
Evaluierung von verschiedenen
Tools für Design und

Fehlerinjektion von Asynchronen
Schaltungen

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Martin Schwendinger, BSc
Matrikelnummer 01633080

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Dipl.-Ing. Dr.techn. Andreas Steininger
Mitwirkung: Dipl.-Ing. Florian Huemer

Wien, 29. August 2022
Martin Schwendinger Andreas Steininger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Evaluation of different Tools for
Design and Fault-Injection of

Asynchronous Circuits

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computer Engineering

by

Martin Schwendinger, BSc
Registration Number 01633080

to the Faculty of Informatics

at the TU Wien

Advisor: Dipl.-Ing. Dr.techn. Andreas Steininger
Assistance: Dipl.-Ing. Florian Huemer

Vienna, 29th August, 2022
Martin Schwendinger Andreas Steininger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Martin Schwendinger, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 29. August 2022
Martin Schwendinger

v

Acknowledgements

Here I want to express great gratitude to my advisor Professor Steininger for his dedicated
support of my thesis. He was constantly reachable for my questions and coordination for
further progression.

I also want to thank the other institute members, which were available for considera-
tions a well. Hence, I especially thank Florian Huemer for his guidance related to the
Python production rule package (pypr), Robert Najvirt for his effort of refactoring the
autosetup.py script and Zaheer Tabassam for testing the whole refactored flow and
discussing result extraction with me. Then the current flow would be unthinkable without
Patrick Behal, a former student, who was still there to answer question to his impressive
base work. Therefore I thank him. It was a pleasure to work with you all.

vii

Abstract

Asynchronous circuits (ACs) are currently aced out by synchronous circuits (SCs) in
industry purposes. Nevertheless there were prominent innovations utilizing ACs in the
field of brain-inspired hardware like SpiNNaker [1], Neurogrid [2] and the TrueNorth [3].
Researchers claim also a theoretical performance advantage of ACs in terms of speed
and energy efficiency [4] [5]. However, one handicap when designing ACs is the current
lack of tools designated especially to AC design. Often tools originally targeted to SC
design are (mis)used. This thesis presents two flows designed especially to AC design.
The first one is developed by the Embedded Computing Systems (ECS) group at TU
Wien. It is focused on fault-injection experiments at gate level, but provides also Python
scripts for high level AC generation. The second one is the Asynchronous Circuit Toolkit
(ACT) developed by the asynchronous VLSI and architecture (asyncVLSI) group at Yale
University. It aims for a complete coverage of chip design from high level description to
fabricable GDSII format. This thesis will extensively present both these flows, and then
proceed with their integration into a combined flow. In particular a translation script
of the production rule set (PRS) format in its concrete implementation at TU Wien to
ACT has been developed. Additionally the fault-injection engine, which is part of the TU
Wien flow, has been overhauled to now also support the Prsim simulation software, which
is part of the Yale flow. Afterwards, as a proof of concept, for the integrated flow about
a million fault-injections have been performed with Modelsim, which was previously
without alternative for the TU Wien flow, and Prsim. While one should initially expect
the two tools to deliver the same results, mismatches are spotted that could be tracked
back to aspects where Modelsim and Prsim operate differently.

ix

Contents

Abstract ix

Contents xi

1 Introduction 1

2 Related Work 3
2.1 History of Asynchronous Circuits . 4
2.2 State of the Art . 5
2.3 Fundamentals for Asynchronous Circuit Design 8

3 Design Flow by TU Wien 17
3.1 Overview . 18
3.2 Related Literature . 27

4 Design Flow by Yale University 33
4.1 Overview . 34
4.2 Related Literature . 42

5 Integration of Design Flows and Comparison 51
5.1 Overview . 52
5.2 Integration of Prsim . 54
5.3 Covered Parameter Space with Resulting Performance 60
5.4 Comparison of Fault-Injection Experiment Results 62
5.5 Capability Comparison . 69

