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Summary

A good knowledge of nuclear reaction cross sections is an important prerequisite not

only for the design of nuclear devices and the development of novel nuclear technologies,

e.g. nuclear fusion on a large scale, but also for several applications, e.g. materials

science, nuclear medicine, geology and space research. Hence, there is a worldwide

effort to establish nuclear data libraries which represent our best knowledge of reaction

cross sections. At present several evaluated nuclear data libraries exist containing

the best quantitative knowledge of nuclear reaction data for a wide range of nuclei

and projectiles. Especially for neutron-induced reaction cross sections of medium and

heavy nuclei the libraries provide excellent descriptions of cross sections up to neutron

energies of 200 MeV.

At low incident energies the reaction cross sections exhibit striking resonance struc-

tures associated with many-nucleon effects. These phenomena cannot be properly

reproduced by (semi-)microscopic nuclear models. Usually R-matrix theory is applied

to obtain a sufficiently accurate and consistent, but phenomenological description of

the resonance region. However, the concept of standard R-matrix theory is only based

on two-particle reaction channels. Three- and many-particle channels cannot be de-

scribed by standard R-matrix theory and are usually treated in an approximative way,

e.g. by sequential processes. In light nuclear systems, however, breakup reactions can

even occur at low incident energies and often have a significant share on the reaction

cross section. Consequently approximations become increasingly inadequate and there

is a need for an exact treatment in the frame of R-matrix theory.

In this PhD thesis a novel R-matrix formalism for three-body reactions is presented.

The first idea of such an R-matrix method was proposed by W. Glöckle based on the

Faddeev equations and restricted to three identical particles in the exit channel. This

model has been generalized to arbitrary particle masses and interactions in a previous

work. In this PhD thesis essential modifications were performed in order to make the

formalism applicable to realistic nuclear systems. A numerical implementation was

successfully elaborated and first demonstrated on the neutron+deuteron system. Also

the neutron+9Be system was studied in the frame of the three-body R-matrix. The

results for both systems are presented in the final chapter of this thesis.



Kurzfassung

Eine gute und zuverlässige Kenntnis nuklearer Reaktionsdaten ist unabdingbar für die

Auslegung und das Design nuklearer Geräte und die Entwicklung neuer nuklearer Tech-

nologien wie Kernfusion in großtechnischem Maßstab. Darüber hinaus ist diese wichtig

für weitere Anwendungen in den Bereichen wie Materialwissenschaft, Nuklearmedi-

zin, Geologie und Raumfahrt. Aus diesem Grund besteht ein weltweites Bestreben

zur Schaffung nuklearer Datenbanken, die den besten Kenntnisstand über Reaktion-

swirkungsquerschnitte enthalten. Derzeit existiert eine Zahl nuklearer Datenbanken,

in denen der aktuell beste Wissensstand über eine Vielzahl nuklearer Reaktionen en-

thalten ist. Speziell für Neutronen-induzierte Reaktionen mittelschwerer und schwerer

Kerne liegen profunde Daten der Wirkungsquerschnitte von Neutronenenergien bis

200 MeV vor.

Im niedrigen Energiebereich weisen die Reaktionswirkungsquerschnitte markante

Resonanzstrukturen auf, die auf Vielteilcheneffekte zurückzuführen sind. Diese Struk-

turen können durch (semi-)mikroskopische Modelle nicht zufriedenstellend reproduziert

werden. Daher wird im genannten Energiebereich hauptsächlich die R-matrix Theo-

rie zur Beschreibung herangezogen. Sie bietet eine hinreichend genaue und konsis-

tente, jedoch phemomänologische Beschreibung des Resonanzbereiches. Die Standard-

methode der R-matrix Theorie beruht auf zwei-Teilchen Reaktionskanälen. Drei- oder

Mehrteilchen-Reaktionskanäle werden üblicherweise approximativ behandelt, beispiel-

sweise im Rahmen von sequentiellen Prozessen. Da jedoch in leichten nuklearen Sys-

temen schon bei niedrigen Einfallsenergien Aufbruchswirkungsquerschnitte einen sig-

nifikanten Anteil am Reaktionswirkungsquerschnitt haben können, sind solche approx-

imative Methoden inadäquat. Daher besteht die Notwendigkeit einer exakten Behand-

lung dieser Reaktionen im Rahmen der R-matrix Theorie.

In dieser Dissertation wird eine neue R-matrix Methode zur Behandlung von drei-

Körper Kanälen präsentiert. Ein erster Ansatz einer solchen Methode wurde zuerst

von Walter Glöckle vorgelegt, basierend auf den Faddeev-Gleichungen und beschränkt

auf drei identische Teilchenmassen im Ausgangskanal. Dieses Modell konnte in einer

vorangegangenen Arbeit auf beliebige Massen und Wechselwirkungen verallgemeinert

werden. In der vorliegenden Arbeit wurden essentielle Modifikationen durchgeführt, um

den Formalismus auf reale nukleare Systeme anwendbar zu machen. Eine numerische

Umsetzung konnte erfolgreich ausgearbeitet und am Neutron+Deuteron System erst-



mals angewandt werden. Auch das Neutron+9Be System wurde im Rahmen der drei-

Körper R-matrix studiert. Die Resultate beider Systeme werden im abschließenden

Kapitel dieser Dissertation präsentiert.
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1 Introduction

Reliable data of nuclear reactions are a crucial prerequisite in various scientific fields,

especially for the construction and design of nuclear devices such as fusion or fission

reactors. Therefore, there is a worldwide effort to obtain consistent and reliable sets

of reaction data which represent our best knowledge of the reactions. In order to

create such data sets all available experimental data of a certain group of reactions are

retrieved [1] and an assessment of their quality is performed. In a further step these

data undergo an evaluation process frequently based on Bayesian statistics which allows

one to consistently combine these data with a-priori knowledge mostly given in terms

of nuclear model calculations. This so-called ”Evaluation Process” yields evaluated

data sets with information also in energy regions where no measured data exist and

the associated uncertainties. Finally, the evaluated data sets are collected in ”Nuclear

Data Libraries” [2, 3, 4] using the ENDF-format [5]. The evaluation process is well

established for medium and heavy nuclear systems at energies above the resonance

regime, but exhibits some problems in the resonance regime at low energies. First,

there is a lack of a-priori knowledge because there are no microscopically-based nuclear

models available which provide a quantitative description. Another open problem is

the difficulty to establish reliable uncertainties associated with resonances. A first

approach was given in [6].

At present reaction cross sections are usually described by R-matrix theory [7]. In

general a phenomenological R-matrix description is used where the parameters (poles

and widths) are adjusted in order to obtain the best agreement of the R-matrix model

with experimental data. The phenomenological R-matrix does not contain microscopic

information on the n-body structure and consequently it is limited in its predictive

power. Alternatively the calculable R-matrix is based on a Hamiltonian with a micro-

scopic potential, but similarly to other methods one cannot account for the complexity

of the n-body system thus missing a quantitative description of the resonance regime.

Both the phenomenological and the calculable R-matrix theory are originally designed

for two-body channels only. Hence, when dealing with light nuclear systems there

arises another difficulty namely the appearance of breakup channels even at low inci-

dent energies. Due to the lack of a corresponding R-matrix theory these many-particle

channels have usually been treated in an approximative way using for instance sequen-

tial approach models [8]. However, in many light nuclear systems of interest, e.g. in
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fusion research, breakup processes occur in the low energy range of a few MeV and

have a significant share on the total reaction cross section. For such dominant breakup

channels the validity of sequential approaches (Sec. 3.2) is questionable. In order to

include dominant breakup channels in a consistent R-matrix analysis an extension of

the R-matrix formalism to not-binary channels is required.

The focus of the present thesis is the extension of the R-matrix formalism to three-

body breakup channels. They represent, apart from capture channels, a significant

fraction of non-binary channels in the low energy regime of light nuclear systems. Fur-

thermore there exists an exact quantum mechanical description of three-body problems

via the Faddeev equations [9]. In 1974 W. Glöckle [10] presented a first proposal of

a three-body R-matrix formalism for particles of equal masses based on the Faddeev

equations. This concept could be successfully generalized to particles with different

masses in [11] and thus became applicable to a wider range of nuclear systems. How-

ever, we are not aware of any demonstration or application of this method.

The developments of the R-matrix formalism in the present thesis started from

the idea of Glöckle [10] to enter division in the Jacobi-coordinates. This assumption

bypasses a conceptual problem hampering a straightforward extension of standard R-

matrix theory to three- and many-body channels. In course of the developments in the

present thesis significant modifications of the formalism apart from the generalization to

different masses were required in order to obtain a working tool for an R-matrix type

description for breakup channels. The new formalism was numerically implemented

and successfully applied to experimental data of breakup reactions.

The present thesis is structured essentially in three parts. After this brief introduc-

tion chapters 2, 3 and 4 constitute the first part which gives a concise introduction into

the theoretical basics required for the further developments. In chapter 2 the basis

of standard R-matrix theory is revisited together with the most important quantities

and relationships of scattering theory. In chapter 3 the difficulty of an extension of

the standard R-matrix concept to three- and more-body channels is outlined. Further-

more, a frequently used approximative method, i.e. the sequential approach is sketched

without details. Chapter 4 gives an introduction into the Faddeev equations and pro-

vides all basic definitions and relationships required for the development of the novel

R-matrix formalism.

The second part comprising chapters 5 and 6 is the central part of this thesis and

gives a detailed description of the formal developments (chapter 5) and numerical
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implementation (chapter 6). It provides the details of the derivation of the complex set

of equations and its transfer into a uniquely solvable system of linear equations for the

expansion coefficients of the interior wave function and the T -amplitudes from which

the breakup, the elastic scattering cross section and the rearrangement cross sections

can be directly calculated.

The first applications of the three-body R-matrix formalism to real systems are

subject of chapter 7, the third part. As a first application the neutron+deuteron

system is considered which is the simplest and most genuine nuclear three-body system

without further structures. The calculated results for the breakup reaction and for

elastic scattering will be compared to experimental data. Also the optical theorem

will be considered and possible algorithm errors will be specified. In the next step the

three-body R-matrix is applied on the neutron+9Be system. In this nuclear system the

breakup reaction occurs at incident energies of about 1.6 MeV and has a significant

share on the total cross section. It is of great importance in fusion devices since it

serves as a neutron multiplier for tritium breeding. Therefore, a good knowledge of the

neutron-induced reaction cross sections of 9Be is important for the design and operation

of fusion facilities in order to optimize the facility regarding maintenance, safety and

production rate. Compared to the neutron+deuteron system there arise some more

difficulties since the ground state of 9Be is Jπ = 3/2− and a pure s-wave description

is no longer sufficient. Again the calculated results will be presented together with

measured data sets.

Finally, in chapter 8, a summary and outlook on further applications and combina-

tions with standard two-body R-matrix theory will be given.
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relevant for the further developments regarding three-body channels.

2.1 Basics of scattering theory

The starting point is a simple single-channel problem governed by a central potential

V (r) and described by the radial Schrödinger equation

(T + V (r)− E) u (r) = 0 (2.1)

with the kinetic energy operator

T = −
2

2µ

d2

dr2
− ( + 1)

r2
. (2.2)

Here, E is the total energy of the system, the orbital momentum quantum number

and µ is the reduced mass of the channel.

We consider the eigenstates φα(t) of the free Hamiltonian H0 = T

H0|φα(t) = i
∂

∂t
|φα(t) (2.3)

and ψα(t) of the interaction Hamiltonian H = T + V (r)

H|ψα(t) = i
∂

∂t
|ψα(t) . (2.4)

The time evolution under H of ψ
(±)
α (t) is given by

ψ(±)
α (t) = U(t, t )ψ(±)

α (t ) (2.5)

with the time evolution operator

U(t, t ) = e−i/ H(t−t ) . (2.6)

In infinite past or future depending if one considers outgoing (+) or incoming (-)

solutions ψ
(±)
α equals φα so that we can write

ψ(±)
α (t) = U(t, t )ψ(±)

α (t ) = lim
t →∓∞

U(t, t )φα(t ) , (2.7)
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or equivalently, using the Green’s function,

ψ(+)
α (t) = i lim

t →−∞
G(+)(t, t )φα(t ) . (2.8)

The Green’s functions G is defined by

(E −H)G = 1 . (2.9)

Similarly we have a Green’s function G0 associated with the free Hamiltonian H0

(E −H0)G0 = 1 . (2.10)

Considering the relationship

G0(E −H)G = G0(E −H0 − V )G = G0(E −H0)G−G0V G = G−G0V G (2.11)

one obtains

G = G0 +G0V G (2.12)

which is the Dyson equation. Plugging Eq. (2.12) into Eq. (2.8) yields under the

assumption of an instantaneous interaction

ψ(+)
α (t) = i lim

t →−∞
G

(+)
0 (t, t )φα(t ) + i lim

t →−∞
dt G

(+)
0 (t, t )V (t )G(+)(t , t )φα(t )

(2.13)

and with

i lim
t →−∞

G(+)(t , t )φα(t ) = ψ(+)
α (t ) (2.14)

we finally get the Lippmann-Schwinger equation

ψ(+)
α (t) = φα(t) + dt G

(+)
0 (t, t )V (t )ψ(+)

α (t ) . (2.15)

As already mentioned above one boundary condition of the scattering problem is the

equivalence of ψ
(+)
α with the free state φα in infinite past, i.e.

lim
t→−∞

e−i/ Htψ(+)
α (t = 0)− e−i/ H0tφα(t = 0) = 0 . (2.16)
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This leads to the relationship

ψ(+)
α (t = 0) = lim

t→−∞
ei/ Hte−i/ H0t φα(t = 0) = Ω(+)φα(t = 0) , (2.17)

with Ω = lim
t→−∞

ei/ Hte−i/ H0t is the so-called Møller operator or wave operator. The

free states build up the complete Hilbert space, while the scattering states form a

subspace which excludes the part formed by the bound states. Therefore the Møller

operator is an isometric operator satisfying the relations

Ω(+)†Ω(+) = Ω(−)†Ω(−) = 1 (2.18)

and

Ω(+)Ω(+)† = Ω(−)Ω(−)† = 1−
n

ψnψ
†
n , (2.19)

where ψn denotes the bound states sustained by H. The second term on the right hand

side of Eq. (2.19) is denoted as defect. In the absence of bound states Ω is unitary.

The second form of the Dyson equation (2.12) reads

G = G0 +GV G0 . (2.20)

This expression can be applied onto a free state in order to obtain a scattering state

ψ(+)(E,α) = lim
→0+

±i (E + i −H)−1 φ(E,α) = G(+)(E)φ(E,α)

= φ(E,α) +G(+)(E)V φ(E,α) = [1+G(+)(E)V ]φ(E,α) ,
(2.21)

where the energy dependent Green’s function results from the transformation

G
(±)
0 (E) =

1 ∞

−∞
dt eiEt/ G

(±)
0 (t) (2.22)

Comparing Eq. (2.21) with Eq. (2.17) one finds a relationship between the Møller

operator and the Green’s function

Ω(+) = 1+G(+)(E)V . (2.23)

One of the most important quantities in scattering theory is the S-matrix. It is

calculated as the overlap of the plane wave ψ
(−)
β (t), which in infinite future has the set

of quantum numbers β, with ψ
(+)
α (t), which is a plane wave with quantum numbers α

7



in the infinite past. Hence,

Sβα = ψ
(−)
β (t)|ψ(+)

α (t) = Ω(−)φβ(t)|Ω(+)φα(t) = φβ(t)|(Ω(−))†Ω(+)|φα(t)

= φβ(t)|S|φα(t) ,
(2.24)

where the definition of Ω(+) from Eq. (2.17) was used. With Eq. (2.24) the S-matrix

can be expressed via the Møller operator

S = (Ω(−))†Ω(+) . (2.25)

The S-matrix is unitary

S†S = 1 (2.26)

which means that its domain and codomain are identical. In angular momentum

representation and for spherical symmetric potentials the S-matrix can be written as

m |Ŝ| m = δ δm mS = δ δm me
2iδ , (2.27)

where δ is the phase shift in the th partial wave.

Another essential quantity is the transition- or T -matrix defined by

Tβα = φ(Eβ, β)|V |ψ(+)(Eα, α) (2.28)

Using relation (2.21) one obtains

Tβα = φ(Eβ, β)|V + V G(+)V |φ(Eα, α) (2.29)

and consequently the (two-body) T -operator is

T (E) = V + V G(+)(E)V . (2.30)

If we consider the T -matrix element (2.29) we can distinguish three different cases.

First if the energies Eα, Eβ and E are all different from each other it is the off-shell T -

matrix. Second if two of the three energies are equal and the third one is not, it is called

half off-shell T -matrix. And finally if all energies are equal it is the on-shell T -matrix.

The on-shell quantities will be important for the following three-body formalism and

therefore we will proceed with theses quantities.
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The on-shell part S̃ of the S-matrix is obtained by

Sβα = δ(kb − ka)S̃βα =
2

µka
δ(Eβ − Eα)S̃βα , (2.31)

with the reduced mass µ of the two collision partners and the relative wave vector ka.

The on shell S-matrix is related to the T -matrix via

S̃βα = δ(Ωb − Ωa)− iµka
2π
2
Tβα . (2.32)

Analogously one can define an on-shell T -matrix T̃ as

T̃βα = µka
1
2
Tβα (2.33)

and relation (2.32) becomes

S̃βα = δ(Ωb − Ωa)− 2πiT̃βα (2.34)

or in operator notation

S = 1− 2πiT (2.35)

valid on the energy shell.

With the nomenclature β = k and α = k we have

φ(k )|V |ψ(+)(k) = φ(k )|T̂ |φ(k) = Tk k . (2.36)

The unitary relation for the on-shell S-matrix reads

dΩ S̃∗
k k

S̃k k = δ(Ω − Ω) . (2.37)

9



Starting from this relation and using Eq. (2.32) we get (with E = E = E)

δ(Ω − Ω) = dΩ S̃∗
k k

S̃k k

= dΩ δ(Ω − Ω )− iµk
2π
2
Tk k

∗
δ(Ω − Ω)− iµk

2π
2
Tk k

=δ(Ω − Ω)− iµk
2π
2
[Tk k − T ∗

kk
] + µk

2π
2

2

dΩ T ∗
k k

Tk k

⇒ iµk
2π
2
[Tk k − T ∗

kk
] = µk

2π
2

2

dΩ T ∗
k k

Tk k .

(2.38)

On the energy shell k = k and thus

i[Tkk − T ∗
kk
] = µk

2π
2

dΩ T ∗
k k

Tk k

−2 ImTkk = µk
2π
2

dΩ Tk k

2
(2.39)

which is the optical theorem in terms of the T -amplitudes. Using the on-shell T -

elements from Eq. (2.33) with the same nomenclature β = k and α = k reading

T̃k k = µk
1
2
Tk k (2.40)

and inserting this expression into the optical theorem (2.39) yields

−2
2

µk
Im T̃ = 2π

2

µk
dΩ T̃k k

2

Im T̃ = −π dΩ T̃k k

2
(2.41)

which is the optical theorem in terms of the on-shell T -amplitudes.

