrared pattern of an active RGB-D camera as a cue for
transparent materials. More recent approaches rather focus on the application
of deep learning networks, showing that transparent object detection is feasible
without consideration of the special properties of transparent materials [25].

2.3.3 Segmentation of Transparent Objects
Due to the variety of methods used for the segmentation of transparent objects,
the methods are classified based on the input data.

RGB image-based segmentation

Based on [22], Torrez-Gomez et al. proposed a graph-based segmentation
algorithm, incorporating edge detection, super-pixel classification and consensus
voting [26].

More recently, just like for general image segmentation, deep-learning net-
works especially for transparent objects were employed. For example, a deep-
learning framework for learning transparent object matting from a single image,
called TOM-Net, was reported [3]. The output of TOM-Net is an environment
matte consisting of an object mask, an attenuation mask and a refractive flow
mask. These results can be used to composite the object onto new backgrounds,
as seen in Figure 2.2. In contrast to other image matting methods for transpar-
ent objects, this approach does not depend on specific backgrounds or patterns
as in [27] or [28]. In TOM-Net, the transparent object mask is predicted in the
first stage of the framework by CoarseNet, an adapted mirror-link CNN [29]
trained from scratch. For training and testing a large-scale synthetic dataset of
transparent objects rendered in front of scene images and synthetic patterns was
created. Additionally, a real-world dataset containing 14 objects was collected
for evaluation. However, this dataset does not include the ground-truth matte,
but pictures of the backgrounds without the transparent objects. Although
TOM-Net is trained just on synthetic data, it shows good results on both the
synthetic dataset as well as the real-world dataset collected by the authors.

Other recent approaches often use CNNs, which were originally trained
for general object segmentation. For example, the state-of-the-art instance
segmentation network Mask R-CNN [30] was retrained on a new dataset
consisting of transparent objects, highlighting the transferability for learning
transparent features [31]. Stets et al. [32] showed that a CNN with VGG16-Net
backbone trained on a large-scale synthetic dataset of scenes with transparent
objects is able to generalise to real-world scenes .

Xie et al. [5] developed a boundary-aware segmentation algorithm called
TransLab and trained it on a large-scale dataset of real scenarios with transpar-
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Figure 2.2: TOM-Net results, consisting of an object mask, an attenuation mask
and a refractive flow mask, for realistic composition of transparent
object. Reproduced from [3].

ent objects. They also re-trained several state-of-the-art networks for semantic
segmentation on their own training set and showed that TransLab has overall
a better performance. In a follow-up work, they extended their dataset to 11
categories and presented a hybrid CNN-Transformer segmentation pipeline [6],
concluding that it outperforms pure CNN-based methods.

Very recently, a cascade network architecture was proposed by [33], intro-
ducing modules with residual learning and point-based graph convolution
to enhance boundary prediction. They reported that their approach even
outperforms TransLab, when trained on the same dataset.

Invalid depth-based segmentation

Some methods exploit the "holes" (missing depth) caused by transparent ob-
jects in depth images captured with common RGB-D cameras. For example,
boundary label predictions from appearance and depth features were integrated
into a Markov Random Field (MRF) model for glass object segmentation
in [34]. Zero-depth values and noise region search in multiple RGB images were
used to extract silhouettes by Ji et al. using joint GrabCut segmentation [35].
Guo-Hua et al. also used invalid depth information as a cue for segmenting
transparent objects in an image in combination with the GrabCut segmentation
algorithm [36]. The deviation of feature points due to the background distortion
caused by refractive materials was subsequently used to validate the transparent
object candidates.

Ruppel et al. [2] proposed a reconstruction pipeline that utilizes only raw
infrared images. In a first step, the scattering of the infrared projection pattern
on transparent surfaces is used to generate a transparency candidate map. A
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standard blob detection algorithm is then employed to detect transparent object
candidates. Additional constraints are considered to filter the candidates and
the transparency is validated by comparing the brightness difference between
pixels inside the object with pixels around the object.

Approaches including other image information

In light-field images, the features of objects with Lambertian properties are
distributed almost linearly with respect to the viewpoints, whereas features
of reflective objects are inconsistent between viewpoints [37]. These light-
field properties were considered in a graph-cut optimization algorithm called
TransCut [38], [39]. In the polarization plane, the strength of transparent object
texture is increased drastically. Furthermore, Kalra et al. use polarization
images as input in their proposed Polarized Mask R-CNN framework [40]. In
addition, their method is also capable to distinguish real transparent objects
from printouts.

2.3.4 Depth Estimation of Transparent Objects
Several works focus on the challenging depth prediction of transparent objects.
Some approaches tackle this by improving the camera-internal depth calculation,
e.g. Saygili et al. [41] propose a fully-connected CRF-based model to improve
cross-modal stereo between RGB and IR images of the Kinect camera.

