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Abstract
Biodentine is a cementitious material for dental applications marketed by the company

Septodont (Saint-Maur-des-Fossés, France). In terms of its chemical composition, Biodentine is
very similar to Portland cements used in construction. Nevertheless, the stiffness and strength
of hardened Biodentine exceed the corresponding properties of comparable construction cement
pastes by a factor of two to three.

Due to the heterogeneous microstructure of the investigated dental cement paste, its
macroscopic mechanical properties are functions of the physical properties of the microscopic
constituents and their interaction. That was the motivation for the present work. Experi-
mental and theoretical methods of multiscale mechanics were used to microscopically and
macroscopically characterize the stiffness and strength of well-hardened Biodentine and to
explain the relationship between the experimental results using a quantitative multiscale
material model. This goal was achieved in three steps. Thus, the present thesis is organized
in three chapters following the Introduction.

Chapter 2 is devoted to the experimental study of well-hardened dental cement paste using
nanoindentation and ultrasonic pulse velocity measurements. 5746 nanoindentation tests
were performed on test grids, in order to characterize the microstructural constituents of the
dental cement paste. Based on the measurement results, 5746 values for both the indentation
modulus and the indentation hardness were determined and presented as histograms. They
were explained as a superposition of three lognormal distributions each. The latter were
preferred to the usually adopted normal distributions, in order to account for the fact that both
the indentation modulus and the indentation hardness are positive definite quantities. Two of
the three lognormal distributions relate to two types of calcite-reinforced hydration products
that differ in their packing density. The third lognormal distribution relates to nanoindentation
tests into very stiff and strong particles made of cement and zirconia. In such tests, the
particles act as larger indenters that are pushed into the much more compliant hydrate matrix.
The macroscopic, homogenized stiffness of the composite material was quantified using the
measurements from 325 ultrasonic pulse velocity tests. Finally, theoretical bounds for the
macrostiffness of the dental cement paste were calculated based on the stiffnesses of the
microscopic solid constituents and their volume fractions. The theoretical lower limit of the
macrostiffness is larger than the actual material stiffness determined from the ultrasonic tests.
This discrepancy proves the existence of grain boundary defects in the microstructure.

Chapter 3 of this thesis is dedicated to micromechanical modeling of the elastic stiffness
of well-hardened dental cement paste. The microstructure of the material is represented as
a highly disordered arrangement of the material constituents. The two calcite-reinforced
hydrate populations, cement, and zirconia were considered as spherical material phases. The
grain boundary defects were introduced in the form of closed circular microcracks which
are isotropically orientated in space. Deviating from the usual approach which consists of
assigning uniform stiffness values to the material phases, lognormal stiffness distributions from
the nanoindentation analysis were assigned to the two calcite-reinforced hydrate populations
in the context of an innovative approach. The scale transition from the microstructure to
the composite material was accomplished with the self-consistent homogenization scheme of
continuum micromechanics. In combination with the macroscopic stiffness of hardened dental
cement paste known from the ultrasonic tests, the density of the grain boundary defects and
the Poisson’s ratio of the calcite-reinforced hydrate populations could be quantified. With
regard to the upscaling of the stiffness, the micromechanical model described is practically
equivalent to a much simpler alternative model, in which the two hydrate populations are each
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assigned uniform stiffnesses (= median values of the stiffness distributions). With regard to the
downscaling of stresses, however, the alternative model only provides averaged microstresses,
while the model based on two lognormal stiffness distributions allows for quantification of
beta-distributed microstresses.

Chapter 4 of this thesis is dedicated to the strength of Biodentine. In the experimental
part, the development of the compressive strength of the material during curing at 37◦C
in the first four weeks after production was investigated. For this purpose, cylindrical
specimens with a length-to-diameter ratio of 1.84 and 1.34 were subjected to destructive
uniaxial compression tests. The material exhibits a small degree of ductility during the first
few hours after production. However, once the material age exceeds 24 hours, the stress-strain
relationships are practically linear up to the compressive strength, at which the specimens
fail in a brittle fashion, causing them to fall into many fragments. The strength development
of Biodentine can be well described by fitting an empirical formula which was developed
for the strength development of concrete, and which was published in the fib Model Code
2010. The (true) uniaxial compressive strength of Biodentine can be quantified by multiplying
the experimentally determined strength values with correction factors. The latter decrease
with decreasing length-to-diameter ratio of the cylindrical specimens, and they were taken
from the guideline ASTM C39 for testing of concrete. In the modeling part, the multiscale
model of Biodentine developed in Chapter 3 of the present work was extended in order
to explain the final uniaxial compressive strength of the material. The model establishes a
quantile-based correlation between the lognormal stiffness and strength distributions of the two
calcite-reinforced hydrate populations. The analysis suggests that the microscopic hydrates
are, in good approximation, subjected to uniaxial compression and exhibit shear failure. When
the macroscopic material strength is reached, 63% of the material volume of Biodentine has a
degree of utilization larger than 99%. This explains pronounced fragmentation of the material
under failure load, and also illustrates the highly optimized nature of the material.



Kurzfassung
Biodentine ist ein von der Firma Septodont (Saint-Maur-des-Fossés, Frankreich) vermark-

tetes zementgebundenes Material für zahnmedizinische Anwendungen. In Hinblick auf seine
chemische Zusammensetzung ist Biodentine ist sehr ähnlich zu den im Bauwesen verwendeten
Portlandzementen. Dennoch übertreffen die Steifigkeit und Festigkeit von ausgehärtetem
Biodentine-Dentalzementstein die entsprechenden Eigenschaften der vergleichbaren Bauze-
mentsteine um den Faktor zwei bis drei.

Die makroskopischen mechanischen Kennwerte des untersuchten Dentalzementsteins sind
aufgrund seiner heterogenen Mikrostruktur Funktionen von physikalischen Eigenschaften seiner
mikroskopischen Bestandteile und deren Interaktion. Das war die Motivation für die vorlie-
gende Arbeit. Es wurden experimentelle und theoretische Methoden der Mehrskalenmechanik
verwendet, um die Steifigkeit und Festigkeit von ausgehärtetem Biodentine-Dentalzementstein
mikroskopisch und makroskopisch zu charakterisieren sowie die Beziehung zwischen den Ver-
suchsergebnissen mit Hilfe eines quantitativen Mehrskalenmaterialmodells zu erklären. Dieses
Ziel wurde in drei Schritten erreicht. Somit ist die vorliegende Arbeit nach der Einleitung in
drei Kapitel gegliedert.

Kapitel 2 ist der experimentellen Untersuchung von ausgehärtetem Dentalzementstein mit
Hilfe von Nanoindentation und Ultraschall-Pulsgeschwindigkeitsmessungen gewidmet. 5746
Nanoindentationstests wurden an gitterförmig angeordneten Teststellen durchgeführt, um
die mikrostrukturellen Bestandteile des Dentalzementsteins zu charakterisieren. Anhand der
Messergebnisse wurden 5746 Zahlenwerte sowohl des Eindringmoduls als auch der Eindring-
härte ermittelt und als Histogramme dargestellt. Sie wurden als Überlagerung von jeweils drei
Lognormalverteilungen erklärt. Letztere wurden den üblicherweise verwendeten Normalvertei-
lungen vorgezogen, um der Tatsache Rechnung zu tragen, dass sowohl der Eindringmodul als
auch die Eindringhärte positive definite Größen sind. Zwei der jeweils drei Lognormalvertei-
lungen beziehen sich auf zwei Arten von kalzitverstärkten Hydratationsprodukten, die sich in
ihrer Packungsdichte unterscheiden. Die jeweils dritte Lognormalverteilung bezieht sich auf
Nanoindentationstests in sehr steife und feste Partikel aus Zement und Zirkoniumdioxid. Bei
solchen Tests fungieren die Partikel als größere Eindringkörper, die in die wesentlich nachgie-
bigere Hydratmatrix gedrückt werden. Mit Hilfe der Messwerte aus 325 Ultraschallprüfungen
wurde die makroskopische, homogenisierte Steifigkeit des Kompositmaterials quantifiziert.
Schließlich wurden theoretische Schranken für die Makrosteifigkeit des Dentalzementsteins auf
Basis der Steifigkeiten der mikroskopischen Festkörperbestandteile und deren Volumenanteile
berechnet. Die untere theoretische Schranke für die Makrosteifigkeit ist größer als die aus
den Ultraschalltests ermittelte tatsächliche Materialsteifigkeit. Diese Diskrepanz beweist die
Existenz von Korngrenzflächendefekten im Mikrogefüge.

Kapitel 3 der vorliegenden Arbeit ist der mikromechanischen Modellierung der elastischen
Steifigkeit von ausgehärtetem Dentalzementstein gewidmet. Die Mikrostruktur des Materials
wurde als hochgradig ungeordnete Anordnung der Materialbestandteile modelliert. Die beiden
kalzitverstärkten Hydratpopulationen, Zement und Zirkoniumdioxid wurden als kugelförmige
Materialphasen berücksichtigt. Die Korngrenzflächendefekte wurden in Form von geschlossenen
kreisförmigen Mikrorissen mit isotrop verteilter Ausrichtung eingeführt. Abweichend vom
üblichen Zugang, der darin besteht, den Materialphasen jeweils einheitliche Steifigkeitswerte
zuzuordnen, wurde im Zuge einer innovativen Herangehensweise den beiden kalzitverstärkten
Hydratpopulationen die lognormalen Steifigkeitsverteilungen aus der Nanoindentationsanalyse
zugewiesen. Der Skalenübergang von der Mikrostruktur zum Kompositmaterial wurde mit
dem selbstkonsistenten Homogenisierungsschema der Kontinuumsmikromechanik bewerkstel-
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ligt. In Kombination mit der aus den Ultraschalltests bekannten makroskopischen Steifigkeit
von ausgehärtetem Dentalzementstein konnten die Dichte der Korngrenzflächendefekte und
die Querdehnungszahl der kalzitverstärkten Hydratpopulationen quantifiziert werden. In
Hinblick auf das Hochskalieren der Steifigkeit ist das beschriebene mikromechanische Mo-
dell praktisch gleichwertig zu einem wesentlich einfacheren Alternativmodell, bei dem den
beiden Hydratpopulationen jeweils einheitliche Steifigkeiten (= Medianwerte der Steifigkeits-
verteilungen) zugewiesen werden. In Hinblick auf das Hinunterskalieren von Spannungen
liefert das Alternativmodell allerdings ausschließlich gemittelte Mikrospannungen, während es
das auf zwei lognormalen Steifigkeitsverteilungen beruhende Modell erlaubt, beta-verteilte
Mikrospannungen zu quantifizieren.

Kapitel 4 der vorliegenden Arbeit ist der Festigkeit von Biodentine gewidmet. Im ex-
perimentellen Teil wurde die Entwicklung der Druckfestigkeit des Materials während des
Aushärtens bei 37◦C in den ersten vier Wochen nach Herstellung untersucht. Dazu wurden
zylindrische Proben mit einem Länge-zu-Durchmesser Verhältnis von 1,84 bzw. 1,34 zerstö-
renden einaxialen Durckversuchen unterworfen. In den ersten wenigen Stunden nach seiner
Herstellung weist das Material ein wenig Duktilität auf. Sobald das Materialalter aber 24
Stunden übersteigt, sind die Spannungs-Dehnungs-Beziehungen praktisch linear bis zur Druck-
festigkeit, bei der die Proben spröde versagen, indem sie in zahlreiche Bruchstücke zerspringen.
Die Festigkeitsentwicklung von Biodentine lässt sich gut durch Anpassen einer empirischen
Formel beschreiben, die für die Festigkeitsentwicklung von Beton entwickelt und im fib Model
Code 2010 veröffentlicht wurde. Die (wahre) einaxiale Druckfestigkeit von Biodentine kann
durch Multiplikation der experimentell ermittelten Festigkeitswerte mit Korrekturfaktoren
quantifiziert werden. Letztere nehmen mit abnehmendem Länge-zu-Durchmesser Verhältnis
der Probenzylinder ab und wurden der Richtlinie ASTM C39 für mechanisches Testen von
Beton entnommen. Im Modellierungsteil wurde das in Kapitel 3 der vorliegenden Arbeit ent-
wickelte Mehrskalenmodell von Biodentine erweitert, um die schlussendlich erreichte einaxiale
Druckfestigkeit des Materials zu erklären. Das Modell stellt eine auf Quantilen beruhende
Korrelation zwischen den lognormalen Steifigkeits- und Festigkeitsverteilungen der beiden
kalzitverstärkten Hydratpopulationen her. Die Analyse legt nahe, dass die mikroskopischen
Hydrate in guter Näherung auf einachsigen Druck beansprucht sind und Schubversagen zeigen.
Beim Erreichen der makroskopischen Materialfestigkeit weisen 63% des Materialvolumens
von Biodentine Auslastungsgrade auf, die größer als 99% sind. Das erklärt die weitreichende
Fragmentierung des Materials unter Versagenslast, und verdeutlicht somit die weitreichende
Optimierung des Materials.
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Chapter1
Introduction
1.1 Motivation
Over the past decades, researchers have endeavored to lower the amount of hydraulic cement
clinker in the cementitious materials without compromising their mechanical performance.
This tremendous effort has being made in order to address the global greenhouse gases emitted
by producing Portland cement clinker (Müller and Harnisch, 2008; Miller et al., 2016). The
involved strategy usually resorts to blending the Portland cement powder with supplementary
cementitious materials (SCM), such as fly ash, ground blast-furnace slag, or silica fume. In
this way, the hydraulic cement clinker, demanding high amount of energy for its production,
is substituted by a less energy demanding hydraulic component. Another approach is to use
high-performance cement, where the word “performance” refers to the uniaxial compressive
strength of these hydraulic materials. Therefore, less, high-quality material is used instead of
more, but less strong material. Moreover, the former as well as the latter can possess very
similar material compositions.

The ordinary Portland cement, the basic ingredient of concretes and mortars, consists of
cement clinker and small amount (units of wt.%) of gypsum to prevent flash setting of the
fresh cement paste. The cement clinker mainly consists of four hydraulic mineral constituents
(Taylor et al., 1997):

• Tricalcium silicate (Ca3SiO5) makes the majority of cement clinker and it is important
for development of cement’s strength in the first 28 days of hydration.

• Dicalcum silicate (Ca2SiO4) is the second most abundant constituent of cement clinker.
It contributes to the strength development at later material ages, i.e. after 28 days of
hydration.

• Tricalcium aluminate (Ca3Al2O6) is one of the minor constituents of cement cement
clinker. Its rapid setting is typically inhibited by adding gypsum into the cement powder.

• Tetracalcium aluminoferrite (Ca2AlFe2O5) is dark-colored constituent of the cement
clinker and with tricalcium aluminate takes approximately the same portion of the
cement clinker composition.

Mixing the cement clinker with water results in an exothermic reaction, within which hydration
products precipitate from the supersaturated solution and create a binding agent that glues
together the cement paste itself as well as the aggregates in the case of mortars and concretes.
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The most important product of hydration is calcium-silicate-hydrate; abbreviated in cement
chemical nomenclature as C-S-H. Calcium hydroxide (portlandite) and aluminates (usually
referred to as AFm, AFt phases) are minor hydration products (Taylor et al., 1997). C-S-H
forms from hydration of tri- and dicalcium silicates and it occupies the largest volume fraction
in the microstructure of a cement paste. Therefore, the C-S-H is the material constituent
(phase) that plays a major role in influencing the mechanical properties of cementitious
materials.

Given that the C-S-H governs the macroscopic stiffness and strength behavior of the
cementitious materials, the quest to get a better grasp of its microstructure and microme-
chanical properties has been in the focus of researchers ever since. Grid nanoindentation
combined with micromechanical modeling can provide such a valuable information by means
of linking the micro- and mactrostructure properties. In this context, pioneering work using
results from grid nanoindentation as microscopic input for upscaling of the elastic stiffness of
cement paste was introduced by Constantinides and Ulm (2004). 200 indentation tests into
the calcium-silicate-hydrate matrix gave access to 200 values of indentation moduli which were
translated into moduli of elasticity, assuming a Poisson’s ratio of 0.24 (Constantinides, 2002).
Subsequently, the histogram, created based on these statistical sample, revealed two peaks
that were represented as a superposition of two Gaussian probability density functions. The
mean values of these distributions were used as an input for stiffness upscaling of a cement
paste, delivering a homogenized modulus of elasticity amounting to 23.2 GPa. Complementary
ultrasound pulse velocity measurements gave access to the macroscopic modulus of elasticity
amounting to 22.8 GPa (Constantinides and Ulm, 2004). As the consequence of the successful
implementation of the results from nanoindentation into the micromechanical models, this
method was further applied to ultra high performance concrete (Sorelli et al., 2008), to cement
paste, gypsum, and aluminum alloy (Němeček et al., 2013), to polymer-modified cement paste
(Göbel et al., 2018), and to self-compacting concrete modified with nanoparticles (Stefaniuk
et al., 2019). The latter study used Gaussian probability density functions describing stiff-
ness distributions of two populations of hydration products as an input for micromechanical
modeling.

Micromechancial strength modeling of the cementitious materials was the logical next step
after validation of the micromechanical stiffness models. In this context, careful consideration
of the microstructural morphology of the C-S-H was necessary for successful prediction of
strength evolution from early-age to mature states of cement pastes, and mortars based on
the elastic properties of their non-aging constituents, their volume fractions (expressed as a
function of hydration degree), and their mutual mechanical interaction (Pichler and Hellmich,
2011). This inspired several follow up works on compressive strength modeling of concrete
(Königsberger et al., 2018) and even recycled concrete (Königsberger and Staquet, 2018),
which accounted for narrow zones around the aggregates (referred as interfacial transition
zones - ITZs) typically considered to be the weakest link within the concrete microstructure.
As regards compressive strength modeling of blended cement pastes, different approach was
chosen by Hlobil et al. (2016) assuming that the compressive strength is governed by apparent
tensile strength of the C-S-H globule.

The above-mentioned microstructure models provide a validated approach that can be
applied to study (macroscopic) strength and stiffness properties of other materials based on
their microstructures. Compressive strength of Biodentine significantly outperforms chemically
similar construction cement pastes, which suggest that this material has a highly optimized
microstructure. Thus, deciphering the microscopical physical phenomena, governing the high
mechanical strength of this dental cement paste, is the main motivation of the present thesis.
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The following sections give a brief introduction to dental cement pastes and fundamentals
of micromechanical modeling. The former introduces Biodentine’s composition and its
mechanical properties in accordance to published scientific literature, whereas the latter revisit
the micromechanical modeling used as a tool for investigation of the studied material.

1.2 Cementitious biomaterials for dental applications
Important requirements on cementitious dental materials are that the freshly mixed material
is workable for a few minutes and that it hardens quickly thereafter. Moreover, dental cement
pastes must be biocompatible with the surrounding living tissues. Typical application of the
cementitious dental materials include endodontic restorative procedures such as, root-end
filling, perforation repair, apexification, or pulp-capping (Primus et al., 2019).

The use of Portland cement as dental restorative material can be traced back to the end
of 19th century, where it was used by Dr. Witte for placement under a gold filling (Deus et al.,
2014). The idea of using a material based on Portland cement for filling cavities in human
teeth was revisited a century later by Dr. Torabinejad and Mr. White. Theirs work resulted
in two patents (Torabinejad and White, 1993a,b) and two studies (Torabinejad et al., 1993;
Lee et al., 1993) on sealing ability of this cementitious material, introduced under the name
“Mineral Trioxide Aggregate” (MTA). The composition of the main hydraulic components of
this novel material was identical to the composition of type I (ordinary) Portland cement,
which was also explicitly recommended in the patents as the material of choice. The ordinary
Portland cement was blended with bismuth oxide (Bi2O3) in order to increase opacity of
the material on radiographs (Torabinejad and White, 1993a). Since its first introduction,
the name MTA has been quickly adopted and became a generic name for other products
that are based on Portland cement powder, or tri-/dicalcium silicates, such that many of the
subsequent commercial cementitious dental materials bear this abbreviation in their names
(Primus et al., 2019). Nowadays, more than 20 cement-based dental materials are available in
the market. These products typically vary in radiopacifying agent, fineness of the powder, or
presence of other additives (Primus et al., 2019).

This thesis refers to a cementitious dental material named “BiodentineTM” (Septodont,
Saint-Maur-des-Fossés, France) that comes in capsules, containing 0.7 grams of cement powder,
and tubes, containing approximately 200µL of mixing liquid. Although the exact composition
and particle sizes are corporate secrets, some studies on these topics are available in the
scientific literature. Next two paragraphs describe the results of these studies.

In order to quantify the phase composition of the dry powder, X-ray diffraction (XRD)
analyses with Rietveld refinement have been carried out (Camilleri et al., 2013; Grazziotin-
Soares et al., 2019; Li et al., 2019). With respect to the listed literature, the reported results
were the following:

• 80.1 wt% of tricalcium silicate (Ca3SiO5), 14.9 wt% of calcium carbonate (CaCO3, also
known as calcite), and 5.0 wt% zirconium dioxide (ZrO2) (Camilleri et al., 2013).

• 23.8 wt% monoclinic Ca3SiO5, 56.6 wt% triclinic Ca3SiO5, 14.9 wt% of CaCO3, and
4.7 wt% of ZrO2 (Grazziotin-Soares et al., 2019).

• 4.45 wt% of monoclinic β-dicalcium silicate (Ca2SiO4), 73.8 wt% of triclinic Ca3SiO5,
16.6 wt% of CaCO3, and 5.15 wt% of ZrO2 (Li et al., 2019).

These studies suggest that the powder is made up of about 80 wt% of reactive binder, 15 wt%
of calcium carbonate, acting as filler material, and 5 wt% of zirconium dioxide providing X-ray
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opacity (Laurent et al., 2008, 2012). The mixing liquid contains water (H2O), calcium chloride
(CaCl2), accelerating the transition of freshly-mixed Biodentine from a moldable gel into a
solid material, and a hydrosoluble polycarboxylate-based polymer improving workability at
small initial liquid-to-solid mass ratios (Laurent et al., 2008; Bronnec et al., 2010; Laurent
et al., 2012).

Advanced grinding of the particles of the Biodentine powder allows for shortening the
setting time, and for further accelerating the hydration kinetics. Brunauer-Emmett-Teller
(BET) nitrogen gas adsorption was used for quantification of the specific surface area (SSA)
of anhydrous Biodentine powder. The values reported in the literature range from 2.81 m2/g
(Camilleri et al., 2013), 3.35 m2/g (Li et al., 2019) to 4.00 m2/g (Chang, 2018). Particle size
distribution was quantified by means of laser diffraction analysis, which provided access to
equivalent diameters. The 10th percentile, the median, and the 90th percentile amount to
1.15µm, 3.48µm, and 7.51µm, respectively (Ha et al., 2015). Backscattered electron (BSE)
images of dental cement powder showed particles of characteristic sizes ranging from some 1 to
6µm (Li et al., 2019). Using the same imaging technique for a hydrated 28 days old Biodentine
paste revealed smaller and evenly distributed particles (Camilleri, 2022). Energy dispersive
X-ray (EDX) spectroscopy of Biodentine powder suggested that the CaCO3 particles are of
sub-micrometric size, whereas the clinker and zirconia are of micrometer size (Li et al., 2019).

As regards strength properties of Biodentine, they are usually investigated in comparative
studies with other dental materials, in which Biodentine usually outperforms other cementitious
materials (Rajasekharan et al., 2014). The next three paragraphs documents several studies
on strength properties of dental cement pastes which are available in the scientific literature.

Compressive strength tests are typically carried out in accordance to the ISO 9917:1-2007
standard recommending molds with inner diameter and height of 4 mm and 6 mm, respectively.
These specimens are usually exposed to different curing environments.

• Strength of the specimens cured in distilled water, at material ages of one hour as well
as one, seven, and 28 days amounted to 140 ± 1 MPa, 171 ± 1 MPa, 269 ± 1 MPa, and
305 ± 3 MPa, respectively (Butt et al., 2014). Similar values were obtained in Franquin
et al. (2010).

• Specimens were exposed to acidic solutions and distilled water with pH-values amounting
to 4.4, 5.4, 6.4, and 7.4, respectively, and the compressive strength seven days after
production amounted to 59±5 MPa, 74±7 MPa, 81±8 MPa, and 95±9 MPa, respectively
(Elnaghy, 2014).

• To simulate in vivo conditions, Biodentine was cast into molds contaminated with
blood or saliva as well as into clean molds which served as a control group. Three
days after production, the strength amounted to 177 ± 28 MPa, and 157 ± 57 MPa, and
205 ± 22 MPa, respectively (Subramanyam and Vasantharajan, 2017).

• Similarly, casting Biodentine into molds filled with blood, and testing at material ages of
six hours, one, three, and seven days delivered strength values amounting to 34 ± 9 MPa,
50 ± 13 MPa, 36 ± 15 MPa, 39 ± 12 MPa, respectively (Sheykhrezae et al., 2018).

