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Abstract

In 1974, H. Rauch successfully measured neutron interference fringes for the first time, using
thermal neutrons and a single-crystal three-plate silicon interferometer at the Atominstitut in
Vienna. This concept was developed further and found numerous applications in fundamental
physics and material science. M. Zawisky et al. extended the original experiment by record-
ing the additional information of neutron arrival times in 1995, presenting a technique for the
enhancement of the interferometric contrast.

This thesis focuses on the expansion of these measurements, using an improved setup with small
3He detectors in both the direct and the reflected beams, implementing a dedicated program on an
FPGA card for the acquisition of arrival times, and taking measurements both at the Atominstitut
as well as at S18 of the Institut Laue-Langevin (ILL) in Grenoble, France. Improved statistics and
neutron count rates of a factor 102 higher than in Vienna allowed for a more precise determination
of model parameters for interferograms both with and without arrival-time post-selection. The
predicted contrast enhancement could be clearly shown with the measured data.

Furthermore, the setup at the ILL was used to investigate the violation of a Leggett-Garg in-
equality (LGI). This class of inequalities, introduced by A.J. Leggett and A. Garg in 1985, can be
thought of as temporal Bell inequalities, and uses the postulates of macrorealism and non-invasive
measurability. Since classical mechanics fulfill LGI whereas quantum mechanics violates it, these
measurements present valuable insight into the limits between classical and quantum mechanics.
Measurements for this thesis demonstrated the violation of a LGI with thermal neutrons for the
first time.





Kurzfassung

1974 gelang H. Rauch am Reaktor des Atominstituts in Wien die erste erfolgreiche Aufzeichnung
von Neutroneninterferenzkurven, unter der Verwendung eines Drei-Platten-Silizium-Einkristall-
Interferometers mit thermischen Neutronen. Das Konzept der Neutroneninterferometrie wurde
vielfach weiterentwickelt und fand Anwendungen in Grundlagenforschung und Materialwissenschaft.
Das urspr..ungliche Experiment wurde 1995 von M. Zawisky et al. um die zus..atzliche Messung
der Neutron-Ankunftszeiten ausgedehnt, was eine Methode zur Verg..oβerung des Kontrastes im
Interferogramm durch Postselektion erlaubt.

Die vorliegende Arbeit erweitert diese Messungen mit einem verbesserten Setup, das kleine 3He-
Detektoren in sowohl direktem als auch reflektiertem Strahl sowie die automatisierte Aufnahme
der Neutron-Ankunftszeiten beinhaltet. Die Messungen wurden sowohl am Atominstitut als
auch am S18 des Institut Laue-Langevin (ILL) in Grenoble durchgef..uhrt. H..ohere Z..ahlraten um
einen Faktor 102 und verbesserte Statistik am ILL im Vergleich zu Wien erlaubten eine pr..azisere
Bestimmung von Modellparametern sowohl mit als auch ohne Postselektion. Die vorhergesagte
Kontrastverbesserung konnte mit den aufgenommenen Messdaten klar gezeigt werden.

Zudem wurden am ILL-Strahlplatz Messungen zur Untersuchung der Verletzung einer Leggett-
Garg-Ungleichung (LGI) durchgef..uhrt. Diese Klasse an Ungleichungen, 1985 von A.J. Leggett und
A. Garg eingef..uhrt, entspricht zeitlichen Bell-Ungleichungen und st..utzt sich auf Makrorealismus
und nichtinvasive Messbarkeit. Da klassische Mechanik die LGI erf..ullt, w..ahrend Quantenmecha-
nik sie verletzt, erlaubt eine Untersuchung Aufschluss ..uber die Grenze zwischen klassischer und
Quantenmechanik. Im Zuge der Messungen f..ur die vorliegende Arbeit wurde eine Verletzung der
LGI mit thermischen Neutronen erstmals gezeigt.





Abbreviations

AIuBGP Austrian Neutron Beam Interferometer Station

CCC Charge-coupled device

CCE Cumulative distribution function

DIP European Physical Society

DPP European Spallation Source

ECC Face-centered cubic
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1 Introduction

Matter-wave interferometry with neutrons is a powerful tool that allows the visualisation of the
quantum nature of the neutron. Discovered in 1932 [1], the neutron is the second lightest baryon
and electrically neutral, which, with its accessibility from reactors or spallation sources, lends
itself to investigate quantum effects on matter. Neutrons are affected by all four fundamental
interactions, giving rise to nuclear, gravitational and magnetic phase shifts in the neutron,s wave
function. These phase shifts can be observed by using neutron optical components in various
experiments.

Neutron interferometry The first successful demonstration of neutron interference fringes
was performed in 1974 at the Atominstitut in Vienna by H. Rauch et al. [2]. A three-plate
single-crystal silicon interferometer was used to observe the self-interference of thermal neutrons,
demonstrating matter-wave duality. During the macroscopic spatial separations achieved inside
the interferometer, a neutron,s wave function can be modified in phase and amplitude by applying
different methods. Since 1974, many experimental improvements have been made and neutron
interferometry has found a wide range of applications studying fundamental concepts of quantum
mechanics. For instance, the neutron interferometer has been used to investigate the 4π spinor
symmetry [3] and superposition [4, 5], scattering lengths of different materials [6, pp. 56-78],
effects of magnetic fields [7], non-inertial frames [8], and to test the equivalence principle [9]. In
more recent times, experiments addressing topics such as entanglement and weak values have
been performed [10-14]. The original three-plate structure has been expanded to four and more
plates, and, most recently, split crystal experiments [15].

Time-resolved measurements Rauch,s original measurement opened up a new era of invest-
igations concerning quantum phenomena using matter waves. In 1994, Zawisky et al. used the
acquisition of neutron arrival time data on top of the total neutron counts in a given time interval,
to allow the enhancement of fringe visibility (contrast) and the reduction of phase uncertainty
in postselection. This is achieved via statistical manipulation, which utilises certain properties
of the Poissonian distribution of neutrons from the reactor. The present work used an improved
setup for postselection in not only the transmitted but also the reflected beam, smaller detectors,
and more advanced software for higher time resolution in the recording of arrival times. These
measurements were performed not only at the ,original, 250 kW reactor at the Atominstitut but
also at the high-flux 58MW reactor of the Institut Laue-Langevin (ILL) in Grenoble, France,
where higher count rates and a more stable setup allowed for a more in-depth analysis of the
behaviour of the postselected data.



1 Introduction

Leggett-Garg inequality The Bell inequality is a well-known tool to investigate the limits
between our everyday classical world and the quantum mechanical one. A similar ansatz, pro-
posed by A. J. Leggett and A. Garg in 1985 [16], can be thought of as a Bell inequality on the time
domain: the Leggett-Garg inequality (LGI). It is based on the two assumptions of macrorealism
(that a system is always in a defined state, even between measurements) and non-invasive meas-
urability (that it is in principle possible to determine the state of a system without disturbing
it). These assumptions are obvious for the classical world, but as obviously contradicted by
quantum mechanics. A violation of the LGI therefore implies a quantum mechanical system. In
this thesis, such a violation is shown via the implementation of a non-50:50 beam splitter (first
plate in the interferometer) by adding an absorber into one of the partial beams. Negative result
measurements, which have been suggested by Garg [17] as a major improvement to current LGI
tests, have been used. The experimental results obtained in this thesis mark the first violation
of an LGI with neutrons.

The structure of this thesis Firstly, the main theoretical background for this thesis is given
in CHAPTER 2. A short overview of neutrons, their sources and detections is followed by the
basics of neutron interferometry with a three-plate perfect-crystal Si interferometer as well as
counting statistics and the Poissonian distribution. Next, CHAPTER 3 describes the setup for
the measurements both at the Atominstitut in Vienna and the ILL in Grenoble as well as the
respective reactors and instrument components which were used.

Measurements are presented in two chapters, both with a theoretical introduction to the spe-
cific experiment: CHAPTER 4 for the time-resolved interferograms and the different results for
selected short and long time intervals both in Vienna and in Grenoble which show a clear en-
hancement of the observed contrast, and lastly, CHAPTER 5 presents an outline of the LGI and
the achieved violation, proving that the quantum system of the neutron interferometer is, indeed,
quantum.

2



2 Theoretical background

In this chapter, an overview over the theoretical background in neutron interferometry is given.
First, properties of the neutrons itself are discussed, followed by a discussion of triple-Laue
interferometry. An introduction to counting statistics is presented as well.

2.1 Neutron physics

2.1.1 Properties of the neutron

The neutron was discovered by J. Chadwick in 1932 [1]. It consists of three quarks, one up and
two down quarks, thus belonging to the hadron family in the standard model of particle physics,
more precisely, the baryons. With the electric charges of 2/3 E for the up quark and -1/3 E for
each of the two down quarks, the net electric charge of the neutron results to 0. This has been
confirmed by charge measurements that lead to values of -0.2+ 0.8x 10-21 E [18].

As a fermion, the neutron has a spin of 1
2 . The neutron has a magnetic moment of μn =

-9.662x 10-27 JT-1 and a mass of Mn = 1.675x 10-27 kg or 939.6MeV/c2 [19]. However, the
free neutron is not stable. With a mean life time of 879.4+ 0.6 s [18], it decays into a proton
(which has a lower rest mass of 938.3MeV/c2 [19]), an electron and an electron antineutrino
with the reaction [20]

n → p+ + e- + -ϓe + 0.78MeV . (2.1)

Due to the negative charge of the emitted β particle (i.e. the electron), this process is called
the β- decay. Another interesting property is the Neutron electric dipole moment (nEDM),
as its existence would violate CP symmetry. The current upper limit on the nEDM is IDnI <
3.0x 10-26 E cm [18] at 90% CL.

The neutron is subjected to all four of the fundamental forces: the strong force, due to its
composition of quarks; the weak force, as can be seen from the β- decay in eq. (2.1); the
electromagnetic force due to its magnetic moment μn; and gravity, since it has mass.

In his 1924 PhD thesis [21], Louis de Broglie suggested a duality between matter-like and wave-
like behaviour for quantum-scale objects. The relation between the momentum of a particle and
the wavelength of the respective matter wave is given as

λ =
H

P
=

H√
2ME

, (2.2)

with Planck,s constant H = 6.626x 10-34 J s [19] and taking into account that for a nonrelativistic



2.1 Neutron physics

particle of mass M, its energy can be expressed as E = p2

2m . The kinetic energy of a neutron is
calculated according to [6]

E =
MV2p
2

= KBT , (2.3)

with Boltzmann,s constant KB = 8.617x 10-5 eVK-1 [19] and the velocity Vp the mode of the
Maxwell-Boltzmann distribution1 at temperature T . It is convention [22, p. 4, 6, p. 3] to use
the mode (i.e., the most probable velocity) as opposed to the mean square velocity

<
V2
Y
, which

would result in the more familiar E = 3
2KBT .

At room temperature (20 ➦C), the neutron energy results in E ~ 25meV, corresponding to a
wavelength of λ = 1.8✝A and a velocity of about 2.2 km s-1. These are the so-called ,thermal,
neutrons that this thesis will focus on. TABLE 2.1 gives an overview of different neutron energy
ranges and their corresponding classifications.

TAB. 2.1 - Overview of the neutron energy ranges and their respective classifications. This
compilation uses values taken from references [20], [23], and [24].

Classification Energy range

fast > 1MeV

intermediate 100 eV - 1MeV

resonance 1 - 100 eV

slow < 1 eV

epithermal 25meV - 1 eV

thermal ~ 25meV

cold < 25meV

ultra cold < 300 neV

2.1.2 Neutron sources

There are three possible sources for free neutrons: nuclear reactions, nuclear fission in reactors
and spallation. Due to the aforementioned limited lifetime of about 15min, each experiment has
to be reasonably close to the corresponding neutron source.

2.1.2.1 Nuclear reactions

In FIG. 2.1, the binding energy per nucleon EB/A is depicted over increasing nucleon number A.
The peaks in this curve for low values of A indicate more strongly bound nuclei, for example the
α particle 4He, 8Be or 12C. Adding another particle to such a nucleus upsets this balance, resulting
in loosely bound neutrons. The collision energy of such nuclides with fast protons, neutrons or α
particles as well as ϓ rays can induce nuclear reactions and separate these neutrons. An example
for such a nuclide is the only stable beryllium isotope 9Be, which has a high cross section for
(α,n) reactions. The reaction

9Be + α → 12C+ n + 5.71MeV (2.4)

results in a continuous neutron spectrum from 0 to 13MeV with a mean around 5MeV. In
neutron sources, 9Be is commonly combined with α emitters such as 210Po or 241Am [20, 25].

1f(v) dv =
√

mβ
2π

3

4πv2 e-β mv2

2 dv with β = 1
kBT

. The mode vp is calculated from
df(v)
dv

!
= 0 → vp =

√
2kBT
m

.

4



2 Theoretical background

These sources are mostly used for detector calibration due to their rather low flux in comparison
to other sources.
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FIG. 2.1 - Binding energy per nucleon in MeV. Significant nuclei are indicated: fusionable nuclei
lie to the left, fissionable nuclei to the right of the most tightly bound nucleus 56Fe. The inset
shows details of the peaks for small nucleon numbers A. Data taken from [26].

2.1.2.2 Nuclear fission

The binding energy per nucleon (FIG. 2.1) shows a maximum for 56Fe, meaning that nuclei to
the left can gain energy through fusion, and nuclei on the right through nuclear fission. In a
neutron-induced fission process of a heavy element, the incoming neutron deposits its kinetic
energy inside the nucleus, which starts to oscillate and finally ruptures due to the proton-proton
repulsion. The products of this breaking process are mostly two smaller nuclei and 2-3 additional
neutrons due to the higher abundance of neutrons with respect to protons for heavier nuclei. Since
the excess binding energy of the mother nucleus is released into kinetic energies of the fission
products, resulting neutron velocities are high: around 5MeV in total are divided among the
neutrons.

In order to maintain this chain reaction, the neutrons have to be moderated (i.e. slowed down
via a number of inelastic collisions) to the thermal range. Nuclear research reactors typically
use 235U as fuel, where the average neutron yield for incoming thermal neutrons is 2.43. These
neutrons then either decay, leave the reactor or can induce a fission process in one of the other
surrounding fissile 235U nuclei. The majority of the outcoming neutrons are so-called ,prompt,
neutrons, emitted immediately (as opposed to ,delayed, neutrons which are emitted after a
preceding β decay of the daughter nucleus of the chain reaction), and their spectrum can be
approximated by a Maxwell-Boltzmann distribution [27].

In this thesis only neutrons obtained in continuous mode were used, although the operation of
a reactor is possible both in continuous and in pulsed mode. The research reactors at which
the measurements in this thesis were performed are described in SEC. 3.1 for the TRIGA reactor
at the Atominstitut TU Wien and SEC. 3.2 for the High-Flux reactor (HFR) of the Institut
Laue-Langevin (ILL) in Grenoble.

5



2.1 Neutron physics

2.1.2.3 Spallation

In a spallation neutron source, a proton beam with high kinetic energy is shot onto a target. This
target which constitutes the actual neutron source, an atomic nucleus, shatters into many small
particles. Among them are several fast neutrons, which are then slowed down. For the target
itself, tungsten is most commonly used, due to the high neutron yield per incoming proton. Aside
from the target, the most important component of a spallation source is the accelerator which
generates the fast proton beam. This accelerator can be a linear accelerator (as in the European
Spallation Source (ESS), which is currently under construction in Sweden), a synchrotron in
combination with a linear accelerator (as in the ISIS neutron source in the United Kingdom),
or a cyclotron (as in the Paul Scherrer Institute in Switzerland). Due to the nature of the
acceleration process, spallation sources are operated in pulsed mode [28].

2.1.3 Neutron detection

To reliably detect neutrons, materials with high cross sections for (n,*) reactions with prompt
energetic charged particles are used. Since these reactions capture the incoming neutron, they
are classified by the neutron absorption cross section σa. In an active detection device, a target
(for example a counting gas) serves as conversion medium for the neutron, and the resulting
current signal or pulse is read out by a detector.

A critical feature in neutron detection is the ability of discrimination of the ϓ radiation back-
ground. For this, the Q-value, which determines the amount of energy released by the reaction
following a neutron capture, is a good indicator: the higher the Q-value, the more kinetic energy
is transferred to the products of the reaction and the easier the amplitudes can be separated
from background events. Detector geometry is equally important, as the reaction products need
to be able to deposit their entire energy within the detector volume, otherwise leading to the
so-called ,wall-effect, which shifts the pulse spectrum towards lower energies [29, pp. 505-506].
In addition, size and gas pressure influence the efficiency of a neutron detector.

