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ABSTRACT
Terrain-induced variations of radar backscatter represent an impor-
tant limiting factor of many Synthetic Aperture Radar (SAR)-based 
applications. Radiometric terrain flattening (RTF) is a well- 
established method that minimizes these variations in SAR imagery. 
To fully understand the implications of SAR RTF, validation of its 
impact on the derived products is needed. In this study, we quanti-
fied the influence of the RTF on a forest mapping and classification 
algorithm over Austria, and compared the classification results for 
the conventional sigma naught and radiometrically terrain- 
corrected gamma backscatter. The overall accuracy for forest/non- 
forest mapping and forest type classification improved by 2% and 
4%, respectively, over the whole of Austria, with improvements of 
up to 16% and 20%, respectively, in regions with strong 
topography.
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1. Introduction

Synthetic aperture radar (SAR) is an active microwave imaging system that allows to 
remotely map the reflectivity of objects or environments at microwave frequencies with 
high spatial resolution (Moreira 2013). SAR imagery is used in a wide range of applications 
that make use of the SAR normalized radar cross section (NRCS) that is represented in 
terms of a backscatter coefficient – an estimate of the backscatter per given reference 
area. Depending on which reference area convention is chosen for normalization, one can 
distinguish between three representations of the backscatter coefficient known as: i) beta 
naught (β0), ii) sigma naught (σ0) or iii) gamma naught (γ0) (Small 2011). The σ0 and γ0 

coefficients are normally calculated using an ellipsoid for the reference area computation 
and in this case, they have an important limitation, namely the fact that their radiometric 
properties are heavily distorted by topographic variations, even in only slightly undulating 
terrain. The topography-induced variations in SAR backscatter images are typically much 
larger than changes in backscatter coefficients due to the observed geophysical para-
meter (Atwood, Small, and Gens 2012; Villard and Le Toan 2014). As a result, SAR data are 
often discarded over hilly and mountainous areas.
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To overcome this limitation, several methods for the radiometric normalization of 
the backscatter coefficient were introduced in the literature. These include methods 
based on the local incidence angle (LIA) (Ulander 1996; Kellndorfer et al. 1998) or the 
actual ground area visible to the radar which is known as radiometric terrain 
flattening (RTF) (Small 2011). In recent years, the RTF became widely used, especially 
in snow or ice melt mapping (Scharien et al. 2017; Jewell et al. 2020) or forest 
monitoring (Rüetschi, Schaepman, and Small 2018; Akbari and Solberg 2020). The 
advantage of the RTF is evident mainly in areas with complex topography (Rüetschi, 
Schaepman, and Small 2018; Frey et al. 2012; Small et al. 2013; David et al. 2021), yet, 
to fully understand the benefit of this additional processing step, a validation of 
derived products with and without this step needs to be performed.

So far, only a limited number of studies quantified the influence of the RTF on the end 
product. Markert et al. (2020) evaluated the differences between two automated surface 
water mapping algorithms using the conventionally calibrated and radiometrically terrain 
flattened Sentinel-1 data as input for their algorithms. The authors found, that the 
algorithms using radiometrically terrain-flattened data as input yielded higher overall 
accuracies. These differences were, however, not significant. It should be noted that this 
analysis was limited to areas below 30 m in height relative to the nearest drainage as 
represented by the Height Above Nearest Drainage (HAND) index. This means that 
especially over scenes containing mountainous riverine, the HAND index mask might 
have masked considerable portions of terrain induced differences between the analysed 
datasets in case that they lie in high elevations relative to the drainage network. Atwood 
et al. (2014) analysed different approaches of topographic normalization including no 
correction (conventional approach), correction based on LIA, correction based on pixel 
area correction (RTF) and combination of the RTF correction with empirical slope normal-
ization. They found that biomass estimates improved from no correction to LIA based 
corrections and further to the RTF and combined RTF and empirical slope corrections. This 
influence was shown to be smaller for estimates based solely on cross-polarization back-
scatter than for those based on co-polarized or dual-polarized data. After adaptation for 
polarimetric SAR data, the influence of the RTF for the land cover classification was 
assessed by Atwood, Small, and Gens (2012). The largest improvements were observed 
for the deciduous forest class, and the impact of the RTF step was highlighted by 
comparing the classification performed separately for regions facing towards and away 
from the satellite.