6 Conclusion and Outlook 73

List of Figures 77

List of Tables 79

Glossary 83

xi

Bibliography 87
Literature . 87
Online References . 94

CHAPTER 1
Introduction

Today synchronous circuits (SCs), which use a (global) clock signal to synchronize
state changes in memory elements, dominate the field of digital circuit design. Their
alternatives, asynchronous circuits (ACs), which rely on handshaking between individual
components to negotiate state changes, were around since the mid-1950s. Despite still
being aced out by SCs in the industry, recently there were popular innovations in the
field of brain-inspired hardware. The Spiking Neural Network architecture (SpiNNaker)
[1], the neuromorphic system for simulating large-scale neural models Neurogrid [2] and
the neurosynaptic processor TrueNorth [3] are examples. They all use asynchronous
design techniques to some extent. The communication between neurons is naturally
asynchronous, so with ACs a more realistic brain model can be emulated. Beyond their
usage for implementation of brain-inspired hardware, some also claim that ACs can be
more performant in terms of speed and energy efficiency than SCs [4] [5].
As e.g. some of the authors of the TrueNorth [3] explicitly state, the design of competitive
ACs is handicapped by the lack of established standard tools designated especially to them.
For SCs there are plenty of commercial tools. Proprietary tools for Field Programmable
Gate Array (FPGA) design are e.g. Intel Quartus Prime and Modelsim or Xilinx Vivado.
Prominent open-source tools for mere register-transfer level (RTL) synthesis or simulation
are e.g. Yosys or GHDL. For ASIC design companies like Synopsys, Cadence Design
Systems, Siemens or Silvaco are tool providers. Currently for the design of ACs often a
mix of tools originally intended for SCs design is (mis)used. Tools especially intended for
AC design are mostly prototypes usually of University origin. Section 2.2 describes a
selection of them.
Two design flows for ACs actually serve as a basis to this thesis. The design flow
of the Embedded Computing Systems (ECS) group at TU Wien and the one of the
asynchronous VLSI and architecture (asyncVLSI) group at Yale University. They are
presented comprehensively in chapter 3 and chapter 4. The design flow of TU Wien can
be split into two components, the Python production rule package (pypr) [6], which is

1

1. Introduction

responsible for AC generation from e.g. high level dataflow descriptions, and a fault-
injection engine developed alongside [7]. Fault-injection experiments have been the main
motivation to develop especially the later part of the flow. In contrast the flow of the Yale
University aims for a complete coverage of all design steps needed from conceptual high
level description to fabricable GDSII format. Therefore besides multiple design entries
for (high level) descriptions of data flows, gates or even transistors, several components
are dedicated to physical design. So tools for cell generation, gridded layout, routing etc.
are provided as well. The Yale flow is open-source [89], while publication of the TU Wien
flow is planned for mid- to long-term.

The centerpiece of this work will present an integration of the two flows. Therefore a
translation script from pypr to Yale’s Asynchronous Circuit Toolkit (ACT) was written,
as well as the fault-injection engine of the TU Wien flow has been complemented to
also support simulation of ACT code with the respective simulation software Prsim.
The integrated-flow aims mainly for fault-injection, but preserved the physical design
capabilities of the Yale flow. Hence, as a demonstration of the new capabilities results
from fault-injection experiments will be presented. The target circuits for this experiments
will be created by alternating paths through the integrated design flow. Afterwards
an extensive comparison and conclusion about the capabilities of the individual flows
and their integration follows. Benefits and downsides of each flow and achievements by
complementing these two will be discussed in detail.

The structure of the thesis is as follows: In chapter 2 first a brief history of ACs is
presented (section 2.1). Prominent state of the art examples mainly from the field of
brain-inspired hardware design follow, as well as a selection of tool chains designated
to especially AC design (section 2.2). Then section 2.3 provides an introduction to the
fundamentals of AC design. In chapter 3 the design flow of TU Wien is discussed in
detail. First section 3.1 provides an overview over the design flow and its capabilities.
Then section 3.2 traces down the scientific literature about it or about results provided
by it. In chapter 4 the design flow of the Yale University is discussed. Section 4.1
provides again an overview over the flow and section 4.2 presents the scientific literature
about it. Thereby also complementing the published/documented flow with components
described in literature. Chapter 5 presents the integrated flow in section 5.1. Section 5.2
covers the integration of Prsim. Then section 5.3 examines possible parameter spaces for
fault-injection experiments and performance issues in. Afterwards section 5.4 presents
the results of these experiments with a representative target circuit. Section 5.5 presents
an comprehensive comparison of all design flows. Finally chapter 6 concludes about the
thesis.