More recently, neural networks were also employed in depth estimation
for transparent objects. With ClearGrasp [4], a deep learning approach for
transparent objects, which provides a 3D shape prediction from a single RGB-D
image, is available. Here, the authors predict pixel-wise masks, surface normals
and occlusion boundaries using three deep convolutional networks. Therefore
they modified Deeplabv3+ models [16] with a dilated residual network as
backbone. The predicted masks are used to remove all pixels of the depth image
corresponding to the transparent object. These outputs of the neural networks
as well as the original depth image are then fed into a global optimization
algorithm proposed by Zhang and Funkhouser [42], which completes the missing
depth information. The schematic representation of the pipeline from the
original contribution is shown in Figure 2.3. The authors also created a
synthetic dataset for training and testing, as well as an additional real-world
test dataset of transparent objects with the corresponding ground truth, see
Section 2.3.7. The real-world test benchmark shows the ability of this approach
to generalise to real-world transparent objects as well as unknown objects. A
major advantage of this method is that no knowledge of the camera position or
3D model objects is necessary. In addition, the authors incorporated ClearGrasp
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in a robotic picking system leading to an improvement of the grasping success
rate for transparent objects. Difficulties identified in the study are varying
lighting conditions, cluttered environments and sharp caustics (i.e. light effects
caused by curved surfaces) and shadows.

Figure 2.3: Schematic representation of the ClearGrasp pipeline including three
neural networks for normal estimation, boundary detection and
transparent object segmentation which are subsequently used in
a global optimization algorithm to predict depth. Reproduced
from[4].

Another method for depth completion was introduced with TranspareNet [43].
In contrast to ClearGrasp, in their work the distorted depth map caused by
transparent objects is also taken into account, using a 3D CNN encoder-decoder
for a rough point cloud prediction, which is then fed into a depth completion
module for refinement.

Very recently, quite different approaches based on implicit neural representa-
tions of 3D objects were proposed: For example Zhu et al. [44] introduced a
network for learning implicit depth functions defined on ray-voxel pairs and
additionally an iterative model for depth prediction refinement.

2.3.5 Multi-View Reconstruction of Transparent Objects
Some approaches have the goal of reconstructing transparent objects as ac-
curately as possible, for instance for virtual reality or graphic rendering.
These methods, however, often require special setups containing moving light
beams [27], multiple cameras and a monitor that has to be moved manually [45]
or placement on a turntable [28]. Since these methods are designed for very
specific environments, they are not applicable for independent robotic tasks.
However, recently Li et al. [46] provided a physically-based deep NN trained on
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synthetic images of glass figures, where no constrained environment is necessary
to reconstruct detailed objects.

In contrast, there are also several multi-view reconstruction approaches that
were designed explicitly having robot grasping applications in mind. Some of
them assume prior knowledge of the object model [47], [48] or are limited to
rotationally symmetrical shapes [36], [49], [50]. One way to retrieve 3D models
of arbitrary-shaped objects is to estimate their silhouettes (see Section 2.3.3)
and to use them in a Shape from Silhouette (SfS) technique, e.g. voxel carving
[26], [35], [51]. In Ruppel et al. [2], the focus lies not so much on accurate
silhouettes, but rather on a formulation of an optimization problem based on
the resulting 2D transparency maps. The problem is then solved iteratively,
resulting in a 3D density distribution that can be used to obtain a volumetric
object model. The quantitative evaluation shows an average reconstruction
error in the order of the voxel grid resolution.. Furthermore, a duration of
about one minute for a full reconstruction on a standard desktop computer
is reported. A big advantage of this approach is the capability to reconstruct
objects with cavities, which are challenging for many other methods.

Quite a different method using a Neural Radiance Field (NeRF) model to
recover the geometry of transparent objects from multi-view RGB images was
presented by Ichnowski et al. [52]. So far, a drawback of this method is the
long training time for NeRF models.

2.3.6 Pose Estimation of Transparent Objects
Earlier approaches used edge fitting [53] or template matching [48] to estimate
the pose of known objects. In another work [36], contours from RGB and IR
images were extracted and used for stereo matching to determine the pose. With
the rise of CNNs, KeyPose was introduced [54]. Here, a dilated CNN is used
to estimate poses with the help of keypoints from stereo input. Furthermore,
a two-stage approach specifically for 6DoF pose estimation of transparent
objects from a single RGB-D image was proposed by Xu et al. [55]. Here, an
extended pointcloud representation is used in order to gain higher efficiency.
The extended pointcloud is defined by a UV map, surface normals and the
estimated 3D plane on which the object is placed.

2.3.7 Datasets of Transparent Objects
Since neural networks need specific training data and in addition test data for
validation, there are already several datasets available which contain transparent
objects. An overview of datasets featuring transparent objects which are
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published online is given in Table 2.2. ClearGrasp is listed twice as both a
synthetic and a real-world dataset are reported.

Dataset Type # Images # Objects Clutter Mask Depth Pose
Stets et al. [32] synthetic 80,000 600 x x
ClearGrasp [4] synthetic 50,000 6 x x x x
ClearGrasp [4] real-world 286 10 x x x x
KeyPose [54] real-world 48,000 15 x x x
Trans10K [5] real-world 10,428 10k+ x x
TODD [43] real-world 15,000 6 x x x
Our dataset real-world 640 15 x x x x

Table 2.2: Overview of datasets published online at the time of this work, which
feature transparent objects.