Due to the challenging aspects of tensile strength testing of small specimens, diametral
compression tests (Brazilian splitting test) of cylindrical specimens are usually performed
in order to approximate the tensile strength of the dental cement materials. The splitting
tests of cylindrical specimens produced in molds with inner diameter and height of 6 mm and
12 mm, respectively, were carried out by Alzraikat et al. (2016). The specimens were cured in
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an oven at 37◦C for three hours in 100 % relative humidity. Subsequently, they were immersed
in distilled water and stored again in the oven for 1 and 21 days which resulted in strength of
7.9 ± 1.9 MPa and 5.0 ± 1.1 MPa, respectively. Similar strength results from the diametral
compression test were obtained by testing cylindrical specimens produced from molds with
inner diameter and height amounting to 4 mm and 6 mm, respectively. The specimens were
cured at 37◦C in relative humidity higher than 95 %. The splitting strength values obtained
after 1, 28, and 180 days of this treatment amount to 6.3 ± 1.4 MPa, 5.7 ± 0.3 MPa, and
6.8 ± 0.9 MPa, respectively. Nagas et al. (2016) cured the specimens at 37◦C in 100 % relative
humidity for 21 days which resulted in splitting strength of 12.1 ± 1.4 MPa. Uyanik et al.
(2019) quantified the splitting strength after 21 days of curing the specimen at 37◦C in 100 %
relative humidity delivering strength value of 16.3 ± 0.5 MPa. Elsaka et al. (2019) cured the
fresh Biodentine cement pastes inside the molds at 37◦C in 100 % relative humidity for the
first hour after production; then, the specimens were immersed in 10 mL of deionized distilled
water for another 24 hours at 37◦C in 100 % relative humidity, resulting in 15.3 ± 0.4 MPa
splitting strength. Nagas et al. (2016); Uyanik et al. (2019); Elsaka et al. (2019) tested the
cylindrical specimens produced from molds with inner diameter and height amounting to
4 mm and 6 mm, respectively.

Flexural strength of thin prisms with dimensions 10 × 2 × 1 mm3 were tested by means of
three point bending test by Natale et al. (2015). The specimens were cured at 37◦C in 100 %
relative humidity for 48 hours which resulted in flexural strength of 24.4 ± 7.5 MPa. Bi-axial
flexural strength of 2 mm thick and 12 mm wide discs were performed by Alhodiry et al. (2014).
A disc was placed on three fixed ball bearings arranged around the disc’s circumference with
angular spacing of 120◦. The loading was applied to the center of the disk on the opposite
side from the ball bearings through a stainless steel rod of 1 mm radius. The material age at
the time of testing was one week at least. The experimentally derived biaxial flexural strength
amounts to 9.5 ± 2.9 MPa.

As a summary, from the information available in the literature, Biodentine cement powder
consist mainly from finely ground tricalcium silicate, calcium carbonate, and zirconium dioxide.
Hardened Biodentine possess compressive strength values that usually surpasses the strength of
other dental cement pastes investigated in the comparative studies (Rajasekharan et al., 2018).
As discussed in Section 1.1, macroscopic behavior can be explained based on understanding
the microstructure of studied material by means of micromechanical modeling. This makes
Biodentine an attractive subject for such investigation. However, to the best knowledge of the
author this has never been accomplished. Therefore, the basic principles of micromechanical
modeling are revisited in next section, following (Königsberger, 2016; Schmid, 2018; Binder,
2019).

1.3 Fundamentals of micromechanical modeling
Macroscopic properties of materials are governed by physical phenomena prevailing at the
microscopic scale. Methods of continuum micromechanics provide quantitative link between
the micro- and macroscopic word. Thus, if the physical mechanism at the small scales of
observation are considered carefully, then the micromechanical modeling can predict the
macroscopic material behavior.
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Finally, the stresses must fulfill the equilibrium conditions, reading as

divσ(x) = 0 . (1.5)

1.3.3 Boundary condition and average rules
At the boundary ∂V of the RVE, either strain or stress uniform boundary conditions can be
prescribed. In case of uniform strain boundary conditions, denoting the imposed macroscopic
strain state as E, they read as

u(x) = E · x . ∀x ∈ ∂V . (1.6)

For a kinematically admissible (compatible) microstrain field ε(x), the uniform strain boundary
condition (1.6) implies that the volume average of the microstrain field is equal to the macro-
strain (Hill, 1963; Hashin, 1983; Zaoui, 2002):

1
V

�
V

ε(x) dV = E . (1.7)

Hill’s lemma reads as (Hill, 1963; Zaoui, 2002):

1
V

�
V

σ(x) : ε(x) dV = Σ : E , (1.8)

where Σ denotes the macroscopic (homogeneous) stress within the RVE. Eq. (1.8) implies
that the strain energy stored in an RVE can be calculated at the microscopic as well as at the
macroscopic scale. Combining Eq. (1.8) with the strain average rule (1.7) yields the stress
volume average rule:

1
V

�
V

σ(x) dV = Σ . (1.9)

In case of uniform stress boundary conditions, the macroscopic (homogeneous) stresses Σ
are prescribed at the boundary of the RVE. They are applied in terms of traction vectors t(x)
in the form of Cauchy’s formula with:

t(x) = Σ · n(x) , (1.10)

where n represents the outward normal vector at the bundary. Due to the equilibrium state
of the microscopic stress field σ(x), the stress volume-average rule (1.9) is obtained directly.
Using the Hill’s lemma yields the strain volume-average rule (1.7) (Zaoui, 2002).

1.3.4 Definition of homogenized stiffness
If the homogenized stiffness tensor Chom is calculated as the volume average of the microscopic
stiffness tensor field C(x), then this volume average represents an upper bound for the
homogenized stiffness of a material

1
V

�
V

C(x) dV ≥ Chom . (1.11)

The access to the homogenized stiffness tensor is obtained through strain concentration tensor
field A(x). Considering the linearity of the field equations (1.3), (1.5), as well as the boundary
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conditions (1.6), or (1.10), the strain concentration tensor field relates the microscopic strain
field ε(x) and the macroscopic strain E in linear fashion, reading as:

ε(x) = A(x) : E , (1.12)

and inserted into the constitutive equation (1.4) allows for rewriting the stress field as follows:

σ(x) = C(x) : A(x) : E . (1.13)

Inserting the latter to the stress volume-average rule (1.9) and extracting the position-
independent macroscopic strain state E from the integral yields:

Σ = 1
V

�
V

C(x) : A(x) : E dV = 1
V

�
V

C(x) : A(x) dV : E . (1.14)

Comparing this equation with the macroscopic version of the elasticity law,

Σ = Chom : E , (1.15)

delivers the following expression for the homogenized stiffness (Hill, 1963; Zaoui, 2002):

Chom = 1
V

�
V

C(x) : A(x) dV . (1.16)

Inserting the identity tensor to A(x) in Eq. (1.16) yields stiffness volume average, see
Eq. (1.11), which also implies ε(x) = E, see Eq. (1.12). This aspect underlines that the
strain concentration tensor field A(x) makes scale transitions possible. As for top-down scale
transition, i.e. macro-to-micro concentration (1.12), A(x) is used to downscale macroscopic
strains to microscopic scale. Regarding the bottom-up scale transition, i.e. micro-to-macro
homogenization, A(x) allows for upscaling of the microscopic stiffness field, see Eq. (1.16).

Due to the complexity of heterogeneous microstructures, the A(x) is not a priori known.
This provides the motivation to introduce material phases.

1.3.5 Introduction of material phases
Quasi-homogeneous constituents of the microheterogeneous material, denoted as material
phases, facilitates the homogenization of the elastic stiffness. They occupy specific subvolumes
Vi of the RVE V . Volume fractions of the material phases read as fi = Vi/V , with i =
1, 2, . . . , N , where N stands for the number of material phases. In addition, material phases
are characterized by specific elastic stiffness tensors Ci. Average phase strains and stresses of
material phase i are introduced as:

εi = 1
Vi

�
Vi

ε(x) dV , i = 1, 2, . . . , N , (1.17)

σi = 1
Vi

�
Vi

σ(x) dV , i = 1, 2, . . . , N . (1.18)
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Considering the volumes of material phases, defined above, the integrals in the strain volume-
average rule (1.7) and stress volume-average rule (1.9) can be, respectively, rewritten as

E = 1
V

�
V

ε(x) dV = 1
V

N"
i=1

�
Vi

ε(x) dV =
N"

i=1

Vi

V

1
Vi

�
Vi

ε(x) dV

 =
N"

i=1
fi εi , (1.19)

Σ = 1
V

�
V

σ(x) dV = 1
V

N"
i=1

�
Vi

σ(x) dV =
N"

i=1

Vi

V

1
Vi

�
Vi

σ(x) dV

 =
N"

i=1
fi σi . (1.20)

Inserting the strain concentration rule (1.12) in the strain volume-average rule, and extracting
macroscopic strains from the integral, yields

εi = 1
Vi

�
Vi

A(x) : E dV = 1
Vi

�
Vi

A(x) dV : E = Ai : E , i = 1, 2, . . . , N , (1.21)

where Ai denotes the phase strain concentration tensor. Because of the uniform stiffness
inside the phase volumes Vi, the phase-specific version of the elasticity law reads as:

σi = Ci : εi , i = 1, 2, . . . , N . (1.22)

Inserting the phase strain concentration law (1.21) into phase elasticity law (1.22) yields

σi = Ci : Ai : E , i = 1, 2, . . . , N , (1.23)

which inserted into Eq. (1.20) yields a relation between the macrostress Σ and the macrostrain
E. Its comparison with the macroscopic version of the elasticity law (1.15) delivers the
following expression for the homogenized stiffness tensor (Hill, 1963; Zaoui, 2002)

Chom =
N"

i=1
fi Ci : Ai . (1.24)

By analogy to the phase strain concentration tensors, phase stress concentration tensors
Bi establish links between the macrostress and the average phase stresses:

σi = Bi : Σ , i = 1, 2, . . . , N . (1.25)

The stress concentration tensors are related to the strain concentration tensors, as shown in
the following lines. The macroscopic elasticity law (1.15) solved for the macrostrain reads as:

E = (Chom)−1 : Σ . (1.26)

Inserting it into phase strain concentration law (1.21) and the resulting expression for εi into
elasticity law (1.22) yields a relation between the microstresses σi and the macrostress Σ.
Comparing this relation with Eq. (1.25) yields

Bi = Ci : Ai : (Chom)−1 , i = 1, 2, . . . , N . (1.27)

Eqs. (1.21), (1.24), and (1.27) underline that strain concentration tensors allows for scale
transitions in continuum micromechanics. These strain concentration tensors are estimated
based on Eshelby/Laws-type matrix-inclusion problems (Eshelby, 1957; Laws, 1977).
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1.3.6 Eshelby problem
Eshelby problem is a matrix inclusion problem that consist of a single three-dimensional
ellipsoidal inclusion of stiffness Ci embedded in an infinite matrix of stiffness C∞. The matrix
is subjected to a remote strain boundary condition, such that it is in infinite distance from
the inclusion:

u(x) = E∞ · x , for x → ∞ . (1.28)

Eshelby (1957) found out that the strain within an inclusion is constant. He related the phase
strain εi to fourth-order Hill tensor (also know as morphology tensor) P∞

i , stiffness contrast
between the inclusion Ci and the matrix C∞, as well as the remote strain E∞. Mathematically
expressed as:

εi = [I + P∞
i : (Ci − C∞)]−1 : E∞ . (1.29)

The Hill tensor depends on shape and orientation of the inclusion. It relates the inverse of the
matrix stiffness tensor C−1∞ with dimensionless Eshelby tensor Si(ν∞) depending on Poisson’s
ratio of the infinite matrix ν∞,

P∞
i = Si(ν∞) : C−1

∞ . (1.30)

Eshelby’s result (1.29) is reminiscent of the phase strain concentration law (1.21), where the
remote strain E∞ concentrates into the inclusion strain εi, implying the strain concentration
tensor in the form:

A∞ = [I + P∞
i : (Ci − C∞)]−1 . (1.31)

Therefore, the Eshelby problem (also referred to as matrix-inclusion problem) is essential tool
for estimation of the phase strain concentration tensors of heterogeneous materials. To this
end, the real material RVE has to be linked with the Eshelby problem, as discussed next.

1.3.7 Estimates of phase strain concentration tensors
In order to estimate the phase strain concentration tensors of a real microheterogeneous
material with N material phases, N Eshelby problems have to be considered. The Eshelby
problems are linked with the real material RVE as described next. First, for each material
phase, one Eshelby problem is formulated. In other words, the properties (stiffness, shape,
and orientation) of the i-th material phase are transferred to the inclusion of the i-th Eshelby
problem. Then, the stiffness of the infinite matrices of all Eshelby’s problems are set equal to a
representative stiffness property of the real RVE. This is determined based on the interaction
of the material phases and on the morphology of the microstructure. There are two distinct
morphology types.

• Matrix-inclusion-type morphology has the stiffness of the infinite matrix C∞ equal to
the stiffness of the RVE-related matrix phase (Zaoui, 2002). This approach is usually
referred to as the Mori-Tanaka scheme (Benveniste, 1987).

• Polycrystalline morphology is characterized by a disordered arrangement of phases which
are in direct mutual interaction. In this case, the stiffness of the infinite matrix C∞ is
equal to the stiffness of the homogenized RVE Chom. This approach is usually referred
to as the self-consistent scheme (Hershey, 1954).

As the next step, link between the loading of the infinite matrix in Eshelby problem E∞ and
the loading of the real RVE of the microheterogeneous material is established. To this end,
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Eq. (1.29) is formulated N times for N material phases, such that N inclusions strains from
Eq. (1.29) are equal to the estimates of the N real average phase strains (1.7):

E =
N"

i=1
fi εi =

N"
i=1

fi [I + P∞
i : (Ci − C∞)]−1 : E∞ . (1.32)

Solving Eq. (1.32) for E∞

E∞ =


N"
i=1

fi [I + P∞
i : (Ci − C∞)]−1

�−1

: E , (1.33)

and inserting it into Eq. (1.29) yields an estimate of the phase strain concentration tensor:

εi = [I + P∞
i : (Ci − C∞)]−1 :

 N"
j=1

fj

�
I + P∞

j : (Cj − C∞)

−1

−1

: E . (1.34)

Comparing Eq. (1.34) with the phase strain concentration law (1.21) delivers phase strain
concentration tensor

Ai = [I + P∞
i : (Ci − C∞)]−1 :

 N"
j=1

fj

�
I + P∞

j : (Cj − C∞)

−1

−1

. (1.35)

Finally, inserting the latter into Eq. (1.16) yields the sought estimate of the homogenized
stiffness:

Chom =
N"

i=1
fi Ci : [I + P∞

i : (Ci − C∞)]−1 :

 N"
j=1

fj

�
I + P∞

j : (Cj − C∞)

−1

−1

. (1.36)

Eq. (1.36) accounts for four key characteristic features of a microheterogeneous material:
phase shapes and orientations, phase interactions, phase volume fractions, as well as elastic
stiffness of the material phases.

1.4 Main objectives of the research
The knowledge gaps identified in the previous text are closed by means of methods provided
by continuum micromechanics and experimental mechanics. In this context, the objectives
can be divided into two parts: (i) experimental campaign, and (ii) micromechanical modeling.
As regards the former, the attention is drawn to grid nanoindentation, ultrasonic pulse
transmission technique, and compressive strength tests, as described in the following.

• Grid nanoindentation:
In order to obtain information on the microstructure behavior, the focus is put on the
grid nanoindentation. In particular, stiffnesses of the individual material constituents
are of interest as these are the essential input parameters for quantifying upper and
lower stiffness bounds as well as simple stiffness homogenization approach.

• Ultrasonic pulse transmission technique:
This technique is used for characterization of macroscopic (“homogenized”) stiffness. In
comparison to the conventional unloading experiments, the ultrasonic pulse transmission
technique is convenient when dealing with small specimens. This is typically the case
when testing dental cement pastes.
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• Compressive strength test:
Broadly adopted standard for compressive strength tests of cementitious dental materials,
ISO 9917:1-2007, recommends molds with inner length and diameter equal to 6 mm and
4 mm, respectively. Even if the specimens are prepared perfectly, i.e. their dimensions
are identical to the inner cavity of the mold, their length-to-diameter ratio is smaller
than two. This suggest, that such tests account for structural effect rather than material
property (Karte et al., 2015; Ausweger et al., 2019). For a meaningful explanation
of strength at microscopic scale, the genuine uniaxial compressive strength of the
investigated material is required.

As regards the modeling part, the focus is put on simple micromechanical modeling,
which is the cornerstone for more sophisticated model that accounts for continuous stiffness
distribution of the two population of hydrates. This model is also used for explanation of the
compressive strength at microscopic scale, as described next.

• Simple micromechanical modeling:
The classical Voigt and Reuss stiffness bounds (Zaoui, 2002) as well as a simple stiffness
upscaling model in a self-consistent form (Hershey, 1954; Hill, 1965b) provide fast and
robust plausibility check between the “microstructural” elastic properties, probed by
nanoindentation tests, and the “macroscopic” elastic properties obtained from ultrasound
experiments.

• Improved model for stiffness upscaling:
In order to upscale the stiffness of mature dental cement paste, the micromechanical
model uses probability density functions describing lognormal microstiffness distribu-
tions of the two populations of hydrates as an input. Moreover, the micromechanical
performance of this improved model is compared with a classical model in which each
material constituent is represented by one constant stiffness value.

• Explanation of compressive strength:
In order to explain the reason for failure of the dental cement paste at the micromechanical
scale, the stiffness homogenization model from previous step is exploited here; in
particular, its ability of the top-down stress quantification. This feature is used for
establishing quantile-based correlations between the statistically distributed indentation
modulus and equivalent shear strength, a quantity stemming from Mohr-Coulomb failure
criterion.

It is of importance to consider the basic mechanisms that have significant effects on
behavior of the material. Therefore, an engineering approach, according to the principle, “as
simple as possible, as complex as necessary” is applied, in order to obtain first insights into
this extraordinary material. In this context, the models are intended to reproduce behavior of
cementitious dental materials at mature ages. In particular for stiffness homogenization, this
justifies the approximation of the hydrates shapes as spheres.

1.5 Outline of the thesis
The following chapters contain already published papers as well as mature paper draft which
is planned to be submitted soon for publication. Chapter 2 investigates the elastic properties
of dental cement paste, first, at microscale by means of grid nanoindentation technique, and
second, at the macroscale by means of ultrasound experiments. Simple micromechanical
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modeling provides a means to check the consistency between results obtained from these
analyses. Chapter 3 presents a microelasticity model in which infinitely many material phases
are introduced. This is based on the two statistical microstiffness distributions of the two
population of hydrates identified from nanoindentation experiments. Next, the statistical
microelasticity model is further used to examine the strain and stress fluctuations inside
the hydration products by means of probability density functions of the volumetric and
deviatoric strain and stress concentration tensor components. These findings on strength
fluctuations are further exploited in Chapter 4 for a detailed micromechanical explanation
of the failure behavior of mature dental cement paste. In this context, compressive strength
tests of cylindrical specimens are carried out in order to obtain genuine uniaxial compressive
strength. Finally, the thesis is summarized, concluded, and completed with a future outlook
in Chapter 5.
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to the intermediate LND, representing highly dense calcite-reinforced hydration products
with on-average more than 60 GPa elastic modulus and 3 GPa hardness. The remaining
data refer, on the one hand, to lower density hydration products, and on the other hand, to
single-micron-sized unhydrated clinker and zirconium-dioxide inclusions. Micromechanical
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2.1 Introduction
Dental cement pastes need to be workable for a few minutes after mixing, and to harden
quickly thereafter. Moreover, their biocompatibility with enamel, dentin, and pulp is required,
while their mechanical strength needs to allow for physiologically relevant biting (Primus
et al., 2019).

Accordingly, they typically exhibit strength values exceeding those of chemically similar
construction cements, with BiodentineTM (Septodont, Saint-Maur-des-Fossés, France) reaching
some 300 MPa uniaxial strength (Butt et al., 2014). However, different from the situation
with construction cements, the micromechanical performance of dental cements, i.e. the
contribution of the material’s individual constituents to its overall mechanical behavior, has
hardly been studied so far. The present paper wishes to close the corresponding knowledge
gap. Therefore, it is useful to recall basic properties of Biodentine first: The cement powder
comes in capsules containing 0.7 grams, and its chemical composition was quantified by means
of X-ray diffraction analyses with Rietveld refinement (Camilleri et al., 2013; Grazziotin-Soares
et al., 2019; Li et al., 2019), see also Table 2.1: Some 74 wt% of the cement powder are made
up by tricalcium silicate (Ca3SiO5), some 16.5 wt% by calcium carbonate (CaCO3) acting
as a filler, some 5 wt% by zirconium dioxide (ZrO2) providing X-ray opacity (Laurent et al.,
2008, 2012), and some 4.5 wt% by dicalcium silicate (Ca2SiO4).

Table 2.1
Composition of the dry binder of Biodentine: constituent-specific mass fractions (Li et al.,
2019), masses in one capsule containing 0.7 g of powder, and mass densities (Lavergne et al.,
2018; Kyocera Group, 2019).

index i constituent mass fraction mass in one capsule mass density
[wt%] [mg] [kg/m3]

1 Ca2SiO4 4.45 31.15 3270
2 Ca3SiO5 73.80 516.60 3150
3 CaCO3 16.60 116.20 2710
4 ZrO2 5.15 36.05 5600

sums 100.00 700.00

The mixing liquid of “Biodentine” comes in tubes containing approximately 200 microliters.
This liquid consists of water, a modified polycarboxylate polymer acting as a superplasticizer,
and calcium chloride (CaCl2) accelerating the setting reaction (Laurent et al., 2012).

Herein, we resort to grid nanoindentation testing (Constantinides et al., 2006; Constan-
tinides and Ulm, 2007; Ulm et al., 2007), in order to probe the material at maximum
indentation depths hmax of around 100 nm. The correspondingly derived elastic and hardness
properties relate to representative material volume elements (RVEs) the characteristic size of
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which follows as (Jagsch et al., 2020):

ℓNI
RVE ∈

�
hmax

3 ; hmax

2


= [33; 50] nm . (2.1)

Hence, our nanoindentation tests do not characterize the overall hardened dental cement
paste, but rather its micromechanical phases, such as unhydrated clinker grains or different
hydration products. In order to precisely screen corresponding phase properties, we perform
thousands of nanoindentation tests, and we represent histograms of elasticity and hardness
as the superposition of phase-specific log-normal distributions. In this way, we consider a
priori the positive definiteness of the probed mechanical properties (Pichler et al., 2005). The
relevance of this strategy is then checked through complementary investigations:

• Microscopic images give direct access to characteristic particle sizes within the mi-
crostructure;

• ultrasonic tests in the kHz to MHz frequency regime detect the “macroscopic” elastic
properties of Biodentine hardened cement paste at an RVE-size ℓUS

RVE in the order of
tens of micrometers; and

• micromechanical modeling, both in a self-consistent form (Hershey, 1954; Hill, 1965b) as
well as in terms of the classical Voigt and Reuss stiffness bounds (Zaoui, 2002), provides
a means to check the consistency between the “microstructural” elastic properties probed
by nanoindentation tests and their ultrasound-derived “macroscopic” counterparts.

Along these lines, the present paper is structured as follows: Section 2.2 refers to materials
and methods, Section 2.3 to results, Section 2.4 to the discussion of the obtained results, and
Section 2.5 to the conclusions drawn from the present study.

2.2 Materials and methods

2.2.1 Sample preparation
Biodentine cement pastes were produced according to the instructions of the manufacturer.
Capsules containing the dry binder power were opened, five droplets of the liquid were dripped
onto the binder, and then the capsules were closed and shaken in the amalgamator for 30
seconds. After mixing, the capsules were removed from the amalgamator and opened.

For grid nanoindentation testing, the freshly produced material was taken out of the
capsule with a spatula and formed into a cuboidal shape with dimensions 12×7×3 mm3. This
cuboidal specimen was allowed to harden for four months, at room temperature and exposed
to the ambient air. We note that this led to the formation of a carbonated layer at the
outer surface of the specimen. Hence, it was important to follow a protocol which effectively
prevents any adverse effects of this layer. Accordingly, the following steps were taken:

First, the cuboidal specimen was fixed, by means of the two component polyurethane glue
WIKO Repair 90 (Gluetec, Germany), onto a glass plate for further processing. The top
surface of the well-hardened specimen was first ground by hand and subsequently polished by
means of a PM5 precision polishing machine (Logitech, Scotland), operated for 20 hours at 40
to 50 revolutions per minute, using silicon carbide (SiC) grinding paper with a grain size of
5µm. This treatment reduced the thickness of the specimen from 3 mm to 1.5 mm, implying
the removal of all the material which was negatively affected by air curing. Conclusively, the
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nanoindentation tests were performed on the surface of a material which was similar to that
tested ultrasonically.

Namely, for ultrasonic testing, the freshly produced material was cast into seven cylindrical
plastic molds of 5 mm diameter and 10 mm height, with the top and the bottom bases of the
cylinders being covered by plexiglass. The filled molds remained, for at least 15 minutes and
for at most two hours, in a temperature chamber at 37◦C. Thereafter, the specimens were
demolded, and conditioned in lime-saturated solution, again at 37◦C. The specimens were
taken out of this solution for ultrasonic testing only.