2

CHAPTER 2
Related Work

This chapter will start with a section about the history of asynchronous circuits (ACs).
ACs are around since the mid-1950s and were used quite extensively in the past before
they were clearly overshadowed by synchronous design strategies. The first section will
contain a selection of historic examples and will try to tell an overall enlightening story
for the path of ACs trough history. Afterwards a State of the Art section follows, where
current outstanding examples of AC developed for research and industry purposes are
presented, as well as further sources of more complete lists of asynchronous chips of
the past and today. Design flows specifically designated to AC design are also listed
there. The last section will cover all fundamentals about ACs needed to follow the thesis
further. The difference to synchronous design will be outlined and then most common
handshaking protocols, logic and buffer styles for ACs will be presented.

3

2. Related Work

2.1 History of Asynchronous Circuits
The first theoretical mention of AC design was by David E. Muller in 1955 [8]. It already
mentioned the intuitive definition of ACs as clockless circuits. Two advantages of ACs
were claimed. First that each operation follows directly its preceding one without delay
to wait for a clock signal and second that ACs feature sometimes a fault-stop behavior
by design. In general the mathematical foundation seems to stem from the University
of Illinois and were there further associated with David E. Muller, the scientist also
first describing C elements [8], which therefore consequently are referred to as Muller C-
elements (MCEs). The ILLIAC I (Illinois Automatic Computer) [90] in 1952 and ILLIAC
II [9] in 1962, which are among the oldest processors in history are two applications of
AC design. Later the famous book Switching Theory in 1965 by Raymond Miller [10]
included design techniques for ACs (chapter 9 and 10). It was overall a very comprehensive
reference for digital circuit design at that time. It starts with mathematical basics like
boolean algebra and other more theoretical considerations before the design of sequential
and ACs is discussed. A book containing a brief history of AC design is Asynchronous
Circuit Design by Chris J. Myers [11] (chapter Brief History of Asynchronous Circuit
Design). Therein other early mainframe computers implementing ACs like the Atlas
(in service from 1962 to 1972) [12] and the MU5 [13] (from 1974 to 1982) designed at
the University of Manchester are mentioned. Furthermore it is stated there that the
Washington University in St. Luis designed so called asynchronous macromodules, which
are best described as building blocks like e.g. registers, adders, memories etc. Then
AC design was used in the first operational dataflow computer DDM-1 in the 1970s at
the University of Utah, as well as in the design of the first commercial graphics system
developed at Evans and Sutherland (company). For the late 1980s the development of
data-driven processors by Matsushita, Sanyo, Sharp and Mitsubishi is mentioned. Then
again at the University of Manchester in 1994 the AMULET1 [14][15], which was the
first asynchronous processor code-compatible with a synchronous ARM processor, was
developed. It was later followed by the AMULET2e [16][17][18] and the AMULET3
[19][20][21]. A very significant theoretical work was done in 1989 by Ivan E. Sutherland
describing Micropipelines [22]. One of these micropipelines will be discussed in section 2.3.
Additional to the already mentioned Evans and Sutherland commercial use of research
about ACs of the previously mentioned institutes and people was made by e.g. Sun
Microsystems or Philips (Research Laboratories) at that time.

