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a b s t r a c t

The electrical energy system is undergoing major changes due to the necessity for more sustainable
energy generation and the following increased integration of novel grid-connected devices, such as
inverters or electric vehicle supply equipment. To operate reliably in novel circumstances, as created
by the decentralization of generation, power systems usually need grid supportive functions provided
by these devices. These functions include control mechanisms such as reactive power dispatch used
for voltage control or active power reduction depending on the voltage. As the main contribution
of this work, an approach for the development of the detection of misconfigured (e.g., wrongly
parameterized control curve) grid devices using solely operational data is proposed. By generating
and analyzing operational data of power distribution grids, a Deep Learning-based approach is applied
to the detection problem given. An end-to-end framework is used to synthesize and process the data
as well as to apply machine learning techniques to it. The results offer insights into the applicability
and possible ways to improve the proposed solution and how it could be employed by grid operators.
The findings show that DL methods, in contrast to traditional machine learning, can be used for the
problem at hand and that the framework developed offers the necessary tools to fine-tune and scale
the solution for broader usage.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Today, especially power distribution system operators (DSO)
ave to cope with new challenges arising due to the transfor-
ation of the energy system. A major shift in paradigm is the

ncreasing penetration of decentralized power generation [1],
hich leads to technical challenges in the transmission and stor-
ge of power. Standing out is the impact of high photovoltaics
PV) proliferation, but also of other grid-connected devices such
s electric vehicle supply equipment (EVSE) [2]. In case of gen-
ration outdoing demand locally, bidirectional power flows on
ifferent voltage levels as well as voltage rises are the con-
equences [3]. If the voltage is lifted too much this can lead
o voltage band violations, which consist of voltages above or
elow the admissible limits. Control mechanisms are employed
o allow for a reasonable decentralized generation of renewable
nergy without creating said violations. For this purpose, voltage
egulation is the preferred strategy [4], which is made possible by
eneration units implementing grid supporting functions. These
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approaches target the frequency as well as the voltage amongst
others. Apart from limiting the dispatch of active power, which
is a possible solution in the EVSE case [5] of undervoltage, one
of the most common ways to influence the voltage is via the
power factor and followingly the reactive power exchanged with
the network, usually controlled by a local droop control [6].

Such controls are configured, as the grid codes demand, in con-
trollable decentralized grid-connected devices. However, they are
configured once at installment and subsequently not monitored.
As a result shifts in configuration, such as a reset of a control
curve, can go unnoticed given the current layout of the grid’s
metering infrastructure and the DSOs’ overall metering capacities.

Fig. 1 illustrates the functions of these reactive power con-
trols; on the left the power factor (cosφ) is varied depending
on the active power (P) dispatch, allowing for reactive power
(Q) infeed, whereas the right side shows the impact of Q on the
voltage (V) [7]. The active power control depending on the voltage
applied to EVSEs is described in more detail later in the work.

To ensure that these grid supporting functions are actually
delivered, DSOs need to monitor the operation of grid-connected
devices, for instance, PV inverters or EVSE, as to be sure that the
network works in a stable manner. As the available information
about grid components’ characteristics is often limited, a data-
driven approach is a favorable option [9] for a monitoring solution
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Control schemes: (a) Q(P), (b) voltage droop [8].
Fig. 2. Definitions of terms and requirements for the detection of wrong
implementations (code needed) respective misconfigurations (data needed).

that is actually feasible and therefore useful to DSOs. Such a
solution can be crafted in a way as to only use operational data
of the grid-connected devices, in order to detect misconfigura-
tions of the same. These deviations of configurations from the
specifications – as defined by grid codes – can have two reasons;
firstly, a different configuration than the normative one can be
purposely implemented. Secondly, the configuration can change
due to malfunctions or faults. Here misconfiguration stands for
the latter meaning a deviation from previous implementation of a
control curve that is assumed to be initially correct. Fig. 2 depicts
how these terms are linked and what is needed to detect anoma-
lies with respect to the type of anomaly. It becomes obvious that
for the detection of involuntary misconfigurations only detection
of the execution of functionalities is necessary, which does not
require knowledge about an implementation code or the fun-
damental specification and, thus, follows a black-box approach.
Therefore, only operational data is used for this purpose.

This detection of misconfigurations while only having oper-
tional data, meaning no topology information or information
bout the configuration other than the previous one ingrained
n the data, is becoming more and more relevant as the trans-
ormation of the energy system paces on with the installment
f PVs and EVSE. At the same time, more and more data at the
onnection points of these devices, meaning at the Smart Meters,
re becoming available and could be used. However, there is no
2

approach to this particular problem and therefore the means of
developing and assessing novel ones are needed. This leads to the
formulation of the condensed question to be answered:

What approach, applying data-driven methods and algorithms
solely on operational data at Smart Meter level is suited best to
detect misconfigurations of functions of grid supporting devices in
a low voltage distribution grid?

To answer this question a number of objectives have to be
fulfilled. These are:

• Obtain data that reflects cases of relevant misconfigurations
in operational grid data.

• Assess and process this data to make it usable for the devel-
opment of detection methods

• Select and apply detection methods to the data
• Pick and refine the best-suited method found.