2.2.2 Roughness testing protocol
Employing the Scanning Probe Microscopy (SPM) mode of the Hysitron Triboindenter TI-900,
Bruker, USA, the root-mean-squared average roughness Rq was quantified as (Miller et al.,
2008)

Rq =

 !!� 1
P 2

P"
m=1

P"
n=1

z2
mn , (2.2)

where zmn is the distance between the surface at position (m, n) and the mean plane of the
scanned surface. P 2 is the number of scanned positions within a quadratic testing area with
50µm side length, scanned along a regular grid of 256×256 measurement points. The surface
probed herein was characterized by

Rq = 18 nm , (2.3)
see Fig. 2.1. The average roughness Rq sets a minimum requirement for the maximum

Fig. 2.1. Scanning probe microscopic image showing polished surface of hardended dental
cement paste; heights are given in nm, and resolved down to a pixel size of 195 nm.

indentation depth needed to allow for reasonable determination of hardness and elastic
modulus from the Oliver-Pharr solution for a Berkovich tip pressed into the surface of an
elasto-plastic halfspace (Oliver and Pharr, 1992). Namely, the maximum indentation depth
needs to amount to at least 2.5 times the roughness (see page 432 of Donnelly et al. (2006);
and Fig. 8 of Miller et al. (2008))

hmax ≥ 2.5 Rq = 45 nm , (2.4)
where also use of Eq. (2.3) was made. Out of the 5748 indentation tests performed according to
the protocol described in the subsequent subsection, only two were associated with maximum
indentation depths smaller than 45 nm; hence, the roughness requirement was virtually always
fulfilled.
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2.2.4 Statistical evaluation of nanoindentation test results
The data sets of hardness and modulus values, respectively, are represented in terms of
histograms. For choosing appropriate bin widths, we resort to the Freedman-Diaconis rule
(Freedman and Diaconis, 1981),

bF D
X = 2 IQR(X) N

− 1
3

i , X = M, H , (2.9)

where Ni = 5746 stands for the total number of measurements represented by the histogram
and IQR(X) stands for the interquartile range of the hardness or moldulus data set, respectively.
Based on the numbers suggested by the Freedman-Diaconis rule, the actually chosen bin
widths are

bM = 2 GPa , (2.10)

and
bH = 0.15 GPa . (2.11)

The central value Xi of each of these bins reads as

Xi = (i − 1) × bX + bX

2 , i = 1, 2, . . . , Nb , X = M, H . (2.12)

with Nb = 100 being the total number of histogram bars. The number of indents associated
with each specific histogram bar is translated into a corresponding probability value, so
that the sum of the areas of all bars belonging to one histogram is equal to 1. Hence, the
experimentally obtained probability associated with the ith histogram bar reads as

P exp(Xi) = xi

Ni bX
, X = M, H , (2.13)

where xi denotes the number of experimental results found in the interval Xi ± bX
2 .

The experimentally determined probability distributions Eq. (2.13) are approximated by
the superposition of log-normal distributions; mathematically, this approximation reads as

P app(X) =
C"

c=1
fc P log

c (X, µX,c; σX,c) , X = M, H , (2.14)

with the log-normal distributions reading as

P log
c (X; µX,c, σX,c) = 1

XσX,c

√
2π

exp
�

− 1
2

� ln(X) − µX,c

σX,c

2�
, X > 0 . (2.15)

and with the weights fc fulfilling the side condition

C"
c=1

fc = 1 . (2.16)

The weights are equal to the area fractions of the constituents of the nanoindentation-probed
microheterogeneous material. Given a highly disordered microstructure of a macroscopically
isotropic material, and a grid nanoindentation testing campaign that probes an area which
is statistically representative for the analyzed microheterogeneous material, the weights are
also equal to the volume fraction of the constituents (Constantinides and Ulm, 2007), i.e. the
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ratio of the volume occupied by a specific constituent, Vc, divided by the total volume of the
composite

fc = Vc#C
j=1 Vj

. c = 1, 2, . . . , C . (2.17)

The median and mode values, denoted as Md(Xc) and Mo(Xc), are related to the log-normal
parameters µX,c and σX,c through

Md(Xc) = exp(µX,c) , (2.18)

Mo(Xc) = exp
�
µX,c − σ2

X,c

�
. (2.19)

The approximation according Eq. (2.14) to Eq. (2.16) is realized by minimizing the following
square root of the sum of squared errors:

εSRSS =

 !!!� 1
2Nb

"
X=M,H

Nb"
i=1

�
P exp(Xi) − P app(Xi)


2 → min . (2.20)

The optimization problem defined by Eqs. (2.13)–(2.20) is solved iteratively, based on search
intervals that are progressively refined and shifted, see Appendix 2.A for details.

2.2.5 Light microscopy imaging of polished surfaces
The ultrasonically tested specimens were embedded into epoxy resin, before being cut, polished,
and cleaned in an ultrasonic bath. Color as well as black-and-white images of 2584×1936 pixels
and 1292 × 968 pixels, respectively, with pixel sizes ranging from 0.34 to 0.54 microns, were
taken by a Zeiss AxioCam MRc5 camera connected to a light microscope Zeiss Axio Imager
Z1m. The images were postprocessed by Software ImageJ, in terms of a threshold-based
conversion into binary images revealing a matrix-inclusion morphology.

2.2.6 Ultrasonic pulse transmission
The non-destructive ultrasonic pulse transmission technique, based on longitudinal waves, is
used for the characterization of the macroscopic “effective” (or homogenized) elastic stiffness of
the composite Biodentine. The test setup consists of a serial arrangement of a pulse generator,
a layer of honey (= coupling medium), a plastic foil, the specimen, another plastic foil, another
layer of honey, and a pulse detector, see Fig. 2.3. The plastic foils ensure that the coupling
medium does not penetrate in the potentially open porosity of the tested sample. The setup
is placed inside a temperature chamber conditioned to 37◦C.

According to the theory of wave propagation through isotropic and linearly elastic media
(Carcione, 2007; Achenbach, 1973), the component C1111 of the elastic stiffness tensor is equal
to the product of the investigated material’s mass density ρ and the velocity v of longitudinal
waves propagating through the sample (Kohlhauser and Hellmich, 2012; Carcione, 2007;
Achenbach, 1973),

C1111 = ρ v2 . (2.21)
The wave velocity is equal to the height of the tested specimen b divided by the time of flight
tf of the ultrasonic pulse through the tested specimen,

v = b

tf
. (2.22)
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Fig. 2.3. Setup of the ultrasonic pulse transmission tests, consisting of ultrasonics transducers
(Olympus PR5077), the tested specimen, honey layers as coupling medium, plastic foils
separating the specimen from the honey layers, and a digital oscilloscope (Wave Runner 62Xi);
source: (Kohlhauser, 2009).

tf cannot be directly measured, but results from the difference of two other time measurements,

tf = ttot − td , (2.23)

where ttot is the travel time of the pulse from the transducer – through the coupling medium,
the plastic foils, and the specimen – to the receiver, while the delay time td is needed by the
pulse to just travel from the generator, through honey and plastic foils (but without specimen),
to the receiver. In total, 325 tests were performed at material ages from 7 to 28 days, using
longitudinal transducers with excitation frequencies amounting to 50 kHz, 500 kHz, 1 MHz,
2.25 MHz, 5 MHz, 10 MHz, and 20 MHz, see Table 2.2.

Table 2.2
Ultrasonic longitudinal wave transducers used for characterization of hardened Biodentine.

Frequency [MHz] Longitudinal
transducer

0.05 X1021
0.5 V101-RB
1 C602-RB
2.25 C604-RB
5 C109-RM
10 V112-RM
20 V116-RM

The mass density of hardened Biodentine was determined specimen-per-specimen, and on
every measurement day. The mass of every specimen, determined using a digital scale (Kern
& Sohn GmbH, PCB 2400-2B), was divided by the volume V = b a2 π/4, where the diameter
a and the length b of the cylindrical specimens were measured using a digital sliding caliper.
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Ultrasonic waves characterize material volumes with characteristic lengths which need to
be by at least a factor of ten smaller than the wavelength λ (Kohlhauser and Hellmich, 2013).
Anticipating wave velocities in the order of v = 5 km/s, see Fig. 2.7 (a), fairly independent of
the frequency of the applied signals, we obtain

min λ = v

max f
= 5000 m/s

20 × 106 Hz = 0.00025 m ,

max λ = v

min f
= 5000 m/s

0.05 × 106 Hz = 0.1 m ,
(2.24)

ℓUS
RVE ∈

�min λ

10 ; max λ

10


= [0.025; 10] mm ≫ ℓNI

RVE ∈ [33; 50] nm , (2.25)

where use of Eq. (2.1) was made. We see that the nanoindentation-probed material volumes
with characteristic length ℓNI

RV E appear as microheterogeneities in the much larger ultrasonics-
probed material volumes with characteristic length ℓUS

RV E . We note in passing that the scale
separation requirement (2.25) between nanoindentation-probed microheterogeneities and
ultrasonics-probed homogenized material volume is largely overfulfilled: A corresponding
factor of two to three normally suffices for spherical microheterogeneities (Drugan and Willis,
1996; Pensée and He, 2007), while a larger factor of four to fourteen is needed in case fiber
networks (Shahsavari and Picu, 2013).

2.2.7 Micromechanical stiffness bounds and estimates
Methods of continuum micromechanics (Zaoui, 2002) provide access to bounds and esti-
mates of the homogenized “effective” stiffness of RVEs of microheterogeneous materials, see
Appendix 2.B. As for their numerical application to the investigated material, the volume
fractions of freshly mixed Biodentine, fc, were determined from the following compositional
analysis, based on the data from Table 2.1 for the dry binder components and on the following
mass and volume measurements on the mixing liquid: The mass of five droplets of the
mixing liquid, m5, was quantified based on three individual measurements of the liquid in an
Eppendorf tube using advanced level balance (Mettler Toledo PG403-S, Switzerland):

m5 = 193.0 ± 6.2 mg . (2.26)

The mass density of the mixing liquid, ρ5, was determined from measuring the mass of a tip
detached from a micropipette, before and after aspiring 100µL of the mixing liquid into the
tip. The mass of 100µL of the mixing liquid amounts to 147.2 ± 3.7 mg, which divided by the
known volume yields the mass density of the mixing liquid as

ρ5 = 1.472 ± 0.037 mg/mm3 . (2.27)

The volume fractions of the individual constituents of freshly mixed Biodentine are equal
to the volume occupied by the individual constituents divided by the sum of volumes of all
constituents. Expressing volumes as masses divided by mass densities, yields, by analogy to
Eq. (2.17),

fi =
mi
ρi#5

j=1
mj

ρj

, i = 1, 2, . . . , 5 , (2.28)

see Table 2.3. The initial volume fractions of the chemically inert calcite, 12.12 %, and
zirconium dioxide, 1.82 %, are constant throughout the hardening process. Thus, they are
also valid for hardened Biodentine.
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Table 2.3
Composition of freshly mixed Biodentine: constituent-specific masses in one capsule containing
0.7 g of powder (see also Table 2.1), mass densities (see also Table 2.1), and volume fractions.

index constituent mass mass density volume
i mi [mg] ρi [mg/mm3] fraction** fi [%]
1 Ca2SiO4 31.15 3.270 2.69
2 Ca3SiO5 516.60 3.150 46.33
3 CaCO3 116.20 2.710 12.12
4 ZrO2 36.05 5.600 1.82
5 Liquid 193.00* 1.472* 37.04

sums 893.00 100.00
* this study, see Eqs. (2.26) and (2.27)
** see Eq. (2.28)

2.3 Results
The probability density function repesenting the 5746 nanoindentation test results fulfilling
requirement (2.4) can be very well represented by means of the superposition of three log-
normal distributions (LNDs) [i.e. C = 3 in Eq. (2.14)], as is underlined by an error according
to Eq. (2.20), which is as low as 1.25 × 10−3; see Fig. 2.4. According to the increasingly high
numbers associated to these LNDs, the latter are referred to as “low LND”, “medium LND”,
and “high LND”; and the corresponding median and mode values are given in Table 2.4.

Table 2.4
Approximation of Ni = 5746 indentation test results through log-normal distributions, three
each for hardness and modulus data.

statistical
sub-sample

Md(M)
[GPa]

Md(H)
[GPa]

Mo(M)
[GPa]

Mo(H)
[GPa]

volume
fraction f [–]

low LND 45.1 1.15 24.5 0.26 0.1228
medium LND 62.6 2.78 60.2 2.47 0.7420

high LND 92.2 6.66 89.0 5.93 0.1352
sum: 1.0000

It is interesting to relate the three domains defined by the nanoindentation results of
Table 2.4, to the light microscopic images taken according to Section 2.2.5, see Figs. 2.5
and 2.6, and to the mechanical properties of calcite, cement clinker, and zirconium dioxide.

Figs. 2.5 (b) shows black inclusions with a binary-image-derived volume fraction of 1.3 %
and a mean size of 10.7µm, embedded in an overall “matrix”. These inclusions qualify as
air pores. Given their low volume fraction, they are not represented as a distinctive LND in
Table 2.4 or Fig. 2.4.

The median values of the modulus and the hardness of the high LND, Md(M) = 92.2 GPa
and Md(H) = 6.66 GPa, see Table 2.4, are larger than the mechanical properties of calcite:
M = 85.8 GPa and H = 4.6 GPa, see Lavergne et al. (2018); Merkel et al. (2009), and
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smaller than those of cement clinker M = 125 GPa and H = 9.2 GPa, see Constantinides
and Ulm (2007). Notably, zirconium dioxide is even stiffer and stronger than cement clinker.
Considering that a nanoindentation test may well probe the mechanical behavior of both a
sufficiently small, stiff inclusion and its much softer environment (Königsberger et al., 2021),
see also Section 2.4.4 for a more detailed discussion of this aspect, we conclude that the high
LND must refer to cement clinker and zirconium dioxide.

This conclusion is further confirmed by an additional plausibility check: Fig. 2.6 (b) shows
black inclusions embedded in an overall “matrix”, with a mean particle size of 4.3µm and a
binary-image-derived volume fraction of 12.1 %. Considering that these particles are residual
cement clinker, and adding to their image-derived volume fraction (12.1%) that of zirconium
dioxide: 1.8 %, see Table 2.3, yields 13.9 %. This value is remarkably close to 13.5 %, which is
the volume fraction associated with the high LND in Table 2.4.

(a) (b)
Fig. 2.5. (a) Color light microscopy image of a polished surface of hardened Biodentine, with
pixel size amounting to 0.54µm: air pores appear as black spots; they comprise 1.3 % of the
image, as quantified from a thresholded binary image (b).

(a) (b)
Fig. 2.6. (a) Black-and-white light microscopy image of a polished surface of hardened
Biodentine, with pixel size amounting to 0.34µm, remnants of unhydrated clinker appear in
light grey; they comprise 12.1 % of the image, as quantified from a thresholded binary image
(b).
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Table 2.5
LND-specific elastic properties (“micromechanical phase properties”) determined from the
median values of Table 2.4.

material
phase

indentation
modulus
Mc [GPa]

Poisson’s
ratio
νc [–]

elastic
modulus Ec

[GPa]

bulk
modulus kc

[GPa]

shear
modulus µc

[GPa]
low LND:

c = 1 45.1 0.24 44.2 28.4 17.8

medium LND:
c = 2 62.6 0.24 62.4 40.0 25.2

high LND:
c = 3 92.2 0.30 91.2 76.0 35.1

Table 2.6
Bounds and self-consistent estimates for homogenized stiffness component C1111 of hardened
Biodentine, based on the phase properties of Table 2.5.

upper bound 77.6 GPa
self-consistent estimate 75.3 GPa
lower bound 73.7 GPa
effective experimental value 57.2 GPa

the introduction of other microstructural quantities, such as the crack density parameter of
Budiansky and O’Connell (Budiansky and O’Connell, 1976; Pensée et al., 2002). However,
quantification of the crack density, as e.g. given in greater detail in Jagsch et al. (2020), is
beyond the scope of the present paper.

2.4 Discussion

2.4.1 Dental hydrates vs. construction cement hydrates
The high-density calcite-reinforced hydrates of Biodentine, with H = 2.78 GPa and M =
62.6 GPa, see Table 2.4, are significantly stronger and stiffer than hydrates of chemically
similar construction cement pastes, including

• low-density (LD) C-S-H, with H = 0.45 GPa and M = 18.2 GPa, see the circle in Fig. 2.8
and Constantinides and Ulm (2007),

• high-density (HD) C-S-H, with H = 0.83 GPa and M = 29.1 GPa, see the square in
Fig. 2.8 and Constantinides and Ulm (2007), as well as

• a nano-composite consisting of HD C-S-H reinforced by nanocrystals of calcium hydroxide
(initially also referred to as “ultra high-density C-S-H”, see Vandamme and Ulm (2009)),
with H = 1.6 GPa and M = 47.2 GPa, see the star in Fig. 2.8 and Chen et al. (2010).

The less-dense calcite-reinforced hydrates of Biodentine with H = 1.15 GPa and M = 45.1 GPa,
see Table 2.4, are comparable to the calcium-hydroxide-reinforced HD C-S-H, see Fig. 2.8.
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nanoindentation, carbonation of the specimens for ultrasonic characterization had to be avoided.
Accordingly, they were cured in a limestone solution. This prevented both carbonation and
leaching.

When it comes to suction of water into the specimens, we do not expect any difference
between our sample immersion protocol and the standard “physiological” sample exposure
to 100 % relative humidity (Rajasekharan et al., 2014; Guneser et al., 2013): As a matter of
fact, our own experiments have evidenced that masses of the specimens, measured directly
after demolding of the cylindrical samples (without any contact to air with 100 % relative
humidity or fluids) and measured after several days of immersion in limestone solution did
not differ from each other by more than the measuring precision limit; the latter amounting
to 0.01 gram. This is consistent with the choice of Jang et al. Jang et al. (2021) to immerse,
in water, specimens for compressive strength tests.

2.4.3 Propagation of bulk waves in elastic media
It is known that not only bulk waves without lateral deformations, mathematically character-
ized by Eq. (2.21), but also bar waves may propagate through a cylindrical specimen. In the
case of bar waves, the Young’s modulus E rather than the elastic constant C1111 would follow
from the product of mass density and square of the wave velocity. A systematic experimental
study (Kohlhauser and Hellmich, 2013) has evidenced that the propagation of a bulk wave in
cylindrical specimens with diameter a and height h essentially depends on the slenderness
ratio a/h and on the height-over-wavelength ratio h/λ, according to the following criterion

−1.426 log
�

a

h

�
− 0.530 log

�
h

λ

�
≤ 1 . (2.29)

In our case, the wave velocity amounts to v = 5000 m/s, so that frequencies f ranging from
50 kHz to 20 MHz are associated to wavelengths λ = v/f between 0.00025 m and 0.1 m, and
with h = 0.01 m, the height-over-wavelength ratio ranges from 0.1 to 40. Given in addition
a slenderness ratio of a/h = 1/2, this readily implies that the criterion (2.29) is fulfilled for
all our ultrasonic tests - we indeed encounter bulk, rather than bar wave propagation, and
Eq. (2.21) is valid.

2.4.4 Statistical analysis of grid nanoindentation data, and inhomogeneous
regions probed by the nanoindenter

Another question which may arise concerns the necessity to represent the histograms of
modulus and hardness values seen in Fig. 2.4 by three LNDs. In order to provide a direct
answer to this question, we approximate the histograms of modulus and hardness by means
of the superposition of only two LNDs, i.e. choosing C = 2 in Eq. (2.14), and employing
the search intervals given for the low and medium LNDs in Table 2.A.7. As a result, we
obtain realistically distinct medium and mode values characterizing the two log-normal
distributions representing the hardness data, while the approximation of the modulus data
delivers log-normal distribution-specific median and mode values which differ from each other
by only 10.5 % and 3.7 %, respectively. Hence, when it comes to modulus representation,
the approximation based on two log-normal distributions does not deliver physically distinct
material phases of the cement paste material. This clearly shows that the minimum number
of log-normal distribution functions needed to represent modulus and hardness data in a
physically reasonable way, is three.
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There is considerable interest in the size and properties of the region below the nanoindenter
tip, which is actually characterized in the course of a nanoindentation test. Targeting at
deeper understanding of a “region surrounded by the probe used”, Garboczi and Lura (2020)
performed a series of computational homogenization simulations: There, a cube which was, in
terms of edge length, ten to 800 times larger than differently size “subvolumes”, was subjected
to periodic boundary conditions reflecting a macroscopic homogeneous strain state. Based on
corresponding simulation results, Garboczi and Lura checked whether stress and strain states
averaged over sufficiently small SVs still give the properties of spherical domains the size of
which are approximately 1/20-th of the edge of the aforementioned big cube; as well as the
properties of the matrix filling the space between these spherical domains. We remain careful
when it comes to fully adopting Garboczi and Lura’s conclusions regarding nanoindentation,
as the “micro”-stress and “micro”-strain fields encountered below a tip of a nanoindenter
are clearly not those of a large cube subjected to periodic boundary conditions around one
homogeneous “macroscopic” strain state. Rather, considerable “macroscopic” strain gradients
would be encountered, as we will discuss further below. Still, the simulations of Garboczi and
Lura are of considerable interest for us, as they underline that an SV the characteristic length
of which is twice as large as the spherical domains playing the role of micro-heterogeneities
or phases in the context of micromechanics, already delivers results which are close to those
expected from homogenization over a matrix-inclusion composite. Hence, their simulations
are fully consistent with the scale separation factor of 2 to 3 known from the landmark
contributions of Drugan and Willis (1996) and Pensée and He (2007), which we refer to at
the end of Section 2.2.6.

Coming back to the question whether a nanoindentation test probes the material prop-
erties of the material found directly below the tip, we refer to recent experimental studies
(Königsberger et al., 2021; Ma et al., 2017) relating Oliver-Pharr solution-based modulus and
hardness values associated with a particular indent, to the distance of this very indent from
a boundary between a stiff and hard inclusion on the one hand, and a compliant and soft
matrix domain on the other hand. Such an experimental approach naturally considers all the
aforementioned stress and strain gradients occurring in the inhomogeneous domain probed
by the nanoindenter, and hence, is free of potentially oversimplifying model assumptions.
It turns out that the regions probed in and around stiff inclusions are three times larger
than those probed by a tip indented into a soft matrix domain. Hence, it is much more
probable to retrieve, from the statistical evaluation procedure described in Section 2.2.4, the
actual elastic and hardness properties of the matrix, than to find those of a material making
up stiff and hard inclusions. Accordingly, we obtain trustworthy results (“true peaks”) for
the two types of hydrates reinforced by single-to-submicrometric calcite particles; while the
elastic and hardness values associated with the third peak are lower than those expected for
unhydrated clinker. The latter values rather reflect the action of an “integrated indentation
tool” comprising both the tip and the clinker inclusion, which is then pressed into the matrix
phase. Of course, there are no analytical solutions such as that of Oliver and Pharr, for
such a complex loading scenario - and the standardly employed Oliver-Pharr formulae deliver
mechanical properties which are smaller than those of the actually indented stiff inclusion
material. Representation of this combined matrix-inclusion behavior may well explain not only
the highest LND-peak not coinciding with the actual mechanical properties of unhydrated
clinker, but also the broad spread of this LND peak. In turn, the spreading out of the two
LNDs associated with calcite-reinforced hydrates rather stems from the polymorph nature of
C-S-H, as reflected by a widespread density distribution (Juenger and Jennings, 2001; Muller
et al., 2013b,a; Königsberger et al., 2016).



Micromechanics of dental cement paste 32

2.5 Conclusions
From the results of the presented study, the following conclusions are drawn:

• Biodentine is a hierarchically organized material containing calcite-reinforced hydrates,
into which, at a higher scale, clinker grains are embedded as additional reinforcements.

• The high-density calcite-reinforced hydrates, with indentation modulus and hardness
amounting to M = 62.6 GPa and H = 2.78 GPa, are significantly stiffer and stronger
than hydrates of construction cement pastes, including low-density calcium-silicate-
hydrates, high-density calcium-silicate-hydrates, and a nano-composite consisting of
high-density calcium-silicate-hydrates reinforced by nanocrystals of calcium hydroxide.

• The macroscopic mechanical properties of Biodentine may be enhanced by reducing the
occurrence of microstructural defects.

• Comprehensive grid nanoindentation into a matrix-inclusion composite, with several
thousands of individual indents, allowed for demonstrating that the histograms of
indentation-related stiffness and strength properties of the material constituents are
asymmetric and can be represented by log-normal distributions.

• Indents with characteristic maximum depths of 87 nm into tricalcium silicate grains
with a characteristic size of 4.3µm are probing domains which are larger than the grains.
This implies that the probed domain was larger than 50 times the maximum indentation
depth, a situation which is known from the indentation of stiff inclusions being embedded
into a soft matrix (Königsberger et al., 2021). The obtained indentation moduli and
hardnesses are lower than expected, because they are influenced by the softer matrix in
which the grains are embedded, see Section 2.4.4.
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Appendix 2.A Details on LND identification

2.A.1 Solution of the optimization problem
The optimization problem defined by Eqs. (2.13)–(2.20) as well as (2.10) and (2.11) is solved
iteratively, whereby the search intervals are progressively shifted or refined, inspired by the
solution method described in Irfan-ul-Hassan et al. (2016). The solution is performed in a
staggered fashion, because simultaneous optimization of 14 unknowns is a computationally
expensive task. Every iteration step is organized in three parts. Six variables are optimized in
the first part, another six in the second part, and the remaining variables in the third part.

Part 1 of every iteration step refers to the optimization of the mean mX,c and standard
deviation sX,c of a log-normal distribution. They are related with log-normal distribution
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parameters µX,c and σX,c based on following formulas:

µX,c = ln
�
m2

X,c/
�

s2
X,c + m2

X,c

�
(2.A.1)

σX,c =
�

ln
�
s2

X,c/m2
X,c + 1

�
. (2.A.2)

The search intervals for the 6 optimization variables mH,1, mH,2, mH,3, sH,1, sH,2, and sH,3
contain 3 values each, see Table 2.A.7 for the initial search intervals. Thus, there are 36 = 729
combinations. The volume fractions f1 and f3 are set equal to the central value of their
current search interval. The remaining volume fraction f2 is computed according to Eq. (2.16),
see also Table 2.A.7. εSRSS-values of all 729 combinations are computed according to

εSRSS =

 !!� 1
100

100"
i=1

�
P exp(Hi) − P app(Hi)

2
→ min . (2.A.3)

The optimal combination of values of mH,1, mH,2, and mH,3, as well as sH,1, sH,2, and sH,3 is
stored.