Another source of innovations was and is the California Institute of Technology (Caltech).
In 1989 the first fully asynchronous microprocessor was designed there according to [11].
It was later followed by the first high-performance asynchronous microprocessor, the
MIPS R3000 [23], developed from 1995 to 1998 at Caltech according to the language
history [1] of the official documentation page of the Asynchronous Circuit Toolkit (ACT)
[91]. The MIPS R3000 is listed there and so the documentation page coincidences with
[11], because the predecessor of ACT the Caltech Asynchronous Synthesis Tools (CAST)
were used in the development of the MIPS R3000 microprocessor. Further examples,

1https://avlsi.csl.yale.edu/act/doku.php?id=history:start

4

https://avlsi.csl.yale.edu/act/doku.php?id=history:start

2.2. State of the Art

which consequently were developed with predecessors of ACT, are e.g. the first pipelined
asynchronous Field Programmable Gate Array (FPGA) architecture Programmable
Asynchronous Pipeline Arrays [24] at Caltech, the low power microcontroller for sensor
networks SNAP developed at the Cornell University [25] and the famous Lutonium [26]
processor at Caltech. A good reference for an overview over asynchronous processor
generations developed at Caltech is [27]. The previously already mentioned language
history of ACT is discussed in much more detail in section 4.2. Commercial use of the
innovations stemming (partially) from Caltech especially affiliated with Rajit Manohar,
who works currently at the Yale University, was made by e.g. Achronix Semiconductor
Corporation or Fulcrum Microsystems [1].

Aside from chip development an important theoretical contribution, the NULL-Convention-
Logic (NCL), was delivered by Theseus Research [2]. The book Logically Determined
Design [28] provides an introduction to NCL and promises it as a new methodology for
designing clockless circuit systems. In 1996 the company Theseus Logic was founded to
commercialize NCL and it was acquired by Caspian Networks in 2007.

2.2 State of the Art
This section will present prominent and especially more recent examples for AC design
than section 2.1. Many of the examples from section 2.1 were quite prominent at their
publication time e.g. the MIPS R3000 [23]. Furthermore this section will not include
references discussed later in the special reference sections (section 3.2 and section 4.2)
of the flow of TU Wien or of the Yale University. These two sections review plenty of
related work, which served as a basis for this thesis, even going so far to order them
chronologically, relating them to each other and provide an overall story about the
research progression at the respective institutes. Also this section focuses on practical
examples of chips/circuits developed using asynchronous design principles, which are as
already mentioned recent and prominent in some sense.

SpiNNaker (Spiking Neural Network Architecture) is a "massively parallel computer
system designed to provide a cost-effective and flexible simulator for neuroscience ex-
periments" [1]. It is able to model a billion neurons, trillion synapses and still matches
biological real time, therefore the computational demands to it were challenging. For
processing there are two different models suggested, the Izhikevich [29] and the more
complex Hodgkin–Huxley [30]. The overall architecture is designed as globally asyn-
chronous locally synchronous system. So locally there are still synchronous ARM968
chips at work, but it utilizes some asynchronous design techniques. In particular it im-
plements Silistix’s asynchronous custom protocol. Silistix Limited was a company, which
commercialized research results of the Advanced Processor Technologies group headed by
Steve Furber at Manchester University [3]. Hence, it is referenced as an innovation in the

2http://www.theseusresearch.com/
3https://apt.cs.manchester.ac.uk/people/sfurber/

5

http://www.theseusresearch.com/
https://apt.cs.manchester.ac.uk/people/sfurber/

2. Related Work

asynchronous domain (e.g. by the TrueNorth paper [3]) and it established inter alia the
use of asynchronous design principles for brain-inspired hardware.

Neurogrid [2] is a neuromorphic system that simulates large-scale neural models in real
time. A million neurons with billions of synaptic connections are simulated in real time.
Specific design choices for this implementation are:

• All neural elements except the soma are emulated.
• Analog circuits are used except for the axonal arbors.
• Neural arrays are interconnected in a tree network.

Asynchronous design principles, which stem from [31] and [32] as the paper explicitly
states, are used to model the communication of a neuron to its parent and children
neurons. It does reference the SpiNNaker [1] and is referenced by the TrueNorth [3] paper.
Overall the paper dives deep into neuronal details and their emulation possibilities in
electronic circuits. ACs are only briefly mentioned, but nevertheless the paper contributes
to the narrative that ACs have a solid stand, if there is a natural asynchrony like the
biological behavior of neurons.