Therefore, the main contribution of this work, which is an
invited, revised, and extended version of [10], is the detailed
description of an end-to-end framework that can be used to
handle grid operational data and to detect misconfigurations.
First, this framework is employed to either select or generate,
clean and label data for further use. This is necessary since grid
data in the form needed is almost impossible to obtain. DSOs have
no metering in place that would yield data indicating whether a
misconfiguration is present or not. The so-created datasets are
then preprocessed by, for example, scaling, in order to make it fit
for usage by, and training of the detection methods. Subsequently,
various detection mechanisms can be applied to the data, which
lastly are evaluated and compared against each other. In this
work, Deep Learning (DL) approaches are under scrutiny, in addi-
tion to being benchmarked against traditional Machine Learning
(ML) approaches. DL approaches are chosen for investigation
because of voltage curves being highly non-linear and, therefore,
features cannot be easily derived from them at a low sampling
rate as the one of Smart Meter data. However, our previous
work indicates a detectable impact of misconfigurations on the
voltage [11]. This makes DL an interesting approach [12]. The
extension over the conference version [10] consists of an extra
use case concerning EVSE misconfigurations, under investigation
along with a benchmarking against traditional ML methods as
well as sensitivity analysis concerning the parameters of the DL
models and their training.

The remaining part of this work can be summarized as follows:
In Section 1 a detailed discussion of monitoring needs and issues
in power distribution grids is conducted. Section 2 describes
the state-of-the-art related to malfunctions in power systems as
well as the usage of artificial intelligence for detecting them. In
Section 3, the functionality and implementation details of the
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etection framework are lined out and in Section 4 a description
nd results of the approaches explored using the framework are
resented. Finally, Section 5 provides the discussion, conclusions,
nd an outlook about potential further work.

. Related work

.1. Classical data analysis

In the work of [13], electricity consumption data is mod-
led using a combination of polynomial regression and Gaussian
istribution. This is done to detect anomalies in the electricity de-
and of several schools. This approach could be used for anomaly
etection of grid-connected devices, however, the models have to
e fitted individually for each device making the application less
uitable for broad usage.
In [14], consumption patterns of medium voltage transformers

t substations are clustered using algorithms, such as k-means
nd fuzzy c-means. Abnormal consumption is then identified by
mploying the local outlier factor (LOF) of hourly load data as a
easure. Indicators such as irregular peak unusual consumption,
roadest peak demand, sudden large gain, and nearly zero de-
and unusual consumption are used as features here. Even if not
pplicable to this particular problem, this shows that there are
eatures present that allow for general detection of anomalous
ehavior from operational data.
[15] proposes a fault detection in microgrid using traditional

achine learning approaches such as Support Vector Machine
SVM), k Nearest Neighbor (kNN), or Decision Trees (DT) in the
orm of Random Forests. Data of high resolution is used as well
s the grid topology known. However, as only Smart Meter mea-
urements are to be used which are only available in a low
ime resolution, also topology detection is not feasible [16] for
he problem at hand. The low resolution and lack of topology
nowledge make this approach impracticable here since features
ould probably not be extracted. Nevertheless, the traditional ML
ethods of SVM, kNN, and DT are to be tried out and used as a
enchmark for other approaches.

.2. Feature identification using artificial intelligence approaches

.2.1. Recurrent deep learning architectures
This can be exploited by using DL. As elaborated in [17],

ecurrent Neural Networks (RNN) can be used to classify time
eries data; an Elman network structure is applied to classify a
ime series. This includes a feed-forward part and a memory part
hich feeds network activation’s from a previous time step as

nputs to the network to influence predictions at the current time
tep. This is achieved through back propagation through time
BPTT); here the gradient of the cost function is propagated with
egard to the parameters of the network, like weight matrices,
or every time point of the sequence and each layer by unfolding
he recurrent connections through time [18]. The parameters are
pdated using the gradient in a way that minimizes the cost
unction. The cost function is selected according to the task,
uch as classification or regression [19]. For classification a cost
unction as the cross-entropy loss is a common choice since it
ields a linear gradient structure, as does the mean squared error
sed for regression. This is of particular importance to avoid a
anishing gradient while back-propagating it through time [20].
rocessing the input as a sequence adds a temporal dimension
o the information gained and allows a more flexible window of
nformation to be used in contrast to a feed-forward network.
ere, the most frequent classification result yielded by the output
eurons is used as a classification result. This might be feasible
or grammar checking but might need alteration for the problem
3

addressed in the work here. Especially because RNNs are mostly
used for prediction, they have trouble with longer time-series
because of a, regardless of the cost function, disappearing gra-
dient and, additionally also due to their limited features w.r.t.
parallelization [21].

The RNN approach nevertheless has some deficiencies, most
prominently its lacking ability to capture long-term dependencies
in sequential data, as lined out in [22]. In the Long Short-Term
Memory (LSTM) RNNs recurrent hidden layers, so-called ‘memory
blocks’ are contained; they are made of memory cells that store
the network temporal state using self-connections and control
the exchange of information through ‘gates’, which are multi-
plicative units. Namely, these are the input, output, and forget
gates, which, respectively control the inflow or output of acti-
vation’s to or from the cell or scale its internal states before
using them recurrently, which can be interpreted as forgetting.
This makes LSTM RNNs an interesting approach when working
with longer time series. This is also due to the LSTMs ability to
filter non-relevant inputs through using their gates giving it an
advantage when modeling dependencies that vary over time [23,
24].

Another approach to model long-term dependencies better are
Gated Recurrent Unit (GRU) RNNs; they address the same vanish-
ing gradient issues as the LSTM approach when back-propagating
the gradient of the cost function through time using a simpler
structure. Only two gate types are employed by the GRU; an
update gate that controls the inflow of information as well as a
reset gate that decides over forgetting past information [25]. In
contrast to the LSTM architecture, the GRU architecture allows for
discarding of past information entirely. Still exploding gradients
remain an issue, which is however tackled by gradient clipping.
This makes the GRU RNN have fewer parameters in comparison
to an LSTM RNN and is, therefore, more lightweight and has been
observed to outperform the latter in several tasks. This is also the
case for univariate time series classification, which is applicable
for classification problems in power systems when, for example,
only voltage data is available [26]. Because of these properties,
GRU RNNs could also be interesting for a distributed application
in a detection mechanism and also for frequent retraining if
needed.