The T -matrix is a crucial quantity for all scattering processes because it grasps the

effect of the interaction. Hence, it provides the necessary input for the determination

of the elastic cross section [20]

σelastic =
2π

4

µ2 d2k̂ Tk k

2
(2.42)

where µ is the reduced mass of projectile and target. The T -matrix elements are
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directly proportional to the scattering amplitude f
(+)

k
(r̂),

f
(+)

k
(r̂) = −µ

2π
2

2

Tkr̂k = −4π2

2

T̃kr̂k

k
, (2.43)

and the elastic cross section is calculated according to

σelastic = dr̂ f
(+)

k
(r̂)

2

= µ2 2π
2

4

dr̂ Tkr̂k

2
=

16π4

4k2
dr̂ T̃kr̂k

2

. (2.44)

2.2 Standard R-matrix theory

The potential V (r) in Eq. (2.1) is usually composed of a Coulomb part of infinite

range and a short-ranged nuclear part. Introducing a matching radius a sufficiently

large that the nuclear part is negligible defines a proper channel surface and thus the

separation of the space into an internal and an external region. In the external region

the form of the radial wave function u (r) is well known and given in terms of the

S-matrix element S (E) from Eq. (2.27) which in R-matrix theory is usually denoted

by U (E), i.e.

uext(r) = C [I (kr)− U ·O (kr)] for r ≥ a , (2.45)

where k = 2µE/ 2. The incoming function

I = G − iF (2.46)

and outgoing function

O = G + iF (2.47)

are defined in terms of the regular and irregular Coulomb functions F and G , respec-

tively. The regular Coulomb functions F vanish at the origin and are asymptotically

normalized as

F (η, kr) →
kr→∞

sin(kr − 1/2 π − η ln(2kr) + σ ) , (2.48)

whereas the irregular Coulomb functions G are unbound at the origin (except for

= η = 0) and have the asymptotic form

G (η, kr) →
kr→∞

cos(kr − 1/2 π − η ln(2kr) + σ ) . (2.49)
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The Coulomb phase shift σ is given as

σ = arg Γ( + 1 + iη) (2.50)

with the Euler function

Γ(z) =
∞

0

xz−1e−xdx (2.51)

for Re(z) > 0.

In the asymptotic region the functions I and O represent incoming and outgoing

waves, respectively. The behavior is directly reflected in the asymptotic form,

I (η, kr) →
kr→∞

exp[−i(kr − 1/2 π − η ln(2kr) + σ ] (2.52)

and

O (η, kr) →
kr→∞

exp[i(kr − 1/2 π − η ln(2kr) + σ ] . (2.53)

In the case of at least one of the two particles being neutral the regular and irregular

Coulomb functions simplify to F (0, kr) = kr j (kr) and G (0, kr) = kr n (kr) with

j (kr) and n (kr) being the spherical Bessel and Neumann functions.

In the internal region the radial wave function u (r) is represented by an expansion

over a finite set of N linearly independent basis functions, ϕj(r), j = 1, ..., N ,

uint(r) =
N

j=1

cjϕj(r) . (2.54)

In order to describe a physical solution the basis functions ϕj must vanish at r = 0,

but they must not satisfy specific boundary conditions at the matching radius r = a.

A solution of Eq. (2.1), i.e. the radial wave function u (r) and its derivative u (r),

must be continuous at each r-value in the domain r ∈ [0,∞[ and especially at the

matching radius a. The matching of the external wave function uext, Eq. (2.45), and

the internal wave function uint, Eq. (2.54), at the channel surface provides a boundary

condition, which is conveniently expressed by the definition of the R-matrix R (E),

u (r = a) = R (E) [au (r = a)− Bu (r = a)] , (2.55)

where B is a dimensionless boundary parameter. The inverse of the R-matrix is directly
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related to the logarithmic derivative of the wave function at the matching radius,

R−1(E) = a
u (a)

u (a)
− B . (2.56)

The R-matrix takes a particularly convenient form for a Hamiltonian which is her-

mitian on the domain of the internal region r ∈ [0, a]. This is not satisfied for the

Hamiltonian of Eq. (2.1), but can easily be restored by introducing the Bloch operator

[17],

L̂ =
2

2µ
δ(r − a)

d

dr
− B

r
(2.57)

into the Schrödinger equation. This leads to the Bloch-Schrödinger equation,

T + L̂− E + V (r) uint(r) = L̂uext(r) . (2.58)

Using Eq. (2.54) and Eq. (2.45) for the radial wave function u (r) in Eq. (2.58) and

projecting Eq. (2.58) on the set of basis states at r = a yields the matrix equation

N

j=1

ϕi|Ĉ (E,B)|ϕj cj =
2

2aµ
ϕi(a) a · u ext(a)− B · uext(a) , i = 1, ..., N (2.59)

where Ĉ(E,B) is defined by

Ĉ(E,B) = T + L̂− E + V (r) . (2.60)

It is important to remark that Eq. (2.59) implies that the solution of the Bloch-

Schrödinger equation is fully determined by the internal region, while the right-hand

side of Eq. (2.58) contains only values of the channel surface. The expansion coefficients

cj are obtained by solving the system of linear equations (2.59)

cj =
2

2aµ

N

i=1

ϕi(a)(C
−1)ij a · u ext(a)− B · uext(a) , (2.61)

with

Cij = ϕi|C(E,B)|ϕj . (2.62)
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Introducing these coefficients (2.61) into Eq. (2.54) at r = a gives

ul(a) =
2

2aµ

N

j=1

ϕj(a)
N

i=1

ϕi(a)(C
−1)ij a · u ext(a)− B · uext(a) (2.63)

and with the definition of the R-matrix in Eq. (2.55)

R (E,B) =
2

2aµ

N

j=1

N

i=1

ϕi(a)(C
−1)ijϕj(a) . (2.64)

Assuming that the basis functions ϕi(r) are orthonormal the matrix C−1 can be written

in its spectral representation

[C(E,B)]−1 =
N

n=1

vn vTn
En − E

(2.65)

with the eigenvalues En and the corresponding eigenvectors vn ,

C(0, B)vn = En vn . (2.66)

The eigenvectors fulfill the condition vTn vn = δnn . Inserting expression (2.66) into

Eq. (2.64) yields the spectral representation of the R-matrix,

R (E,B) =
∞

n=1

γ2
n

En − E
. (2.67)

In a complete basis the energies En are exact eigenvalues of the Hamilton operator

H = T +V (r)+ L̂(B). The quantities γn are denoted as ”reduced width amplitudes”

and γ2
n reduced widths. They are connected to the basis functions at the matching

radius a

γn =
2

2µa

1/2

Φn (a) , (2.68)

with

Φn (r) =
N

n=1

vn ,iϕi(r) . (2.69)

Here, vn ,i denotes the i-th component of the eigenvector vn . However, within the

frame of phenomenological R-matrix theory the form (2.67) is replaced by a finite

14



sum and well suited to fit a certain numberof pole and widths parameters to measured

data. Once fitted to available experimental reaction data in a certain energy region the

R-matrix provides a tool for calculating consistently different observables for a large

energy range, e.g. the phase shift

tan(δ ) =
kaR (E)F (η, ka)− F (η, ka)

kaR (E)G (η, ka)−G (η, ka)
(2.70)

and all observables derived from it.

With the external wave function (2.45), its derivate and the definition of the R-

matrix, Eq. (2.56), the scattering matrix U can be expressed in terms of the R-matrix

as follows

U = e2iφ
1− (L∗ − B)R (E,B)

1− (L − B)R (E,B)
, (2.71)

where

L = ka
O (ka)

O (ka)
(2.72)

is the dimensionless logarithmic derivative of O in Eq. (2.47) at the channel radius a,

L∗ denotes the complex conjugate of L and

φ = −arctan[F (ka)/G (ka)] (2.73)

is the hard-sphere phase shift.

Using the relationship between the R-matrices with different B-values,

1

R (E, 0)
=

1

R (E,B)
+B , (2.74)

one can show that Eq. (2.71) is independent of the boundary parameter B which is a

physical requirement that the scattering matrix U must not depend on the parameter

B.

The single-channel case where the R-matrix is a number can be generalized to a

multi-channel system based on the matrix equation

d

[(Tc + Ec − E) δcd + Vcd] ud = 0 , (2.75)

where c, d, ... denote the different channels. Ec is a diagonal matrix which contains

for each channel the threshold where it energetically opens. Again in order to restore
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hermiticity on the interval [0, a] a Bloch operator L̂c is introduced for each channel c,

L̂c =
2

2µc

δ(r − ac)
d

dr
− Bc . (2.76)

In analogy to the single channel system the Bloch-Schrödinger equation of the coupled

channel system is projected onto the basis states yielding

d

ϕi|Ĉc,d(E,B)|ϕj cd,j =
d

2

2aµd

ϕi(a)× a · u ext
d (a)− Bd · uext

d (a) . (2.77)

The summation on the right hand side is performed over all involved channels and

contains only quantities of the external regions. This allows a clear separation into

an internal and external region. Finally one ends up with a generalized form of the

R-matrix for the multi-channel case

Rcc (E,B) =
∞

n=1

γncγnc
En − E

. (2.78)

Here, Rcc is a matrix of dimension Nc × Nc with Nc being the number of reaction

channels at energy E. This form of the R-matrix plays an important role in phe-

nomenological R-matrix analyses of experimental data where it provides a simultane-

ous consistent description for all the reaction channels. To that end Eq. (2.78) is used

with a finite number of poles at real energies En and widths γnc and γnc which are

fitted to experimental data in the desired energy region. Poles that are located outside

this energy region are accounted for by so called background poles which influence

the cross section in the considered energy range by shifting its ground level. Because

of rotational invariance and the properties of the nuclear and the Coulomb force the

total angular momentum J and parity π are conserved quantities. Consequently the

R-matrix must be considered for a given Jπ and must include all sub-channels coupling

to the channel Jπ. The R-matrices for different Jπ are in this case disjunct.
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3 Introduction into the 3-body problem in the frame of R-

matrix theory

3.1 The general difficulty

In nuclear collisions breakup channels with three outgoing particles may occur at rather

low energies in the resonance region, especially in light nuclear systems.

Albeit total energy and momentum must always be conserved in three-body kinetics

there remains freedom in mutual directions and the partial kinetic energy of the three

collision partners. Thus in a general three-body channel the external region in which no

mutual polarization of the bodies occur cannot be fixed in space. This feature of three-

body problems represents a severe obstacle for the extension of the R-matrix formalism

to three- and many-body channels. Due to the lack of an interaction region confined in

space the introduction of a channel surface is not possible. Therefore an extension of

the R-matrix formalism to three- and many-body problems is not straightforward and

requires major conceptional modifications. At present no generally applicable R-matrix

formalism for three- and many-body channels is available.

In their seminal work on R-matrix theory Lane and Thomas [8] present some ideas

on approximations which bypass the difficulty of defining a channel surface of the

three-body problem. One possibility is the so-called sequential approach in which the

three-body breakup is represented as a two-step process of binary reactions. More de-

tails on this approach and its validity are given in subsection 3.2. A second approach

to account for non-binary channels is offered by the reduced R-matrix, a concept also

first presented by Lane and Thomas [8]. In this case one considers an R-matrix anal-

ysis of an incomplete system, i.e. not all energetically open channels are included in

the R-matrix analysis. Because of the loss of flux into ignored channels the S-matrix

associated with the R-matrix analysis is not unitary. Hence, the defect of the unitarity

is directly related with the total cross section for transitions into the ignored channels.

This approach is frequently used to include capture reaction with the Reich-Moore

approximation [14]. This method was not used for other channels, e.g. breakup chan-

nels, because of lack of proper parametrization for the reduced R-matrix. Recently,

the nuclear data group at TU Wien developed R-matrix parametrizations suitable to

account for breakup channels [15]. First reduced R-matrix analyses are currently in

progress [16].
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given total energy E the energies Eα and Eβ are given and consequently we know the

energetically open unbound states (labeled by r) of the long-lived compound β. Thus

the open states of β are given by ψc(Eβ ,r) where the index c specifies the composition

(α, β) of the nuclear system.

The inclusion of the successive breakup is easily implemented by substituting the

c by c r dEβ in all expressions. Thus the total asymptotic wave function of the

system takes the form

Ψc ∼ Ic −
c

Uc ,cOc −
c ,r

dEβUc (Eβ ,r ),cOc , (3.1)

where the first sum describes the two-body reaction into the composition (α, β) and

the last sum gives the contribution of the subsequent decay of β. Using the collision

matrix elements Uc (Eβ ,r ),c one can evaluate the cross section of the breakup in the

channel c (Eβ, r ) and integrating over all admissible Eβ and summing over all open

channel r yields the cross section for given three end products.
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4 Faddeev equations for three-body systems

The sequential approach discussed above is a reasonable approximation which is ap-

plicable if a long-lived nucleus is involved in the breakup reaction. A quantum me-

chanically exact treatment of three bodies exhibits the problem that the Lippmann-

Schwinger equation (2.15) does not provide a unique solution [21]. This difficulty was

solved by L. Faddeev [9] who set up a set of three equations which is the basis of

W.Glöckle’s proposal for a three-body R-matrix theory published in 1974 [10].

In this section a brief summary of Faddeev’s three-body equations according to [11]

is given followed by an introduction into the relations used by Glöckle for his formalism.

In the next step the generalized formulæ derived in [11] are recapitulated and some

essential modifications that make the formalism applicable to real nuclear systems are

introduced. The result of this section is a system of three-body R-matrix equations

ready for numerical implementation.

4.1 Description of the three-body system

A three-body problem composed of three nuclei with massesm1, m2 andm3 is governed

by the total Hamiltonian,

H =
3

i=1

P 2
i

2mi

+ vi + (Vijn) , (4.1)

where Pi is the momentum of particle i, vi the two-body interaction between particle

j and n and Vijn a three-body interaction which will be omitted in the following.

It is convenient to change to Jacobi coordinates (Fig. 3) yielding the transformed

Hamiltonian

H =
p 2
i

2µjn

+
q 2
i

2µi(jn)

+ v1 + v2 + v3 +
P 2
CM

2(m1 +m2 +m3)
. (4.2)

The momenta pi and qi are associated with one of the Jacobi coordinate tuples (ri,Ri),

i = 1, 2, 3. Latter are defined as

r1 = x2 − x3 , R1 = x1 − m2x2 +m3x3

m2 +m3

, (4.3)
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4.2 Faddeev equations

This subsection is focused on the path to the Faddeev equations for three-body sys-

tems reflecting mainly the derivation in [11]. In the following a system composed of

three particles of different masses (m1, m2, m3) interacting via two-body potentials is

considered. Furthermore we assume that each subsystem of two particles sustains at

least one bound state. Such a system may exhibit up to five types of exit channels,

1) 1
2

3
Final cannelα : Elastic channel

2) 2
3

1
Final cannel β : Rearrangement channel

3) 3
1

2
Final cannel γ : Rearrangement channel

4) 1, 2, 3 Final cannel 0 : Breakup channel

5)


1

2

3


 Final cannel B : Bound channel

The actual number of channels depends on the interaction and the involved parti-

cles/nuclei. Channel B which represents a three-particle bound state will not be con-

sidered in this thesis. The particles in brackets under 1), 2) and 3) interact via a

two-body potential vjn(ri) ≡ vi(ri) and form a bound state.

For each decomposition one can define a channel Hamilton operator

hα =
p̂ 2
α

2µα

+
q̂ 2
α

2Mα

+ vα , α = 1, 2, 3 (4.10)

with the asymptotic channel states |φαm as eigenfunctions,

hα|φαm = Eα|φαm . (4.11)

Herem denotes them-th bound state of the corresponding subsystem. They are related

to the total Hamilton operator according to

H = hα + V α , (4.12)
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Similarly to the two-body case one obtains two equations for G(z) using the channel

resolvent gα(z) = (z − hα)
−1,

G(z) = gα(z) + gα(z)V αG(z) = gα(z) +G(z)V αgα(z) . (4.16)

They can be verified by multiplying for instance the second equation in (4.16) byG−1(z)

from the left and using the identity

g−1
α (z)−G−1(z) = z − hα − z −H = V α

⇒ G−1(z) = g−1
α (z)− V α

(4.17)

which yields

1 = G−1(z)gα(z) + V αgα(z)

1 = (g−1
α (z)− V α)gα(z) + V αgα(z) = 1 .

(4.18)

The scattering state in channel α is defined as

|ψ(±)
αm = lim

→0
±i G(E ± i )|φαm . (4.19)

It is a three-particle wave packet with a subsystem of two particles being in their m-th

bound state and the third one moving freely. Inserting the first resolvent equation (4.16)

into Eq. (4.19) and after executing the limits leads to the Lippmann-Schwinger equa-

tion for a three-particle scattering state in channel α

|ψ(±)
αm = lim

→0
±i gα(z)|φαm + lim

→0
±i gα(z)V αG(z)|φαm = |φαm + gα(E± i0)V α|ψ(±)

αm .

(4.20)

|φαm is an eigenstate of hα and thus

lim
→0

±i gα(z)|φαm = lim
→0

±i (z − hα)
−1|φαm = lim

→0

±i

E ± i − Eα

|φαm = |φαm .

However, this equation exhibits a problem since it is not uniquely solvable. The reason

is that the homogeneous equation

|ψ(±)
αm = gα(E ± i0)V α|ψ(±)

αm (4.21)

has non-trivial solutions in the region of scattering energies, where E > 0. This can

be shown by writing down the Lippmann-Schwinger equation (4.20) for the scattering
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state of another channel β = α,

|ψ(±)
βn = lim

→0
±i gα(z)|φβn + lim

→0
±i gα(z)V αG(z)|φβn = gα(E ± i0)V α|ψ(±)

βn . (4.22)

Since |φβn is not an eigenstate of hα, gα(z)|φβn remains finite for approaching 0.

Hence, what remains after performing the limit → 0 in Eq. ((4.22)), is the solution

of the homogeneous equation

|ψ(±)
βn = gα(E ± i0)V α|ψ(±)

βn . (4.23)

It is an additional solution to |ψ(±)
αm and can be added to it. In the two-particle case,

there exist non-trivial solutions of the homogeneous Lippmann-Schwinger equation

too. However, these solutions are found at discrete binding energies of the two-particle

system (Ebind < 0), not in the positive energy region where scattering takes place.

There are further equations beside the Lippmann-Schwinger equation [18], which are

satisfied by the scattering state |ψ(±)
αm , They result from inserting the second resolvent

equation of (4.16) for G(z), but now for a different channel than α, e.g. β,

|ψ(+)
αm = lim

→0
i G(E + i )|φαm

= lim
→0

i gβ(E + i )|φαm + lim
→0

i gβ(E + i )V βG(E + i )|φαm

= lim
→0

i

E + i − hβ

|φαm + gβ(E + i0)V β|ψ(+)
αm .

(4.24)

The first term vanishes since |φαm is not an eigenstate of hβ. Hence, the denominator

remains finite while the numerator approaches 0. Finally, in the limit → 0 the product

gβ|φαm vanishes, which is known as the Lippmann identity. A similar equation is

obtained by using the γ-resolvent. Glöckle found out that adding two homogeneous

equations to the Lippmann-Schwinger equation,

|ψ(+)
αm = |φαm + gα(E + i0)V α|ψ(+)

αm

|ψ(+)
αm = gβ(E + i0)V β|ψ(+)

αm

|ψ(+)
αm = gγ(E + i0)V γ|ψ(+)

αm

(4.25)

the scattering solution |ψ(+)
αm becomes unique [19]. These additional equations intro-

duce physical boundary conditions to the Lippmann-Schwinger equation which guaran-

tee that there are no incoming waves in channels β and γ. In the breakup channel the
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behavior of |ψ(+)
αm is determined by each of the three equations (4.25). Alternatively

one can use the form (4.24) with β = 0, to describe |ψ(+)
αm in the breakup channel,

|ψ(+)
αm = G0V 0|ψ(+)

αm = G0V |ψ(+)
αm . (4.26)

This state again guarantees a purely outgoing wave in the breakup channel [18]. More-

over, the structure of (4.26) gives rise to a decomposition of |ψ(+)
αm into components

|ψ(+)
αm i,

|ψ(+)
αm = G0V |ψ(+)

αm =
3

i=1

G0Vi|ψ(+)
αm i , (4.27)

which are called Faddeev components of the scattering wave function.