The TrueNorth is a "65 mW real-time neurosynaptic processor that implements a non-
von Neumann, low-power, highly-parallel, scalable, and defect-tolerant architecture" [3].
Its presentation paper [3] further states that the chip "with 4096 neurosynaptic cores
... contains 1 million digital neurons and 256 million synapses tightly interconnected
by an event-driven routing infrastructure" and its "fully digital 5.4 billion transistor
implementation leverages existing CMOS scaling trends". Seven principles guided the
design of the TrueNorth: Minimizing Active Power, Minimizing Static Power, Maximizing
Parallelism, Real-Time Operation, Scalability, Defect Tolerance, Hardware–Software One-
to-One Equivalence. To meet all expectations custom tools and design approaches were
developed, which intersect with or influenced the design flow of the Yale University (chap-
ter 4) significantly. The chip effectively implements a mixed asynchronous-synchronous
design approach to meet the expectations put on it. In particular for all communication
and control circuits an asynchronous design style, while for computation logic a syn-
chronous one, has been chosen. In the conclusion the authors explicitly state that they
are now turning to Computer-aided-design (CAD) research community to contribute to
the development of a sophisticated design flow for ACs. Eventually the design flow the
Yale University was published on GitHub [89].

The previous examples from the field of brain-inspired architecture design are all prominent
and therefore in this section. In contrast now an article [33] is advertised, which is not
prominent in a narrow sense, but seems to be an excellent reference for the basic techniques
used in AC design, various design tools/languages dedicated to them and it provides an
extensive history of asynchronous microprocessors from one of the older microprocessors
(the CAM) constructed at Caltech in 1989 to more recent ones like the MSP430 [34]
developed at the University of Utah in 2017. The history obviously also includes famous
examples, which are in this thesis already mentioned in the last section or this section like
the AMULET1/2/3, the MIPS R3000 and the Lutonium. It in general list 37 different

6

2.2. State of the Art

asynchronous microprocessors. So a very good reference, if someone is interested not only
in the prominent examples. Hence, [33] alongside with [11] are recommended sources
for backtracking the history of ACs, especially microprocessors. However, it is very
significant how asynchronous microprocessors, which relate to brain modeling in some
sense, seems to stand out from other fields of applications.

Finally at least a paragraph should be dedicated to not the production of asynchronous
chips, but the CAD tools out there, which have and hopefully will even more ease their
design noticeably. Two design flows for ACs are presented in whole chapters (chapter 3
and chapter 4) in this thesis, because they are a basis to the integrated flow designed
alongside this thesis. Especially the reference section of the design flow of the Yale
University (see section 4.2) cites several alternative design flows all mentioned in the main
article [35] presenting the Yale flow. These flows complemented with those referenced in
[33], which is still recommended to consult for a more elaborated listing of flows/tools
dedicated to ACs design, are listed here as following:

• Petrify [36][92] is a tool for synthesis of Petri nets and asynchronous controllers. It
provides many translations options from e.g. final state machines to free/safe/irre-
dundant Petri nets or also from Communicating Sequential Processes (CSP) and
more. Additionally to that it also offers the option to generate ACs in combination
with a gate library. It was used in the design of the asynchronous TinyRISC TR4101
microprocessor [37].

• Workcraft [4] is a framework for interpreted graph models. Inter alia it offers the
capability to model speed independent controllers from Signal Transition Graphs
or even self timed pipelines from dataflow structures. Papers out there about it are
e.g. [38] or [39].

• TiDE is a design environment for ACs design with the underlying language Haste,
which was former known as Tangram [40][41]. Descriptions in the Haste language
are synthesized by syntax-directed translation into a hardware implementation.
The TiDE design flow supports the generation of technology mapped netlists of
standard cells from a behavioral textual description or a control-data-flow-graph.
The flow was utilized in the production of the ARM996HS processor [42].

• Tiempo [43] is a design flow for ACs based on the synthesis tool Asynchronous
Circuit Compiler (ACC). ACC synthesizes SystemVerilog code to an asynchronous
Verilog gate level netlist. This netlist can then be processed further by standard
commercial tools for Place & Route operations etc. Correct timing is ensured by
the constraints in a Synopsys Design Constraint (SDC) file, which the ACC passes
on alongside the actual Verilog netlist. The Tiempo design flow has been used to
produce the TAM16 microcontroller [93].