In the following sections, the three main modes of slow neutron detection - (n,α) reactions for
10B and 6Li as well as the (n,p) reaction for 3He - are discussed, each followed by a more detailed
description of the behaviour for thermal neutrons. The behaviour of the neutron detection cross
sections σa of these three reactions over a wide range of neutron energies are shown in FIG. 2.2.
Since σa depends strongly on the energy of the incoming neutron, a slow neutron detector will not
provide satisfying results for neutrons of higher energies. See [29, pp. 537-576] for a discussion
of detectors for intermediate and fast neutrons.

2.1.3.1 10B-based detectors

The first kind of commonly used neutron detectors are BF3 counting tubes, comprising a cyl-
indrical outer cathode and inner wire anode. A schematic of a simple counting tube is shown in
FIG. 2.3. In these detectors, boron triflouride is both the target and the counting gas, using the
reaction

10B+ n → 7Li + α+Q , (2.5)

where Q is 2.792MeV for the ground state, and 2.310MeV for the excited state 7Li*, which
decays to the ground state via the emission of a ϓ ray with a half-life of ~10-13 s. This ϓ escapes
and does not contribute to the detector response. The cross section σa shows a 1/V behaviour
for the velocity of the incoming neutron V, and is 3840 b for thermal neutrons [29, p. 507].
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FIG. 2.2 - Detection cross section versus neutron energy for the most common materials used in
neutron detectors [29, p. 508].

Due to the aforementioned wall-effect, which at typical pressures in BF3 counting tubes plays an
important role, the pulse height spectrum shows a continuum and therefore gives no information
except of the detector geometry. The counting gas is enriched in 10B and can be mixed with
other gases (for example argon) to the effect of a much more stable counting behaviour and
sharper pulse height spectrum at the expense of lowered efficiency. For thermal neutrons, the
efficiency of these types of detector lies around 92%. The discrimination against ionising ϓ rays
is possible with an amplitude discriminator because BF3 has low stopping power for possibly
created secondary electrons. At high ϓ rates, however, discrimination problems can arise due to
pulse pile-up [29, pp. 509-515].

FIG. 2.3 - Schematic of a counting tube consisting of anode wire and cylindrical outer cathode,
with load resistance RL and high voltage V . Picture taken from [29, p. 162].
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2.1 Neutron physics

2.1.3.2 6Li-based detectors

Though the cross section for the 6Li(n,α)3H reaction lies below σa for the boron reaction, as
can be seen in FIG. 2.2, lithium-based detectors have the advantage of a higher Q-value, making
discrimination against ϓ rays easier. The resulting triton is always in the ground state, meaning
a single peak in the pulse height spectrum as opposed to two peaks in the boron reaction. The
reaction itself is

6Li + n → 3H+ α+Q , (2.6)

with Q = 4.78MeV and a thermal neutron cross section of 940 b [29, pp. 507-508].

There is no stable 6Li-containing proportional gas, so there is no direct equivalent to the BF3

counting tube. Instead, scintillators containing 6Li are used, for example in thin layers of LiF
and ZnS(Ag). ϓ ray discrimination is very effective in thin layers, since the electrons can escape
without depositing all of their energy [29, pp. 517-518].

2.1.3.3 3He-based detectors

Another gas counting tube uses 3He with the reaction

3He + n → 3H+ p +Q , (2.7)

where Q = 0.765MeV and a cross section of 5330 b for thermal neutrons. This cross section also
shows the 1/V behaviour like σa for boron, and though it is significantly larger, the high cost of
3He compared with BF3 makes this less readily available [29, pp. 508-509].

Like for the BF3 detectors, 3He detectors also show a wall-effect continuum in their pulse height
spectrum; even more distinct due to the lower atomic mass. Methods to circumvent this problem
are using larger counting tube diameters or higher gas pressures within the tube. Compared
with BF3 detectors, 3He detectors are therefore operated at much higher gas pressures. ϓ ray
distinction is also more difficult than for BF3 detectors because of the lower Q value. Therefore,
Ar or CO2 can be added into the counting tube to speed up electron drift times and as a result
allow shorter shaping time in the processing electronics. Since 3He only acts as an acceptable
proportional counter gas when it has sufficient purity, measures must be taken to prevent leaks
and the subsequent contamination of the counting gas [29, pp. 518-520].

2.1.4 Neutron absorption

The scattering length B in neutron-nucleus reactions is a complex number, with the real part
describing the scattering, and the imaginary part describing the absorption. Expressed as a
reaction cross section σt, this leads to σt = σs+σa, with σs and σa the scattering and absorption
cross sections, respectively. For strong absorbers, B will have a large imaginary part, while for
silicon, absorption can be neglected since σa < σs [30, p. 4, 22, p. 9].

When a neutron beam passes through a material, its intensity is diminished according to the
Beer-Lambert law

I(D) = I0 e
-Σd , (2.8)

where I0 is the initial beam intensity, D the thickness and Σ the macroscopic cross section of the
absorber material. This macroscopic cross section can be expressed as

Σ = σtN = σt
ρ

M
NA , (2.9)

with N the number density, ρ the density and M the molar weight of the material, and NA =
6.022x 1023 mol-1 [6, p. 60]. The following sections discuss beam intensity diminution for neut-
ron shielding and for controlled beam attenuation.
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2 Theoretical background

2.1.4.1 Shielding

To shield the experimental setup from unwanted neutrons, materials with high σa are used.
This can be for example concrete, paraffin, heavier elements like lead or tungsten, steel, and
boron-containing materials. Since the various cross sections depend strongly on the energy of
the incident neutron, moderation effects have to be taken into account, as well as the possibility
of ϓ rays resulting from the neutron capture process, making layering of absorbers important
[29, pp. 770-771]. As an example, paraffin stops thermal neutrons but slows down fast neut-
rons.

Thermal neutrons are stopped by cadmium, whereas fast neutrons will pass through it without
being moderated [27, p. 63]. At around 0.5 eV, σa in

113Cd drops rapidly - the so-called Cadmium
cut-off, a border between slow and fast neutrons (see also TAB. 2.1) [29, p. 505]. With a molar
weight of MCd = 112.41 gmol-1, density of ρCd = 8.69 g/cm3 [31] and the cross sections for
thermal neutrons σa,Cd = 2520 b, σs,Cd = 6.5 b [32], the macroscopic cross section of cadmium
becomes ΣCd = 117.32 cm-1. A cadmium sheet with a thickness of 1mm reduces the initial
intensity of a thermal neutron beam to 8.1x 10-6. Cadmium therefore effectively blocks thermal
neutron beams.

2.1.4.2 Beam attenuation

In a neutron experiment, not only a complete shielding but also the controlled attenuation of a
neutron beam can be important. Generally, one distinguishes between stochastic and determin-
istic absorbers. In a stochastic absorber, every neutron can in principle be absorbed, for example,
in a foil like indium. As a consequence, the intensity in the neutron beam is diminished. In a
deterministic absorber, only neutrons within a specific time or space interval are absorbed, for
example, a rotating chopper disc or absorbing lattice [6, pp. 122-126].

For indium, with cross sections for thermal neutrons of σa = 193.8 b, σs = 2.6 b [32], M =
114.82 gmol-1, and density of ρ = 7.31 g/cm3 at 20 ➦C [31], the macroscopic cross section results
in Σ = 7.43 cm-1. When passing through an indium foil with a thickness of 1mm, an incoming
thermal neutron beam is diminished to 47.1%. Indium is a practically available candidate for
the controlled reduction of neutron beam intensity.

2.2 Neutron interferometry

When a monochromatic wave of wavelength λ hits a perfect solid crystal, it is scattered by the
atoms in the crystal lattice. Beams reflected in the different lattice planes travel paths of different
lengths and they acquire a phase shift. This situation is illustrated in FIG. 2.4.

Dhkl

ϑB

FIG. 2.4 - Bragg diffraction: incoming waves are scattered by crystal lattice atoms.
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2.2 Neutron interferometry

Bragg,s formula
Nλ = 2 Dhkl sinϑB (2.10)

is the well-known condition for constructive interference in the reflected beams. Here, Dhkl
designates the interplanar distance of the crystal lattice (with H, K, L being the Miller indices),
ϑB is the angle of incidence, and N a counting index. In case of matter waves, the wavelength
λ is given by the de Broglie wavelength. Only neutrons with a specific wavelength will fulfill
the condition for constructive interference. This behaviour is used in monochromators, when the
selection of a certain wavelength is needed.

Depending on the position of the reflected beam compared to the incoming beam, one can dis-
tinguish between two cases: Bragg and Laue geometries. In the Bragg case, only the transmitted
beam passes through the material (see FIG. 2.4). Laue diffraction refers to the case that the
transmitted and reflected beam both pass through the crystal, leaving it on the opposite side
from the incoming beam. Perfect crystal interferometry uses Laue geometry. The designations
,O, and ,H, beam have been established for the transmitted and reflected beams. Equivalent to
the Bragg equation (2.10), the Laue condition can be formulated as

Δ→K = →KH - →K = →G , (2.11)

where the scattering vector Δ→K, which describes the change between the incoming (→K) and reflec-

ted (→KH) wave vector, must equal the reciprocal lattice vector →G. →G contains the Miller indices,

as it can be written as →G = H→G1+K→G2+ L→G3 with the primitive reciprocal lattice vectors →Gi.

An illustration of the Laue geometry is presented in FIG. 2.5. ϓ and ϓH denote the angles of the
symmetry axis to the incoming (→K) and reflected (→KH) wave, respectively [30, p. 16].

→K

→K

O

→KH
H

ϓ ϓH

FIG. 2.5 - Laue geometry: both reflected and transmitted beam pass through the crystal. Crystal
planes (horizontal lines) are indicated.

2.2.1 The perfect silicon crystal interferometer

In general, two kinds of neutron interferometry are possible: wave-front division (as in Young,s
type interferometers) and amplitude division (as in a Mach-Zehnder interferometer (MZI)). This
thesis discusses the latter type, realised in a perfect silicon crystal three-plate interferometer
in Triple-Laue (LLL) geometry. Interferometers of monolithic structures, produced from silicon
perfect crystals cut out of a single ingot, allow for a precise lattice plane alignment. Due to the
advances of semiconductor technology, the production of such devices is made possible: first, the
rough structure of three vertical plates, connected by a common base, is cut from the perfect
crystal, followed by a chemical etching process to remove cutting-induced lattice damage. A
detailed description of the preparation process can be found in literature [33].
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2 Theoretical background

Silicon crystal has a diamond cubic structure with eight atoms per unit cell and belongs to the
Fd-3m space group. It can be understood as the overlay of an Face-centered cubic (FCC) unit cell
with a second one shifted by 1

4 along the space diagonal. This structure is depicted in FIG. 2.6,
with conventional and primitive unit cell to the left and in the centre, with the lattice vectors
→Ai shown in red. The right-hand side emphasises the initial FCC unit cell (starting at the grey
atom) and the shifted unit cell (starting at the red atom). Silicon has a lattice constant ASi of
5.43✝A [31].

The setup for this thesis uses the {2, 2, 0} reflection of this lattice, with D220 = 1√
8
ASi = 1.92✝A.

The advantage of this choice is that all the atoms in the unit cell partake in the reflection, with
no additional atoms acting as perturbators. In FIG. 2.7, the unit cell (left) and top view with
Bragg angle ϑB and planes {2, 2, 0} and {1, 1, 0} (which is a subset of {2, 2, 0}) are shown, as well
as an illustration of the fact that not all atoms in the unit cell take part in {1, 1, 1} reflections
(on the right).

x
y
z

x
y

z

FIG. 2.6 - Unit cell of the Si crystal (left) and primitive cell (centre) with lattice vectors →Ai shown
in red. Right: overlay of first unit cell (starting point in grey) and second (starting point in red),
which is shifted along the space diagonal (dashed red line).

{2,2,0}&{1,1,0} {1,1,1}

{2,2,0}

{2,2,0}

{2,2,0}
&{1,1,0}{2,2,0}

&{1,1,0}

{2,2,0}
&{1,1,0}

FIG. 2.7 - Reflection planes in the Si crystal: unit cell (left), top view of the unit cell with {1, 1, 0}
and {2, 2, 0} planes (centre). Right: not all unit cell atoms take part in {1, 1, 1} reflections.

Typical setup values in neutron interferometry are a plate thickness of a few mm and a length of
10 to 15 cm. A coherent beam separation of around 5 cm can be reached in the interferometer.
Interferometry with cold neutrons and other materials used for beam handling is possible as well
(see [6, pp. 39-46] for further discussion).
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2.2 Neutron interferometry

The operating principle of the LLL interferometric setup is displayed in FIG. 2.8. For each of the
three plates, a beam split ratio of 50:50 is assumed. At the first plate, the ,splitter,, the incoming
neutron beam (ψ0) is split into two parts, where the transmitted beam is designated ,path I,
(ψI) and the reflected beam ,path II, (ψII). The second plate, or ,mirror,, reflects the beams,
and the transmitted fraction leaves the interferometer. Finally, at the third plate, or ,analyser,,
the partial beams are recombined and interfere. Detectors in O and H direction measure the
resulting intensities. An additional homogeneous slab as a phase flag in both paths introduces
a phase shift that differs for the two partial beams. Upon rotating the phase flag, interference
fringes become visible.

ψII

ψI

ψ0 ψI"white"
beam

Monochromator

Phase shifter (χ)

IH

IO

FIG. 2.8 - Schematic representation of the triple-Laue interferometer. The monochromatised
incoming wave ψ0 (left) is split into a transmitted wave ψI and a reflected wave ψII. After the
interferometer, intensities IO and IH are measured by the detectors (right).

It is important to emphasize that neutron interferometry is single-particle interference. The time
between two neutron counts in the detector is much longer than the time it takes a neutron to
pass through the interferometer, so that at almost any given instance only a single neutron is
inside the interferometer. At sources with low count rates, like the reactor of the Atominstitut
Vienna, this is clearly verified. Interference fringes appear because the partial waves of the two
possible neutron paths ψI, ψII form a superposition. This shows the wave-like properties of the
neutron as described in the framework of quantum mechanics. The neutron interferometer thus
constitutes a rather simple system that allows to investigate fundamental quantum mechanical
behaviour.

2.2.1.1 Interferometric contrast

The waves in the two paths show a fundamental asymmetry [6, p. 27]. Waves arriving in the O
detector both experience reflection (R) twice and transmission (T) once, giving a total intensity
of

IO = IψI,O + ψII,OI2 =
IITRR ψ0 e iχ1 + RRT ψ0 e iχ2

II2 , (2.12)

with the amplitude of the incident wave ψ0 and phases χi. In the H detector, however, the wave
in path I experiences two transmissions and one reflection, while the wave in path II is reflected
three times, giving an intensity

IH = IψI,H + ψII,HI2 =
IITRT ψ0 e iχ1 + RRR ψ0 e iχ2

II2 . (2.13)
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2 Theoretical background

With the definition of the difference between the acquired phases of the two beams, χ = χ2-χ1,
the resulting intensities can be written as

IO(χ) = A (1 + cosχ)

IH(χ) = B -A cosχ ,
(2.14)

where A = 2 Iψ0I2ITI2IRI4 and B = Iψ0I2
(ITI4IRI2 + IRI6). Due to particle conservation, IO + IH =

const. [6, p. 27]. A derivation for eq. (2.14) is given in SEC. A.1.

This phase difference χ between the two beams is induced by a phase flag which extends over
both partial beams and is rotated about a vertical axis outside the interferometer by angle δ.
ψI and ψII therefore acquire slightly different phase shifts χi. For a phase flag of thickness DPS,
particle density N and coherent scattering length of the nuclei Bc, χ is calculated as

χ = -NBc DPS λ = (N- 1) KDPS , (2.15)

with λ = 2π/K the wavelength of the incoming neutron beam and the complex index of refrac-
tion [6, p. 10]

N = 1- 1

2π
λ2 NBc . (2.16)

For small phase flag rotation angles with respect to an orientation parallel to the interferometer
plates, the absolute path length difference for the beams,

ΔD(η) =

(
1

cos(θB + η)
- 1

cos(θB - η)

)
DPS , (2.17)

is nearly linear in η. That is, the phase shifter position is proportional to the phase shift χ [6,
34].

