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Preface

A spherical valuation is a map p: K(S™) — R from closed, convex subsets of the Euclidean
unit sphere to real numbers that satisfies () = 0 and the following additivity property

u(K) + p(L) = p(KU L) + (K N L)

for all K,L € X(S™) such that K U L is again in KX(S™). In particular, the space of
spherical valuations that are continuous with respect to the spherical Hausdorff topology
and invariant under the natural action of the group SO(n + 1) on S™ is of interest. It is
an open conjecture, known as the spherical version of Hadwiger’s theorem, whether this
space is finite-dimensional. In this thesis, we focus on a certain subspace, namely smooth
spherical valuations. These can be represented by integration of differential forms over
so-called normal cycles. Alesker, in part joint with Fu, has developed a theory of smooth
valuations on arbitrary manifolds in [Ale06a], [Ale06b], [Ale08], [Ale07], which indeed yields
a classification of smooth, invariant spherical valuations. The main idea is to exploit the
integral representation and consider invariant differential forms instead of valuations. Here,
we present this approach in some detail.

The first chapter contains an outline of results obtained in direction of the spherical
Hadwiger theorem prior to the theory of Alesker. We present a proof by Klain and Rota
[K1a97] for the case n = 2, which shows that the space of continuous, invariant valuations
on S? is spanned by spherical length, spherical area, and the Euler-characteristic. We
also exhibit, why their geometric arguments can not be generalized to spheres of higher
dimensions. Moreover, Schneider’s characterization [Sch78] of spherical volume as a simple,
non-negative and invariant valuation is included, however it is not clear, whether this result
implies a version of Hadwiger’s theorem for non-negative, instead of continuous valuations.

In Chapter 2 we introduce normal cycles, which first occur as subsets of the sphere
bundle of S”, denoted by SS", thereby generalizing the Gaufl map to convex sets with
non-smooth boundary. Later, it is shown that these normal cycles can also be considered as
currents, acting on differential forms on SS”. This leads to the notion of smooth valuations.
For any given n-form n € D™*(S™) on S" and (n — 1)-form w € D"~ 1(SS™) on SS™ the map

KH/ n+/ w,
K N(K)

where N(K) denotes the normal cycle of a convex, closed set K € K(S™), indeed satisfies



the above valuation property, and is hence called a smooth valuation. The space of all such
smooth valuations on S", denoted by V°°(S™), is then identified with a certain quotient of
the space of differential forms D™(S") @ D"~1(SS"), which is due to Bernig and Brécker
[Ber07]. This makes it easier to consider also the topological dual space to V*°(S"), namely
the space of generalized valuations, denoted by V~°°(S™). Using the above identification,
generalized valuations can be thought of as currents acting on differential forms instead of
smooth valuations.

In the third chapter we classify SO(n + 1)-invariant differential forms on S and SS”.
The latter can be endowed with a contact structure that yields two first examples of
invariant forms - the contact form « and its exterior derivative da. Using the theory of
polynomial invariants from [Kra96], we obtain the remaining invariant forms ko, ..., kp
by giving an argument similar to [Par02] and, in particular, show that they span only a
finite-dimensional subspace. We close this chapter by also classifying currents invariant
under the dual SO(n + 1)-action. This is done by averaging differential forms over the
compact group SO(n + 1) via the Fréchet space valued integral

W= / g-wdg,
SO(n+1)

where w is either in D*(S™) or D"~1(SS"), g - w denotes the respective group action, and
dg is the Haar measure of SO(n + 1). It turns out that the spaces of invariant currents on
S™ and SS™ are again finite-dimesional.

In Chapter 4 of this thesis we make use of the results obtained in chapter three and
classify invariant, smooth and generalized valuations. Indeed, each invariant, smooth
valuation can be represented by a pair of invariant differential forms, hence the space
of all such valuations must be finite-dimensional. In particular, a basis for that space
are the spherical intrinsic volumes V;, 0 < i < n, occurring in the spherical Steiner
formula, which describes the volume of a parallel set of a convex set K € X(S™) as a linear
combination of the V;. Moreover, using Alesker’s product of smooth valuations, we see
that the spaces of invariant, smooth valuations, denoted by V>°(S™)SO("*+1) and invariant,
generalized valuations, V~°°(S*)SO(+1) "are actually isomorphic. In the final section we
present another method to obtain our main results, namely the transfer principle, due to
Fu [Fu90]. This result shows that the kinematic formulas

/ p(K NgL) dg =Y cijpi(K)p;(L),
G i,j=0

where K,L € K(M), u € V°(M)® = span{ug, ..., tn}, look the same in either case
(M,G) = (S",SO(n+ 1)) or (M,G) = (R",E"), where E™ denotes the group of proper
Euclidean motions. It allows us to transfer the classification problem of smooth, invariant
valuations from the sphere to Euclidean space, where its solution — Hadwiger’s theorem —
is already well known.
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CHAPTER 1

Background for the characterization problem of continuous, invariant
valuations

To start off, we give a review of the famous characterization theorem by Hugo Hadwiger,
concerning continuous, motion-invariant valuations on convex bodies in Euclidean space.
Following the discovery of this beautiful classification result in the 1950s it seemed natural
to ask, whether a similar statement for other spaceforms, such as the sphere, might be
true. In the second part of this chapter, we discuss some of the developments made in that
direction, namely an analogous theorem for the 2-sphere and a characterization of spherical
volume, where continuity is replaced by non-negativity. The problem of characterizing
continuous, invariant valuations on spheres of arbitrary dimensions still remains open.

1.1 Hadwiger's theorem in R”

For us a convexr body will be a compact, convex subset of R", and we will denote the
collection of all such sets by K(R"™).

Definition 1.1.1. A map u: X(R") — R is called a valuation, if u(0)) = 0, and
u(K) + p(L) = p(KUL) + pu(KNL),
for all K,L,K UL € X(R").

In order to address continuity issues, we need a suitable topology on K(R™). Therefore
we define the parallel body of a convex body K with distance ¢ to be the set K. := {x €
R™ | dist(z,K) < €}, where dist(x,K) = inf{dist(x,y) |y € K} with the usual metric in R™.
Now the Hausdorff metric on KX(R™) can be defined by

disty (K,L) :==inf{e >0|K C L., L C K.}.

Note also that K. = K + ¢By,, where K + L = {x +y|z € K,y € L} is the Minkowski
addition and B,, is the FEuclidean unit ball.
Next, we introduce important special classes of valuations:

Definition 1.1.2. A valuation p: K(R™) — R is called



2 1 Background

o continuous, if it is continuous with respect to the topology on KX(R™) induced by the
Hausdorff metric;

o translation-invariant, if (K + z) = p(K) for all x € R™ and all K € X(R");
o SO(n)-invariant, if 1(0K) = p(K) for all # € SO(n) and all K € K(R").

Ezample 1.1.3. Here are some examples of valuations that are continuous and invariant
(which here means translation- and SO(n)-invariant):

1. Classical volume, that is Lebesgue measure, on R", denoted by vol,,.
2. The FEuler-Characteristic x given by x(K) =1 for all K € K(R").

3. The so-called intrinsic volumes p;, ¢ = 0...n: These occur, if we express the volume
of a parallel body of K at distance £ > 0 by Steiner’s formula as a polynomial in &:

voly(Ke) = Y wnipti(K)e™ ™,
=0

Here wj; is the volume of the i-dimensional unit ball. Moreover, we have pg = x and
b, = VOl

In fact, these examples are, up to linear combinations, already all continuous, invariant
valuations on X (R™). This is excactly the statement of Hadwiger’s theorem:

Theorem 1.1.4 (Hadwiger). The intrinsic volumes py, . . . i, form a basis of the space of
continuous, translation-invariant, SO(n)-invariant valuations on K(R™). In particular, this
space is finite dimensional.

A proof of Hadwiger’s theorem and also an introduction to valuations in general can
be found in the book of D. Klain and G. Rota [Kla97]. The key ingredient here is to
characterize volume on convex bodies in R” as a continuous, invariant, and simple valuation,
where simple means that the valuation vanishes on all lower-dimensional bodies, that is,
bodies contained in some hyperplane.

Theorem 1.1.5 (Volume characterization on X(R")). Let pu: KX(R™) — R be a valuation
on convex bodies. Then p is continuous, invariant, and simple, if and only if there exists a
constant ¢ € R such that u(K) = cu,(K) for all K € K(R"™).

Once this result is established, the theorem of Hadwiger follows by induction with respect
to the dimension of the space. Now, turning to the sphere, one could hope to prove a
spherical version of Hadwiger’s theorem by finding a similar characterization of spherical
volume. However, this approach faces a certain obstruction, as we shall see in the next
section.

1.2 Spherical analogues

We now give definitions of convex bodies and valuations on the sphere, as similar as possible
to the Euclidean case. A detailed version of the following can again be found in the book of
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Klain and Rota [Kla97]. We will think of the sphere S" := {z € R""! | ||z|| = 1} as the set
of all unit vectors in R"*! equipped with the Riemannian structure inherited from R”+!.
The shortest path between two non-antipodal points will be given by the shorter of the
two arcs on the unique great circle - that is the intersection £ NS™ of a two-dimensional
subspace £ C R"™! with S” - joining the two points. In general, the intersection of a
(k+1)-dimensional subspace of R"™! with S™ will be called a great k-subsphere. Accordingly,
we call the intersection of any closed half space of R**! with S™ a (closed) hemisphere. Now
a spherical n-simplex is the intersection of n + 1 linearly independent hemispheres (that is,
hemispheres that have linearly independent normals), whereas a [une is the intersection of
at most n hemispheres. If we fix a unit normal vector v € S and a spherical k-simplex
A with k < n — 1 inside the great (n — 1)-subsphere u N'S™, the union of all half circles
with endpoints at © and —u, that contain a point of A, is called the lune through A and
denoted by L(A).

Definition 1.2.1. The non-empty intersection of finitely many hemispheres is called a
convex spherical polytope. The collection of all such sets is denoted by P(S™). A general
set K C S™ is called conver, if it is non-empty, and if for any two points of K lying in an
open hemisphere of S”, the unique shortest geodesic arc connecting these points is also
contained in K. The set of all closed, convex subsets of S™ is denoted by K(S™).

If we define the spherical parallel body of K at distance ¢ to be the set K. := {x €
S™| dists(xz,K) < e}, where dists(z,K) = inf{dists(x,y) |y € K} is now the spherical (or
geodesic) distance, we can define the spherical Hausdorff metric by

distsg (K,L) :=inf{e >0|K C L.,L C K.}.
If we identify a spherical convex body K with the convex cone
ox K :={ ujuec K 0<\A<1} c R™L

then the spherical Hausdorff topology and the one coming from convex bodies in R**! in
this way coincide. Note also, that in this topology S™ is an isolated point and that P(S™)
is a dense subset of K(S™).

Definition 1.2.2. A map p: P(S") — Ror p: K(S™) — R is called a valuation, if u()) = 0,
and

p(K) 4+ p(L) = p(K U L) + p(K N L),
for all K,L,K UL € P(S") or € K(S"), respectively. A valuation y is called

e continuous, if it is continuous with respect to the spherical Hausdorff topology on
P(S™) or K(S™);
o SO(n + 1)-invariant (or just invariant), if u(0K) = u(K) for all § € SO(n + 1);

o simple, if it vanishes on all lower-dimensional sets, that is, sets contained in some
(n — 1)-subsphere.
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Ezxample 1.2.3. The following are examples of continuous, invariant valuations on spherical
convex bodies.

1. Spherical volume, that is, spherical Lebesgue measure, on S", denoted by o,.
2. The Euler-Characteristic x given by x(K) =1 for all K € K(S").

3. Spherical intrinsic volumes V;, i = 0...n that come from the spherical Steiner
formula, expressing the volume of a spherical parallel body as a polynomial:

n—1

Un(Ks) = Vn(K) + Z ﬁzﬁn—z—lfl(E)W(K)7

=0

where $3; is the spherical volume of the i-dimensional unit sphere, that is, o;(S?), and

file) == /06 cos'(t) sin "1 (t)dt.

Here, V,, = 0, equals spherical volume, but Vj is not the spherical Euler characteristic,
as the spherical Gauss-Bonnet theorem reads:

5]

1=0

for all K € X(S™). Early versions of the spherical Steiner formula for different
classes of sets occur in works of Allendoerfer [All48] and Herglotz [Her43]; a proof for
spherical convex bodies can be found in [Gla96].

It is an important conjecture, but has not been proved yet for dimension n > 3, that
the spherical intrinsic volumes indeed form a basis of the space of continuous, invariant
valuations on convex bodies in S™.

1.3 Hadwiger's theorem on S?

We will now examine the case n = 2, so we consider S C R3. Here, a spherical version of
Hadwiger’s theorem has already been obtained. The three valuations forming a basis of
the space of continuous, invariant valuations on X(S?) are:

e the Fuler characteristic x,

o spherical length p1,

o spherical area o,
where x(K) = 1 for all non-empty convex bodies, ps is the spherical Lebesgue measure, and
w1 (K) equals one half of the length of the boundary curve of K, which extends geodesic

length to K(S?). The key to characterizing invariant valuations in S?, as in the Euclidean
case, is to characterize spherical area. We split up the process into three steps:
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Proposition 1.3.1. Let p: X(S') — R be a valuation on S!. Then p is continuous,
invariant, and simple, if and only if there exists ¢ € R such that p(I) = cui(I) for all
I €X(ShH.

Proof. Clearly cpuy is a continuous, invariant, and simple valuation for each ¢ € R. On the
other hand, convex bodies I € K(S!) are just closed arcs contained in one hemisphere.
Define ¢ := p(SY)/2n and v(I) := p(I) — cur(I), for all I € K(S'). Then v is also a
continuous, invariant, and simple valuation with the additional property that v(S!) = 0.
We need to show that v vanishes on all I € K(S).

Let n € N and I, be a closed arc of length 27 /n. If we tile S' with rotations of I,, and
note that the intersection of two distinct tiles is only a point (that is lower-dimensional),
then by the invariance and the simplicity of v, we get nv(I,,) = v(S!) = 0, hence v(I,,) = 0
for all n € N. A given closed arc of length 2mm/n can also be tiled by rotations of I,
therefore v vanishes on all closed arcs, whose length is a rational multiple of 27. Thus, by
the continuity of v, we get v(I) = 0 for all I € K(S!). O

Proposition 1.3.2. Let ;: P(S?) — R be a continuous, invariant, simple valuation on S?,
such that p(S?) = 0. Then pu(A) = 0 for all spherical simplices A C S2.

Proof. Let o be a great circle of S?. If we identify o with S!, the valuation v(I) := u(L(I)),
where I € K(S!) and L(I) is the lune through I, satisfies the requirements of the previous
proposition, therefore v = cu; for a ¢ € R. From

2me = cpi (o) = v(o) = u(S?) =0,

we obtain ¢ = 0. Thus, by invariance, p vanishes on all lunes through closed arcs contained
in a half-circle of S2.

Now let A be any spherical 2-simplex, namely A = Hy N Hy N Hy with hemispheres
H,, Hy, H3. We will now write pu(H; U Hy U H3) in two different ways: First, repeatedly
using the valuation property, we obtain

3

p(Hy U Hy U Hy) =Y p(H;) = Y p(H; N Hy) + p(Hy 0 Hy 0 Hy).
i=1 1<J

Since H; N Hj for 7 < j is a lune in S? and y vanishes on lunes as well as on hemispheres,
this equation simplifies to

,LL(Hl U Ho UH3) = ,U,(Hl N Ho ﬂHg) = ILL(A)

Secondly, up to lower-dimensional sets, we have (H; U Hy U H3)¢ = Hf N H§ N HS = — A,
where compliments are taken relative to S?. Using the simplicity and invariance under
reflections of p, we obtain

p(Hi U Ha U Hz) = pu(S%) — p((Hi U Ha U Hp)®) = 0 — p(=4) = —p(4).