Large-scale datasets of transparent objects predominantly consist of synthetic
images. For instance, one of the largest datasets of transparent objects was
introduced by Stets et al. [32]: It contains 80,000 synthetic images of 600
shapes rendered from different viewpoints. Besides groundtruth masks there
are also depth maps and normal maps available.
Another large-scale synthetic dataset was created for the depth estimation
pipeline ClearGrasp [4]: For the usage as training data, 50,000 images of
transparent objects were rendered as well as the corresponding masks, depth
maps, normals and occlusion boundaries. It contains only six objects, but in
contrast to the dataset of Stets et. al also provides cluttered scenes. In addition
as a benchmark, a real-world dataset of 286 RGB-D images and corresponding
groundtruth geometries was created. Figure 2.4 shows excerpts of synthetic
RGB images with transparent objects from the datasets of Stets et al. and
ClearGrasp.

Figure 2.4: Example images of datasets with synthetic transparent objects,
taken from [32] (left) and [4] (right).

A big advantage of these synthetic datasets is that they allow an easy scale-up.
Furthermore, no difficult annotation is needed and other properties such as
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normals can be simulated for groundtruth. On the downside, simulation of
transparent objects can be highly challenging and real-world influences might
be underestimated.

Therefore, the need for real-world datasets arises, either for training or
for validation purposes. For example, the KeyPose dataset [54] consists of
48,000 RGB-D images showing 15 different real-world objects and also features
annotated 3D keypoints and masks. However, the dataset does not include
cluttered scenes or complex object shapes.

Xie et al. [5] present a large-scale real-world dataset for transparent object
segmentation called Trans10K consisting of 10,428 images of varying complexity,
including occluded objects and large flat surfaces such as windows. In the
follow-up work [6], object labels in 11 categories were added, but in both
datasets just segmentation masks are available, but no depth information is
included as groundtruth.

The datasets mentioned above only include empty transparent vessels. How-
ever, the Toronto Transparent Object Depth (TODD) Dataset also features
objects filled with liquid, containing more than 15,000 RGB-D images including
groundtruth mask, depth and poses [43]. On the downside, only 6 different
objects are used. In Figure 2.5, example images from real-world transparent
object datasets are displayed.

(a) (b)

(c) (d)

Figure 2.5: Example images of real-world datasets with transparent objects,
taken from (a) ClearGrasp [4], (b) KeyPose [54], (c) Trans10K [6]
and (d) TODD [56].

Another relevant dataset especially designed for robot grasping is the Dex-
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NeRF dataset [52]. It includes several scenes with single or cluttered transparent
objects. Up to now, only camera poses, but no groundtruth are provided.
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3 Mask Prediction for Transparent
Objects

In this thesis, the performance of different approaches for transparent object
segmentation is evaluated. A new dataset is captured and annotated to allow
a comparison of different methods.

3.1 Introduction of a New Dataset
A dataset with RGB-D images of transparent objects is created, consisting of
640 images in 10 scenes. In addition to RGB and depth images, it also contains
infrared images and camera poses. Examples of information included in this
dataset are shown in Figure 3.1. Since each scene is captured from 64 views,
the dataset can also be utilized to evaluate multi-view reconstruction methods.

(a) (b) (c)

(d) (e)

Figure 3.1: Examples of different pieces of information included in the dataset
presented in this work: RGB image (a), left (b) and right (c) stereo
IR images, depth data (d) and groundtruth mask (e).

Our dataset contains two different types of transparent objects: on the one
hand, common transparent household items and on the other hand, transparent
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containers and bottles used for various medical applications. The selection
covers objects of different complexity, ranging from simple symmetric objects
and flat objects to objects with more and finer details as well as vessels filled
with contents. Figure 3.2 gives an overview over some scenes of our dataset.

Figure 3.2: Selected scenes from our dataset showing the wide range of objects
of different complexity.

3.1.1 Acquisition
The setup for capturing the data is shown in Figure 3.3: It consists of a 7 DoF
robotic manipulator with an RGB-D camera attached to its end effector. A
RealSense D435 camera is selected since it allows both the collection of RGB-D
images and infrared images. The eye-in-hand setup is calibrated using fiducial
markers.

Figure 3.3: Setup consisting of a robot manipulator and an RGB-D camera.

For each scene, one or more objects are placed on a table and the robot
arm moves the camera along a predefined trajectory, capturing 64 frames with
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known camera poses. The camera is moved circularly around the scene and
the angle between the camera and the table plane is changed every 16 frames.
A sketch of camera poses corresponding to images taken during one scene is
depicted in Figure 3.4.

Figure 3.4: Sketch of the camera poses used to capture the data of one scene.