Part 2 of every iteration step refers to the optimization of the mean mX,c and standard
deviation sX,c of a log-normal distribution of the indentation modulus. The search intervals
for the 6 optimization variables mM,1, mM,2, mM,3, sM,1, sM,2, and sM,3 contain 3 values each,
see Table 2.A.7 for the initial search intervals. Thus, there are 36 = 729 combinations. The
volume fractions f1 and f3 are set equal to the central value of their current search interval.
The remaining volume fraction f2 is computed according to Eq. (2.16), see also Table 2.A.7.
εSRSS-values of all 729 combinations are computed according to

εSRSS =

 !!� 1
100

100"
i=1

�
P exp(Mi) − P app(Mi)

2
→ min . (2.A.4)

The optimal combination of values of mM,1, mM,2, and mM,3, as well as sM,1, sM,2, and sM,3
is stored.

Part 3 of every iteration step refers to the optimization of the volume fractions. The
search intervals for f1 and f3 contain three values each, see Table 2.A.7 for the initial search
interval. Thus, there are nine combinations. The remaining volume fraction f2 is computed
according to Eq. (2.16), see also Table 2.A.7. The mean mX,c and standard deviation sX,c

of a log-normal distribution are set equal to the optimal values computed in parts 1 and 2.
εSRSS-values of all 9 combinations of values of f1 and f3 are computed according to Eq. (2.20).
The optimal values of f1 and f3 are stored.

Finally, new search intervals are defined for all 14 optimization variables. There are two
possibilities:

1. The search interval is refined, if the optimal value of an optimization variable is equal to
the central value of the previous search interval. The optimal value of the just completed
iteration step becomes the central value of the new search interval, and the interval
limits are redefined, such as to reduce the width of the search interval by a factor of 2,
e.g. if the old search interval reads as [ 2 , 4 , 6 ], with 4 as the optimal value in the just
completed iteration step, the new search interval reads as [ 3 , 4 , 5 ].
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as f1 ∈ [ 0.02 , 0.03 , 0.04 ]. The volume fraction of medium LND is obtained from solving
Eq. (2.16) for f2. This yields f2 = 1 − f1 − f3, see also Table 2.A.7.

Table 2.A.7
Initial search intervals for 14 variables optimized during modal analysis.

low
LND,
c = 1

mM,1 ∈ [ 20 , 30 , 40 ] GPa sM,1 ∈ [ 4.5 , 6.0 , 7.5 ] GPa
mH,1 ∈ [ 0.25 , 0.50 , 0.75 ] GPa sH,1 ∈ [ 0.125 , 0.25 , 0.375 ] GPa
f1 ∈ [ 0.02 , 0.03 , 0.04 ]

medium
LND,
c = 2

mM,2 ∈ [ 50 , 60 , 70 ] GPa sM,2 ∈ [ 8.4 , 11.1 , 13.8 ] GPa
mH,2 ∈ [ 2.25 , 2.50 , 2.75 ] GPa sH,2 ∈ [ 0.50 , 1.00 , 1.50 ] GPa
f2 = 1 − f3 − f1

high
LND,
c = 3

mM,3 ∈ [ 85.8 , 108.6 , 131.4 ] GPa sM,3 ∈ [ 5.4 , 10.9 , 16.3 ] GPa
mH,3 ∈ [ 4.60 , 6.65 , 8.70 ] GPa sH,3 ∈ [ 0.33 , 0.67 , 1.00 ] GPa
f3 ∈ [ 0.10 , 0.15 , 0.20 ]

The initial search intervals for the mean values of the indentation modulus are defined on
the basis of the histogram of Fig. 2.4 (a). As for the low LND, the search interval is defined as
mM,1 ∈ [ 20 , 30 , 40 ] GPa, and the one for the medium LND as mM,2 ∈ [ 50 , 60 , 70 ] GPa.
As for high LND, the lower and upper estimate is based on elastic modulus of calcite and
clinker, respectively. The corresponding values 83.8 GPa and 135 GPa, and theirs Poisson’s
ratios, 0.31 and 0.3, taken from Lavergne et al. (2018), Velez et al. (2001), respectively,
are inserted into Eq. (2.8). This yields the expected values of the indentation moduli of
85.8 GPa, and 131.4 GPa. Then, the corresponding initial search interval are defined as
mM,3 ∈ [ 85.8 , 108.6 , 131.4 ] GPa, see also Table 2.A.7.

The initial search interval for the standard deviation of the indentation modulus of high
LND is defined by analogy to cement clinker, in the range from 5 % to 15 % of the middle
value of mM,3 search interval, here: 108.6 GPa, see the previous paragraph. This yields
sM,3 ∈ [ 5.4 , 10.9 , 16.3 ] GPa. The search interval for medium LND is defined, by analogy
to properties of low and high density C-S-H (Constantinides and Ulm, 2007), in the range
from 14 % to 23 % of the expected value, here: 60 GPa, see the previous paragraph. This
yields sM,2 ∈ [ 8.4 , 11.1 , 13.8 ] GPa. Given that the ratio between standard deviation
and expected value is typically the larger, the smaller the expected value, the initial search
interval of low LND is set equal to 15 %, 20 %, 25 % of the expected value, here 30 GPa, see
the previous paragraph. This yields: sM,1 ∈ [ 4.5 , 6.0 , 7.5 ] GPa, see also Table 2.A.7.

The initial search intervals for the mean values of the indentation hardness are defined
on the basis of the histogram of Fig. 2.4 (b). As for the low LND, the search interval
is defined as mH,1 ∈ [ 0.25 , 0.50 , 0.75 ] GPa, and the one for the medium LND as
mH,2 ∈ [ 2.25 , 2.50 , 2.75 ] GPa. As for high LND, the lower and upper bound of the
initial search interval is defined based on hardness of calcite and clinker. The former is
4.60 GPa which is the largest hardness of calcite found in seashells (Merkel et al., 2009).
The latter is 8.70 GPa which is the hardness of Ca3SiO5 found in Velez et al. (2001). Thus,
mH,3 ∈ [ 4.60 , 6.65 , 8.70 ] GPa, see also Table 2.A.7.

The initial search interval for the standard deviation of the indentation hardness of
high LND is defined by analogy to that of the indentation modulus, i.e. as 10 % of the
middle value 6.65 GPa, see the previous paragraph, plus/minus 5 percent points. This yields
sH,3 ∈ [ 0.33 , 0.67 , 1.00 ] GPa. The search interval for medium LND and the low LND are
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defined based on the histogram shown in Fig. 2.4 (b), as sH,2 ∈ [ 0.50 , 1.00 , 1.50 ] GPa and
sH,1 ∈ [ 0.125 , 0.250 , 0.375 ] GPa, see also Table 2.A.7.

Once the initial search intervals of the mX,c, sX,c are defined, they are translated into
corresponding values of µX,c and σX,c based on Eq. (2.A.1) and Eq. (2.A.2). These values
enter the solution procedure of the optimization problem as described in Appendix 2.A.

Appendix 2.B Continuum micromechanics
Methods of continuum micromechanics (Zaoui, 2002) provide access to bounds and estimates
of the homogenized “effective” stiffness of RVEs of microheterogeneous materials. To this end,
the microstructure of Biodentine is represented as an arrangement of C isotropic constituents.
Every constituent occupies a specific fraction of the volume of the material, see Eq. (2.17),
and has a specific elastic stiffness tensor

Cc = 3 kc Ivol + 2 µc Idev , c = 1, 2, . . . , C , (2.B.1)

where kc and µc stand for the bulk and the shear modulus of the cth constituent, while Ivol

and Idev denote the volumetric and the deviatoric part of the symmetric fourth-order identity
tensor I, with components

Iijkl = 1
2(δikδjl + δilδjk) . (2.B.2)

More specifically, Ivol and Idev read as

Ivol = 1
3(1 ⊗ 1) , (2.B.3)

and
Idev = I − Ivol , (2.B.4)

where 1 denotes the second-order identity tensor with components equal to the Kronecker
delta δij with δij = 1 for i = j, and 0 otherwise. The bulk and the shear moduli are determined
from

kc = Ec

3(1 − 2νc)
, (2.B.5)

µc = Ec

2(1 + νc)
, (2.B.6)

with the elastic modulus Ec following from Eq. (2.8), while Poisson’s ratio values are adopted
from the open literature: For the reasons detailed in Section 2.3, the low and medium LNDs
are associated with a value of 0.24, which is representative for C-S-H (Lavergne et al., 2018);
while the high LND is associated with a value of 0.30, which is representative for clinker
(Lavergne et al., 2018).

An upper bound for the homogenized stiffness, introduced by Voigt (1889), is the volume
average of the stiffness tensors of the constituents (Zaoui, 2002; Dormieux et al., 2006)

CUB =
n"

c=1
fc Cc . (2.B.7)

A lower bound for the homogenized stiffness, introduced by Reuss (1929), is the inverse of the
volume average of the compliance tensors of the constituents (Zaoui, 2002; Dormieux et al.,
2006)

CLB =
� n"

c=1
fc C

−1
c

�−1
. (2.B.8)
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The self-consistent estimate of the homogenized stiffness of a microheterogeneous material
consisting of constituents with spherical phase shapes reads as (Zaoui, 2002; Hill, 1965b)

Csc = 3 khom Ivol + 2 µhom Idev , (2.B.9)

with (Hellmich and Mang, 2005)

khom =

 n"
c=1

fc kc

1 + Svol(kc−khom)
khom

 ×
 n"

c=1

fc

1 + Svol(kc−khom)
khom

−1

, (2.B.10)

µhom =

 n"
c=1

fc µc

1 + Sdev(µc−µhom)
µhom

 ×
 n"

c=1

fc

1 + Sdev(µc−µhom)
µhom

−1

, (2.B.11)

and (Zaoui, 2002; Eshelby, 1957)

Svol = 3 khom

3 khom + 4 µhom
, (2.B.12)

Sdev = 6 (khom + 2 µhom)
5 (3 khom + 4 µhom) . (2.B.13)

The implicit definition of khom and µhom necessitates an iterative computation (Hellmich and
Mang, 2005).

Appendix 2.C Experimental data

Table 2.C.8
Numerical details of the histogram of indentation hardness shown in Fig. 2.4 (a).

Int.
no.

Cent. val.
Hi [GPa]

Count of
ind. [-]

Int.
no.

Cent. val.
Hi [GPa]

Count of
ind. [-]

1 0.075 54 51 7.575 21
2 0.225 47 52 7.725 17
3 0.375 54 53 7.875 17
4 0.525 46 54 8.025 12
5 0.675 56 55 8.175 16
6 0.825 46 56 8.325 10
7 0.975 52 57 8.475 12
8 1.125 65 58 8.625 11
9 1.275 66 59 8.775 12
10 1.425 108 60 8.925 8
11 1.575 146 61 9.075 9
12 1.725 191 62 9.225 10
13 1.875 179 63 9.375 11
14 2.025 252 64 9.525 6
15 2.175 303 65 9.675 7
16 2.325 292 66 9.825 10

Continued on next page
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Table 2.C.8 – continued from previous page
Ind.
no.

Cent. val.
Hi [GPa]

Count of
ind. [-]

Ind.
no.

Cent. val.
Hi [GPa]

Count of
ind. [-]

17 2.475 295 67 9.975 14
18 2.625 300 68 10.125 14
19 2.775 298 69 10.275 7
20 2.925 264 70 10.425 6
21 3.075 262 71 10.575 7
22 3.225 216 72 10.725 13
23 3.375 184 73 10.875 6
24 3.525 170 74 11.025 3
25 3.675 172 75 11.175 7
26 3.825 136 76 11.325 6
27 3.975 109 77 11.475 4
28 4.125 97 78 11.625 2
29 4.275 102 79 11.775 1
30 4.425 82 80 11.925 4
31 4.575 75 81 12.075 5
32 4.725 86 82 12.225 0
33 4.875 61 83 12.375 3
34 5.025 54 84 12.525 1
35 5.175 63 85 12.675 0
36 5.325 49 86 12.825 1
37 5.475 39 87 12.975 3
38 5.625 39 88 13.125 0
39 5.775 46 89 13.275 0
40 5.925 26 90 13.425 2
41 6.075 33 91 13.575 0
42 6.225 27 92 13.725 0
43 6.375 36 93 13.875 1
44 6.525 29 94 14.025 1
45 6.675 19 95 14.175 0
46 6.825 25 96 14.325 0
47 6.975 16 97 14.475 1
48 7.125 22 98 14.625 1
49 7.275 16 99 14.775 0
50 7.425 25 100 14.925 0

Table 2.C.9
Numerical details of the histogram of indentation modulus shown in Fig. 2.4 (b).

Ind.
no.

Cent. val.
Mi [GPa]

Count of
ind. [-]

Ind.
no.

Cent. val.
Mi [GPa]

Count of
ind. [-]

1 1 8 51 101 48
2 3 10 52 103 33

Continued on next page
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Table 2.C.9 – continued from previous page
Ind.
no.

Cent. val.
Mi [GPa]

Count of
ind. [-]

Ind.
no.

Cent. val.
Mi [GPa]

Count of
ind. [-]

3 5 10 53 105 32
4 7 12 54 107 26
5 9 11 55 109 30
6 11 14 56 111 30
7 13 14 57 113 20
8 15 14 58 115 20
9 17 13 59 117 19
10 19 20 60 119 16
11 21 19 61 121 14
12 23 17 62 123 15
13 25 24 63 125 10
14 27 24 64 127 10
15 29 16 65 129 5
16 31 32 66 131 7
17 33 25 67 133 2
18 35 39 68 135 2
19 37 34 69 137 2
20 39 31 70 139 4
21 41 42 71 141 1
22 43 92 72 143 5
23 45 116 73 145 4
24 47 147 74 147 3
25 49 179 75 149 1
26 51 198 76 151 2
27 53 247 77 153 2
28 55 286 78 155 1
29 57 292 79 157 0
30 59 270 80 159 2
31 61 286 81 161 0
32 63 297 82 163 1
33 65 284 83 165 1
34 67 259 84 167 1
35 69 242 85 169 4
36 71 227 86 171 0
37 73 199 87 173 0
38 75 185 88 175 1
39 77 179 89 177 0
40 79 141 90 179 0
41 81 136 91 181 0
42 83 103 92 183 2
43 85 98 93 185 0
44 87 98 94 187 0
45 89 69 95 189 0
46 91 89 96 191 0

Continued on next page
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Table 2.C.9 – continued from previous page
Ind.
no.

Cent. val.
Mi [GPa]

Count of
ind. [-]

Ind.
no.

Cent. val.
Mi [GPa]

Count of
ind. [-]

47 93 66 97 193 0
48 95 57 98 195 0
49 97 54 99 197 0
50 99 42 100 199 0
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3.1 Introduction
Biodentine is a cementitious material used in dentistry. The main hydraulic component is
tricalcium silicate (“clinker”), making up 74 wt% of the dry binder powder (Laurent et al.,
2008, 2012). Calcite (16.5 wt%) acts as a filler and reinforcement (Dohnalík et al., 2021).
Zirconium dioxide (“zirconia”, 5 wt%) provides X-ray opacity. The mixing liquid consists
of water, a modified polycarboxylate polymer (= superplasticizer), and calcium chloride
accelerating the setting reaction (Laurent et al., 2008, 2012). The present paper refers to
micromechanics modeling of the elastic stiffness of well-hardened Biodentine, based on results
from a grid nanoindentation testing campaign (Dohnalík et al., 2021).

Using results from grid nanoindentation as microscopic input for upscaling of the elastic
stiffness of cement paste was introduced by Constantinides and Ulm (2004). They performed
200 indentation tests into the calcium-silicate-hydrate matrix. The 200 resulting values of
indentation moduli were translated into moduli of elasticity, assuming a Poisson’s ratio of
0.24 (Constantinides, 2002). The histogram of the moduli of elasticity showed two peaks.
They were represented by the superposition of two Gaussian probability density functions.
Their mean values were used as input for upscaling of the elastic stiffness of cement paste,
delivering a homogenized modulus of elasticity amounting to 23.2 GPa. As for validation,
the speed of longitudinal ultrasonic waves passing through the tested material, its mass
density, and its Poisson’s ratio (set equal to 0.24) were translated, based on the theory of
elastic wave propagation through isotropic media, into the macroscopic modulus of elasticity:
22.8 GPa (Constantinides and Ulm, 2004). This success motivated follow-up developments, see
the discussion section, and it provides the motivation for the present contribution. Focused
on Biodentine, it is aimed at linking microstructural stiffness distributions by means of a
micromechanics model to the macroscopic effective (= homogenized) stiffness of the material.

As regards microscopic characterization of Biodentine, results from a grid nanoindentation
testing campaign are taken from Dohnalík et al. (2021). 5748 nanoindentation tests were
performed with a Berkovich tip. Imposing maximum indentation forces of 1 mN resulted
in maximum indentation depths of on average 140 nm. Only two experiments had to be
excluded, because their maximum indentation depths were smaller than 45 nm and, therefore,
did not satisfy the requirement of being at least 2.5-times larger than the root-mean-squared
average surface roughness (Miller et al., 2008; Donnelly et al., 2006), which amounted to
18 nm (Dohnalík et al., 2021). 5746 force-displacement diagrams were evaluated based on the
Oliver-Pharr formulae for nanoindentation into infinite halfspaces (Oliver and Pharr, 1992).
The obtained histogram of the indentation modulus was represented by the superposition
of three lognormal probability density functions, see Fig. 3.1. Lognormal distributions were
used rather than Gaussians, because (i) indentation moduli are strictly positive quantities,
and (ii) the large number of indentation experiments revealed skewed rather than symmetric
stiffness distributions. The rightmost lognormal distribution in Fig. 3.1 refers to both clinker
and zirconia, the central distribution to high-density calcite-reinforced hydrates (“HDCR
hydrates”), and the leftmost to lower-density calcite-reinforced hydrates (“LDCR hydrates”),
see Dohnalík et al. (2021) and Table 3.1. This reveals the existence of two types of hydrates
reinforced by calcite particles of single-to-submicrometric size (Li et al., 2019). The two
populations of hydrates are reminiscent of construction cement pastes in which inner and
outer products (Taplin, 1959), phenograin and groundmass (Diamond and Bonen, 1993),
low-density and high-density C-S-H (Tennis and Jennings, 2000; Jennings, 2000), as well as
class-A and class-B C-S-H (Königsberger et al., 2016) are distinguished.

Evaluation of nanoindentation tests into the stiff clinker and zirconia grains, based on the
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Oliver-Pharr formulae mentioned above, led to smaller-than-expected indentation moduli,
because the grains acted as a kind of larger indenters pressed into the softer surrounding
hydrated material. This effect has been shown explicitly by image-supported grid nanoinden-
tation, applied to two different types of cementitious materials (Ma et al., 2017; Königsberger
et al., 2021). Hence, we resort to the well known elastic properties of clinker and zirconia
which are taken from the literature, see Table 3.2. The volume fractions of all four types of
solid constituents are taken from Dohnalík et al. (2021).

Table 3.2
Input quantities of the solid material constituents: bulk moduli, ki, shear moduli gi, as well
as lognormal parameters µi and σi which are consistent with median and mode values listed
in Table 3.1; input values taken from Hussey and Wilson (1998); Pichler and Hellmich (2011);
Dohnalík et al. (2021).

phase index stiffness properties vol. fraction
zirconia i = 1 k1 = 170.8 GPa g1 = 78.8 GPa f1 = 0.0182
clinker i = 2 k2 = 116.7 GPa g2 = 53.8 GPa f2 = 0.1170
HDCR hydrates i = 3 µ3 = 4.14 σ3 = 0.20 f3 = 0.7420
LDCR hydrates i = 4 µ4 = 3.81 σ4 = 0.78 f4 = 0.1228

As regards macroscopic characterization of Biodentine, the speed of longitudinal ultrasonic
waves and the mass density were reported in Dohnalík et al. (2021). Herein, also the
speed of transversal ultrasonic waves sent through well-hardened Biodentine is provided, see
Appendix 3.A. This allows for the complete characterization of the macroscopic isotropic
stiffness of the material:

kexp
bio = 38.4 GPa , (3.1)

gexp
bio = 14.1 GPa , (3.2)

where kexp
bio and gexp

bio denote the macroscopic bulk and shear moduli of Biodentine; for details
see Appendix 3.A.

The micromechanics model will also account for grain boundary defects. This is motivated
as follows. Micromechanical stiffness bounds were computed for Biodentine, based on median
stiffness values and volume fractions of the three lognormal distributions (Dohnalík et al.,
2021). The lower bound for the stiffness tensor component C1111 turned out to be significantly
larger than the value of C1111 derived from the ultrasonic longitudinal wave transmission
experiments. This analysis indicated the existence of zero-volume microstructural defects such
as imperfect grain boundaries.

The focus of the present contribution rests on the development of a micromechanics model
which establishes a quantitative link between the microstructural stiffness properties (see
Fig. 3.1 and Tables 3.1 and 3.2) and the macroscopic effective stiffness of Biodentine, see
Eqs. (3.1) and (3.2), with two remarkable features:

• Grain boundary defects will be accounted for in a self-consistent homogenization ap-
proach. They will be modeled by means of closed circular cracks which are isotropically
oriented in space. Budiansky and O’Connell’s dimensionless crack density parameter
(Budiansky and O’Connell, 1976; Pensée et al., 2002) will be quantified from linking the
micromechanical model to both nanoindentation and ultrasonic test results.
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• The lognormal distributions of the indentation modulus of the two populations of calcite-
reinforced hydrates will serve as input for the micromechanics model, rather than just
one representative stiffness per population. Poisson’s ratio of the two populations of
calcite-reinforced hydrates will be quantified from linking the micromechanical model to
both nanoindentation and ultrasonic test results.

The described micromechanics model will be used to illustrate quantitatively how macroscopic
uniform loading imposed on a representative volume of Biodentine results in microscopic stress
and strain distributions inside the two populations of hydrates.

The lognormal microelasticity model will also allow for assessing the potential and the
limitations of piecewise uniform microelasticity models. The latter are based on just one
representative stiffness per population of calcite-reinforced hydrates. This is particularly
interesting in case of skewed probability density functions (Fig. 3.1) in which the mode (=
most frequent value), the median (= 50%-quantile), and the mean value are different, while
they are all the same in case of Gaussians.

The present paper is structured as follows: Section 3.2 presents the lognormal microelastic-
ity model for Biodentine, accounting for the microstiffness distributions of the two populations
of hydrates by means of two times infinitely many material phases. Section 3.3 is dedicated
to stress and strain fluctuations within the hydrates of Biodentine, quantified by means of
probability density functions of volumetric and deviatoric strain and stress concentration
tensor components of the two populations of hydrates. Section 3.4 deals with piecewise
uniform microelasticity models in which a representative uniform stiffness is assigned to each
one of the two populations of hydrates. Section 3.5 contains a discussion. Section 3.6 closes
the paper with conclusions drawn from results of the presented study.

3.2 Lognormal microelasticity model for Biodentine

3.2.1 Fundamentals of stiffness homogenization
Stiffness homogenization refers to a boundary value problem of the linear theory of elasticity.
It is defined on a representative volume V of the microheterogeneous material of interest.

The field equations refer to all positions x inside V . The linear geometric equations define
the linearized strain tensor ε as the symmetric part of the displacement gradient. Denoting
the displacement vector as u, they read as ε(x) = 1

2 [∇u(x) + ∇uT(x)]. The linear constitutive
relations refer to linear elastic material behavior. Denoting Cauchy’s stress tensor as σ and
the elasticity tensor as C, they read as σ(x) = C(x) : ε(x). The stresses must fulfill the
equilibrium conditions, reading as divσ(x) = 0.