However, there are still problems remaining. The integral kernel of Eq. (4.20),

gαV α, and the integral kernels of the equations in (4.25) do not have a finite Schmidt

norm

K S = Tr(K†K)
1/2

= d3r d3r |K(r, r )|2
1/2

, (4.28)

and they are not compact. Latter is caused by the occurrence of delta functions in the

kernel which arise from the fact that the channel resolvent gα acts in the two-particle

subsystem of the three-particle system, and does not affect particle α. This can be

expressed by writing down the matrix elements of the resolvent

pαqα|gα(z)|pαqα = δ(qα − qα) pα|g̃α(z − q2α
2Mα

)|pα . (4.29)

Here, g̃α is a two-particle operator living in two-particle space, while gα is a two-particle

operator in three-particle space.

Faddeev was the first to realize these problems, which led him to look for new

equations, the so-called Faddeev equations.

4.3 Faddeev equations for the T -operator

Similarly to Eq. (2.30) in the two-particle problem one can introduce a three-particle

T -operator

T (z) = V + V G(z)V (4.30)
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with the three-particle resolvent

G(z) = g0(z) + g0(z)T (z)g0(z) . (4.31)

Combining them yields two integral equations for the T -operator, i.e.

T (z) = V + V g0(z)T (z) ,

T (z) = V + T (z)g0(z)V .
(4.32)

Faddeev suggested to split the T -operator into three components,

Ti = vi + vig0T , (4.33)

where V = v1+v2+v3 and thus T = T1+T2+T3. However, the integral kernel remains

the same as before and is still non compact. The equations for the three components

can be arranged in matrix from
T1

T2

T3


 =


v1

v2

v3


+


v1 v1 v1

v2 v2 v2

v3 v3 v3


 g0


T1

T2

T3


 . (4.34)

In the following some manipulations to this matrix equation are performed in order to

make the integral kernel less singular. The first line of the matrix equation

T1 = v1 + v1g0(T1 + T2 + T3) (4.35)

can be rewritten as

(1− v1g0)T1 = v1 + v1g0(T2 + T3) . (4.36)

Multiplying this equation by (1− v1g0)
−1 from the left leads to

T1 = (1− v1g0)
−1v1 + (1− v1g0)

−1v1g0(T2 + T3) , (4.37)

or

T1 = t1 + t1g0(T2 + T3) , (4.38)

with the two-particle t-operators

ti = (1− vig0)
−1vi , (4.39)
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acting in the three-particle space. The same procedure can be carried out for the

second and third line and one ends up with the matrix equation
T1

T2

T3


 =


t1

t2

t3


+


0 t1 t1

t2 0 t2

t3 t3 0


 g0


T1

T2

T3


 . (4.40)

These are the Faddeev equations for the T -matrix. They can be alternatively written

as

Ti(z) = ti(z) +
3

j=1

Fij(z)g0(z)Tj(z) (4.41)

with the Faddeev operator

Fij(z) = (1− δij)ti(z) . (4.42)

The potentials vi have been totally replaced by the two-particle operators ti acting in

the three-particle space. Two-particle operators, like ti that act only in subsystem i,

always enter off-shell into three-body scattering amplitudes because of the energy shift

z − q2i /2Mi in subsystem i. As a consequence, there is more information contained

in three-particle scattering data than in pure two-particle data. Additionally, when

performing the operator product tig0Tj one has to integrate over all intermediate states

|pi and |qi , where
p2i
2µi

= z − q 2
i

2Mi

=
p 2
i

2µi

. (4.43)

The kernel of Eqs. (4.40) and (4.41), tig0Tj, is still not compact and does not have

a finite Schmidt norm. This is due to the exclusive action of ti in subsystem i, which

causes δ-functions occurring in the matrix elements,

piqi|ti(z)|piqi = δ(qα − qα) pi|t̃i(z − q2i
2Mi

)|pi , (4.44)

with the two-particle operators t̃i acting in the two-particle space. The existence of the

Schmidt norm [Eq. (4.28] is a sufficient condition for compactness of the integral kernel.

Latter is an important feature of the kernel as it is a necessary condition to enable the

Fredholm theory and other methods of integral equation theory to be applied. After a

first iteration of Eq. (4.40), not carried out here, there occur operator products such

as tig0tj with i = j. Such a product implies an integration over intermediate energy

states, where the δ-functions disappear and the particles get linked together. Further
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problems and details are treated in [21], however, we can proceed using the form (4.41)

of the Faddeev equations for the T -operator. If we continue iterating Eq. (4.40), we

get the Neumann series of the Faddeev equations, which is [21],

T (z) =
∞

ν=0

t(z) F (z)g0(z)t(z)
ν
, (4.45)

where doubly underlined quantities represent matrices and singly underlined quantities

vectors. The Faddeev equations describe the three-particle scattering process as a

two-body multiple scattering process, where the individual two-body scattering occurs

on-shell or off-shell.

In the next step Faddeev equations for the three-particle resolvent Gi(z) and the

scattering wave function |ψ±
αm will be derived.

4.4 Faddeev equations for the resolvent and scattering states

We start with the resolvent G(z) from Eq. (4.31) and replace the operator T by the

sum of its three components Ti (4.32),

G(z) = g0(z) +
3

i=1

g0(z)Ti(z)g0(z) . (4.46)

With the definition of components Gi(z),

Gi(z) = g0(z)Ti(z)g0(z) , (4.47)

Eq. (4.46) is rewritten as

G(z) = g0(z) +
3

i=1

Gi(z) . (4.48)

Equations that determineGi(z) can be obtained by inserting the Faddeev equations (4.41)

for the T -operator into Eq. (4.47) (omitting the argument z of the resolvents and op-

erators),

Gi = g0tig0 + g0

3

j=1

Fijg0Tjg0 . (4.49)

We proceed by including a relation that follows from extending the resolvent equation

in two-particle space (operators carrying a tilde are two-particle operators acting in
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two-particle space)

g̃ = g̃0 + g̃0t̃g̃0 (4.50)

into three-particle space,

g0tig0 = gi − g0 . (4.51)

Then,

Gi = gi − g0 + g0

3

j=1

Fijg0Tjg0 (4.52)

and with Eq. (4.47)

Gi = gi − g0 +
3

j=1

g0FijGj . (4.53)

Let us now find Faddeev equations for the scattering state

|ψ(±)
αm = lim

→0
±i G(E ± i )|φαm (4.54)

by inserting the splitting of the resolvent (4.48), which yields

|ψ(±)
αm = lim

→0
±i g0(E ± i )|φαm + lim

→0
±i

3

i=1

Gi(E ± i )|φαm . (4.55)

We define

|χ(±)
iαm = lim

→0
±i gi(E ± i )|φαm (4.56)

and

|ψ(±)
αm i = lim

→0
±i Gi(E ± i )|φαm , (4.57)

with i = 1, 2, 3. The state |χ(±)
iαm with α = 0 can be simplified by performing the limit

→ 0,

|χ(±)
iαm = lim

→0

±i

E ± i − hi

|φαm = δiα|φαm , i = 0, 1, 2, 3 , (4.58)

which is true since |φαm is an eigenfunction of hi if i = α. α = 0 means an incoming

state consisting of a bound pair and one particle moving freely. This case will be

considered in the following. For α = 0, which describes an incoming state consisting of

three free particles, we get different results for |χ(±)
iαm , which, however, will not concern
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us further. As a consequence the scattering state is split into components

|ψ(±)
αm = |χ(±)

0αm +
3

i=1

|ψ(±)
αm i . (4.59)

With the Faddeev equations for the resolvent (4.53), these components become

|ψ(±)
αm i = lim

→0
±i gi(E ± i )− g0(E ± i ) +

3

j=1

g0(E ± i )Fij(E ± i )Gj(E ± i ) |φαm .

(4.60)

For an incoming state consisting of a bound pair and one particle moving freely one

finally obtains

|ψ(±)
αm i = δiα|φαm +

3

j=1

g0(E ± i0)Fij(E ± i0)|ψ(±)
αm j (4.61)

and the total scattering wave function is a coherent sum of the three Faddeev compo-

nents,

|ψ(±)
αm =

3

i=1

|ψ(±)
αm i . (4.62)

Eqs. (4.61) and (4.62) are the Faddeev equations for the scattering state.
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5 A novel three-body R-matrix formalism

In this main section a novel R-matrix formalism for three-body channels is presented.

It provides a full quantum mechanical treatment of three-body processes in the frame

of R-matrix theory making use of the Faddeev equations. An important proposal for

such a formalism was first given by W. Glöckle in 1974 [10]. It is the only attempt of

an R-matrix formalism based on the exact three-body equations until now. However,

to our knowledge it has never been numerically implemented and tested.

Dealing with an extension of an R-matrix formalism it is obvious that the asymptotic

form of the three-body wave function plays an important role. Therefore it will be topic

of the first subsection followed by an outline of the R-matrix procedure and its final

equations in the next subsections.

5.1 Faddeev equations and asymptotic wave functions

The Faddeev equation for the scattering wave function (4.61) reads

|ψ(±)
αm i = δiα|φαm +

3

j=1

g0Fij|ψ(±)
αm j = δiα|φαm +

3

j=1

g0(1− δij)ti|ψ(±)
αm j

= δiα|φαm +
3

j(=i)=1

g0ti|ψ(±)
αm j ,

(5.1)

with

|ψ(±)
αm =

3

i=1

|ψ(±)
αm i . (5.2)

Here the relationship Fij = (1− δij)ti was used. Starting from the resolvent equation

in its two forms,

g0(E − h0 − vi)gi = g0 = gi − g0vigi ⇒ gi = g0 + g0vigi ⇒ gi = (1− g0vi)
−1g0

gi(E − h0 − vi)g0 = g0 = gi − givig0 ⇒ gi = g0 + givig0 ⇒ gi = g0(1− g0vi)
−1 ,

(5.3)

the two-particle t-operators can be expressed by

ti = vi + vig0ti = vi + tig0vi ⇒ ti = (1− vig0)
−1 = vi(1− g0vi)

−1 . (5.4)
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Combining Eq. (5.3) with Eq. (5.4) yields

gi = g0(1− vig0)
−1 ⇒ (1− vig0)

−1 = g−1
0 gi ⇒ ti = g−1

0 givi ⇒ g0ti = givi

gi = (1− g0vi)
−1g0 ⇒ gig

−1
0 = (1− g0vi)

−1 ⇒ ti = vigig
−1
0 ⇒ tig0 = vigi

(5.5)

Hence, Eq. (5.1) can be rewritten using Eq. (5.5),

|ψ(±)
αm i = δiα|φαm + givi

3

j(=i)=1

|ψ(±)
αm j . (5.6)

We use the coordinate space representations of the physical scattering wave functions

|ψ(+)
αm i and suppress the indices α and m

ψi(rj, Rj) ≡ i rjRj|ψ(+)
αm i . (5.7)

The index i = 1, 2, 3 and j denote the Faddeev component and a certain set of Jacobi

coordinates, respectively. In the following the notation for two-particle Green’s func-

tions and two-body potentials (Vi = Vjn is the interaction between particle j and n)

will change from lowercase to capital letters while leaving their definitions unchanged

(see subsection 4.1). In coordinate space representation the Faddeev equations form a

set of three coupled integral equations

ψ1(r1, R1)α = φ1(r1, R1)α + d3r1 d3R1 r1R1|G1|r1R1 V23(r1)[ψ2(r2, R2)α + ψ3(r3, R3)α]

ψ2(r2, R2)α = d3r2 d3R2 r2R2|G2|r2R2 V31(r2)[ψ1(r1, R1)α + ψ3(r3, R3)α]

ψ3(r3, R3)α = d3r3 d3R3 r3R3|G3|r3R3 V12(r3)[ψ1(r1, R1)α + ψ2(r2, R2)α] ,

(5.8)

for channel β

ψ1(r1, R1)β = d3r1 d3R1 r1R1|G1|r1R1 V23(r1)[ψ2(r2, R2)β + ψ3(r3, R3)β]

ψ2(r2, R2)β = φ2(r2, R2)β + d3r2 d3R2 r2R2|G2|r2R2 V31(r2)[ψ1(r1, R1)β + ψ3(r3, R3)β]

ψ3(r3, R3)β = d3r3 d3R3 r3R3|G3|r3R3 V12(r3)[ψ1(r1, R1)β + ψ2(r2, R2)β] ,

(5.9)
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and for channel γ

ψ1(r1, R1)γ = d3r1 d3R1 r1R1|G1|r1R1 V23(r1)[ψ2(r2, R2)γ + ψ3(r3, R3)γ]

ψ2(r2, R2)γ = d3r2 d3R2 r2R2|G2|r2R2 V31(r2)[ψ1(r1, R1)γ + ψ3(r3, R3)γ]

ψ3(r3, R3)γ = φ3(r3, R3)γ + d3r3 d3R3 r3R3|G3|r3R3 V12(r3)[ψ1(r1, R1)γ + ψ2(r2, R2)γ] .

(5.10)

All labels correspond to the notations used in Fig. 5 with Vi(ri) = Vjn(ri). The

Figure 5: Jacobi coordinates and potentials in a three-body system.

dynamical quantities will be denoted according to the dispersion relation ( = 1)

E = Ei = − κ2
i

2µjn

+
Q2

i

2µi(jn)

= E
(i)
b +

Q2
i

2µi(jn)

=
k2
i

2µjn

+
Q2

ki

2µi(jn)

=
q2Ki

2µjn

+
K2

i

2µi(jn)

. (5.11)

The index i stands for the respective Faddeev component in Eq. (5.8) and will be omit-

ted for the wavenumbers in the following. Eq. (5.11) exhibits the energy-wavenumber

relations for all possible channels of the three-body problem. Eb denotes the bind-

ing energy of the bound subsystem in the incoming, elastic or rearrangement channel,

whereas Q stands for the wavenumber of the projectile or scattered particle. If breakup

occurs k denotes the relative wavenumber between the two particles that were bound

in the subsystem, but after breakup moving freely and Qk is the respective wavenum-

ber of the third particle. The wavenumbers ki and Qki are associated with the Jacobi

momenta pi and qi defined in Eqs. (4.6), (4.7) and (4.8). qK and Ki have the same

physical meaning as k and Qk and will be needed in the Green’s function below to
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study an asymptotic limit. The Faddeev equations require different sets of Jacobi co-

ordinates as a function of that set used in a certain subsystem. For i = 1, 2 the relation

reads (i = j = n and i = n)

rj = − mj

mj +mn

ri − (−1)jRi , Rj = (−1)j
mimn +mjmn +mnmn

(mi +mn)(mj +mn)
ri − mi

mi +mn

Ri,

(5.12)

and for i = 3 (i = j = n and i = n)

rj = − mj

mj +mn

ri + (−1)jRi , Rj = −(−1)j
mimn +mjmn +mnmn

(mi +mn)(mj +mn)
ri − mi

mi +mn

Ri .

(5.13)

There are two ways to write down the Faddeev equations either as integral or differ-

ential equations. In the following we consider the integral form and restrict ourselves

to the s-wave part of the wave functions in Riccati form ui(ri, Ri) = riRiψi(ri, Ri).

Then Eq. (5.8) reads (the index ”α“ will be omitted in the following)

ui(ri, Ri) =δi1u
b
i(ri) sin(QRi) +

∞

0

dri

∞

0

dRi riRi|Gi|riRi Vi(ri)

×
1

−1

dx riRi

1

2

uj(rj, Rj)

rjRj

+
uk(rk, Rk)

rkRk

=ub
i(ri) sin(QRi) +

∞

0

dri

∞

0

dRi riRi|Gi|riRi Vi(ri)Λi(ri, Ri)

(5.14)

where

Λi(ri, Ri) =

1

−1

dxi
riRi

2

3

j=1
j=i

uj(rj, Rj)

rjRj

. (5.15)

and xi is the cosine of the relative angle between ri and Ri. Applying (E− Ĥi) on both

sides of Eq. (5.14) and using the identity

(E − Ĥi) riRi|Gi|riRi = (E − Ĥi) riRi| 1

E − Ĥi

|riRi = δ(ri − ri)δ(Ri −Ri)

35



yields

− 1

2µjn

d2

dr2i
− 1

2µi(jn)

d2

dR2
i

+ Vi(ri)− E ui(ri, Ri)

= −
∞

0

dri

∞

0

dRi δ(ri − ri)δ(Ri −Ri)Vi(ri)

1

−1

dxi

riRi

2

3

j=1
j=i

uj(rj, Rj)

rjRj

= −1

2
Vi(ri)

1

−1

dxi riRi

3

j=1
j=i

uj(rj, Rj)

rjRj

,

(5.16)

with boundary conditions for outgoing scattered waves. E is the total energy of the sys-

tem. The Green’s function for three-body problems in absence of Coulomb interaction

reflects the dispersion relation (5.11) and can be written in two forms [18]

riRi|Gi|riRi =ub
i(ri) −2µi(jn)e

iQRi>
sin(QRi<)

Q
ub
i(ri)

+
2

π

∞

0

dk u
(−)
k (ri) −2µi(jn)e

iQkRi>
sin(QkRi<)

Qk

u
(−)∗
k (ri) (5.17a)

=
2

π

∞

0

dK sin(KRi) −2µjn

qK
u(+)
qK

(ri<)wqK (ri>) sin(KRi) , (5.17b)

where Ri> = max(Ri, Ri), Ri< = min(Ri, Ri) and ri> = max(ri, ri), ri< = min(ri, ri)

and i,m, n denote the different particles (i = j = n and i = n), respectively. The

functions u
(±)
qK (r) and wqK (r) form a complete set of bound- and scattering states and

are normalized as

u(±)
q (r) e±iδ(q) sin(qr + δ(q)) (5.18)

and

wq(r) eiqr (5.19)

for r → ∞. With this Green’s functions and the coordinate transformation

ri =
1

2µjn

ρ cosϕi , Ri =
1

2µi(jn)

ρ sinϕi , (5.20)

one obtains after an involved derivation provided detail in [11] the asymptotic form
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of the three-body wave function for Ri → ∞ and ri fixed and ri → ∞ and Ri fixed.

These forms are important for the R-matrix procedure. For Ri → ∞ and ri fixed we

obtain

ui(ri, Ri) ub
i(ri) sin(QRi)− 2µi(jn)u

b
i(ri)e

iQRiT b
i −

4

π
µi(jn)

√
2µjnE

0

dk u
(−)
k (ri)e

iQkRiTi(k)

−
3

j=1
j=i

e
i
√

2µj(in)E
mi

mi+mn
Ri/ sinϕ∗

j

R
3/2
i


ub

i(ri)C
b
i +

2

π

∞

√
2µjnE

dk u
(−)
k (ri)Ci(k)




+O
1

R2
i

(5.21)

and for ri → ∞ and Ri fixed

ui(ri, Ri) −4µi(jn)

π

√
2µjnE

0

dk sin(QkRi)e
ikriTi(k) +O

1

r2i
. (5.22)

The angle ϕ∗
j is given by

ϕ∗
j = arctan

mi

mi +mn

µj(in)

µik

(5.23)

and the numbers Cb
i and Ci(k) are determined by

Cb
i =

2

π
ei

π
4 2µi(jn) 2µjn(2µj(in))

−1/4 mi +mn

mi

5/2

(sinϕ∗
j)

7/2E1/4

× Ti 2µjnE cosϕ∗
j

2µi(jn)

µj(in) E − 2Q2

µj(in)
sin2 ϕ∗

j

∞

0

dr ub
i(r)Vi(r) ,

(5.24)
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and

Ci(k) =
2

π
ei

π
4 2µi(jn) 2µjn 2µj(in)

−1/4 mi +mn

mi

sinϕ∗
j

3/2

E1/4Ti 2µjnE cosϕ∗
j

× 1

1
µjn

k2 − 2E + 2
µj(in)

µi(jn)
E mi

(mi+mn) sinϕ∗
j

2

∞

0

dr u
(−)∗
k (r)Vi(r) .