2.2.2. Feed-forward architectures with attention mechanisms
An alternative is posed by so-called Transformer architec-

ture [27]. Here, attention mechanisms are used that enable cap-
turing of global dependencies between the input and output,
regardless of the positions of the sample points in the time series
or sequence. Here, no recurrent computation is used, allowing
for better parallelization. Instead ‘self-attention’ is employed to
reach a representation of a sequence through setting the posi-
tions of the sequence in relation . An encoder–decoder setup is
used, where it performs a mapping of the input to an internal
representation, which the decoder then processes to generate the
output auto-regressively. The encoder and decoder both consist
of feed-forward networks as well as multi-head self-attention
mechanisms. This attention mechanism projects a query and key-
value tuples on an output which is calculated using the weighted
values. These weights are computed in turn on the query and the
respective key. This yields an attention value for every query–
key-value item and therefore a representation of the sequence.
Multi-head attention now enables processing information from
a higher dimensional query–key-value set at various positions
in contrast to a single attention head, which is helpful. Ad-
ditionally, positional encodings are simply added to the initial
inputs to insert some hint about the positions of the points of
the sequence for the feed-forward networks. This non-recurrent
approach could be also a computationally interesting option.
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Table 1
Non-functional requirements (NFR) fulfilled (X) or unfulfilled (–) by approaches in related publications cited.
NFR Reference

[14] [13] [15,16] [17,21] [22–24] [18,25,26] [27,29–31] [28]

Scalability – – – – – – X X
Adaptability – – – X – X X X
Integrability X X X X X X X X
Usability X X – X – X X X X
Data Retention X – X X X X X X
Robustness – X – X X X – X
Quality X X – – X X X X
2.2.3. Recurrent architectures with attention mechanisms
The R-Transformer concept follows a similar idea as the afore-

entioned transformer approaches [28]. The main improvement
roposed over the regular transformer consists in additional cap-
uring of the sequential information in the data. This is done
y positional encoding in the regular transformer, which only
ields a scant impact [29], and is often limited to a certain
equence length to be able to set into a context [30]. If posi-
ional information is to be retained for a flexible sequence length
n an effective manner, high efforts are required to tailor such
olutions [31]. These disadvantages take their toll on the ro-
ustness of a solution built on traditional attention mechanisms.
urthermore, local structures are neglected because of the sheer
umber of other positions which allows only for a small signal
t a local position, even if these structures might be of quite
n importance. To combat these flaws, the R-Transformer uses
ocal RNNs sliding over the sequence, applying windows of a
efined length to encode the sequential information in the data
nd capture local structures in the time series. Thus, latent repre-
entations are generated equally for each of the windows treated
y the local RNN and are not dependent on any of the other
indows. Therefore, information about its local surroundings is

ngrained in each data point’s representation. Additionally, by
liding the RNN over the time series, the global sequentiality of
he data is taken into account as well. The effect of the local RNNs
an be compared to a one-dimensional convolution operation,
hich has the advantage of being parallelizable, but also taking

nto account sequential information. The gained and encoded
ocal information of one position is then, like in the aforemen-
ioned transformer, directly connected to all other positions in
he sequence through the multi-head attention mechanism. In a
imilar application to the one at hand (MNIST dataset with 784x1
equences), the R-Transformer outperforms both the regular, con-
olutional Transformer as well as simple recurrent approaches
uch as LSTM and GRU, whereas an RNN performed significantly
orse than all other approaches. This makes the R-Transformer
n interesting approach.

.3. Summary and open issues

Summarisingly, the work on anomaly detection (see Table 1)
n the electrical grid domain shows that there are approaches that
re not flexibly applicable to new devices or are only applicable
t a transformer level or with more information or data of prop-
rties which is not available. However, the domain of DL-based
pproaches offers methods that are, at least in theory, well suited
or developing a solution to bridge this gap. Nevertheless, no ap-
lications to this specific problem can be found in the literature,
nd therefore, explorations and assessments of these have to be
onducted. This is done by the introduction of a novel framework
llowing for generating and/or handling data that is specific to
he detection problem at hand. The framework also allows for the
evelopment and assessment of detection applications, in order
o set up, pick and refine data-driven methods.
4

3. Scenarios for monitoring and detection

3.1. Employed framework

To overcome the shortcomings of present approaches for de-
tecting misconfigurations by the development of a new method,
an environment is introduced which is able to handle different
detection scenarios, grid setups, and data properties. In general,
the approach to detecting devices in misconfigured states is novel
in itself. This kind of framework (see Fig. 3) is used to either
synthesize or clean, process, and analyze data as well as apply ML
and DL methods to it. Either real-world operational grid data or
data of simulations using grids that are specifically designed for
simulation purposes – like the ones that form the SIMBENCH [32]
project – are being used.