The boundary conditions refer to all positions x at the surface ∂V of the representative
volume. Herein, uniform strain boundary conditions are used (Hashin, 1983). Denoting the
imposed macroscopic strain state as E, they read as

u(x) = E · x . (3.3)

Homogenization of the elastic stiffness is facilitated based on the introduction of quasi-
homogeneous constituents of the microheterogeneous material. Denoted as material phases,
they occupy specific subvolumes Vi of the representative volume V . Their volume fractions
read as fi = Vi/V , with i = 1, 2, . . . , N , where N denotes the number of material phases. In
addition, material phases are characterized by specific elastic stiffness tensors Ci. Average
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phase strains and stresses are introduced:

εi = 1
Vi

�
Vi

ε(x) dV , i = 1, 2, . . . , N , (3.4)

σi = 1
Vi

�
Vi

σ(x) dV , i = 1, 2, . . . , N . (3.5)

Boundary conditions (3.3) and the principle of virtual power (Königsberger et al., 2020) imply
the existence of the following strain and stress average rules:

E =
N"

i=1
fi εi , (3.6)

Σ =
N"

i=1
fi σi , (3.7)

where Σ denotes the macroscopic stress state. Because the stiffness is uniform inside the
phase volumes Vi, the phase-specific version of the elasticity law reads as:

σi = Ci : εi , i = 1, 2, . . . , N . (3.8)
Macro-to-micro and micro-to-macro scale transitions are made possible by so-called strain

concentration tensors Ai. They establish links between the macrostrain and the average phase
strains (Hill, 1963, 1965a,b; Zaoui, 2002):

εi = Ai : E , i = 1, 2, . . . , N . (3.9)
Strain concentration tensors also allow for bottom-up stiffness homogenization, as will be
explained next. Inserting εi according to Eq. (3.9) into Eq. (3.8), and the resulting expression
for σi into Eq. (3.7) yields a relation between the macrostress Σ and the macrostrain E.
Comparing it with the macroscopic version of the elasticity law,

Σ = Chom : E , (3.10)
delivers the following expression for the homogenized stiffness tensor (Hill, 1963; Zaoui, 2002)

Chom =
N"

i=1
fi Ci : Ai . (3.11)

Stress concentration tensors Bi establish links between the macrostress and the average phase
stresses:

σi = Bi : Σ , i = 1, 2, . . . , N . (3.12)
The stress concentration tensors are related to the strain concentration tensors, as will be shown
next. The macroscopic elasticity law (3.10) is solved for the macrostrain: E = (Chom)−1 : Σ.
Inserting it into Eq. (3.9) and the resulting expression for εi into Eq. (3.8) yields a relation
between the microstresses σi and the macrostress Σ. Comparing this relation with Eq. (3.12)
yields

Bi = Ci : Ai : (Chom)−1 , i = 1, 2, . . . , N . (3.13)
Eqs. (3.9), (3.11), and (3.13) underline that strain concentration tensors enable scale transitions
in continuum micromechanics. These strain concentration tensors are estimated based
on Eshelby/Laws-type matrix-inclusion problems (Eshelby, 1957; Laws, 1977). This will
be explained in more detail in the context of the following development of a lognormal
microelasticity model for Biodentine.
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where R0,+ denotes all positive real numbers including zero. Psph and Pobl denote the Hill
tensors of spherical and oblate phases, respectively. Pobl is a function of Euler angles ψ
and ϑ, see Pichler et al. (2007) and Fig. 3.4. The stiffness tensors of hydrates, see Ci(M)

Fig. 3.4. Thin oblate spheroid oriented in ψ,ϑ-direction.

in Eq. (3.22), are parametrized using the indentation modulus M , see Subsection 3.2.6 for
details. The stiffness tensor of the microcracks, see C5 in Eq. (3.23), is purely volumetric, see
Subsection 3.2.3 for more details.

It is a key step to establish relations between the auxiliary Eshelby problems described
above and the real representative volume of Biodentine (Zaoui, 2002). To this end, the Eshelby-
problem-related inclusion strains according to Eqs. (3.21)–(3.23) are used as estimates of the
average strains of the corresponding material phases inside the real representative volume
of Biodentine, see Eq. (3.4). The latter satisfy the strain average rule, see Eq. (3.6). When
inserting Eqs. (3.21)–(3.23) into Eq. (3.6), the sum extending over two populations of infinitely
many hydrate phases turns into integrals, and the sum extending over infinitely many crack
phases turns into a double-integral:

E =
2"

j=1
fj

�
I + Psph : (Cj − Cbio)

�−1 : E∞

+
4"

j=3
fj

∞�
0

φj(M)
�
I + Psph : (Cj(M) − Cbio)

�−1 dM : E∞

+ f5

π�
0

2π�
0

�
I + Pobl(ψ, ϑ) : (C5 − Cbio)

�−1 sin ϑ

4π
dψ dϑ : E∞ . (3.24)

Eq. (3.24) establishes a link between the loading of the representative volume of Biodentine
(= the macrostrain E) and the loading of the auxiliary Eshelby problems (= the auxiliary
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strain E∞). Solving Eq. (3.24) for E∞ yields

E∞ =
 2"

j=1
fj

�
I + Psph : (Cj − Cbio)

�−1

+
4"

j=3
fj

∞�
0

φj(M)
�
I + Psph : (Cj(M) − Cbio)

�−1 dM

+ f5

π�
0

2π�
0

�
I + Pobl(ψ, ϑ) : (C5 − Cbio)

�−1 sin ϑ

4π
dψ dϑ

−1
: E . (3.25)

Inserting Eq. (3.25) into Eqs. (3.21)–(3.23) and comparing the results with Eq. (3.9) yields
the following estimates for the strain concentration tensors of clinker and zirconia

Ai =
�
I + Psph : (Ci − Cbio)

�−1

:
 2"

j=1
fj

�
I + Psph : (Cj − Cbio)

�−1

+
4"

j=3
fj

∞�
0

φj(M)
�
I + Psph : (Cj(M) − Cbio)

�−1 dM

+ f5

π�
0

2π�
0

�
I + Pobl(ψ, ϑ) : (C5 − Cbio)

�−1 sin ϑ

4π
dψ dϑ

−1
,

i = 1, 2 , (3.26)

of the hydrate phases

Ai(M) =
�
I + Psph : (Ci(M) − Cbio)

�−1

:
 2"

j=1
fj

�
I + Psph : (Cj − Cbio)

�−1

+
4"

j=3
fj

∞�
0

φj(N)
�
I + Psph : (Cj(N) − Cbio)

�−1
dN

+ f5

π�
0

2π�
0

�
I + Pobl(ψ, ϑ) : (C5 − Cbio)

�−1 sin ϑ

4π
dψ dϑ

−1
,

i = 3, 4 , M ∈ R0,+ , (3.27)
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and of the microcracks

A5(φ, ϑ) =
�
I + Pobl(ψ, ϑ) : (C5 − Cbio)

�−1

:
 2"

j=1
fj

�
I + Psph : (Cj − Cbio)

�−1

+
4"

j=3
fj

∞�
0

φj(M)
�
I + Psph : (Cj(M) − Cbio)

�−1 dM

+ f5

π�
0

2π�
0

�
I + Pobl(ψ, ϑ) : (C5 − Cbio)

�−1 sin ϑ

4π
dψ dϑ

−1
,

ψ ∈ [0, 2π] , ϑ ∈ [0, π] . (3.28)

The homogenized stiffness of Biodentine follows from inserting Eqs. (3.26)–(3.28) into Eq. (3.11)
as

Cbio =
 2"

i=1
fi Ci :

�
I + Psph : (Ci − Cbio)

�−1

+
4"

i=3
fi

∞�
0

φi(M)Ci(M) :
�
I + Psph : (Ci(M) − Cbio)

�−1 dM

+ f5 C5 :
π�

0

2π�
0

�
I + Pobl(ψ, ϑ) : (C5 − Cbio)

�−1 sin ϑ

4π
dψ dϑ



:
 2"

j=1
fj

�
I + Psph : (Cj − Cbio)

�−1

+
4"

j=3
fj

∞�
0

φj(M)
�
I + Psph : (Cj(M) − Cbio)

�−1 dM

+ f5

π�
0

2π�
0

�
I + Pobl(ψ, ϑ) : (C5 − Cbio)

�−1 sin ϑ

4π
dψ dϑ

−1
. (3.29)

3.2.3 Transition to flat circular slit cracks
Microcracks are invisible in micrographs of Biodentine (Dohnalík et al., 2021). This implies
that the cracks are closed. Their volume fraction is zero. Thus, the effect of closed cracks on
the overall material behavior cannot be traced back to their volume fraction. Instead, the
crack density parameter of Budiansky and O’Connell (1976) is introduced, see also Pensée
et al. (2002); Deudé et al. (2002). To this end, cracks are first represented as thin oblate
spheroids, with a as the larger half-diameter, c as the smaller half-diameter, and very small
aspect ratio X = c/a ≪ 1. The volume of one such spheroid reads as: 4πa2c/3. Thus, the



Stiffness and stress fluctuations in dental cement paste 52

volume fraction of thin spheroidal cracks inside a representative volume of Biodentine amounts
to

f5 = Ncr

Vbio

4πa2c

3 , (3.30)

where Ncr denotes to number of cracks within one representative volume Vbio of Biodentine.
Introducing the dimensionless crack density parameter as ω = Ncra3/Vbio, Eq. (3.30) can be
re-written as

f5 = 4πω

3 X . (3.31)

The Hill tensor Pobl can be expressed as the Eshelby tensor Sobl double-contracted with the
inverse of the stiffness tensor of Biodentine (Dormieux et al., 2006):

Pobl = Sobl : (Cbio)−1 , (3.32)

where Sobl is a function of the aspect ratio X, see Appendix 3.C. The stiffness tensor C5 is
purely volumetric, because the shear stiffness of closed cracks vanishes (Dormieux et al., 2006)

C5 = 3k5 I
vol . (3.33)

Because of the following limit case X → 0, the actual value of k5 does not matter, as long as
it is positive and finite: 0 < k5 < ∞, see Dormieux et al. (2006). Inserting Eqs. (3.31)–(3.33)
into the expression in the last line of Eq. (3.29), and subjecting the result to the limit X → 0,
which expresses that the volume occupied by closed cracks is negligibly small, yields (Dormieux
et al., 2006)

lim
X→0

f5(X)
π�

0

2π�
0

�
I + Pobl(X, ψ, ϑ) : (C5 − Cbio)


−1 sin ϑ

4π
dψ dϑ

= 4πω

3 Tdev I
dev , (3.34)

with
Tdev = 8 (3kbio + 4gbio)

15π (3kbio + 2gbio) . (3.35)

The third line in Eq. (3.29) vanishes, because it is equal to the volumetric stiffness tensor
C5, see Eq. (3.33), double-contracted with the expression on the left-hand-side of Eq. (3.34),
which is deviatoric, see also Eq. (3.17). Thus Eq. (3.29) reads for closed cracks with crack
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density parameter ω:

Cbio =
 2"

i=1
fi Ci :

�
I + Psph : (Ci − Cbio)

�−1

+
4"

i=3
fi

∞�
0

φi(M)Ci(M) :
�
I + Psph : (Ci(M) − Cbio)

�−1 dM



:
 2"

j=1
fj

�
I + Psph : (Cj − Cbio)

�−1

+
4"

j=3
fj

∞�
0

φj(M)
�
I + Psph : (Cj(M) − Cbio)

�−1 dM

+ 4πω

3 Tdev I
dev

−1
. (3.36)

3.2.4 Scalar expressions for the homogenized bulk and shear moduli
The Hill tensor Psph can be expressed as the Eshelby tensor Ssph double-contracted with the
inverse of the stiffness tensor of Biodentine (Dormieux et al., 2006):

Psph = Ssph : (Cbio)−1 . (3.37)

Because Ssph is isotropic, it can be expressed as

Ssph = Svol I
vol + Sdev I

dev , (3.38)

with

Svol = 3kbio

3kbio + 4gbio
, (3.39)

Sdev = 6(kbio + 2gbio)
5(3kbio + 4gbio) . (3.40)

All tensors in Eqs. (3.36) and (3.37) are isotropic. They can be subdivided into volumetric
and deviatoric parts. Consideration of Eqs. (3.15)–(3.18) together with Eqs. (3.14), (3.37),
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and (3.40) in Eq. (3.36) yields

kbio =
 2"

i=1

fi ki

1 + Svol(ki−kbio)
kbio

+
4"

i=3
fi

∞�
0

φi(M) ki(M)
1 + Svol(ki(M)−kbio)

kbio

dM



×
 2"

i=1

fi

1 + Svol(ki−kbio)
kbio

+
4"

i=3
fi

∞�
0

φi(M)
1 + Svol(ki(M)−kbio)

kbio

dM

−1
, (3.41)

gbio =
 2"

i=1

fi gi

1 + Sdev(gi−gbio)
gbio

+
4"

i=3
fi

∞�
0

φi(M) gi(M)
1 + Sdev(gi(M)−gbio)

gbio

dM



×
 2"

i=1

fi

1 + Sdev(gi−gbio)
gbio

+
4"

i=3
fi

∞�
0

φi(M)
1 + Sdev(gi(M)−gbio)

gbio

dM

+ 4πω

3 Tdev

−1
. (3.42)

The scalar Eqs. (3.41) and (3.42) allow for an iterative determination of the homogenized
bulk and shear moduli of Biodentine.

3.2.5 Scalar expressions for volumetric and deviatoric strain and stress
tensor components

The strain concentration tensors of the spherical solid phases are also isotropic

Ai = Avol,i I
vol + Adev,i I

dev . (3.43)

The volumetric and deviatoric components of the strain concentrations tensors of zirconia
(i = 1) and clinker (i = 2) follow from Eq. (3.26) as

Avol,i = 1
1 + Svol(ki−kbio)

kbio

 2"
i=1

fi

1 + Svol(ki−kbio)
kbio

+
4"

i=3
fi

∞�
0

φi(M)
1 + Svol(ki(M)−kbio)

kbio

dM

−1
, (3.44)

Adev,i = 1
1 + Sdev(gi−gbio)

gbio

 2"
i=1

fi

1 + Sdev(gi−gbio)
gbio

+
4"

i=3
fi

∞�
0

φi(M)
1 + Sdev(gi(M)−gbio)

gbio

dM + 4πω

3 Tdev

−1
. (3.45)
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The volumetric and deviatoric components of the strain concentrations tensors of HDCR
(i = 3) and LDCR (i = 4) hydrates follow from Eq. (3.27) as

Avol,i(M) = 1
1 + Svol(ki(M)−kbio)

kbio

 2"
i=1

fi

1 + Svol(ki−kbio)
kbio

+
4"

i=3
fi

∞�
0

φi(M)
1 + Svol(ki(M)−kbio)

kbio

dM

−1
, (3.46)

Adev,i(M) = 1
1 + Sdev(gi(M)−gbio)

gbio

 2"
i=1

fi

1 + Sdev(gi−gbio)
gbio

+
4"

i=3
fi

∞�
0

φi(M)
1 + Sdev(gi(M)−gbio)

gbio

dM + 4πω

3 Tdev

−1
, (3.47)

where M ∈ R0,+. Strain concentration tensors of the closed cracks will be discussed in
Subsection 3.3.4.

The stress concentration tensors of the spherical solid phases are also isotropic

Bi = Bvol,i I
vol + Bdev,i I

dev . (3.48)

Accounting for the isotropy of the tensors in Eq. (3.13) delivers

Bvol,i = ki

kbio
Avol,i , (3.49)

Bdev,i = gi

gbio
Adev,i , (3.50)

with ki and gi being the bulk and shear moduli of i-th phase, kbio and gbio are bulk and shear
moduli of the homogenized composite Biodentine. The volumetric and deviatoric components
of the stress concentrations tensors of zirconia (i = 1) and clinker (i = 2) follow from insertion
of Eqs. (3.44) and (3.45) into Eqs. (3.49) and (3.50), respectively, as

Bvol,i = ki/kbio

1 + Svol(ki−kbio)
kbio

 2"
i=1

fi

1 + Svol(ki−kbio)
kbio

+
4"

i=3
fi

∞�
0

φi(M)
1 + Svol(ki(M)−kbio)

kbio

dM

−1
, (3.51)

Bdev,i = gi/gbio

1 + Sdev(gi−gbio)
gbio

 2"
i=1

fi

1 + Sdev(gi−gbio)
gbio

+
4"

i=3
fi

∞�
0

φi(M)
1 + Sdev(gi(M)−gbio)

gbio

dM + 4πω

3 Tdev

−1
. (3.52)

The volumetric and deviatoric components of the stress concentrations tensors of HDCR
(i = 3) and LDCR (i = 4) hydrates from insertion of Eqs. (3.46) and (3.47) into Eqs. (3.49)
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and (3.50), respectively, as

Bvol,i(M) = ki(M)/kbio

1 + Svol(ki(M)−kbio)
kbio

 2"
i=1

fi

1 + Svol(ki−kbio)
kbio

+
4"

i=3
fi

∞�
0

φi(M)
1 + Svol(ki(M)−kbio)

kbio

dM

−1
, (3.53)

Bdev,i(M) = gi(M)/gbio

1 + Sdev(gi(M)−gbio)
gbio

 2"
i=1

fi

1 + Sdev(gi−gbio)
gbio

+
4"

i=3
fi

∞�
0

φi(M)
1 + Sdev(gi(M)−gbio)

gbio

dM + 4πω

3 Tdev

−1
, (3.54)

where M ∈ R0,+.

3.2.6 Bulk and shear moduli of the hydrates, as functions of the
indentation modulus

Evaluation of the integrals in Eqs. (3.41), (3.42), (3.44)–(3.47), and (3.51)–(3.54) requires
expressions for the bulk and shear moduli of the hydrates, as functions of the indentation
modulus. The latter is a function of the elastic stiffness properties of the nanoindentation-
probed domain and of the diamond tip of the indenter. For an isotropic domain, this function
reads as (Oliver and Pharr, 1992)

1
M

= 1 − ν2
h

E
+ 1 − 0.072

1141 GPa , (3.55)

where E and νh denote the modulus of elasticity and Poisson’s ratio of the hydrates. Herein,
νh is assumed to be constant.2 In other words, the distribution of indentation modulus is
related to a corresponding distribution of the modulus of elasticity, E. The latter distribution
follows from solving Eq. (3.55) for E:

E(M) = 1 − ν2
h

1
M − 1−0.072

1141 GPa
. (3.56)

The sought bulk moduli ki(M) and the shear moduli gi(M) follow from standard relations for
isotropic elastic media:

ki(M) = E(M)
3 (1 − 2 νh) , i = 3, 4 , (3.57)

gi(M) = E(M)
2 (1 + νh) , i = 3, 4 , (3.58)

see also Fig. 3.5.
2The value of νh will be identified in Subsection 3.2.7.
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Inserting Avol,j(M) and Adev,j(M) according to Eqs. (3.46) and (3.47), respectively, into
Eqs. (3.62) and (3.63) yields

Avol,j =
∞�

0

φj(M)
1 + Svol(ki(M)−kbio)

kbio

dM × (3.64)

 2"
i=1

fi

1 + Svol(ki−kbio)
kbio

+
4"

i=3
fi

∞�
0

φi(M)
1 + Svol(ki(M)−kbio)

kbio

dM

−1
,

Adev,j =
∞�

0

φj(M)
1 + Sdev(gi(M)−gbio)

gbio

dM × (3.65)

 2"
i=1

fi

1 + Sdev(gi−gbio)
gbio

+
4"

i=3
fi

∞�
0

φi(M)
1 + Sdev(gi(M)−gbio)

gbio

dM + 4πω

3 Tdev

−1
.

Evaluation of the strain concentration tensor components Avol and Adev of zirconia and
clinker according to Eqs. (3.44) and (3.45), as well as the average strain concentration tensor
components Avol and Adev of HDCR and LDCR hydrates according to Eqs. (3.64) and (3.65),
yields numerical values listed in Table 3.4. These values quantify the expected trend that the

Table 3.4
Results of the lognormal microelasticity model: (population-averaged) strain concentration
tensors components of the four types of solid constituents of Biodentine.

constituent of (average) strain concentration source
Biodentine tensor components

zirconia Avol,1 = 0.3017 Adev,1 = 0.2352 Eqs. (3.44) and (3.45)
clinker Avol,2 = 0.4223 Adev,2 = 0.3192 Eqs. (3.44) and (3.45)

HDCR hydrates Avol,3 = 1.0551 Adev,3 = 0.5248 Eqs. (3.64) and (3.65)
LDCR hydrates Avol,4 = 1.3207 Adev,4 = 0.6428 Eqs. (3.64) and (3.65)

strains experienced by the material constituents increase with decreasing stiffness.

3.3.2 Distributions of stress concentration tensor components of the two
populations of hydrates

Combining Eq. (3.19) with Eq. (3.53) and Eq. (3.54), respectively, allows for producing
parameter plots showing probability density over stress concentration tensor components,
with the indentation modulus as the parameter. Normalizing the obtained parameter plots
such that the area under the graphs becomes equal to 1, delivers probability density functions
for the stress concentration tensor components, see Fig. 3.9. The probability densities of
Bvol and Bdev of the LDCR hydrates are right-skewed functions. The corresponding results
obtained for the HDCR hydrates, in turn, are reminiscent of Gaussian distributions.

The stress concentration tensor components averaged over each one of the two populations
of hydrates are quantified based on the volume average rule for stress concentration tensors
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(Zaoui, 2002):

Bvol,j =
∞�

0

φj(M) Bvol,j(M) dM , j = 3, 4 , (3.66)

Bdev,j =
∞�

0

φj(M) Bdev,j(M) dM , j = 3, 4 . (3.67)

Inserting Bvol,j(M) and Bdev,j(M) according to Eqs. (3.53) and (3.54), respectively, into
Eqs. (3.66) and (3.67) yields

Bvol,j = 1
kbio

∞�
0

φj(M) kj(M)
1 + Svol(ki(M)−kbio)

kbio

dM × (3.68)

 2"
i=1

fi

1 + Svol(ki−kbio)
kbio

+
4"

i=3
fi

∞�
0

φi(M)
1 + Svol(ki(M)−kbio)

kbio

dM

−1
,

Bdev,j = 1
gbio

∞�
0

φj(M) gj(M)
1 + Sdev(gi(M)−gbio)

gbio

dM × (3.69)

 2"
i=1

fi

1 + Sdev(gi−gbio)
gbio

+
4"

i=3
fi

∞�
0

φi(M)
1 + Sdev(gi(M)−gbio)

gbio

dM + 4πω

3 Tdev

−1
.

Evaluation of the stress concentration tensor components Bvol and Bdev of zirconia and
clinker according to Eqs. (3.51) and (3.52), as well as the average stress concentration tensor
components Bvol and Bdev of HDCR and LDCR hydrates according to Eqs. (3.68) and (3.69),
yields numerical values listed in Table 3.5. These values quantify the expected trend that

Table 3.5
Results of the lognormal microelasticity model: (population-averaged) stress concentration
tensors components of the four types of solid constituents of Biodentine.

constituent of (average) stress concentration source
Biodentine tensor components

zirconia Bvol,1 = 1.3419 Bdev,1 = 1.3152 Eqs. (3.49) and (3.50)
clinker Bvol,2 = 1.2828 Bdev,2 = 1.2188 Eqs. (3.49) and (3.50)

HDCR hydrates Bvol,3 = 0.9730 Bdev,3 = 0.9830 Eqs. (3.68) and (3.69)
LDCR hydrates Bvol,4 = 0.8430 Bdev,4 = 0.8476 Eqs. (3.68) and (3.69)

stresses experienced by the material constituents decrease with decreasing stiffness.
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3.3.3 Reproducing the distributions of strain and stress concentration
tensor components based on generalized beta-distributions

Probability density functions φi(Avol), φi(Adev), φi(Bvol) and φi(Bdev) of both populations
of hydrates (i = 3, 4) can be approximated by means of generalized beta-distributions:

φB
i (y) =

�
y−a
c−a

�α−1 �
c−y
c−a

�β−1

(c − a) × B(α, β) , (3.70)

where y denotes the statistical variable ranging in the interval [a ; c], and B(α, β) denotes
the beta-distribution evaluated for parameters α and β:

B(α, β) = Γ(α) Γ(β)
Γ(α + β) , (3.71)

where Γ denotes the gamma function (Johnson, 1997; Chaudhry et al., 1997).
Optimal α and β parameters are identified by means of the “Nonlinear Least Squares”

method of Matlab, see Tables 3.6 and 3.7 for the results. The lowest coefficient of determina-

Table 3.6
Optimal parameters of generalized beta-distributions, see Eqs. (3.70) and (3.71), approximating
the distributions of the volumetric and deviatoric strain concentration tensor components of
both populations of hydrates, see also the dashed red lines in Fig. 3.8; R2 denotes coefficients
of determination.

parameter HDCR hydrates LDCR hydrates
φ3(Avol) φ3(Adev) φ4(Avol) φ4(Adev)

a 0.0136 0.0071 0.0136 0.0071
c 3.0427 1.3816 3.0427 1.3816
α 35.2406 37.0711 4.6942 4.9316
β 63.8869 58.4258 3.7593 3.5650

R2 1.0000 1.0000 0.9995 0.9992

Table 3.7
Optimal parameters of generalized beta-distributions, see Eqs. (3.70) and (3.71), approximating
the distributions of the volumetric and deviatoric stress concentration tensor components of
both populations of hydrates, see also the dashed red lines in Fig. 3.9; R2 denotes coefficients
of determination.

parameter HDCR hydrates LDCR hydrates
φ3(Bvol) φ3(Bdev) φ4(Bvol) φ4(Bdev)

a 4.3 · 10−5 3.9 · 10−5 4.3 · 10−5 3.9 · 10−5

c 1.4829 1.5768 1.4829 1.5768
α 63.8869 58.4258 3.7593 3.5650
β 35.2406 37.0711 4.6942 4.9316

R2 1.0000 1.0000 0.9995 0.9992
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tion, R2, amounts to 0.9992 and is obtained for the deviatoric components of strain as well as
stress concentration tensors of LDCR hydrates, see Tables 3.6 and 3.7 as well as Figs. 3.8
and 3.9. Notably, the α parameters found for the strain concentration tensor components are
identical to the β parameters of the corresponding stress concentration tensor components,
and vice versa, because strain and stress concentration tensor components are linearly related
via Eqs. (3.49) and (3.50).

3.3.4 Contribution of the microcracks to the stress and strain average
rules

Closed microcracks do neither contribute to the stress average rule nor to the volumetric part
of the strain average rule. Still, they contribute significantly to the deviatoric compliance of
Biodentine, as will be shown next.