The distance between the camera and the objects remains in the range of
60-100cm throughout capturing the whole dataset. The angle of the camera
relative to the table, however, is changed every 16 frames resulting in 4 different
angles. The light source is placed head-on above the setup, therefore the camera
angle also changes in regard to the light source, respectively.

3.1.2 Annotation
A tool for 3D annotation of objects introduced by [57] is used in order to
render ground truth masks suitable for evaluation of the predicted silhouettes.
First of all, 3D models of the transparent objects are created. Some of them
are modelled using CAD software, others are obtained by spray-painting the
objects and then applying object reconstruction methods for opaque objects.

The annotation of the object poses is executed carried out using Blender [58].
With knowledge of intrinsic and extrinsic camera parameters, an object pose
can be obtained by alignment of the perspective projection of the 3D model
with the RGB images. Figure 3.5 shows the outline of a 3D model projected on
the respective RGB frame. The derived object pose can then be used to render
silhouettes from any view, hence the masks belonging to the frames captured
for the dataset.
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(a) (b)

Figure 3.5: Outlines of the 3D models (a) are projected onto RGB images,
allowing the alignment with the object contours (b).

3.2 Mask Estimation from Invalid Depth Data
Invalid or zero-value pixels in a depth image can be a cue for the presence of
transparent objects. It is investigated if the invalid depth values can be used to
extract silhouettes of the objects. In addition, the available RGB information is
considered as well to attempt an improvement of the segmentation. Therefore,
trimaps are generated from zero depth masks to allow the use of the foreground
segmentation algorithm GrabCut [1] in an unsupervised manner.

Pre-processing of Depth Images

Several processing steps are applied on the raw depth images captured with the
RealSense D435 to filter the zero depth values corresponding to transparent
objects. As shown in Figure 3.6 (a), depth shadows and reflective objects in the
background also produce invalid depth values. In some cases, not all pixels from
transparent objects are zero depth values, resulting in an incomplete silhouette
either with holes or disconnected parts. To address this problem, the depth
image is inverted and morphological closing with a circular kernel is applied.

Since the previous steps still leave some zero depth values from speckle
noise, contour detection is used to find objects bigger than a certain size.
Afterwards, again closing with a circular kernel is applied to improve the object
masks. Figure 3.6 (b) shows the binary masks resulting after the morphological
operations.

Unsupervised Segmentation using GrabCut

The binary masks created from zero depth values indicate that additional
information must be considered to obtain silhouettes. Therefore, the zero depth
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(a) (b)

Figure 3.6: Depth image of a scene with transparent objects (a) and resulting
mask after processing the invalid depth values (b).

masks are used to create rough trimaps as input for image matting. First,
the mask is dilated and true pixels are labelled as possible foreground. Then
the original zero depth mask is eroded and the remaining pixels are labelled
as definite foreground. The trimap achieved with this method is shown in
Figure 3.7 (a).

Finally, the implementation of the GrabCut segmentation algorithm [1] pro-
vided by the OpenCV library [59] is applied on the RGB images corresponding
to the depth images. The trimaps created in the previous step are used as
initialization for GrabCut. Figure 3.7 shows the resulting segmentation (b) and
binary mask (c).

(a) (b) (c)

Figure 3.7: Trimap created from the mask in Fig. 3.6 obtained from invalid
depth information (a), GrabCut segmentation (b) and the new
binary mask (c).

3.3 Mask Estimation from Infrared Data
Since not all transparent pixels cause zero or invalid values in the depth maps
produced by the RealSense D435, another possibility to detect transparent
objects is to directly use the IR images. The IR pattern is hardly visible on the
surface of transparent objects, resulting in failure of the intern depth prediction
of the camera.
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In this work, the algorithm proposed by Ruppel et al. [2] is used to segment
transparent objects in IR images. This method exploits the lack of IR speckles
on transparent surfaces to obtain a transparency candidate map. Since a
Structured Light camera is used in their work, the algorithm was adapted to
work with the pattern of the RealSense D435 camera, which predicts depth
by Active IR Stereo Vision. A transparency map is created by applying a
high-pass filter to the normalised IR image. The image is then blurred with
a median filter and dilated multiple times with a circular kernel. Finally, a
threshold is applied and the resulting mask is filtered with a blob detection
algorithm by size. Figure 3.8 shows the IR image of a scene with transparent
objects (a), the transparency candidate map obtained by this method (b) and
the corresponding mask resulting after thresholding (c).

(a) (b) (c)

Figure 3.8: Example of an IR image with transparent objects (a) and the
transparency candidate map (b) and the corresponding binary
mask (c) obtained with the method proposed by Ruppel et al. [2].

3.4 CNN-based Mask Prediction
Different deep learning pipelines for mask prediction of transparent objects are
tested on the proposed dataset, discussed in Section 3.1. Only methods that
can be used with RGB-D cameras and that have pre-trained models available
online are selected. Table 3.1 gives an overview of these approaches and the
image size used for inference.