Comparing both equations, we arrive at u(A) = —u(A), and thus u(A) = 0. O
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Theorem 1.3.3 (Characterization of spherical area on S?). Let u: X(S?) — R be a
valuation on S?. Then u is continuous, simple, and invariant if and only if there exists
c € R such that u(K) = cuz(K) for all K € X(S?).

Proof. Define ¢ := u(S?)/(4r) and v(K) := u(K) — cus(K) for all K € K(S?). Then v is a
continuous, invariant, simple valuation that vanishes on S?. By the previous proposition,
we therefore have v(A) = 0 for all spherical simplices A. Now, let P € P(S?) be a spherical
polynomial. We can write P as a union of spherical simplices, where the intersections of
distinct simplices are lower-dimensional:

P=AUAU...UA,,

with dim(A; N A;) < 2 for all ¢ # j. Again using the simplicity of v, we deduce
v(P)=> v(A;)=0.

=1

For a general spherical convex body K € K (S?), we approximate K by spherical polytopes
in the Hausdorff metric and then use the continuity of v to obtain v(K) = 0, or equivalently
p(K) = cpa(K). O

Now that we have characterized spherical area, Hadwiger’s theorem on S? follows:

Theorem 1.3.4 (Hadwiger’s theorem on S?). Let u: X(S?) — R be a valuation on S2.
Then p is continuous and invariant if and only if it is a linear combination of spherical area,
spherical length, and the Euler characteristic, that is, there exist cg, c1,co € R such that

n(K) = cox(K) + c1pun (K) + copa(K)
for all spherical convex bodies K € K(S?).

Proof. Clearly, each such linear combination of these three continuous, invariant valuations
is again continuous and invariant. We will prove the other implication by applying the
previous propositions three times:

e Points: Choose any point z € S? and define cg := pu({z}). This value is independent
of the choice of x, because of the invariance of y. Therefore the valuation p — copg
vanishes on all singletons in S2.

o Circles: Choose any great circle ¢ C S?. Then u — coup is a continuous, invariant,
simple valuation on spherical convex bodies in . Identifying o with S, by Proposition
1.3.1, we obtain p — couo = c1p41 on o. If we repeat this step for different great circles
o, the invariance of p — copp implies that the value of ¢; must always be the same.
Therefore

Vi= [ — Copo — C1M1
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defines a valuation that vanishes on all singletons and on all spherical convex bodies
contained in great circles of S?, that is, v is simple.

e Sphere: Since v is a continuous, invariant, simple valuation on X(S?), by Theorem
1.3.3 we have v = copo for a real number ¢y € R.

Summarizing, we obtain pu = coug + c1u1 + capio. O

1.4 Higher dimensional spheres

We now explain why the above arguments can not be generalized to spheres of arbitrary
dimensions. The problem lies in Proposition 1.3.2: Let us assume that we are given a
continuous, invariant valuation p: X(S") — R on S™ with n > 3 and p(S™) = 0, and we
are to show that p(A) = 0 for all spherical simplices A C S™. As in the proof of this
proposition, let us further assume that we have already obtained p(L) = 0 for all lunes
L € S, which are intersections of at most n hemispheres. Now let A = H;N---N H,41 be
a spherical simplex given by the intersection of n + 1 hemispheres. According to the case
n = 2, we again want to express u(Hy U- U H,41) in two different ways. First, repeatedly
using the valuation property (also called inclusion-exclusion principle), we obtain

n+1
M(Hl U-.-u Hn—i—l) = Z:U’(HZ) - Z N(Hh N HiQ) ot (_1)nM(H1 n---N Hn-i—l)'
i=1 11 <ig

Since all terms on the right-hand side except the last one are either hemispheres or lunes,
on which p vanishes, this equation simplifies to

p(Hy U U Hppr) = (=1)"w(Hi N N Hypa) = (=1)"p(A).

Secondly, again up to lower-dimensional sets, we have (HyU---UH,,41)¢ = H{N---NH} | =
— A, where compliments are taken relative to S”. Since p is simple and invariant, as before,
we have

p(HiU---UHppr) = p(S") = p((Hy U+ U Hpg)) = 0 — p(=A4) = —p(4).

This time, putting the two equations together, we only get (—1)"u(A) = —u(A), which for
even n leads to the desired relation p(A) = 0, but for odd n only yields the tautological
expression —u(A) = —pu(A). Consequently, no characterization of spherical volume is
possible by taking this approach in odd dimensions. However, to generalize the inductive
proof from the case n = 2 of Hadwiger’s theorem to arbitrary n € N, we would need a
characterization of spherical volume in all dimensions, not just even ones.

1.5 Replacing continuity by non-negativity

We conclude this first chapter with a characterization result of spherical volume as invariant,
simple, and non-negative valuation by R. Schneider, treated in [Sch78, Theorem 6.2]. Here,
a valuation p: X(S™) — R is called non-negative, if u(K) > 0 for all spherical convex
bodies K € KX(S™). To prove this theorem, we need two lemmata, the first one being an
extension theorem of valuations on spherical polytopes.
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Lemma 1.5.1. Every valuation p: P(S™) — R on spherical polytopes can be extended
uniquely to the class Q(S™) of finite unions of elements of P(S™) such that the valuation
property still holds, that is, u(K) + pu(L) = p(K UL)+ u(K N L) for all K, L € Q(S™).

Proof. By Groemer’s integral theorem [Kla97, Theorem 2.2.1] it is sufficient to show
that anlp, + -+ + amlp, = 0 with P, € P(S") and o; € R, i = 1,...,m, implies
arp(Pr) + -+ - + amp(Py,) = 0, where Ip is the indicator function of a set P. Like in the
Euclidean case, this is proved by induction on the dimension:
If we define S° to be the set containing two antipodal points, the statement follows for
n = 0 and we may now assume it to be true in dimension n — 1. Let us further assume that
we are given spherical polytopes P; € P(S™) and real numbers «;; € R, i = 1...m, with
arlp, + - +aplp, =0, but aju(Pr)+- -+ anu(Pp) =1. (1.1)

m

We have to show that this leads to a contradiction. Let k be the least number of full-
dimensional polytopes in instances of equation (1.1).

If £ = 0, all polytopes are contained in some (n — 1)-subspheres. Define [ to be the
minimum number of such subspheres H;, j = 1,...,[, such that P U...UP,, C HiU...UH|,
over all instances of (1.1), where k = 0. By the induction hypothesis, [ must be strictly
greater than 1. Pick any of these (n — 1)-subspheres, say H;. Since Ip~m, = Ip, Iy, and
also P, N H; C Hy, we have again by the induction hypothesis

ZaiIPzﬂHl =0 and Zaiﬂ(PimHl) = 0. (1.2)
=1 =1

If we subtract the equations in (1.2) from their respective counterparts in (1.1), we arrive
at

> aillp, —Ipm) =0 and > ai(u(P) — p(P; N Hy)) = 0.
i—1 i=1

All polytopes contained in H; cancel out as summands, whereas all the remaining ones
(including the new P; N Hy) are contained in Hy N --- N H;. Hence, we have an instance of
(1.1) with polytopes contained ! — 1 subspheres, a contradiction.

Thus, k£ > 1, and without loss of generality let P; = ﬂ;le;r be full-dimensional, where

H]+ are hemispheres bounded by (n — 1)-subspheres Hj, and set H; = —H;r, j=1,...,r.
Again, since IPinHli = IpiIHli and Ipnpg, = Ip Iy, we have

m m m
E aiIPZﬂHfr = 0, E OCZ'IPmHl = 0, and E aiIPme = 0,
=1 =1

=1

whereas, using the valuation property of u, we also obtain

m m m
> (PN HY) =Y oqu(PN Hi) + Y agu(P N Hy) = 1.
i=1 i=1 i=1
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Since > ", a;pu(P; N Hy) = 0 by the induction hypothesis and Y ;" (P, N Hy ) =0 by
the minimality of k, we have " | a;u(P; N H;") = 1. Repeating this argument with the
remaining H;, we obtain

Zaifpmpl =0 and Z%‘M(Pz‘ NH{N---NH) = Z%M(Pi Nnp)=1.
i=1 i=1 i=1

There have to be other full-dimensional polytopes among the P;, otherwise Y ;" i Ipnp, =
0 could not hold. Iteratively, we notice that all P; have to be full-dimensional, and thus
end up with

m m
Z ailpn.np, =0 and Z%’M(Pl N---NPky) =1,
i=1 i=1
which is a contradiction. O

The next Lemma is about approximating the integral of a function on the sphere by the
sum of a finite number of rotations of that function. For a proof, we refer to H. Hadwiger’s
article [Had43, 3., Satz II].

Lemma 1.5.2. Let f: §" — R be a Riemann-integrable funtion and ¢ > 0. Then there
exist k& € N and rotations 0; € SO(n+1),i=1,...,k, such that

1 1
NI | fi

for all z € S™, where o, is the spherical Lebesgue measure and 3, = 0,(S") = (n+ 1)wp+1.

<€

Equipped with these facts, we are now in a position to prove Schneider’s characterization
theorem for invariant, simple, and non-negative valuations. It is not clear however, whether
this characterization implies a Hadwiger-type theorem for invariant, non-negative valuations
on S™.

Theorem 1.5.3. Let u: P(S™) — R be a valuation on spherical polytopes. Then pu is
simple, invariant, and non-negative if and only if there exists a positive real number ¢ > 0
such that u(P) = cun(P) = cop(P) for all polytopes P € P(S™).

Proof. We follow the proof from [Sch08, Theorem 14.4.7]. First, extend the given valuation
w: P(S™) — R to the class of finite unions of convex polytopes, denoted by Q(S™), which
is possible by Lemma 1.5.1. Note, that pu: Q(S™) — R is still simple, invariant, and
non-negative (elements of Q(S™) can be dissected into convex polytopes having lower-
dimensional pairwise intersections). Using the non-negativity, we see that A,B € Q(S")
with A C B implies p(A) < u(B), for there exists a set A" € Q(S") with AUA" = B
and such that AN A’ is a finite union of lower-dimensional polytopes. We say that u is
monotone.



10 1 Background

Now assume that we are given P € Q(S™) and € > 0. If we plug in the indicator function
of P, f := Ip, into Lemma 1.5.2, we get a number k € N and rotations 6; € SO(n + 1),
i=1,...,k, such that

‘11/(x) - Blna(P)‘ <e (1.3)

for all z € S", where we write v(z) for the number of sets ;' P containing z. Let
Uj={zeS":v(x)>j}forj=1,...,k, then

U; = U ©,'Pn---n6.'P)eo(s)

1<in << <k
is actually a finite union of convex polytopes. By the definition of the U;, we have

k

k
ZI ;1P($) = ZIUJ'(@
i=1

J=1

for all z € S™. Using Groemer’s integral theorem (see the proof of Lemma 1.5.1), we get
the right equality in

k k

ku(P) = 3" (071 P) = 3 u(U)), (L4)

i=1 j=1

whereas the left one follows from the invariance of . We now look for bounds for the right
hand sum. First choose points y,z € S” such that v(y) < v(z) < v(z) for all z € S*. By
definition, U; = S"™ for j < v(y) and U; = () for j > v(z). Using the non-negativity of x for
the left inequality and its monotonicity for the right one, we obtain

k
v(y)uS™) <> uU;) < v(z)u(S"),
j=1

which, combined with (1.3) and (1.4), results in

(Uéf) R 6) uE") < u(P) < (Uéf) + s> u(s").

Letting € go to zero and setting ¢ := u(S™)/B,, we end up with pu(P) = co(P). O




CHAPTER 2

Smooth and generalized valuations on spherical convex bodies

In this chapter we will turn our attention to two special classes of valuations, namely
smooth and generalized ones. A smooth valuation can be represented by two differential
forms, where evaluating that valuation at a spherical convex body K is done by integrating
those forms over K itself and the so-called normal cycle N(K) of K. The set N(K) is
a subset of the tangent bundle T'S™ extending the notion of a Gauss map to sets with
non-smooth boundaries. Later, we will also use the notation N(K) for the functional
obtained by integrating differential forms over this set. The relation between smooth and
generalized valuations can be thought of similar to the case of smooth versus generalized
functions (also called distributions), where the latter ones are functionals on the former.
The main reason why this integral representation of smooth valuations will be of great use
to us, is that it allows to reduce the classification problem of valuations to a classification
problem of differential forms. In the same way, instead of generalized valuations, we can
look at functionals on differential forms, called currents.

2.1 Restricting to proper convex bodies

We will carry over some known facts from valuation theory in R™ to the sphere by using
certain projections from open hemispheres to R™ that take great circles to straight lines
and, thus, preserve convexity. To this end, we have to restrict ourselves to a subset of
spherical convex bodies, namely the proper ones. The upcoming proposition however shows
that no information is lost.

Definition 2.1.1. Let K € X(S™) be a spherical convex body. If K is fully contained in
an open hemisphere, then K is called proper. We will denote the collection of all proper
spherical convex bodies by X,(S™).

For proper convex bodies there always exists a small £ > 0, such that the parallel body
K. is still a convex body contained in that hemiphere, which will later make it possible to
define so-called normal cycles (see Section 2.3).

Proposition 2.1.2. Any continuous valuation p: X,(S™) — R on proper spherical convex
bodies can be uniquely extended to all spherical convex bodies. This extension is continuous
and obtained from the inclusion-exclusion principle.

11
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Proof. We divide this proof into several parts: First, we will show that X,(S™) generates
K(S™) as a lattice, then that p defines an integral on indicator functions on X, (S"), and
finally use Groemer’s integral theorem to obtain the statement.

Step 1: We want to show that every spherical convex set can be expressed as the finite
union of proper spherical convex sets. To do this, let K € K(S™) be any spherical convex
body and denote by ej,...e,+1 the standard orthonormal basis of R**1. Define

HY := {z € S"|(z,v) > 0}, v € R""!,

to be the hemisphere in direction v € R**! and

n+1
€1...€ O €;€4
Kot = K (1) Ho
=1

where ¢; is either 4+ or — for each 1 < ¢ < n + 1, to be the intersection of K with any
combination of the hemispheres in directions +ej ... + e 1. We can write any point
x € Kf1fntl ag ¢ = x1€1 + ... + Tpt16nt1 with sgn(z;) = ¢; for all i € {1,...,n + 1}.
Therefore, as z161 + ... + Zpyr16n+1 > 0, we have

€1...En+1 £€1€e1+...€n+1€n+1
Ko ¢ | nient1

that is, all of the K®1-¢»+1 are proper spherical convex bodies. Since

K = U Ke1...en+1’

(617"'7‘5n+1)7
g =%,
i=1,..,n+1
we have expressed K as a finite union of such sets.
Step 2: Now we need to show, that p defines an integral on indicator functions of proper
spherical convex bodies, that is,

ZaiIKi =0 implies Z%‘M(Ki) =0
i=1 i=1

for all K; € K,(S"), a; € R, i =1,...,m, m € N. We follow the argument of the proof
from a similar theorem for Euclidean space, which can be found in [Kla97, Section 5.1].
Compare also to the proof of Lemma 1.5.1.