(5.25)

Finally the asymptotic expression of the three-body wave function in the breakup

channel where both ri and Ri tend towards infinity is given by [11]

ui(ri, Ri)
ρ→∞

(2µi(jn))
3/2 2µjn

2

π
ei

π
4E1/4 e

iρ
√
E

ρ1/2
Ri

ρ
Ti 2µjn

√
E
ri
ρ

, (5.26)

with ρ = 2µjnr2i + 2µi(jn)R
2
i .

With the momentum transformation (for details see [11])

k = 2µjnE sinϑ , Qk = 2µi(jn)E cosϑ (5.27)

and the coordinate transformation (5.20) the breakup wave function of the Faddeev

component i is calculated according to

ψi(ri, Ri) =
ui(ri, Ri)

riRi ρ→∞
2µi(jn) 2µjn

2

π
ei

π
4E1/4 e

iρ
√
E

ρ1/2
sinϕi

1

riRi

Ti(ki)

= 2µi(jn) 2µjn
2

π
ei

π
4E1/4 e

iρ
√
E

ρ1/2
sinϕi 2µi(jn) 2µjn

1

ρ sinϕi

1

ρ cosϕi

=cos(π
2
−ϑi)

Ti(ki)

= 2µi(jn)
3/2

2µjn
2

π
ei

π
4E1/4 e

iρ
√
E

ρ5/2
Ti(ki)

sinϑi

= 2µi(jn)
3/2

2µjn
2

π
ei

π
4E1/4 e

iρ
√
E

ρ5/2
2µjnE

ki
Ti(ki)

= 4µi(jn)µjn
3/2 2

π
ei

π
4E3/4 e

iρ
√
E

ρ5/2
Ti(ki)

ki
.

(5.28)

Here the saddle point condition ϑi =
π
2
− ϕi, resulting from the integration along the

line of steepest descent carried out in [11] was used.
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The total wave function for the breakup channel in the asymptotic region is calcu-

lated as a sum over the three Faddeev components, ψi(ri, Ri), according to Eq. (5.2)

Ψ
(+)
breakup =

3

i=1

ψi(ri, Ri) ri→∞
Ri→∞

2

π
ei

π
4E3/4 e

iρ
√
E

ρ5/2

3

i=1

4µi(jn)µjn
3/2 Ti(ki)

ki
(5.29)

The asymptotic wave function depends on the T−amplitudes. From the deriva-

tion of Glöckle and the generalization to different particle masses the form of the

T−amplitudes in coordinate representation is given by

T b
i =

∞

0

dR

∞

0

dr
sin(QR)

Q
ub
i(r)Vi(r)Λ(r, R) (5.30)

and

Ti(k) =

∞

0

dR

∞

0

dr
sin(QkR)

Qk

u
(−)∗
k (r)Vi(r)Λ(r, R) (5.31)

with Eq. (5.15),

Λi(ri, Ri) =

1

−1

dxi
riRi

2

3

j=1
j=i

uj(rj, Rj)

rjRj

.

They must not be confused with the three-body T -operators treated in subsections 4.3

and 4.4.

In the following we show according to [18] that these forms of the transition ampli-

tudes [(5.30) and (5.31)]are equivalent to

Tβα = φβ|V β|Ψ (+)
α (5.32)

which is the three-body analogue to Eq. (2.28). The channel potential is given by

V β = Vα + Vγ, α = β = γ ,

where α is the entrance and elastic channel and β and γ are rearrangement channels.

The breakup channel conveniently carries the index 0 with the corresponding po-

tential V0 = 0 and thus V 0 = V1 + V2 + V3 where we use the notation Vα = V1, Vβ = V2

and Vγ = V3 .
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With the notation φ1 = j0(QR1)ϕ
b
1(r1) and ϕb

1(r) =
ub
1(r)

r
the elastic T -amplitude

from Eq. (5.30) reads in abstract vector notation

Tb = φ1|V1|ψ2 + ψ3 = φ1|V1G0(V2 + V3)|Ψ (+) = φ1|V2 + V3|Ψ (+) . (5.33)

In the first equality inserted the definition of the Faddeev components,

|ψi = G0Vi|Ψ (+) (5.34)

and in the second equality we made use of the relation

G0V1|φ1 = |φ1 . (5.35)

To prove Eq. (5.35) we multiply both sides by G−1
0 from the left side which leads to

G−1
0 G0V1|φ1 = G−1

0 |φ1

V1|φ1 = (E − Ĥ0)|φ1

V1|φ1 = (Ĥ1 − Ĥ0)|φ1

V1|φ1 = V1|φ1 .

because Ĥ1 = Ĥ0 + V1 with the eigenstate |φ1 , Ĥ1|φ1 = E|φ1 .

The breakup amplitude in channel 1, T1(k) from Eq. (5.31), in abstract vector

notation with φk = kj0(kr1)j0(QkR1) reads

T1(k) = φ
(−)
k |V1|ψ2 + ψ3 . (5.36)

The scattering state |φ(+)
k is a solution of the Lippmann-Schwinger equation

|φ(+)
k = |φk +G0V1|φ(+)

k = |φk + lim
→0

1

E + i − Ĥ0

V1|φ(+)
k , (5.37)

where |φk is an eigenstate of Ĥ0, i.e. Ĥ0|φk = E0|φk and Ĥ1|φ(+)
k = E|φ(+)

k . The

scattering state |φ(+)
k can also be represented as

|φ(+)
k = |φk +G1V1|φk , (5.38)
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and the corresponding vector in dual space

φ
(−)
k | = φk|+ φk|V1G1 . (5.39)

Inserting Eq. (5.39) into the expression for the T1(k)-amplitude, Eq. (5.36), and using

relations (5.6) and (5.2) yields

T1(k) = φk|V1|ψ2 + ψ3 + φk|V1G1V1|ψ2 + ψ3 = φk|V1|ψ2 + ψ3 + φk|V1|ψ1 − φ1

= φk|V1|ψ1 + ψ2 + ψ3 − φk|V1|φ1 = φk|V1|Ψ (+) − φk|V1|φ1 .

(5.40)

The second term in the last line vanishes on-shell due to strong surface oscillations

resulting from partial integration that do not contribute to the cross section [18]. The

first term is the breakup T -amplitude in channel 1. The total breakup behavior is

obtained by adding up the contributions from all three Faddeev components,

T (k) = φk|V1 + V2 + V3|Ψ (+) = φk|V 0|Ψ (+) (5.41)

which corresponds to definition (5.32) of the three body T -amplitudes.

In general the elastic or rearrangement T -amplitudes for the i-th Faddeev component

read

T b
i = φi|Vi|ψj + ψn (5.42)

and for the breakup channel

Ti(k) = φk|Vi|ψj + ψn , (5.43)

which in coordinate representation yield Eqs. (5.30) and (5.31). The indices i, j, n

account for three different particles, i.e. i = j = n and i = n.
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5.2 Derivation of the generalized three-body R-matrix formalism

In this subsection the three-body R-matrix formalism based on Glöckle’s ideas, but

generalized to different masses according to [11] is presented. The concept of dividing

the Jacobi-coordinate space is introduced followed by the determination of the matching

radii and finally the path is drawn to a system of equations for the expansion coefficients

c
(i)
µ and the T -amplitudes which will be outlined at the end of this subsection.

5.2.1 Division of the Jacobi-coordinate space

The key feature of R-matrix theory is the division of the configuration space into

an interior region where strong interactions take place and the complex n-body wave

function is substituted by an expansion over a set of basis functions and an exterior

region where the asymptotic form of the wave function in terms of the scattering matrix

is well known. However, in three-body theory this concept must be modified because,

e.g. of the presence of a bound subsystem after scattering or two particles that stay

close together after breakup. Both cases imply an interaction of at least two particles

also in the asymptotic range. Consequently the concept of a finite interaction volume,

a prerequisite of standard R-matrix theory, is not satisfied in three-body problems. In

order to transfer the concept of the division of space to three-body systems, Glöckle

[10] proposed the introduction of a border in the space of Jacobi-coordinates. Fig. 6

gives a schematic view of the division, where the contours C1 = (ri, Ai), ri ∈ [0, ai] and

C2 = (ai, Ri), Ri ∈ [0, Ai] confine the ”interaction region” D from the exterior region.

It is important to remark that the ”inner region” D is not associated with a finite

volume in space. However, we have to take care that for each subsystem i the two

remaining sets of Jacobi coordinates rj(ri, Ri) and rn(ri, Ri) are confined to the area D

as well. This is the central claim of R-matrix theory. In the ri direction the potential

Vi(ri) with range r0i is acting, which determines the matching radius ai. In the dimen-

sion Ri, however, there is no such criterion for Ai because due to the definition of the

components in the Faddeev equations there is no interaction in Ri. For the moment

Ai remains a free parameter and is specified by the requirement that all set of Jacobi

coordinates must remain inside D.
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Thus, by choosing the boundary parameters,

ai = sup
j=i

mi + 2mj +mn

mj +mn

r0i ,

Ai =
mi +mj +mn

mj +mn

r0i ,

(5.48)

rj, Rj are confined to D. These are the lower limits for Ai and ai which can always be

enlarged by adding some constant greater than zero.

Proceeding in R-matrix theory the wave function ui(ri, Ri) inside the area D is

expanded over a complete sets of basis states,

ui(ri, Ri) =
µ

c(i)µ ϕ(i)
µ (ri, Ri) . (5.49)

These states ϕ
(i)
µ (ri, Ri) obey the equation

− 1

2µjn

d2

dr2i
+ Vi(ri)− 1

2µi(jn)

d2

dR2
i

− E(i)
µ ϕ(i)

µ (ri, Ri) = 0 , (5.50)

with the boundary conditions proposed by Glöckle [10],

ϕ(i)
µ (0, Ri) = ϕ(i)

µ (ri, 0) =
ϕ
(i)
µ (ri, Ri)

∂ri
ri=ai

=
∂ϕ

(i)
µ (ri, Ri)

∂Ri
Ri=Ai

= 0 , (5.51)

which imply the orthonormality relation

D

dr dR ϕ(i)
µ (r, R)ϕ

(i)
µ (r, R) = δµµ . (5.52)

Thus, the expansion coefficients can be calculated as

c(i)µ =
D

dr dR ϕ(i)
µ (r, R)ui(r, R) . (5.53)

It is convenient to write the basis functions as product states

ϕ(i)
µ (r, R) = Xµ1(r)Yµ2(R) , (5.54)
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where the functions X
(i)
µ1 (r) and Y

(i)
µ2 (R) are solutions of the equations

− 1

2µjn

d2

dr2
+ Vi(r)− (i)

µ1
X(i)

µ1
(r) = 0 (5.55)

and

− 1

2µi(jn)

d2

dR2
− (i)

µ2
Y (i)
µ2

(R) = 0 . (5.56)

The total energy E
(i)
µ =

(i)
µ1 +

(i)
µ2 is split into the energy of the two relative motions,

(i)
µ1 (particle j relative to particle n) and

(i)
µ2 (particle i relative to particles j and n

where i = j = n and i = n).

5.2.2 Equations of three-body R-matrix theory

The essential quantities that have to be determined in the three-body problem are the

expansion coefficients c
(i)
µ for the interior wave function and the elastic, rearrangement

and breakup T -amplitudes. In order to get equations for the c
(i)
µ , Eq. (5.16) is projected

onto the basis states ϕ
(i)
µ (r, R)

ϕ(i)
µ (ri, Ri) − 1

2µjn

d2

dr2i
+ Vi(ri)− 1

2µi(jn)

d2

dR2
i

− E ui(ri, Ri) =

− ϕ(i)
µ (ri, Ri)Vi(ri)

1

−1

dxi
riRi

2

3

j=1
j=i

uj(rj, Rj)

rjRj

(5.57)

and then integrated over the domain D,

D

dr dR ϕ(i)
µ (ri, Ri) − 1

2µjn

d2

dr2i
+ Vi(ri)− 1

2µi(jn)

d2

dR2
i

− E ui(ri, Ri) =

−
D

dr dR ϕ(i)
µ (ri, Ri)Vi(ri)

1

−1

dxi
riRi

2

3

j=1
j=i

uj(rj, Rj)

rjRj

.
(5.58)

Integrating the left hand side of Eq. (5.58) by parts and observing the boundary
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conditions (5.51) (see Appendix A) yields

(E(i)
µ − E)c(i)µ − 1

2µi(jn)

ai

0

dr ϕ(i)
µ (r, Ai)

dui

dR R=Ai

− 1

2µjn

Ai

0

dR ϕ(i)
µ (ai, R)

dui

dr r=ai

,

(5.59)

Inserting the expansion of the wave function the right hand side of Eq. (5.58) one

gets

−
D

dridRi ϕ
(i)
µ (ri, Ri)Vi(ri)

1

−1

dxi
riRi

2

3

j=1
j=i

uj(rj, Rj)

rjRj

= −
D

dridRi ϕ
(i)
µ (ri, Ri)Vi(ri)

1

−1

dxi
riRi

2

3

j=1
j=i

µ

c
(j)
µ ϕ

(j)
µ (rj, Rj)

rjRj

.

(5.60)

rj and Rj always remain inside D, which is ensured by the values of the matching radii

(5.48). With the matrix element

V
(ij)
µµ =

D

dridRi ϕ
(i)
µ (ri, Ri)Vi(ri)

1

−1

dxi riRi

ϕ
(j)
µ (rj, Rj)

2rjRj

, (5.61)

Eq. (5.58) finally becomes

(E(i)
µ − E)c(i)µ +

µ

3

j=1
j=i

V
(ij)
µµ c

(j)
µ

=
1

2µi(jn)

ai

0

dr ϕ(i)
µ (r, Ai)

dui

dR R=Ai

+
1

2µjn

Ai

0

dR ϕ(i)
µ (ai, R)

dui

dr r=ai

.

(5.62)

The wave functions on the borders (5.21) and (5.22) can be plugged into this equa-

tion [11] resulting in
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(Eµ − E)c(i)µ +
3

j=1
j=i

µ

V
(j)
µµ c

(j)
µ =

1

2µi(jn)

QMµb cos(QAi)− iQMµbe
iQAiT b

i

− 2

π

√
2µjnE

0

dk iQkM
(−)
µk eiQkAiTi(k)

− 1

2µi(jn)

3

j=1
j=i

e
i
√

2µj(in)E
mi

mi+mn
Ai/ sinϕ∗

j

A
3/2
i

i 2µj(in)E
mi

mi +mn

/ sinϕ∗
j

× 2

π
ei

π
4 2µi(jn) 2µjn(2µj(in))

− 1
4

mi +mn

mi

5
2

(sinϕ∗
j)

7
2E

1
4MµbTi 2µjnE cosϕ∗

j

× 2µi(jn)

µj(in) E − 2Q2

µj(in)
sin2 ϕ∗

j

r0i

0

dr ub
i(r)Vi(r)

+
2

π

3
2

ei
π
4 2µi(jn) 2µjn 2µj(in)

− 1
4

mi +mn

mi

sinϕ∗
j

3
2

E
1
4

×
∞

√
2µjnE

dk M
(−)
µk Ti 2µjnE cosϕ∗

j

1

1
µjn

k2 − 2E + 2
µj(in)

µi(jn)
E mi

(mi+mn) sinϕ∗
j

2

×
∞

0

dr u
(−)∗
k (r)Vi(r) − 2µi(jn)

πµjn

√
2µjnE

0

dk ikMµQk
eikaiTi(k)

=
1

2µi(jn)

QMµb cos(QAi)− iQMµbe
iQAiT b

i −
2

π

√
2µjnE

0

dk iQkM
(−)
µk eiQkAi +

µi(jn)

µjn

ikMµQk
eikai Ti(k)

−
3

j=1
j=i

ie
i
√

2µj(in)E
mi

mi+mn
Ai/ sinϕ∗

j

A
3/2
i

Ti 2µjnE cosϕ∗
j

× Nb(E)Mµb

2µi(jn)

µj(in) E − 2Q2

µj(in)
sin2 ϕ∗

j

r0i

0

dr ub
i(r)Vi(r)

+
2

π
Nk(E)

∞

√
2µjnE

M
(−)
µk

1

1
µjn

k2 − 2E + 2
µj(in)

µi(jn)
E mi

(mi+mn) sinϕ∗
j

2

∞

0

dr u
(−)∗
k (r)Vi(r) ,

(5.63)47



with

Nb(E) =
2

π
ei

π
4 2µjn(2µj(in))

1
4

mi +mn

mi

3
2

(sinϕ∗
j)

5
2E

3
4 , (5.64a)

Nk(E) =
2

π
ei

π
4 2µi(jn) 2µjn 2µj(in)

1
4

mi +mn

mi

sinϕ∗
j

1
2

E
3
4 . (5.64b)

The shortcuts are defined according to

Mµb =

ai

0

dr ϕ(i)
µ (r, Ai)u

b
i(r) , M

(−)
µk =

ai

0

dr ϕ(i)
µ (r, Ai)u

(−)
k (r)

MµQ =

Ai

0

dR ϕ(i)
µ (ai, R) sin(QR) ,

(5.65)

Eq. (5.63) represents a set of (N1 +N2 +N3) equations for the coefficients c
(1)
µ , c

(2)
µ

and c
(3)
µ and the amplitudes T b

i and T (k). Ni denotes the number of basis states used

in the i-th Faddeev component and therefore (N1 + N2 + N3) is the total number of

expansion coefficients c
(i)
µ . Hence, there is a need of some more equations in order

to get a unique solution. At the matching radii it is required that the interior and

exterior wave function must equal each other yielding three additional relations. The

continuity of the first derivative of the wave function at the matching radii is not

explicitly included in this derivation. The consequences and resulting problems are

discussed in subsection 7.4.

The leading terms of the wave function (5.21) for Ri → ∞ and ri fixed are

ui(ri, Ri) ub
i(ri) sin(QRi)−2µi(jn)u

(i)
b (ri)e

iQRiT b
i −

4

π
µi(jn)

√
2µjnE

0

dk u
(−)
k (ri)e

iQkRiTi(k)

(5.66)

Replacing the left hand side by the expansion valid in the interior region and projecting
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the equation onto the bound state ub
i(r) gives

ai

0

dr ub
i(r)

µ

c(i)µ ϕ(i)
µ (r, Ai)

ai

0

dr ub
i(r)

2

=1

sin(QAi)− 2µi(jn)

ai

0

dr ub
i(r)

2

=1

eiQAiT b
i

− 4

π
µi(jn)

√
2µjnE

0

dk

ai

0

dr ub
i(r)u

(−)
k (r)

≈0

eiQkAiTi(k) ,

(5.67)

where the relation
ai

0

dr ub
i(r)u

(−)
k (r) ≈ 0 on the line C1 was used. Latter relation could

be proved for the nuclear systems we considered following sections. The normalization

of ub
i ,

ai

0

dr ub
i(r)

2
= 1 (5.68)

is valid only in case if ub
i(ai) ≈ 0. This assumption which Glöckle made in [10] can be

problematic for practical calculations and will be discussed in the next subsection.