If operational data is to be synthesized, the grid data used is
extracted from the respective files and prepared for further use in
simulations, as indicated in Fig. 3 under ‘Grid Data’. Those are data
such as the number of connection points and the specifications of
their connections and the substations as well as the consumption
and dispatch of loads and generation in the grid. In this manner,
the grid topology is checked and generation and load profiles, as
well as control curves, are defined and handed over to the grid
simulation software. This is done in the ‘Grid Preparation’ box.
The next step is ‘Grid Setup’: a grid model is set up in a grid
simulation software by placing elements, and adding specifica-
tions and profiles to these elements. Using simulations another
plausibility and – if necessary – scaling of, for example, loads is
conducted and a final grid model is yielded. This model is then
used for running simulations in which parameters like the time
resolution of the data synthesized, the misconfiguration of inter-
est and its position, as well as the control curve to be monitored,
can be varied, as indicated under ‘Scenario Settings’. The simula-
tion then delivers operational data of the grid including data of a
malfunction, which is then labeled and saved. This is represented
by the ‘Simulation’ box which specifies the simulation method as
quasi dynamic load flow simulations, which can also be altered
to be a simulation of individual load flows. These individual load
flows are necessary to implement voltage-dependent controls,
as the one applied to EVSEs, as described later. These voltage-
dependent controls run through inner control loops in order
to find an adequate setpoint for the operational state. These
inner loops slow down the simulation and, therefore, the entire
data generation, making it very time-consuming to collect large
amounts of data in this manner. To solve this, the framework
also allows for the use of so-called ‘quasi dynamic simulation
language models’ (‘QDSL models’) in combination with individual
load flows. These QDSL models perform the inner loops of device
controls, speeding data generation up by a factor of 7. Moreover,
the misconfiguration is set up and the raw load flow data of the
grid simulation is exported as well as information about when
and where a defined misconfiguration occurred. These results
are finally used to pick relevant data such as data of connection
points having a PV unit or an electric vehicle charging station, add

noise to it and, therefore, create datasets. These datasets are used
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Fig. 3. Framework used for generation and handling of data of misconfigured devices in power grids as well as for assembling datasets using this data and applying
and assessing methods and algorithms for misconfiguration detection.
to assess the applicability of machine learning detection methods,
especially DL approaches in this case. This is done in the last
step two steps, ‘Analysis’ and ‘Analysis Results’, of the framework;
training of machine learning classifiers can be conducted as well
as architecture exploration or hyperparameter optimization using
grid search. The results can be used to make statements about the
best-suited methods as well as to gain insights into the quality
5

and property of the data on which the classification has been
conducted.

3.2. Tackled scenarios

What this looks like in practice, is illustrated by the schematic
of a distribution grid with household loads and PV generation in
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Fig. 4. Schematic grid used to generate data [7].
Fig. 5. P(U) control curve applied to EVSEs.

ig. 4; one possible misconfiguration is shown. Here all PV invert-
rs follow a certain control curve regarding to the power factor.
s mentioned above, this is meant to help regulate the voltage in
ase of high active power infeed through the variation of reactive
ower dispatch. One of the PV units inverts its control curve, it
s therefore misconfigured and the voltage is not controlled as
ntended anymore, which is to be detected. For PV inverters, other
ossible misconfigurations involve a flat control curve, which
quals no control, and different maximal or minimal power fac-
ors. This allows an assessment of how grave a misconfiguration
as to be found as to be detected by certain approaches.
Another misconfiguration scenario concerns the EVSEs; the

ontrol curve employed in the electric vehicle charging station
imulated is a P(U) control, which is an active power control
epending on the voltage. The curve used in the simulations is
epicted in Fig. 5; the EVSE is charging at its rated power above a
oltage of 1.05 per unit, whereas the charging power is gradually
educed if the voltage of the connection point is lower than this.
t a voltage value of 0.95 per unit, this reduction is halted at the
inimal charging power of 18.75% of the rated charging power.
herefore, this control should help keep voltages within limits.
he misconfiguration is assumed as a flat control curve, meaning
o reduction in charging power depending on the voltage level.
These misconfigurations, but also misconfigurations in other

evices such as battery energy storages, are supposed to be
qually detectable using this approach; being grid supporting, a
6

change in behavior should leave a similar impact on the opera-
tional data, such as the voltage. The similarity of features should
therefore make a detection possible.

The voltage at the coupling points of the loads and the grid-
connected devices, such as EVSEs and PV units is recorded, for
example, with a sample rate of 15 min to mimic smart meter data.
This data is then turned into a dataset by creating samples of a
certain sequence length, labeling the same in classes 0 (regular
behavior) and 1 (misconfiguration present) as well as choosing
the ratio of classes, either balanced or unbalanced to an arbitrary
degree, to fit the capabilities of the methods applied later. Finally,
these labeled samples are fed into a data-driven detection method
to train on them and assess its performance in detecting a mal-
function by recognizing the correct classes. The datasets compiled
and used consist of either weekly or daily time-series sampled in
15 min intervals (i.e., common for power system applications),
which leaves us with either 96 or 672 data points per sample
sequence. This allows for an assessment of the impact of sequence
length on the performance of the applied DL methods, which is
supposed to stem from their respective handling of long-term
dependencies in a sequence.

The novel data used for this work are created using up to 5 of
the aforementioned SIMBENCH grids, which are either classified
as rural or semi-urban since in such networks voltage issues
are prevalent over current issues, making the misconfigurations
described relevant in these grids. For the first scenario of a PV
misconfiguration, Fig. 6 shows in two weekly time-series samples
the impact left by the misconfiguration on the operational data
gained, namely the voltage. The variation in voltage for class 0
(‘regular behavior’) is much smaller than for the malfunctioning
class 1 (‘malfunction/misconfiguration present’). This behavior is
what is expected here since the control is implemented to keep
the voltage within certain admissible limits. Therefore, this dif-
ferent impact of the misconfigured power factor control curve is
to be detected. For this case, various datasets with up to 200,000
samples of these kinds with balanced classes, to enable proper
learning of features and classification using DL [33], were split
into a train and test set and used for the adaption and assess-
ment of the DL detection approaches described in the following.
Furthermore, a dataset containing 20,000 samples sourced from
a single grid containing PVs and EVSEs was created to assess the
applicability of the DL methods in detecting the above-described
malfunction of EVSEs.
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Fig. 6. Samples of both classes (0 (blue): regular; 1 (orange); misconfiguration present in grid connected PV device) used for Deep Learning. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version of this article.)
. Applied learning methods and achieved results