We will give a proof by induction on the dimension n and start by noticing, that the
statement is true for n = 0 (where S° is just a pair of antipodal points). So let us assume
that the statement is true in dimension n — 1, but false in dimension n, that is, there exist
proper spherical convex bodies K7, ..., K, € K,(S"), m € N, such that

m m
ZaiIKi =0 but Zam(Ki) =1, (2.1)
=1 i=1
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and try to deduce a contradiction. Therefore let m be the smallest number, such that
instances of (2.1) exist. Further choose any (n—1)-subsphere H with associated hemispheres
H?*, such that K is contained in the interior of H*. Since Ig,ng+ = Ik, Ip+ and
Ig,nm = Ik, Iy for all i € {1,...,m}, by (2.1) we have

m m
> ailgngs=0 and Y ailxnn =0.
i=1 =1

By using the valuation property, we also obtain
m m m m
Z a,',u(Ki) = Z ai,u(K,; N H+) + Z Oéiﬂ(Kz' N H_) — Z am(Ki N H)
i=1 i=1 i=1 i=1

As all of the sets K;NH lie in a subsphere of dimension n—1, by the induction hypothesis, we
have 7" a;pu(KGNH) = 0. Also, since K1NH ™~ = (), we must have Y ;" | a;u(K;NH ™) =0,
because otherwise there would be an instance of (2.1) with less than m bodies, so (2.1)
reduces to

m m
Y aip(EinHY) = aip(K;) =1.
=1 =1

Choose now a sequence of great circles Hj, such that the associated hemispheres H;r all
contain K in their interiors and such that

o0
K| = ﬂ H.
j=1

If we iterate the above argument by setting H = Hq, replacing K; with K; N Hy as the
new starting bodies, intersecting with Hs, and so forth, we obtain

m
Zam(Kmen--mH,j):l
=1

for all k € N. Taking k£ to infinity and using the continuity of u yields

Z aiu(Ki N Kl) = 1.
=1

As Ig,ni, = Ik, Ik,, we also have

m
§ ailknk, = 0.
i=1

Again, iteration of this process of choosing (n — 1)-subspheres around K, but replacing



14 2 Smooth and generalized valuations

K1 by Ko, ..., K, leads to

i=1 =1

which means oy + ...+ a; 0 and Ky N...N K, # (). On the other hand

m m
ZaiIKlmmme = g (67 IKmmme =0
i=1

i=1

implies either ay + -+ + a;, =0 or K1 N---N K, = 0, which is a contradiction.
Step 3: We can now apply Groemer’s integral theorem, which says that if y defines an
integral on indicator functions, that is,

m m
Z a;Ix, =0 implies Z aip(Ki) =0,
i—1 =1

there exists a unique extension of p, obtained from the inclusion-exclusion principle (see
also Section 1.4), to the set K(S™) of spherical convex bodies, generated by XK, (S").

Step 4: To see why p is still continuous on K(S™), let K; € K(S™), i € N be a sequence of
possibly non-proper spherical convex bodies converging in the spherical Hausdorff topology
to K € X(S™). Asin Step 1, consider again intersections of K; with orthogonal hemispheres:

n+1
Kot = K0 (1) HE

)
=1

Since these are all proper spherical convex bodies and K f Lfntl ) K1-€n41 g tends to
infinity (note that if K€1+-n+1 is the empty set, then K;'“"*' has to be empty for almost
all 7 € N too, since K and the hemispheres are all compact sets), we have

M(Kfl"f"“) — p(KEEntt) ag i — 00
for all combinations of +e; ...+ e,41, hence
u(Ki) = p(K).
by the inclusion-exclusion principle. O

Remark 2.1.3. In fact, what we showed in the last proof was that u can be uniquely
extended to finite unions of spherical convex bodies, which are also generated by the set
K,(S™), although continuity is lost here. These are sometimes called spherical polyconvex
bodies.
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2.2 Currents

The space of currents on a manifold M, where M will be either S™ itself or (a subset of)
its tangent bundle, will be defined as the topological dual to the space of differential forms
on M, therefore we need a suitable topology on the latter. Let

I(kn):={a=(a1,...,ap): a; N1 <ag <...<ap<n}

be the the set of ordered multi-indices and U C M an open subset of M with coordinates
(x1,...,2n): U — R™ We define the space of infinitely differentiable k-differential forms
with compact support in U by

DHU) = Z WadZe | we € C°(U)
acl(k,n)

and the space of infinitely differentiable k-differential forms on U by

eRU) = Z Wadxy | we € C®(U) p
acl(k,n)

where dzo = dzo, A ... Ndzq,, if o = (a1,...,a;). The support of w will be denoted by
spt w and is the smallest closed set V' C U such that wy(x) = 0 for all x € V \ U and
a € I(kn).

A topology on EF(U) is given by the following neighborhood base at zero: For every
natural number ¢ € N, every compact set K C U, and every ¢ > 0, let

lw,

Uike = w= Z wadze € EF(U):  sup 5T

acl(kn) zeK,|J|<i

)| <eyp,

where J = (j1, ... ,jn) is another multi-index, |J| = ji1+- - -+, and taking the |.J|-derivative
means
Mlw,, iteting

oz’ dxlt ...zl

Since €¥(U) is a linear space, the collection of all Ui k. induces the desired topology.
From this we also get a topology on D¥(U) by saying O C D¥(U) is open, precisely if
{w € O |sptw C K} is open in E¥(U) for all compact sets K C U.

A sequence wy,ws,... € D¥(U) converges to w € DF¥(U) in this topology, if and only
if there exists a compact set K C U such that spt w; C K for all ¢ € N and if all
partial derivatives of any order of the coefficients w; o converge uniformly to the respective
coefficient w, of w.

Now the space of infinitely differentiable (compactly supported) k-differential forms on
M, denoted by E¥(M) (resp. D¥(M)) is the space of all smooth k-forms on M together
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with the initial topology induced by the restriction maps mp: E¥(M) — EF(U) (resp.
Dk(M) — DE(U)).

Definition 2.2.1. The space of k-dimensional currents, denoted by Dy (M), is the space
of continuous, linear functionals on the space D¥(M) of infinitely differentiable k-forms
with compact support in M, endowed with the topology described above.

Remark 2.2.2. If k = 0, we have D°(M) = C°(M) and Do(M) is called the space of
generalized functions or distributions.

Furthermore, denote by D*(M) = P, DE(M) and D, (M) := @Di>0 Dr(M) the
spaces of all differential forms and currents, respectively. There is a natural way to derive
new currents from given ones:

Definition 2.2.3. Let T' € Dy(M) be a k-dimensional current. The boundary of T,
denoted by 0T, is the (k — 1)-dimensional current given by

0T (w) :=T(dw),

where w € DF(M) and d: D*1(M) — D¥(M) is the exterior derivative on differential
forms. Furthermore, a current 7' € Dy (M) is called a cycle, if 9T = 0.

There are two important topologies on the space of currents, the flat and the weak
topology. For now, we only need the latter one:

Definition 2.2.4. Let (Tj),cn be a sequence of k-dimensional currents in Dy (M). We say
T; converges weakly to T € Dy(M), T; — T, if Tj(w) — T(w) for all k-forms w € D*(M).

Since integrating differential forms over various subsets of S™ and T'S™ will be a prominent
example of a current, we give a short explanation of how to integrate smooth k-forms
over k-submanifolds of some R™. The material is taken from [Gia98, Section 2.2], for
a detailed description also confer [Ber12, Chapter 1]. First, let M be an embedded,
oriented, k-dimensional C'-submanifold of R™ with local oriented charts (U;,1;) and local
parametrizations ¢;: RF OV — M N U;, with ¢; = 1/);1.

If w is a smooth k-form on M, or in a neighborhood of M in R™, supported in one of
the U;, spt w C U;, the integral of w over M is defined by

/w;:/¢;w:/<¢;w(u),e1A...Aekmﬂ{’f(u),
M 1% 1%

where e; A ... A ey is the canonical k-vector in R¥, H* is the k-dimensional Hausdorff
measure, and ¢; the pull-back of ¢; given by

(pjw(u),er Ao ANeg) = w(i(uw))(Doi(u)er A ... A\ Doi(u)eg).

Independence of the chosen oriented chart follows from integration by substitution, since
coordinate changes are orientation preserving C'-diffeomorphisms. If, more generally, spt w
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is not contained in a single U;, we define

[e=X [t (2.2)
M

iy.] 14

where {n;} is a partition of unity subordinate to {U;}.

The typical submanifolds we will integrate differential forms over will however not always
admit C', but only Lipschitz-parametrizations. On the other hand, by Rademacher’s
theorem, we know that Lipschitz maps are C'! almost everywhere, so equation (2.2) also
suffices to define the integral of a smooth k-form w over a submanifold M, given by local
parametrizations ¢; that are only Lipschitz-continuous maps.

2.3 Normal and conormal cycles

Normal cycles of spherical convex sets will be the objects over which we will integrate
differential forms to obtain valuations. If K is a spherical convex body with smooth
boundary, one can think of the normal cycle N(K) of K as the graph of the Gauss map,
which gives the unit normal vector at every boundary point of K. However, if K is not
smooth, there might be boundary points, such as corners for example, where we have to
collect a lot of normal vectors at one point. This is described in the following.

Definition 2.3.1. Let K be a spherical convex body and x € 0K a boundary point of K.
Define the tangent cone Tan(K,z) of K at x to be

Tan(K,z) :={w € T,;S" | 3¢ > 0,v: [0,¢] = K,~(0) = z,7/(0) = w},

which is the closure of the set of all tangent vectors v to S” at x, such that there exists a
small geodesic arc in direction w starting in .

The normal cone Nor(K,x) of K at x is then defined as the polar cone to Tan(K, x) in
T,S™:

Nor(K,z) :={v € T,;S" | (v,w) <0 for all w € Tan(K, x)}.
The disjoint union of the Nor(K, z) will be denoted by

Nor(K) := U {(z,v) | v € Nor(K,z)}
z€OK

and after normalizing, we finally arrive at the normal cycle N(K) of K:
N(K) := {(z,v) € Nor(K) | (v,v) =1},

which is a subset of the sphere bundle SS™ = {(x,v) € TS™ | (v,v) =1} C TS".

Remark 2.3.2. Note that the sphere bundle is not globally diffeomorphic to S” x S*~1, but
locally, that is, if H is any hemisphere, we have

SS" N 7gi (H) = H x S™ 1,
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where 7gn : TS™ — S™ maps a tangent vector to its base point. In this way, it makes sense
to consider Lipschitz maps into SS™ N w~!(H) by pulling back the metric from H x S*~1.

Lemma 2.3.3. The sphere bundle SS” is compact. Therefore D*(SS™) = EF(SS™).

Proof. Let H be any great (n — 1)-subsphere with associated closed hemispheres H*. Then,
by using the above projection, we can write

SS" = (SS" Nmga (HY)) U (SS™ gl (H)),

~H+xSn—1 ~H—xSrn—1

where the two sets below are compact. Hence SS™, as a finite union of compact sets, is
compact too. O

Remark 2.3.4. In the same way, one can show that the sphere bundle of any compact
manifold is compact.

Remark 2.3.5. Sometimes it will be convenient to identify
T,S" 2R} := {y € R"*! | (z,y) = 0},

for any x € S”. Then, for any proper spherical convex body K € X,(S™), its normal cycle
N(K) can be identified with a subset of S” x §" ¢ R**! @ R"*! via

N(K)NT,S" C {2} x SI7,

where S?71 ;=S N R~

Now for the conormal cycle and conormal cones we will change our point of view and,
instead of looking at possible normal directions to a set, consider all possible tangent
planes, which live in the cotangent space as kernels of linear functionals on the tangent
space. Any identification of the tangent and the cotangent space as real vector spaces of
the same dimension also yields an identification of the two cones, but the advantage of the
conormal cycle lies in its invariance under diffeomorphisms, which is not guaranteed for
the normal cycle, since angles and in particular normal directions need not to be preserved
under arbitrary differentiable maps.

Definition 2.3.6. The conormal cone Nor*(K, z) of K at x is the subset of the cotangent
space (T,S™)*, defined by

Nor*(K,x) :={€ € (T;5™)" | {(w) < 0 for all w € Tan(K, z)}.
The disjoint union of the Nor*(K, z) will be denoted by

Nor*(K) := | {(z,v) | v € Nor*(K, x)}.
reOK

The cosphere bundle (SS™)* is defined as the factorization of the cotangent bundle by
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positive real numbers:
(SS™)* := PL((TS")"),

where P ((T'S™)*) = ((T'S™)*\{0})/r_., that is, (z.,£), (y,n) € (T'S™)* are equivalent if and
only x = y and if there exists A € Ry such that w = An. If w: (TS")*\{0} — (SS™)* is the
natural projection, then the conormal cycle N*(K) is given by

N*(K) := m(Nor(K)\{0}).

Remark 2.3.7. Note that normal- and conormal cycles are defined on convex bodies in
R+ in excactly the same way as above. Since geodesics in R"*! are just straight lines,
we have a simpler description of the tangent cone of K € X(R"*!) at a point z € R**!:

Tan(K, z) := {w € T,R* | (y — z,w) <0Vy € K}.

By choosing an inner product on each tangent space at points x € S™ one obtains a
natural identification of the normal- and conormal cycle. In our case we can use the product
given by the restriction of the Euclidean scalar product of the ambient space R®*!. Thus,
the map

7: SS"™ — (SS™)*,
v = (vy)];
where [w] denotes the equivalence class of w in the cosphere bundle, induces the desired
bijection from N(K) to N*(K).
Remark 2.3.8. Using 7: SS™ — (SS")*, we immediately see, that (SS™)* is compact too.

There lies an advantage in "forgetting" about our usual scalar product coming from R”+!
and using the conormal cycle, namely its invariance under diffeomorphisms:

Lemma 2.3.9. Let M;, M, be subsets of S” or R, ¢: M; — My a diffeomorphism
from M; onto M,, that takes convex bodies to convex bodies, and K a (proper spherical)
convex body in M;. Then

¢«(N*(K)) = N*(¢(K)),
where the push-forward of w € T* My is its pull-back under the inverse map ¢,w := (¢~1)*w.

Proof. Let x € OK be any point in the boundary of K and wy € Nor(K,z). First, we
notice that, since ¢ takes curves in K to curves in ¢(K), ¢, takes inward pointing tangent
vectors in T K to inward pointing tangent vectors in Ty, (K),

¢+ (Tan(K,x)) = Tan(¢(K),p(x)).
For vy € Tan(¢(K),p(x)), we have va = ¢4 (v1), v1 € Tan(K,z), and

du(wr)(v2) = (671 (w1)(du(v1)) = w1 (6™ )u(u(v1))) = wi(v1) <O,
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therefore ¢, (w;) € Nor*(¢(K),¢(x)). Applying the same argument to ¢!, we arrive at

¢«(Nor(K,z)) = Nor(¢(K),¢(x))
and thus ¢.(N*(K)) = N*(¢(K)). O

Remark 2.3.10. Note that the above lemma also holds true for normal cycles, if the
diffeomorphism ¢ is an isometry. In our case, we will have SO(n + 1) D ¢: S* — S™.

Now we introduce the already mentioned projections of open hemispheres that preserve
convexity, and thereby follow [Sch16, Section 4].

Definition 2.3.11. Let v € S” and H* = {x € S" | (z,u) > 0} its associated hemisphere.
The map

gut (H")’ = R,

X —

—u

(u)
where (H*)? denotes the interior relative to S™ of H, is called gnomonic projection in
direction u.

Lemma 2.3.12. For each hemisphere H“, u € S", the gnomonic projection g,: (H*)? —
R? is a diffeomorphism, that takes great circles to straight lines. In particular, it induces a
one-to-one correspondence between spherical convex bodies in (H*)? and convex bodies in
R?.

Proof. For any given point z € (H")?, g,(z) is obtained geometrically in the following
way: First, take the straight line passing through the origin and x and intersect it with the
tangent plane to S™ at u. Then translate that intersection point by —u. Any great-circle,
after connecting all of its points with the origin, leads to a two-dimensional subspace,
which, intersected with the tangent plane at u, yields a straight line. Hence, convex sets
are mapped to convex sets under g, Conversely, the same is true for g; .

By its defining formula, we see that g, is smooth. Moreover, note that g;!: R? — (H%)®
is given by

r+u
X )
|z + ul
which is also a smooth map. ]

Lemma 2.3.13. Gnomonic projections preserve Hausdorff convergence, that is, if H",
u € S" is any hemisphere, g,: (H*)? — R? its associated gnomonic projection, and
K;,i € N a sequence of spherical convex bodies converging to K C (H*)" in the spherical
Hausdorff topology, then also g, (K;) — g, (K) in the Euclidean Hausdorff topology and
vice-versa.
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Proof. Since K is properly contained in the open set (H")?, there exists § > 0 such that
K;,K C H{, i € N, where

Hy .= {x e H* | dist(x,0H) > ¢}.