In a non-ideal MZI, it is useful to introduce an additional quantity to qualify its function, the
contrast, or fringe visibility, C. It is smaller than unity due to unavoidable imperfections in the
experimental setup, caused by the weight of the interferometer itself, possible lattice defects,
and external influences like vibrations or fluctuations in the surrounding temperature during a
measurement. A discussion of the behaviour interferometric contrast under different external
influences can be found in [35]. The intensity in the detector can then be written as [36]

I(χ) = -I (1 + C cosχ) , (2.18)

with the mean intensity -I modulated by a cosine term weighted by C. This contrast is defined
via the maximum and minimum intensity, Imax and Imin, respectively, as

C =
Imax - Imin

Imax + Imin
. (2.19)

For the O detector, this quantity could in theory reach C = 1, since the symmetry of the
beam paths of the partial beams allows for a complete cancellation of the intensity. Due to the
asymmetry of the beam paths, however, the contrast in the H detector cannot reach C = 1,
even in a hypothetical ideal interferometer. This issue is shown in FIG. 2.9: due to the different
number of reflections and transmissions in the two paths for the H detector (eq. (2.13); shown
in orange), the partial waves can never fully interfere destructively, resulting in a larger mean
intensity than the O detector (eq. (2.12); shown in blue), where complete destructive interference
is possible (for an ideal MZI).
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FIG. 2.9 - Simulation of interference curves in a non-ideal MZI. Blue points denote the O detector,
orange points the H detector.

2.2.1.2 Neutron interferometer with blocked paths

If one of the two paths within the interferometer is blocked, for example with a cadmium foil
(see FIG. 2.10), the interference fringes vanish, since there are no longer two wave amplitudes
that can overlap. In order for the neutron to reach a detector, it has to take the unblocked path
and a superposition of both paths does not exist anymore.

II
H

O

Cd

(A) Cadmium blocker in path I.

I

H

O

Cd

(B) Cadmium blocker in path II.

FIG. 2.10 - Mach-Zehnder interferometer with one of the paths blocked. Neutrons have to take
the other path in order to reach one of the detectors O or H.

Depending on which of the two paths is blocked, the ratio of the counting rates in both detect-
ors changes, due to the aforementioned asymmetry in the number of reflections and transmis-
sions.

TAB. 2.2 - Detection intensities for blocked paths in the neutron interferometer, normalised to
the total intensity in the empty interferometer [37].

O beam H beam O + H beam

empty interferometer 9/16 7/16 1

path I blocked 9/64 15/64 3/8

path II blocked 9/64 31/64 5/8

In TAB. 2.2, results of the detected intensities for blocked paths in an interferometer with three
plates of exactly the same thickness are presented. A detailed analysis of neutron wave behaviour
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in the interferometer is possible with the methods of dynamical diffraction theory. As a further
discussion lies beyond the scope of this thesis, please refer to [30, 37]. Also see SEC. A.2 for a
short overview of reflection curves in a MZI.

2.2.2 Applications of neutron interferometry

Applications of neutron interferometry include tests of gravitational effects on elementary particles
(the Colella-Overhauser-Werner experiment [9]), 4π spinor symmetry [3] and superposition of fer-
mion spins [4, 5] as well as the determination of scattering lengths of different materials [6, pp. 56-
78]. Intra-particle entanglement (e.g. spin-particle entanglement) [38, 39], the quantum Cheshire
Cat effect, [14] and other weak value measurements [10-13] have also been realised.

In this thesis, two experiments are discussed: the enhancement of interferometric contrast via
the use of neutron arrival time information (CHAPTER 4), and the violation of a Leggett-Garg
inequality (CHAPTER 5).

2.3 Counting statistics

In a neutron counting experiment, we are interested in the binary process whether a neutron is
or is not detected at a given time. These events (detections) can be modelled with the Poisson
process if the following assumptions are true: the events are independent from one another,
cannot occur at the same time, and the mean rate in a given time interval is constant [40].
The neutron beam in our interferometer experiments meets these requirements: the reactor
produces a constant thermal flux of uncorrelated neutrons; when a neutron passes through the
interferometer setup, the next neutron is in most cases still inside the reactor core and hence
completely independent from the former. This is also emphazised by the fact that in perfect
crystal interferometry, the coherence time is about 10-11 s [36]. One neutron constitutes a
coherent state which is uncorrelated with the coherent state of the next neutron. The arrival
times of these neutrons are randomly distributed. This distribution is exponential, which is
shown in SEC. 2.3.1.

The situation in a neutron detector is depicted in FIG. 2.11: the total measuring time T is
split into N intervals ΔT, and in each of these the neutron (represented by the black dot) can be
detected. With the constant probability P of detecting the neutron in a single ΔT, the probability
of detecting one neutron in T is N (1-P)n-1 P: in N-1 intervals, no neutron is detected, and the
detection can happen in any of the ΔT. Extended to N neutrons, the probability of detecting N
neutrons in T is the binomial2 probability with probability mass function (PMF)

Pbin(N) =

(
N

N

)
PN (1- P)n-N . (2.20)

ΔT

N intervals

FIG. 2.11 - Detector time binning: the neutron (black dot) can be detected in any of the N
intervals ΔT during the measuring time T = NΔT.

2The binomial coefficient is
(n
k

)
= n!

k!(n-k)!
.
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To simplify this expression, some approximations can be made. With low countrates and a high
detector resolution, the detector binning is much finer, i.e. the number N of subintervals ΔT gets
large (N → ∞) while the probability P of a successful detection in one of these ΔT becomes small
(P → 0). With the additional condition that NP = const = λ (a constant number of detections),
the binomial PMF can be rewritten to the Poissonian PMF as follows:

lim
n→∞Pbin(N) = lim

n→∞
N!

N !(N-N)!

(NP
N

)N (
1- NP

N

)n-N

= lim
n→∞

N(N- 1)(N- 2) . . . (N-N + 1)

N !

λN

NN

(
1- λ

N

)n-N

= lim
n→∞

λN

N !

(
1- 1

N

)(
1- 2

N

)
. . .

(
1- N - 1

N

)
, ,, ,

→ 1

(
1- λ

N

)n

, ,, ,
→ e-λ

(
1- λ

N

)-N

, ,, ,
→ 1

=
λN

N !
e-λ = PP(N) .

(2.21)

For the Poissonian distribution

PP(N) =
λN

N !
e-λ , (2.22)

the first and second moments (i.e., expectation value <N> and variance σ2)3 are both given by
λ. Since the true value of λ is unknown, N is used as an estimator [41]. Thus for a counting
experiment where N neutrons are observed, the 1σ confidence interval is given by

N +
√
N . (2.23)

This important property means that longer measuring times (and therefore higher neutron counts
N) decrease the relative error of the corresponding measurement. For a large number of detec-
ted neutrons N , the Poisson distribution can be further simplified to the normal (Gaussian)
distribution with μ = λ and σ =

√
λ ,

PG(N) =
1√
2πλ

e-
(N-λ)2

2λ . (2.24)

2.3.1 Distribution of arrival time intervals

For a Poissonian distribution ofN events in a fixed time interval T , the waiting times between two
detection events follow the exponential distribution. This can be calculated as follows: assume
the first neutron arrives at T0, and the next neutron arrives at time T. At times τ between T0 and
T, no further neutron has arrived, so the counts Nt0 and Nt0+τ have to be the same:

T0 < τ < T → Nt0+τ = Nt0 . (2.25)

Using the complement rule of probability (since the neutron can in principle arrive either at a
time τ smaller or larger than T), this can be written as

P (τ > T) = 1- P (τ < T) = 1- P (0) , (2.26)

3For n discrete events xi with probabilities pi, the expected value is <x> = μ =
∑n

i=1 pixi, and the variance<
(x- μ)2

>
= σ2 =

<
x2

>- <x>2 = (
∑n

i=1 pix
2
i )- μ2.
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because no neutron arrives at times τ < T. P (0) is the probability for 0 detection events and
uses the definition of the Poissonian distribution eq. (2.22), giving

PP(0) =
λ0

0!
e-λ = e-λ , (2.27)

with λ = Iτ , a counting intensity per unit time I multiplied by the considered time τ . With
eq. (2.26), it follows that

P (τ > T) = 1- e-Iτ , (2.28)

which is the cumulative distribution function (CDF)4 of the exponential distribution

Pexp(τ) = I e-Iτ . (2.29)

This fact can be used in postselection of neutron arrival times, as will be discussed in SEC. 4.1.
From eq. (2.27) one can see that this procedure only works for neutrons that follow the Poisson
distribution; were they for example uniformly distributed, postselection of arrival time data
would yield no further information.

A similar derivation of the simple decay form of the detection probability within a certain time
interval, eq. (2.29), uses photon counting statistics and is given by Glauber [42]. For a pure
coherent state, the generating function for the distribution of counts in time τ is written as

Q(β, τ) = e-βIτ =

∞∑
N=0

(1- β)N P(N, τ) , (2.30)

with an average rate I and an arbitrary parameter β. The probabilities P(N, τ) are the coefficients
of the power series expansion of Q(β, τ) about β = 1, and result to

P(N, τ) =
(Iτ)N

N !
e-Iτ , (2.31)

forming the Poisson distribution. If no neutrons are recorded in time τ , the probability is
P(0, τ) = Q(1, τ). For an initial count in the interval ΔT0 about T0 and nothing detected until
time τ , the probability is ΔT0

d
dt0

P(0, τ - T0). Assuming the first subsequent count occurs in the
interval Δτ about τ , and with the conditional probability W (τ IT0) that after an initial count at
T0, the next count happens at τ ,

-ΔT0
d

dT0

d

dτ
P(0, τ - T0)Δτ = ΔT0

d2

dτ2
P(0, τ - T0)Δτ = IΔT0 W (τ IT0)Δτ . (2.32)

From this, it follows that

W (τ IT0) = 1

I

d2

dτ2
Q(1, τ - T0) , (2.33)

and since Q(1, τ - T0) = e-Iτ , the interval density W (τ IT0) becomes

W (τ IT0) = I e-Iτ . (2.34)

The preceding section has presented the tools necessary to analyse data of neutron arrival times.
An important result is that the number of neutron counts N can be used to quantify both mean
value and error of the underlying Poisson distribution. With a Poisson distribution of neutron
detection events, the neutron arrival times follow the exponential distribution. This manipulation
will be applied to measurement data in CHAPTER 4.

4The cumulative distribution function F (x) for a probability mass function P (x) is given as F (x) =∑
xi<x P (xi).
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3 Experimental setup

This chapter discusses the experimental setups at two research reactors: the 250 kW TRIGA Mark
II reactor of the Atominstitut in Vienna, Austria, and the 58MW high-flux reactor at the Institut
Laue-Langevin in Grenoble, France. First, the respective reactors are discussed, followed by the
experimental components.

3.1 Atominstitut, Vienna

The Atominstitut of the University of Technology Vienna is the host of Austria,s only operating
nuclear reactor. Constructed by General Atomics, the Training, Research, Isotope production,
General Atomics (TRIGA) Mark II reactor reached first criticality in 1962. It is a pool-type reactor
with a continuous thermal power of 250 kW. The 83 fuel elements each consist of zirconium
hydride with about 8% of weight fissile uranium and reach a core temperature of about 300 ➦C
at maximum power. Due to the low reactor power compared to other research reactors, the
burnup of these elements is small. Neutrons are moderated both by the water surrounding the
fuel elements and mainly by the ZrH, which has a negative void coefficient, that is, its neutron
moderation ability decreases with increasing temperature, leading to a break in the chain reaction
when the reactor becomes over-critical. Therefore it also constitutes an important safety feature,
effectively stabilising the reactor. The TRIGA reactor can be operated in pulsed mode, allowing
for a 250MW pulse of about 40ms. Three boron carbide absorber rods control the chain reaction
in the reactor core [43].

In FIG. 3.1 a schematic overview of the beamlines of the TRIGA reactor of the Atominstitut is
given. Three radial beamlines, one tangential beam port, a thermal column and an irradiation
facility with a neutron flux of 10-13 cm-1 s-2 allow for a variety of experiments. The neutron
interferometry station is located at beamline ,C,. Measurements at this station for this thesis
were conducted from December 2018 to June 2019.

In May 2019, the Atominstitut was distinguished as a ,historic site, by the European Physical
Society (EPS), due to the work of Helmut Rauch, who observed interference of a neutron beam
at the neutron interferometer station for the first time in 1974 [2].

3.1.1 The neutron interferometry station

At radial beamline ,C, of the reactor of the Atominstitut, the Austrian Neutron Beam Inter-
ferometer Station (ANuBIS) instrument is located at only a few metres, distance to the reactor
core. The thermal neutron beam is monochromatised to λ = 1.9✝A with a vertically focussing
pyrolytic graphite mosaic crystal. This consists of a number of perfect crystals which are not
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FIG. 3.1 - Schematic of the various beamlines of the TRIGA reactor at the Atominstitut Wien.
The neutron interferometry station is located at beamline ,C,. Graphic by M. Villa and E. Jericha.

oriented around the same axis. Since the monochromator uses the Bragg condition (2.10), this
arrangement results in a wider wavelength spread when compared to a single crystal monochro-
mator. However, this leads to a higher integrated intensity, which is an important advantage due
to the low count rates of this instrument. See [44] for more details on the monochromator.

3.1.1.1 Housing and aperture

A protective housing surrounds the sensitive instrument, shielding it from both fluctuations in
the surrounding temperature (due to the exposure of the reactor hall to sunlight as well as reactor
hall heating) and convection currents (due to reactor hall ventilation). Shielding from outside
and scattered neutrons is achieved by an inner layer of the wall, consisting of white paraffin
blocks. The inside view of this protective chamber is shown in FIG. 3.2. Through a hole in the
wall on the right hand side, the monochromatised neutron beam enters the chamber between two
borated polyethylene blocks that can be moved in front of the opening to shield the neutron beam
during adjustments to the setup. Then, the beam passes an aperture of variable size, which is
connected to two motors that allow for adjustment in z (height) and y (horizontal, perpendicular
to the neutron beam) directions. For the measurements in this thesis, an aperture cross section
of 10x 10mm2 was used.
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3 Experimental setup

FIG. 3.2 - Setup of the ANuBIS instrument at the Atominstitut with aperture, interferometer,
phase shifter, collimators and 3He pencil detectors in 3D-printed mounts. Neutrons move from
right to left.

IH

Phase shifter (χ)

Monochromator

IO

ψII

ψI

ψ0 "white"

beamη

FIG. 3.3 - Schematic of the ANuBIS setup. The monochromatised incoming wave ψ0 (right) is
split into a transmitted wave ψI and a reflected wave ψII. After the interferometer, intensities
IO and IH are measured by the detectors (left). The phase shifter (blue) is moved by angle η to
introduce a phase difference χ between the two beam paths.
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3.1 Atominstitut, Vienna

3.1.1.2 Interferometer and phase shifter

After the aperture, the neutron beam reaches the interferometer itself. ANuBIS uses a skew-
symmetric silicon perfect crystal interferometer, where the ,mirror, plate described in SEC. 2.2.1
is split into two parts, with each half plate moved outwards, thus providing more space in the
centre of the interferometer, allowing the investigation of larger samples. A schematic of this
setup is presented in FIG. 3.3. The interferometer measures 140mm in length and has a plate
thickness of 3mm. It sits on a glass plate on a smaller table which can be moved horizontally
perpendicular to the beam direction, rotated about the vertical axis, as well as tilted.

A maximum contrast of about 50% has been observed with this setup. This is due to the intense
direct beam from the mosaic crystal monochromator, which is difficult to separate from the O-
beam in the interferometer, resulting in a high background. The close proximity to the reactor
contributes to this background as well. In FIG. 3.4 a close-up of the interferometer is shown.
The green lines on the sheet of paper in the interferometer serve as guides to the eye for a coarse
adujstment. Also visible is the phase flag, a 5mm thick aluminium slab.

FIG. 3.4 - Close-up of the skew-symmetric interferometer with phase shifter, aperture (right)
and collimators (left). Neutrons move from right to left.

Aperture, interferometer table and phase shifter are all mounted on an optical bench. This in
turn is situated on a 10mm thick aluminium plate on top of a granite block (not visible in
FIG. 3.2), in order to reduce vibrations of mainly acoustic frequencies (due to people moving
within the reactor hall, conversations, and nearby traffic), which have a negative impact on
the interferometric contrast. This constitutes a simple passive anti-vibration system typical for
optical setups. Four Pt100 sensors monitor the temperature at various places within the chamber,
along with a fifth sensor in the reactor hall. For details of the housing and optical bench setup,
please refer to [33].