.1. Data used

The data shown above has been slightly preprocessed; before
ts usage in the different DL-based methods by subtracting its
ean from every sample to eliminate the influence of a grid

eeder-based voltage offset, as well as scaled to a range between
1 and 1. The scaler for this was fit on the training set, scaling all
ero-meaned training samples between −1 and 1, and then later
pplied to the test set. Such samples were assembled to datasets
f different sample sizes (1 day and 7 days respective 96 and 672
ositions time-series length) and sample numbers (1,000, 5,000,
0,000 for preliminary analysis, and 20,000 respective 200,000 for
he method comparisons). Bigger sample sizes imply more data in
his case, but longer time-series might not be able to propagate
ack the gradients through time through the entire time-series.

.2. Method implementation

For a baseline and benchmark for the DL methods, traditional
achine learning algorithms were applied. Namely, these are

he Support Vector Machine (SVM, NuSVM), k Nearest Neighbor
kNN) as well as Decision Trees (DT) algorithm. for all of them
he implementations found in the Scitkit-learn python library
ere used.1 ,2 ,3 ,4 All of these algorithms are supervised learning
lgorithms, which are applicable to the labeled data at hand.
or the SVM and NuSVM, the kernels used to form the decision
oundary were varied. For the DT the purity measure was varied,
eaning the measure by which data is segmented into classes.
or the kNN algorithm, the distance measured to the next neigh-
oring samples was varied to either count all neighbors equally
r weighted based on their distance.

1 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#
klearn.svm.SVC
2 https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html#

klearn.svm.NuSVC
3 https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
NeighborsClassifier.html
4 https://scikit-learn.org/stable/modules/generated/sklearn.tree.
ecisionTreeClassifier.html
7

As a loss criterion for the DL models, PyTorchs CrossEntropy-
Loss5 is applied, which combines the LogSoftmax and negative
log likelihood loss (NLLLoss). The input is expected to be the raw,
untreated score of each of the two classes, as well as a class label.
The CrossEntropyLoss function can be denoted as

loss(x, class) = −log(
exp(x[class])
Σjexp(x[j])

) = −x[class] + log(Σjexp(x[j]))

(1)

where x[class] denotes the output for the true target class and j
spans across all classes, meaning that x[j] is the output for the jth
class.

Fig. 7 depicts the most basic structure of the Elman network
trained. There, a simple RNN with 2 layers with 6 features in
the hidden states each as well as a fully connected layer with 6
neurons and 2 output neurons is presented. The output neurons
obviously predict the classes 0 and 1. Each time step is fed
into the network, and the output of the final time step, as it
is the ‘most informed’ output, is used for calculating the loss
and updating the weights as well as for making a classification.
This approach was used during the first assessments of recurrent
approaches implemented, as described in the following.

The first goal was to train at least a weak learner, meaning
that the output of the classifier should be more accurate than
guessing. The initial assessments described in the following were
performed with regard to scenarios of misconfigured PVs; in the
case of the malfunction detection task presented before, this was
achieved at a sample number of 5,000 for the 1 day time-series
dataset as well as for the 7 days time-series dataset. This was
achieved only using data created using one grid to be able to
tell if there was even enough information in the data to make
a meaningful classification (i.e., for this task the F-score using
the most data reached by the network was slightly over 0.5).
Furthermore, a very small learning rate of 10−6 had to be cho-
sen to reach sufficiently good results with a standard stochastic
gradient (SGD) optimizer. The learning rate was controlled in a
manner so as to increase the learning rate by a factor of 1.1 in
case the loss between epochs diminishes, and decrease it in turn

5 https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html#sklearn.svm.NuSVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html#sklearn.svm.NuSVC
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
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Fig. 7. Schematic depiction of the RNN trained and used.
by a factor of 0.9 at an increasing loss. Training was conducted
for up to 100 epochs. A comparison with a linear model showed
that the linear classifier did no better than guessing and therefore
only reached an F-score of 0.33 on the balanced datasets. The
RNN architecture put to trial here consisted of 5 RNN layers each
consisting of 20 hidden units and a feed-forward layer with 20
neurons as well. Training here and in the following experiments
is always conducted for 20 epochs with a learning rate of 10−3 if
not stated otherwise. The RNN approach was trained using SGD
and Adam optimizer on the 1-day and 7-day samples datasets,
with 200,000 samples from 5 grids and 20,000 samples from 1
grid.

As a first alternative to the simple RNN structure, an LSTM
RNN was tried out. The architecture used also consisted of 5 LSTM
layers and a feed-forward layer with 20 hidden units, respectively
neurons per layer, arranged in the same manner as for the simple
RNN. An SGD optimizer was used for training.

To be able to compare the ‘improved’ simple recurrent ap-
proaches, for the GRU RNN, the same architecture was chosen as
for the LSTM RNN. As optimizers, SGD and Adam were used when
training on the same data as above. The transformer as the only
non-recurrent detection approach using an attention mechanism
was used with an architecture of 5 feed-forward layers with 20
neurons each. The attention mechanism constituted of a multi-
head attention with one head at first. Here, an SGD optimizer was
used.