Finally, T b
i is given by the coefficients c

(i)
µ through

µ

Mµbc
(i)
µ sin(QAi)− 2µi(jn)e

iQAiT b
i . (5.69)

The integral in Eq. (5.66) can be replaced by the asymptotic expression of the

three-body wave function in Eq. (5.26) while the left hand side is again given by an

expansion over basis functions. On the contour C1 Eq. (5.66) reduces to

µ

c(i)µ ϕ(i)
µ (ri, Ai)− ub

i(ri) sin(QAi)− 2µi(jn)e
iQAiT b

i

(2µi(jn))
3/2 2µjn

2

π
ei

π
4E1/4 e

iρA
√
E

ρ
1/2
A

Ai

ρA
Ti 2µjn

√
E

ri
ρA

,

(5.70)

with ρA = 2µjnr2i + 2µi(jn)A2
i and sinϕi|C1

= 2µi(jn)
Ai

ρA
. The same procedure is
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carried out on the line C2 and provides the fourth equation,

µ

c(i)µ ϕ(i)
µ (ai, Ri)

ub
i(ai) sin(QRi)− 2µi(jn)e

iQRiT b
i + 2µi(jn)

3/2 2

π
ei

π
4E1/4 e

iρa
√
E

ρ
1/2
a

Ri

ρa
Ti 2µjn

√
E
ai
ρa

2µi(jn)
3/2 2

π
ei

π
4E1/4 e

iρa
√
E

ρ
1/2
a

Ri

ρa
Ti 2µjn

√
E
ai
ρa

,

(5.71)

with ρa = 2µjna2i + 2µi(jn)R
2
i and Glöckle’s assumption ub

i(ai) ≈ 0.

The set of equations that uniquely determines the expansion coefficients c
(i)
µ and the

three-body T -amplitudes, T b
i and Ti(k), reads
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1)(E(i)
µ − E)c(i)µ +

3

j=1
j=i

µ

V
(j)
µµ c

(j)
µ (5.72a)

=
1

2µi(jn)

QMµb cos(QAi)− iQMµbe
iQAiT b

i

− 2

π

√
2µjnE

0

dk iQkM
(−)
µk eiQkAi +

µi(jn)

µjn

ikMµQk
eikai Ti(k)

−
3

j=1
j=i

ie
i
√

2µj(in)E
mi

mi+mn
Ai/ sinϕ∗

j

A
3/2
i

Ti 2µjnE cosϕ∗
j

× Nb(E)Mµb

2µi(jn)

µj(in) E − 2Q2

µj(in)
sin2 ϕ∗

j

r0i

0

dr ub
i(r)Vi(r)

+
2

π
Nk(E)

∞

√
2µjnE

dk M
(−)
µk

1

1
µjn

k2 − 2E + 2
µj(in)

µi(jn)
E mi

(mi+mn) sinϕ∗
j

2

r0i

0

dr u
(−)∗
k (r)Vi(r)

2)
µ

Mµb c
(i)
µ sin(QAi)− 2µi(jn)e

iQAiT b
i (5.72b)

3)
µ

c(i)µ ϕ(i)
µ (ri, Ai)− ub

i(ri) sin(QAi)− 2µi(jn)e
iQAiT b

i (5.72c)

(2µi(jn))
3/2 2µjn

2

π
ei

π
4E1/4 e

iρA
√
E

ρ
1/2
A

Ai

ρA
Ti 2µjn

√
E

ri
ρA

4)
µ

c(i)µ ϕ(i)
µ (ai, Ri) (2µi(jn))

3/2 2

π
ei

π
4E1/4 e

iρa
√
E

ρ
1/2
a

Ri

ρa
Ti 2µjn

√
E
ai
ρa

. (5.72d)

This system of equations was first derived by Glöckle for three identical bosons in

[10] and is presented here in its generalized form for three different particles elaborated

in [11].
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5.3 Formulation of a new applicable R-matrix method

In the previous subsection the generalization of the three-body R-matrix formalism to

three different masses and different interactions, first presented in [11], was revisited.

This generalization was the first important step with regard to applicability of the

formalism. The method follows the key idea of the proposal of Glöckle [10], but also

bears it shortcomings. Essential modifications are required to obtain an applicable

R-matrix formalism for three-body breakup channels. This new R-matrix formalism

is subject of this subsection and the updated set of equations suitable for numerical

implementation and application is presented at the end of this subsection in Eq. (5.85).

One modification concerns the boundary conditions for the basis functions. In the

proposal [10] the following conditions were introduced

ϕ(i)
µ (0, Ri) = ϕ(i)

µ (ri, 0) =
ϕ
(i)
µ (ri, Ri)

∂ri
ri=ai

=
∂ϕ

(i)
µ (ri, Ri)

∂Ri
Ri=Ai

= 0 . (5.73)

However, from the vanishing first derivatives at the boundaries (see Fig. 6) there results

a problem from a practical point of view. The conditions (5.73) imply a discrete energy

grid in E
(i)
µ which can be problematic for practical calculations because it can occur

that the energy step width gets too large and consequently the interior three-body

wave function cannot be reproduced properly in certain energy ranges.

This issue gives rise to reduce the boundary conditions (5.73) to

ϕ(i)
µ (0, Ri) = ϕ(i)

µ (ri, 0) = 0 . (5.74)

Then the orthonormality relation (5.52) is no longer valid, but

A

0

dR

a

0

dr ϕ(i)
µ (r, R)ϕµ (r, R) = C

(i)
µµ . (5.75)

This matrix Cµµ enters Eq. (5.72a) via the integral

A

0

dR

a

0

dr (Eµ − E)ui(r, R)ϕ(i)
µ (r, R) =

µ

Cµµ cµ (5.76)

since ui(ri, Ri) = µ c
(i)
µ ϕ

(i)
µ (ri, Ri) in the interior region.
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A further consequence of these boundary conditions shows up when partially inte-

grating the left hand side of Eq. (5.58)

(E(i)
µ − E)c(i)µ − 1

2µi(jn)

ai

0

dr ϕ(i)
µ (r, Ai)

dui

dR R=Ai

+
1

2µi(jn)

ai

0

dr ui(r, Ai)
dϕ

(i)
µ

dR
R=Ai

− 1

2µjn

Ai

0

dR ϕ(i)
µ (ai, R)

dui

dr r=ai

+
1

2µjn

Ai

0

dR ui(ai, R)
dϕ

(i)
µ

dr
r=ai

(5.77)

The terms containing a first derivative of the basis functions at the boundary lines did

not appear in Eq. (5.59) as shown in Appendix A.

Another important modification concerns the bound state wave functions ub
i(r) in

subsystems. In the original proposal [10] it is assumed that ub
i(r) at r = ai is negligible.

However, in most light nuclear systems the values of ub
i(r) at r = ai cannot be ignored

for reasonable values of ai and ub
i(ai) must be included in the formulæ. This affects

Eq. (5.72a) and the boundary condition in Eq. (5.72d). Latter is derived from Eq.

(5.66) using the asymptotic expression (5.26) and the expansion of the wave function

in the interior region and now reads

µ

c(i)µ ϕ(i)
µ (ai, Ri)

ub
i(ai)e

iQ(Ri−Ai)

µ

Mµbc
(i)
µ + ub

i(ai) sin(QRi)− eiQ(Ri−Ai) sin(QAi)

+ 2µi(jn)
3/2 2

π
ei

π
4E1/4 e

iρa
√
E

ρ
1/2
a

Ri

ρa
Ti 2µjn

√
E
ai
ρa

,

(5.78)

with ρa = 2µjna2i + 2µi(jn)R2
i . The boundary condition (5.72b) which is obtained

by projecting ub
i(r) onto the asymptotic three-body wave function (5.21) gets slightly

changed because if ub
i(ai) = 0 then ub

i(r) is not normalized to 1 in the interval [0, ai].
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Consequently

ai

0

dr ub
i(r)

µ

c(i)µ ϕ(i)
µ (r, Ai)

ai

0

dr ub
i(r)

2

=C̄

sin(QAi)− 2µi(jn)

ai

0

dr ub
i(r)

2

=C̄

eiQAiT b
i

− 4

π
µi(jn)

√
2µjnE

0

dk

ai

0

dr ub
i(r)u

(−)
k (r)

≈0

eiQkAiTi(k) ,

(5.79)

and Eq. (5.72b) becomes

C̃
µ

Mµb c
(i)
µ sin(QAi)− 2µi(jn)e

iQAiT b
i . (5.80)

The introduced constants are 1/C̄ = C̃. The boundary condition (5.72c) is not touched

by the introduced modifications.

The extended set of three-body R-matrix equations containing the mentioned modi-

fications is obtained by plugging the asymptotic forms of the three-body wave function

(5.21) and (5.22) into the equation

(E(i)
µ − E)c(i)µ +

µ

3

j=1
j=i

V
(ij)
µµ c

(j)
µ =

1

2µi(jn)

ai

0

dr ϕ(i)
µ (r, Ai)

dui

dR R=Ai

− 1

2µi(jn)

ai

0

dr ui(r, Ai)
dϕ

(i)
µ

dR
R=Ai

+
1

2µjn

Ai

0

dR ϕ(i)
µ (ai, R)

dui

dr r=ai

− 1

2µjn

Ai

0

dR ui(ai, R)
dϕ

(i)
µ

dr
r=ai

.

(5.81)
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This yields

(E(i)
µ − E)

µ

C
(i)
µµ c

(i)
µ +

3

j=1
j=i

µ

V
(ij)
µµ c

(j)
µ

=
1

2µi(jn)

MµbQ cos(QAi)− M̃µb sin(QAi)

+
1

2µjn

MµQ
dub

i(r)

dr r=ai

− M̃µQu
b
i(ai) − (iQMµb − M̃µb)e

iQAiT b
i

− 2

π

√
2µjnE

0

dk (iQkM
(−)
µk − M̃

(−)
µk )eiQkAi +

µi(jn)

µjn

(ikMµQk
− M̃µQk

)eikai Ti(k)

−
3

j=1
j=i

e
i
√

2µj(in)E
mi

mi+mn
Ai/ sinϕ∗

j

A
3/2
i

i− (mi +mn) sinϕ
∗
j

mi 2µj(in)E

dϕ
(i)
µ2(R)

dR
R=Ai

1

ϕ
(i)
µ2(Ai)

×Ti 2µjnE cosϕ∗
j Nb(E)Mµb

2µi(jn)

µj(in) E − 2Q2

µj(in)
sin2 ϕ∗

j

r0i

0

dr ub
i(r)Vi(r)

+
2

π
Nk(E)

∞

√
2µjnE

dk M
(−)
µk

1

1
µjn

k2 − 2E + 2
µj(in)

µi(jn)
E mi

(mi+mn) sinϕ∗
j

2

r0i

0

dr u
(−)∗
k (r)Vi(r)

.

(5.82)

The shortcuts are

Mµb =

ai

0

dr ϕ(i)
µ (r, Ai)u

b
i(r), M̃µb = Mµb ·

dϕ
(i)
µ2(R)

dR
R=Ai

1

ϕ
(i)
µ2(Ai)

MµQ =

Ai

0

dR ϕ(i)
µ (ai, R) sin(QR), M̃µQ = MµQ · dϕ

(i)
µ1(r)

dr
r=ai

1

ϕ
(i)
µ1(ai)

M
(−)
µk =

ai

0

dr ϕ(i)
µ (r, Ai)u

(−)
k (r), M̃

(−)
µk = M

(−)
µk · dϕ

(i)
µ2(R)

dR
R=Ai

1

ϕ
(i)
µ2(Ai)

.

(5.83)
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The total system of equations containing all mentioned modifications reads

1)(E(i)
µ − E)

µ

C
(i)
µµ c

(i)
µ +

3

j=1
j=i

µ

V
(ij)
µµ c

(j)
µ (5.84a)

=
1

2µi(jn)

MµbQ cos(QAi)− M̃µb sin(QAi)

+
1

2µjn

MµQ
dub

i(r)

dr r=ai

− M̃µQ ub
i(ai) − (iQMµb − M̃µb)e

iQAiT b
i

− 2

π

√
2µjnE

0

dk (iQkM
(−)
µk − M̃

(−)
µk )eiQkAi +

µi(jn)

µjn

(ikMµQk
− M̃µQk

)eikai Ti(k)

−
3

j=1
j=i

e
i
√

2µj(in)E
mi

mi+mn
Ai/ sinϕ∗

j

A
3/2
i

i− (mi +mn) sinϕ
∗
j

mi 2µj(in)E

dϕ
(i)
µ2(R)

dR
R=Ai

1

ϕ
(i)
µ2(Ai)

×Ti 2µjnE cosϕ∗
j Nb(E)Mµb

2µi(jn)

µj(in) E − 2Q2
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i(r)Vi(r)

+
2
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∞

√
2µjnE

dk M
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1

1
µjn

k2 − 2E + 2
µj(in)

µi(jn)
E mi

(mi+mn) sinϕ∗
j

2
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0

dr u
(−)∗
k (r)Vi(r)

2)C̃
µ

Mµbc
(i)
µ sin(QAi)− 2µi(jn)e

iQAiT b
i (5.84b)

3)
µ

c(i)µ ϕ(i)
µ (ri, Ai)− ub

i(ri)
µ

Mµbc
(i)
µ (5.84c)

(2µi(jn))
3/2 2µjn

2

π
ei

π
4E1/4 e

iρA
√
E

ρ
1/2
A

Ai

ρA
Ti 2µjn

√
E

ri
ρA

4)
µ

c(i)µ ϕ(i)
µ (ai, Ri) (5.84d)

ub
i(ai)e

iQ(Ri−Ai)

µ

Mµbc
(i)
µ + ub

i(ai) sin(QRi)− eiQ(Ri−Ai) sin(QAi)

+ 2µi(jn)
3/2 2

π
ei

π
4E1/4 e

iρa
√
E

ρ
1/2
a

Ri

ρa
Ti 2µjn

√
E
ai
ρa

,

In Eqs. (5.84b)-(5.84d) the T -amplitudes can be expressed explicitly and plugged into
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Eq. (5.84a). For the Ti(k) amplitudes it depends on the value of k whether Eq. (5.84c)

or (5.84d) is used. This point is discussed in detail in subsection 6.1.

We finally obtain a set of four equations that uniquely determines the three-body

problem in the frame of R-matrix theory

1) (E(i)
µ − E)

µ

C
(i)
µµ c

(i)
µ +

3

j=1
j=i

µ

V
(ij)
µµ c

(j)
µ (5.85a)

=
1

2µi(jn)

MµbQ cos(QAi)− 1

2µi(jn)

MµbiQ sin(QAi)

+
1

2µjn

MµQ
dub

i(r)

dr r=ai

− M̃µQu
b
i(ai) +

C̃

2µi(jn)

(iQMµb + M̃µb)
µ

Mµ bc
(i)
µ

− 2

π

√
2µjnE

0

dk (iQkM
(−)
µk − M̃

(−)
µk )eiQkAi +

µi(jn)

µjn

(ikMµQk
− M̃µQk

)eikai Ti(k)

−H(i)
µ (Ai)

2) T b
i − 1

2µi(jn)

e−iQAi C̃
µ

Mµbc
(i)
µ − sin(QAi) (5.85b)

3) Ti 2µjn

√
E

ri
ρA

(5.85c)

µ

ϕ(i)
µ (ri, Ai)− ub

i(ri)
µ

Mµbc
(i)
µ (2µi(jn))

3/2 2µjn
2

π
ei

π
4E1/4 e

iρA
√
E

ρ
1/2
A

Ai

ρA

−1

4) Ti 2µjn

√
E
ai
ρa

(5.85d)

µ

c(i)µ ϕ(i)
µ (ai, Ri)− ub

i(ai)e
iQ(Ri−Ai)

µ

Mµbc
(i)
µ

− ub
i(ai) sin(QRi)− eiQ(Ri−Ai) sin(QAi) 2µi(jn)

3/2 2

π
ei

π
4E1/4 e

iρa
√
E

ρ
1/2
a

Ri

ρa

−1

.

with ρa = 2µjna2i + 2µi(jn)R
2
i , ρA = 2µjnr2i + 2µi(jn)A

2
i and the leading asymp-
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totic term of order O 1

A
3/2
i

,

H(i)
µ (Ai) ≡

3

j=1
j=i

e
i
√

2µj(in)E
mi

mi+mn
Ai/ sinϕ∗

j

A
3/2
i

i− (mi +mn) sinϕ
∗
j

mi 2µj(in)E

dϕ
(i)
µ2(R)

dR
R=Ai

1

ϕ
(i)
µ2(Ai)

×Ti 2µjnE cosϕ∗
j Nb(E)Mµb

2µi(jn)

µj(in) E − 2Q2

µj(in)
sin2 ϕ∗

j

r0i

0

dr ub
i(r)Vi(r)

+
2

π
Nk(E)

∞

√
2µjnE

dk M
(−)
µk

1

1
µjn

k2 − 2E + 2
µj(in)

µi(jn)
E mi

(mi+mn) sinϕ∗
j

2

r0i

0

dr u
(−)∗
k (r)Vi(r) .

(5.86)

Comparing Eqs.(5.85) with Eqs. (5.72), these extensions result in the additional

quantities M̃µb, M̃µQ, M̃
(−)
µk , M̃µQk

and

3

j=1
j=i

e
i
√

2µj(in)E
mi

mi+mn
Ai/ sinϕ∗

j

A
3/2
i

(mi +mn) sinϕ
∗
j

mi 2µj(in)E

dϕ
(i)
µ2(R)

dR
R=Ai

1

ϕ
(i)
µ2(Ai)

× ... .

which is part of the O 1

A
3/2
i

asymptotic term.

We have obtained a system of linear equations (5.85a) for the expansion coefficient

c
(i)
µ and the T -amplitudes Ti(k) and T b

i . There are three additional conditions required

[Eqs. (5.85b)-(5.85d)] in order to obtain a unique solution. These conditions were

derived in the previous subsection and generalized under the use of the modifications

introduced in this subsection.

Recalling the form of the two-body R-matrix in Eq. (2.77) the three-body R-matrix

in Eq. (5.85a) exhibits the same structure with everything inside the internal region

on the left hand side an the terms from outside on the right hand side.

The three-body R-matrix equations in the form (5.85) were numerically imple-

mented (Sec. 6) and applied to the neutron+deuteron and the neutron+9Be system

(Sec. 7).
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5.4 Calculation of cross sections

The T -amplitudes determined via solution of the set of linear equations (5.85) provide

a direct link to the observables, i.e. the cross sections. The elastic cross section is

given in terms of T b
1 [Eq. (5.30)], the rearrangement cross sections in terms of T b

2 and

T b
3 [Eq. (5.30)] and the breakup cross section to T (k) [Eq. (5.31)]. Corresponding

formulæ for the cross sections in terms of T b
i and Ti(k) were not available and had to

be derived from standard scattering theory (see e.g. [20]). In this subsection we include

explicitly and do not set = 1.