Over the course of the measurements for this thesis, an alteration to this setup was made ne-
cessary. Since mechanical vibrations (like from a stepper motor) reduce the contrast, the phase
shifter, together with its rotation stage and motor, was uncoupled from the optical bench and
instead affixed to the frame of the protective housing with an aluminium plate. A close-up of
the phase shifter after rebuilding is shown in FIG. 3.5. The interferometer in this picture is a
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3D-printed dummy, used in order to avoid damages to the ,real, silicon interferometer during the
assembly process. A robot arm with 3D-printed sample holder is also visible (top), but was not
used for measurements in this thesis.

FIG. 3.5 - Close-up of the phase shifter mount after rebuilding. Note that this picture shows a
3D-printed dummy interferometer (violet).

3.1.1.3 Collimators and detectors

At the back of the interferometer, the resulting direct and diffracted beams are collimated. In
direct (O) direction, a long collimator is mounted on a linear translation stage, allowing for a
manual adjustment perpendicular to the neutron beam. It can also be turned about the vertical
axis, likewise manually via a precision screw. In diffracted (H) direction, a smaller collimator
was introduced in the course of the measurement progress. It stands on a boron carbide mat on
top of an aluminium sheet affixed to the housing structure and is, as of yet, not mounted to a
translation or rotation stage, thus making for a tedious alignment process. Alignment is further
made complicated by the low count rates in the setup; the intensity in the O-beam for optimal
adjustment of aperture, interferometer and collimators is about one count per second. A useful
tool in the alignment process is the ND&M handmonitor, a ZnS(Ag)+LiF scintillator as described
in SEC. 2.1.3.2. It is a position sensitive detector with a pixel size of 40μ and a diameter of
~ 4 cm. This allows for a direct observation of the neutron beam, and although the detection
efficiency for thermal neutrons lies around 12%, this is sufficient for a coarse first arrangement
of the experimental components.

Having passed the collimators, the neutrons then leave the protective housing of the ANuBIS
setup and are detected in large BF3 barrel counter tubes (not shown in FIG. 3.2), designated
,O, and ,H, detectors in the following, operating at 1400V. For a description of the operating
principle, see SEC. 2.1.3.1. 3D-printed mounts for smaller, ,pencil, detectors, are affixed onto
the collimators. These pencil detectors, 3He proportional counters with a diameter of 0.25 inch
or 6.35mm (see SEC. 2.1.3.3), manufactured by Toshiba, have a much smaller volume than the
BF3 barrels, which is crucial for the precision of the time-resolved measurements performed over
the course of this thesis. They also present an important extension to the existing ANuBIS setup.
One of these detectors, together with its preamplifier module, is shown in FIG. 3.6.
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FIG. 3.6 - Toshiba pencil detector with preamplifier module (yellow box) and pen for comparison.

To eliminate background, the 3D-printed mounts are clad in cadmium and boron carbide mats,
leaving only a small window through which the neutrons can pass. In FIG. 3.7 a closer look at
the shielding of such a mount is given: clearly visible is the window, smaller in the Cd foil (silver)
than in the BC4 mat (black). The pencil detectors are called ,O aux, and ,H aux, and operate
at 15 bar and a high voltage of 1320V and 1500V, respectively.

FIG. 3.7 - Front view of the shielding of a pencil detector mount (empty).

The control of the motors as well as the execution of measurement scripts are made with an
extensive LabVIEW program. The time-resolved measurements discussed in CHAPTER 4 were
realised using a 40MHz FPGA card from National Instruments, type PXI-7842R. See SEC. 4.2
for a more detailed description of these measurements.
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3.2 Institut Laue-Langevin, Grenoble

Founded in 1967, the Institut Laue-Langevin (ILL) in Grenoble, France, is home to one of
the world,s brightest neutron sources, the High-Flux reactor (HFR) with a neutron flux of
1.5x 1015 s-1 cm-2 and a thermal power of 58.3MW. In cycle 185, during which the meas-
urements for this thesis were performed in July and August 2019, the reactor was operating at
52MW.

A single highly-enriched 10 kg uranium fuel element constitutes the reactor core, which is con-
tained within a heavy-water pressure vessel. The chain reaction is controlled by an absorber
rod, and the reactor has five additional safety rods. Collisions with the deuterium in the heavy-
water tank moderate the neutrons to speeds of around 2.2 km s-1, thus both sustaining the chain
reaction and providing neutrons to the instruments working with thermal neutrons. Two cold
sources and a hot source present the possibility to experiment with neutrons over a wide range
of energies on top of the thermal regime. On one of the around twenty user instruments, the S18
CRG instrument is located in guide hall 1 at the thermal beam line H25 [45].

3.2.1 The S18 instrument

The S18 setup is essentially the same as the ANuBIS setup. Since the ILL reactor has a much
higher flux, for a decent alignment of the components, about 100 counts per second can be
reached in the O detector for an aperture of 3x 3mm2, two orders of magnitude more than at
the Austrian TRIGA reactor setup (even with the larger aperture of 1 cm2). Like ANuBIS, the S18
setup uses a three-plate interferometer. Two housings surround the instrument both to ensure
temperature stability with an additional air conditioning unit, and to shield the outside area
from neutrons and ϓ rays.

Inside the chamber, the interferometer is set up on a glass block on top of a table that can be
rotated about the vertical axis on a vibration-isolated optical bench. Bragg angle orientations
between 45➦ and 30➦ are possible for the setup. Measurements for this thesis used the 30➦ config-
uration for the (2,2,0) reflection of the silicon crystal (as schematically illustrated in FIG. 2.7),
corresponding to a wavelength of 1.9✝A [46]. Besides the obvious difference in reactor power, there
are three further main variations in comparison to the Vienna setup: the monochromator, the
interferometer and the detectors, which will be discussed in the following sections. An overview
of the setup is given in FIG. 3.8.

3.2.1.1 Monochromator and aperture

The monochromator at the S18 instrument is a silicon perfect crystal (as opposed to the pyrolytic
graphite mosaic crystal in Vienna). The monochromator and the interferometer platform are
rigidly connected, which is required when using single crystal monochromators. Due to the higher
flux of the ILL reactor, the loss of intensity at the gain of a much narrower Bragg peak (smaller
FWHM) is acceptable. To further enhance the precision of the interferometric measurements,
two silicon prisms are inserted into the neutron beam between monochromator and aperture.
These scatter out the higher orders in the Bragg peak, i.e. neutrons with λ/2. After the prisms,
the neutrons pass through an aperture of variable size, which was set to 3x 3mm2 for the
experiments at the S18.

3.2.1.2 Interferometer and phase shifters

For measurements in Grenoble, the symmetric ,Kaiser, three-plate interferometer was used. It
is 140mm long and has a plate thickness of 3mm. A fringe visibility of more than 80% was
recorded when precisely aligned. After damages to the interferometer during measurements in
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3.2 Institut Laue-Langevin, Grenoble

FIG. 3.8 - Setup at the S18 instrument at the ILL in Grenoble. Visible are the silicon prisms
in front of the aperture, the interferometer with phase shifter, detectors O (right) and H (back)
with Cd-clad pencil detector mounts as well as the neutron camera with handmonitor (black).
Neutrons move from left to right.

Grenoble, which significantly lowered the contrast due to internal stress in the crystal lattice, it
had to be re-etched in a process described in [33]. It is likely that the ideal condition was not
completely restored, a fact also made evident by large variations of the contrast when varying
the position of the entrance point of the neutron beam on the interferometer plate.

Three different phase shifters were used for the measurements described in this thesis: a large
5mm thick aluminium slab visible in FIG. 3.8 and FIG. 3.10B, a 3mm sapphire slab, and a small
5mm Al slab. The latter was used for most of the measurements discussed in CHAPTER 5, since
its small physical dimensions allow for a placement of both the phase shifter and the path blocker
box (described in SEC. 3.2.1.4) between the ,splitter, and ,mirror, (i.e. the first two) plates of
the interferometer.

Interferometer, phase shifter, and aperture with silicon prisms are additionally surrounded by
two circular guide field coils with hydrogen-free plastic foil in between them, with acrylic glass
sheets on top (the latter is not depicted in FIG. 3.8), to further inhibit convection currents around
the interferometer and ensuring an even more stable environment. The guide field itself was not
applied, as measurements were performed with unpolarised neutrons.

3.2.1.3 Detectors

Like the ANuBIS setup, the S18 setup has two large barrel detectors for the O and H beams. At
the S18, these are 3He proportional counters (operational principle discussed in SEC. 2.1.3.3),
encased in paraffin to ensure a low background. In addition, pencil detectors for time-resolved
measurements were introduced to the setup and mounted in 3D-printed holders hung in front
of the large detectors. No collimators were used for the measurements, since the beams at S18
are sufficiently collimated. The pencil detectors used in Grenoble are also 3He counter tubes of
diameter 0.25+ 0.01mm, manufactured by Baker Hughes. They are designated ,RS 1, to ,RS 4,
and operate at a pressure of 40 atm at 2100V. An aluminium foil cap is affixed to the front of
the pencil detectors to decrease noise.
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For both detector types, mesytec MRS2000 preamplifier systems are used. These are all-in-one
devices that comprise a preamplifier, a square pulse shaper and a window discriminator with
an upper threshold of 4V. Furthermore, it is important to note that compared to the setup in
Vienna, the O and H beams are in mirror-inverted positions. This is due to the interferometer
in use, as well as geometric limitations to the setup.

The handmonitor, already mentioned in the ANuBIS setup (see SEC. 3.1.1.3), was also used at the
S18. Combined with a CCD camera for automatised readout of detected neutrons, this proved a
useful tool in the aperture position optimisation process. This system is visible as the black box
in FIG. 3.8. A close-up of the O detector with the (not yet cadmium-clad) 3D-printed mount
containing the ,RS 3, pencil detector is shown in FIG. 3.9A.

(A) (B)

FIG. 3.9 - Details of instrument components of the S18 setup. (A) - Close-up of the O detector
with ,RS 3, pencil detector mounted in the 3D-printed holder (green) in front. Also visible is
the preamplifier box for the pencil detector (yellow box). (B) - Front view of the path blocker
box with beam blocker for path I in place above the interferometer. The 3mm Al phase shifter
is depicted as well.

3.2.1.4 Path blocker box

For the measurements regarding the Leggett-Garg inequality (LGI) [16] (see CHAPTER 5), a
method to automatically block one or the other neutron path in the interferometer was needed.
A 3D printed box with pathwise beam blockers driven by an Arduino controlled stepper motor
was used to achieve this functionality. It is mounted to a robot arm that can be inserted into
the interferometer, and has two wings onto which cadmium foil is attached. Designations ,I, and
,II, mark the path that is blocked when the respective arm of the beam blocker is in place. The
stepper motor moves the blocker in positions ,1,, ,2, (for blocked paths I and II) and ,0, (for both
paths unblocked).
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On the back side of the windows through which the neutron beam passes, absorbers of variable
thickness can be inserted. For measurements in this thesis, an indium foil absorber with thick-
nesses of 1, 2 and 3mm was used and inserted in beam path I, leaving beam path II unblocked.
In FIG. 3.9B, the path blocker box is shown above the interferometer with shield I closed and
shield II open; and FIG. 3.10A shows the path blocker box in its position inside the first half of
the interferometer during measurements.

3.2.1.5 Raster setup

For the Leggett-Garg inequality (LGI) measurements, a method to transversally scan the beam
profile in both paths was needed, to be able to compare count rates in the partial beams I and
II. This was done with pencil detectors affixed to a linear translation stage. When the stage
moves, the pencil detectors are guided in the second half of the interferometer, between the
,mirror, and ,analyser, plates, crossing first the direct beam, followed by beams I and II. The
adjustment of the detectors for this setup was rather difficult, since the translation stage has a
limited range, and neither pencil detectors nor their mounting must touch the interferometer. A
further problem was the choice of height and angle, at which the detectors should be mounted,
to be both low enough for the active volume of the detector to enter the beam, and high enough
so as to still have satisfactory beam separation.

In FIG. 3.10, two configurations for the rastering setup are presented: the top figure shows two
parallel pencil detectors, seen from above, and the bottom figure shows a side view of a single
rastering detector. Additional shieldings (not shown) made from cadmium foil with a pinhole
aperture were later added for a more precise beam profile measurement.
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(A)

(B)

FIG. 3.10 - Details of the raster setups with one and two pencil detectors and path blocker box.
(A) - Top view of the raster setup with two pencil detectors. The path blocker box is inserted
into the first half of the interferometer, blocking the view of the phase shifter. (B) - Side view
of the raster setup with a single detector. Visible are the silicon prisms next to the aperture,
the ,Kaiser, interferometer with the inserted 5mm aluminium phase shifter, the rastering pencil,
and the large H detector in the background.
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4 Time-resolved measurements

This chapter discusses time-resolved neutron interference measurements that were performed
both at the Atominstitut Wien from December 2018 to June 2019, and at the Institut Laue-
Langevin (ILL), Grenoble, in July 2019. After the general concept of these measurements, the
differences and similarities of the results obtained at the two reactors are described.

4.1 Theoretical background

On top of the total neutron counts in a given time interval, their absolute arrival times in the
detector can also be recorded. They represent additional information which can be used for time-
selective postselection in data analysis. Two applications of this procedure are the enhancement
of interferometric contrast and reduction of phase uncertainty. Zawisky et al. investigated this
effect for the first time in 1994 [36]. This theoretical background follows in large parts the
derivations and discussions in their paper.

4.1.1 Contrast enhancement

Starting from the initial intensity I(χ) dependent on the phase χ, and introducing Cin which
denotes the initial contrast of the recorded interferogram before postselection, eq. (2.18) be-
comes

I(χ) = -I(1 + Cin cosχ) . (4.1)

The initial contrast is defined according to eq. (2.19), but with the additional condition of a fixed
phase for the O beam, Imax = I(χ = 0) and Imin = I(χ = π). Conversely, the H beam intensity
is at its minimum for χ = 0, and at its maximum for χ = π, equivalent to a π-shift in χ between
the two detectors. This results in

Cin,O =
IO(0)- IO(π)

IO(0) + IO(π)

Cin,H =
IH(π)- IH(0)

IH(π) + IH(0)
,

(4.2)

and is an important quantity in the comparison of achieved contrast values, which will be made
clear later (see FIG. 4.23 and discussion).

To put selected times in relation, mean arrival times for given phase positions χ are defined
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by

-τ(χ) =
1

I(χ)
(4.3)

and a phase-independent mean arrival time of the whole interference pattern by -τD = -I-1
D . The

total number of counts for a given phase shifter position χ results in ND(χ) = ID(χ)T , with the
measuring time T per point and the index D denoting the O or H detector.

Time interval densities W (τ) describe the probability for a neutron pair event within a time
interval τ , and can be calculated using the identity from [42],

W (τ) =
1

-τ(χ)
e-

τ
-τ(χ) = I(χ) e-τI(χ) . (4.4)

The expectation value for the number of pair events in such a time interval τ then becomes
NW (τ), and of course, since it is a probability function,

∫∞
0

W (τ) dτ = 1.

In FIG. 4.1, the time interval densities for the maximum (blue curve) and minimum (orange
curve) intensity in the respective detector, with typical contrast and intensity values for the
setup at the Atominstitut, are shown. The point of intersection of the two curves is at

τint =
1

Imax - Imin
ln

(
Imax

Imin

)
, (4.5)

which is slightly larger than the respective -τD. The area between the curves corresponds to
the observed neutron pairs. At smaller times, the contribution from the maximum dominates,
while at larger times τ > -τD the contribution from the minimum is higher. -τD presents a useful
parameter to separate these two contributions.

With eq. (4.4), the number of detected neutrons with arrival times in the interval [τ1, τ2] can be
calculated as

N(χ, τ1, τ2) = N(χ)

∫ τ2

τ1

W (τ) dτ = N(χ)
⌠
e-

τ1
-τ(χ) - e-

τ2
-τ(χ)

⌠
. (4.6)

To determine the analytical form of the contrast curves for selected time intervals one starts
with eq. (4.2) and eq. (4.6). For easier calculation, the initial (pre-postselected) fit curve of the
interferogram is denoted G(χ) = Y0 + A cosχ (Y0, A > 0), with G(0) → max and G(π) → min,
as well as Ti = τi/T . In the following sections, the resulting contrast enhancement is calculated
explicitly for the O detector.

4.1.1.1 Selection of short arrival times

For short time intervals [0, τ2], eq. (4.6) becomes

N(χ, τ2, T ) = G(χ)
(
1- e-T2g(χ)

)
. (4.7)

At χ = 0 and χ = π, this becomes

N(0, τ2, T ) = (Y0 + A)
(
1- e-T2(y0+a)

)
N(π, τ2, T ) = (Y0 - A)

(
1- e-T2(y0-a)

)
.