Finally, the most sophisticated architecture used is the so-
called R-Trans-former, following [28] which incorporates both
attention mechanisms as well as recurrent and feed-forward neu-
ral networks, as lined out in Fig. 8. The multi-head attention
approach allows to relate a part of a sequence to any other part
of the sequence as it treats them all equally but encodes them
positionally at the same time. This helps to learn global depen-
dencies while neglecting local structures, which might also be of
great interest during the course of a day. Therefore, each part of
the sequence is processed beforehand by an RNN; a window of
a certain number of points is slid over the sequence capturing
local sequential information. In this architecture, this window had
a size of 7 data points. Furthermore, the local RNNs were GRU
RNNs of which 4 layers with 3 hidden units each were used. This
was decided following a singular experiment conducted on the 7-
day 200k dataset in which GRU reached an F-score of 0.51 after
training for 47 epochs at a learning rate of 10−5, outperforming
RNN and LSTM. The multi-head-attention used had one head to
be able to assess the impact the recurrence has in comparison
to the regular Transformer. In a first approach, only one block of
stacking a local RNN, a multi-head-attention network, and a feed
forward layer were used. An SGD optimizer was used.

After conducting experiments based on the initial strategy of
using only the last, ‘most informed’ output for backpropagation
as well as classification of samples, a ‘majority vote’ as described
8

Fig. 8. Structure of the R-Transformer used.

in [34] was implemented. This majority vote uses the outputs of
a portion of the entire sequence, or of the whole sequence, and
calculates a loss depending on them. The absolute loss is then
divided by the number of outputs used to have a comparable
loss in all cases. This also allows for an evaluation of how many
outputs should be used ideally to perform the majority vote. This
can be done as a hyperparameter optimization, performed, for
example, as a grid search.

4.3. Achieved results and discussion

The code used to produce the datasets and results can be
found in the corresponding GitHub repository.6 [For the compar-
ison of the methods as a main] result metric the expressive F-
score was used, which combines and balances Precision (i.e., how
many of the found misconfigurations are actually ones), and
Recall (i.e., how many of the misconfigurations present have been
found). This allows a quick understanding of how helpful a result
is to a grid operator since a DSO wants to balance between false
alarms and finding all occurrences.

To provide a baseline, traditional machine learning algorithms
were applied. Table 2 gives an overview of the methods applied as
well as their parameters and the results yielded. The depicted re-
sults apply to the dataset containing data of PV misconfigurations.
This assessment was conducted to provide a baseline and serve as
a benchmark and additional justification of DL approaches in this
case. All experiments were run applying 3-fold cross-validation.

As this assessment makes clear, various common traditional
machine learning algorithms fail in delivering meaningful results,
even if parameters are varied to optimize their performance.

6 https://github.com/DavidFellner/Malfunctions-in-LV-grid-dataset

https://github.com/DavidFellner/Malfunctions-in-LV-grid-dataset
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Table 2
Overview of the results found when detecting a PV misconfiguration using traditional machine learning methods.
Model Decision Trees kNN SVM & NuSVM

Parameter varied Impurity measure Distance measure Kernel

1 day-dataset
(sequence length: 96)

Entropy Gini Uniform Distance Linear, Sigmoid, RBF
Polynomial (degree 2–6)

Better than guessing
(better than linear model)

No No No No No
Fig. 9. Grid search to assess the performance of the majority vote classification;
top: RTransformer, bottom: LSTM.

The aforementioned majority vote classification was assessed
sing a grid search hyperparameter optimization. As can be seen
n Fig. 9, the so-called ‘calibration rate’ was varied for this pur-
ose: this rate determines what portion of the sequence, meaning
ow many of the first data points of the sample processed, are
sed for calibration. The outputs of these first data points are
ot used for the majority vote classification. This means that a
alibration rate of 0.8 corresponds to the last 20 percent of the
equence’s outputs being used for the classification. A calibration
ate of 1 corresponds to using only the last ‘most informed’
utput for classification. On the left side of the figure, we can see
he performance of the R-Transformer architecture, whereas the
ight side depicts the score of the LSTM architecture as described
efore. The dataset used consists of 20,000 one-day samples,
hich are samples with 96 data points, sourced from a single grid
ontaining only loads and PVs. Therefore, the misconfiguration
nder scrutiny here concerns a PV unit’s control curve.
The results of the assessment , only using the last, ‘most

nformed’ output for classification, for the small dataset sourced
rom 1 grid as well as the big dataset collected from 5 grids
hen detecting a PV misconfiguration are summarized in Table 3.
9

Fig. 10. Hyperparameter optimization done on the number of Attention Heads
of the R-Transformer.

This is done for a setting with a PV proliferation of 25 per-
cent, meaning every fourth load has a photovoltaic installation.
In this context, a Weak Learner is performing better than the
linear model which only guesses and therefore reaches an F-
score of 0.33. The results achieved here are not good enough for
actual usage, however, they provide a good orientation for further
refinement of methods.

For the EVSE misconfiguration a less encompassing assess-
ment was conducted; using data sourced from one grid with a PV
and EVSE proliferation of 25 percent each, meaning every fourth
load has solar generation and/or an electric vehicle charging
station a dataset of 20,000 7-day samples was assembled. This
dataset comprises, in contrast to the datasets used thus far, of
samples of data of EV charging stations that are either miscon-
figured or in a regular state. Once again, only the last output is
used for classification. The performances of the various methods
applied to detect this EVSE misconfiguration are displayed in
Table 4: once more the results are not satisfactory for a final
solution but provide a guideline for further research on refined
methods.