Since the restriction of g, to H§' is a diffeomorphism onto some ball of radius R > 0 around
the origin in R} and Hy' is compact, g,: H§ — Br C R} is a Lipschitz map with Lipschitz
constant L. On the other hand we can write the Hausdorff distance of two (spherical)
convex bodies as

dist K L) = ind ind
st (.) = o e d g o), i )

where d(4)(z,y) is the regular (spherical) distance of two points z,y. Thus,

dist K),¢(L)) =max4q max min d(x,y), max min d(x,
(6. 0(0) = max { mox min d(eg), mwx iy dog) |

= max {max min d(¢(x),¢(y)), max min d(o(x) 7(i>(y))}

reK yeL zel yeK

< Lmax < maxmin dg(x max min dg(x
< L {magmin . (o). oy ds o)

= Ldistsy (K, L),
which finishes the proof, since the same argument can be applied to g;!. O

We will show now that integration of differential forms over the normal cycle indeed
yields a current. To do so, by the discussion at the end of the last section, all we need is a
Lipschitz-parametrization of N(K) in the sense of Remark 2.3.2.

Proposition 2.3.14. Let K € X,(S™) be proper, that is, contained in an open hemisphere
(H")Y of S", and € > 0, such that the parallel body K. := {z € S"|dist,(z,K) < ¢} still
lies in (H“)?. Then there exists a bijective Lipschitz map Px: 0K. — N(K).

Proof. Similar to Euclidean space, there is also a nearest point projection map px: H — K
on the sphere, that sends a given point x to the unique nearest point px(z) contained
in K. One can see this either by imitating the proof in the Euclidean case or using the
gnomonic projection g, of (H*)? onto R?, that takes geodesics to geodesics.

Furthermore, let vy (z) € T, (,)S™ be the unique unit tangent vector such that the
geodesic leaving pg (x) in direction vg (z) is exactly the minimizing geodesic joining pg ()
and x. Now define

Pg(z) := (px(z),vi(T)) .

This map is a bijection from the boundary of every parallel body 0K., € > 0, that is still
contained in (H*)? to N(K), with inverse map given by taking the geodesic that starts at
x in direction v for (x,v) € N(K) and intersecting it with K.
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Let Hy := {x € H" | dists(x,0H) > ¢} be the set of all points in H" with distance at
least 6 > 0 from the great (n — 1)-subsphere JH". Then under the gnomonic projection
9u, Hj is mapped bijectively onto a ball around the origin in R7}. Let K be the image of

K under this map. Then the corresponding Euclidean projection Py is given by

z—pg(x) ) 7

o= pr ()]

Prlo) = (7o)

where pr is the corresponding Euclidean nearest point projection onto K. Since pj is
Lipschitz-continuous, 15;{ is a bi-Lipschitz map. But because the gnomonic projection is
differentiable and Hy' is compact, it is also Lipschitz, yielding that P is also a bi-Lipschitz
homeomorphism. O

By the last proposition, we know that N(K) is an (n — 1)-dimensional Lipschitz-
submanifold of the sphere bundle SS™ C T'S". Hence, for an (n — 1)-form w € D"~1(SS"),
we can define the integral

/w:: /P}}w
N(K)

0K

of w over N(K).

Remark 2.3.15. Sometimes we will abbreviate [ Ny w by N (K)(w), that is, we will identify
the set N(K) with the - as we will see in the next proposition - current obtained by
integration over this set.

We collect some important properties of normal and conormal cycles, the first one being
that they are indeed cycles:

Proposition 2.3.16. Let K € X,(S™) be a proper spherical convex body. Then its normal
cycle N(K) (and also its conormal cycle N*(K)) as a function on D*~1(SS") | acting on
differential forms by integration, is a cycle, that is, it is a current that has zero boundary.

Proof. First, we show that N(K) is a current, that is, it is continuous with respect to the
topology on D"~ 1(SS™). Therefore let w;,i € N, and w be smooth (n — 1)-forms in the
sphere bundle with w; — w, as i — co. Using the above notation, we have

/wiz/PI*{wi—>/P[*(w: /w,

N(K) 0K 0K N(K)

where convergence of the integrals holds, because the coefficients of the w; in every chart
U converge uniformly to the respective coefficient of w.

To see, why it is a cycle, we use the fact that the exterior derivative of differential forms
commutes with their pullbacks, and that by Stokes’ theorem the integral of any exact form
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over a manifold without boundary is zero:

ON(K)(w) = N(K)(dw) = [ do= [ Pitaw) = [ dtPie) =0.

N(K) oK. oK.

By pulling back along the map 7: SS™ — (SS™)* introduced just before Remark 2.3.8, we
see that the same is true for N*(K). O

Next, we will show that integration over the normal cycle is a continuous map from
the set of proper spherical convex bodies with the Hausdorff topology to the space of
(n — 1)-dimensional currents, equipped with the weak topology.

Proposition 2.3.17. Let K, K; € X,(S"),i € N be proper spherical convex bodies and
K; — K as i tends to infinity in the Hausdorff metric. Then the normal cycles of the

K; converge weakly to the normal cycle of K, that is, for every differential (n — 1)-form
w € D" 1(SS™) we have

/ w — / w asi— 00.
N(Kq) N(K)
The same holds true for the conormal cycles.

Proof. We take J. Fu’s proof for the Euclidean case given in his lecture notes on integral
geometry [Full, Section 2.10] and carry it over to the sphere using a suitable gnomonic
projection. So for now let K;, K be convex bodies in R” with their Euclidean normal cycles
N(K;), N(K), i € N, and let w € D" }(SR") be an (n — 1)-form on the sphere bundle

SR" := {(z,v) € TR™ | (v,w) =1} C R" § R" = R*"

of R™. Furthermore choose R > 0 big enough such that all the K; and K are contained in
the ball B with radius R around the origin.
Step 1: Define the comass of a k-form 1 € DF(R™) to be

lnll :== sup [na(v1,. .. vk)l.
TER™ |v;|=1

Our first goal is to prove the following estimate: If g,h: 0Br — R?*" are C''-maps, then

/aB g'w— h*w’ < llg = hlle (1Dgllso + [ Dhlloc)™ " [ldwl| vol,—1(9Br).
R

We start by defining the following map F': [0,1] x 9B — R?*" by

F(tyx) .= (1 —t)g(x) + th(z).
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Using Stokes’ theorem, we can rewrite the integral to obtain a first estimate:

Fw

/BBR gw b /a([o,u « Bp)
oo.1 x Br)

{0} x0BRrU{1}x0BR

- / d(F*w) < vol,_1(0BR) || F*dw.
0,1]xOBg

= / F*dw
[0,1]x0Bg

Moreover,
|F*dw]| = sup | F*dw, (0,01, - . . yup—1)]
r€IBR,|vi|=1
= sup |dwp (@) (FuOp, Fyvt, . .o Fevn_1))|
IGBBR,‘Uﬂ:l
< ||dw]| sup | Fio||Fsv1|. .. |Fiop—1]
2€IBR,|vi|=1

< lldwllllg = Allss (I Dgllsc + | Dhlloc)" ",

which completes the first step.

Step 2: Next, we want to show that for a sequence of Lipschitz maps f;: 0B — R?",
i € N with uniformly bounded Lipschitz constants Lip(f;) < L that converge uniformly to
a Lipschitz map fp, the integrals

fi*w — f*w
O0BRr OBRr

also converge. To do this, for each i we choose C'-maps h; and g;: 0Br — R?" with the
following properties:

lgi — fillse = 0, |1Dgilloo < L. / giw — fiw — 0,
OBRr

Ihi — folloo = 0, [ Dhillos < L. / hiw — fiw — 0.

OBR

This can be done by convoluting f; and fy with approximate units
gi = fixvi, hi= foxvi,

where v, (z) = e~ Dy(e~1z) and v € C*®°(R") is a compactly supported function with
fR" v = 1. Notice that this is possible because we can extend Lipschitz functions f with
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Lip(f) = L from 0Bpg to R™ by setting

fly) = xeig]ng(f(w) + Ld(,y)),

while keeping the same Lipschitz constant. By the triangle inequality, we have ||g; — hi||co —
0 and thus, by applying the inequality from Step 1,

1—00

/ giw — hfw’ <lgi — hiHOO(ZL)”*lHde vol,—1(0Br) — 0.
OBRr

Therefore
lim fiw= lim giw = lim hjw = lim fow.
1—00 BBR 1—>00 6BR 1—>00 8BR 1—>00 8BR

Step 3: Similar to Proposition 2.3.14, we now define maps Pg,: 0Br — R?" and
P 6BR — RQn,

Pr(a)i= (profe). S22 ) Pta) = (o), 22

o = pr ()] = pi ()]

where pg, and pg are the Euclidean nearest point projections onto K; and K. These
projections pg, all share the same Lipschitz constant Lip(pk,) = 1 and converge to pg
pointwise, since K; — K in the Hausdorff metric. Pointwise convergence of Lipschitz
functions on compact spaces implies uniform convergence, hence we have also px, — px
uniformly on 0Bg. For z — x — pk,(x), we have

|z —pr,(2) — (y — p, (¥)] < |2 =yl + IpK, (%) — pr, (y)] < 2|z —yl,

and since dist(K;,0Br) > € > 0, also |x — pg,(z)| > € > 0 for all x € 0Bg. Therefore the
normalization

T — PK; (‘T)

T
| — pre; ()|

and hence the maps Pk, are uniformly Lipschitz continuous with Pg, — Pk uniformly on
0Bpr. Furthermore Pk, (0Br) = N(K;) and Px(0Br) = N(K). This is true because for
(z,v) € N(K) all points on the line x + tv, t > 0, including its intersection with OBp, are
mapped to (z,v) by Pg. Now we can just apply Step 2 to obtain the desired result in the
Euclidean case:

N(Ki)(w):/aB Prw — - Prw = N(K)(w).

By pulling back to the cosphere bundle, we see that N*(K;)(w) — N*(K)(w) for w €
Dn=1((SS™)*) also holds.
Step 4: Now we carry over the statement from Step 3 to the sphere. To this end let
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K;, K, i € N, be proper spherical convex bodies with K; — K in the spherical Hausdorff
topology. Moreover, let H*, u € S", be the hemisphere in direction u, such that K and
without loss of generality all the K; are contained in the interior of H*. Then there exists
a gnomonic projection g, : (H*)? — R? such that g,(K;) and g, (K) are convex bodies in
R} = R™ with g,,(K;) = ¢g4(K) in the Hausdorff topology by Lemma 2.3.13.

Using first diffeomorphism invariance of integrals (here the diffecomorphism is g, : T'S™ —
TR?) and then the invariance property of conormal cycles shown in Lemma 2.3.9, we
obtain

N*(Ki) (@) = gue(N*(Ki) ((922)" (@) = N*(9u(Ki)) (924 ()
I3 N (9u(F))((92)") = gun (N*(K))((g51)7) = N*(K)(w)
for all w € D((SS™)*). Again, pulling back to the sphere bundle yields
N(K)(w) =F N(K)(w)
for all w € D(SS™) O

In the next section, we show that normal and conormal cycles satisfy the valuation
property.

2.4 Smooth valuations

We are now going to introduce the important subspace of smooth valuations on spherical
convex bodies.

Definition 2.4.1. Let u: X(S™) — R be a valuation on spherical convex bodies. If there
exist an n-differential form 7 € D™(S™) on S and an (n—1)-differential form w € D"~ 1(SS?)
on SS" such that for all proper convex bodies K € X,(S"), 1 can be written as

M(K)—/n+ / w,
K N(K)

then p1 = p, ., is called a smooth spherical valuation. Denote the space of all smooth
valuations on spherical convex bodies by V*°(S™).

The next theorem, which we will carry over from the Euclidean setting, where it is
already well known, shows that such valuations actually exist.

Theorem 2.4.2. Let n € D*(S") and w € D" 1(SS"). Then there exists a valuation
p: K(S™) — R on spherical convex bodies, such that p = fi,, that is,

M(K):/U+ / w,
K N(K)

for proper spherical convex bodies K € X,(S"™).
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Proof. We start by defining p: X,(S™) — R on proper spherical convex bodies as above,
w(K) = /7} + / w.
K N(K)
By Proposition 2.1.2, we only have to show the valuation property
u(K) + (L) =p(KUL)+p(KNL)

for all proper K, L, K UL € X,(S"), to ensure it extends uniquely to all spherical convex
bodies. To do so, let K, L € K,(S™) such that their union is also in K, (S"), and let H" be
the hemisphere in direction u € S”, such that K U L C (H“)?. Furthermore, let 7 be the
diffeomorphism from the sphere to the cosphere bundle

71 SS™ - (SSM)*,
v [(v,)],

and also
N(K)(w) + N(L)(w) = N*(K)(@) + N*(LK)(w),

where @ := 7 (w) = (771)*(w). Using invariance of the integrals under the diffeomorphism
Gus: TS™ — TR?, Proposition 2.3.9, and setting & := (g;,})*@, we obtain

N (K)(W) + N (L)(@) = gus (N"(K))(@) + gux (N (L)) (@)
= N (9u(K))(@) + N*(gu(K))(@)-

In the series of papers [Ale06a], [Ale06b], [Ale08], [Ale07] by S. Alesker, in part joint with
J. Fu, it has already been shown that integration of differential forms against normal and
conormal cycles yields a valuation on convex bodies in R" (see [Ale08, Corollary 2.1.10]),
hence

N*(gu(K))(@) + N*(9u(K)) (@) = N*(gu(K) U gu(L))(@) + N*(gu(K) N gu(L)) (@),
which is moreover equal to

N*(gu(K U L))(@) + N*(gu(K N L)) (&),
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since g, is a bijection. Doing the above steps in reverse order yields
N*(gu(K UL))(@) + N (9K N L)(@) =
= Gux(N* (K U L))(®) + gus (N (K N L)) (@)
=N (KUL)(w)+ N*(KnNL)w)
=NKUL)(w)+ N(KNL)(w).
Summing up, we obtain
u(K) + p(L) = p(KUL)+pu(KNL),
which proves the claim. O

Remark 2.4.3. In Euclidean space R™ there is another way to introduce the subspace of
smooth valuations: If we denote by C'V(R™) the space of continuous valuations on convex
bodies together with the topology of uniform convergence on compact subsets of K(S™), one
can show that CV(R"™) is a Fréchet space. Furthermore, define the space of quasi-smooth
valuations QV (R") as all p € CV(R™) such that for each K € K(S") the map

[0,1] x R" — R,
(t.x) = p(tK + @),

is n times continuously differentiable and moreover the map
K(S™) — C™([0,1] x R™),
K= [(tx) = p(tK + z)],

is continuous. One can further show that QV (R™) is also a Fréchet space, with its topology
induced by the family of seminorms

1l := sup{|p(tK + 2)[|cn(o,1yxc | K C G},

where G runs through all compact subsets of R”. There is a natural representation of
the group GL(n) := GL(n) x R" of affine transformations on QV (R™) that is continuous,
namely

p: GL(n) — GL(QV(R")),
0 — p(0),

where
p(0) ()(K) = (0~ K)

for p € QV(R™) and K € K(S"). Now, the space of smooth valuations are all © € QV (R"),
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such that the map

GL(n) = QV(R"),
0 — p(0)(1),

is infinitely differentiable. Alesker has shown that, as a consequence of his Irreducibility
Theorem, in R™ this notion of smoothness and the one using integration over normal cycles
coincide ([Ale06a, Theorem 5.2.1]). It is not known however, if a similar result is true on
the sphere after replacing the group GL(n) with, for example, O(n), acting naturally on
continuous spherical valuations.

The next statement is a consequence of Proposition 2.3.17:
Proposition 2.4.4. Every smooth spherical valuation is continuous.