(4.8)
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FIG. 4.1 - Time interval densities for maximum (blue) and minimum (orange) intensity in a
typical interferogram at the ANuBIS setup. Minimum and maximum curves intersect near the
respective mean arrival time for the given detector -τD. (A) O detector, with Cin,O = 0.4 and
-τO = 1.67 s. (B) H detector, with Cin,H = 0.22 and -τH = 0.98 s.

Putting this into the definition eq. (4.2) gives

CO(τ2) =
(Y0 + A)

(
1- e-T2(y0+a)

)- (Y0 - A)
(
1- e-T2(y0-a)

)
(Y0 + A)

(
1- e-T2(y0+a)

)
+ (Y0 - A)

(
1- e-T2(y0-a)

) :=
A

B
, (4.9)

with the numerator

A = (Y0 + A)(1- e-T2(y0+a))- (Y0 - A)(1- e-T2(y0-a))

= 2A+ e-T2y0
(
eT2a (Y0 - A)- e-T2a(Y0 + A)

)
= 2A+ 2 e-T2y0 (Y0 sinh(T2A)- A cosh(T2A))

(4.10)
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and denominator

B = (Y0 + A)
(
1- e-T2(y0+a)

)
+ (Y0 - A)

(
1- e-T2(y0-a)

)
= 2Y0 - e-T2y0

(
eT2a (Y0 - A) + e-T2a(Y0 + A)

)
= 2Y0 + 2 e-T2y0 (A sinh(T2A)- Y0 cosh(T2A)) ,

(4.11)

giving the end result of

CO(τ2) =
A eT2y0 + Y0 sinh(T2A)- A cosh(T2A)

Y0 eT2y0 + A sinh(T2A)- Y0 cosh(T2A)
, T2 =

τ2
T

. (4.12)

The derivative with respect to χ, indicated by N ,(χ, τ2, T ),

d

dχ
N(χ, τ2, T ) = G,(χ)

(
1- e-T2g(χ)

)
+ G(χ) T2 G,(χ) e-T2g(χ)

= G,(χ)
(
1- e-T2g(χ) (1- T2 G(χ))

)
,

(4.13)

results in the familiar zeroes χ = Nπ, i.e. for selected short times, the definition of the contrast
via fixed phase angles eq. (4.2) would not have been necessary. This changes for selected long
arrival times.

4.1.1.2 Selection of long arrival times

Analogously to the previous section, for arrival times in the interval [τ1, T ], eq. (4.6) becomes

N(χ, τ1, T ) = G(χ)

(
e-T1g(χ) - e-g(χ), ,, ,

→0

)
= G(χ) e-T1g(χ) (4.14)

since τ1 < T , and the second term vanishes, which means we basically treat arrival times in the
interval [τ1,∞). At χ = 0 and χ = π, this is

N(0, τ1, T ) = (Y0 + A) e-T1(y0+a)

N(π, τ1, T ) = (Y0 - A) e-T1(y0-a) ,
(4.15)

and eq. (4.2) gives

CO(τ1) =
(Y0 + A) e-T1(y0+a) - (Y0 - A) e-T1(y0-a)

(Y0 + A) e-T1(y0+a) + (Y0 - A) e-T1(y0-a)
, (4.16)

which can also be expressed as

CO(τ1) =
-Y0 sinh(T1A) + A cosh(T1A)

Y0 cosh(T1A)- A sinh(T1A)
. (4.17)

Beside the familiar zeroes at χ = Nπ, the derivation N ,(χ, τ1, T ),

d

dχ
N(χ, τ1, T ) = e-T1g(χ)G,(χ) (1- T1G(χ)) , (4.18)

has additional zeroes for T1G(χ) = 1, corresponding to a shift in the positions of minima and
maxima, which legitimises the definition of the contrast with fixed phases, eq. (4.2).
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4 Time.resolved measurements

4.1.1.3 Limits of contrast enhancement

For time intervals τ € [0, τ2], the intensity is

I(χ, 0, τ2) = I(χ)
(
1- e-τ2I(χ)

)
, (4.19)

and with the expansion e-τ2I(χ) = 1 - τ2I(χ) + . . . for τ2 → 0 becomes I(χ) ~ τ2I
2(χ). With

this, the maximum reachable contrast for small time intervals is

lim
τ2→0

C(0, τ2) =
2 Cin

1 + C2
in

< 2 Cin . (4.20)

This means that for small initial contrast, an increase to values twice as large as Cin is possible.
On the other hand, for already large Cin, the relative gain is small. Even with postselection, the
contrast can never exceed 1.

For long time intervals, τ € [τ1, τ2 → ∞), the intensity is

I(χ, τ1,∞) = I(χ) e-τ1I(χ) . (4.21)

The contrast undergoes a phase inversion and, according to eq. (4.2), becomes negative, with
a maximum value of -1 [36]. This is also made clear in FIG. 4.1: for longer times τ , the
minimum intensity curve (orange) is higher than the maximum (blue), which results in the sign
change, since eq. (4.2) has defined fixed angle positions for contrast calculation. Furthermore, the
maximum intensity curve approaches zero faster than the minimum. For the total time interval
[0, T → ∞], W (τ) = 1 and thus the intensity I(χ) takes the familiar form of eq. (2.18).

In addition to these mathematical constraints on the obtainable contrast values, the loss of
intensity due to external vibrations, changes to the surrounding temperature, etc. has to be
considered. For a good improvement to the contrast, τ2 has to become small, which means
that only a fraction of the detected neutrons are used for further analysis, resulting in the
need for much longer measurement times. This can also be made difficult by limitations of the
experimental setup.

4.1.2 Reduction of phase uncertainty

Another property to consider is the phase resolution. In Poissonian statistics, ΔN =
√
N , and

the phase uncertainty becomes

Δχ (χ, τ1, τ2)
2
=

N (χ, τ1, τ2)(
ð
ðχ

N (χ, τ1, τ2)
)2 . (4.22)

Using again eq. (4.6) and the same shorthand as above G(χ) = N(χ) = Y0 + A cosχ (Y0, A > 0),
with G,(χ) denoting the derivation with respect to χ, the initial phase uncertainty is

Δχ (χ)
2
=

N (χ)(
ð
ðχ

N (χ)
)2 =

G,(χ)2

G(χ)2
. (4.23)

The interesting property is the behaviour of the phase uncertainty, and how postselection of
arrival time intervals allows for a reduction in comparison to the initial Δχ(χ). Introducing
another shorthand, ξ = G(χ) τ2/T , the phase uncertainty for short time intervals (0, τ2) in
comparison to the initial one becomes

Δχ(χ, 0, τ2)
2

Δχ(χ)2
=

G(χ)
(
1- e-ξ

)
G(χ)

G,(χ)2

(G,(χ) (1- e-ξ) + G,(χ)ξ e-ξ))
2 =

1- e-ξ

(1- e-ξ + ξ e-ξ)
2 , (4.24)
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4.1 Theoretical background

which has a minimum at ξ = 1.249. Therefore an optimal selection interval with minimal phase
uncertainty exists at [0, τ2 = 1.249 -τ ].

Similarly, for long time intervals [τ1, T ], with ζ = G(χ) τ1/T , the phase uncertainty relative to
the initial one is

Δχ(χ, τ1, T )
2

Δχ(χ)2
=

e-ζ

( e-ζ - ζ e-ζ)
2 =

e-ζ

(1- ζ)
2 . (4.25)

Here no improvement to the phase resolution is possible, and there is a singularity at ζ = 1 →
τ1 = -τ , which coincides with the loss of contrast in selection intervals [-τ , T ].

The behaviour of the phase uncertainty Δχ(τ1, τ2) in relation to the initial value Δχin is displayed
in FIG. 4.2 for the O detector of a typical interferogram recorded at the Atominstitut, where
-τ ~ 1.67 s and -I ~ 0.60 s-1. For short time intervals, an improvement to the phase resolution is
possible, with the minimum value of τ2 ~ 2 s (see FIG. 4.2A). Consequently, for selected small
times, both a gain in the contrast as well as in phase resolution is possible. When longer times
are selected (see FIG. 4.2B), the phase resolution cannot be enhanced.

The phase resolution can also be calculated via the uncertainty between the canonical variables
phase χ and particle number N , Δχ2ΔN2 = 1 [47], and expressed in terms of the initial contrast
Cin of the interferogram [6],

(Δχ)2N =
1

1-√
1- C2

in

. (4.26)

For visibilities considerably smaller than unity, the right hand side of the above equation can be
approximated using Taylor expansion to 2/C2

in, resulting in

(Δχ)2N =
2

C2
in

. (4.27)

For further discussion of phase-particle number uncertainties, please see for example [48].

The reduction in phase uncertainty has useful applications when the count rates or initial contrast
of the recorded interferogram are low [49, 50], for measurements of the geometric phase [51], Laue
phase [52], scattering lengths [53] or thin film density [54].
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4 Time.resolved measurements
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(B) Selection of long times.

FIG. 4.2 - Phase uncertainty Δχ(τ1, τ2) in relation to the initial Δχin for a typical interferogram
recorded at the Atominstitut. (A) Selection of short time intervals [0, τ2]: reduction of phase
uncertainty is possible, with a minimum at τ2 ~ 2 s. (B) Selection of long time intervals [τ1, T ]:
no reduction in phase uncertainty is possible, with the divergence corresponding to the loss of
contrast of the interferogram near τ1 ~ -τ .
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4.2 Measurements

4.2 Measurements

In addition to the total neutron counts in a given measuring time (as for a non-time-resolved in-
terferogram), these measurements use the neutron arrival times. This is done using the National
Instruments FPGA card mentioned in SEC. 3.1.1. With a resolution of 40MHz, and starting from
the system time, the obtained arrival times are written to binary files as follows: One compound
file, where the first eight bits denote the detector followed by the arrival time of the observed
neutron, and two separate files where only the neutrons arriving in the respective detector are
recorded. Currently, only two detectors (O and H) are used, but this structure leaves room for
the option of further detectors in future measurements.

For the interference fringes the standard Mathematica routine NonlinearModelFit was used,
with the following options: ConfidenceLevel → 0.95, Method → LevenbergMarquardt,
VarianceEstimatorFunction → (1&), Weights → 1/σ2

i (taking into account that the meas-
ured data come from a Poisson distribution and therefore each point N carries the statistical
error σ2

i =
√
N). The used cosine model is of the form

F(η) = Y0 + A cos (Fη + ϕ) , (4.28)

with the mean intensity offset Y0, amplitude A, conversion factor F between η in the phase
shifter (in deg) and the angle in the cosine function (in rad), dependent on the material and
thickness of the phase shifter, and phase offset ϕ.

For both institutes discussed in the section below, the results are presented in the following
order: first, a starting interferogram with no postselection, then an overview of the achieved
contrast enhancement, eq. (4.12) for short time intervals for both the O and H detectors, and
eq. (4.17) for long time intervals, followed by a selection of interference fringes for different time
intervals.

4.2.1 Atominstitut

In addition to the values for the O detector like in [36], these measurements use the H detector
as well. Calculations are performed on a typical interferogram recorded on 23.04.2019, with a
measuring time of 1200 s per point and 11 phase shifter positions with increments Δη = 0.3 •.
The parameters for the fit function eq. (4.28) are given in TAB. 4.1, and the resulting curves as
well as measured neutron counts are shown in FIG. 4.3. The curves for the O and H detector
are

NO(η) = 729.68 + 294.49 cos(4.21η + 4.87)

NH(η) = 1206.64 + 270.40 cos(4.25η + 1.62) ,
(4.29)

giving an initial contrast of

Cin,O = 0.4036+ 0.0167

Cin,H = 0.2241+ 0.0126 .
(4.30)

With the initial mean intensities -ID of -IO = 0.5971 s-1 and -IH = 1.0189 s-1, the mean arrival
times -τD for the two detectors become

-τO = 1.6745 s

-τH = 0.9814 s .
(4.31)
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4 Time.resolved measurements

TAB. 4.1 - Resulting fit parameters for the interferogram recorded at the Atominstitut.

O H

Y0 729.68+ 8.36 1206.64+ 10.60

A 294.49+ 11.73 270.40+ 15.01

F 4.21+ 0.04 4.25+ 0.06

ϕ 4.87+ 0.06 1.62+ 0.09
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FIG. 4.3 - Starting interferogram for the Atominstitut. Shown are obtained fit curves for O (blue)
and H (orange) detectors.
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4.2 Measurements

4.2.1.1 Contrast enhancement

From these starting values, a selection of contrast enhancements has been made. An over-
view of selected short times is given in FIG. 4.4, where shorter times (to the left) achieve a
higher improvement to the contrast, and for selected long times in FIG. 4.5, where the reduc-
tion of the contrast, zero crossing at approximately -τD, and finally, the achievement of contrast
values → -1 after the sign inversion is visible. See also FIG. 4.1 for comparison.

A selection of arrival time intervals causes a reduction of used neutron counts (and therefore
higher relative errors). Resulting contrast improvements and the percentage of the used data are
presented in TAB. 4.2 for short time intervals, and in TAB. 4.3 for long time intervals.

TAB. 4.2 - Obtained contrast values for selected short times at the Atominstitut as well as the
percentage of data used for the given τ2.

O detector H detector

τ2 CO % used data CH % used data

3 s 0.5321+ 0.0159 84.07 0.2599+ 0.0107 95.00

-τO 0.5945+ 0.0161 64.24 0.3075+ 0.0123 81.77

-τH 0.6335+ 0.0159 46.19 0.3481+ 0.0135 63.63

1
2 -τO 0.6421+ 0.0159 41.16 0.3581+ 0.0138 57.87

1
2 -τH 0.6633+ 0.0157 27.07 0.3844+ 0.0145 40.20

0.1 s 0.6878+ 0.0154 6.29 0.4177+ 0.0153 0.99

TAB. 4.3 - Obtained contrast values for selected long times at the Atominstitut as well as the
percentage of data used for the given τ1. For -τD, the contrast in the detector D is almost zero.

O detector H detector

τ1 CO % used data CH % used data

-τH 0.1849+ 0.0085 53.81 0.0068+ 0.0022 36.37

-τO 0.0170+ 0.0059 35.76 -0.1483+ 0.0059 18.23

3 s -0.2989+ 0.0083 15.93 -0.4203+ 0.1430 5.00

5 s -0.6635+ 0.0122 5.57 -0.7157+ 0.0171 0.66

The following figures present the results for selected time intervals. For short arrival time inter-
vals, τ2 was chosen 3 s (FIG. 4.6), -τO = 1.67 s (FIG. 4.7), and 0.1 s (FIG. 4.8). For long arrival time
intervals, τ1 was chosen -τH = 0.98 s (FIG. 4.9), 3 s (FIG. 4.10), and 5 s (FIG. 4.11). In FIG. 4.9
the loss of contrast in the H detector is clearly visible; and in FIG. 4.10 and FIG. 4.11 counts for
the H detector are lower than counts in the O detector, which also corresponds to the second
domain in FIG. 4.1, where the contribution of the minimum curve dominates.
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4 Time.resolved measurements
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FIG. 4.4 - Possible contrast enhancement curves for selected short time intervals in a typical
interferogram recorded at the Atominstitut. Initial contrast values are given, and the curves
approach this initial value for longer τ2. τD for the respective detector D is indicated as well.
(A) Behaviour for the O detector. (B) Behaviour for the H detector.
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(A) O detector Cin,O = 0.40.
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(B) H detector Cin,H = 0.22.

FIG. 4.5 - Possible contrast enhancement curves for selected long time intervals in a typical
interferogram recorded at the Atominstitut. Initial contrast values are given, and the curves
approach this initial value for shorter τ1. τD for the respective detector D is indicated as well and
corresponds to the approximate position where the contrast vanishes. For longer τ1, the contrast
approaches values -1. (A) Behaviour for the O detector. (B) Behaviour for the H detector.
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FIG. 4.6 - Selected short arrival time interval with τ2 = 3 s. CO = 0.53, CH = 0.26.

0.0 0.5 1.0 1.5 2.0 2.5
0

200

400

600

800

1000

1200




FIG. 4.7 - Selected short arrival time interval with τ2 = -τO = 1.67 s. CO = 0.59, CH = 0.31.