After these assessments, a first phase of hyperparameter op-
timization was conducted on the dataset containing PV miscon-
figurations of 1 grid with a sample length of one day. As the
R-Transformer architecture was found to be the best fit for this
application, it was also the one chosen to be tuned for better
performance. Amongst others, a grid search on the number of
Attention Heads was conducted. The number of Attention Heads
for the Transformer as well as the number of underlying RNN
Attention Blocks were varied, either separately or on par with one
another. A model dimension of 30 was chosen to accommodate
a higher number of Attention Heads or Blocks. As the joined
adjustment of the number of blocks showed the best results,
Fig. 10 shows the results of this assessment; the best number of
heads was found to be 2 for both the Attention heads as well as
the RNN Attention Blocks, yielding an F-Score of 0.53, which is a
4% improvement over the base configuration, which was setting
the parameter to 1.
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Table 3
Overview of the results found when detecting a PV misconfiguration using different sequence length, dataset sizes and classifiers: the F-score balances Precision and
Recall.
Model RNN LSTM RNN GRU RNN Transformer R-Transformer

Setup
#grids & #samples

1 grid
20 k

5 grids
200 k

1 grid
20 k

5 grids
200 k

1 grid
20 k

5 grids
200 k

1 grid
20 k

5 grids
200 k

1 grid
20 k

5 grids
200 k

F-score 1 day-dataset
(sequence length: 96)

0.33 0.33 0.34 0.33 0.47 0.33 0.33 0.33 0.49 0.47

F-score 7 day-dataset
(sequence length: 672)

0.33 0.33 0.37 0.33 0.39 0.33 0.33 0.33 0.52 0.51

Weak Learner
(better than linear model)

No No Yes No Yes No No No Yes Yes
Table 4
Overview of the results found when detecting a EVSE misconfiguration using different classifiers on a single dataset: the F-score
balances Precision and Recall..
Model RNN LSTM RNN GRU RNN Transformer R-Transformer

Setup
#grids & #samples

1 grid
20 k

1 grid
20 k

1 grid
20 k

1 grid
20 k

1 grid
20 k

F-score 7 day-dataset
(sequence length: 672)

0.20 0.27 0.47 0.47 0.46

Weak Learner
(better than linear model)

No No Yes Yes Yes
Table 5
Overview over approaches investigated.
Approach Task Comment

Most-informed output Classification
strategy

Best option in general for classification tasks as
is yields the best scores overall

Majority vote Classification
strategy

Can offer an alternative classification method
for specific goals i.e. avoiding false alarms

RNN

PV
misconfiguration

Not able to extract features therefore,
not better than guessing

EVSE
misconfiguration

Mislearning features, leading to even more
misclassifications than through guessing

LSTM RNN

PV
misconfiguration

Only partly able to extract features;
slightly better than guessing in simple scenario

EVSE
misconfiguration

Mislearning features, leading to slightly
more misclassifications than through guessing

GRU RNN

PV
misconfiguration

Able to extract features making it better
than guessing in simple scenario

EVSE
misconfiguration

Well able to extract features making
it one of the best solutions

Transformer

PV
misconfiguration

Not able to extract features therefore,
not better than guessing

EVSE
misconfiguration

Well able to extract features making it
one of the best solutions

R-Transformer

PV
misconfiguration

Well able to extract features making it
the best solution in all scenarios

EVSE
misconfiguration

Well able to extract features making it
one of the best solutions
Based on the results of this first round of tuning, another
ound was conducted on the R-Transformer. This time the param-
ter Key Size of the underlying RNN blocks of the transformer was
ound to improve performance at a certain setting. The Key Size
etermines the length of the sequence that is processed by the
nderlying RNN. Fig. 11 depicts the outcome of this exploration;
Key Size of 8, instead of 7, allows for an F-score of 0.60 which is
nother 7% increase in performance compared to the first phase
f tuning and a total of 11% enhancement over the base case.
These efforts on tuning show that the performance of the so-

utions can be augmented by extensive architecture exploration.
his is to be done for every architecture for a specific use case,
owever, there are no additional hurdles except for increased

omputational demand.

10
5. Conclusions

5.1. Achievements

As the necessary integration of decentralized renewable en-
ergy generation and other newly introduced grid-connected de-
vices proceeds, grid operators need novel ways to monitor the
functionalities of these generation units and devices provide.
They are crucial to the safe and reliable operation of power distri-
bution grids. Thus, the framework described in this work allows
for the development of such monitoring capabilities by extracting
and handling data as well as using them for the development and
assessment of machine learning methods for this purpose. By its
implementation and usage to generate data the first two goals
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Fig. 11. Hyperparameter optimization done on the key size of the RNN blocks
of the R-Transformer.

set initially were fulfilled. Several traditional ML, as well as DL-
based approaches, have been described and compared in varying
settings. In combination with the sensitivity analysis used to find
a best-fitting solution, the two remaining objectives were tackled.