Proof. Let pip: X(S™) — R be a smooth valuation on spherical convex bodies and
K; € X,(S™), i € N, a sequence of proper spherical convex bodies converging to K € X,(S™)
in the Hausdorff topology. As the volume of the symmetric differences vol(K; AK) tends
to zero as ¢ — 0o, we have

[n— [
K; K
Furthermore, because of the weak continuity of normal cycles (Proposition 2.3.17),
/ w— / w,
N(Kq) N(K)

hence p(K;) — pu(K). Now we can use Proposition 2.1.2 to obtain the same for all spherical
convex bodies. O

Remark 2.4.5. In Theorem 2.4.2 we obtained a linear map from differential forms to smooth
valuations, given by

w: DU(S™) @ D"L(SS™) — VR (S™),

) [Ko [+ [ o],
K

N(K)

for all proper spherical convex bodies K € K,(S"). One can now ask, what the kernel
of this map is. In [Ber07, Theorem 1] A. Bernig and L. Brocker showed that ¥, ., = 0
precisely if,

e Drw+ m5.n =0 and

. fspsnw =0 for all p € S™,
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where mgn : SS™ — S™ is the projection to the base point of a tangent vector, S,S™ = wgnl (p),
and Dg: D" 1(SS") — D"(SS") is the Rumin operator, a second order differential operator
(see [Ber07, Section 1]).

2.5 Generalized valuations

In the last section of this chapter we will look at a completion of the space of smooth
spherical valuations, therefore we need a topology on V*>°(S™). In [Ale06b, Section 3.2],
Alesker has shown that the topology on D™(S™) @ D"~ 1(SS") that we described is actually
a Fréchet space topology, and that the kernel of the map

w: DU(S™) @ D"L(SS™) — V(ST

introduced in Remark 2.4.5 is a closed subspace. Hence, the quotient topology on (D™ (S™)®
D=1(SS")) /kerw yields a topology on V*°(S™) under which it is also a Fréchet space. We
then have

Up, i = Kl—)/m—i—/wi 12? Kb—)/n—i—/w =Y, o,

K N(K) K N(K)
if and only if [n;, w;]~ — [1,w]~, where equivalence is taken with respect to ker ¥.

Definition 2.5.1. The space of generalized valuations on S™, denoted by V~°°(S™), is the
topological dual space of V*°(S™), equipped with the above Fréchet topology, that is

V=S 1= (V2 (SM))*.

Equipped with the topology of weak convergence, V~°°(S") becomes a topological vector
space in its own right. Since the natural projection

m: D*(S") @ D"H(SS") = (D"(S") & D" H(SS")), kerw
and the embeddings

11: DYS™) — D*(S™) @ DL(SSM),
Lo: DPL(SS™) — D(S") @ DH(SS™)

are continuous, we obtain for each 1) € V™°°(S") a pair of currents (E, F'),, by
E:=vomour, F:=1vYomou,
with £ € D, (S") and F € D,,_1(SS™). By the linearity of 7 and ¢; 2, we get a linear map

v*: V_OO(S”) — Dn(Sn) S :Dn—l(SSn)7
?ﬂ = (E7F)1/)



2.5 Generalized valuations 31

This map is injective, since ¥*(¢)) = 0 implies that 1 vanishes on Im¥ o 7 0 ¢ 2 and these
images generate V°°(S™). Furthermore, the image of ¥* are all pairs of currents that vanish
on ker¥. To summarize, we have the isomorphisms

V(S™) = (D(S™) © D" H(SS™)) /kerws
V=S = (ker @)t € Dy (S") & D1 (SS™).






CHAPTER 3

SO(n)-invariant forms and currents

Since we have obtained valuations from integration of a differential form in the last chapter,
instead of looking at invariant valuations we will now focus our attention on invariant
differential forms, namely (n — 1)-forms on the sphere bundle as well as n-forms on the
sphere. The sphere bundle is an odd-dimensional manifold that is naturally equipped with
a contact structure to which we will give an introduction in the first section of this chapter.
Because our results rely on classical invariant theory, there will be also a section devoted
to finding polynomial invariants of SO(n) on real n-dimensional Euclidean spaces. After
having determined the invariant differential forms, we will look at invariant currents too,
since this will allow us to classify invariant generalized valuations on the sphere.

3.1 Contact geometry

Before we start with contact manifolds, we will review their even dimensional analogues,
symplectic manifolds. In this section we follow A. Cannas da Silvas book ’'Lectures on
Symplectic Geometry’ [Sil01] that covers both topics.

Definition 3.1.1. Let V be a real vector space of finite dimension and 2: V xV — R a
bilinear map. If {2 is skew-symmetric and nondegenerate, it is called symplectic and (V, §2)
is called a symplectic vector space.

Proposition 3.1.2. Any symplectic vector space V has a basis ey, ..., ep, f1,..., fn, such
that £2(e;, fi) = 0i; and £2(e;, e5) = £2(fi, f;) = 0. In particular, all symplectic spaces are
even-dimensional.

Proof. (Sketch) Choose any nonzero vectors eg, fi € V, such that £2(e1, f1) = 1. Denote by
Vi :=span{er, fi} and V% :={veV|2w,w)=0YweV}

Then show that V1NV, = {0} and V = V; @V} and go on inductively choosing es, fo € V;?
nonzero, such that 2(es, fo) = 1. End up with

V=Wo.. oV,

and note that eq,..., ey, f1,..., fn is a basis of V that has the desired properties. O

33
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Thus, we can consider the standard model for symplectic vector spaces (R?", §2y) with
the basis

~~
er=(1,0,...0),...,en=(0,...,7 1 ,....0),
fi=0(0,....0, 1 ,0,...,0),..., fn=1(0,...,0,1),

n+1

and 20 := )", el A f. Then, as a matrix

0 Id
2= (—Id 0) '
Definition 3.1.3. Let M be a manifold and w € 2?(M) a 2-form on M. If w is closed,

that is, dw = 0, and for each p € M, w,: T,M x T,M — R is symplectic, then w is called
a symplectic form and (M,w) is called a symplectic manifold.

Since dim T, M = dim M, all symplectic manifolds must be even-dimensional. In fact,
they locally all look like (R?",§2):

Theorem 3.1.4 (Darboux). Let (M,w) be a 2n-dimensional symplectic manifold. Then

for every point p € M there exist coordinates (U, x1,...,Zn,Y1,...,Yn) centered at p such
that on U
n
w= Z dx; N\ dy;.
i=1
Proof. Confer [Sil01, Chapter 8]. O

We finish this short introduction to symplectic geometry with a statement concerning
symplectic volume.

Proposition 3.1.5. Let M be a 2n-dimensional manifold and w a closed 2-form. Then w
is symplectic, if and only if the n-fold product w™ = w A --- Aw is a nowhere vanishing
2n-form, that is a volume form on M.

Proof. By the theorem of Darboux, if w is symplectic, then locally w = 3" | dx; A dy; for
coordinates (U, x1,...,%n, Y1, .,Yn). Therefore, w™ is some multiple of dxj A ... Adzy A
dyy N\ ... ANdy, # 0.

Conversely, if w is not symplectic, there exist p € M and v € T),M such that wy,(v, w) =0
for all w € T, M. If we extend {v} to a basis of T, M, then w, and therefore also (w,)" do
not contain dv in their basis expression, hence (w,)" = 0. O

Definition 3.1.6. Let M be a manifold, p € M, and H, C T,M a tangent hyperplane at
p. Then (p, Hp) is called a contact element on M.
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Any tangent hyperplane H, C T, M determines a covector a;, € Ty M \ {0} up to
multiplication by a nonzero scalar via H), = ker a;,. If

H: M —TM,
p— H, CT,M,

is a smooth field of contact elements, then locally there exists a 1-form «, such that
H = kera. Such « are called locally defining 1-forms. Note that they are unique up to
multiplication by nowhere vanishing smooth functions on M.

Definition 3.1.7. A smooth field of tangent hyperplanes H: p — H, C T,M is called
a contact structure on M if for any locally defining 1-form «, we have that da|m,xm, is
nondegenerate, that is, symplectic, for all p € M. In this case (M,H) is called a contact
manifold and « is called a local contact form.

Since day, is a symplectic form on H), it must be even-dimensional. Because dim T),M =
dim H), + 1, all contact manifolds are odd-dimensional.

Proposition 3.1.8. Let H: p — H,, be a smooth field of tangent hyperplanes on M. Then
H is a contact structure if and only if a A (da))™ # 0 for every locally defining 1-form «.

Proof. Since H is smooth, for any locally defining 1-form «, there exists a smooth vector
field R on M such that a,(R,) =1 for all p in the domain of o. We can write

TpM = span{R,} & H).

Now if H is a contact structure, that is, day, is symplectic on Hj, by Proposition 3.1.5
we have that (day)™ is a volume form on H, and therefore o, A (doy,)™ # 0. In this case
da(Rp,-) =0 on T,M and R is called the Reeb vector field of c.

On the other hand, if o A (day,)™ # 0, then choose a basis eq,..., ey, f1,..., fn of
H,, = ker o, such that T,M = span{R,} @ span{ei,...,en, f1,..., fn}. Then

0# ap A (dap)" (R, e1,...,en, f1,..., fn) = (R) -(da)"(e1, ..., €n, f1,-- - [n),
=

o (da)™ # 0 on Hy, that is, it is symplectic by Proposition 3.1.5. O

We will now describe the contact structure of SS™. For each p € S" we identify 7,S"
with R? = {2 € R"*! | (z,p) = 0}. Then

SS™ = {(x,v) € R"M @ R" | (2, 2) = (v,v) = 1, (z,v) = 0}.
If (z,v) € SS™, the tangent space T(2,0)SS" at (x,v) can be described as

Tiow)SS" 2 T,S" O T,S; ' 2RI @R L
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where 877! = {y € R} | (y,y) = 1} and R}, = {y € R"*" | (y, 2) = (y,v) = 0}. Define

{z,v

H:SS" — TSS",

(2,0) = Higoy = {w) € REORYL | (y,0) = 0} =RY; L @ RYL.

In this case there is a globally defining 1-form

n+1
Oé(gm,) = E vidxi
i=1

such that H = ker a. To see that H indeed is a contact structure, we have to show that

n+1 n+1
da(ac,v) = Z dv; N dx; = — Z dx; A dv;
i=1 i1

is symplectic on ]R?x_i} ® ]R?;i}. But for (y,w) € Rn_l} DR also (—w,y) € ]R"_l} ®

{zv {zv}’ {z,v

R’{ji} and we have

n+1

_da(z,v)((y7 w)v (—U), y)) = Z dx; N dvi((:% w)? (—’LU, y)) = <y7 y) + <w7 w> > 0.
=1

Hence, « is a contact form on SS™.

3.2 Invariant theory of SO(n)

In this section we use the material of [Kra96, Chapter 10] to determine the polynomial
invariants of SO(n). Let V be a finite dimensional real vector space and f: V — R a
function. Then f is called polynomial, if it is given by a polynomial in the coordinates of
a basis of V. Note that this property does not depend on the choice of basis. Denote by
R[V] the R-algebra of polynomial functions on V', called the coordinate ring.

Definition 3.2.1. Let p: G — GL(V') be a representation of a group G on V. A function
f € R[V] is called G-invariant or just invariant, if f(g-v) = f(v) forall g € G, v € V.
These invariants form a subalgebra of R[V], called the invariant ring and denoted by
R[V]C.

Now let V' := R™ with the standard inner product denoted by (-,:). Let G be either
O(n) or SO(n) and consider the natural representation of G on p € N copies of V:

g-v:i=(9-v1,...,9Vp)

for v = (v1,...,vp) € VP. Applying the inner product to the ith and jth summand of V?
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yields an O(n)-invariant function for every pair 1 <4, j < p, denoted by (i, j):

(i,j): VP > R,

(v1,...,0p) = (i, v5).
Furthermore, for every 1 <i; < --- <4, < p the determinants

[il,...,z’n]:Vp—>R,
(v1,...,vp) — det(vg, | -+ | vin),

where (v, | --- | v;,) is the n x n matrix with columns v;,,...,v;,, are SO(n)-invariant
functions on VP. The next theorem tells us that these two already exhaust all possibilities.

Theorem 3.2.2. First Fundamental Theorem for O(n) and SO(n):

o The invariant ring R[V?]°(") is generated by the invariants (i,), 1 <i < j < p.

e The invariant ring R[V?]59() is generated by the invariants (i,j), 1 < i < j < p,
together with the determinants [i,... 4], 1 <i1 < ... <i, <p.

Proof. Since the proof involves a rather large part of invariant theory, we refer to [Kra96,
Chapter 10]. O

3.3 Invariant forms

We will now classify SO(n+1)-invariant n-forms on S™ and SO(n+1)-invariant (n—1)-forms
on the sphere bundle SS™. Our results can also be found in [Fu90, Section 0.4].

The group SO(n + 1) naturally acts on S™ by multiplication and since it consists of
isometries it also induces an action on

SS" = {(z,v) e R @ R"™ | (z,2) = (v,v) = 1, (x,v) = 0}

obtained by pushing forward the elements of SO(n + 1) to T'S™. It is also given by matrix
vector multiplication g - (z,v) = (¢ - x,g - v) for all g € SO(n + 1), (z,v) € SS™. Since
SO(n + 1) acts on both S” and SS™ by diffeomorphisms, we get induced actions on the
spaces of differential forms on S™ and SS™ by pulling back with these diffeomorphisms:

g-n:=gmn, g-w:=(g)w
for all g € SO(n+ 1), n € D*(S"), and w € D*(SS").

Definition 3.3.1. Let G be a group acting on a manifold M by diffeomorphisms. A
differential form w € D*(M) on M is called G-invariant, if g-w = (g7 !)*w = w for all
g € G. Denote by D*(M)® the space of all G-invariant forms.

Proposition 3.3.2. The space of G-invariant forms is an exterior differential algebra, that
is wAn €D (M) and dw € D*(M)C, for all w,n € D*(M)C.
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Proof. We have g*(wAn) = g*wAg*n=wAnand ¢*(dw) = d(g*w) = dw, hence the claim

follows. [
Proposition 3.3.3. The contact form a = E?jll v;dx; and its exterior derivative do =
n+1

— " dai A dv; are O(n + 1)-invariant forms on R*™! @ R™"! where the group acts
naturally on both summands. In particular, they are invariant forms on SS”.

Proof. Let (z,v) € R™™ & R™™, (y,w) € T, R*™ @ R"! = R @R and g €
SO(n +1). Then

g*a(x,v) (y7 'U)) - a(g(x),g(v))(g*(y)7g*(w)) = <g(?}), g(y)> = <'U, y> = Q(z,0) (yv w)7
that is, a is O(n + 1)-invariant. By Proposition 3.3.2 da is also O(n + 1)-invariant. [

Note that SO(n + 1) acts transitively both on S™ and SS", since every pair (z,v) € S"
can be moved to (z/,v") by first choosing a rotation that brings x to ' and rotating in
the plane orthogonal to z’ to bring v to v'. If we look for the stabilizers of z € S® and
(x,v) € SS™, we see that

SO(n + 1), = {rotations in the plane R7'} = SO(n),
SO(n + 1) (4,5) = {rotations in the plane Ry, ,} = SO(n —1).

Hence, as homogeneous spaces, we have
S"=S0O(n+1)/SO(n), SS"=SO0(n+1)/SO(n—1).