The reported benefits of RTF come at the cost of additional processing resources. 
Especially for large-scale applications the additional computational effort of the RTF 
may be large. Hence, it is essential to assess the potential of this additional proces-
sing step on the end product. In this study, we evaluated results of a forest mapping 
and forest type classification algorithm (Dostálová et al. 2021) using a standard, 
ellipsoid corrected σ0

E and the radiometrically terrain corrected γ0
T backscatter as an 

input over Austria. The improvements were quantified in respect to terrain slope and 
aspect in order to identify those regions, where this additional step provides highest 
improvements.
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2. Study area and used data

2.1. Study area

Our study area is Austria where 62% of the land area is covered by Alps. The north-eastern 
parts are dominated by flatlands with elevations between 120 and 300 m a.s.l., while 
central and western parts of Austria are covered by alpine terrain with many peaks 
exceeding 3000 m a.s.l. As such, it represents an ideal test area for the influence of 
radiometric terrain flattening. The study area is shown in Figure 1.

3. Used data

3.1. Sentinel-1

For the purpose of this study, all available Sentinel-1 Ground Range Detected (GRD) 
Interferometric Wide (IW) swath mode acquisitions from year 2017 for the whole of 
Austria were used. The preprocessed data were available via the Austrian Data Cube 
(ACube, (EODC 2018)). The pre-processing steps for the σ0

E images included precise orbit 
correction, border noise removal, radiometric correction to σ0

E and orthorectification using 
the Range-Doppler terrain correction (Small and Schubert 2008) method. For γ0

T, precise 
orbit correction, border noise removal, radiometric correction to the (β0) values, radio-
metric terrain flattening and Range-Doppler terrain correction were applied. A terrain 
model based on airborne laser scanning (Geoland 2020) resampled onto 10 m grid was 
used for the radiometric terrain flattening and the Range-Doppler terrain correction steps.

3.2. Reference data

For the validation of the forest/non-forest classification, a 1 m forest/non-forest map 
based on aerial imagery and ALS data provided by the Austrian Research Centre for 
Forests (BFW) was used. It was resampled to the 10 m sample interval such that a pixel was 
assigned to the forest class in cases when 25% of all 1 m pixels within the 10 m pixel were 
classified as forests. For the forest type validation, the Copernicus High Resolution Layers 
(HRL) 2018 10 m Dominant Leaf Type was used (EEA 2021). This forest type map contains 

Figure 1. Overview of the study area (Austria) with the locations of the signature prototypes for the 
forest type classification overlaid on the terrain model of Austria based on airborne laser scanning.
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three classes (no forest, coniferous and broadleaf forest) and, according to the internal 
validation (EEA 2021), the users and producers accuracy of each class exceeds 90% with an 
overall accuracy of 96.5%.

4. Methodology

The forest mapping and classification algorithm (Dostálová et al. 2021) uses either σ0
E or γ0

T 
backscatter as input, while the rest of the processing steps (i.e., SAR seasonality time series 
computation and construction of the forest maps) remain the same. A brief description of 
the main steps is provided in the following subsections, and details can be found in 
Dostálová et al. (2021, 2018).