5.2. Discussion & conclusion

The initial assessment of traditional machine learning meth-
ds for anomaly detection did not yield results pointing to the
pplicability of the same. Even after parameters of various meth-
ds have been varied conducting a sensitivity analysis in order to
rovide a meaningful benchmark, not satisfactory results could
e achieved. This can be attributed to the low dimensionality of
he data. Even the great amount of data does not allow the tradi-
ional machine learning algorithm to succeed here. This leaves DL
ethods to be explored as they pose the most promising option.
The assessment of the majority vote classification versus using

nly the last ‘most informed’ output for classification offers var-
ous findings. Generally, using only the last output, or only the
ast portion of the sequence, stably appears to give better results
han using a major part of the sequence for the classification of
V misconfigurations. However, this overall advantage is mainly
ooted in a higher F-score achieved, meaning that the methods
an be fine-tuned by choosing a certain calibration rate to fulfill
pecific requirements: depending on the priorities of the user,
certain share of the sequence can be used for classification

llowing for higher precision, in cases where no false positives
re wanted, or also a higher recall, in cases when all occurrences
f misconfigurations are to be found.
The results of the assessment of the different methods us-

ng only the ‘most informed’ last output lead to the following
onclusions: The RNN approach presented already demonstrates
he applicability of DL for this task. This quite simple approach
lready yielded a weak learner for the 1-grid case, that can
e extended to an ensemble method or be replaced by more
ophisticated algorithms and network structures. Nevertheless,
raining had to be conducted with a very low learning rate and
or a long time. When only trained for fewer epochs and with
higher learning rate, the RNN cannot tackle the problem and
oes no better than the linear model on the PV misconfiguration
asks. The RNN shows even worse performance for the EVSE case,
eeming to misclassify samples. This could be due to the RNN
earning wrong features, leading to indicating the improper class
nd showing that the RNN is not up to this task.
The LSTM and GRU RNN approaches both provide an improve-

ent in the PV case, both yielding a weak learner for the 1-grid
ase. This shows that training can be done much faster with these
11
approaches than with the simple RNN, probably because of the
better back propagation of gradients through time. The GRU RNN
performed significantly better than the LSTM RNN especially in
the 1-day case, making it the more efficient structure. Therefore,
GRU was chosen as the local RNN for the R-Transformer. Both
approaches failed to provide a meaningful result on the dataset
sourced from multiple grids. When put to the task of classifying
the EVSE misconfiguration, the LSTM shows similar behavior as
the RNN; it appears to fail to properly extract features and does
not yield a weak learner within the given training frame. The
GRU performs significantly better here, even yielding some of
the best results in this setup. This could be attributed to the
GRU’s capability to discard past information, which is not of value
anymore, more easily in comparison to the LSTM. Moreover, the
GRU has fewer parameters than the LSTM. This might leave the
GRU less confused after a shorter period of training.

The Transformer as the sole fully non-recurrent method showed
that in the setting chosen feed-forward-only architectures do not
yield satisfactory results as neither in the 1-grid nor in the 5-
grid setup the linear model could be outperformed. At least this
holds true for the PV case. In the EVSE case, the Transformer
architecture yields, along with the GRU model, the most promis-
ing results. This might be due to the less sequential character of
the features to be learned in the EVSE case in contrast to the PV
case. Therefore, for this case, also non-recurrent approaches seem
applicable.

The R-Transformer posed the most complex approach un-
der scrutiny, which also yielded the best results for the 1 grid
20k samples dataset, remarkably showing better performance on
the 7-day data for classification of a PV misconfiguration. This
marks the impact the attention mechanism has as it improves
the handling of longer sequences in comparison to the other
recurrent approaches. Comparing tthe reults of the feed-forward
Transformer the advantage of using the local GRU RNN becomes
obvious as the R-Transformer manages to provide meaningful
classification. Especially on the 200k samples dataset from 5 grids
the combination of these two features shows its strength as the R-
Transformer is the only architecture that manages to gain traction
in this setup and yield a weak learner. The performance is slightly
higher for the smaller dataset though, probably due to the simple
network architecture used and a resulting lack in capacity. A
similar phenomenon might become obvious when applying the
R-Transformer on the EVSE case; the results are slightly worse
than for the regular Transformer as well as for the simpler GRU
architecture. This could be attributed to the complexity of the R-
Transformer. Since it has many parameters, it might not be able
to learn within the training time given. Even if this complexity
might not be needed here the R-Transformer yields at least a
viable solution to the problem. Moreover, the results of the hyper-
parameter tuning for one use case showed that the performance
of the R-Transformer can be increased significantly in this way.
As the basic way of conducting such hyperparameter tuning is
the same for all the use cases, it could be extended to all the
other use cases. This would have to be part of a study focused
on this specific problem, as computational resources are limited
in the one at hand. For the practical application of the solution,
this should not be a problem, as the architectures that are found
to be optimal for a certain use case only have to be trained once.
Table 5 summarizes the approaches investigated as well as their
assessment.

The study conducted shows how the framework can be uti-
lized to explore methods, which lead in this case to the finding
that the R-Transformer generally outperformed its competitors,
which however still provided mostly functional solutions. More-
over, the applicability of solutions might differ between use cases.
Additionally, the framework offers easy-to-use functionalities of
tuning the architectures to obtain better performances, given the
required computational power which was a limiting factor here.
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.3. Outlook

The presented work is a foundation for a future decision
upport tool for power grid operators which helps them to imple-
ent central monitoring of low voltage grids using DL detection
pproaches. Further work includes extensive architecture explo-
ation in order to find the best fitting approach and an optimal
odel thereof for the tasks at hand. This architecture explo-

ation was only conducted partly here since the computational
esources available were limited. For a practical application, this
ould be no hurdle since the optimal architecture for a certain
pplication only needs to be determined once, and only models
ith the best-suited parameters need to be trained then. When
uch models are found, a field trial in real-world grids for vali-
ation and further refinement of the method can be conducted.
he sole availability of simulated data for this study can be
nderstood as another limitation at this point. Furthermore, the
ange of use cases is to be expanded by training models on data
f malfunctioning devices such as battery energy storage or heat
umps, which could also not be implemented yet due to the lim-
tations of computational power already mentioned before. This
ould then lead to an implementation in said decision support
ool and therefore integration into a grid operators toolbox for
urther monitoring capabilities.
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