0.0 0.5 1.0 1.5 2.0 2.5
0

50

100

150




FIG. 4.8 - Selected short arrival time interval with τ2 = 0.1 s. CO = 0.69, CH = 0.42.
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FIG. 4.9 - Selected long arrival time interval with τ1 = -τH = 0.98 s. CO = 0.18, CH = 0.01.
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FIG. 4.10 - Selected long arrival time interval with τ1 = 3 s. CO = -0.30, CH = -0.42.
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FIG. 4.11 - Selected long arrival time interval with τ1 = 5 s. CO = -0.66, CH = -0.72.
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4.2.2 Institut Laue-Langevin

In comparison with the measurements performed at the Atominstitut, measured neutron counts
are about a factor 100 higher at the ILL, which allows significantly shorter measuring times.
These calculations are performed on a typical interferogram recorded on 16.07.2019, with a
measuring time of 600 s per point and 33 phase shifter positions with increments Δη = 0.125 •.
The parameters for the fit function eq. (4.28) are given in TAB. 4.4, and the resulting curves as
well as measured neutron counts are shown in FIG. 4.12. The curves for the O and H detector
are

NO(η) = 34 522 + 28 366 cos(4.76η + 1.47)

NH(η) = 78 259 + 36 570 cos(4.74η + 4.66) ,
(4.32)

giving an initial contrast of

Cin,O = 0.8217+ 0.0014

Cin,H = 0.4673+ 0.0009 .
(4.33)
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FIG. 4.12 - Starting interferogram for the ILL. Obtained fit curves for O (blue) and H (orange)
detectors are shown.

TAB. 4.4 - Resulting fit parameters for the interferogram recorded at the ILL.

O H

Y0 34 522 + 33 78 259 + 49

A 28 366 + 41 36 570 + 67

F 4.757+ 0.001 4.745+ 0.002

ϕ 1.465+ 0.003 4.662+ 0.004

Note that the sum of both detectors also shows a cosine behaviour. A likely explanation is that
the H detector was not optimally aligned during measurement.
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4.2 Measurements

The difference between the two institutes is further made clear by the fact that Cin,H for the ILL is
higher than Cin,O for the Atominstitut; and the maximum reachable contrast for the O detector
at the Atominstitut for τ2 → 0 according to eq. (4.20) is smaller than the initial O contrast at
the ILL: CATI

max,O = 0.80 < C ILL
in,O = 0.82. With the initial mean intensities -ID of -IO = 56.53 s-1

and -IH = 131.71 s-1, the mean arrival times -τD for the two detectors become

-τO = 17.689ms

-τH = 7.592ms .
(4.34)

4.2.2.1 Contrast enhancement

An overview of selected short times is given in FIG. 4.13, where shorter times (to the left)
achieve a higher improvement to the contrast, and for selected long times in FIG. 4.14, where
the reduction of the contrast, zero crossing at approximately -τD, and finally, the achievement of
contrast values → -1 after the sign inversion is visible. See also FIG. 4.1 for comparison.

Resulting contrast improvements and the percentage of the used data for the ILL are presented
in TAB. 4.5 for short time intervals, and in TAB. 4.6 for long time intervals.

TAB. 4.5 - Obtained contrast values for selected short times at the ILL, as well as the percentage
of data used for the given τ2.

O detector H detector

τ2 CO % used data CH % used data

20ms 0.9594+ 0.0006 73.89 0.5641+ 0.0009 92.25

-τO 0.9622+ 0.0005 70.13 0.5800+ 0.0009 89.95

15ms 0.9654+ 0.0005 64.95 0.6011+ 0.0009 86.25

10ms 0.9710+ 0.0004 51.77 0.6484+ 0.0008 74.65

-τH 0.9736+ 0.0004 43.15 0.6747+ 0.0008 65.40

TAB. 4.6 - Obtained contrast values for selected long times at the ILL, as well as the percentage
of data used for the given τ1. For -τD, the contrast in the detector D is almost zero.

O detector H detector

τ1 CO % used data CH % used data

-τH 0.6657+ 0.0019 56.85 0.0438+ 0.0004 34.60

-τO 0.3146+ 0.0028 29.87 -0.5165+ 0.0005 10.05

30ms -0.2508+ 0.0026 15.12 -0.8673+ 0.0004 2.72

50ms -0.8342+ 0.0007 6.72 -0.9877+ 0.0008 0.46
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(A) O detector Cin,O = 0.82.
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(B) H detector Cin,H = 0.47.

FIG. 4.13 - Possible contrast enhancement curves for selected short time intervals in a typical
interferogram recorded at the ILL. Initial contrast values are given, and the curves approach this
initial value for longer τ2. τD for the respective detector D is indicated as well. (A) Behaviour
for the O detector. (B) Behaviour for the H detector.
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FIG. 4.14 - Possible contrast enhancement curves for selected long time intervals in a typical
interferogram recorded at the ILL. Initial contrast values are given, and the curves approach this
initial value for shorter τ1. τD for the respective detector D is indicated as well and corresponds
to the approximate position where the contrast vanishes. For longer τ1, the contrast approaches
values -1. (A) Behaviour for the O detector. (B) Behaviour for the H detector.
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4 Time.resolved measurements

The following figures present the results for selected time intervals. For short arrival time in-
tervals, τ2 was chosen 20ms (FIG. 4.15), -τO = 17.69ms (FIG. 4.16), 15ms (FIG. 4.17), 10ms
(FIG. 4.18), and -τH = 7.59ms (FIG. 4.19).

For long arrival time intervals, τ1 was chosen -τH = 7.59ms (FIG. 4.20), -τO = 17.69ms (FIG. 4.21),
30ms (FIG. 4.22), and 50ms (FIG. 4.23). Additional zero crossings, corresponding to the case
T1G(χ) = 1 in eq. (4.18), can be seen, which demonstrates again the usefulness of defining the
contrast with fixed phase relations, instead of via minimum and maximum of the respective curve.
After the ,phase flip, region in the contrast (clearly visible vor the H detector in FIG. 4.20), the
curves for O and H detectors change positions, with H approaching C → -1 faster than O (since
the intensity is higher, and therefore the probability for longer waiting times between neutrons
lower).
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FIG. 4.15 - Selected short arrival time interval with τ2 = 20ms. CO = 0.96, CH = 0.56.
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FIG. 4.16 - Selected short arrival time interval with τ2 = -τO = 17.69ms. CO = 0.96, CH = 0.58.
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FIG. 4.17 - Selected short arrival time interval with τ2 = 15ms. CO = 0.97, CH = 0.60.
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FIG. 4.18 - Selected short arrival time interval with τ2 = 10ms. CO = 0.97, CH = 0.65.
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FIG. 4.19 - Selected short arrival time interval with τ2 = -τH = 7.59ms. CO = 0.97, CH = 0.67.
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FIG. 4.20 - Selected long arrival time interval with τ1 = -τH = 7.59ms. CO = 0.67, CH = 0.04.
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FIG. 4.21 - Selected long arrival time interval with τ1 = -τO = 17.69ms. CO = 0.31, CH = -0.52.
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FIG. 4.22 - Selected long arrival time interval with τ1 = 30ms. CO = -0.25, CH = -0.87.
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FIG. 4.23 - Selected long arrival time interval with τ1 = 50ms. CO = -0.83, CH = -0.99.
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5 Leggett-Garg inequality

First proposed by Leggett and Garg in 1985 [16], a Leggett-Garg inequality (LGI) provides a tool
to measure the ,quantum-ness, of a system and the applicability of quantum mechanical tools in
the macroscopic world [55], and can be thought of as a Bell inequality in the time domain.

This chapter discusses the measurement of a violation of an LGI. In [56] Emary et al. proposed
an experimental scheme using tunable beam splitters in a Mach-Zehnder interferometer (MZI)
to obtain the required correlation functions. In the interferometric approach of this thesis, the
non-50:50 beam splitter is realized via the implementation of an absorber in one of the partial
beams in the interferometer, thus allowing for a controlled beam attenuation. First, a theoretical
overview is presented, followed by a description of measurements and the resulting violation.
These measurements were performed in July and August 2019 during cycle 185/CRG-2643 at
the Institut Laue-Langevin (ILL).

5.1 Theoretical background

Analogous to Bell inequalities, where correlations between multiple spatially separated meas-
urement locations of an entangled two-particle system are investigated, LGIs look at temporal
correlations within a single system [56]. Analogous to Bell, a formalism is introduced where an
inequality is fulfilled by a classical system but violated by a quantum mechanical one. This allows
for tests of the ,quantum-ness, (non-classicality) of a system, and presents a tool to investigate
the line between classical and quantum physics.

This discussion follows the one given in [57]. To describe how macroscopic objects behave, two
assumptions are made to codify reality at the macroscopic level [16, 55]:

(A1) Macroscopic realism
a macroscopic system with macroscopically distinct states will at all times be in
one of the possible states.

(A2) Non-invasive measurability
it is in principle possible to determine the state of that system without any effect
on the system or its subsequent dynamics.

A third assumption is often explicitly given as well:

(A3) Induction
a measurement of the system cannot be affected by what will or will not be
measured on the same system later (i.e., it is determined solely by its initial
conditions).



5.1 Theoretical background

These assumptions match the intuition about objects on a classical level, but conflict with
quantum mechanics. Assumption (A1) contradicts Schr..odinger,s famous gedankenexperiment
wherein the cat is both dead and alive, while (A2) contradicts the well-known collapse of the
quantum mechanical wave function under measurement [55, 58].

In their 1985 paper, Leggett and Garg examined conditions of the incompatibility of predictions
made with the above assumptions with those of quantum mechanics when extrapolated to a
macroscopic level, and to what extent these conditions can be met in a realistic experiment.
They proposed the investigation of a trapped flux in an rf-SQUID which oscillates between two
spatially distinct states in a symmetric potential ("is the flux there when nobody looks?"). The
experiment was realised in 2010 by Palacios-Laloy et al [59] - the first experimental violation of
an LGI.

The simplest LGI is formulated in the following way:

K = C21 + C32 - C31 < 1 , (5.1)

with the correlation function

Cαβ = <Q(Tα)Q(Tβ)> (5.2)

of the dichotomous variable Q = +1 at times Tα and Tβ . The Leggett-Garg parameter K
investigates the question, "how quantum is my system?" [56].

Assumption (A2) can be made plausible by introducing ideal negative measurements. The
measurement apparatus interacts only for one Q(T) with the system and not at all otherwise. A
failure to detect a certain Q(T) means that the system must be in -Q(T), and we suppose that it
has also been in this state at T, directly before T (due to macroscopic realism). This holds in the
limit for arbitrarily short measuring times, from which follows that the measurement apparatus
has not influenced the system [16]. Ideal negative measurements like the ones used for this thesis
are a major improvement to Leggett-Garg tests that violate macrorealism while not disturbing
the system [17].

Equation (5.1) also has a lower limit, K > -3. Since each correlator can never exceed the
absolute value of 1, this limit can not be violated. The upper limit of K < 1 can be violated,
and it is such a violation that is presented in this thesis.

The following TAB. 5.1 presents an overview of selected LGI test experiments on different systems.
This thesis describes a new method of observing LGI violations, using massive particles in an
interferometer, which had previously only been discussed theoretically [56, 60].

TAB. 5.1 - Overview of selected LGI experiments. Table taken from [57].

System Measurement

superconducting qubit weak Palacios-Laloy et al. [59], Groen et al. [61]

nuclear magnetic resonance projective Athalye et al.[62], Souza et al. [63]

photons weak Goggin et al. [64], Dressel et al. [65]

P impurities in Si ideal negative Knee et al. [66]
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5 Leggett-Garg inequality

Proof of the HFG [57] The joint probability Pij(Qi, Qj) of obtaining the results Qi = Q(Ti)
and Qj = Q(Tj) at measurement times Ti, Tj is used to calculate the correlation function

Cij =
∑

Qi,Qj=+1

QiQjPij(Qi, Qj) . (5.3)

Since Q has to be well-defined at all times, according to assumption (A1), so this two-time prob-
ability can be obtained as the marginal of a three-time probability distribution Pij(Q3, Q2, Q1)
by adding all contributions of the time between the two measurements,

Pij(Qi, Qj) =
∑

Qk;k /=i,j

Pij(Q3, Q2, Q1) . (5.4)

Under assumption (A2), non-invasive measurability, all three Pij(Q3, Q2, Q1) = P (Q3, Q2, Q1),
since measurement at different times may not have a different effect on the evolution of the
system. With the shorthand P (+,+,+) = P (+1,+1,+1) etc., the correlation functions be-
come

C21 = P (+,+,+)- P (+,+,-)- P (-,-,+) + P (-,-,-)

- P (+,-,+) + P (+,-,-) + P (-,+,+)- P (-,+,-)

C32 = P (+,+,+) + P (+,+,-) + P (-,-,+) + P (-,-,-)

- P (+,-,+)- P (+,-,-)- P (-,+,+)- P (-,+,-)

C31 = P (+,+,+)- P (+,+,-)- P (-,-,+) + P (-,-,-)

+ P (+,-,+)- P (+,-,-)- P (-,+,+) + P (-,+,-) .

(5.5)

With completeness,
∑

Q3,Q2,Q1
= P (Q3, Q2, Q1) = 1, the Leggett-Garg parameter

K = C21 + C32 - C31 results in

K =P (+,+,+) + P (+,+,-) + P (-,-,+) + P (-,-,-)

- 3 P (+,-,+) + P (+,-,-) + P (-,+,+)- 3 P (-,+,-)

=1- 4 [P (+,-,+) + P (-,+,-)] .

(5.6)

The lower bound of this equation is K > -3, for P (+,-,+) + P (-,+,-) = 1, and the upper
bound is K < 1 for P (+,-,+) = P (-,+,-) = 0, giving a range for the parameter K:

- 3 < K < 1 . (5.7)

5.1.1 Leggett-Garg inequality in the Mach-Zehnder interferometer

The setup used for the measurements for this thesis is described in [56]: the path which the
neutron takes in the MZI defines the variableQ = +1. Three regions are defined, which correspond
to different regions of the experimental setup: region 1 is before the MZI (incoming neutron beam),
region 2 inside (between the first and third plate of the MZI), and region 3 after the MZI, where
the O and H detectors are positioned. These three regions form the temporal structure for the
experiment that is necessary to generate the correlators.

In FIG. 5.1 the three regions and their corresponding sign conventions are depicted. The incoming
wave ψin is designated 1+ and the detectors O and H get the designations 3- and 3+, respectively.
Inside the interferometer (region 2), the upper path (reflected beam, ψII) is designated 2+, and
the lower path (transmitted beam, ψI) 2-.
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5.1 Theoretical background

ψin ‸=1+

ψI
2-

ψII 2+ 3- ‸= H

3 + ‸= O

region 1 region 2 region 3

FIG. 5.1 - Sketch of the MZI with the three regions needed for Leggett-Garg measurements.
Region 1 is before the interferometer (incoming beam), region 2 inside the interferometer, and
region 3 after the interferometer (detectors O and H).

To calculate the three different correlators, PD
α (A) is defined as the probability that a detector

at position α detects (A = 1) or does not detect (A = 0) the neutron. The correlators C31 and
C21 are more straightforward and take the form

C31 = PD
3+(1)- PD

3-(1) , (5.8)

where the neutron is detected in region 3 by the O (3+) or H (3-) detector; and

C21 = PD
2+(1)- PD

2-(1) , (5.9)

where a measurement is performed inside the interferometer to determine whether the neutron
has taken path I (2-) or path II (2+). For C32 the situation is a little more tricky since the
measurement in region 2 has to be non-invasive. This is done via an indium absorber in one of
the paths, since any neutron that is detected in region 3 has to have taken the non-blocked path.
Thus, a measurement can be made without actually observing the neutron. With Q, Q, = +, the
C32 correlator is defined as

C32 = -
∑

q,q,=+
QQ,PD

3q,2q,(1, .) , (5.10)

where the . represents the fact that no active measurement is performed in region 2.

Note that the signs are chosen differently from [56] - this is an appropriate choice for easier
understanding of the different correlators Cij , only the consistency of these signs and their im-
plementation in the calculation of the correlators is important. With the chosen sign convention,
C31 is the interferogram in the O beam which serves as a definition of χ = 0 (see SEC. 2.2.1 and
FIG. 2.9). The signs in region 2 are chosen such that C21 is positive, since the In absorber is put
in the lower beam.