4.1. SAR seasonality time series computation

The forest mapping and classification algorithm (Dostálová et al. 2021) uses as input 
1 year of Sentinel-1 measurements. Due to the varying coverage patterns, changing 
acquisition geometry and environmental conditions of the individual acquisitions, several 
steps are applied to minimize the quickly varying conditions (such as the influence of the 
varying incidence angle of the SAR signal or changes in surface and vegetation moisture 
content) and derive time series with time step of 12 days. First, a normalization to 
a common reference angle was applied using the slope (β) parameter. This correction is 
applied to minimize the effect of the varying sensor-target geometry in order to combine 
the acquisitions taken from several relative orbits (Peters et al. 2012). The slope parameter 
is computed using a linear regression between the backscatter coefficient (in dB) and 
projected local incidence angle (θ) values. It is computed separately for each image pixel 
and uses the full time-series of all available Sentinel-1 acquisitions from 2017. The normal-
ization equations for σ0

E and γ0
T backscatter read as follows: 

σ0
E40 ¼ σ0

EðθÞ � βðθ � 40�Þ (1) 

γ0
T40 ¼ γ0

TðθÞ � βðθ � 40�Þ (2) 

Next, the mean of the normalized backscatter was computed using all available 
acquisitions covering each 12-day interval, and smoothed using a Gaussian temporal 
filter with std. dev. of 1 to smooth the signal variation caused by the quickly varying 
environmental conditions (such as changes in surface and vegetation moisture content or 
freeze/thaw effects). The resulting time series captures the annual variability of the signal, 
and reflects the seasonal changes of various vegetation types (Rüetschi, Schaepman, and 
Small 2018; Dostálová et al. 2018).

4.2. Construction of the forest map

The forest classification algorithm (Dostálová et al. 2021) exploits differences between the 
seasonality time series – temporal signatures – of various vegetation types. Signature 
prototypes are computed as described in the previous chapter using averaged back-
scatter values over 300 m × 300 m large forested areas (30 × 30 pixels) and are selected to 
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represent both coniferous and broadleaved forest types. The selection of the signature 
prototype locations was supported by reference datasets, orthophotos as well as average 
Sentinel-1 backscatter for 2017 to exclude areas with apparent terrain effects or clear cuts. 
The locations of the signature prototypes over Austria are shown in Figure 1.

The classification algorithm uses the similarity measures – Root Mean Square 
Difference (RMSD) and Pearson correlation coefficient (r) – between the prototype sig-
natures and the respective temporal signature of each individual pixel. In the first step, 
forest/non-forest classes are assigned using thresholds: forest class is assigned in case that 
the vertical transmitted-horizontal recieved (VH) and vertical transmitted-vertical recieved 
(VV) polarization RMSD are below 1.5 dB and 2.0 dB, respectively, and VH polarization r 
exceeds 0.4. Consequently, the forest type (coniferous, broadleaf) is assigned to each 
forested pixel according to the lowest RMSD value in VH polarization. For the final forest 
type map, minimal mapping units (MMU) of 0.5 ha were applied. The forest type map has 
three classes: non-forest, coniferous forest and broadleaf forest.

4.3. Validation

σ0
E- and γ0

T-based forest maps were computed for the whole of Austria and compared to 
reference maps. The forest/non-forest accuracies were computed using all pixels. In case 
of the forest type dataset, pixels classified as non forest in Sentinel-1 forest maps or 
Copernicus HRL dominant leaf type map were excluded from the forest type classification. 
The focus of the validation was put on two aspects. First, the spatial distribution of 
differences between the σ0

E and γ0
T forest maps was highlighted by computing and 

plotting the validation statistics for 10 km large tiles as well as for entire validation area. 
Secondly, the influence of the local terrain aspect and slope on the map’s accuracy was 
assessed by computing the validation statistics separately for several terrain slope and 
aspect intervals.

5. Results and discussion

5.1. Spatial overview

Spatial overviews of the forest mapping and classification results for γ0
T and σ0

E are shown 
in Figures 2 and 3, respectively. Each figure shows the reference map (BFW forest mask 
and Copernicus HRL Forest Type map for forest/non-forest and forest type map, respec-
tively) together with the difference images between the reference map and the γ0

T- and 
σ0

E-based classification results and the spatial distribution of the difference between the 
overall accuracy of the γ0

T and σ0
E results.