We start with the elastic cross section and consider the elastic T -amplitude, TQ Q,

which is equivalent to Eq. (2.36) in the two-particle case. The only difference is that

k used for the wavenumber in subsection (2.1) is now replaced by Q in the three-body

problem. In partial wave expansion TQ Q is

TQ Q =
l,m

Y ∗
lm(Q̂ )Tl(Q)Ylm(Q̂) =

1

4π

∞

=0

(2 + 1)T (Q)P (Q̂ Q̂) (5.87)

Because in the three-body R-matrix method presented in this thesis we consider s-waves

only we also restrict ourselves to = 0 (s-waves) here and consider TQ Q = 1
4π
T0(Q)

only. The elastic cross section reads in analogy to Eq. (2.42)

σelastic =
2π

4

µ2
1(23) d2Q̂ TQ Q

2

=
2π

4

µ2
1(23) d2Q̂

1

(4π)2
|T0(Q)|2

=
4π3

4
µ2
1(23) |T0(Q)|2 ,

(5.88)

where µ1(23) denotes the reduced mass of the projectile and the subsystem in the en-

trance channel. The on-shell S-matrix S̃Q Q is related to the S-matrix (Eq. (2.24))

via

SQ Q =
2

Qµ1(23)

δ(EQ − EQ)S̃Q Q (5.89)

with

SQ Q = δ(Q −Q)− 2πi δ(EQ − EQ)TQ Q (5.90)

and

δ(Q −Q) =
2

Qµ1(23)

δ(EQ − EQ)δ(Q̂ − Q̂) . (5.91)
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Hence

S̃Q Q = δ(Q̂ − Q̂)− iµ1(23)Q
2π
2
TQ Q . (5.92)

Glöckle’s work [10] is based on the dimensionless on-shell T -amplitude T b
i . For the

optical theorem below the breakup threshold we get for arbitrary masses

ImT b
1 = −2

µ1(23)

mn

( T b
1

2
+ T b

2

2
+ T b

3

2
) . (5.93)

where mn denotes the neutron mass and µ23 is the reduced mass of the two particles

in the bound subsystem in the entrance channel.

In [20] one finds

ImT0(Q) = −µ1(23)Q
π
2
|T0|2 (5.94)

on the energy shell which means E = E. This can be compared with Eq. (5.93) which

leads us to the relation

T b
1 (Q) =

π

2

mnQ
2

T0(Q) (5.95)

for the dimensionless on-shell amplitude T b
1 . The elastic cross section can now be

expressed in terms of T b
1 by inserting relation (5.95) into Eq. (5.88)

σelastic =
4π3

4
µ2
1(23) |T0(Q)|2 = 4π3

4
µ2
1(23)

π

2

2 2

mnQ

2

T b
1 (Q)

2

= 16π
µ1(23)

mn

2
1

Q2
T b
1 (Q)

2
.

(5.96)

Analogously the two rearrangement cross sections are determined by

σ(1)
rearr = 16π

µ1(23)

mn

2
1

Q2
T b
2 (Q)

2
. (5.97)

and

σ(2)
rearr = 16π

µ1(23)

mn

2
1

Q2
T b
3 (Q)

2
. (5.98)

Replacing |T0|2 in Eq. (5.94) by Eq. (5.88) and together with the rearrangement

cross sections the optical theorem reads

ImTQQ =
1

4π
ImT0(Q) =

− 2

16π3

Q

µ1(23)

(σelastic + σ(1)
rearr + σ(2)

rearr) . (5.99)
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Alternatively starting from the optical theorem in [21]

φαm|Uαα(E + i0)− Uαα(E − i0)|φαm

= −π
γ,n

dQγ δ E − Q2
γ

2Mγ

− Ebind
γn | φαm|Uαγ(E + i0)|φγn |2

+ d3Q1 d3k1 δ E −
2Q2

1

2µ1(23)

−
2k2

1

2µ23

| φαm|Uα0(E + i0)|Q1k1 |2

= −
2

16π3

Q1

µ1(23) γn

(σγn + σbreakup)

(5.100)

where Uαα = (Ω(−))†Ω(+) and φαm|Uαα(E + i0)|φαm the S-matrix element which

represents the overlap of an incoming three-body wave function with quantum numbers

αm with an outgoing three-body wave function with the same quantum numbers, i.e.

it is the S-matrix element for forward scattering. Considering the relation between

the on-shell S- and on-shell T -matrix (2.32), the difference Uαα(E + i0)− Uαα(E − i0)

yields the imaginary part of the T -matrix element, ImTQQ = 1
4π
ImT0. With this and

by using relation for the on-shell T -amplitude (5.95), we could verify the elastic part

of the optical theorem by Glöckle (5.93) and the formula for the elastic cross section

(5.96).

According to the structure of the Faddeev equations it is obvious that the breakup

transition amplitude in Eq. (5.100) is composed of three components

φαm|Uα0(E + i0)|Q1k1 = T01 + T02 + T03 . (5.101)

For these components there must be a relation similar to (5.95) between the on-shell

amplitudes Ti(k) used by Glöckle and T0i(k)

Ti(ki) = C
π

2

mnki
2

T0i(ki) (5.102)

with an unknown constant C that we were not able to determine definitely from

Glöckle’s formulæ. Thus we obtain the amplitude of the breakup term in Eq. (5.100)

φαm|Uα0(E + i0)|Q1k1 = C
2

π

2

mn

T1(k1)

k1
+

T2(k2)

k2
+

T3(k3)

k3
. (5.103)

Entering this expression into the breakup part of Eq. (5.100) and integrating over Q1
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yields

C232π
2

mn

µ1(23)

mn

1

−1

dx

√
2µ23E/ 2

0

dk1k
2
1 Qk1

T1(k1)

k1
+

T2(k2)

k2
+

T3(k3)

k3

2

=
2

16π3

Q1

µ1(23)

σbreakup .

(5.104)

where x is the cosine of the angle between k1 and k2 and the angle between k1 and k3,

respectively. Finally

σbreakup = 16πβ
µ1(23)

mn

2
1

Q1

1

−1

dx

√
2µ23E/ 2

0

dk1k
2
1 Qk1

T1(k1)

k1
+

T2(k2)

k2
+

T3(k3)

k3

2

,

(5.105)

where we set the constant β = 32π3C2 . However, we suppose very strongly that β

must be equal 1 (which is supported by numerical results (see Sec. 7)). From β = 1

follows C = π3/32.

Proceeding from (5.99) we can formulate an optical theorem with respect to the

amplitude T b
1

TQQ =
1

2π2

2

mnQ
T b
1 (5.106)

that contains the total cross section which is the sum of the elastic, two rearrangement

and the breakup cross sections above the breakup threshold

1

2π2

2

mnQ1

ImT b
1 = −

2

16π3

Q1

µ1(23)

16π
µ1(23)

mn

2
1

Q2
1

(|T b
1 |2 + |T b

2 |2 + |T b
3 |2) + σbreakup

(5.107)

and finally

ImT b
1 = −2

µ1(23)

mn

(|T b
1 |2 + |T b

2 |2 + |T b
3 |2)−

1

8π

mn

µ1(23)

Q2
1σbreakup . (5.108)

With Eq. (5.96) one obtains

ImT b
1 = − 1

8π

mn

µ1(23)

Q2
1[σelastic + σ(1)

rearr + σ(2)
rearr + σbreakup] , (5.109)
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or in terms of the T -amplitudes

ImT b
1 = −2

µ1(23)

mn

(|T b
1 |2 + |T b

2 |2 + |T b
3 |2)

− 2
µ1(23)

mn

βQ1

1

−1

dx

√
2µ23E/ 2

0

dk1k
2
1 Qk1

T1(k1)

k1
+

T2(k2(x))

k2(x)
+

T3(k3(x))

k3(x)

2

.

(5.110)

The energy dependence of the breakup part in the optical theorem differs from Glöckle’s

formula in [10]. Instead of 1
Q1

in [10] we got Q1.

The observables for the three-body problem can be summarized

σelastic = 16π
µ1(23)

mn

2
1

Q2
1

T b
1 (Q1)

2
, (5.111a)

σ(1)
rearr = 16π

µ1(23)

mn

2
1

Q2
1

T b
2 (Q)

2
, (5.111b)

σ(2)
rearr = 16π

µ1(23)

mn

2
1

Q2
1

T b
3 (Q)

2
, (5.111c)

σbreakup =
µ1(23)

mn

2
16πβ

Q1

1

−1

dx

√
2µ23E/ 2

0

dk1k
2
1 Qk1

T1(k1)

k1
+

T2(k2)

k2
+

T3(k3)

k3

2

.

(5.111d)

Optical theorem :

ImT b
1 = −2

µ1(23)

mn

|T b
1 (Q1)|2 + |T b

2 (Q1)|2 + |T b
3 (Q1)|2

− 2
µ1(23)

mn

Q1

1

−1

dx

√
2µ23E/ 2

0

dk1k
2
1 Qk1

T1(k1)

k1
+

T2(k2(x))

k2(x)
+

T3(k3(x))

k3(x)

2

.

(5.112)
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6 Numerical implementation

This section focuses on a strategy of solving the system of equations (5.85) numerically.

Entering the expressions for the Ti(k) amplitude, Eqs. (5.85c) and (5.85d), into Eq.

(5.85a) yields a uniquely solvable set of linear equations for the coefficients c
(i)
µ . With

the coefficients c
(i)
µ and the amplitudes T b

i and Ti(k) the wave functions and the cross

sections can be determined via (5.111).

6.1 Setting up a system of linear equations for c
(i)
µ

The system of linear equations (5.85a) reads

(E(i)
µ − E)

µ

C
(i)
µµ c

(i)
µ +

3

j=1
j=i

µ

V
(ij)
µµ c

(j)
µ

=
1

2µi(jn)

MµbQ cos(QAi)− 1

2µi(jn)

MµbiQ sin(QAi)

+
1

2µjn

MµQ
dub

i(r)

dr r=ai

− M̃µQu
b
i(ai) +

C̃

2µi(jn)

(iQMµb + M̃µb)
µ

Mµ bc
(i)
µ

− 2

π

√
2µjnE

0

dk (iQkM
(−)
µk − M̃

(−)
µk )eiQkAi +

µi(jn)

µjn

(ikMµQk
− M̃µQk

)eikai Ti(k)

−Hi(Ai) .

(6.1)

with Hi(Ai) defined in Eq. (5.86).

Regarding the Ti(k)-amplitude we introduce the component notation for Eq. (5.85c)

T
(i)
3,µ 2µjn

√
E

ri
ρA

(2µi(jn))
3/2 2µjn

2

π
ei

π
4E1/4 e

iρA
√
E

ρ
1/2
A

Ai

ρA

−1

ϕ(i)
µ (ri, Ai)− ub

i(ri)Mµb .

(6.2)
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and for Eq. (5.85d),

T
(i)
4,µ 2µjn

√
E
ai
ρa

2µi(jn)
3/2 2

π
ei

π
4E1/4 e

iρa
√
E

ρ
1/2
a

Ri

ρa

−1

ϕ(i)
µ (ai, Ri)− ub

i(ai)e
iQ(Ri−Ai)Mµb

T
(i)
4,inh 2µjn

√
E
ai
ρa

−ub
i(ai) sin(QRi)− eiQ(Ri−Ai) sin(QAi) 2µi(jn)

3/2 2

π
ei

π
4E1/4 e

iρa
√
E

ρ
1/2
a

Ri

ρa

−1

(6.3)

Eq. (5.85d) is split into a part depending on µ, T
(i)
4,µ, and one independent of µ,

T
(i)
4,inh. Latter is a result of the finite value of ub

i(r) at the matching radius ai.

In both Eqs. (6.2) and (6.3) the argument of T
(i)
3,µ and T

(i)
4,µ is the wavenumber k

which is parametrized in two different ways by the spatial coordinates ri and Ri. A

graphical representation of the relationships is given in Fig. 7. In this plot the functions

are normalized to ai = Ai = 1 and also µjn = µi(jn) = 1. In order to cover the full

Figure 7: Functional dependence of k on r and R in Eqs. (6.2) and (6.3).

k range the parametrization at the intersection point which is located at r = ai and
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R = Ai must be changed from Eq. (6.2) to (6.3). Hence the components T
(i)
µ (k) of

Ti(k) are given by

T
(i)
µ (k) =



T

(i)
3,µ for 0 ≤ k < 2µjn

√
E

ai

2µjna2i + 2µi(jn)A2
i

T
(i)
4,µ + T

(i)
4,inh for 2µjn

√
E

ai

2µjna2i + 2µi(jn)A
2
i

≤ k ≤ kmax

(6.4)

(6.5)

with kmax = µjnE. Ti(k) is obtained from T
(i)
µ (k) by

Ti(k) =
µ

T (i)
µ (k) . (6.6)

Plugging T
(i)
µ (k) according to conditions (6.4) and (6.5) into Eq. (6.1) yields a

system of linear equations for the expansion coefficients c
(i)
µ ,

(E(i)
µ − E)

µ

C
(i)
µµ c

(i)
µ +

3

j=1
j=i

µ

V
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µ
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+
1
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dub
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C̃
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µ
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µ
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0

dk (iQkM
(−)
µk − M̃

(−)
µk )eiQkAi +
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(6.7)
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with

H̃
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µµ (Ai) =

3
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2µj(in)E
mi
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Ai/ sinϕ∗
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(6.8)

The potential elements are [Eq. (5.61)]

V
(ij)
µµ =

D

dridRi ϕ
(i)
µ (ri, Ri)Vi(ri)

1

−1

dxi riRi

ϕ
(j)
µ (rj, Rj)

2rjRj

.

The system of linear equations (6.7) can be written in matrix notation

A× c = b (6.9)

with

A =

N1 N2 N3 D1 V12 V13 N1

V21 D2 V23 N2

V31 V32 D3 N3

and c =







c(1)µ N1

c(2)µ N2

c(3)µ N3

and b =







b(1)µ N1

b(2)µ N2

b(3)µ N3

where Ni denotes the number of basis states for the i-th Faddeev component.

The matrix A is the coefficient matrix for the vector of solutions c
(i)
µ and is of

dimension (N1 +N2 +N3)× (N1 +N2 +N3). The vector c contains the coefficients c
(i)
µ

for each subsystem which are the solutions of the system.
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The elements used in matrix A are Vij = V
(ij)
µµ from Eq.(5.61) and

Di ≡D
(i)
µµ = (E(i)

µ − E)C
(i)
µµ − C̃

2µi(jn)

(iQMµb + M̃µb)Mµ b

+
2

π

√
2µjnE

0

dk (iQkM
(−)
µk − M̃

(−)
µk )eiQkAi +

µi(jn)

µjn

(ikMµQk
− M̃µQk

)eikai T
(i)
µ (k)

−H
(i)
µµ (Ai) .

(6.10)

Finally the vector of inhomogeneities b is made up of the components

b(i)µ =
1

2µi(jn)

MµbQ cos(QAi)− 1

2µi(jn)

MµbiQ sin(QAi)

+
1

2µjn

MµQ
dub

i(r)

dr r=ai

− M̃µQu
b
i(ai)

− ub
i(ai) sin(QRi)− eiQ(Ri−Ai) sin(QAi) 2µi(jn)

3/2 2

π
ei

π
4E1/4 e

iρa
√
E

ρ
1/2
a

Ri

ρa

−1

,

(6.11)

where the last term comes from T
(i)
4,inh in Eq. (6.3).

For the numerical solution of the system of linear equations the LAPACK routine

ZGESV is used. It computes the solution to a system of complex linear equations

A × x = b, where A is an n × n matrix and x and b are n-dimensional vectors. For

integration the QUADPACK routine ”qags” was used which is a quadrature routine

that applies the Gauss-Kronrod 21-point integration rule adaptively until an estimate

of the integral over (a, b) is achieved within the desired absolute and relative error

limits.

6.2 Stability of the algorithm

Before applying the theory to realistic nuclear systems it is important to probe the

stability of the numerically implemented algorithm. This was done by considering a

hypothetical system of three identical spinless bosons with equal masses and a potential

of Woods-Saxon type,
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V (r) =
v0

1 + exp[(r − a)/b]
, (6.12)

with v0 = −50 MeV, a = 1.25 fm and b = 0.1 fm.

A first calculation led to an extremely spiky unphysical breakup cross section which

was a hint that the system of linear equations was ill-conditioned. Checking the eigen-

values of the coefficient matrix A revealed some leading values and the remaining ones

being very small. Table 1 lists the first 12 eigenvalues.

i λi

1 −8048.04− 5395.58 i

2 262.08 + 213.62 i

3 8.42− 16.52 i

4 1.07 + 1.11 i

5 −0.58− 3.73 · 10−2 i

6 0.15 + 7.02 · 10−4 i

7 −6.82 · 10−3 − 2.42 · 10−3 i

8 −2.69 · 10−3 + 1.20 · 10−3 i

9 −2.25 · 10−4 − 3.64 · 10−5 i

10 1.23 · 10−4 − 1.34 · 10−6 i

11 −1.05 · 10−5 − 4.46 · 10−6 i

12 7.85 · 10−6 − 5.65 · 10−9 i

Table 1: The first twelve eigenvalues of the matrix A.

The small eigenvalues cause highly fluctuating solutions (e.g. solution c8 in Fig. 8)

and consequently lead to unphysical fluctuations in the cross section. A possibility to

cure that ill-conditioned system is to apply a regularization procedure

A = A+ ηI (6.13)

where I is the identity matrix.
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Figure 8: Solution c8 as a function of the incident energy without regularization.

The solutions for the coefficients c
(i)
µ associated with the new matrix A as a function

of the incident energy exhibit a much smoother behavior (solution c8 in Fig. 9) than

before. Consequently also the fluctuations are removed in the cross sections (Fig. 10).

In a highly dynamical eigenvalue spectrum like in Tab. 1 the eigenvectors associated

with very small eigenvalues tend to point out exactly every inaccuracy (e.g. rounding

errors, algorithm errors,...) resulting in unphysical fluctuations. The regularization

suppresses these contributions of the eigenvectors associated with small eigenvalues

and confines the system to the essential components. The number of contributing

eigenvectors can be controlled by the regularization parameter η. Latter must be

chosen such that the components with small eigenvalues are suppressed while the those

governing the physical behavior must be retained. The figures should illustrate the

influence and impact of regularization in the presented method. Albeit the considered

schematic example is not directly related to any real nuclear system the impact and

observed properties of the system and its regularization will remain similar also for real

systems.
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Figure 9: Solution c8 as a function of the incident energy with regularization η = 0.1.

Figure 10: Breakup cross section with regularization η = 0.1.
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7 Results

7.1 The neutron+deuteron system

The deuteron (from greek δ υτ ρoν ’the second one’) is the simplest existing nuclear

bound system. The bound state is a coupled 3S1-
3D1 state with a binding energy

of 2.225 MeV. Measurements show that the quadrupole moment of the deuteron is

not vanishing and hence there must be a certain admixture of a 3D1-state in the

total bound state. Depending on the nucleon-nucleon potential used, it is about 3-6%.

Consequently, the force acting between the neutron and the proton is not only a central

one, but has a tensor component. The latter will not be considered in the following

because the developed R-matrix formalism is limited to s-waves.

The available experimental data for the breakup and the elastic cross section are

taken from the EXFOR library [1] and are displayed in Figs. 11 and 12.

Figure 11: Experimental data for the breakup cross section. The references of the experimental data
are given in Appendix B.1

.
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Figure 12: Experimental data for the angle-integrated elastic cross section. The references of the
experimental data are given in Appendix B.2.

The interaction between the neutron and proton in the deuteron is ideally modeled

by a Reid soft core potential of the form

V (r) = −10.463
e−µ1r

µ1r
− v01 · 1650.6e

−4µ1r

µ1r
+ v02 · 6484.2e

−7µ1r

µ1r
(7.1)

with µ1 = c
mπc2

−1

where mπ is the mass of the force carrier, the pion mass. v01

and v02 are determined such that the derived neutron-proton (3S1 state) phase shift

coincides with the Nijmegen multi-energy analysis data [22] and that the bound state

at Eb = −2.225MeV is reproduced. This is fulfilled by setting

v01 = 1.000, v02 = 0.830 . (7.2)

The potential for the neutron-neutron interaction is determined analogously. The

Reid soft core form is fitted to the neutron-neutron (1S0 state) phase shift data from

Nijmegen multi-energy analysis [22] with the constraint that there must not exist any

bound state. The obtained parameters are

v01 = 0.733, v02 = 0.657 . (7.3)
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Both the neutron-proton and the neutron-neutron potential are displayed in Fig. 13

and the derived phase shifts in Fig. 14. The bound state wave function that results

from this potential is shown in Fig. 15 with a binding energy Eb = −2.2249MeV.