Although TransLab [5] and Trans2Seg [6] also predict the object class, only
the resulting binary masks are used for evaluation in this study. Since the
authors of Trans2Seg state that the scale of the transformer does not improve
without large amounts of pre-trained data, small scale transformer is used for
inference.
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Approach Type Inference Size
TransLab [5] CNN-based 512 × 512
Trans2Seg [6] CNN + Transformer 513 × 513
ClearGrasp [4] CNN-based 256 × 256
TOM-Net [3] CNN-based 448 × 448

Table 3.1: Overview of the deep learning pipelines for mask prediction of trans-
parent objects selected for comparison.

22



4 Results and Discussion
The results of different transparent object segmentation techniques applied
on the dataset introduced in Section 3.1 are displayed and discussed in this
chapter. First, an overall comparison of the results is provided and special
scenes are discussed in more detail. The comparison covers a method using
invalid depth data in combination with RGB information and GrabCut [1]
proposed in Section 3.2, an IR-based approach [2] as well as various CNN-based
pipelines, namely TOM-Net [3], ClearGrasp [4], TransLab [5] and Trans2Seg [6].
As a baseline, zero depth masks are also included in the comparison.

4.1 Transparent Object Segmentation
Table 4.1 and Figure 4.1 show the recall, precision, F1 score and IoU achieved
on our dataset. The metrics are calculated for each image of the dataset and
then averaged over all images.

Method Recall [%] Precision [%] F1 [%] IoU [%]
Invalid Depth (baseline) 43.29 27.62 30.77 19.92
Depth+GrabCut [1] 58.84 39.25 43.06 30.92
IR-based [2] 37.03 41.56 33.13 25.05
TOM-Net [3] 3.57 3.45 2.96 1.84
ClearGrasp [4] 75.86 49.99 56.24 42.72
TransLab [5] 73.50 71.67 67.54 55.85
Trans2Seg [6] 54.02 65.62 52.86 41.86

Table 4.1: Overall evaluation results of selected transparent object segmentation
techniques on our dataset. The highest score for each metric is
highlighted in bold.

It is immediately noticeable that TransLab shows the highest precision, F1
score and IoU, and even the recall value is rather comparable to ClearGrasp.
ClearGrasp has the highest recall of around 76%, but has significantly lower
scores than TransLab for all other metrics. The F1 score and IoU of Trans2Seg
are comparable to the results of ClearGrasp. The recall of Trans2Seg is much
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4.1.1 Example 1: Glass objects with thick walls
The first scene discussed in detail contains a pitcher and a drinking glass made
out of thick glass walls. Example images of the scene are shown in Figure 4.3.
Table 4.2 displays the metrics achieved by methods investigated. TransLab and
Trans2Seg show the best results with F1 scores above 90%. The zero depth
based method and ClearGrasp also performed well, however, the baseline itself
already scored an F1 above 50%. Again, TOM-Net achieved very low metrics,
but still performed distinctly better than on the whole dataset.

Figure 4.3: Example images of a scene containing two glass objects with thick
walls.

Method Recall [%] Precision [%] F1 [%] IoU [%]
Invalid Depth 61.64 45.79 51.22 36.22
Depth+GrabCut [1] 79.59 60.62 67.5 53.14
IR-based [2] 46.41 51.08 46.79 39.75
TOM-Net [3] 9.64 12.54 9.74 6.74
ClearGrasp [4] 93.04 66.09 76.09 62.61
TransLab [5] 92.78 93.92 93.13 87.39
Trans2Seg [6] 93.32 90.98 91.41 85.21

Table 4.2: Evaluation results of transparent object segmentation for a scene
containing two glass objects with thick walls.

In Figure 4.4 TransLab and Trans2Seg achieve a decent segmentation of
the objects. However, the handle of the pitcher is not segmented by any of
the pipelines. Also, both pipelines struggle with the metallic structure in
the background of the first frame - a part of the material’s shiny surface is
falsely considered as part of the drinking glass. ClearGrasp is also able to
recognise the objects in most frames, but fails to predict parts of the pitcher in
some cases. For example, in the first frame in Figure 4.4, the pitcher stands
in front of the edge of the table. Such an inhomogeneous background can
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(a) (b) (c) (d) (e) (f) (g)

Figure 4.4: Segmentation results of selected methods on a scene with thick-
walled glass objects: (a) invalid depth mask, (b) depth + GrabCut
[1], (c) IR-based [2], (d) TOM-Net [3], (e) ClearGrasp [4], (f)
TransLab [5] and (g) Trans2Seg [6].