Therefore, SO(n + 1)-invariant forms on S™ are obtained by pulling back SO(n)-invariant
alternating tensors on 7,S™ and on SS™ by SO(n — 1)-invariant alternating tensors on
T5SS™, where o = e, 41 and 0 = (o, e,,) are arbitrarily chosen base points of S™ and SS".
The induced actions of SO(n) and SO(n — 1) on the tangent spaces

T,S" 2 R” T;58" =R @R[

€n+17 €n+1 en-+1}

are multiplication of SO(n) on R} || = R" and multiplication of SO(n — 1) on the first
and third summand of

RY . @ R’{‘;jenﬂ} ~ R1 @ span{e,} ® R ~R"IgROR"

€n+41 {€n7€n+1} {enaen+1} -

Since SO(n — 1) acts trivially on the middle summand, we immediately obtain an invariant
1-tensor dx, on SS™, which is precisely the contact form « at o € SS",

n+1
ag = v;dT; =dz,.
o K3 (]
i=1 T=ent1,0=¢€n

Our task of determining invariant forms thus reduces to finding alternating n-tensors on
R™ invariant under the natural action of SO(n) and to finding alternating (n — 1)-tensors
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on R”1 @ R* ! invariant under the diagonal, that is simultaneous and natural on each
summand, action of SO(n — 1). We will start with the latter one:

Throughout this discussion upper indices will distinguish between different vectors, while
lower indicies will indicate different coordinates. Any SO(n — 1)-invariant alternating
m-tensor

A: (RToRH™ S R,

(', 0h),..., @™ v™) = A((z, oY), ..., (2™, 0™))

on R"1 @ R"~! can be written as an SO(n — 1)-invariant polynomial in the coordinates
oty at vt vl 1, 1 <i < n—1. By Theorem 3.2.2 (where p = 2m), this polynomial
is a polynomial of scalar products and determinants of the vectors z!,... ™, vt ... ™.
Note that since A is multilinear, powers of these products and determinants greater than
one can not occur, otherwise A would not scale properly. For the same reason we can not
have both 27 and v/ in the same such scalar product or determinant for any 1 < j < m.
This means that determinants can only yield (n — 1)-tensors and scalar products only
tensors of even rank.

First, let A be an alternating m-tensor, where m is even. We give an argument similar
to [Par02, Section 2.1]. Each monomial in A up to a constant has the form

<JIU(1),UG(2)> o <xa(m—1),va(m)>’

where o is any permutation of the set {1,...,m}. Again, because A is alternating, with
every such monomial, A must also contain the term

Z Sgn(a) <x0(1)77)0(2)> o <Ia(m71)7va(m)>’

oes™

where ¢ runs through the permutation group of m elements. Since this sum must contain
the term

+(zt, v?) .. (™ ™),

at the level of alternating tensors it is equal to

n—1 n—1
+Alt (dei@)dvi) R...0 (dei®dvi> ,
=1

i=1

Vv
m times

where the alternation of an m-tensor T: V'™ — R is given by

1
AT (YL, .. y™) = — ST,y

T oesm
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for all y*,...,y™ € V. Using
k!

AT @ ) = 5=

AT NALLS,

for k-tensors T" and [-tensors S, the above expression, up to a constant, writes as

n—1 n—1
(Z dx; A dvi) A LA (Z dx; A dvz) = (—da)™.
i=1 i=1

m times

Now, let A: (R*! @ R*1)™ — R be an SO(n)-invariant alternating (n — 1)-tensor.

Regarded as a polynomial in the coordinates :czi, oz v, 1< <in— 1,
by Theorem 3.2.2 and the discussion above, it must be given by a linear combination
of determinants of vectors z!,...,z" 1 vl ..., v 1. Each determinant must for each

1 < j <n —1 either contain 2/ or v/ in one of its columns, but never both. Hence, we
can only choose how many of the columns 7 we wish to replace by the corresponding v”.
Taking alternations, we arrive at the following set of linear combinations:

ko = det(z | - | 2™
ri=det(v! |22 ] - [ 2" Y +det(zt |02 2P 2T+
+det(z | --- |22 | 0"
ko =det(v! |v? [ 2®] -+ [ 2" Fdet(v |2 |3 2t ] - |2V 4o
+det(zt | - |23 0" 0
Fin_1 = det(v? | v? | o] oY),

where ky, is just adding up all the determinants of matrices that have k x-vectors replaced
by v-vectors. We will use the following formula for evaluating wedge products and the next
lemma to determine the invariant alternating tensors that correspond to the k.

Proposition 3.3.4. For covectors, that is, for 1-tensors, w!,...,w", and vectors y', ..., 4",
we have

WA AW (Y y™) = det (W (1))
Proof. [Leel3, Proposition 14.11 (e)]. O

Lemma 3.3.5. Let n € N and A, B € R™" be two n x n-matrices. For any n-tuple
j € J :={0,1}" define C; to be the n x n-matrix, whose ith column is either the ith
column of A, if the ith entry of j is zero, that is, j; = 0, or the ith column of B, if j; = 1.
Similarly, let C? be the n x n-matrix, whose ith row is either the ith row of A, if j; = 0, or
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the ith row of B, if j; = 1. Denote by |j| the number of ones in each n-tuple j € J. Then

Cp =Y, det(CV),

JEJ, |j1=k

Z det(

J€J; |il=k
for each 0 < k < n.
Proof. By the Leibniz formula for determinants we have

> sen(o) [ cogiy
=1

oes™

det(C) =

where 8" is the group of permutations of {1,...

,n} and sgn(o)

= +1 is the sign of any

such permutation o € 8™. Therfore the left and right side of the claim write as

n

Z det(Cj) = Z ngn H j)o(i) s

J€Jd, jl=k jeJ, |j|l=k oes™ i=1
n

> det(@)= 3 > sen(o) [[(@ows
JeJ, ljl=k jed, |jl=k oesn i=1

Switching the order of summation we get

-Y Y i

n

2. 2 sen(@) ]I

Jj€J, |j|l=k ocs™ i=1 oe8™ jeJ, |jl=k
n
> 2 sel) [[@owi=2 > senle
j€J, |jl=k oes™ i=1 o€8™ jeJ, |jl=k

But for every o € 8™ we have

> sen(0) [[(e))oi =
=1

J€J, |jl=k

Z sgn(o)

n
J€J, jl=k i=

1

n

H j)o(i)yi

1=1

H (D)o (ii-

=1

3

since on each side we sum up all possible products of (n — k) elements from {a,@;; | 1 <

i <n} and k elements from {by(;),; | 1 <i < n}.

Using the previous Lemma we get

ko = det : : )

O
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1 1 1 1
U% Ug—1 Iy Ln—1
x ... "1;‘ . .
1 n—1 . .
k1 = det . . + .-+ det o o |
: : T N
1 n—1
n—1 n—1 n—1 n—1
Ty Lp—1 Uy Up—1
1 1 1 1
”% Ugfl Zy Tp—1
) ) : .
1 n—1 . .
3 3 : :
ko =det | *1 Tpn-1 | +---+det x’f’?’ J;Zj;’ )
. . n—2 n—2
: v )
1 -1
n—1 n—1 n—1 2—1
Ty Lp—1 Uy Un—1
U% ,Ulefl
Kn—1 = det
o ot

Applying Proposition 3.3.4, we obtain the SO(n — 1)-invariant tensors

ko =dxi N Ndry_1

k1 =dvy ANdzo N Ndxy_1 +dxy ANdvo Adxs A -+ NdTp_1 + -+
+dri A ANdxp_o Ndv,_q

Ko =dvy Ndvg ANdxg N+ Ndxy_1 +dvg ANdeo ANdug Adxg N --- NdTp_1 + -+ -
+dri AN ANdxp_3 ANdv,_o N dv,_q

Bp—1 = dog A -+ ANdvop—1.

Denote by ko, ..., kn—1 also the SO(n + 1)-invariant (n — 1)-forms on SS™ obtained by
pulling back with elements of SO(n + 1), then in summary we have:

Theorem 3.3.6. The algebra of SO(n + 1)-invariant differential forms on SS™ is generated
by a,da, kg, ..., Kp—1-

Next, we look for SO(n)-invariant alternating n-tensors on R™. By Theorem 3.2.2 they
must be given by a polynomial of scalar products and determinants of vectors z',. .., z"
in the coordinates x1,...,x,. But since all scalar products are symmetric, what is left is

the only determinant

1
xl e €T

Ky = det =dri N Ndxy,.

3=

n

n
L L,

If we denote by k, also the SO(n + 1)-invariant n-form on S"™ obtained by pulling back
with elements of SO(n + 1), we obtain:

Theorem 3.3.7. The space of SO(n + 1)-invariant differential forms on S™ is one-
dimensional and spanned by &,.
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Remark 3.3.8. If we asked for O(n + 1)-invariant differential forms instead, we would be
left with the algebra generated by « and da. Although, the forms kg, ..., k, only change
sign if pulled back with an element of O(n + 1) \ SO(n + 1).

3.4 Invariant currents

Now that we have classified SO(n + 1)-invariant n-forms on S” and (n — 1)-forms on SS™,
we can do the same with SO(n + 1)-invariant n-currents on S” and (n — 1)-currents on
SSn.

Definition 3.4.1. Let G be a group acting on a manifold M by diffeomorphisms. A
current E € D, (M) is called G-invariant, if E(g-w) = E(w) for all w € D™. Denote the
space of G-invariant n-currents by D,,(M)%.

We will show that invariant currents are already determined by their values on invariant
differential forms, hence D, (S") and D,,_1(SS") are also finite-dimensional. To do so, we
need a way of averaging arbitrary forms, so that they become SO(n + 1)-invariant. This is
done using the natural invariant probability measure on the compact group SO(n + 1), the
Haar measure. Since these integrals will be vector-valued, we give a short description of
integration in Fréchet spaces and thereby follow [Rud91, Chapter 3].

Definition 3.4.2. Let A: Q — R be a measure on a measure space (), X a topological
vector space on which its dual X™* separates points, and f: ) — X a function, such that
the scalar functions Af: QQ — R, defined by

(Af)(q) == A(f(9), ¢ € Q,
are integrable for each A € X*. If there exists a vector y € X such that
ay= [ (A7)0 Ao

for all A € X*, then we define

y = /Qf(Q)d)\(Q)

to be the integral of f with respect to A.

Since X* separates points on X, there can be at most one such vector y € X. To show
that it actually exists, we need some further assumptions.

Theorem 3.4.3. Let X be a topological vector space on which X* separates points and
A: @@ — R a Borel probability measure on a compact Hausdorff space Q. If f: Q — X is
continuous and if the closed convex hull of f(Q) is compact in X, then the integral

yZ/Qf(q) dA(q)

exists in the sense of the above definition.
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Proof. See [Rud91, Theorem 3.27]. O

Using the above notation, set @ := SO(n + 1), A the left invariant Haar measure on
SO(n + 1), normalized such that A(SO(n + 1)) = 1, X1 := D" 1(SS"), X3 := D*(S").
Furthermore, we need that for any given w € D"~1(SS") and n € D*(S") the maps

SO(n +1) — D*~1(Ss™), SO(n + 1) — D™(S™),
g g-w, g9

defined at the beginning of Section 3.3 are continuous. To see this, choose coordinates
(U,z1,...,x9,—1) for SS™ and set

Ii={(i1,--yin1) €{1,...2n =1} iy < ... <ip_1},
such that

w= E flotn=tdy, AL ANdxg, .
(i17~-~7in71)61

Then we have

(9«)w = Z flrsin=t o g d(zs, 0 ga) A ... Ad(zi,_, © gx)
(’il,...,in_l)EI
2n—1
s Oz, 0 g.)
= Z fu,..-,znq o gy Z 1 dacj AL

(i1yeesin—1)€l j=1 8xj

2n—1

8(562 1 © g*)
A =" Tl dx
j; 8$j J ’

which, as ¢ — Id, converges to w in the topology of D"~1(SS"), since all derivatives of
g« converge uniformly to Id, because g, is just the restriction to SS™ of a linear map in
Rt @ R, A similar argument shows also the continuity of g — g -7, n € D*(S").

Since X 2 are Fréchet spaces, the requirements of Theorem 3.4.3 are fulfilled by [Rud91,
Theorem 3.20]. Thus, we can define

@ = / g-wdX(g) and  7:= / g1 dX(g).
SO(n+1) SO(n+1)

By definition, we have for all currents £ € D,,_1(SS") = (D" 1(SS"))* and F € D, (S") =
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(D"(8™))",

B@ = [ Bgwdg) ad F@= [ Flgnd.
SO(n-+1)

n+1 SO(n+1)

Hence, for invariant currents E € D,,_1(SS™)S°"+1D) and F € D, (S")SO+D) | we get

(@) = / E(g-w) dA(g) = / E(w) d\(g) = B(w),
SO(n+1)

n+1 SO(n+1)

F(n) = / F(g-n) d\(g) = / F(n) d\(g) = F(n).

SO(n+1) SO(n+1)
Furthermore, if we take E to be the current that evaluates w at any set of tangent vectors
V1,...,0p—1 € T,SS™ at a point p € SS™, we obtain
Op(V1,. .o, Up—1) = / (g-w)p(vi,...,vn—1) dA(g).
SO(n+1)

Therefore, by the left-invariance of the measure A,

(h-wp)(v1y...,0p—1) = / (h-(g-w))p(v1,...,vn—1) dA(g)

SO(n+1)

= / ((hg) - w)p(vi, ..., vp—1) dA(g)
SO(n+1)

= [ el aXg)
SO(n+1)

= (I)p(vl, “e ,Un_l),

which means that @ is SO(n + 1)-invariant. In the same way we see 7 € D™(S")SO+1),

This yields that every SO(n + 1)-invariant current is determined by its values on SO(n + 1)-
invariant forms, that is the restriction maps

Dp_1(SSM)SOCHD _y (pr=l(g8n)SOMt1)y*,
Dn(SH)SO(n—O—l) %(Dn(gn)so(n—kl))*
are injective. By Theorems 3.3.6 and 3.3.7, the target spaces are finite-dimensional and

A:Dn—l(ssn)SO(n-‘rl) = Span{’%lv sy Rn—1, 7}7
D7(8%)500 D) = spanie, )
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n—1 -2

where 7 is either (da)“z or a A (da)”Z depending on whether n is even or odd. Define
{Ki,...,K,_1,C} and {K,} to be the dual bases of {k1,...,kn—1,7} and {ky} such that

(D"1(§S™)SOHDY — span{ K1, ..., K,_1,C},
(@ﬂ(Sn)SO(n+1))* _ span{Kn},
and extend the K; and C to currents on D"~ !(SS"™) and D"(S") by setting K;(w) := K;(@),
C(w) = C(@), and K,(n) := K,(7) for all w € D*71(SS") and n € D*(S"). Then in

summary we obtain:

Theorem 3.4.4. The spaces D,,_;(SS™) of SO(n+1)-invariant (n—1)-currents on SS™ and
D, (S™) of SO(n + 1)-invariant n-currents on S™ are both finite-dimensional and spanned
by {Ki,...,K,—1,C} and {K,} respectively.



CHAPTER 4

Characterization of invariant smooth and generalized valuations on
spherical convex bodies

In this final part we will apply the results obtained in the previous chapter to classify
SO(n + 1)-invariant smooth and generalized valuations on X(S™). Like in the Euclidean
setting, it will turn out that both of these spaces are, in fact, finite-dimensional and spanned
by the spherical intrinsic volumes introduced in Section 1.2. In the last part of this chapter,
we present another way of obtaining these result, using a method of transferring formulas
to the sphere, that are already known in Euclidean space, called the transfer principle.

4.1 Characterization of invariant smooth valuations

We start by using the compactness of the group SO(n + 1), which allows us to average with
respect to its Haar measure, and thereby to associate to each invariant smooth valuation
an invariant pair of smooth differential forms. In doing so, our task of classifying invariant
valuations boils down to just classifying invariant differential forms, which we have already
done in the last chapter.

Lemma 4.1.1. Every SO(n + 1)-invariant smooth valuation p: K(S™) — R can be rep-
resented by a pair of SO(n + 1)-invariant differential forms n € D*(S")SO+D ¢
Dr=1(88™)SOHD) such that pu = ¥(n,w), where

@ DY(S") @ D"L(SS) — VO(Sh)
is the map from Remark 2.4.5.