For forest/non-forest mapping, distinct patterns are apparent in the maps showing the 
differences in classification and especially the classification accuracy improvements. It is 
apparent that the largest differences between the Sentinel-1 and reference forest maps 
are located in mountainous regions (see Figure 1). This was to be expected, and was 
already postulated in previous works (Dostálová et al. 2021, 2018). Also, the accuracy of 
the classification in mountainous areas improved the most when using γ0

T instead of σ0
E as 

an input for the classification algorithm – the improvements locally reached as high as 
16% in the case of the forest/non-forest map. This is mainly due to the omission of the 
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forest area in mountainous regions, where insufficient correction of the terrain effects 
hinders the classification. In the flatland, the overall accuracies of the γ0

T and σ0
E forest/non- 

forest maps are comparable except few areas located mainly in southern Austria where 
the γ0

T-based forest map shows slightly increased commission error for forest class. As 
a result, the overall accuracy locally decreased, causing maximal differences of up to 3%.

In the case of forest type classification, the improvements were also mainly in moun-
tainous regions. However, the pattern followed that of the terrain model less strictly. This 
is due to the fact that western Austria, where the highest improvements are observable 

Figure 2. Overview of the results of the forest mapping algorithm. (a) Reference forest map from the 
Austrian Centre for Forests (BFW). (b) Difference between the overall accuracy of the γ0

T and σ0
E forest/ 

non-forest map computed for 10 km large tiles. (c) Difference map between the σ0
E Sentinel-1 and 

reference forest/non-forest map. (d) Difference map between the γ0
T Sentinel-1 and reference forest/ 

non-forest map.

Figure 3. Overview of the results of the forest classification algorithm. (a) Reference forest map from 
Copernicus HRL. (b) Difference between the overall accuracy of the γ0

T and σ0
E forest type map 

computed for 10 km large tiles. (c) Difference map between the σ0
E Sentinel-1 and reference forest 

type map. (d) Difference map between the γ0
T Sentinel-1 and reference forest type map.
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for forest/non-forest mapping, is dominated by coniferous forests while the broadleaf 
forests are very sparse. The classification accuracy improved the most in central and 
southern Austria, where the elevation ranges up to 2000 m a.s.l., but the portion of 
deciduous forest stands is relatively high. In these regions, the overall accuracy of the 
forest type classification locally increased by up to 20%. In the flatlands, the differences in 
the overall accuracies of the γ0

T and σ0
E forest type map varied by ±5%.

The overall accuracy as well as user’s and producer’s accuracies for each class over the 
whole of Austria for various local terrain slope ranges is summarized in Table 1. When 
computed over the entire range of the local terrain slopes, the overall accuracy improved 
by 2% from 87% to 89% in case of forest/non-forest classification and by 4% from 78% to 
82% in case of forest type classification. Furthermore, the user’s and producer’s accuracies 
of all classes stayed the same or were improved.

5.2. Influence of terrain slope and aspect

With steeper local terrain slope, the difference between the ellipsoid-based reference area 
used for σ0

E and the reference area computed from the digital elevation model (DEM) for 
γ0

T increases. As a result, both maps differ more in areas with steep slopes. The influence of 
the local terrain slope on the overall accuracy of the forest/non-forest and forest type 
maps is demonstrated in Table 1.

In case of the forest type classification, the accuracies based on σ0
E and γ0

T are compar-
able for slopes up to 20°. With increasing terrain slope, the accuracies of the forest/non- 
forest map rapidly decrease in case of σ0

E. This is mainly caused by high omission error of 
the forest class; for slopes between 40° and 50°, the producers’ accuracy of the σ0

E-based 
forest class is only 63% as compared to 75% in case of γ0

T-based forest map. Overall, the 

Table 1. Overall (OA), Producer’s (PA) and User’s (UA) accuracies (in percent) of the σ0
E- and γ0

T-forest 
/non-forest (F/NF) and forest type (Broadleaved – B or Coniferous – C) maps when compared to the 
BFW forest mask and Copernicus HRL dominant leaf type map, respectively, for various local terrain 
slope ranges.