Insertion of Eq. (3.12), into Eq. (3.5) yields the stress average rule expressed in terms of
stress concentration tensors:

N"
i=1

fi Bi = I . (3.72)

Closed microcracks transfer finite stresses across their microcrack planes. Therefore, their
stress concentration tensor components are finite. The volume fraction of closed microcracks
is equal to zero. Therefore, closed microcracks have a vanishing contribution to Eq. (3.72).
Subdividing this equation into volumetric and deviatoric parts, and consideration of volume
fractions according to Table 3.2 as well as (hydrate population-averaged) stress concentration
tensor components according to Table 3.5, yields

f1 Bvol,1 + f2 Bvol,2 + f3 Bvol,3 + f4 Bvol,4 = 1 , (3.73)

f1 Bdev,1 + f2 Bdev,2 + f3 Bdev,3 + f4 Bdev,4 = 1 . (3.74)

Similarly, insertion Eq. (3.9) into Eq. (3.4) yields the strain average rule expressed in terms
of strain concentration tensors:

N"
i=1

fi Ai = I . (3.75)

Because closed microcracks occupy a vanishing volume and because they remain closed also
under macroscopic loading, they have a vanishing contribution to the volumetric part of
Eq. (3.75):

f1 Avol,1 + f2 Avol,2 + f3 Avol,3 + f4 Avol,4 = 1 , (3.76)

where volume fractions according to Table 3.2 and (hydrate population-averaged) strain
concentration tensor components according to Table 3.4 were used. However, the same
approach applied to the deviatoric part of Eq. (3.75) yields:

f1 Adev,1 + f2 Adev,2 + f3 Adev,3 + f4 Adev,4 = 0.5100 ̸= 1 . (3.77)

Eq. (3.77) underlines that closed cracks contribute to the deviatoric compliance of the
homogenized material.

In order to quantify the contribution of the microcracks missing in Eq. (3.77), their
population-averaged (= orientation-averaged) strain concentration tensor is introduced, while
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the cracks are still considered as thin but slightly open oblate spheroids:

A5 =
π�

0

2π�
0

�
I + Pobl(ψ, ϑ) : (C5 − Cbio)

�−1 sin ϑ

4π
dψ dϑ

:
 2"

j=1
fj

�
I + Psph : (Cj − Cbio)

�−1

+
4"

j=3
fj

∞�
0

φj(M)
�
I + Psph : (Cj(M) − Cbio)

�−1 dM

+ f5

π�
0

2π�
0

�
I + Pobl(ψ, ϑ) : (C5 − Cbio)

�−1 sin ϑ

4π
dψ dϑ

−1
. (3.78)

The transition to circular slit cracks refers to the limit case that the aspect ratio of the
microcracks approaches zero: X → 0. In this limit case, the deviatoric component of A5
approaches infinity (Dormieux et al., 2006), while the volume fraction of the population of
microcracks, f5, approaches zero, such that the product of f5 and A5 remains finite:

lim
X→0

f5 A5 = 4πω

3 Tdev

 2"
i=1

fi

1 + Sdev(gi−gbio)
gbio

(3.79)

+
4"

i=3
fi

∞�
0

φi(M)
1 + Sdev(gi(M)−gbio)

gbio

dM + 4πω

3 Tdev

−1
Idev.

Evaluation of Eq. (3.79) based on kbio = 38.4 GPa, gbio = 14.1 GPa, Tdev from Eq. (3.35), Sdev

from Eq. (3.40), together with ω from Eq. (3.60), and volume fractions from Table 3.2 yields,
under consideration of Eqs. (3.B.7) and (3.B.8):

lim
X→0

f5 A5 = f5 Adev,5 I
dev = 0.4899 Idev . (3.80)

Adding f5Adev,5 according to Eq. (3.80) to Eq. (3.77) yields

f1 Adev,1 + f2 Adev,2 + f3 Adev,3 + f4 Adev,4 + f5 Adev,5 = 1 . (3.81)

Eqs. (3.80) and (3.81) underline that almost 50% of the deviatoric compliance of Biodentine
results from shear-dislocations of closed microcracks.

3.4 Comparison with piecewise uniform microelasticity
models

The developed lognormal microelasticity model accounts for stiffness distributions of hydrates,
as characterized in a grid nanoindentation testing campaign. Standardly used multiscale
models for cementitious materials, in turn, assign characteristic stiffness constants to a
small number of considered hydrate phases, typically two. This provides the motivation to
identify characteristic stiffness constants of HDCR hydrates and LDCR hydrates such that a
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3.4.1 Piecewise uniform microelastic properties equivalent to the stiffness
distributions of both populations of hydrates

Equivalent bulk and shear moduli of the two populations of hydrates are identified such
that the piecewise uniform microelastic model delivers the same homogenized stiffness and
the same (population-averaged) strain and stress concentration tensor components as the
lognormal model.

Equivalent bulk moduli k3 and k4 are derived as follows. Equating Avol,j according to
Eq. (3.84) and Avol,j according to Eq. (3.64) yields the conditions

1
1 + Svol(kj−kbio)

kbio

=
∞�

0

φj(M)
1 + Svol(kj(M)−kbio)

kbio

dM , j = 3, 4 . (3.88)

Equating Bvol,j according to Eq. (3.86) and Bvol,j according to Eq. (3.68) yields the
conditions

kj

1 + Svol(kj−kbio)
kbio

=
∞�

0

φj(M) kj(M)
1 + Svol(kj(M)−kbio)

kbio

dM , j = 3, 4 . (3.89)

Notably, the conditions (3.88) and (3.89) also imply the equality of kbio according to Eqs. (3.41)
and (3.82). The equivalent bulk moduli k3 and k4 are obtained from dividing Eq. (3.89) by
Eq. (3.88) as

kj =

∞�
0

φj(M) kj(M)
1 + Svol(kj(M)−kbio)

kbio

dM

∞�
0

φj(M)
1 + Svol(kj(M)−kbio)

kbio

dM

, j = 3, 4 . (3.90)

Evaluating Eq. (3.90) for j = 3 and for j = 4, respectively, yields under consideration of
Eqs. (3.B.1)–(3.B.4):

k3 = 35.41 GPa , (3.91)

k4 = 24.51 GPa . (3.92)

Equivalent shear moduli g3 and g4 are derived in an analogous way. Equating Adev,j

according to Eq. (3.85) and Adev,j according to Eq. (3.65) yields the conditions

1
1 + Sdev(gj−gbio)

gbio

=
∞�

0

φj(M)
1 + Sdev(gj(M)−gbio)

gbio

dM , j = 3, 4 . (3.93)

Equating Bdev,j according to Eq. (3.87) and Bdev,j according to Eq. (3.69) yields the conditions

gj

1 + Sdev(gj−gbio)
gbio

=
∞�

0

φj(M) gj(M)
1 + Sdev(gj(M)−gbio)

gbio

dM , j = 3, 4 . (3.94)
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Notably, the conditions (3.93) and (3.94) also imply the equality of gbio according to Eqs. (3.42)
and (3.83). The equivalent shear moduli g3 and g4 are obtained from dividing Eqs. (3.94) by
Eq. (3.93) as

gj =

∞�
0

φj(M) gj(M)
1 + Sdev(gj(M)−gbio)

gbio

dM

∞�
0

φj(M)
1 + Sdev(gj(M)−gbio)

gbio

dM

, j = 3, 4 . (3.95)

Evaluating Eq. (3.95) for j = 3 and for j = 4, respectively, yields under consideration of
Eqs. (3.B.5)–(3.B.8):

g3 = 26.41 GPa , (3.96)

g4 = 18.59 GPa . (3.97)

Equivalent stiffness properties, according to Eqs. (3.91), (3.92), (3.96), and (3.97) reproduce
the homogenized stiffness as well as the (population-averaged) stress and strain concentration
tensor components of the lognormal model, see Tables 3.4 and 3.5. According to Eqs (3.90)
and (3.95), the equivalent moduli are functions of (i) the stiffness distributions to which they
are equivalent and (ii) the interaction of the phase population with all other constituents of
the microheterogeneous material.

3.4.2 Comparison of the equivalent piecewise uniform microelastic
properties with their probability density functions

The equivalent piecewise uniform microelastic properties, see Eqs. (3.91), (3.92), (3.96), and
(3.97), are compared with the probability density functions of the bulk and shear moduli of the
two populations of hydrates. These functions are determined as follows: bulk and shear moduli
are obtained as a function of the indentation modulus from inserting Eqs. (3.56) and (3.61)
into Eqs. (3.57) and (3.58), respectively. Combining the obtained expressions with Eq. (3.19)
allows for producing parameter plots showing probability densities over bulk and shear moduli,
with the indentation modulus as the parameter. Normalizing the parameter plots, such that
the area under the graphs becomes equal to 1, delivers probability density functions for the
bulk and shear moduli, see Fig. 3.11. The modes (= most frequent values) and the medians
(= 50%-quantiles) of bulk and shear moduli of the two populations of hydrates are determined
numerically:

mode(k3) = 34.14 GPa , mode(g3) = 25.42 GPa , (3.98)

mode(k4) = 13.46 GPa , mode(g4) = 10.02 GPa , (3.99)

median(k3) = 35.61 GPa , median(g3) = 26.52 GPa , (3.100)

median(k4) = 25.19 GPa , median(g4) = 18.76 GPa . (3.101)

The modes according to Eqs. (3.98) and (3.99) are marked in Fig. 3.11 by dotted ordinate-
parallel lines, the medians according to Eqs. (3.100) and (3.101) by solid lines, and the
equivalent piecewise uniform microelastic values according to Eqs. (3.91), (3.92), (3.96), and
(3.97) by dash-dotted lines.
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Table 3.8
Results of the median-based piecewise uniform microelasticity model: strain concentration
tensors components of the four types of solid constituents of Biodentine according to Eqs. (3.84)
and (3.85). The differences of the Avol,i, and Adev,i values to the lognormal model are given
in brackets.

constituent of strain concentration tensor components
Biodentine and deviations from lognormal microelasticity model

zirconia Avol,1 = 0.3036 (−0.63%) Adev,1 = 0.2362 (−0.43%)
clinker Avol,2 = 0.4250 (−0.64%) Adev,2 = 0.3204 (−0.38%)

HDCR hydrates Avol,3 = 1.0570 (−0.18%) Adev,3 = 0.5250 (−0.04%)
LDCR hydrates Avol,4 = 1.3068 (+1.05%) Adev,4 = 0.6414 (+0.22%)

Table 3.9
Results of the median-based piecewise uniform microelasticity model: stress concentration
tensors components of the four types of solid constituents of Biodentine according to Eqs. (3.86)
and (3.87). The differences of the Bvol,i, and Bdev,i values to the lognormal model are given
in brackets.

constituent of stress concentration tensor components
Biodentine and deviations from lognormal microelasticity model

zirconia Bvol,1 = 1.3397 (+0.16%) Bdev,1 = 1.3397 (+0.06%)
clinker Bvol,2 = 1.2805 (+0.18%) Bdev,2 = 1.2805 (+0.08%)

HDCR hydrates Bvol,3 = 0.9722 (+0.08%) Bdev,3 = 0.9722 (+0.01%)
LDCR hydrates Bvol,4 = 0.8503 (−0.87%) Bdev,4 = 0.8503 (−0.20%)
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prolate shapes assigned to micron-sized gel-porous hydrates and found significant differences
at early ages, when the porosity is quite large, but small differences at mature ages, when
the microstructure is already rather dense. Because the present paper refers to well-hardened
Biodentine, spherical phase shapes are suitable for micromechanical modeling.

The identified value of Poisson’s ratio of the calcite-reinforced hydrates of Biodentine
(νh = 0.20) is smaller than 0.24 which is the value standardly assumed for low-density and
high-density C-S-H of construction cement pastes (Constantinides, 2002). The difference can
be explained based on different microstructures. Low-density and high-density C-S-H consist of
solid C-S-H building blocks and pores (Constantinides et al., 2003). Calcite-reinforced hydrates
of Biodentine, in turn, consist of solid C-S-H building blocks, pores, calcium hydroxide, and
calcite. Thus, they are somewhat reminiscent of a composite initially referred to as “ultra-
high-density C-S-H” (Vandamme and Ulm, 2009), which turned out to be a high-density
C-S-H reinforced by small crystals of calcium hydroxide (Chen et al., 2010), see also Da Silva
et al. (2014); Brown et al. (2018); Ford et al. (2020).

The present paper continues the line of studies in which results from nanoindentation were
combined with micromechanical homogenization approaches. Sorelli et al. (2008) applied the
method of Constantinides and Ulm (2004) to an ultra high performance concrete, Němeček
et al. (2013) to cement paste, gypsum, and an aluminum alloy, and Göbel et al. (2018) to
polymer-modified cement paste. Other complementary research approaches combined grid
nanoindentation and stiffness homogenization at different scales of observation and with
different targets, as will be discussed next. As for the smallest scales, scanning electron
microscopy, energy dispersive spectroscopy, and X-ray diffraction were combined to gain access
to the composition at nanoindented material points, and this knowledge was upscaled by means
of homogenization methods in order to predict the stiffness at the indented material points, see
e.g. Li et al. (2017); Brown et al. (2018). At the next larger scale, microstructural properties
of cement paste determined by means of grid nanoindentation were used as input for stiffness
upscaling, in order to predict stiffness properties determined by means of microindentation,
see e.g. Gao et al. (2017). As for stiffness homogenization up to the material scale of concrete,
grid nanoindentation, used for quantifying microstructural properties of cement paste, was
combined with microindentation, used for the characterization of interfacial transition zones
surrounding aggregates, see e.g. Li et al. (2021).

The present study shares two aspects of emerging developments regarding stiffness upscaling
based on results obtained from grid nanoindentation. The first one relates to using probability
density functions describing stiffness distributions of two populations of hydrate phases as
input for micromechanical modeling, as realized by Stefaniuk et al. (2019) for symmetric,
Gaussian stiffness distributions. In this context, our current approach goes three steps further,
(i) employing lognormal rather than Gaussian distributions, (ii) evaluating corresponding
concentration relations revealing the microstresses to follow generalized beta distributions,
and (iii) identifying that median values of the skewed stiffness distributions are representative
piecewise uniform stiffness properties governing the overall stiffness of Biodentine. The
second aspect relates to weak interfaces. Liang et al. (2017) and Damien et al. (2019) have
used a modified Eshelby tensor in the context of cementitious matrix-inclusion composites
homogenized by means of the Mori-Tanaka scheme (Benveniste, 1987), in order to account
for weak tangential bond in interfaces between spherical phases and the surrounding matrix.
Herein, we have modeled weak grain boundaries by means of closed circular microcracks
which are isotropically oriented in space, in the context of homogenizing the “polycrystalline”
microstructure of Biodentine by means of the self-consistent scheme (Zaoui, 2002). This
approach allowed us to show that almost 50% of the compliance of hardened Biodentine refers
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to shear-dislocations of weak grain boundaries.

3.6 Conclusions
A lognormal microelasticity model for hardened Biodentine was based on the results of a
grid nanoindentation campaign. Poisson’s ratio of the two populations of hydrates and the
crack density parameter were identified such that the model reproduces macroscopic stiffness
properties derived from ultrasonic pulse velocity measurements. Based on the results of the
presented study, the following conclusions are drawn:

• The identified value of Poisson’s ratio of the lower-density and high-density calcite-
reinforced hydrates of Biodentine, νh = 0.20, is smaller than Poisson’s ratio used for the
low-density and high-density calcium-silicate-hydrates of Portland cements: ν = 0.24,
see Constantinides and Ulm (2004). The difference is attributed to a reinforcement
effect of calcite and calcium hydroxide.

• Grain boundary defects (modeled as microcracks) are responsible for almost 50% of the
deviatoric compliance of Biodentine. In other words, virtually half of the deformations of
Biodentine subjected to macroscopic shear loading originate from microstructural defects.
The corresponding value of the crack density parameter was identified as ω = 0.78.

• Bottom-up stiffness homogenization, accounting for microscopic stiffness distributions
of the hydrates, is virtually equivalent to upscaling of piecewise uniform stiffness
properties, provided that medians of the microscopic stiffness distributions are assigned
to the hydrates. Corresponding differences regarding the homogenized stiffness of
Biodentine were found to be smaller than 1.1%. This corroborates the validity of
standard homogenization models for the elastic stiffness of cementitious materials,
because these models are based on piecewise uniform stiffness properties.

• As for top-down strain and stress quantification, there are important differences between
the lognormal microelasticity model and the alternative which is based on piecewise
uniform microscopic stiffness values. The latter approach leads to volume-averaged
values of the stresses experienced by the two populations of hydrates. The statistical
homogenization approach, in turn, provides direct access to microscopic stress fluctua-
tions. These fluctuations are expected to be valuable for future strength modeling going
beyond the scope of the present paper.
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Appendix 3.A Macrostiffness characterization by means of
ultrasonic pulse velocity measurements

The ultrasonic pulse transmission method was used as non-destructive technique to characterize
the macroscopic elastic properties of hardened Biodentine. Here, both longitudinal and shear
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waves, with excitation frequencies ranging from 50 kHz to 20 MHz, were sent through cylindrical
Biodentine samples with 5 mm diameter and 10 mm height.

The test setup consisted of a serial arrangement of a pulse generator, a layer of coupling
medium (honey), a plastic foil, the specimen, another plastic foil, another layer of honey,
and a pulse detector. The plastic foils protected the sample against contamination of its
open porosity with the coupling medium. The specimens, the equipment, and its surrounding
environment were conditioned to 37◦C.

The wave velocities v of Biodentine are equal to the height b of the tested specimens
divided by the time of flight tf of the ultrasonic pulse through the tested specimen,

v = b

tf
. (3.A.1)

Direct measurement of tf is not possible; however, it results from the difference of two other
time measurements,

tf = ttot − td , (3.A.2)

where ttot is the travel time of the pulse from the transducer – through the coupling medium,
the plastic foils, and the specimen – to the receiver, while the delay time td is needed by the
pulse to just travel from the generator, through honey and plastic foils (without specimen), to
the receiver.

325 measurements of longitudinal waves were performed at material ages from 7 to 28 days
(Dohnalík et al., 2021). The central excitation frequencies amounted to 50 kHz, 500 kHz,
1 MHz, 2.25 MHz, 5 MHz, 10 MHz, and 20 MHz. The longitudinal wave velocities were fairly
independent of the material age as well as the testing frequency. On average, they amount to
vL = 4.977 km/s, see (Dohnalík et al., 2021) and Fig. 3.A.12.

122 measurements of shear waves were performed at material ages from 7 to 28 days. The
central excitation frequencies amounted to 2.25 MHz and 5 MHz, see Table 3.A.10. The shear

Table 3.A.10
Ultrasonic shear wave transducers used for characterization of hardened Biodentine.

frequency [MHz] shear transducer
2.25 V154-RM
5 V155-RM

wave velocities are also fairly independent of the material age and the testing frequency. On
average, they amount to vS = 2.473 km/s, see Fig. 3.A.12.

The separation of scales principle states that the wavelengths λ must be significantly
larger than the size ℓrve of a representative volume element of the tested material (Zaoui,
2002; Kohlhauser and Hellmich, 2013), and that ℓrve must be significantly larger than the
characteristic size ℓhet of the microheterogeneities:

λ ≫ ℓrve ≫ ℓhet . (3.A.3)

Residual clinker grains are the largest microheterogeneities of hardened Biodentine. Their
characteristic size amounts to 4.3µm (Dohnalík et al., 2021). Thus, ℓhet = 4.3µm. The
characteristic size of a representative volume of Biodentine is some three times larger (Drugan
and Willis, 1996; Pensée and He, 2007). Thus, ℓrve = 12.9µm. This size is to be compared
with the wavelengths of the ultrasonic pulses.
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Appendix 3.B Numerical values of integrals involving the
lognormal distributions of the two populations
of hydrates

Numerical evaluation of the integrals in Eqs. (3.41), (3.42), (3.44)–(3.47), and (3.51)–(3.54),
based on kbio = 38.4 GPa, gbio = 14.1 GPa, and νh = 0.2017, delivers the following numerical
results:

∞�
0

φ3(M) k3(M)
1 + Svol(k3(M)−kbio)

kbio

dM = 37.36450836 GPa , (3.B.1)

∞�
0

φ4(M) k4(M)
1 + Svol(k4(M)−kbio)

kbio

dM = 32.37198195 GPa , (3.B.2)

∞�
0

φ3(M)
1 + Svol(k3(M)−kbio)

kbio

dM = 1.05507934 , (3.B.3)

∞�
0

φ4(M)
1 + Svol(k4(M)−kbio)

kbio

dM = 1.32063926 , (3.B.4)

∞�
0

φ3(M) g3(M)
1 + Sdev(g3(M)−gbio)

gbio

dM = 18.77600304 GPa , (3.B.5)

∞�
0

φ4(M) g4(M)
1 + Sdev(g4(M)−gbio)

gbio

dM = 16.19052283 GPa , (3.B.6)

∞�
0

φ3(M)
1 + Sdev(g3(M)−gbio)

gbio

dM = 0.71090769 , (3.B.7)

∞�
0

φ4(M)
1 + Sdev(g4(M)−gbio)

gbio

dM = 0.87075413 . (3.B.8)
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Appendix 3.C Components of the Eshelby tensor of thin
oblate spheroids

Consider a thin oblate spheroid with the unit normal to the “crack” plane parallel to e3. The
non-vanishing components of the Eshelby tensor Sobl read as (Pichler et al., 2007)

S1111 = 3
16

9kbio + 7gbio

3kbio + 4gbio
π X , S2211 = S1122 ,

S1122 = 9
16

kbio − gbio

3kbio + 4gbio
π X , S2222 = S1111 ,

S1133 = 3
4

−gbio

3kbio + 4gbio
π X , S2233 = S1133 ,

S3311 = 3
4

gbio − 3kbio

4gbio + 3kbio
π X − 2gbio − 3kbio

4gbio + 3kbio
, S1212 = 3

16
3kbio + 5gbio

3kbio + 4gbio
π X ,

S3322 = S3311 S2323 = 1
2

�
1 − 3

4
3kbio + 2gbio

3kbio + 4gbio
π X

�
,

S3333 = 1 − 3gbio

2(3kbio + 4gbio) π X , S3131 = S2323 ,

(3.C.1)

with Sijkl = Sjikl = Sijlk. Notably, X = c/a denotes the aspect ratio.
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4.1 Introduction
The present study refers to “Biodentine”, a dental cement paste made from a cementitious
powder and a mixing liquid. The powder consists of tricalcium silicate (Ca3SiO5) and dicalcium
silicate (Ca2SiO4), representing the two hydraulic components, as well as of zirconium dioxide
(ZrO2) ensuring radiopacity (= clear visibility on radiographs), and calcium carbonate (CaCO3)
acting as a filler (Li et al., 2019) and as a microstructural reinforcement (Dohnalík et al., 2021).
The mixing liquid contains water (H2O), calcium chloride (CaCl2) accelerating the transition
of freshly-mixed Biodentine from a moldable gel into a solid material, and a hydrosoluble
polycarboxylate-based polymer improving workability at small initial liquid-to-solid mass
ratios (Laurent et al., 2008; Bronnec et al., 2010; Laurent et al., 2012).

The existing literature documents several compressive strength studies regarding Biodentine
exposed to different curing environments:

• Specimens cured in distilled water for one hour, as well as for one, seven, and 28
days, exhibited strengths amounting to 140 ± 1 MPa, 171 ± 1 MPa, 269 ± 1 MPa, and
305 ± 3 MPa, respectively (Butt et al., 2014). Similar values were obtained by Franquin
et al. (2010).

• Specimens cured for seven days under acidic conditions with pH values amounting to 4.4,
5.4, 6.4, and 7.4 exhibited strengths amounting to 59 ± 5 MPa, 74 ± 7 MPa, 81 ± 8 MPa,
and 95 ± 9 MPa (Elnaghy, 2014).

• Specimens cured for three days under in vivo conditions, i.e. in molds contaminated
with blood or saliva, exhibited strengths amounting to 177 ± 28 MPa, and 157 ± 57 MPa,
respectively (Subramanyam and Vasantharajan, 2017). Corresponding control specimens
cured in clean molds were stronger, with strength amounting to 205 ± 22 MPa. Similarly,
casting Biodentine into molds filled with blood, and testing at material ages of 6 hours,
1, 3, and 7 days, delivered strength values amounting to 34 ± 9 MPa, 50 ± 13 MPa,
36 ± 15 MPa, 39 ± 12 MPa, respectively (Sheykhrezae et al., 2018).

Cylindrical molds with length = 6 mm and inner diameter = 4 mm (length-to-diameter
ratio = 1.5) are typically used to produce specimens for strength testing of Biodentine,
because this complies with the requirement of the standard ISO 9917-1:2007 for testing of
powder/liquid dental cements intended for permanent cementation, lining, and restoration
(International Organization for Standardization, 2007). From cementitious materials used in
building construction, however, it is known that the “genuine” uniaxial compressive strength is
obtained from cylindrical specimens with a length-to-diameter = 2, see ASTM C39 (American
Society for Testing and Materials, 2021). Less slender specimens lead to larger strength values
(Amieur, 1994; Keskin et al., 2019; Govindaraju et al., 2017; Atmeh, 2020), because of the
lack of homogeneous stress states within the specimens (Fischer et al., 2014; Karte et al.,
2015; Ausweger et al., 2019). To the best knowledge of the authors, this aspect has not been
systematically studied yet, and provides the first motivation for the present paper, where
specimens with height-over-diameter ratios of 1.34 and 1.84, respectively, are tested, in order
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to find out whether the correction scheme of ASTM C39 (American Society for Testing and
Materials, 2021) is applicable so as to determine the genuine compressive strength associated
with the aforementioned ratio amounting to two. In parallel, the development of strength
with material age is investigated, and quantified by means of the strength evolution formula
of the fib Model Code 2010 (International Federation for Structural Concrete, 2010). While
stress-strain characteristics are described in Section 4.2, the code-based developments are
covered by Section 4.3. Stress-strain characteristics of specimens loaded up to failure are hardly
discussed in the open literature. We also tackle this knowledge gap, when, in Section 4.4, a
detailed micromechanical explanation for the failure behavior of mature Biodentine is provided,
setting the present experimental results to an earlier nanoindentation campaign (Dohnalík
et al., 2021) and its micromechanical evaluation (Dohnalík et al., 2022). Section 4.5 closes the
paper with conclusions drawn from the presented results.