cause problems for the mask prediction. In comparison, TOM-Net fails to
detect the object in all example frames and falsely labels background pixels as
transparent. The IR-based method shows behaviour similar to TOM-Net in the
first two frames, but manages to predict rough silhouettes of the objects in the
frames taken from a higher angle. The evaluation of the invalid depth masks
reveals that only parts of the transparent objects cause zero depth values, so
no accurate silhouettes are obtained. The GrabCut algorithm is able to restore
the silhouette of the drinking glass in some frames, but struggles with correctly
detecting the pitcher.
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4.1.2 Example 2: Plastic objects with thin walls
Besides glass, plastic is the other major material category for transparent
objects. Therefore, two plastic objects with thin walls are investigated in the
scene pictured in Figure 4.5, to be more precise, a bottle standing upright
and a cylindrical container lying flat on the table. In Table 4.3 the averaged
metrics over all frames of the scene are listed. In this case, TransLab clearly
outperforms the other methods in terms of precision, F1 score and IoU. However,
values are much lower compared to Example 1 discussed above, highlighting
the challenging nature of the materials used in this scene. ClearGrasp shows
the highest recall at the cost of lower precision. Surprisingly, the follow-up
work of TransLab, Trans2Seg, has a much lower recall than TransLab., and also
performs significantly worse in terms in terms of F1 score and IoU. Since TOM-
Net wrongly estimates the structure behind the actual transparent objects as
transparent pixels, the metrics shown in Table 4.3 do not give the full picture.

Figure 4.5: Example images of a scene containing two thin-walled plastic ob-
jects.

Method Recall [%] Precision [%] F1 [%] IoU [%]
Invalid Depth 39.84 24.30 28.09 16.71
Depth+GrabCut [1] 51.89 32.36 36.85 23.70
IR-based [2] 16.15 48.42 22.05 14.05
TOM-Net [3] 4.66 4.53 3.32 1.83
ClearGrasp [4] 72.59 57.73 61.46 45.76
TransLab [5] 55.81 88.77 66.25 51.44
Trans2Seg [6] 26.01 69.11 33.86 22.53

Table 4.3: Evaluation results of transparent object segmentation for a scene
containing two plastic objects with thin walls.

The mask prediction results in Figure 4.6 clearly show that this scene is more
challenging than the previous one. The upright standing bottle is recognised
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(a) (b) (c) (d) (e) (f) (g)

Figure 4.6: Segmentation results of selected methods on a scene with thin-walled
plastic objects: (a) invalid depth mask, (b) depth + GrabCut [1],
(c) IR-based [2], (d) TOM-Net [3], (e) ClearGrasp [4], (f) TransLab
[5] and (g) Trans2Seg [6].

in some cases by TransLab, Trans2Seg and ClearGrasp, but more often just
parts of the bottle are predicted correctly, mostly the bottom parts touching
the table. The invalid depth mask on the other hand covers the middle part of
the bottle. The container placed with its side on the table is not detected in
most frames by any of the methods investigated. However, in the third frame,
TransLab, Trans2Seg and ClearGrasp are able to predict the mask of the lying
container. A reason could be that in the corresponding RGB image prominent
light speckles are visible on the surface of the container. Light speckles are
a strong cue for transparent surfaces, what presumably has been learned by
the CNNs during training stage, revealing the very importance of lighting for
transparent objects detection. The IR image-based mask prediction approach
recognises some parts of the transparent objects in the frames captured at wider
angles (44-55°), but is not able to recover a decent silhouette. TOM-Net [3]
could not predict any transparent pixels of the objects. Instead, the metallic
structure in the background of the scene was falsely labelled as transparent.
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4.1.3 Example 3: Objects lying flat on the table
Another scene investigated more thoroughly contains objects like a pipe and
a dust pan, shown in Figure 4.7. Training data for transparent object seg-
mentation mostly contains cylindrical vessels like cups or bottles that stand
upright and where a big part of the object is not in contact with the ground.
The objects in this scene however are lie flat and, in addition, the dust pan is
made of milky semi-transparent plastic. Therefore, this scene might drastically
differ from training data for the learning-based methods investigated in this
study. Accordingly, the results in Table 4.4 show that of all methods only
TransLab yields a recall, an F1 score and IoU above 50%. For precision, the
IR based methods and Trans2Seg yield values above 50%, which is still much
lower than the approx. 91% obtained by TransLab. The visualisation of the
results in Figure 4.8 paints the same picture. TransLab achieves the overall
best segmentation results, followed by Trans2Seg and ClearGrasp.

Figure 4.7: Example images of a scene containing two objects lying flat.

Method Recall [%] Precision [%] F1 [%] IoU [%]
Invalid Depth 16.99 22.70 16.32 9.45
Depth+GrabCut [1] 24.26 36.06 25.23 16.46
IR-based [2] 20.16 55.39 27.71 17.93
TOM-Net [3] 7.40 7.63 6.17 3.50
ClearGrasp [4] 36.75 44.78 37.78 25.59
TransLab [5] 69.23 90.89 76.56 64.40
Trans2Seg [6] 39.37 71.67 46.36 35.09

Table 4.4: Evaluation results of transparent object segmentation for a scene
containing two flat lying objects.

The first example frame in Figure 4.8 presents a case, where none of the
tested methods is able to predict the object silhouettes. Only TransLab could
detect a part of the pipe in the image. For Trans2Seg and ClearGrasp, the
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pipe was quite challenging. Both networks just predicted small parts of the
pipe or nothing at all, resulting in a recall under 50% for the whole scene. A
reason could be its unusual dimensions that may not be covered in the training
datasets.