Proof. Let u=W(n,w), n € D*(S"), w € D" 1(SS"), be any smooth spherical valuation.
For g € SO(n + 1) we have

:u(gK):/n+/OJ:/77+ / w

N(gK) 9K g9+(N(K))

/gn+ [wrefons [ o

N(K)

47
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for all proper spherical convex bodies K € X,(S") by Remark 2.3.10 and invariance
of integration under orientation preserving diffeomorphisms. Hence, by linearity of the
integrals

uok) =) & [ n-n+ [ (grw-w) =0
K N(K)
for all K € X,(S"), which means that ;1 is SO(n + 1)-invariant if and only if
(g-n—m9 w—w)€ker?¥

for all g € SO(n+1). Now consider again the averaging integrals introduced in Section 3.4,

€l

_ / g-wd\g) and = / g+ dA(g).

SO(n+1) SO(n+1)

If p =¥ (n,w) is SO(n + 1)-invariant, we get

Ww—w= / g-w—wd\(g) € ker?,
SO(n+1)

n—n= / g-n—mndAg) € ker ¥,
SO(n+1)

since the integrands lie in ker ¥ and that space is a closed Fréchet space. Hence, p =
U(n,w) = ¥(n,w) is represented by the pair (7,w), which are both SO(n + 1) invariant
differential forms. O

Next, we show that some of these invariant forms, namely all multiples of the contact

form and its exterior derivative, only yield the zero valuation.

Proposition 4.1.2. If w = a A ¢ € D"L(SS?) or w = da A & € D" 1(SS"), then
U(0,w) = 0, that is, the ideal generated by «, da in D*(SS™) in contained in ker ¥.

Proof. First let K € fKIS,m(S") be a smooth proper spherical convex body, that is, the
boundary of K is a smooth (n — 1)-dimensional submanifold of S™. In this case, at each
point z € K there is a unique outer normal vector ng(x) to K. Therefore we obtain a
diffeomorphism

fig: 0K — N(K) C TS",

Now, choose coordinates (U, z1, ..., Ty, v1,...,0,), U C S™ of T'S™, such that z € 0K <
T, = 0 and

(x,v) e N(K) <= 2z, =0,v1 = =01 =0,0, =1,
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for all x € U. In these coordinates we have
n
N = Ny Z vidx; = dxy, =0,
i=1

: o) 0
since T,0K = span {871’ e 787}' Hence,

Tn—1

/ aAg—/ ﬁ}(mg)—/ o AR = 0,
N(K) oK oK

for all £ € D"~2(SS™). Any general proper spherical convex body can be approximated by
smooth ones in the Hausdorff metric, and since normal cycles are continuous by Proposition
2.3.17, the statement follows.

For any ¢’ € D"3(SS"), we have d(a A €') = da A &' — a A dE', therefore

/ da/\{':/ d(a/\f’)+/ aANd =0,
N(K) N(K) N(K)

where the first integral vanishes due to Proposition 2.3.16, and the second one because of
what we have just shown above. O

Because of the previous proposition, normal cycles (and also conormal cycles) are called
Legendrian cycles, that is, they annihilate all multiples of the contact form. Putting
everything together, our main theorem now follows easily.

Theorem 4.1.3 (Characterization of invariant smooth valuations on S™). The space of
SO(n + 1)-invariant valuations on spherical convex bodies is finite-dimensional and spanned
by

i :=¥(0,k),0<i<n—1, and py:=¥(ky,0),

where k1,. .., Ky, are the SO(n + 1)-invariant differential forms introduced in Section 3.3,
that is,

Voo (SM)SOMH) — span{pg, . . ., pin }-

Proof. Let u € VOO(S”)SO(”“) be a smooth, invariant valuation on the sphere. Then by
Lemma 4.1.1 there exist invariant forms n € D™*(S")SC+1) , ¢ Dr=1(§57)SOM+1) such
that u = ¥(n,w). Using Theorems 3.3.6 and 3.3.7, we obtain

w=coko+ -+ Cn1kn-1+a and 0= cpkn,

where « is some wedge product of o and da. By Proposition 4.1.2 and the linearity of ¥,
we get

p=W(cpkin,coko + -+ Cp_1kn—1 + Q) = cofio + - - + Cnfin.
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O

We will now examine these invariant valuations p; € V>°(S*)SO(+1) and establish a
connection to the spherical intrinsic volumes V; from Example 1.2.3. From the represen-
tations of the k;, 0 < i < n, obtained in Section 3.3 at the points 0 = e,+1 € S™ and
0 = (0,e,) € SS™ respectively, we see that u, equals spherical volume o, since their
densities are both SO(n+1)-invariant and equal at o € S™. For the other p;, we will restrict
our attention to two dense subsets of K,(S"), namely smooth proper spherical convex
bodies with positive curvature K € K;m’Jr(S”) and proper spherical polytopes P € P,(S").

We start by taking K € K57 (S"™) to be a proper spherical convex body whose boundary
is a smooth (n — 1)-dimensional submanifold of S™ that has positive principal curvatures
ki,...,kn—1 at every point x € 0K. In that case, the normal cycle of K is precisely the
image of the boundary of K under the map

i OK — N(K) C SS™,
z = (z,nk (7)),

where ng(z) is the unique outer unit normal vector of K at x. Our goal is to pull back
the differential forms k;, 0 <i <n — 1, to K using ng. The push-forward of this map at
a point « € 0K is then given by

Ngs: T:0K — T(xmK(x))SSn =2T,S"® THK(I)Sg_l =T, S" e T,0K,
y = (y, Lyy),
where L,: T, 0K — T,0K denotes the Weingarten map. Note that actually

Ny 1, 0K — T, 0K & T,0K.

Now choose a basis y1,...,yn—1 of T,0K that diagonalizes L, which is possible since the
Weingarten map is self-adjoint and its eigenvalues, the principal curvatures, are assumed
to be positive. We then have
W (Ki) (Y1, - - Yn—1) = Ki(MKeYL, -+ TKYn—1) =
= Hi((yla Lryl)y ceey (yn—la Lmyn—l)
= Hi((ylv klyl)a ) (yn—h kn—lyn—l)'

By Lemma 3.3.5, the last expression is equal to

Si(kla SRR 7kn—1) det(yl | e | yn—l)
=si(k1,...,kn—1)dxi A+ Ndxp—1(Y1,- - Yn—1)s

using the i-th elementary symmetric polynomial

Si(kl,...,knfl): Z kjl"'kji'

0<1<...<ji<n—1
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Since the point x € 0K was chosen arbitrarily and nj,(k;) must also be SO(n+ 1)-invariant,
we get

(ki) = si(k1, ... kn1)dop—1,

for 0 <i <n—1, where 0,_; is (n — 1)-dimensional spherical volume, and hence

Mz‘(K)Z/ Hz‘Z/ si(k1,... kp_1)don_1.
N(K) oK

Next, let P € P,(S™) be a proper spherical polytope. In this case [Gla96] gives an explicit
formula for calculating the i-th spherical intrinsic volume of P,

1

VilP) = BiBn—i-1

> 0i(F)on-i1(N(PF)), (4.1)

FeF;(P)

where F;(P), 0 < i <n —1, is the set of i-dimensional faces of P and N (P, F') is the set of
outer unit normal vectors to P at any point in the relative interior of F'. If we view SS™ as
a subset of S™ x S™ as done in Section 3.1, we get the following orthogonal decomposition:

n—1
NPy =] |J FxN(PF).
i=1 FeF;(P)

Now let z € 0P be any point in the relative interior of an i-dimensional face F' of P.
Choose an orthogonal coordinate system (eq,...,e,41) of R™*1, such that x = 0 = €n+l,
0 = e, € Nor(P,z) and such that x; = ej,...,x; = e; forms a basis of T, F' C Rggl and
that viy1 = €j41,...,0n—1 = ep—1 forms a basis of T;N(P, F) C Rggl. In this basis, the
restriction of k; to F' x N(P, F') at x writes as

(ki)|Nxn(pF)y = dor Ao Adzp Advigr A A dop -,

which is the product of i-dimensional volume on F' with (n — 1 — i)-dimensional volume on
N(P, F), whereas all the other x;, j # ¢ vanish. Since x € 0P was again chosen arbitrarily
and all x;, aswell as i-dimensional spherical volume, are SO(n + 1)-invariant, we obtain

pi(P) = /N ” Ki= Y | /F . ki= Y 0i(F)oni1(N(P,F)),

Fed;(P

and hence
5i6n—i— 1 pi

By the density of P(S") in K(S™) and the continuity of V; and p; in the Hausdorff metric,
it follows that V;(K) = u;(K)/(Bifn—i—1) for all spherical convex bodies K € K(S™).

Vi(P) (P).
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The representation in equation (4.1) also yields that

1 ifi=j
W(Sj)z{

0 otherwise,

where S is any j-dimensional great subsphere. This shows that the spherical intrinsic
volumes V;, and hence also the p;, 0 < ¢ < n, are linearly independent.

Remark 4.1.4. Note that the spherical intrinsic volumes are also O(n + 1)-invariant. By
the Remarks 2.3.10 and 3.3.8, we have

pi(gkK) = / Ki = / Ki = — /(9*)*/%: / ki = pi(K)

N(gK) 9+ N(K) N(K) N(K)

for any g € O(n+1) \ SO(n + 1) and K € X,(S"), since the integral changes sign under
an orientation reversing diffeomorphism. Therefore

WA (Sn)O(n—l—l) BLVES (Sn)SO(n+1) )

Remark 4.1.5. Picking up on Remark 2.4.3, one could also define smoothness of spherical
valuations in the following way: A continuous valuation p: K(S") — R is said to be
SO(n + 1)-smooth, if the map

SO(n + 1) — {continuous valuations on S"},

g K p(g ' K)],

is smooth. If this definition were equivalent to our definition involving the existence of
smooth differential forms - as it is the case in Euclidean space - all continuous invariant
spherical valuations would be smooth, because the above map would then be constant.
Then Hadwiger’s theorem for continuous, invariant valutions on spherical convex bodies
would follow from Theorem 4.1.3.

4.2 Characterization of invariant generalized valuations

In the same way as the classification of invariant differential forms provided us a classification
of invariant valuations, the classification of invariant currents obtained in Section 3.4, now
yields a classification of invariant generalized valuations. First, the natural SO(n+1)-action
on the space of generalized invariant spherical valuations is given by

SO(n + 1) x V-(S") = V—°(S™),
(9,9) = g9 = [p—=9(g~ W),
where p € V> (S").

Definition 4.2.1. A generalized valuation : V*°(S™) — R is called SO(n + 1)-invariant,
if g-1 =1 for all g € SO(n + 1). The space of generalized SO(n + 1)-invariant valuations
on the sphere is denoted by V=o°(S7)S0(+1),
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Using the isomorphism ¥*: V=°(S") — (ker %)+ C D,,(S*) @ D,,_1(SS™) from Section
2.5, we see that also

V—OO(STL)SO(TL"F].) ~ ((ker W)J_)SO(n-&-l) C @n(Sn)SO(n+l) @ @n_l(SSn)SO(n-H).

By Theorem 3.4.4, the last space is spanned by {K1,..., K,,C}, where

1 ifi=j
Ki(/-@j):{

0 otherwise

and C ¢ (ker W)L, hence we obtain:

Theorem 4.2.2 (Characterization of invariant generalized valuations on S™). The space
of SO(n + 1)-invariant generalized valuations on S™ is finite-dimensional and spanned by
;= (U*)L(K;), for 0 < i < n, that is,

Voo (SM)3OH) — span{ay, ..., Pn}.

There is actually a way to view smooth valuations as a subspace of generalized ones
using Alesker’s product of valuations. Alesker has developed a general theory of valuations
on arbitrary smooth manifolds, which also relies on integration of differential forms over
conormal cycles, and hence becomes accessible in our special case of the smooth manifold
S™. In [Ale08, Section 4], Alesker and Fu showed that there exists a bilinear product on
the space of smooth valuations

VO(S™) x VO(S™) — V= (S"),
(V) = v,
that is continuous, commutative, and associative. Because it is defined intrinsically on any
smooth manifold, we have also

Du(pi1 - p2) = (Pspr1) - (Pspi2)

for all py, pe € V°(S™) and diffeomorphisms ¢: S* — S”, where (¢.u)(K) = pu(¢~1(K))
for all K € X(S") and p € V*>°(S™). Moreover, in [Ale07, Section 6], Alesker showed that
the bilinear form

Ve(S™) x V°(S") = R,
(M,Ij) — N'V(Sn)v
is a perfect pairing, that is the induced map

p: VR(S™) = (VX(87))" = V°(s),
s v ()

is injective and has dense image in V~>°(S") with respect to the weak topology. This
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is called Poincaré duality and in that sense, smooth valuations can be considered as
generalized ones. Furthermore, since

plgp)(v) = p(u)(g~"'v) = p- (g7 'v)(S") = g (gu - v)(S™)
= gp-v(gS") = gu-v(S") = pgp)(v),

for all g € SO(n + 1) and p,v € V*°(S"), the map p is SO(n + 1)-equivariant, which
means that p(V°(S")SOM+1)) c =oo(§7)SO(+1) "that is, invariant smooth valuations are
mapped to invariant generalized ones. Comparing the dimensions of these two spaces, we
obtain:

Proposition 4.2.3. Let ¢ € V=°°(S?)SO(+1) Then there exists u € V°(S")SC"+1 such
that ¥ = p(u), where p is the Poincaré duality map, that is, every SO(n + 1)-invariant
generalized valuation on S™ is smooth.

Remark 4.2.4. If one could extend the map p: V>°(S") — V~>°(S") in an SO(n + 1)-
equivariant way to the space of continuous valuations on K(S™), or, equivalently, find a way
to multiply continuous with smooth valuations, Theorem 4.2.2 would imply Hadwiger’s
theorem on the sphere.

4.3 The transfer principle

In the final part of this chapter, we will describe a different method for obtaining a
classification of smooth invariant valuations on spherical convex bodies, namely the transfer
principle. This device allows to transfer kinematic formulas from one connected isotropic
Riemannian manifold - that is a pair (M, G), where M is a Riemannian manifold, and G
is a group acting effectively by isometries on M, in such a way that the induced action
on the tangent sphere bundle SM of M is transitive - to another. We will apply this
procedure to the case of (R", E,,), where E,, is the group of proper Euclidean motions, and
(S™,SO(n +1)). In this section, we follow [Fuld, Section 2.2] and [Full, Section 2.12, 2.13],
to which we also refer for complete proofs. We start by introducing the space of curvature
measures, for which kinematic formulas will be given. Note, that since we will always have
M =R" or M = S", the notion of convex bodies in M is well defined.

Definition 4.3.1. Let M be a connected Riemannian manifold, n € D™(M) an n-form on
M, and w € D" 1(SM) an (n — 1)-form on the sphere bundle of M,. By setting

K o
oK (E) ._/ n+/ LW,
KNE N(K)Nm A (E)

we obtain a family of signed Borel measures on M, indexed by convex bodies K € K(M),
called a curvature measure. The space of all curvature measures is denoted by Curv(M).

Proposition 4.3.2. The curvature measure @, is zero if and only if w is a multiple of
the contact form « or its exterior derivative do, therefore Curv(M) = D*~1(SM)/ (ada) B
DM(M).

Proof. See Proposition 2.2.3 of [Ful4]. O
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If (M, G) is isotropic, we can consider the subgroup G, C G that fixes a chosen point
o € M, and G5 C G,, that fixes 0 € SM, such that my(0) = o, where 7: SM — M
is the natural projection. In the case of (M,G) = (R™,E,), we choose o to be the
origin, and 0 = (0,€e,). Then G, = SO(n) and G5 = SO(n — 1). On the other hand, if
(M,G) = (S",SO(n+ 1)), let 0o = e,41 and 6 = (0, €,). Again, we have G, = SO(n) and
G =SO(n—1).

Now, denote by Curv®(M) the space of G-invariant curvature measures on M. By
Proposition 4.3.2, we have

Curv® (M) = D" (SM)/ (q.da) ® D (M) 2 A" N T5SM)% [ (4 40y & A™ (T M) .