σ0
E γ0

T

Slope range (°) OA PA UA OA PA UA

Forest/non-forest F NF F NF F NF F NF

0–90 87 84 90 89 86 89 87 91 90 88
0–10 92 92 92 80 97 92 92 92 80 97
10–20 89 90 86 90 86 89 90 86 90 86
20–30 86 86 86 94 72 88 88 88 95 76
30–40 78 74 88 93 59 85 83 91 96 69
40–50 73 63 89 90 60 81 75 92 94 69
50–70 73 51 89 78 71 78 61 91 84 76
Forest type B C B C B C B C
0–90 78 68 82 61 86 82 68 89 71 89
0–10 79 70 86 77 81 82 70 89 82 82
10–20 81 67 86 66 87 84 69 90 72 88
20–30 77 66 81 53 88 83 65 89 66 89
30–40 72 69 73 47 87 81 63 87 63 87
40–50 71 69 71 46 87 78 64 83 57 86
50–70 68 64 69 36 87 72 57 77 40 86
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decrease in accuracies with steeper slope is slower for the γ0
T-based forest/non-forest map. 

For instance, difference between the overall accuracy of σ0
E and γ0

T forest/non-forest 
classification for slopes between 40° and 50° reaches 8%. This shows, that by using the 
proper way to calculate the reference area in the radiometric correction step, a large 
portion of terrain induced errors can be eliminated. In case of the forest type classification, 
the overall accuracy is higher for all terrain slope ranges, even for slopes below 20°, where 
this difference is 3%.

For γ0
T-based forest maps, large decrease of accuracies is visible for the slopes between 

50° and 70°, especially for the producers’ accuracy of the forest class and users’ accuracy of 
the broadleaf forest class. We assume that for such steep slopes, the terrain distortions in 
SAR data become too large to be corrected by applying the RTF correction. Slopes above 
70° are not shown due to a small number of available samples.

SAR backscatter is sensitive to the viewing geometry, which introduces errors to the 
classification algorithm and reduces its accuracy for slopes facing the sensor for either 
ascending or descending orbit. Figure 4 shows the forest/non-forest classification accu-
racy as a function of a local terrain aspect. It remains relatively stable in case of shallow 
slopes up to 20° (see Figure 4: left) and is not improved by including the RTF correction. In 
case of steep slopes between 40° and 50° (see Figure 4: right), the overall accuracy of the 
σ0

E based forest/non-forest classification varies between 62% and 85%, with lowest values 
for slopes facing the sensor for either ascending or descending orbit pass. This depen-
dency on local terrain aspect is reduced but not removed by applying the RTF correction 
(the overall accuracies range between 72% and 87%).

Figure 4. Dependency of overall accuracy of the forest/non-forest classification on the local terrain 
aspect. (a) Local terrain slope from 10° to 20°. (b) Local terrain slope from 40° to 50°.
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6. Conclusion

Terrain-induced variations in the SAR backscatter are a limiting factor to many SAR 
applications. By replacing conventional ellipsoid-based radiometrically calibrated backscat-
ter coefficients with radiometrically terrain-flattened and -corrected γ0

T, we showed 
improvements in the data quality over undulated terrain. We quantified the effect of the 
RTF on the accuracy of forest mapping and classification algorithms over Austria. 
Significant improvements (16% and 20% for forest/non-forest mapping and forest type 
classification) were observed in highly undulated areas when γ0

T backscatter was used 
instead of σ0

E. In flatlands, the forest/non-forest results remained comparable for both 
backscatter coefficient conventions while the forest type classification improved by 3% 
even for slopes below 10%. These results demonstrate the great benefit of the radiometric 
terrain flattening. While in flatlands, the results may remain comparable or slightly improve, 
in sloped terrain, application of the RTF correction strongly reduces classification errors.
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