Figure 13: Neutron-proton and neutron-neutron potentials.

Figure 14: Fitted phase shift curves compared to Nijmegen multi-energy analysis data [22].
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Figure 15: Bound state wave function ub
i (r) of the deuteron.

The bound state wave function is normalized by
∞
0

dr|ub
i(r)|2 = 1.

7.2 Application of the novel formalism on the neutron+deuteron system

The novel three-body R-matrix theory was first applied to the neutron+deuteron sys-

tem where the breakup (Fig. 11) and the angle-integrated elastic cross section (Fig.

12) were calculated. The breakup of the deuteron represents the most simple and

genuine nuclear three-body system without any further nuclear structure to be consid-

ered. Hence it is obvious to use this system as a first check of the new formalism. The

only approximation is the use of an effective central potential instead of the realistic

interaction with a tensor component since we restrict ourselves to s-waves.

7.2.1 Pauli principle and consequences

In the neutron+deuteron system there are two indistinguishable neutrons. Therefore,

the wave function

u1 = (ψa |sa )1 ⊗ (ψb |sb )2 ⊗ (ψc |sc )3 (7.4)

must be antisymmetric with respect to an interchange of the two neutrons. If we assume

that the two neutrons are in a spin-0 state, the application of the antisymmetrization
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operator yields

√
2

2!
[1− P12]u1 = [(ψa |sa )1 ⊗ (ψb |sb )2 − (ψb |sb )1 ⊗ (ψa |sa )2]⊗ (ψc |sc )3

=
1√
2
(ψaψbψc) [|sa 1|sb 2 − |sb 1|sa 2] |sc 3 .

(7.5)

Since the permutation affects only the spin part, the spatial functions of the two Fad-

deev components where the position of the neutrons are changed are identical. As a

consequence the number of Faddeev components in Eq. (5.8) is reduced from three to

two because now subsystem 1 and 2 where one neutron is bound to the proton and the

other one free, respectively, are identical. Hence also the system of linear equations

(6.9) is reduced in its dimension,

A =

µ1 µ3

D1 V13 µ1

V31 D3 µ3

and c =
c(1)µ µ1

c(3)µ µ3
and b =

b(1)µ µ1

b(3)µ µ3

As a consequence of the non-distinguishableness of the two neutrons and the fact

that a bound state between two neutrons does not exist, the neutron+deuteron system

does not exhibit any rearrangement channels.

7.2.2 Basis states

Beside the potentials and the resulting phase shifts and the bound state wave function,

presented in the previous subsection, an appropriate set of basis functions is required

within the R-matrix formalism. As already mentioned in subsection 5.2 the basis

functions depend on the two Jacobi-coordinates ri, Ri and are assumed to be factorized

in the variables ri and Ri (see subsection 5.2.1). The basis functions ϕ
(i)
µ (r, R) according

to Eq. (5.54) are product states

ϕ(i)
µ (r, R) = Xµ1(r)Yµ2(R) .

These functions Xµ1(r) and Yµ2(R) for both the neutron-proton (np) and the neutron-

neutron (nn) subsystem are eigenfunctions of the Schrödinger equations for the respec-

tive subsystems [Eqs.(5.55) and (5.56)] and their energy-eigenvalues µ1 and µ2.

For the np-subsystem the number of X(r)-states was chosen to be 12 scattering

states with equidistant energy steps between 0.1 and 5.5083 MeV for the eigenenergies
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µ1 plus the neutron-proton bound state, so in total 13 states (Table 2). For the

function Y (R), which describes the free motion of the third particle, three states were

chosen with three equidistant eigenenergies µ2 0.1 MeV, 1.909 MeV and 3.718 MeV

(Table 2). The functions X(r) and Y (R) for the np-system are shown in Fig. 16. The

total eigenenergies E
(1)
µ =

(1)
µ1 +

(1)
µ2 of the basis states ϕ

(1)
µ (r, R) of the np-subsystem

are summarized in Table 3.

µ1/µ2
(1)
µ1 [MeV]

(1)
µ2 [MeV]

1 -2.225 0.100

2 0.100 1.909

3 0.592 3.718
...

...

13 5.5083

Table 2: Eigenenergies
(1)
µ1 and

(1)
µ2 for the np-subsystem.

µ E
(1)
µ [MeV]

1 -2.125

2 -0.316

3 1.493

4 0.200

5 2.009

6 3.818

7 0.692
...

...

30 9.2263

Table 3: Eigenenergies E
(1)
µ of the basis states for the np-subsystem.

For the nn-subsystem the number of basis functions X(r) is also 12 and the energy

eigenvalues
(3)
µ1 are equidistantly distributed between 0.1 and 5.5083 MeV (Table 4).

The Y (R)-states are the same as for the np-subsystem (Table 4). X(r) and Y (R) for

the nn-system are shown in Fig. 17. Again the basis functions ϕ
(3)
µ (r, R) are product

states with the energy-eigenvalues E
(3)
µ =

(3)
µ1 +

(3)
µ2 given in natural order in Table 5.
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µ1/µ2
(3)
µ1 [MeV]

(3)
µ2 [MeV]

1 0.100 0.100

2 0.592 1.909

3 1.083 3.718
...

...

12 5.5083

Table 4: Eigenenergies
(3)
µ1 and

(3)
µ2 for the nn-subsystem.

µ E
(3)
µ [MeV]

1 0.200

2 2.009

3 3.818

4 0.692

5 2.501

6 4.310

7 1.183
...

...

30 9.2263

Table 5: Eigenenergies E
(3)
µ of the basis states for the nn-subsystem.
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Figure 16: Basis functions for the np subsystem.
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Figure 17: Basis functions for the nn subsystem.

7.3 Results for the neutron+deuteron system

The numerical implementation and application on the neutron+deuteron system was

carried out successfully. To our knowledge it was actually the first application of a

three-body R-matrix formalism to a real system. The results are very promising and

will be presented in this subsection. The observables calculated were the total elastic

and the breakup cross section according to (5.111). The results were compared with

the experimental data from the EXFOR library [1].

The the minimum values for the matching radii are calculated according to Eq.
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(5.48) and yield for the potential (7.1) with a range r0 ∼ 2 fm,

ai = 4 fm and Ai = 3 fm . (7.6)

The number of basis functions in both subsystems was set to be 30 with the properties

described above.

The breakup and elastic cross sections obtained are displayed in Figs. 18 and 19

for different values of the regularization parameter η. The regularization parameter η

was introduced in order to remove unphysical fluctuations. The first calculation was

carried through with matching radii

ai = 7 fm and Ai = 5.6 fm . (7.7)

Both cross sections show a distinct convergence with respect to η. In Figs. 20 and 21

the breakup cross section is plotted as a function of the regularization parameter η for

the two incident energy points 8.01 MeV and 11.15 MeV . For both incident energies a

plateau is reached starting at η = 22. For this value of η the experimental data are very

well reproduced (Fig. 22). However, while the breakup cross section at an incident

energy of 8 MeV is stable for values of η ≥ 22, the cross section drops significantly

at an incident energy of 11.7 MeV for η greater than 35. In the energy range below

8-9 MeV we observed that the calculated cross section data remain stable for η ≥ 22

while in the energy region above 9 MeV there is a certain range for η between 22 and

about 35 where convergence is obtained. The result for η = 40 is displayed in Fig. 23.

The reason for this behavior of the cross section might be the fact that in the higher

energy region more basis states are needed to reproduce the three-body wave function

properly . The parameter η removes fluctuations, i.e. it cuts off the basis states with

very small eigenvalues which cause these fluctuations. If the number of basis functions

contributing to the result is reduced too drastically by the regularization, one observes

the drop in the cross section which occurs for higher energies at lower values of η.

Simultaneously convergence is reached for the elastic cross section beginning with

η = 22 (Fig.19). However, there is a significant drop for energies greater than 8 MeV

in the converged curve (Fig. 24).
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Figure 18: Breakup cross section for ai = 7 fm and Ai = 5.6 fm for different values of η.

Figure 19: Elastic cross section for ai = 7 fm and Ai = 5.6 fm for different values of η.
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Figure 20: Breakup cross section at 8.01 MeV as a function of the regularization parameter η.

Figure 21: Breakup cross section at 11.15 MeV as a function of the regularization parameter η.
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Figure 22: Breakup cross section for ai = 7 fm and Ai = 5.6 fm and with η = 22.

Figure 23: Elastic cross section for ai = 7 fm and Ai = 5.6 fm with η = 40.
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Figure 24: Elastic cross section for ai = 7 fm and Ai = 5.6 fm and with η = 22.

7.4 The problem of the continuity of flux

The underestimation of the elastic neutron+deuteron cross section beyond 8 MeV

appears to be a problem of the algorithm because even drastic changes of the basis

functions do not lead to significant changes of the breakup and elastic cross sections.

Therefore, the basics of the algorithm and its derivation were revisited. In the current

derivation of the R-matrix formalism for three-body channels all, but one basic condi-

tions of R-matrix theory for two-body problems were properly transferred to three-body

channels. The only condition which is missing in the new formalism is the constraint

of a continuous first derivative of the three-body wave function at the border of the

domain D (Fig. 6). The evaluation of the three-body wave function in terms of the

coefficients c
(i)
µ in the interior and via T b

i and Ti(k) in the exterior region [Eqs. (5.21),

(5.22) and (5.29)] clearly indicates discontinuities in the first derivative of the total

three-body wave function

u(r, R) =
3

i=1

ui(r, R) (7.8)

beyond 8 MeV (Fig. 25), while the situation at lower energies is in general much better

(Fig. 26). The discontinuities in the first derivative of the wave function are associated
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with discontinuities in the particle flux and represent a severe problem. In order to

cure this problem one can introduce the constraint of a continuous first derivative

into the algorithm. However, this would lead to an overdetermined system. Taking

into account that the asymptotic three-body wave function is of limited accuracy at

the matching radius the actual improvement of such an extension is questionable.

Therefore a different procedure which remains within the developed formalism was

searched. Considering the Faddeev equations one basic concept is the division of the

wave function in three components each associated with a system, where one particle

is a free spectator and the reaming two are interacting in the subsystem. Because

the spectator is free there exists no natural bound of Ai whereas ai is determined

by the range of the potential in the subsystem. Hence, cross sections change with

respect to the value of Ai while ai if greater than a minimum value of 4 fm (Eq.

(7.6)) has practically no impact on the observables. Therefore we can use Ai as an

additional parameter which can be adjusted in order to optimize the continuity of

the first derivative of the three-body wave function. Ai must be chosen in different

incident energy regions in such a way that continuity in the first derivative is given in

some areas of r. Continuity on the full r-range cannot be reached. These areas of r

can be determined by considering the parametrization of k in terms the coordinates r

and R [see Eqs. (6.2) and (6.3)]

k = 2µjn

√
E
ri
ρ

(7.9)

with ρ = 2µjnr2i + 2µi(jn)A
2
i and k denotes the wavenumber between the two particles

in the subsystem. A criterion could be that the wave function depending on R should

be continuous for such values of r yielding energies in the vicinity of considered energy

point.

With this criterion it was found that the ideal value for Ai in the energy region

below 8 MeV is Ai = 5.6 fm yielding the cross sections Fig. 22 and Fig. 24.

Above 8 MeV Ai = 3 fm yielding the cross sections in Figs. 27 and 28. In this

energy range the value Ai = 3 leads to a significant improvement of the continuity of

the first derivative of the wave function in Fig. 29 compared to the energy region below

8 MeV (Fig. 30).
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Figure 25: Real part of the wave function u(r,R) for a fixed value of r in the interior (purple) and
exterior (green) region.

Figure 26: Real part of the wave function u(r,R) for a fixed value of r in the interior (purple) and
exterior (green) region.
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Figure 27: Breakup cross section for ai = 5 fm and Ai = 3.3 fm for different values of η.

Figure 28: Elastic cross section for ai = 5 fm and Ai = 3.3 fm for different values of η.
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Figure 29: Real part of the wave function u(r,R) for a fixed value of r in the interior (purple) and
exterior (green) region.

Figure 30: Real part of the wave function u(r,R) for a fixed value of r in the interior (purple) and
exterior (green) region.
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Hence, by using the argument of continuity of the first derivative of the three-

body wave function at the matching radius Ai we obtain a set of ideal matching radii

depending on the energy range

Ai =
5.6 fm for 0MeV < E ≤ 8MeV

3.0 fm for 8MeV < E < 30MeV

and

ai =
7.0 fm for 0MeV < E ≤ 8MeV

5.0 fm for 8MeV < E < 30MeV

Hence, the cross sections giving the best description over the total energy range are

shown in Figs. 31 and 32. They are composed of two parts with different values for

the matching radii which are merged smoothly at 8 MeV.

Figure 31: Breakup cross section for the total energy range.
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Figure 32: Elastic cross section for the total energy range.

As mentioned above the continuity of the first derivative of the wave function is

directly related with the continuity of the particle flux. The conservation of flux is

directly related with the unitarity of the S-matrix and leads to the optical theorem

(5.112). We insert the T -amplitudes T b
1 and Ti(k) (rearrangement T -amplitudes do not

exist in the neutron+deuteron system) obtained from our calculations and compare the

left and right hand side of the optical theorem (5.112) in Fig. 33 (the step at 8 MeV

results from the change of the matching radii).
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Figure 33: Left and right hand side of the optical theorem, Eq. (5.112).

It is obvious from Fig. 33 that the calculated quantities do not fulfill the optical

theorem. However, the evaluated cross sections agree fairly well with the experimental

data from which follows that the absolute value of T b
1 must be correct. We compared

ImT b
1 obtained from the three-body R-matrix calculations with ImT b

1 calculated from

the the optical theorem (5.109),

ImT b
1 = − 1

8π

mn

µ1(23)

Q2
1[σelastic + σbreakup] .

where we use the experimental values for the cross sections. For both cases we deter-

mine the complex phase angles according to

ImT b
1 = |T b

1 | sinϕ , (7.10)

The angle ϕcalc, which is the one for the calculated quantity ImT b
1 and ϕexp which

comes from the experimental data are plotted in Fig. 34. One can interpret the

difference Δ = ϕcalc−ϕexp (Fig. 35) as phase shift error of the calculation. This phase

shift Δ may result from the asymptotic wave function which will exhibit a different

phase compared to the asymptotic form used in our derivation. This different phase in

the asymptotic form of the wave function results in a phase shift in the calculated T b
1
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amplitudes

ImT b
1 = |T b

1 | sin(ϕexp +Δ) . (7.11)

Therefore this difference Δ can be considered as the error of the algorithm.

Figure 34: Angles ϕexp and ϕcalc.

Figure 35: Phase shift Δ for the calculated complex T b
1 amplitude.
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The excellent agreement between the experimental cross section data and the calcu-

lated ones confirms that our assumption concerning the normalization of the breakup

cross section ((5.111d)) was correct and the open parameter β = 1. This is also con-

firmed by the optical theorem which is exactly fulfilled with β ≈ 1 up to about 15 MeV

(Fig. 36).

Figure 36: The factor β calculated for the case that the optical theorem is exactly fulfilled.

Limits of the model

There are two main limitations of the presented novel three-body R-matrix model.

First there is the asymptotic form of the three-body wave function which does not

match the interior wave function properly at the values of the matching radii that were

used. However, if one increases the radii the number of basis states must be increased

drastically and therefore the stability of the algorithm gets worse and the computation

time increases significantly. These asymptotic problems are also supposed to be the

reason for the phase difference with respect to experimental data that occurs in ImT b
1 .

Secondly we have included s-waves only. As a consequence the results are reasonable

only at low energies up to about 10 MeV. At higher energies it is expected that p-

waves and higher partial waves contribute significantly.
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7.5 The neutron+9Be system

Beryllium plays an important role in fusion and fission devices. It is an important

ingredient of plasma facing components and a neutron multiplier for tritium breeding.

The neutron (n) multiplying reaction is n+9Be→n+n+(8Be)∗→n+n+4He+4He and

occurs at relatively low incident energies (Tab. 6).

reaction Q-value [MeV]
9Be(n,n)9Be 0.0000
9Be(n,α)6He -0.5971
9Be(n,2nα)4He -1.6636
9Be(n,nα)5He -2.3073
9Be(n,t)7Li -10.4373
9Be(n,p)9Li -12.8248
9Be(n,tα)t -12.9049
9Be(n,d)(8Li) -14.6615
9Be(n,t)(8Li) -14.6615
9Be(n,nd)7Li -16.6932
9Be(n,np)(8Li) -16.8861
9Be(n,nt)6Li -17.6871
9Be(n,nα)6Li -19.2874
9Be(n,pt)6He -20.4108
9Be(n,3He)(7He) -21.5845
9Be(n,pα)(5H) -23.1857

Table 6: Reaction channels in the n+9Be system with the associated Q-values.

We are interested to evaluate this four-body breakup reaction because it dominates

the reaction cross section at low energies. The exact threshold for this reaction is at

1.664 MeV and at 5 MeV it has a share of about 20% on the total cross section. Hence

this channel can no longer be handled approximatively. The two alpha particles form

a resonance state (8Be) at 92 keV which has a lifetime of about 8.19·10−17 s thus four

magniudes longer than nuclear reaction times. Because of that we can treat this four-

body breakup reaction as an effective three-body problem. The available evaluations

in ENDF/B-VIII.0 [2], JENDL-4.0 [4] and JEFF-3.1/A [3] are shown in Fig. 37, but

all of them are based exclusively on analyses of experimental data.
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Figure 39: Neutron+8Be potential of Woods-Saxon form.

is bound to (8Be) in an angular momentum state = 1 via a potential that is assumed

to be of Woods-Saxon form

V (r) =
v0

1 + exp((r − a)/b)
(7.12)

with a = 1.25 3
√
A = 1.25 3

√
8 = 2.5 fm and b = 0.1 fm (Fig. 39). The potential depth

v0 = −42.4519 MeV is chosen such that there exists a bound state (shown in Fig. 40)

at -1.664 MeV which corresponds to the neutron-separation energy.

In the first subsystem - in analogy to the neutron+deuteron system - the two neu-

trons interact via the Reid soft-core potential in Eq. (7.1) with the parameters (7.3).

From the range of the potential one can determine the matching radii ai and Ai ac-

cording to Eq. (5.48). In the case of the Woods-Saxon potential in Eq. (7.12) with a

range of about 3 fm reasonable values are

ai = 16 fm and Ai = 13.5 fm . (7.13)
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Figure 40: Bound wave function of the n+8Be subsystem.

7.5.1 Basis states

Because the two neutrons are indistinguishable the total wave function must be anti-

symmetric with the consequences described in Sec.7.2.1. The numerical implementation

is completely analogue to the neutron+deuteron system in section 6 although we now

have an = 1 state in subsystem 2 and the theory was elaborated only for s-waves.

Because p-waves are not included in the formalism we did some kind of approximation.