In the Euclidean case, we already know, that this space of invariant curvature measures
has a finite basis, namely

CurvE» (R") = span{®y, ..., P, }, (4.2)

where @; is the curvature measure associated to the j-th intrinsic volume, that is, the total
measure @f (K) equals p;(K) for all K € X(R™). Also the following theorem, known as
the local kinematic formula, holds.

Theorem 4.3.3. Let &, ,, € Curv®" (R") be an invariant curvature measure and K, L €

K(R™). Then there exist constants cg-, 0 <1i,j <mn, such that

n

2
/E SO A gV) dg= 3 K (U)BL(V)

n 1,7=0

for all Borel-measurable sets U, V' C R™, where integration is done with respect to the Haar
measure of the locally compact group E,. The left side of this equation is also called the
kinematic integral of &, ., in (R, E,).

Proof. The statement follows from [Sch08, Theorem 5.3.2] (see [Fed59] for the original,
more general result by Federer) and equation (4.2). O

Corollary 4.3.4. Putting U := K, V := L in the above theorem, we obtain

n

/ WK NgL)dg =3 & pui(K)u(L)

En i,j=0
for all motion-invariant valuations pu: K(R™) — R.

Another way of stating Theorem 4.3.3 is that there exists a kinematic operator
kg, : Curv®(R™) — Curv® (R") @ Curv®" (R"),

n
Do,
@n’w — Z Cij D, ®¢j7
t,j=0
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such that kg, (0,.) (U, V) = [, & drL9N (U NgV) dg for all invariant curvature measures
@, ., € Curvi (R").

The next theorem shows the existence of such a kinematic operator on arbitrary isotropic
Riemannian manifolds.

Theorem 4.3.5. Let (M, G) be a connected, isotropic Riemannian manifold. Then there
exists a linear map

ka: Curv® (M) — Curv® (M) @ Curv® (M),

such that for any K, L € X(M) and open sets U,V C M, we have
k(@)U V) = [ @S ngv) d
G

Proof. (Sketch, for a detailed proof confer [Ful4, Theorem 2.2.4] or [Full, Theorem 2.64])
Setting E = {(g,£,n,(} € G x SM x SM x SM | mp€ = gmym = gra(}, we consider
the cartesian square of fiber bundles

E—” sGxSM

Jn I

SM x SM ™" Ar s M,

where pl(gv 57 n, C) = (67 77)7 p2(97 éa n, C) = (97 C)? and p3(gv C) = (QWM(C), 7T]W(C) One can
define suitable (G x G)-actions, such that this diagram becomes (G x G)-equivariant. The

fiber along p; over a point (§,7n) € SM x SM is given by
Ff»ﬁ = {(97C) € GxSM | gmym = gﬂ'MC = 7TM§} ~ H x Sn—l’

where H C G is the subgroup fixing a point 0 € M. Now, define a (G x G)-invariant family
of (dim H + 1)-dimensional submanifolds in the fibers F¢ , by

Cf,"] = {(974) € G X SM | C = agilf—i_bn?aab > 0} - Ff,’ﬂ'

Note that C¢,, is the set of pairs (g, (), such that g~ 1¢ and 7 lie in the same tangent space,
and £ lies on the geodesic arc in the sphere of that tangent space, joining these two points.
Using the technique of fiber integration, C yields an operator

wew: DH(E) — D*(SM x SM).

Two convex bodies K, L € X(M) are said to meet transversely, if £ € N(K), n € N(L)
with 7wy & = mam implies € # —n. One can show, that for K, L € K(M), the sets K and
gL meet transversely for almost every g € GG, and that for these g

N(K NgL) = (N(K)Nmy gL) U (¢N (L) N 1wy K) U (p2(C(K, L)),
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where C(K, L) = N(K) x N(L) x5 C = {(g,6,1,¢) € E | € € N(K),n € N(L), (9,) €
Cep}. Now, for an invariant form w € D" L(M)C, there are two ways to compute the
kinematic integral: First, by integrating dgAw over po(C(K, L)), where dg is the normalized
volume form on G, or secondly, by pulling back dg A w via p3, subsequently using 7/, to
obtain an invariant form on SM x SM, and finally integrating over N(K) x N(L), which
yields the desired kinematic operator. ]

By applying the above theorem to (S™,SO(n + 1)), we obtain a kinematic operator
ksom+1): CurvS O+ (™) 5 Curv3PH1)(§) @ Curv3O+1)(S™).

Now, the transfer principle, that we are going to introduce in the following, will tell us
that the associated kinematic formulas of kgo(n+1) look exactly like the ones in (R", E;,).

We start by noticing, that since the subgroups of E,, and SO(n + 1) fixing points in R”
and S™ respectively are isomorphic, there exists an isomorphism

v: TLR® — T,S™,

that commutes with the actions of these common subgroups G, = SO(n). Hence, ¢ induces
an isomorphism of exterior algebras

1 AT(T,R™)SOM — A*(T,8m)30M).,

Moreover, we can assume that ¢ maps o € T,R" to o € T,S", since the subgroups G5 fixing
these point are both isomorphic to SO(n — 1). Using the decompositions

T,SR™ = T,R" & 6+ C T,R" & T,R",
T,88" = T,8" @ o+ C T,S" @ T,S™,

we see that we obtain also a Gs-equivariant isomorphism T5SR™ — T55S", and hence an
isomorphism

Ly A*(T5SR™)SOMY 5 A*(T588™)50 1),
Combining ¢; and ¢ yields an isomorphism
I 'Dn(Rn)E" @ Dn—l(SRn)En N ‘Dn(Sn)SO(n—H) D Dn—l(SSn)SO(n—&-l)_

To see that ¢ induces an isomorphism of the respective spaces of curvature measures, by
Proposition 4.3.2 we must show that ta = « and ¢(da) = do, where a are the contact
forms of R™ and S”, respectively. The first statement is obvious, since in view of the above
decompositions « is given by the scalar product with o on the first summand, and is equal to
zero on the latter. The second statement can be seen by choosing orthonormal coordinates
(1, Tn_1,Y1,. . Yn_1) for o+ @ ot c T,R® @ T,R" and o+ @ o+ C T,S" @ T,S",
corresponding under ¢, and such that in both cases da = 2?2_11 dx; N\ dy;. Hence, we obtain
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an isomorphism
70 CurvP (R") — CurvSOr+(sm),

The tranfer principle now states that this isomorphism intertwines the respective kinematic
operators.

Theorem 4.3.6. The diagram

CurvE (R") ‘ CuryS0(+1) (S™)

lkEn l’fsomﬂ)

CurvPr (R") @ Curv® (R") e, CurvSO ) (§7) @ CurvSO+1)(sn)

is commutative.

Proof. (Sketch, for a detailed proof confer [Ful4, p. 2.2.5] or [Full, Theorem 2.68]) In the
proof of Theorem 4.3.5, we obtained a map

H: D*(SM)Y — D*(SM)“ @ D*(SM)®,
which actually can be considered as a map
H: A*(TsSM)% — A*(T,SM)E° @ A*(T,SM)C°,

We need to show, that this map intertwines the isomorphisms induces by ¢: T,R™ — T,S".
Therefore, we look at the derivative of the cartesian square fiber bundles from above,

TE|p —2— T(G x SM)|r = TG|g x TSM|s, s

lpl* \LPS*

TsSM x TsSM TMXTMx M ox T, M.

Here, F = G, x S"! is the fiber over (5,5). From this diagram, we obtain the map H in
the following way: First, any given w € A*(T5;SM)% yields a G,-invariant section @ of
A*TSM|g, . Again, taking the wedge product dg A w, pulling back via pa., and using
fiber integration over C' C F, we obtain an element of A*(T5SM)% @ A*(T5SM)%e.
Now, it can be shown that all corners of this diagram of derivatives can be identified -
where (M, G) is either (R, E,,) or (S”,SO(n + 1)) - in such a way, that all identifications
intertwine the steps involved in computing the image of w under the map H. Thus, the
respective kinematic operators can also be identified. ]

By [Ful4, Section 2.1], the differential forms belonging to the Euclidean intrinsic volumes
are precisely the i-equivalents to the k; from Theorem 3.3.6, hence 1(®;) = &, for all
0 < i < n. Using the transfer principle, the kinematic operator on (S",SO(n + 1)) is given
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by

n
45[_1 w
kSO(n-{—l)(@n,w): E Cij o )dsni@@/{j,
t,j=0

and thus, the kinematic formula writes

- 45[_1 w
/ KO NgV)dg=Y" ¢;f "KWk (V),
SO(n+1) iG=0

for all K, L € X(S™) and open subsets U,V C S". Now, setting U := K and L :=V :=8S",

we obtain

n

P__ - ~
Nn,w(K) = Nn,w(K N gSn) dg = Z Cz‘jL I(W’W),Ui(K)Mj(STg = Z Ci,U'i(K)a
SO(n+1) i,5=0 i=0

where p;: K(S™) — R™ are (multiples of) the spherical intrinsic volumes. This is precisely
the statement of Theorem 4.1.3.






Bibliography

[AleO6al
[AleO6Db]

[Ale07]

[Ale08]

[Al1l48]
[Ber12]

[Ber07]

[Fedb9]
[Fu90]

[Full]

[Ful4]

ALESKER, SEMYON: ‘Theory of valuations on manifolds. I. Linear spaces’. Israel
J. Math. (2006), vol. 156: pp. 311-339 (cit. on pp. iii, 27, 29).

ALESKER, SEMYON: ‘Theory of valuations on manifolds. II’. Adv. Math. (2006),
vol. 207(1): pp. 420-454 (cit. on pp. iii, 27, 30).
ALESKER, SEMYON: ‘Theory of valuations on manifolds. IV. New properties of

the multiplicative structure’. Geometric aspects of functional analysis. Vol. 1910.
Lecture Notes in Math. Springer, Berlin, 2007: pp. 1-44 (cit. on pp. iii, 27, 53).

ALESKER, SEMYON and JOSEPH H. G. Fu: ‘Theory of valuations on manifolds.
III. Multiplicative structure in the general case’. Trans. Amer. Math. Soc. (2008),
vol. 360(4): pp. 1951-1981 (cit. on pp. iii, 27, 53).

ALLENDOERFER, CARL B.: ‘Steiner’s formulae on a general S™*1’. Bull. Amer.
Math. Soc. (1948), vol. 54: pp. 128-135 (cit. on p. 4).

BERG, ASTRID: ‘The Hard Lefschetz Theorem’. MA thesis. Technische Univer-
sitdt Wien, 2012 (cit. on p. 16).

BERNIG, ANDREAS and LUDWIG BROCKER: ‘Valuations on manifolds and Rumin
cohomology’. J. Differential Geom. (2007), vol. 75(3): pp. 433-457 (cit. on pp. iv,
29, 30).

FEDERER, HERBERT: ‘Curvature measures’. Trans. Amer. Math. Soc. (1959),
vol. 93: pp. 418-491 (cit. on p. 55).

Fu, JosepH H. G.: ‘Kinematic formulas in integral geometry’. Indiana Univ.
Math. J. (1990), vol. 39(4): pp. 1115-1154 (cit. on pp. iv, 37).

Fu, JoserpH H. G.: Notes on Integral Geometry. 2011. URL: http://alpha.
math.uga.edu/~fu/notes.pdf (visited on 08/02/2016) (cit. on pp. 23, 54, 56,
58).

Fu, JosepH H. G.: ‘Algebraic integral geometry’. Integral geometry and valua-
tions. Adv. Courses Math. CRM Barcelona. Birkhduser/Springer, Basel, 2014:
pp. 47-112 (cit. on pp. 54, 56, 58).

61


http://alpha.math.uga.edu/~fu/notes.pdf
http://alpha.math.uga.edu/~fu/notes.pdf

62

Bibliography

[Gia9g]

[G1a96]

[Had43]

[Her43)

[K1a97]

[Kra96]

[Leel3]

[Par(2]

[Rud91]

[Sch78]

[Scho8]

[Sch16]

[Sil01]

GIAQUINTA, MARIANO, GIUSEPPE MoDICA, and JIRf SOUCEK: Cartesian cur-
rents in the calculus of variations. 1. Vol. 37. Ergebnisse der Mathematik und
ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results
in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in
Mathematics|. Cartesian currents. Springer-Verlag, Berlin, 1998: pp. xxiv+711
(cit. on p. 16).

GLASAUER, STEFAN: ‘Integral geometry of spherically convex bodies’. Diss.
Summ. Math. (1996), vol. 1(1-2): pp. 219-226 (cit. on pp. 4, 51).

HADWIGER, HUGO: ‘Uber eine Mittelwertformel fiir Richtungsfunktionale im
Vektorraum und einige Anwendungen’. J. Reine Angew. Math. (1943), vol. 185:
pp. 241-252 (cit. on p. 9).

HERGLOTZ, GUSTAV: ‘Uber die Steinersche Formel fiir Parallelflichen’. Abh.
Math. Sem. Hansischen Univ. (1943), vol. 15: pp. 165-177 (cit. on p. 4).

KrLAIN, DANIEL A. and GIAN-CARLO ROTA: Introduction to geometric probabil-
ity. Lezioni Lincee. [Lincei Lectures]. Cambridge University Press, Cambridge,
1997: pp. xiv+178 (cit. on pp. iii, 2, 3, 8, 12).

KRAFT, HANSPETER and CLAUDIO PROCESI: Classical Invariant Theory, a
primer. 1996. URL: http://jones.math.unibas.ch/~kraft/docs/primernew.
pdf (visited on 08/22/2016) (cit. on pp. iv, 36, 37).

LEE, JOHN M.: Introduction to smooth manifolds. Second. Vol. 218. Graduate
Texts in Mathematics. Springer, New York, 2013: pp. xvi+708 (cit. on p. 40).

PARK, HEUNGGI: ‘Kinematic formulas for the real subspaces of complex space
forms of dimension 2 and 3’. PhD thesis. University of Georgia, 2002 (cit. on
pp. iv, 39).
RUDIN, WALTER: Functional analysis. Second. International Series in Pure and
Applied Mathematics. McGraw-Hill, Inc., New York, 1991: pp. xviii+424 (cit. on
pp. 43, 44).

SCHNEIDER, ROLF: ‘Curvature measures of convex bodies’. Ann. Mat. Pura
Appl. (4) (1978), vol. 116: pp. 101-134 (cit. on pp. iii, 7).

SCHNEIDER, ROLF and WOLFGANG WEIL: Stochastic and integral geometry.
Probability and its Applications (New York). Springer-Verlag, Berlin, 2008:
pp. xii+693 (cit. on pp. 9, 55).

SCHUSTER, FRANZ and FLORIAN BESAU: ‘Binary operations in spherical convex
geometry’. Indiana Univ. Math. J. (4 2016), vol. 65: pp. 1263-1288 (cit. on
p. 20).

StvA, ANA Cannas da: Lectures on symplectic geometry. Vol. 1764. Lecture
Notes in Mathematics. Springer-Verlag, Berlin, 2001: pp. xii+217 (cit. on pp. 33,
34).


http://jones.math.unibas.ch/~kraft/docs/primernew.pdf
http://jones.math.unibas.ch/~kraft/docs/primernew.pdf

	Preface
	Acknowledgements
	Contents

	1 Background
	1.1 Hadwiger's theorem in Rn
	1.2 Spherical analogues
	1.3 Hadwiger's theorem on S2
	1.4 Higher dimensional spheres
	1.5 Replacing continuity by non-negativity

	2 Smooth and generalized valuations
	2.1 Restricting to proper convex bodies
	2.2 Currents
	2.3 Normal and conormal cycles
	2.4 Smooth valuations
	2.5 Generalized valuations

	3 `39`42`"613A``45`47`"603ASO(n)-invariant forms and currents
	3.1 Contact geometry
	3.2 Invariant theory of `39`42`"613A``45`47`"603ASO(n)
	3.3 Invariant forms
	3.4 Invariant currents

	4 Characterization of invariant smooth and generalized valuations
	4.1 Characterization of invariant smooth valuations
	4.2 Characterization of invariant generalized valuations
	4.3 The transfer principle

	Bibliography