To calculate the Leggett-Garg parameter K eq. (5.1), the correlations Cij between the differ-
ent regions in the interferometer are needed. For C32, non-invasive negative measurements are
essential for region 2 - but since no subsequent measurement is performed after measuring C31

and C21, those measurements need not be non-invasive [56]. The [56] setup does not use time-
resolved measurements, but the measurements in the course of this thesis record neutron arrival
time as well, which is additional information that can be used to further investigate violations
of LGIs.
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5 Leggett-Garg inequality

5.2 Measurements

In this section the setup and measurement process for each of the correlators Cij is discussed
for various thicknesses of the In absorber. These results are then combined to calculate the
Legget-Garg parameter K. A calculation of the Cij and K via the A and B parameters of
the interferometer, when an absorber is present, follows, as well as the description of the Bloch
sphere to visualise the loss of contrast.

5.2.1 C31

The correlator C31 is dependent on the phase shift χ. To measure this, an interferogram is
recorded, from which C31 is calculated as follows

C31 =
N3+1+ -N3-1+

N3+1+ +N3-1+
, (5.11)

in which N3+1+ designates the counts in the O detector, and N3-1+ the counts in the H detector
for a given phase shifter position. The maximum value for C31, leading to the largest violation
of the LGI, is reached for minimal counts in O and maximal counts in H, therefore at (2N+ 1)π
since χ = 0 was defined as the maximum in O.

The results of these measurements at χ = (2N+1)π (maximum violation) are given in TAB. 5.2.
For each of the measurements with different In thickness, N3+1+ corresponds to the minimal
counts in the O detector, and N3-1+ to the maximal counts in the H detector. These values
are obtained from the cos-fit function to the interferogram, and the respective contrast in the
detectors (CO, CH) is also shown, along with the resulting correlator C31.

TAB. 5.2 - Results of the C31 measurements at χ = (2N+ 1)π for In absorber of thickness D.

D N3+1+ CO N3-1+ CH C31

- 1060+ 33 80.4% 14 442+ 120 44.0% -0.863+ 0.004

1mm 2877+ 54 74.8% 31 236+ 177 37.7% -0.831+ 0.003

3mm 5621+ 75 37.5% 22 681+ 151 17.4% -0.603+ 0.005

In the following figures, the measurements for C31 are shown for various thickness of In in
path I. The first, FIG. 5.2, shows the resulting interferogram and corresponding cos-fit without
an absorber, at a measuring time of 60 s. FIGURES 5.3 and 5.4 depict the measurements for
1mm and 3mm, respectively, both at a measuring time of 180 s. The loss of intensity due to the
absorber is clearly visible in the latter figures. Fit parameters are given in TAB. 5.3. Note that
the sum O + H does not show the sin-like behaviour discussed in SEC. 4.2.2, which can be seen
from the values of the fit parameter A for O and H for each In thickness D.
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FIG. 5.2 - Interferogram for C31 without In absorber: measured counts in 60 s and corresponding
fit curves for detectors O (blue) and H (orange).
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FIG. 5.3 - Interferogram for C31 with 1mm In absorber: measured counts in 180 s and corres-
ponding fit curves for detectors O (blue) and H (orange).
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FIG. 5.4 - Interferogram for C31 with 3mm In absorber: measured counts in 180 s and corres-
ponding fit curves for detectors O (blue) and H (orange).

TAB. 5.3 - Fit parameters of the interferogram curves I(η) = Y0 + A cos(Fη + ϕ) for C31 meas-
urements with phase shifter angle η and In absorber of thickness D.

D - 1mm 3mm

Y0 5422 + 16 11 403 + 35 9000 + 21 ),,>,,( O
A 4362 + 22 8526 + 49 3380 + 30

F 3.600+ 0.003 3.579+ 0.003 3.600+ 0.004

ϕ 15.909+ 0.106 19.455+ 0.124 16.150+ 0.182

Y0 10 032 + 17 22 692 + 75 19 316 + 36 ),,>,,( H
A 4411 + 25 8544 + 106 3365 + 52

F 3.603+ 0.003 3.577+ 0.006 3.597+ 0.008

ϕ 18.910+ 0.116 35.235+ 0.265 19.400+ 0.318
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5.2 Measurements

5.2.2 C21

For the C21 correlator, measuring non-invasively is not important, since there are no successive
measurements in this setup [56]. C21 is independent of χ because the sub-beams are not re-
combined, and therefore no interference occurs. One pencil detector was mounted on a linear
translation stage (see SEC. 3.2.1.5 and FIG. 5.5), and afterwards cross-checked with two pencil
detectors mounted successively behind a pinhole aperture for further accuracy.

ψin

I

II

direct

H

O

FIG. 5.5 - Path of the C21 measurements. The dashed line indicates the direction of detector
movement, passing first through the direct beam, then through paths I and II.

The correlator is calculated as follows

C21 =
N2+1+ -N2-1+

N2+1+ +N2-1+
. (5.12)

The counts N2+1+ and N2-1+ are obtained via a Gaussian fit to the resulting raster scan, and
taking the maximum value of the corresponding peak for paths I and II. These measurements
and the respective Gauss fit curves are shown in FIG. 5.6 for measurement without In, FIG. 5.7 for
1mm In and FIG. 5.8 for 3mm In with two pencil detectors. The differences in peak position for
the three measurements are due to the limitations of the translation stage and varying position
of the rastering detector between the plates of the interferometer and are not problematic since
the counts for the correlators are normalised. The results are given in TAB. 5.4.

TAB. 5.4 - Results of the C21 measurements for In absorber of thickness D and measuring time T .

D N2-1+ N2+1+ T C21

- 1061+ 33 1403+ 37 10 s 0.139+ 0.020

1mm 1511+ 39 4472+ 67 30 s 0.495+ 0.011

3mm 2061+ 45 40 439+ 201 300 s 0.903+ 0.002
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FIG. 5.6 - Raster scan for C21 without In in path I. Count values per 10 s and resulting fit curve
are shown. The spatial separation between paths I and II is clearly visible, as well as part of the
direct beam ψin (to the left).
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FIG. 5.7 - Raster scan for C21 with 1mm In in path I. Count values per 30 s and resulting fit
curve are shown.
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FIG. 5.8 - Raster scan for C21 with 3mm In in path I. Count values per 300 s and resulting fit
curve are shown. The diminished intensity and therefore longer measuring time is due to the
presence of the second pencil detector and pinhole aperture.

5.2.3 C32

This correlator is the most complex one. For this measurement, both the Cd blockers and the
In absorber are used. One of the neutron paths, either I or II, is blocked (indicated by 2+) and
the total counts in the O and H beam (indicated by 3+) are recorded (see also SEC. 2.2.1.2).
Since there is no neutron at -1, the corresponding probabilities are zero, and C32 from eq. (5.5)
becomes

C32 = P (+,+,+) + P (-,-,+)- P (+,-,+)- P (-,+,+) . (5.13)

Non-invasive measurement in region 2 is crucial for this correlator. The minus sign in eq. (5.10)
accounts for the fact that the absence of the neutron in a specific path (due to the Cd blocker) is
recorded, not the signal of the neutron itself. With the four necessary neutron count rates, C32

is calculated as

C32 =
N3+2- +N3-2+ -N3+2+ -N3-2-
N3+2- +N3-2+ +N3+2+ +N3-2-

. (5.14)

The N3+2+ correspond to the following cases: N3-2- are the counts in detector H with Cd
blocker in path II (since the neutron has to take path I ‸=2+); N3-2+ are the counts in detector
H with Cd blocker in path I; and N3+2+ and N3+2- are the counts in detector O with Cd
blocker in path I and II, respectively. A schematic of the setup for this measurement is shown
in FIG. 5.9.

The results are presented in TAB. 5.5. For the three cases without In, with 1mm In and 3mm In
in path I, the neutron counts of the O and H detector for a given measuring time are recorded for
the Cd beam blocker in path I and II. This table also shows the fundamental asymmetry of the
two paths in the MZI: in the measurement with no In absorber, the counts in the O detector are
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5 Leggett-Garg inequality

In

II
3- 2+

3 + 2+

Cd

(A) Cadmium blocker in path I.

In

II
3- 2-

3 + 2-

Cd

(B) Cadmium blocker in path II.

FIG. 5.9 - Setup for the measurement of C32. The In absorber is positioned in path I. (A) Cd
blocker in path I: the neutron has to take path II (2+). (B) Cd blocker in path II: the neutron
has to take path I (2-).

the same regardless of the position of the Cd blocker, while the counts in the H detector differ
in the two cases. Note that the values do not match the ones given in SEC. 2.2.1.2. A possible
explanation for this is that the interferometer used for the measurements was compromised due
to a collision with the translation robot and had to undergo re-etching [33] (also mentioned in
SEC. 3.2.1.2).

TAB. 5.5 - Results of the C32 measurements with In absorber thickness D and measuring time T .

D Cd in path counts O counts H T C32

-
I 2584+ 51 5819+ 76

60 s -0.131+ 0.008
II 2464+ 50 3781+ 61

1mm
I 2628+ 51 5802+ 76

60 s -0.229+ 0.009
II 1216+ 35 1771+ 42

3mm
I 26 787+ 164 59 232+ 243

600 s -0.343+ 0.002
II 2285+ 48 3278+ 57
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5.2 Measurements

5.2.4 Leggett-Garg parameter K

Taking the correlators Cij discussed in the above sections and putting them in eq. (5.1),

K = C21 + C32 - C31 , (5.15)

gives the results presented in the following figures. For the measurement without the In absorber,
shown in FIG. 5.10, a violation is not possible. In FIG. 5.11 and FIG. 5.12 the violation of the
Leggett-Garg inequality is clearly visible for an absorber thickness of 1mm In and 3mm In in
beam I, respectively.

0 π
2 π 3 π

2 2 π-0.5

0.0

0.5

1.0

FIG. 5.10 - Parameter K for the measurement without an In absorber in path I. The measured
neutron counts and corresponding fit function are shown in red. No violation of the LGI (limit
indicated by the dashed orange line) is observed.

In TAB. 5.6, the results for the Leggett-Garg measurements are presented. For 1mm and 3mm
In, as well as without an absorber, the three correlators Cij and the resulting parameter K are
given, as well as the distance of standard deviations Nσ from the measured K to the theoretical
maximum of 1. The maximum possible violation for a two-level system is K = 1.5 [57].

TAB. 5.6 - Overview of the results of the three correlators Cij and the Leggett-Garg parameter
K for the different thickness D of the In absorber in path I.

D C21 C32 C31 K Nσ

- 0.139+ 0.020 -0.131+ 0.008 -0.863+ 0.004 0.871+ 0.022 -

1mm 0.495+ 0.011 -0.229+ 0.009 -0.831+ 0.003 1.097+ 0.014 7.2

3mm 0.903+ 0.002 -0.343+ 0.002 -0.603+ 0.005 1.162+ 0.006 28.5

These results clearly show a violation for the cases where it is in principle possible to observe.
Both 1mm and 3mm In foils change the beam splitter from its initial 50:50 ratio, resulting in
K > 1, which shows that the quantum mechanical MZI is, indeed, not classical.
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FIG. 5.11 - Parameter K for the measurement with 1mm In absorber in path I. The measured
neutron counts and corresponding fit function are shown in red. A violation of the LGI of more
than 7σ (limit indicated by the dashed orange line) is clearly visible.
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FIG. 5.12 - Parameter K for the measurement with 3mm In absorber in path I. The measured
neutron counts and corresponding fit function are shown in red. A violation of the LGI of more
than 28σ (limit indicated by the dashed orange line) is clearly visible.
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5.2 Measurements

5.2.5 Calculation of Cij andK via interferometer parameters A and B

To check the consistency of the achieved correlators Cij , one can compare them to a calculation,
starting from the interferometer parameters A and B of the O and H beam intensities. The
intensities I detected by the O and H detectors, as given in eq. (2.14), change when an absorber
is present in one of the neutron beam paths. In FIG. 5.13, a schematic of a single beam splitter
(interferometer plate) with an absorber (thickness D) in the transmitted direction is shown. The
partial wave in path II is not influenced by the presence of the absorber.

ψin

D ψI

ψII

FIG. 5.13 - Schematic of a single beam splitter with absorber of thickness D in path I (transmitted
beam).

With consideration of the Beer-Lambert law eq. (2.8), the amplitudes for the partial waves for
the transmitted (ψI) and reflected (ψII) beam can be written as follows

ψII = R ψin

ψI = T e-
1
2Σd ψin ,

(5.16)

with reflection and transmission amplitudes R and T, respectively. The factor 1
2 is due to the

fact that the Beer-Lambert law applies to intensities, while we consider amplitudes. Using
α2 = e-Σd, the intensity for the O beam becomes

IO = IψI,O + ψII,OI2 =
IITαRR ψ0 e iχ1 + RRT ψ0 e iχ2

II2 , (5.17)

resulting in

IO = A

(
1 + α2

2
+ αC cosχ

)
(5.18)

where A = 2 Iψ0I2ITI2IRI4 = AI + AII as before (both paths contribute equally), and C the
contrast. This corresponds to eq. (2.12), where no absorber is present (see SEC. A.1 for a
detailed derivation).

Doing the same for the H beam (see eq. (2.13) without absorber) gives

IH = IψI,H + ψII,HI2 =
IITαRT ψ0 e iχ1 + RRR ψ0 e iχ2

II2 (5.19)

and

IH = Iψ0I2
(
α2ITI4IRI2 + IRI6)-AαC cosχ = BI +BII -AαC cosχ , (5.20)

with different contributions for paths I and II, signified by the parameters BI and BII, which
again shows the fundamental asymmetry of the MZI - for the O beam, both paths contribute
equally (AI = AII). With D = 0 → α = 1, these intensities take the form of eq. (2.18) which has
already been discussed in SEC. 2.2.1.1. The absorber is only present after the first interferometer
plate (region 2-), thus α has to be considered only for the first transmission.
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5 Leggett-Garg inequality

From eq. (5.18), the contrast in presence of an absorber can be calculated as

Cd(α) =
2αC

1 + α2
, (5.21)

which results in C1mm = 0.746 and C3mm = 0.468 and differs from the contrast values in TAB. 5.2:
C1mm = 0.748 and C3mm = 0.375. In other words, these measured contrast values correspond
to an In foil thickness D of 0.998mm and 3.74mm, respectively.

With the neutron counts from the C32 measurements (see TAB. 5.5) for the case where no In
absorber is present as well as the typical initial interferometric contrast of C = 80%, one obtains
for a measuring time of 60 s BI = 3800, BII = 5800, AI = AII = 2500, and the detected intensities
become

IO(60 s, α = 0) = 5000 (1 + 0.8 cosχ)

IH(60 s, α = 0) = 9600 - 4000 cosχ .
(5.22)

The resulting curves are shown in FIG. 5.14. Using the macroscopic cross section for indium
Σ = 7.43 cm-1 (discussed in SEC. 2.1.4.2), the resulting curves for an absorber of thickness 1mm
and 3mm are shown in FIG. 5.15 and FIG. 5.16, respectively. For both these cases, the simulation
curve (eq. (5.22)) has to be multiplied by a factor of three to account for the triple measuring
time. For 1mm In, measured and simulated curves are in good agreement, while a slightly larger
discrepancy is observed for 3mm In. This is due to the fact that the thickness of the used In foil
is not precisely determined.
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FIG. 5.14 - Simulation of an interferogram with no absorber present. Blue denotes the O detector,
orange the H detector.

From these curves, the correlator C31 can be determined. The maximum value (and maximum
violation of the LGI) is achieved at π, giving

C31(AI, AII, BI, BII, α, C, χ) =
IO(π)- IH(π)

IO(π) + IH(π)
, (5.23)

with IO(π) = IO(AI, AII, BI, BII, α, C,π) and likewise for IH, as given in eq. (5.18) and eq. (5.20).
The results of the simulated C31 in comparison to the directly measured values are shown in
TAB. 5.7.
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FIG. 5.15 - Simulation (solid) and measurement (dashed) of an interferogram with 1mm In in
path I. Blue curves denote the O detector, orange the H detector.
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FIG. 5.16 - Simulation (solid) and measurement (dashed) of an interferogram with 3mm In in
path I. Blue curves denote the O detector, orange the H detector.

TAB. 5.7 - Comparison of the simulated and measured correlator C31 for different thickness D of
the In absorber.

D C31 simulated C31 measured

- -0.863 -0.863+ 0.004

1mm -0.835 -0.831+ 0.003

3mm -0.675 -0.603+ 0.005

The correlator C32 is calculated as

C32(AI, AII, BI, BII, α) = -AIα
2 -BIα

2 -AII +BII

AIα2 +BIα2 +AII +BII
, (5.24)
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and the resulting comparison of simulated and measured values is presented in TAB. 5.8. Since
the neutron counts from this measurement were used to calculate the intensities Idetector, the
accordance is expected. The deviations are due to rounding errors and the thickness of the In
foil which is not sufficiently precisely determined, and grow with increasing In thickness D.