4.2 Compressive strength testing from early to mature
material ages

In the following, compressive forces and stresses as well as the related shortening of the
specimens are described with a positive mathematical sign.

4.2.1 Production and storage of cylindrical specimens
Specimens of Biodentine were produced according to the instructions of the manufacturer.
Capsules containing the dry binder powder were opened. 173µL of the mixing liquid were
dripped onto the binder using a micropipette (Handy Step, Mettler Toledo, USA). The capsules
were closed, shaken in the amalgamator for 30 seconds, and re-opened. The freshly produced
cement paste was cast into cylindrical polytetrafluoroethylene molds with two different length-
to-diameter ratios. The slenderer molds had a length = 10 mm and a diameter = 5 mm. The
less slender molds had a length = 6 mm and a diameter = 4 mm. The corresponding specimens
are referred to as “5/10 specimens” and “4/6 specimens”, respectively.

In order to allow the material to transform from a moldable gel into a solid, the molds were
covered by glass plates (= microscope slides). The latter were secured by means of a U-shaped
clamp and a screw, see Fig. 4.1(a). This assembly was stored inside a container, above a
water bath tempered to 37◦C, see Fig. 4.1(b). After 20 minutes, the solidified specimens were
taken out of their molds.

In order to protect the specimens against drying and calcium leaching, they were inserted
into test tubes filled with lime-saturated solution tempered to 37◦C. The test tubes were
closed and put into a beaker containing distilled water. The beaker was stored in a climate
chamber (MOV-112F, Sanyo, Japan), see Fig. 4.1(c). Both the distilled water and the climate
chamber were tempered to 37◦C, see Fig. 4.1(c). In this configuration, the specimens hardened
until they were scheduled for testing.

In order to prepare the specimens for destructive compressive testing, they were taken out
of the lime-saturated solution and processed as follows. In order to come up with coplanarity
of the two opposite circular surfaces, they were ground by means of a polishing machine
(LaboPol-5, Struers, Germany) operated at 300 revolutions per minute, using silicon carbide
grinding paper with a grain size of 15µm (Struers Grit 1200). During grinding, the specimens
were kept in a holder which was geometrically identical to the molds described above. In
order to rinse the removed material off the revolving polishing paper, a moderate flow of
water was poured on it from the built-in outlet. The length L and the diameter D of the
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ground specimens were measured using a digital sliding caliper (CD-S15CK, Mitutoyo, Japan).
The 5/10 specimens had an average length = 9.22 mm, see Tables 4.1, and 4.2. The 4/6
specimens had an average length = 5.26 mm, see Tables 4.3, and 4.4. Thus, the average
length-to-diameter ratios of the two types of specimens amounted to

5/10 specimens: ⇒ L/D = 1.84 , (4.1)

4/6 specimens: ⇒ L/D = 1.34 . (4.2)

Two photographs were taken after polishing, one each from opposite sides of the specimens.
Finally, the specimens were placed, one after the other, onto the bottom load plate of
a universal testing machine (Criterion C43.104Y, MTS Systems Corporation, USA). The
crosshead was very slowly moved downwards, under visual control, until the upper load plate
was very close to (but not yet in contact with) the specimen.

Table 4.1
Diameters of the 5/10 specimens measured after polishing of the contact surfaces; every listed
value is the arithmetic mean of three measurements.

mat. diameter D [mm] of a specimen n

age 1 2 3 4 5 6 7
1 hr. 5.01 5.00 5.00 5.00 4.98 4.96 −
1.5 hrs. 5.01 5.00 5.01 5.00 5.02 5.00 4.99
3 hrs. 4.98 5.00 4.99 4.99 4.99 4.99 −
7.5 hrs. 4.99 5.00 5.01 5.02 5.00 4.98 4.98

25.5 hrs. 5.01 4.98 4.99 4.99 5.02 5.00 5.04
7 days 4.99 4.99 4.99 4.98 4.95 5.00 5.01
7 days* 4.98 4.98 5.01 5.00 5.00 4.98 5.02

14 days 4.97 5.01 4.99 4.99 4.99 5.03 4.99
14 days* 5.01 5.00 5.02 5.02 5.00 5.00 5.01
21 days 5.02 5.01 5.00 5.03 5.03 5.00 5.02
28 days 5.01 5.02 5.01 4.99 5.00 5.03 5.02
* the numbering of the specimens continues as n + 7.

4.2.2 Destructive compression testing
The destructive compression tests were performed by the testing machine under displacement
control, realized through software TW Elite v4.6.0.23, MTS Systems Corporation, USA. In
order to prescribe a strain rate of ≈ 1.5 × 10−3/s, the speed of the crosshead was set equal to
0.83 mm/min for the 5/10 specimens, and to 0.50 mm/min for the 4/6 specimens. As output,
the software delivered measured histories of the displacement of the crosshead (= estimate of
the shortening of the tested specimen), ∆L(t), and of the force F (t) imposed on the tested
specimen.

The evolution of the axial normal strain ε(t) of a tested specimen follows from dividing
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Table 4.2
Lengths of the 5/10 specimens measured after polishing of the contact surfaces; every listed
value is the arithmetic mean of three measurements.

mat. length L [mm] of a specimen n

age 1 2 3 4 5 6 7
1 hr. 9.37 9.25 9.42 9.20 9.13 8.88 −
1.5 hrs. 9.30 9.33 9.33 9.46 9.37 9.30 9.35
3 hrs. 9.07 9.36 9.44 9.07 9.27 9.14 −
7.5 hrs. 9.47 8.54 9.32 9.25 9.31 8.98 8.74

25.5 hrs. 9.09 9.45 9.02 9.37 8.99 9.20 9.04
7 days 8.96 9.25 9.24 9.50 8.84 9.13 9.29
7 days* 9.21 9.29 9.07 9.28 9.36 9.32 9.26

14 days 8.84 9.32 9.25 9.15 9.11 9.14 9.27
14 days* 9.36 9.47 9.34 9.20 9.48 9.11 9.09
21 days 9.38 9.44 9.33 9.47 9.20 9.11 9.10
28 days 9.15 9.12 9.25 9.19 9.22 9.19 9.36
* the numbering of the specimens continues as n + 7.

Table 4.3
Diameters of the 4/6 specimens measured after polishing of the contact surfaces; every listed
value is the arithmetic mean of three measurements.

mat. diameter d [mm] of a specimen n

age 1 2 3 4 5 6 7
1.5 hrs. 3.89 3.98 3.99 3.98 3.91 3.93 3.91
7.5 hrs. −‡ 3.88 3.86 3.95 3.99 3.94 3.98

25.5 hrs. 3.94 3.96 3.89 3.90 3.94 3.90 3.90
7 days 3.91 3.92 3.98 3.96 3.90 3.94 3.91

14 days 3.91 3.88 3.93 3.89 4.04 4.00 3.93
21 days 3.88 3.95 3.96 3.99 3.91 −‡ 4.01
28 days 3.89 3.96 3.97 3.91 3.93 3.89 3.99
‡ specimens failed during handling, prior to testing
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Table 4.4
Lengths of the 4/6 specimens measured after polishing of the contact surfaces; every listed
value is the arithmetic mean of three measurements.

mat. length L [mm] of a specimen n

age 1 2 3 4 5 6 7
1.5 hrs. 5.04 4.97 5.32 5.48 5.43 5.41 4.99
7.5 hrs. −‡ 5.17 5.69 5.31 5.38 5.22 5.43

25.5 hrs. 5.63 5.27 5.46 5.45 5.41 5.44 5.68
7 days 5.27 5.51 5.34 5.45 5.25 5.51 5.13

14 days 5.47 4.30 5.09 5.18 5.36 5.01 4.73
21 days 5.25 5.12 5.24 4.60 5.26 −‡ 5.49
28 days 5.17 5.21 5.49 5.17 5.10 5.14 5.17
‡ specimens failed during handling, prior to testing

∆L(t) by the initial length of the specimens, L:

ε(t) = ∆L(t)
L

. (4.3)

The evolution of the axial normal stress σ(t) of a tested specimen follows from dividing F (t)
by the cross-sectional area = d2π/4 of the specimen:

σ(t) = 4 F (t)
d2π

. (4.4)

A total of 122 destructive compression tests were performed at material ages ranging from
1 hour to 28 days, see Tables 4.5 and 4.6. The material age is counted from the time instant
when the mixing liquid got in contact with the dry binder powder.

4.2.3 Discarding tests influenced by imperfections
Miniaturized compressive strength tests on cylindrical specimens are a challenging task,
because such experiments are prone to suffer from imperfections which reduce the ultimate
loads sustained by the specimens. This provides the motivation to discard tests which
were evidently affected either by geometric imperfections regarding coplanarity or by pores
entrapped during casting, as described in the following two paragraphs.

Geometric imperfections, such as residual roughness or tilt, may lead to partial, rather than
full-face, contact between the specimen and the load application system; in particular so during
the initial phase of a compression test. This manifests itself in a positive curvature of stress-
strain graphs at stress levels which are small to the finally reached strength, see Fig. 4.2(a).
Given that geometric imperfections were “small”, progressive increase of compressive loading
resulted in the transition to full-face contact and to a virtually linear stress-strain graph. In
addition, stress fluctuations (rather than a uniform stress field) occurred inside several of the
tested specimens, manifesting themselves by audible cracking events and/or visible spalling,
however, in any case by a sudden drop of the sustained force, followed by its re-increase,
sometimes even surpassing the level at which the local damage event took place, see Fig. 4.2(a).
The ultimate force sustained by a specimen which suffered from a pre-peak cracking event
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Table 4.5
Values of the ultimate compressive forces sustained by the 5/10 specimens, tested at specific
material ages.

material age
ultimate force Fult [N] of the specimen n

1 2 3 4 5 6 7
1 hour 1060 990 942 1095 810† 849 −
1.5 hours 1940 1369 1853 1896 1630 1998 1826
3.0 hours 3081 2979 2422⋆ 2673† 2821 2790† −
7.5 hours 3042 2951⋆ 3201 2760⋆ 2835⋆ 3259 3262†

25.5 hours 3006† 2792⋆ 3498⋆ 3951 4154 3899 3807†
7 days 4616 5358 4024⋆ 4504⋆ 4805⋆ 4518 4134⋆

7 days‡ 5036 4815⋆ 3160⋆ 3570⋆ 4082⋆ 4322⋆ 3900⋆

14 days 4787⋆ 4878⋆ 4446⋆ 3523⋆ 4832⋆ 5371 5387
14 days‡ 4967⋆ 4786⋆ 5371⋆ 5150 4127⋆ 4035† 5577⋆

21 days 5312† 5157 4841 4936 4333⋆ 4208⋆ 4570⋆

28 days 4637⋆ 6220⋆ 5355⋆ 5082⋆ 4538⋆ 5026⋆ 2815⋆

⋆ experiment discarded because of pre-peak cracking event(s)
† experiment discarded because of visible microstructural imperfection(s)
‡ the numbering of the specimens continues as n + 7

Table 4.6
Values of the compressive ultimate forces sustained by the 4/6 specimens, tested at specific
material ages.

material age
ultimate force Fult [N] of the specimen n

1 2 3 4 5 6 7
1.5 hours 1466 1396 779⋆ 1386 1402 1130 1504
7.5 hours −‡ 2116⋆ 2307 2734 1550⋆ 1839⋆ 2375

25.5 hours 2290⋆ 1951⋆ 2779 2532 1648⋆ 2696 2630†
7 days 2940⋆ 2701⋆ 2143⋆ 2503⋆ 3267 2898⋆ 2467⋆

14 days 3178⋆ 3057⋆ 3714 2798⋆ 3427 2960⋆ 3059
21 days 1352⋆ 3555 3590⋆ 1662⋆ 2820⋆ −‡ 3244
28 days 2247⋆ 3268⋆ 2902⋆ 3194 3236⋆ 2288† 1985⋆

⋆ experiment discarded because of pre-peak cracking event(s)
† experiment discarded because of visible microstructural imperfection(s)
‡ specimens failed during handling, prior to testing
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Table 4.7
Compressive strength values of the 5/10 specimens, from tests which were apparently free of
significant imperfections.

material age
comp. strength fcu [MPa] of a specimen n

1 2 3 4 5 6 7
1 hour 53.8 50.4 48.0 55.8 − 43.9 −
1.5 hour 98.4 69.7 94.0 96.6 82.4 101.8 93.4
3 hours 158.2 151.7 − − 144.2 − −
7.5 hours 155.6 − 162.4 − − 167.3 −

25.5 hours − − − 202.0 209.9 198.6 −
7 days 236.0 274.0 − − − 230.1 −
7 days* 258.6 − − − − − −

14 days − − − − − 270.3 275.5
14 days* − − − 261.6 − − −
21 days − 261.6 246.5 248.4 − − −
* the numbering of the specimens continues as n + 7.

203.5 MPa in the subsequent 24 hours, see Table 4.7. Seven days after production, the average
strength amounts to 249.7 MPa, 14 days after production to 268.7 MPa, and 21 days after
production to 252.2 MPa. This decrease of strength values in the third week after production
is unrealistic. It underlines that strength testing is very challenging at such mature material
ages. This is corroborated by the test results obtained 28 days after material production, all
of which had to be discarded because of pre-peak cracking events. For all other material ages
there are at least three tests which were free of significant imperfections, see Table 4.7.

A similar early-age strength evolution is found for the 4/6 specimens. The average strength
1.5 hours after production amounts to 113.7 MPa, 6 hours later it is equal to 203.7 MPa, and
25.5 hours after production to 223.8 MPa, see Table 4.8. Both 7 and 28 days after production,

Table 4.8
Compressive strength values of the 4/6 specimens, from tests which were apparently free of
significant imperfections.

material age
comp. strength fcu [MPa] of a specimen n

1 2 3 4 5 6 7
1.5 hour 123.3 112.2 − 111.4 116.7 93.1 125.2
7.5 hours − − 197.1 223.1 − − 190.9

25.5 hours − − 233.8 212.0 − 225.7 −
7 days − − − − 273.5 − −

14 days − − 306.1 − 267.4 − 252.2
21 days − 290.1 − − − − 256.9
28 days − − − 266.0 − − −
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there is only one test which was apparently free of significant imperfections, 21 days after
production there are two such tests, and 14 days after production there are three of them, see
Table 4.8. At the latter material age, the average strength amounts to 275.2 MPa.

4.2.6 Failure modes
Both types of specimens exhibited similar failure modes. Axial splitting cracks were observed
along the visible lateral surfaces of the specimens, particularly so in the central region of the
specimens, i.e. surface cracks were propagating predominantly in loading direction, and only
some of them ran across the full height of the specimens, see e.g. Fig. 4.5(a). In several tests,
parts of the specimen spalled away during failure from the central region of its lateral surface,
leaving behind fragments reminiscent of two cones, whereby the bases of the two cones were
located at the interfaces between specimen and the load plates, and the two tips of the cones
touched each other at the center of the specimen, see e.g. Fig. 4.5(b). These cones indicate
that stresses were fluctuating inside the specimen rather than being uniform throughout the
tested volume (Amieur, 1994). These stress fluctuations are known to result from the frictional
interaction between the specimen and the load plates (Karte et al., 2015). Notably, the photos
of Fig. 4.5 were taken at material ages amounting to 1 hour and to 7.5 hours, respectively.
With increasing maturity, the material became more brittle, and the specimens disintegrated
into many pieces. At material ages amounting to one day and older, the specimens broke
into many fragments, so that classical categorizations concerning the propagation direction of
single cracks are not useful anymore. This behavior, observed under quasi-static loading rates,
is reminiscent of the failure mode usually observed under high-dynamic loading rates (Fischer
et al., 2014; Binder et al., 2020).

(a) (b)
Fig. 4.5. Photos of 5/10 specimens tested at material ages amounting to (a) 1 hour, and
(b) 7.5 hours.

4.3 Standards-based evaluation of experimental data

4.3.1 Early-age strength evolution
In order to interpolate between the strength values determined by means of testing, and in
order to extrapolate to material ages at which no tests were performed, an empirical function
is adopted from the fib Model Code 2010 (International Federation for Structural Concrete,
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2010). Its original version is designed for the description of the early-age strength evolution of
construction concretes curing at 20◦C, and it reads as

fc(t) = fc,28 d × exp

s

1 −
�

28 days
t

 , (4.5)

where fc denotes the compressive strength, t the material age (in days), fc,28 d the compressive
strength reached 28 days after production, and s a dimensionless parameter accounting for
the speed of the early-age strength evolution at 20◦C. The value of s is the smaller the faster
the early-age strength evolution, see e.g. (Ausweger et al., 2019) for a detailed discussion.

The strength of Biodentine curing at 37◦C increases significantly up to a material age of
14 days, while it is virtually constant in the third and fourth week after production. This
provides the motivation to reformulate Eq. (4.5) as

fc(t) = fc,14 d × exp

sBio

1 −
�

14 days
t

 , (4.6)

where fc,14 d denotes the compressive strength reached 14 days after production, and sBio is
a dimensionless parameter accounting for the speed of the early-age strength evolution of
Biodentine at 37◦C.

The compressive strength reached 14 days after production, fc,14 d, is quantified separately
for each one of the two types of specimens. Given that the strength was found to be virtually
constant throughout the third and fourth week after production, fc,14 d is set equal to the
mean value of all strength values obtained 14, 21, and 28 days after production. In both cases,
six strength values refer to that interval of material ages, see the last three lines in Tables 4.7
and 4.8. The corresponding mean values read as

5/10 specimens: ⇒ fc,14 d = 260.4 MPa , (4.7)

4/6 specimens: ⇒ fc,14 d = 273.1 MPa , (4.8)

see also the last line of Table 4.9 which lists average strength values as a function of specimen
type and material age.

The early-age strength evolution of both types of specimens is fitted by means of one value
of sBio:

sBio = 0.06 , (4.9)

see the solid lines in Fig. 4.6 for the satisfactory performance of Eqs. (4.6)–(4.9) after fitting.

4.3.2 Influence of the length-to-diameter ratio of cylindrical specimens on
their compressive strength

The 5/10 specimens delivered smaller compressive strength values than the 4/6 specimens,
throughout the interval of material ages covered by destructive compression tests, see Ta-
ble 4.9. This raises the question how to quantify the genuine uniaxial compressive strength
of Biodentine. It is recalled that the compressive strength of cylinders made of cementitious
construction materials is known to increase with decreasing slenderness-ratio L/D, where
L denotes the axial length of the specimen, and D its diameter. The ASTM C39 standard
(American Society for Testing and Materials, 2021) provides correction factors which are
to be multiplied with experimentally determined compressive strength values, in order to
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after production, which show a significant volume fraction of residual cement grains (see
Fig. 6 of Dohnalík et al. (2021)), underlining that there is still hydratable matter left. In
order to extrapolate the evolution of the uniaxial compressive strength of Biodentine beyond
material ages of 14 days, fc,14 d according to Eq. (4.12) and sBio according to Eq. (4.9) are
inserted into Eq. (4.6). Evaluation of the resulting expression for a material age of four months
(t = 120 days) delivers:

fc(4 months) = 257.4 MPa × exp

0.06 ×

�
1 −

�
14 days
120 days

�
= 267.8 MPa . (4.13)

Notably, at the material age of 4 months, grid nanoindentation tests were performed on
Biodentine (Dohnalík et al., 2021).

4.4 Microscopic origin of the macroscopic uniaxial
compressive strength of mature Biodentine

Grid nanoindentation testing of Biodentine and of chemically comparable construction cement
pastes, respectively, have shown that both types of materials consist of two populations of
hydrates (= products of the chemical reaction between binder and water). As for construction
cement pastes, low-density calcium-silicate hydrates (C-S-H) are distinguished from high-
density C-S-H (Tennis and Jennings, 2000; Jennings, 2000; Constantinides and Ulm, 2004).
Biodentine, in turn, consists of lower-density calcite-reinforced (LDCR) hydrates and high-
density calcite-reinforced (HDCR) hydrates (Dohnalík et al., 2021). The microstructure of
construction cement pastes typically consists of two times more low-density than high-density
C-S-H (Constantinides and Ulm, 2004), and the strength properties of low-density C-S-H
(Sarris and Constantinides, 2013) can be upscaled to explain the macroscopic strength of
construction cement pastes (Pichler et al., 2013; Pichler and Hellmich, 2011) and of related
concretes (Königsberger et al., 2018). The microstructure of Biodentine, in turn, consists of
six times more HDCR than LDCR hydrates (Dohnalík et al., 2021), and the macroscopic
strength of Biodentine is significantly larger than that of construction cement pastes.

The described similarities and differences suggest that the superior macrostrength of
Biodentine is triggered by microscopic failure of the HDCR rather than the LDCR hydrates.
In addition, the sudden, well-spread brittle failure of Biodentine indicates that a large portion of
the HDCR hydrates fail as soon as the macroscopic loading reaches the strength of the material.
This provides the motivation to study mature Biodentine subjected to its uniaxial compressive
strength, to downscale these macrostresses to microscopic stress states experienced by the
HDCR population of hydrates, and to insert these microstresses into a microscopic failure
criterion in order to determine the degree of utilization in the HDCR population of hydrates.
Before doing so, two essential prerequisites are revisited: (i) results from a grid nanoindentation
testing campaign performed on polished surfaces of mature Biodentine (Dohnalík et al., 2021),
and (ii) a micromechanics model which allows for downscaling macrostresses imposed on
a representative volume of mature Biodentine to microstresses experienced by the HDCR
population of hydrates (Dohnalík et al., 2022).

4.4.1 Results from grid nanoindentation on mature Biodentine (Dohnalík
et al., 2021)

5748 nanoindentation tests into mature Biodentine were performed with a Berkovich tip
(Dohnalík et al., 2021). Imposing maximum indentation forces of 1 mN resulted in maximum
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positive quantities, and (ii) the large number of indentation experiments revealed skewed
rather than symmetric stiffness distributions. The rightmost lognormal distributions in Fig. 4.8
refer to the stiff inclusions zirconia and clinker (indices i = 1 and i = 2, respectively), the
central distributions to HDCR hydrates (i = 3), and the leftmost to LDCR hydrates (i = 4),
see Dohnalík et al. (2021) and Table 4.8. This underlines the existence of two types of hydrates

Table 4.10
Results obtained from grid nanoindentation testing (Dohnalík et al., 2021): values of medians,
modes, and volume fractions associated with the three lognormal distributions representing
the histogram of indentation moduli in Fig. 4.8.

lognormal indentation modulus indentation hardness volume
distribution median/mode [GPa] median/mode [GPa] fraction [–]
LDCR hydrates 45.1/24.5 1.15/0.26 0.1228
HDCR hydrates 62.6/60.2 2.78/2.47 0.7420
clinker/zirconia 92.2/89.0 6.66/5.93 0.1352

sum: 1.0000

reinforced by calcite particles of single-to-submicrometric size (Li et al., 2019). The two
populations of hydrates are reminiscent of construction cement pastes in which inner and
outer products (Taplin, 1959), phenograin and groundmass (Diamond and Bonen, 1993),
low-density and high-density C-S-H (Tennis and Jennings, 2000; Jennings, 2000), as well as
class-A and class-B C-S-H (Königsberger et al., 2016) are distinguished.

Evaluation of nanoindentation tests into the stiff clinker and zirconia grains, based on the
Oliver-Pharr formulae mentioned above, led to smaller-than-expected indentation moduli,
because the grains acted like larger indenters pressed into the softer surrounding hydrated
material. This effect has been shown explicitly by image-supported grid nanoindentation,
applied to two different types of cementitious materials (Ma et al., 2017; Königsberger et al.,
2021). Hence, we resort to the well known elastic properties of clinker and zirconia which
are taken from the literature, see Table 4.11. The volume fractions of all four types of solid
constituents are taken from Dohnalík et al. (2021).

Table 4.11
Input quantities of the solid material constituents: bulk moduli, ki, shear moduli gi, as well as
lognormal parameters µi and σi which are consistent with median and mode values listed in
Table 4.10; input values taken from Hussey and Wilson (1998); Pichler and Hellmich (2011);
Dohnalík et al. (2021).

phase index stiffness properties vol. fraction
zirconia i = 1 k1 = 170.8 GPa g1 = 78.8 GPa f1 = 0.0182
clinker i = 2 k2 = 116.7 GPa g2 = 53.8 GPa f2 = 0.1170
HDCR hydrates i = 3 µ3 = 4.14 σ3 = 0.20 f3 = 0.7420
LDCR hydrates i = 4 µ4 = 3.81 σ4 = 0.78 f4 = 0.1228

The two populations of hydrates exhibit lognormal stiffness distributions, see Table 4.10.
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The probability distribution functions of their indentation moduli M read as:

φi(M) = 1
Mσi

√
2π

exp
�

− 1
2

� ln(M) − µi

σi

2�
, i = 3, 4 . (4.14)

Indentation moduli are functions of the elastic stiffness properties of the nanoindentation-
probed domain and of the diamond tip of the indenter. For an isotropic domain, this function
reads as (Oliver and Pharr, 1992)

1
M

= 1 − ν2
h

E
+ 1 − 0.072

1141 GPa , (4.15)

where E and νh denote the modulus of elasticity and Poisson’s ratio of the hydrates. The
latter is constant and amounts to (Dohnalík et al., 2022)

νh = 0.2017 . (4.16)

In other words, the distribution of indentation modulus is related to a corresponding distribu-
tion of the modulus of elasticity, E. The latter distribution follows from solving Eq. (4.15) for
E:

E(M) = 1 − ν2
h

1
M − 1−0.072

1141 GPa
. (4.17)

The sought bulk moduli ki(M) and the shear moduli gi(M) follow from standard relations for
isotropic elastic media:

ki(M) = E(M)
3 (1 − 2 νh) , i = 3, 4 , (4.18)

gi(M) = E(M)
2 (1 + νh) , i = 3, 4 . (4.19)

4.4.2 Continuum micromechanics model for the elastic stiffness of mature
Biodentine (Dohnalík et al., 2022)

Continuum micromechanics models account for key features of microheterogeneous materials:
the stiffness constants of the material phases, their volume fractions, their characteristic
phase shapes, and the specific type of interaction between the phases. Biodentine consists
of five types of constituents: zirconia (index i = 1), clinker (i = 2), HDCR hydrates (i = 3),
LDCR hydrates (i = 4), and grain boundary defects modeled as closed microcracks (i = 5).
The microstructure of Biodentine is represented as a highly disordered (“polycrystalline”)
arrangement of material constituents which exhibit direct phase-to-phase interaction, see
Fig. 4.9. As regards phase shapes, all four types of solid constituents are represented as
spherical phases. The microcracks are introduced as circular slit cracks isotropically oriented
in space (Dormieux et al., 2006; Zhu et al., 2011).