Regarding the dust pan, Trans2Seg and ClearGrasp show promising results,
but the predicted silhouettes are not always complete. Especially the handle of
the dust pan causes problems for ClearGrasp.

The depth-based methods and TOM-Net struggle to detect the transparent
objects in this scene and incorrectly label lots of background pixels as transpar-
ent instead. The IR-based approach however is able to correctly predict some
parts of the transparent objects, but does not provide decent silhouettes.

(a) (b) (c) (d) (e) (f) (g)

Figure 4.8: Segmentation results of selected methods on a scene with two flat
lying objects: (a) invalid depth mask, (b) depth + GrabCut [1], (c)
IR-based [2], (d) TOM-Net [3], (e) ClearGrasp [4], (f) TransLab [5]
and (g) Trans2Seg [6].
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4.1.4 Example 4: Sterility kit
Furthermore, a scene with a rather complex medical object is discussed, i.e.
the sterility kit shown in Figure 4.9. Difficulty arises here from the proximity
of the two containers to each other and finer details including the plastic
tubes. Also, transparent packaging is placed near the sterility kit. As seen in
Example 2 in Section 4.1.2, plastic objects especially if thin-walled prove to be
quite challenging for the approaches selected in this study.

Figure 4.9: Example images of a scene containing a medical kit and packaging.

Please note that the ground truth available in this case only covers the
containers. Therefore, the other transparent components are treated incorrectly
in the evaluation. For example, some approaches recognised parts of the tube
or the packaging, which is not considered in the results in Table 4.5. Therefore,
the recall of TransLab, Trans2Seg and ClearGrasp is relatively high, but many
"false positive" pixel predictions cause a lower precision than it is actually the
case.

Method Recall [%] Precision [%] F1 [%] IoU [%]
Invalid Depth 47.46 8.39 13.78 7.52
Depth+GrabCut [1] 65.13 12.79 20.62 11.70
IR-based [2] 36.55 6.95 11.25 6.92
TOM-Net [3] 14.14 4.69 5.74 3.18
ClearGrasp [4] 87.91 20.02 31.39 19.52
TransLab [5] 71.47 17.59 27.45 16.70
Trans2Seg [6] 54.08 15.45 22.58 13.87

Table 4.5: Evaluation results of transparent object segmentation for a scene
with a medical object.

The recognition of the containers proves to be rather difficult: The two
containers are not separated from each other or from the tubes and other object
parts in the segmentation masks. In Figure 4.10, TransLab quantitatively
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achieves the best mask prediction: It partly recognises the containers, tubes
and the packaging. ClearGrasp effectively locates the containers but struggles
with the tubes and the packaging. Trans2Seg fails to detect the containers
in some example frames, but is able to segment parts of the tubes and the
packaging. TOM-Net detects parts of the objects in the close-up frames, but
fails when the image is taken from further away. The IR-based approach is
able to segment the transparent containers in some of the frames, but mislabels
the white paper of the packaging as transparent.

(a) (b) (c) (d) (e) (f) (g)

Figure 4.10: Segmentation results of selected methods on a scene with a medical
object: (a) invalid depth mask, (b) depth + GrabCut [1], (c) IR-
based [2], (d) TOM-Net [3], (e) ClearGrasp [4], (f) TransLab [5]
and (g) Trans2Seg [6].
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4.2 3D Reconstruction
The predicted silhouettes of transparent objects can be used for 3D recon-
struction via SfS techniques. For qualitative evaluation, the mask predictions
from 16 views of the scene in Section 4.1.1 were used as input for the for
mesh reconstruction. An open source implementation of the voxel carving
algorithm in C++ is used, supporting Truncated Signed Distance Function
(TSDF) fusion and marching cubes [60]. Figure 4.11 shows the meshes created
from the groundtruth silhouettes (a) and from the masks predicted by GrabCut
(b), ClearGrasp (c) and TransLab (d) by this technique.

(a) (b)

(c) (d)

Figure 4.11: Comparison of meshes obtained by voxel carving [60] from
(a) groundtruth silhouettes and from the masks predicted by
(b) GrabCut, (c) ClearGrasp and (d) TransLab.

The mesh obtained from carving groundtruth silhouettes (see Figure 4.11 (a))
shows that the reconstruction with this method is not perfect, but good enough
to get a recognisable shape. The GrabCut silhouettes produce a rough shape
for the glass, but fail to reconstruct the water jug. Nevertheless, the object
are separated from each other. In contrast, this is not the case with the
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mesh generated from ClearGrasp silhouettes. Here, the two object were not
separated completely. The drinking glass appears ball-like, but the shape of
the water jug is better recognisable than in the previous case. The quality of
the mesh carved from TransLab silhouettes is comparable to the 3D model
created from groundtruth data. The shape of the glass and the water jug are
recognisable and well separated, only the handle as a finer detail could not
be reconstructed completely. Therefore, we could successfully demonstrate
that 3D reconstruction via Sfs techniques is feasible for transparent objects.
The quality of silhouettes is vital for the overall 3D reconstruction, but as
demonstrated silhouettes from e.g. TransLab are already of sufficient quality
to obtain recognisable 3D shapes of simple transparent objects.
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4.3 Discussion
Trans2Seg [6] is the follow-up work of TransLab [5]. Although it was trained
on an extended dataset, it does not perform better than TransLab. A reason
for the inferior results could be that the "tiny" configuration of the transformer
was used for inference. The output masks obtained by ClearGrasp [4] are
already dilated, since the pipeline subsequently uses them as input for depth
completion. The idea behind this was to ensure that all transparent depth
pixels are removed before depth completion. Therefore, the high recall found
in our study can partially be attributed to the dilation of the masks.