TAB. 5.8 - Comparison of the simulated and measured correlator C32 for different thickness D of
the In absorber.

D C32 simulated C32 measured

- -0.137 -0.131+ 0.008

1mm -0.237 -0.229+ 0.009

3mm -0.352 -0.343+ 0.002

To determine the correlator C21, another measurement is needed. For this, the raster scan of the
setup without In at a measuring time of 10 s (shown in FIG. 5.6) is used, giving N2+1+ = 1400
and N2-1+ = 1060. The correlator is calculated as follows

C21 =
N2+1+ -N2-1+α

2

N2+1+ +N2-1+α2
, (5.25)

and the results are shown in TAB. 5.9. The slight rounding error accounts for the discrepancies
between the measured and simulated value for the setup without In absorber.

TAB. 5.9 - Comparison of the simulated and measured correlator C21 for different thickness D of
the In absorber.

D C21 simulated C21 measured

- 0.138 0.139+ 0.020

1mm 0.470 0.495+ 0.011

3mm 0.849 0.903+ 0.002

Finally, the combination of the previous results and calculation of the the Leggett-Garg para-
meter K = C21 + C32 - C31 is presented in TAB. 5.10. The values for K differ slightly, but the
overall behaviour clearly shows that a violation of eq. (5.1) is not possible without an absorber,
while it is observed for both 1mm and 3mm In absorbers.

TAB. 5.10 - Comparison of the simulated and measured Leggett-Garg parameter K for different
thickness D of the In absorber.

D K simulated K measured

- 0.864 0.871+ 0.022

1mm 1.068 1.097+ 0.014

3mm 1.173 1.162+ 0.006

A density plot for the areas in which a violation can be achieved is shown in FIG. 5.17: The
smaller the initial contrast, the smaller the possible transmission of the In in path I (i.e. a larger
thickness D is needed) where a violation of the LGI is still possible. Higher initial contrast allows
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5.2 Measurements

for LGI violations with smaller values of D. The neutron counts used in this simulation are still
the ones described above, from measurements of C32 and C21. The dashed line corresponds to
K = 1, the classical limit of the LGI.
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FIG. 5.17 - For different values of the initial contrast in the O beam, the resulting values of the
K parameter are shown (red to green to blue). The solid red area to the left, separated by a
dashed curve, denotes the area in which the LGI is violated, i.e. K reaches values greater than 1.
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5 Leggett-Garg inequality

5.2.6 Visualisation of the probability amplitudes

For the measurements with In in path I, the diminution of the contrast due to the presence of the
absorber has to be taken into account, which can be compensated by increasing the respective
measuring times. This chapter discusses the situation for the O detector, where the contributions
to paths I and II are equal when no absorber is present (two reflections R and one transmission T
in each path). A useful visualisation tool is the Bloch sphere FIG. 5.18.

Paths I and II constitute the eigenstates II>, III> of the two-level system, and are located at the
poles of the Bloch sphere. Measurement takes place in the XY plane, and a superposition of
the two possible neutron paths is recorded. Each state on the Bloch sphere can be described
as

Iψ> = CI II>+ CII III> = cos
ϑ

2
II>+ e iχ sin

ϑ

2
III> , (5.26)

or

→A =

(II,
R sinϑ cosχ

R sinϑ sinχ

R cosϑ

)II, , (5.27)

with radius R = 1, polar angle ϑ and azimuthal angle χ. This χ represents the phase shift
between the partial waves in the interferogram. Without an absorber (FIG. 5.18A), both paths
contribute equally, with the orange Bloch vector

Iψ> = 1√
2
II>+ 1√

2
e iχ III> (5.28)

or

→A =

(II,
cosχ

sinχ

0

)II, , (5.29)

precessing along the dashed orange line, the equator of the Bloch sphere. In the presence of an
absorber in path I however, the partial wave ψI collects an additional factor α = e-

1
2Σd (see

eq. (5.17)), which changes both the length and the angle ϑ of the Bloch vector. The length
changes to

R(α) =

√
1

2
(1 + α2) , (5.30)

and the new polar angle is

ϑ(α) = 2 arccos

(
α√
2

)
. (5.31)

This situation is shown in FIG. 5.18B. Grey arrow and dashed grey circle at the equator of
the Bloch sphere show the case without an absorber for reference. For the two absorbers used
during measurements for this thesis, 1mm In and 3mm In in path I, the resulting Bloch vectors
are shown in orange, and their respective precession circles indicated by the dashed orange line.
The reduction in interferometric contrast is due to both the diminished length of the Bloch
vector (which does not end on the surface of the Bloch sphere), as well as its projection on the
XY plane. The red arrow shows the case for a completely blocked path I: no interference fringes
can be observed (the angle χ does not play a role in the vector position since ϑ = π and therefore
sinϑ = 0), and the total intensity is half the original intensity.
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5.2 Measurements

(A) Without absorber. (B) With In absorber of thickness d in path I.

FIG. 5.18 - Bloch sphere.(A)Without absorber, II> and III> contribute equally. The superposition
(orange arrow) precesses in the XY plane (dashed orange line). (B) With absorber, the precession
circles of the projection (dashed black lines) of the Bloch vectors (orange arrows) onto the
XY plane are smaller than the original (absorber-less) case. The resulting Bloch vectors for an
In foil of 1mm and 3mm in path I, as well as for a completely blocked path I (red arrow) are
shown.
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6 Conclusion

Based on the use of arrival time postselection for contrast enhancement and reduction of phase
uncertainty in neutron interferometry by Zawisky et al. [36], their setup at the Atominstitut in
Vienna has been expanded and improved. In addition to the O beam (transmitted direction), this
thesis used the H beam as well, both with pencil 3He detectors whose smaller volume (compared
to the old BF3 barrel detectors) along with the implementation of a 40MHz FPGA card for data
processing allowed for a more accurate determination of neutron arrival times. Steps to reduce
vibrations of the setup were taken by rebuilding to uncouple the phase shifter and its stepper
motor from the optical bench. This resulted in an increase to the initial contrast from 40% to
almost 70% for the O detector, and from 22% to over 40% for the H detector.

These measurements were then repeated at the Institut Laue-Langevin (ILL) in Grenoble, where
higher count rates allowed a more in-depth study of the behaviour of the contrast with the
selection of neutron arrival times. The initial contrast of 82% for the O beam could be raised to
over 97% while still retaining over 40% of the recorded data.

Since the recording of these measurements, more improvements to the setup in Vienna were
made, and new translation stages for the O and H collimators were installed in 2020.

Furthermore, the violation of a Leggett-Garg inequality (LGI) was measured at the ILL. Macro-
realism and non-invasive measurability are quantified with the Leggett-Garg parameter K < 1,
and a violation shows the quantum mechanical nature of the neutron interferometer. Ideal
negative measurements were used, as well as an In absorber in one of the partial beams inside
the interferometer to realise a non-50:50 beam splitter with the first plate. With an In foil of
1mm thickness, K resulted in 1.097+ 0.014, which is a violation of over 7σ, and with 3mm In
foil, K = 1.162+ 0.006, a clear violation of more than 28σ.
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A Additional calculations

A.1 Beam intensities in the neutron interferometer

In order to derive eq. (2.14), it is first necessary to look at the action of a single 50:50 beam
splitter in the interferometer with two input modes with amplitudes A1, A2 and two output modes
with amplitudes A,1, A

,
2. This situation is depicted in FIG. A.1.

A1 A,1

A,2

A2

FIG. A.1 - Schematic of a single beam splitter. The amplitudes of the two input modes are
denoted A1, A2, output modes A,1, A

,
2.

The action of the beam splitter can be described as [68, pp. 103-105]

(,A,1
A,2

), =

(,T1 R2

R1 T2

),(,A1

A2

), , (A.1)

with a unitary transformation matrix. Due to conservation of energy in a lossless beam splitter,
the following identity has to hold:

IA1I2 + IA2I2 = (T1A
,
1 + R2A

,
2) (T1A

,
1 + R2A

,
2)

*
+ (R1A

,
1 + T2A

,
2) (R1A

,
1 + T2A

,
2)

*

=
(IT1I2 + IR1I2

) IA,1I2 + (IT2I2 + IR2I2
) IA,2I2 + A,1A

,*
2 (T1R

*
2 + R1T

*
2) + A,*1 A

,
2 (T

*
1R2 + R*1T2)

!
= IA,1I2 + IA,2I2 .

(A.2)



A.1 Beam intensities in the neutron interferometer

Comparison of coefficients yields the following relations

IT1I2 + IR1I2 = 1

IT2I2 + IR2I2 = 1

T1R
*
2 + R1T

*
2 = 0

T*1R2 + R*1T2 = 0 .

(A.3)

With the choice of R1 = R2 = R and T1 = T2 = T, this becomes

ITI2 + IRI2 = 1

RT* = -R*T ,
(A.4)

which can now be used to derive eq. (2.14). For the intensity in the O beam, one starts from
eq. (2.12),

IO =
IITRR ψ0 e iχ1 + RRT ψ0 e iχ2

II2
= Iψ0I2ITI2IRI4

II e iχ1 + e iχ2
II2 .

(A.5)

With the definition χ = χ2 - χ1,II e iχ1 + e iχ2
II2 = e iχ1 e- iχ1 + e- iχ1 e iχ2 + e iχ1 e- iχ2 + e iχ2 e- iχ2

= 1 + e i(χ2-χ1) + e- i(χ2-χ1) + 1

= 2 + 2 cosχ ,

(A.6)

and eq. (A.5) becomes
IO = 2 Iψ0I2ITI2IRI4, ,, ,

A

(1 + cosχ) . (A.7)

For the H beam intensity, eq. (2.13),

IH =
IITRT ψ0 e iχ1 + RRR ψ0 e iχ2

II2
= Iψ0I2IRI2

IITT e iχ1 + RR e iχ2
II2 .

(A.8)

Using again the definition χ = χ2 - χ1, as well as eq. (A.4),IITT e iχ1 + RR e iχ2
II2 = ITI4 + IRI4 + TTR*R* e- i(χ2-χ1) + T*T*RR e i(χ2-χ1)

= ITI4 + IRI4 - 2ITI2IRI2 cosχ ,
(A.9)

resulting in
IH = Iψ0I2

(ITI4IRI2 + IRI6), ,, ,
B

- 2 Iψ0I2ITI2IRI4, ,, ,
A

cosχ . (A.10)

With the addition of a neutron absorber in one of the paths to realise a non-50:50 beam splitter,
these beam intensities are discussed in SEC. 5.2.5.
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A Additional calculations

A.2 Reflection curves for a Mach-Zehnder neutron inter-
ferometer

For dynamical diffraction theory, it is useful to define two new unitless parameters (presented
here without further introduction): A for the characterisation of the plate thickness D in the
interferometer, and Y to quantify the deviation from the Bragg angle. This discussion is valid
for the Laue case, without a phase shifter in the interferometer, and when absorption by the
interferometer plates is neglected. More detailed descriptions of dynamical diffraction theory in
neutron interferometry can be found in [30, 37], where this chapter is taken from, and [69].

The ratio of the intensity I = IψI2 for reflected ψr to incoming beam ψin for a single plate can
be written as

Ir
Iin

=
sin2(A

√
1 + Y2)

1 + Y2
(A.11)

with zeroes at A
√
1 + Y2 = Nπ. This is called Pendell..osung (German for ,pendulum solution,),

because the intensity oscillates (German: ,pendelt,) between the O and H directions. The central
maximum for Y = 0 lies at A = π, and allows the definition of the Pendell..osung period,

Δ0 = π
D

A
, (A.12)

which is about 6x 10-2 mm for λ = 2✝A for the {2, 2, 0} reflection in the symmetric Laue case [30].
The plate thickness of the used interferometer isD = 3mm > Δ0, so that we can take the average
of the sine function (thick crystal approximation). Because the number of particles has to be
conserved, the intensity ratio for the transmitted beam ψt is

It
Iin

= 1- sin2(A
√
1 + Y2)

1 + Y2
, (A.13)

and, with <sin2(.)>, the averaged curves are

<Ir(Y)> = 1

2

1

1 + Y2

<It(Y)> = 1- 1

2

1

1 + Y2
,

(A.14)

using the shorthand <I> = <I/Iin>. In FIG. A.2 the resulting intensities for two slightly different
thin crystals (blue and orange curves), as well as the averaged function for a thick crystal (dashed
curve) are shown. The reflectivity is defined as the area beneath the reflection curve,

R =

∫ ∞

-∞

Ir(Y)

Iin(Y)
dY . (A.15)

In the Triple-Laue (LLL) interferometer, both partial waves for the O beam are reflected twice
and transmitted once (RRT), resulting in

IO,I(Y) = IO,II(Y) =
sin4(A

√
1 + Y2)

(1 + Y2)2

(
1- sin2(A

√
1 + Y2)

1 + Y2

)
, (A.16)

with the average

<IO,I> = <IO,II> = 1 + 6Y2

16 (1 + Y2)3
. (A.17)
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A.2 Reflection curves for a Mach-Zehnder neutron interferometer

This again uses the shorthand I for I/Iin. For the H beam, however, path I is reflected three
times (RRR), while path II is reflected once and transmitted twice (RTT), giving

IH,I(Y) =
sin6(A

√
1 + Y2)

(1 + Y2)3

IH,II(Y) =
sin2(A

√
1 + Y2)

1 + Y2

(
1- sin2(A

√
1 + Y2)

1 + Y2

)2 (A.18)

with the averages

<IH,I(Y)> =
8Y4 + 4Y2 + 1

16 (1 + Y2)3

<IH,II(Y)> =
5

16 (1 + Y2)3

(A.19)

Curves for two different (thin) plates (blue and orange) and their respective averages (thick
crystal; dashed) for the three different partial beams (since for O, the contributions from path I
and II are the same) are shown in FIG. A.3.

The overall intensity in the interferometer is Iifm = IO + IH, with

IO = IψOI2 = IψO,I + ψO,III2 = I2ψO,II2 = 4 IψO,II2 (A.20)

and, with consideration of the phase shift π between the two partial beams in H due to the
different number of reflections,

IH = IψHI2 =
sin2(A

√
1 + Y2)

1 + Y2

(
1- 2

sin2(A
√
1 + Y2)

1 + Y2

)2

, (A.21)

giving the averages

<IO(Y)> =
1 + 6Y2

4 (1 + Y2)3

<IH(Y)> =
2Y4 - 2Y2 + 1

4 (1 + Y2)3

<Iifm(Y)> =
1

2

1

1 + Y2
.

(A.22)

The resulting curves are shown in FIG. A.4 for the empty interferometer as well as with path I
or path II blocked. Contributions of the O beam are shown in blue, orange for the H beam,
and the total intensity for both beams is shown in green. Note that the overall intensity in the
interferometer is lower when path II is blocked than when path I is blocked - this is due to the
much-discussed asymmetry of the beam paths.

Integrating over the curves in eq. (A.17) and eq. (A.19), as well as eq. (A.22) gives the re-
spective reflectivities which are shown above in TAB. 2.2 (SEC. 2.2.1.2), normalised to the total
reflectivity

Rifm =

∫ ∞

-∞

1

2

1

1 + Y2
dY =

π

2
. (A.23)
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A Additional calculations
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(A) Single reflection.
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(B) Single transmission.

FIG. A.2 - Pendell..osung for varying plate thickness A with the dashed line indicating the resulting
average (thick crystal), and the blue and orange curves illustrating the difference in a small
variation of the plate thickness, normalised to the incoming intensity for a single (A) reflection
and (B) transmission.
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A.2 Reflection curves for a Mach-Zehnder neutron interferometer
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(A) Partial beam OI,II.
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(B) Partial beam HI.
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(C) Partial beam HII.

FIG. A.3 - Intensities in the O and H detector partial beams for a small variation in the plate
thickness (blue and orange curves). The dashed line indicates the averaged function (thick
crystal). (A) O detector: partial beams for paths I and II are equal (RRT). (B) Partial beam for
path I in the H detector (TRT) and (C) Partial beam for path II in the H detector (RRR) - due to
the asymmetry in the beam paths, these two contributions are not equal.
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(A) Empty interferometer.
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(B) Path I blocked.
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(C) Path II blocked.

FIG. A.4 - Reflection curves for an ideal empty interferometer with contrast C = 1. Blue denotes
the intensity for the O detector, orange for the H detector, and green the sum of both detectors.
(A) Empty interferometer. (B) With blocked path I. (C) With blocked path II.
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