The stiffness of all solid constituents is isotropic. Their elastic stiffness properties are fully
described based on known values of their bulk moduli ki and shear moduli gi, see Table 4.11
as well as Eqs. (4.14)–(4.19).

Phase volume fractions of the solid constituents add up to 1, see Table 4.11, because the
volume fraction of closed microcracks is zero. The effect of such microcracks on the overall
material behavior is quantified by means of the dimensionless crack density parameter of
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where i = 3, 4 and M ∈ R0,+ and

Svol = 3kbio

3kbio + 4gbio
, (4.25)

Sdev = 6(kbio + 2gbio)
5(3kbio + 4gbio) (4.26)

Tdev = 8 (3kbio + 4gbio)
15π (3kbio + 2gbio) , (4.27)

kbio = 38.4 GPa , (4.28)

gbio = 14.1 GPa , (4.29)

where Svol and Sdev denote the volumetric and deviatoric components of the Eshelby tensor of
a spherical inclusion in an infinite matrix with the stiffness of mature Biodentine, Tdev accounts
for the influence of the microcracks, and kbio and gbio are the macroscopic “homogenized” bulk
and shear moduli of mature Biodentine (Dohnalík et al., 2022). The integrals of Eqs. (4.23)
and (4.24) are listed in Appendix B of Dohnalík et al. (2022).

4.4.3 Microscopic stress distributions in calcite-reinforced hydrates as a
function of their indentation modulus

So far, the sign convention used in material testing of cementitious materials was used:
compression was described with a positive mathematical sign. From now on, the sign
convention used in continuum mechanics is used: compressive normal stresses are described
with a negative mathematical sign, tensile normal stresses are positive.

In order to explain the microscopic origin of the macroscopic uniaxial compressive strength
of mature Biodentine according to Eq. (4.13), a Cartesian coordinate system is introduced
such that the direction of uniaxial compression is aligned with the z-direction. Thus, the
stress state at failure is expressed as

Σ = −267.8 MPa × (ez ⊗ ez) . (4.30)

Stress downscaling according to Eqs. (4.21)–(4.29) delivers axisymmetric microscopic principal
stress states experienced by the two populations of hydrates. Denoting the normal stress
component in the axial z-direction as σaxi and the normal stress components in the lateral x-
and y-directions as σlat, the microscopic stress states read as

σi(M) = σi,axi(M) × (ez ⊗ ez) + σi,lat(M) × (ex ⊗ ex + ey ⊗ ey) , i = 3, 4 , (4.31)

see also Fig. 4.10. The absolute values of the compressive axial normal stresses increase with
increasing indentation modulus of the HDCR hydrates. The lateral principal normal stresses
are negligibly small compared to the axial normal stresses.

4.4.4 Shear failure of calcite-reinforced hydrates
Cementitious hydration products resulting from the dissolution of dicalcium and tricalcium
silicate and from precipitation of solids out of the oversaturated porewater solution, are
known to exhibit pressure-sensitive shear failure (Constantinides et al., 2006; Sarris and
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variables X and Y as

Xp = exp(µX + upσX) , (4.35)

Yp = exp(µY + upσY ) , (4.36)

with X ∈ [M, H, C] and Y ∈ [M, H, C]. In Eqs. (4.35) and (4.36), σX and µX as well as
σY and µY denote the parameters of the two lognormal distributions, and up stands for the
p-quantile of the standard normal distribution. Solving both Eqs. (4.35) and (4.36) for up,
setting the two resulting expressions equal to each other, and transforming the resulting
expression as detailed in Appendix 4.A, yields the following remarkable result: relating any
p-quantile of one lognormally distributed statistical variable X to the same p-quantile of
another lognormally distributed statistical variable Y leads to the following power-law relation
between the two statistical variables:

Y = exp
�

µY − σY

σX
µX

�
× X

σY
σX . (4.37)

Setting X equal to the indentation hardness H as well as Y equal to the indentation modulus
M , yields a power-law describing that the stiffness increases underlinearly with increasing
strength, see Fig. 4.11(a), (b). This is qualitatively reminiscent of similar power-law relations
between stiffness and strength of mature construction concretes, see the fib Model Code 2010
(International Federation for Structural Concrete, 2010) and Fig. 6 of (Ausweger et al., 2019).

4.4.6 Identification of lognormal parameters of the equivalent shear
strength

The microscopic stresses experienced by the hydrates, see Fig. 4.10, were obtained from
downscaling the macroscopic uniaxial compressive strength of mature Biodentine. Thus, one
specific portion of the HDCR hydrates (with one specific value of the indentation modulus)
must fulfill the failure criterion (4.34), consider the = sign in (4.34), while the < sign applies
to all other hydrates. This represents a side condition for the sought lognormal distribution
of the equivalent shear strength.

As for identification of the lognormal distributions of the equivalent shear strength of the
HDCR hydrates, is useful to illustrate their stress states as a function of their indentation
modulus in a double logarithmic fashion, see Fig. 4.11(c), where the ordinate refers to
log |σaxi/2| rather than to log |σaxi|, because the figure will be used to illustrate the failure
criterion (4.34).

The sought lognormal distribution of the equivalent shear strength is related to the known
lognormal distribution of the indentation modulus by correlating their quantiles as explained
in Subsection 4.4.5. The resulting power-law is obtained from setting X equal to M and Y
equal to C in Eq. (4.37):

C = exp
�

µC − σC

σM
µM

�
× M

σC
σM , (4.38)

where µM = 4.14 and σM = 0.20, see Table 4.11, while µC and σC are to be identified. As
for adding a graphical illustration of Eq. (4.38) to Fig. 4.11(c), a second ordinate showing
log(C) is added. The power-law (4.38) refers to a straight line in Fig. 4.11(c). This straight
line can be moved and rotated in Fig. 4.11(c), by means of assigning different values to µC

and σC . A realistic pair of values is identified such that the straight line becomes the tangent
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to the graph showing log |σaxi/2| over log(M). The contact point refers to those hydrates
which fulfill the failure criterion (4.34). Given that median stiffness values have been shown
to be the most representative values of lognormal distributions when it comes to upscaling of
the elastic stiffness (Dohnalík et al., 2022), we here assume that the microstresses experienced
by the hydrates with the median stiffness are relevant for strength upscaling. In other word,
µC and σC are identified such that the graph of Eq. (4.38) touches the graph of the axial
stresses at the median value of M , i.e. at the 50% quantile of M , amounting to 62.6 GPa for
the studied HDCR hydrates, see Fig. 4.11(c) and Table 4.10. The corresponding lognormal
parameters of the distributions of the equivalent shear strength of the HDCR hydrates read as

µC = 4.879 , (4.39)

σC = 0.078 . (4.40)

The corresponding probability density function of the equivalent shear strength is illustrated
in Fig. 4.11(d). Corresponding values of the mode, the median, and the mean value are listed
in Table 4.12. The lognormal distribution of the effective shear strength is only slightly

Table 4.12
Mode, median, and mean value of the lognormal distribution of the equivalent shear strength
C of the HDCR hydrates, see also Eqs. (4.39) and (4.40).

mode [MPa] median [MPa] mean [MPa]
130.7 131.5 131.9

skewed. This is in agreement with the only slightly skewed distributions of the indentation
modulus and hardness of the HDCR hydrates.

4.4.7 Degree of utilization of hydrates as a function of their indentation
moduli

The degree of utilization is a dimensionless stress-based quantity ranging from 0 to 1. The
value 0 refers to a stress-free configuration; the value 1 to failure. The larger the degree of
utilization, the closer is the investigated stress state to the strength of the analyzed material.
A mathematical expression describing the degree of utilization F is obtained from dividing
the failure criterion (4.34) by C

F = |σaxi|
2C

≤ 1 , (4.41)

where both the microstresses σaxi and the equivalent shear strength C are functions of the
indentation modulus, see Fig. 4.11(c). The corresponding evaluation of Eq. (4.41) underlines
that the maximum attainable degree of utilization, F = 1, is only reached by the hydrates
with indentation modulus equal to the median value, while all other hydrates have degrees of
utilization smaller than 1, see Fig. 4.12(a). Still, it is remarkable that the degree of utilization
of all HDCR hydrates is larger than some 93%. This underlines that mature Biodentine is a
highly optimized material.

4.4.8 Shear failure of HDCR hydrates explains macroscopic strength of
mature Biodentine

Mature Biodentine fails in a brittle fashion. Corresponding specimens break into a very
high number of fragments once the strength is reached. Therefore, it is likely that many
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to sudden brittle failure. Very young specimens showed axial splitting at the lateral
surface, leaving behind fragments reminiscent of two cones, whereby the bases of the
two cones were located at the interfaces between specimen and the load plates, and the
two tips of the cones touched each other at the center of the specimen. At material
ages amounting to 1 day and older, the specimens broke into many fragments, so that
classical categorizations concerning the propagation direction of single cracks are not
useful anymore.

• The evolution of the uniaxial compressive strength of Biodentine curing at 37◦C can
be described by means of adapting an empirical formula from the fib Model Code 2010
(International Federation for Structural Concrete, 2010), which refers to construction
concretes curing at 20◦C. This underlines that the strength evolution of Biodentine
is qualitatively similar to that of construction concretes. Quantitatively, however,
Biodentine outperforms cementitious construction materials: the strength evolution of
Biodentine is significantly faster and leads to a by far larger “final” strength compared
to chemically comparable construction cement pastes.

• The smaller the length-to-diameter ratio (“slenderness ratio”) of cylindrical specimens
of Biodentine, the larger is the maximum force sustained by these specimens when
crushed under uniaxial compression. Empirical correction factors of the ASTM C39
for concrete cylinders with a length-to-diameter ratio smaller than 2, applied to 14-
days-strength values of cylindrical Biodentine specimens with slenderness-ratios of 1.84
and 1.34, respectively, delivered virtually the same estimate of the uniaxial compressive
strength at that material age. This indicates that the correction factors account for a
structural effect rather than for a material property. This was further corroborated by
the observation that ratio of the strength values of two types of cylindrical Biodentine
specimens is in good approximation constant throughout the curing process.

• Microscopic stress states in both populations of hydrates of Biodentine, computed by
means of a micromechanics model accounting for lognormal stiffness distributions of
two populations of hydrates (Dohnalík et al., 2022), are in good approximation uniaxial
compressive stress states, because the principal normal stresses in lateral direction are by
two orders of magnitude smaller that the dominating principal normal stresses aligned
with the axis of macroscopic uniaxial loading. In addition, the dominating axial normal
stresses are the larger, the larger the stiffness of the hydrates.

• Correlating quantiles of two lognormal distributions results in a power-law relation
between the two statistical variables. The indentation modulus of the high-density
calcite-reinforced hydrates of Biodentine, for instance, increases underlinearly with
increasing indentation hardness. This is qualitatively reminiscent of similar power-law
relations between stiffness and strength of mature construction concretes, see the fib
Model Code 2010 (International Federation for Structural Concrete, 2010) and Fig. 6
of (Ausweger et al., 2019). Given that indentation modulus and hardness of both
populations of hydrates of Biodentine are lognormally distributed (Dohnalík et al.,
2022), the probability density function of the effective shear strength of the high-density
calcite-reinforced hydrates of Biodentine was introduced to be of lognormal nature as
well.

• Assuming that macroscopic strength of Biodentine results from failure of the high-density
calcite-reinforced hydrates with indentation modulus equal to the median value, it was
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found that some 85% of the high-density calcite-reinforced hydrates have virtually the
same degree of utilization (= stress-to-strength ratio). Because the high-density calcite-
reinforced hydrates occupy some 74% of the volume of Biodentine, the analysis underlines
that some 63% of the volume of Biodentine fail at virtually the same macroscopic loading.
This is a plausible explanation for the very brittle failure mode of Biodentine, and it
underlines that the material is very highly optimized for strength.
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Appendix 4.A Quantile-based correlation between two
lognormal distributions

Solving both Eqs. (4.35) and (4.36) for up and setting the two resulting expressions equal to
each other yields

1
σX

�
ln(Xp) − µX



= 1

σY

�
ln(Yp) − µY



. (4.A.1)

Solving the Eq. (4.A.1) for ln(Yp) yields

ln(Yp) = µY + σY

σX

�
ln(Xp) − µX



. (4.A.2)

Re-arranging terms and making use of “a ln(b) = ln(ba)” on the right side of Eq. (4.A.2) yields

ln(Yp) =
�
µY − σY

σX
µX

�
+ ln

�
X

σY
σX
p

�
. (4.A.3)

Applying to the term in the first pair of brackets on the right side of Eq. (4.A.3), first the
exponential function, and then its inverse, the natural logarithm, yields

ln(Yp) = ln
�

exp
�
µY − σY

σX
µX

��
+ ln

�
X

σY
σX
p

�
. (4.A.4)

Making use of “ln(a) + ln(b) = ln(a × b)” on the right side of Eq. (4.A.4) yields

ln(Yp) = ln
�

exp
�
µY − σY

σX
µX

�
× X

σY
σX
p


. (4.A.5)

Applying the exponential function to both sides of Eq. (4.A.5) finally yields

Yp = exp
�
µY − σY

σX
µX

�
× X

σY
σX
p . (4.A.6)

Given that Eq. (4.A.6) is valid for any p-quantile, the indices p can be omitted. This leads to
Eq. (4.37).









Chapter5
Summary, conclusions, and outlook
5.1 Summary of the experimental studies
The dental cement paste was investigated at microscopic scale by means of the grid nanoin-
dentation technique. From 5748 indentation experiments, only two had to be excluded due to
violation of the requirement for minimum indentation depth which is based on the average
roughness of the probed surface. Moreover, the individual indents are regarded as being
totally independent on each other, considering the typical spacing of 70µm and the average
indentation depth of 139 nm. Indentation modulus and hardness histograms, derived from the
Oliver–Pharr solution applied to the thousands of nanoindentation tests, were approximated
by means of superposition of two times three lognormal probability density functions. They
refer to less-dense calcite-reinforced (LDCR) hydrates, high-density calcite-reinforced (HDCR)
hydrates, and to indents into cement clinker and zirconium dioxide. The median values of
the three stiffness distribution are used for calculation of upper and lower stiffness bounds
as well as stiffness estimation in form of self-consistent scheme. The continuous probability
density functions of the LDCR, and HDCR hydrates are used as input for the improved
micromechanical model.

Light microscopy imaging provided complementary information about the microstructure
of the material probed by grid nanoindentation. In the case of dental cement paste, the
color as well as black-and-white microscopy images having resolution of 2584×1936 pixels and
1292×968 pixels with pixel sizes ranging from 0.34 to 0.54µm gave access to characteristic
particle sizes within the Biodentine’s microstructure.

Non-destructive ultrasonic pulse transmission technique characterized macroscopic (homog-
enized) elastic stiffness of dental cement paste from material ages of seven to 28 days. 325 tests
were carried out using longitudinal transducers with central frequencies amounting to 50 kHz,
500 kHz, 1 MHz, 2.25 MHz, 5 MHz, 10 MHz, and 20 MHz. The longitudinal waves sent through
the material characterized representative volume elements (RVEs) ranging from about 25µm
to approximately 10 mm which is considerably larger than the biggest microheterogeneity in
the material. Similarly, 122 measurements, using shear transducers with central excitation
frequencies of 5 MHz and 2.25 MHz, characterized RVEs of 49.5µm and 1.1 mm, respectively.
Bulk and shear moduli derived from these measurements were used for micromechanical
model accounting for two populations of hydrates with lognormally distributed microstiffness
properties.

Destructive compression tests characterized strength evolution at nine material ages ranging
from 1 hour to 28 days. 122 tests were carried out for two kinds of cylindrical specimens,
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different in their length-to-diameter ratio, on which quasi-static loading was imposed. If a
specimen was found to be flawed, either by geometric imperfections or by pores entrapped
during casting, the obtained result was discarded. The evidence was gathered by means
of inspecting the specimen’s stress-strain diagram and by a visual check of the specimen
itself as well as its fragments after the test (whenever it was possible). The mean strength
values of the two kinds of specimens at mature material state are corrected in accordance to
ASTM C39 standard, in order to obtain genuine uniaxial compressive strength of the material.
The strength evolution formula of fib Model Code 2010 was adopted to estimate the uniaxial
compressive strength of a four months old dental cement paste, the material age at which
the nanoindentation tests were carried out. The result was exploited in the micromechanical
model used for explanation of the genuine uniaxial compressive strength of well-hardened
Biodentine.

5.2 Summary of the developed models
Upper and lower stiffness bounds as well as upscaled stiffness from self-consistent microme-
chanical model were calculated based on three median microstiffnesses obtained from grid
nanoindentation results. The results were compared to ultrasound-derived “macroscopic”
elastic properties. These models provided the starting point for more profound analysis.

A micromechanical model, linking microstructural stiffness properties with macroscopic
effective stiffness, was further developed based on previous modeling efforts. In the improved
model, the microstructure of dental cement paste is considered as a “polycrystalline” ar-
rangement of five material phases: zirconia, clinker, HDCR hydrates, LDCR hydrates, and
grain boundary defects. The latter is modeled as closed microcracks represented by oblate
spheroid isotropically oriented in space. The other four solid constituents are represented
as spherical phases. The most important feature of this model is that it takes into account
the statistical nature of the indentation moduli of the two populations of calcite-reinforced
hydrates as an input parameter rather than just one representative stiffness per population.
As for the statistical distributions, lognormal probability density functions are adopted, such
that positive definiteness of the probed mechanical properties is a priori considered. Because
of this aspect, the model is also referred as the lognormal microelasticity model, and allows
for:

• quantification of Poisson’s ratio of the two populations of calcite-reinforced hydrates,

• identification of the Budiansky and O’Connell’s crack density parameter by means of
linking the micromechanical model to both nanoindentation and ultrasonic test results,

• quantitative illustration of how macroscopic uniform loading, imposed on a representative
volume of dental cement paste, results in microscopic stress and strain distributions
inside the two populations of hydrates,

• assessing the potential and the limitations of piecewise uniform microelasticity model.

The latter is based on just one representative stiffness per population of calcite-reinforced
hydrates, usually used in micromechanical models for construction cement pastes. The
lognormal microelasticity model is a valuable tool for further explanation of the compressive
strength.

The the sudden brittle failure of the dental cement paste was explained by means of the
lognormal microelasticity model loaded by macroscopic stress equal to the genuine uniaxial
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compressive strength obtained from the compressive strength experiments. This macrostresses
were downscaled to microstresses experienced by the HDCR population of hydrates. The
axial normal microstresses, playing prominent role in Biodentine’s strenght, were inserted
into a microscopic failure criterion, based on which a lognormally distributed equivalent shear
strength (cohesion-like quantity) was sought. The lognormal parameters of the equivalent
shear strength were found by means of correlating quantiles of the lognormal microstiffness
distribution and the equivalent shear strength. The lognormally distributed equivalent shear
stresses were used for calculation of the degree of utilization in the hydrates, a ratio of the
microstress in the hydrates with respect to their strength.

5.3 Research contribution and main findings
The experimental as well as the modeling campaigns contribute to the knowledge in (dental)
cement research in several ways: (i) the hydration products of the dental cement paste are
about twice as stiff and three times harder as the hydration products in construction cement
pastes. The high-density version of the hydrates occupies the largest relative volumetric
amount of the hardened material, this is the opposite to hardened construction cement pastes.
(ii) The mature dental cement paste contains defects and cracks that likely lower the overall
Biodentine performance. (iii) Representative quantity of a skewed lognormal distribution is
its median. (iv) The smaller the length-to-diameter ratio (“slenderness ratio”) of cylindrical
specimens of Biodentine, the larger is the maximum force sustained by these specimens when
crushed under uniaxial compression.

The main findings are summarized according to the research objectives as follows:

• Grid nanoindentation:
Probing well-hardened dental cement paste revealed the existence of calcite-reinforced
hydration products, which are significantly stiffer and stronger than hydrates of con-
struction cement pastes. Thousands of indentation experiments revealed skewed rather
than symmetric stiffness distributions of indentation-related stiffness and strength prop-
erties of the material constituents. These distribtutions were represented by lognormal
probability density functions.

• Ultrasonic pulse transmission technique:
Ultrasonic tests revealed that macroscopic stiffness of a dental cement paste older than
seven days is independent on material age. The homogenized stiffnesses was also fairly
independent on central frequency of the transducers ranging from 50 kHz to 20 MHz.
Given that the highest frequency of the longitudinal wave sent through the material
characterized an RVE as large as 25µm, this underlines the fine microstructure of the
dental cement paste.

• Compressive strength tests:
The stress-strain diagrams of specimens younger than 90 minutes exhibit some pre-peak
ductility. At later ages, the material behaves virtually linearly elastic until it fails in
brittle fashion. After one day of production, the specimens broke into many fragments,
so that classical categorizations concerning the propagation direction of single cracks
were not useful any longer. The maximum force sustained by a cylindrical specimen
is the larger, the smaller is its slenderness ratio. Empirical correction factors of the
ASTM C39 dedicated for concrete cylinders, applied to dental cement paste specimens,
delivered virtually the same estimate of the uniaxial compressive strength. This indicates
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that the correction factors account for a structural effect rather than for a material
property.

• Simple micromechanical modeling:
The discrepancy between the ultrasonically derived homogenized stiffness and the
micromechanical estimates, derived from the nanoindentation probed hydrate, clinker
and zirconia phases, indicates the presence of microstructural defects in mature dental
cement paste, which may worsen its macroscopic mechanical properties.

• Improved model for stiffness upscaling:
The identified value of Poisson’s ratio of the lower-density and high-density calcite-
reinforced hydrates of Biodentine, νh = 0.20, is smaller than Poisson’s ratio assumed for
the low-density and high-density calcium-silicate-hydrates of Portland cements, ν = 0.24
(Constantinides, 2002). This difference may be caused by a reinforcement effect of
calcite and calcium hydroxide. The crack density parameter corresponding to the grain
boundary defects was identified as ω = 0.78. The defects are responsible for almost 50%
of the deviatoric deformation of Biodentine. Provided that medians of the microscopic
stiffness distributions are assigned to the two types hydrates in the piecewise uniform
model, the result of bottom-up stiffness homogenization is virtually equivalent to the
lognormal microelasticity model. Top-down strain and stress quantification revealed
important differences between the model accounting for microstiffness distributions of
the hydrates and the model which is based on piecewise uniform microscopic stiffness
values. The former approach provides direct access to microscopic stress fluctuations,
whereas the latter approach leads to volume-averaged values of the stresses experienced
by the two populations of hydrates.

• Explanation of compressive strength:
The probability density function of the effective shear strength (which is a cohesion-
related quantity), that belongs to the high-density calcite-reinforced hydrates, was
introduced to be of lognormal nature. Based on the identified lognormal parameters
of the effective shear strength, it was found that some 85% of the high-density calcite-
reinforced hydrates have virtually the same degree of utilization (a ratio of stress-to-
strength). This corresponds to some 63% of the volume of the dental cement paste,
which fails at virtually the same macroscopic loading. Given the very brittle failure
mode of the dental cement paste, this explanation seems plausible.

5.4 Perspectives
The experimental campaign, introduced here, provided insights into the properties of the
dental cement paste. However, there are more aspect that may be beneficial not only for future
development of dental cement pastes, but also to cement and concrete research in particular.
As regards experimental investigation at nanometric scale, TEM imaging can provide valuable
information as regards the grain boundary defects and cracks as well as the calcite-reinforced
hydrates. Quantification of water at different scales by means of 1H NMR could provide
important insight into the microstructure of the dental cement paste. As regards experiments
providing access to the macrostructural elastic properties, ultrasound investigation of young
dental cement paste with material age up to 7 days would nicely complement the measurements
carried out within this work.
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From the micromechanical modeling viewpoint, it would be very interesting to resolve the
high-density calcite-reinforced hydrates even into smaller scale, similarly to Königsberger et al.
(2020) resolving the C-S-H foam into solid C-S-H and gel pores. In this context, it would be
of extreme interest to study the reinforcing effect of calcite and calcium hydroxide. At last,
but not least, studying the boundary interfaces and defects could be of importance in order
to understand, and possibly improve the properties of dental cement pastes even further.
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