TOM-Net [3] fails completely on our proposed dataset. It was trained just on
synthetic data, where transparent objects were rendered in front of patterned
backgrounds. The other networks used in this comparison all were trained on
real-world images and performed much better. This is a strong cue that it is
not sufficient to use synthetic training data and that more diverse background
is also important.

The IR-based method based on Ruppel et al. [2] works very differently from
the others tested in this study. It uses a traditional segmentation approach
based on morphological operations applied on infrared images. An exact
segmentation is not the main goal of the pipeline, but the results suggest
that there is potential in using infrared images for the task of transparent
object detection and segmentation. However, infrared images captured with the
camera close to the scene have the problem of too strong reflections. Therefore,
the angular dependency is most pronounced for the IR-based method in this
study, since the table plane is closer at low camera angles. Comparing the IR
images of scene 1 and scene 2 (see Figure 4.12), it can be observed that for thick
glass materials (left) the IR laser speckles are absorbed (low intensity) while
the intensity remains nearly the same as on the table for plastic objects (right).
An approach using the dilution of IR speckles therefore works much better with
glass objects and has to be adapted for different transparent materials.

Figure 4.12: Comparison of IR images of different scenes.

36



4 Results and Discussion 37

Overall, it also must be mentioned that deviations of the camera poses and the
semi-manual annotation of the ground truth impose a certain error. Especially
the annotation of the scenes containing the sterility kit is not complete, since it
only takes into account the containers and not the cables and other non-rigid
(semi-)transparent details.
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5 Conclusion
This work provides a comparison between different state-of-the-art approaches
for mask prediction of transparent objects in order to point out which cases
are difficult for current methods. To achieve this, a new real-world dataset
was introduced featuring different scenes showing transparent objects. Mainly
vessels like bottles or cups were used, but also objects like a dust pan or a pipe
were included as well as a more complex medical object. The dataset provides
RGB-D images, infrared images and camera poses, as well as groundtruth
masks that were annotated manually. This dataset was used to compare the
performance of a method combining invalid depth and GrabCut, an IR-based
approach by Ruppel et al. [2], TOM-Net [3], ClearGrasp [4], TransLab [5]
and Trans2Seg [6]. For evaluation, metrics were calculated and averaged
over all frames of the dataset. Here, the performance varied greatly between
the compared approaches. The best overall performance was achieved by
TransLab in regards of precision, F1 score and IoU, yielding values up to 71.67%,
67.54% and 55.85%, respectively. The average highest recall was observed for
ClearGrasp with 75.86%, but TransLab also shows a quite comparable recall of
73.50%. This clearly suggests that TransLab is the most effective approach in
this comparison. This work also indicates that TOM-Net is the least suitable
for our dataset with metrics well below 4%. However, it has to be considered
that only pre-trained methods are used in this study and TransLab is trained
on the most extensive and varied dataset of the compared pipelines.

Overall, the mask prediction worked well for simple and thick-walled objects,
but struggled with thin plastic objects and transparent objects in close contact
with the ground. Complex objects like the medical kit were very challenging for
all approaches due to the fine details like tubes and the cluttered appearance.

Although invalid depth values are a strong cue for transparency, they are not
robust enough for detection of transparent objects depending on the material.
For instance, thin transparent plastic objects appear nearly invisible in depth
images. Trimaps generated from this invalid depth are also not accurate enough
for use with image matting approaches. Furthermore, the predicted silhouettes
were incorporated in a voxel carving algorithm and it could be shown that it is
possible to get a rough 3D shape estimation.

38



5 Conclusion 39

5.1 Outlook
The presented work shows that the segmentation of transparent objects is an
ongoing challenge. Transparent objects containing liquids, very thin plastic
objects, semi-transparent objects and fine structures like handles or cables are
cases that still need to be tackled. Especially, an approach that takes into
account all these cases and still is able to handle opaque objects is needed.
Many approaches just consider one of these problems, like for instance the
approach by Song et al. [61], which focuses on depth estimation of translucent
boxes.

While CNNs show the best results in this work, the evaluation indicates that
there could be an improvement by training with more diverse data. Although
there are approaches that directly predict the depth of transparent objects,
improving the segmentation of transparent objects is still promising since depth
prediction of transparent objects, like e.g. ClearGrasp [4], benefits from an
accurate mask prediction, as is shown by Xie et al. [5].
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