We stuck to the formalism restricted to s-waves, but took basis states for subsystem 2

with angular momentum = 1 in order to describe the neutron density correctly. The

set of basis states X(r) [Eq. (5.55)] is composed of the bound state wave function and

14 scattering states with equidistant eigenenergies
(2)
µ1 between 0.1 and 6 MeV (Table

7). The set of basis states Y (R) [Eq. (5.56)] consist of 15 states with eigenenergies
(2)
µ2

equidistantly partitioned between 0.1 and 6 MeV (Table 7). The total basis comprises

225 states ϕ
(2)
µ (r, R) = Xµ1(r) · Yµ2(R) and energy eigenvalues E

(2)
µ =

(2)
µ1 +

(2)
µ2 . A

selection of basis states for subsystem 2 is displayed in Fig. 41. A selection of the

energy eigenvalues is given in Tables 7 and 8.
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µ1/µ2
(1)
µ1 [MeV]

(1)
µ2 [MeV]

1 -1.664 0.100

2 0.100 0.521

3 0.554 0.942
...

...
...

15 6.000 6.000

Table 7: Eigenenergies
(2)
µ1 and

(2)
µ2 for the n+8Be-subsystem.

µ E
(2)
µ [MeV]

1 -1.564

2 -1.143

3 -0.722

4 -0.301

5 0.120

6 0.541

7 0.962
...

...

225 12.000

Table 8: Eigenenergies E
(2)
µ of the basis states ϕ

(2)
µ (r,R) for the n+8Be-subsystem.
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Figure 41: Basis functions for the neutron+8Be subsystem.

The basis states of the nn-subsystem are chosen quite similarly to those in the

neutron+deuteron section. Their number is now 225 with the eigenenergies
(1)
µ1 of the

Xµ1(r) states and
(1)
µ2 of the Yµ2(R) states listed in Table 9 and the total basis states

energies are given in Table 10. A selection of the basis states ϕ
(1)
µ (r, R) is displayed in

Fig. 42.
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µ1/µ2
(1)
µ1 [MeV]

(1)
µ2 [MeV]

1 0.100 0.100

2 0.521 0.521

3 0.942 0.942
...

...

12 6.000 6.000

Table 9: Eigenenergies
(1)
µ1 and

(1)
µ2 for the nn-subsystem.

µ E
(1)
µ [MeV]

1 0.200

2 0.621

3 1.042

4 1.463

5 1.884

6 2.305

7 2.726
...

...

30 12.000

Table 10: Eigenenergies E
(1)
µ of the basis states ϕ

(1)
µ (r,R) for the nn-subsystem.
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Figure 42: Basis functions for the nn subsystem.

7.6 Results for the neutron+9Be system

The application of the R-matrix formalism requires an additional approximation be-

cause of the p-state in 9Be. In order to simulate the radial neutron density distribution

we use = 1 basis wave functions in this subsystem, but keep the remaining formal-

ism unchanged. The application of the formalism yields the breakup cross section and

the angle-integrated elastic cross section. However, the latter cannot be compared to

the experiment because the assumed three-body structure does not contain two-body

channels such as 6He+α which opens already at 0.5971 MeV in the center of mass
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system (see Tab. 6). In principle the three-body model would allow the description

of inelastic n+9Be∗ channels to an excited single-particle state. Because of the ap-

proximations involved we calculate only the breakup cross section and the elastic cross

section. These cross sections are calculated by Eqs. (5.111d) and (5.111a). Like in the

neutron+deuteron system there exist no rearrangement channels in the neutron+9Be

system. The obtained results for the breakup cross section are displayed in Fig. 43 for

different values of the regularization parameter η (Eq. 6.13). Convergence with respect

to η is reached at a value of about 1.6. For this regularization value the final breakup

curve is shown in Fig. 44 together with the available experimental data from the EX-

FOR library [1]. Up to 4 MeV the calculated cross sections are in excellent agreement

with measured data. At energies greater than 4 MeV the algorithm fails independent

of the choice of basis functions. We suppose that the coarse approximation to deal

with quasi s-states breaks down and a detailed treatment of higher partial waves would

be required.

Figure 43: Breakup cross section for different values of η.
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Figure 44: Breakup cross section for η = 1.6.

The calculated elastic angle-integrated cross section is presented in Fig. 45 and

compared to EXFOR data [1]. It is also in fair agreement with the experiments between

2 and 4 MeV. The peak below 3 MeV is not well reproduced, but the results show

a correct indication of the resonance associated with the breakup channel. Below 1

MeV our results differ significantly from the experimental data. However, as mentioned

above the structures below 1 MeV in the elastic cross section result from the appearance

of the 9Be(n,α)6He reaction channel which is not included in the three-body model and

therefore cannot be reproduced in our calculation. Similarly to the neutron+deuteron

system Ai is not fixed because there exists no potential in R. However, one can use

Ai to restore continuity of the first derivative of the wave function at the matching

radius Ai which is not inherently requested in the formalism. To justify the choice

of the value for Ai = 13.5 fm the first derivative of the R-dependent part of the wave

function should be continuous at R = Ai for values of r that correspond to a k-value

(Eq. (7.9)) or energy in the vicinity of the considered incident energy point. This is

shown in Figs. 46 and 47 for the energy point 3.75 MeV.
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Figure 45: Elastic cross section for η = 1.6.

Figure 46: Real part of the wave function u(r,R) for a fixed value of r in the interior (purple) and
exterior (green) region.
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Figure 47: Real part of the wave function u(r,R) for a fixed value of r in the interior (purple) and
exterior (green) region.

Finally we also considered the optical theorem (5.110) for the n+9Be system which

accounts for flux conservation. Fig. 48 reveals an excellent agreement of the optical

theorem for energies greater than 1.3 MeV. One reason for the better agreement com-

pared to the n+deuteron system might be the larger matching radii that we had to

use in this system. Thus the asymptotic form of the three-body wave function seems

more appropriate at the matching radii. Below 1.3 MeV the results are not reliable at

all which was already visible in the elastic cross section data (Fig. 45).
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Figure 48: Total difference between left- and right-hand side of the optical theorem in Eq. (5.112)

.
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8 Conclusion and Outlook

In light nuclear systems breakup channels with three or more fragments often occur

even at low incident energies and can have a significant share on the total cross sec-

tion. Consequently, approximative methods like the sequential approach are no longer

appropriate to describe these channels. Hence, there was a need of a full quantum

mechanical treatment of three-body processes in the frame of R-matrix theory.

Based on the Faddeev equations and the ideas of W. Glöckle [10] such a three-

body R-matrix formalism was successfully developed for three arbitrary particles in

[11]. In the present PhD thesis several essential modifications were elaborated and

included into the formalism in order to make it applicable to nuclear systems. A

numerical implementation was presented which is to our knowledge the first ever done

for a three-body R-matrix formalism. The initial problem of an ill-conditioned system

of linear equations for the expansion coefficients of the wave function in the interior

region could be cured by introducing a regularization parameter.

We probed the novel formalism first on the neutron+deuteron system which is a

genuine three-body system without any other nuclear structures. The results for the

breakup cross section were impressively good and the calculated values as a function of

the regularization parameter converged to the experimental data. A similar behavior

was observed for the elastic cross section. However, in the energy range greater than

8 MeV the calculated results deviated significantly from the measured values. Studying

this problem, we found an inherent deficiency of the three-body R-matrix formalism

based on the Faddeev equations. The particles in the subsystem interact via a two-

body potential which determines the matching radius ai in the subsystem. However,

the third particle is free and therefore exists no natural bound for the second matching

radius Ai, which can be considered as a free parameter. In order to determine proper

values for Ai we introduced the criterion of continuity of the first derivative of the

wave function at the matching radius which was not included in the derivation of the

formalism. Restoring the continuity of the three-body wave function for some areas of r

(relative coordinate in the subsystem) we found values for Ai depending on the incident

energy which led to a significant improvement of the elastic cross section. Finally, we

obtained two energy regions with different values for the matching radii where a very

good agreement of the calculated elastic and breakup cross section with experimental

data was obtained.
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The second system that was studied in the frame of the three-body R-matrix for-

malism is the n+9Be system which plays an important role as a neutron multiplier for

tritium breeding in fusion reactors. The first breakup channel 9Be(n,2n)(8Be) ener-

getically opens up at 1.664 MeV and was treated as an effective three-body channel

by assuming that the α-particles form a long-lived resonance state (8Be). Because the

three-body R-matrix formalism in its present form is elaborated for s-waves only, the

problem of an = 1 state in the n+(8Be) subsystem was solved by introducing the

approximation of leaving the formalism unchanged, but using p-wave basis states for

that subsystem which give the correct neutron density distribution. The numerical

results for the breakup channel are in very good agreement with the experiment up to

4 MeV. The calculated elastic cross section shows similarities to the experimental data

in shape although with problems below 1 MeV due to the appearance of the channel
9Be(n,α)6He which was not contained in the thee-body structure of our model. For

energies greater than 4 MeV we assume higher partial waves, which are not considered

in the formalism, to contribute significantly.

Considering the optical theorem for both systems we observed a good fulfillment

in case of the n+9Be system above 1 MeV. However, in the n+deuteron system there

appear deviations. This may result from the fact that we use smaller matching radii in

the n+deuteron system and the continuation of the asymptotic wave function to these

small matching radii seems to be problematic. The consequence is a distortion of the

phase in T -amplitudes which can be considered as an algorithm error. If the matching

radii are increased the matching conditions between the interior and the asymptotic

wave function improve which is reflected in a better fulfillment of the optical theorem as

seen in the n+9Be system. However, increasing the matching radii implies a significant

increase of the number of basis states for a fair reproduction of the interior wave

function, which in turn extends the computation time dramatically.

In its present form the three-body R-matrix only exists as a calculable R-matrix,

but not as a phenomenological one which is used for fitting procedures. For latter it is

important to know its spectral representation which, however, is not yet established for

the three-body case. Another task would be the extension of the formalism to higher

partial waves than s-waves and hence making it applicable to higher energy regions.

In order to include this novel formalism into existing R-matrix evaluation processes

one could insert T b
i -amplitudes calculated, e.g. with the reduced R-matrix formalism

elaborated in our group and then determine the breakup cross section via the three-
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body R-matrix formalism. This would circumvent the problems appearing with the

elastic channel in the three-body theory especially seen in case of the n+9Be system.
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A Partial integration of Eq. (5.58)

In this section we consider the left hand side of Eq. (5.58) which reads,

D

dr dR ϕµ(r, R) − 1

2µjn

d2

dr2
+ V (r)− 1

2µi(jn)

d2

dR2
− E u(r, R)

= − 1

2µjn

A

0

dR

a

0

dr ϕµ(r, R)
d2u

dr2
− 1

2µi(jn)

a

0

dr

A

0

dR ϕµ(r, R)
d2u

dR2

+

a

0

dr

A

0

dR ϕµ(r, R)[V (r)− E]u(r, R)

(A.1)

and solve the occurring integrals via integration by parts. We can rewrite the terms

containing second derivatives in Eq. (A.1) using the product rule twice (suppressing

factors and the dependencies of the functions on spatial coordinates)

d2

dR2
(ϕµu) =

d

dR

dϕµ

dR
u+ ϕµ

du

dR
=

d2ϕµ

dR2
u+

dϕµ

dR

du

dR
+

dϕµ

dR

du

dR
+ ϕµ

d2u

dR2
(A.2)

and isolate the term which occurs in Eq. (A.1),

ϕµ
d2u

dR2
=

d2

dR2
(ϕµu)− 2

dϕµ

dR

du

dR
− d2ϕµ

dR2
u . (A.3)
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Using relation (A.3), the integrals in the second line of Eq. (A.1) can be calculated

beginning with the second one,

− 1

2µi(jn)

A

0

dR ϕµ(r, R)
d2u

dR2
= − 1

2µi(jn)

A

0

dR
d2

dR2
[ϕµ(r, R)u(r, R)]− 2

dϕµ

dR

du

dR
− d2ϕµ

dR2
u

=− 1

2µi(jn)

d

dR
(ϕµ(r, R)u(r, R))

A

0

+ 2
1

2µi(jn)

A

0

dR
dϕµ

dR

du

dR
+

1

2µi(jn)

A

0

dR u(r, R)
d2ϕµ

dR2

=− 1

2µi(jn)

u(r, R)
dϕµ

dR
+ ϕµ(r, R)

du

dR

A

0

+ 2
1

2µi(jn)

ϕµ(r, R)
du

dR

A

0

−
A

0

dR ϕµ(r, R)
d2u

dR2

+
1

2µi(jn)

A

0

dR u(r, R)
d2ϕµ

dR2

=− 1

2µi(jn)

u(r, A) dϕµ

dR R=A

=0

− u(r, 0)

=0

dϕµ

dR R=0

+ ϕµ(r, A)
du

dR R=A

− ϕµ(r, 0)

=0

du

dR R=0


+ 2

1

2µi(jn)

ϕµ(r, A)
du

dR R=A

− 1

2µi(jn)

ϕµ(r, 0)

=0

du

dR R=0

− 2
1

2µi(jn)

A

0

dR ϕµ(r, R)
d2u

dR2

+
1

2µi(jn)

A

0

dR u(r, R)
d2ϕµ

dR2

=
1

2µi(jn)

ϕµ(r, A)
du

dR R=A

− 2
1

2µi(jn)

A

0

dR ϕµ(r, R)
d2u

dR2
+

1

2µi(jn)

A

0

dR u(r, R)
d2ϕµ

dR2
.

(A.4)

We integrated by parts in the second line of Eq. (A.4) and in the fifth and sixth line

we made use of the boundary conditions (5.51),

ϕµ(0, R) = ϕµ(r, 0) =
∂ϕµ(r, R)

∂r r=a

=
∂ϕµ(r, R)

∂R R=A

= 0 .

Additionally, u(r, 0) = 0 since we integrate over the domain D where

u(r, 0) =
µ

cµϕµ(r, 0) = 0 . (A.5)
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Finally we get the result

A

0

dR ϕµ(r, R)
d2u

dR2
= ϕµ(r, A)

du

dR R=A

+

A

0

dR u(r, R)
d2ϕµ

dR2
(A.6)

and analogously

a

0

dr ϕµ(r, R)
d2u

dr2
= ϕµ(a,R)

du

dr r=a

+

a

0

dr u(r, R)
d2ϕµ

dr2
. (A.7)

Inserting them into Eq. (A.1) yields

− 1

2µjn

A

0

dR ϕµ(a,R)
du

dr r=a

− 1

2µjn

A

0

dR

a

0

dr u(r, R)
d2ϕµ

dr2

− 1

2µi(jn)

a

0

dr ϕµ(r, A)
du

dR R=A

− 1

2µi(jn)

a

0

dr

A

0

dR u(r, R)
d2ϕµ

dR2

+

a

0

dr

A

0

dR ϕµ(r, R)[V (r)− E]u(r, R)

=− 1

2µjn

A

0

dR ϕµ(a,R)
du

dr r=a

− 1

2µi(jn)

a

0

dr ϕµ(r, A)
du

dR R=A

+

A

0

dR

a

0

dr u(r, R) − 1

2µjn

d2

dr2
+ V (r)− 1

2µi(jn)

d2

dR2
− E ϕµ(r, R)

=− 1

2µjn

A

0

dR ϕµ(a,R)
du

dr r=a

− 1

2µi(jn)

a

0

dr ϕµ(r, A)
du

dR R=A

+

A

0

dR

a

0

dr (Eµ − E)u(r, R)ϕµ(r, R)

=− 1

2µjn

A

0

dR ϕµ(a,R)
du

dr r=a

− 1

2µi(jn)

a

0

dr ϕµ(r, A)
du

dR R=A

+ (Eµ − E)cµ

(A.8)
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In the third equality we applied Eq. (5.50),

− 1

2µjn

d2

dr2
+ V (r)− 1

2µi(jn)

d2

dR2
− Eµ ϕµ(r, R) = 0

and in the last line we used the definition of the expansion coefficients (5.53) for the

interior wave function,

cµ =
D

dr dR ϕµ(r, R)u(r, R) .
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B Experimental data for the neutron+deuteron system

B.1 Breakup cross section

incident energy [MeV] Δincident energy [MeV] σbreakup [mbarn] Δσbreakup [mbarn] Ref

5.54 0.080 57.6 3.3 [24]

5.81 0.090 60.5 3.4 [24]

6.34 0.100 74.9 4.2 [24]

6.83 0.100 74.6 4.2 [24]

6.83 0.150 82.6 11.2 [24]

7.23 0.150 85.5 6.2 [24]

7.75 0.150 98.6 7.2 [24]

20.2 0.4 172.4 14.1 [24]

21.2 0.4 153.7 11.8 [24]

21.6 0.4 128.9 10.9 [24]

21.8 0.3 142.6 11 [24]

21.8 0.3 136.3 10.1 [24]

21.8 0.4 131.8 12.1 [24]

22.4 0.3 134.1 10.9 [24]

23 0.3 132.1 11.5 [24]

23.5 0.3 154.4 12.2 [24]

24.1 0.3 141.6 13.8 [24]

24.7 0.3 141.8 11 [24]

7.41 0.165 109 17 [25]

7.93 0.15 138 15 [25]

8.44 0.135 127 13 [25]

8.94 0.125 137 10 [25]

9.44 0.115 149 11 [25]

9.93 0.11 120 10 [25]

10.42 0.1 142 19 [25]

10.91 0.095 146 10 [25]

11.4 0.09 165 10 [25]

11.88 0.085 148 10 [25]

12.36 0.085 155 13 [25]

12.85 0.08 165 14 [25]

13.33 0.075 165 14 [25]

13.8 0.075 175 14 [25]

14.28 0.07 168 14 [25]

14.76 0.065 180 14 [25]
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incident energy [MeV] Δincident energy [MeV] σbreakup [mbarn] Δσbreakup [mbarn] Ref

14.8 - 145 15 [26]

8.2 - 103 10 [27]

12.17 - 176 14 [27]

13.66 - 181 13 [27]

14 - 172 12 [27]

14.8 - 176 14 [27]

16.05 - 181 12 [27]

17.4 - 172 12 [27]

18.8 - 180 17 [27]

20.02 - 179 16 [27]

21.07 - 180 17 [27]

22 - 176 16 [27]

14.1 0.075 183 3 [28]

14.46 - 158 16 [29]

4.10 - 13 8 [30]

4.40 - 17 7 [30]

4.60 - 25 6 [30]

4.90 - 34 6 [30]

5.20 - 45 6 [30]

5.85 - 61 7 [30]

6.30 - 60 7 [30]

6.55 - 64 7 [30]

14.1 0.075 180 7 [31]

14.1 0.2 107 20 [32]

6.11 - 67 6.7 [33]

6.55 - 73 7.3 [33]

7.32 - 88 8.8 [33]

8.26 - 110 9.9 [33]

10.2 - 140 15.4 [33]

14.1 - 180 19.8 [34]

14.1 0.075 128 2 [35]
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B.2 Elastic cross section

incident energy [MeV] σbreakup [mbarn] Δσbreakup [mbarn] Ref

0.0000000027743 3440 60 [36]

2.5 2375 140 [37]

3 2149 129 [37]

3.5 1985 119 [37]

4 1863 112 [37]

4.5 1723 103 [37]

5 1608 96 [37]

6 1448 87 [37]

7 1254 75 [37]

8 1120 67 [37]

9 1028 62 [37]

10.25 938 56 [37]

12 819 49 [37]

14 694 42 [37]

16 607 36 [37]

18 523 31 [37]

20 463 28 [37]

22.5 395 32 [37]

25 334 27 [37]

27.5 299 24 [37]

30 264 26 [37]

2.480 2450 15 [38]

3.270 2145 13 [38]

5.55 1480 0 [39]

7 1267 0 [39]

8 1127 0 [39]

9 1002 0 [39]

18.55 486 39 [39]

20.5 442 36 [39]

23 399 35 [39]

0.135 4800 340 [40]

0.280 3790 220 [40]

0.446 3100 290 [40]

0.588 3140 200 [40]

0.780 3180 170 [40]

0.914 3290 200 [40]
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