• Balsa [44] is a language and framework to synthesize asynchronous hardware via
syntax-directed translation. Balsa allows high level description of ACs, which are
then translated downward. First the description is synthesized to the intermediate
language Breeze, before it is further translated to a gate level netlist and finally

4https://workcraft.org/

7

https://workcraft.org/

2. Related Work

commercial tools are utilized to generate a layout description. The model for the
processor SAMIPS was described in Balsa [45].

• Proteus [46] is a flow that provides a syntax-directed translation of high level CSP
programs into synthesizable register-transfer level (RTL). From thereon commercial
standard synthesis tools are adapted to create a synchronous-image netlist. The in
[46] newly presented component ClockFree then translates this image netlist into
its asynchronous target netlist. The Proteus flow was used in the design of the
uaMIPS processor [47].

The listing is not complete. [33] references even more, but these were not featured
especially by it like the others and this thesis simply follows the prioritization of [33]
here.

2.3 Fundamentals for Asynchronous Circuit Design

This section gives an introduction to the design of ACs. It starts by an explanation
what ACs are in contrast to synchronous circuits (SCs). Basic components and the most
common protocols used between components of ACs are presented. The dominantly used
ACs in this thesis are quasi-delay-insensitive (QDI) 4-phase dual-rail (DR) circuits, but
alternatives are presented as well. The following should be enough to follow the whole
thesis, but in general recommended as more comprehensive introductions to ACs are [48]
or alternatively [49] and [50] or [51], which also serve as a reference for the following
explanations. Also some content may be influenced by similar sections in [7] or [6].

Difference of Synchronous and Asynchronous Circuits
Components of a SC as shown in Figure 2.1 are synchronized by a clock signal (CLK).
Usually at every rising edge of the clock signal each D-Flip-Flow (i.e. most common type
of register for SCs) catches the data on its input and holds it until the next rising edge.
Hence, the Flip-Flops in Figure 2.1 form a pipeline, where data at the input affects the
output after exactly three clock cycles. If there is a logic cloud between two Flip-Flops,
then consequently the time between two rising edges of the clock (i.e. the clock period)
needs to be long enough so that the output of the logic cloud is stable before the second
Flip-Flop catches it. This constraint mainly influences the maximum clock frequency
possible.

FF FF FF
Logic

CLK

DATA IN DATA OUT

Figure 2.1: Synchronous circuit.

8

2.3. Fundamentals for Asynchronous Circuit Design

In contrast an AC as shown in Figure 2.2 needs no clock signal for synchronization, but
uses a request (req) and acknowledge (ack) signal for handshaking between components.
In particular with the request signal the sender indicates that there is new valid data
applied and with the acknowledge signal the receiver indicates that the data has been
caught. Note that each data passing can be executed individually and as fast as possible
and nothing has to wait for a clock edge. Exchange speed between components therefore
may vary significantly in an AC. For some types of ACs no request signal is used, but a
special data encoding contributes to the handshake operation, therefore the req signal
in Figure 2.2 is dashed. The classic version with request and acknowledge is usually
referred to as bundled-data (BD) protocol. The most common encoded AC protocol is
referred to as 4-phase DR protocol.

Buffer Buffer

req

ack

DATA
Buffer

DATA DATA
Async
Logic

req

ack
req IN

ack OUT

req OUT

ack IN

Figure 2.2: Asynchronous circuit.

4-Phase vs. 2-Phase Handshake Protocol
The number of phases corresponds to the number of transitions needed to complete one
data transaction. So as shown in Figure 2.3 the 4-phase handshake protocol needs a
rising and a falling edge for each, request and acknowledge signal for one transaction. In
particular as soon as valid data is applied the sender can raise the request signal. If the
request signal is high, the receiver catches the data and raises the acknowledge signal.
The high acknowledge indicates to the sender that the request signal can be lowered again
and new data can be prepared. After the acknowledge signal follows the request signal to
zero, the process can repeat with the next data transaction. The 4-phase protocol always
returns to zero between transactions and it can also be interpreted as value indicating.
I.e. the high/low values of the signals indicate the current state of the protocol.

REQ

ACK

DATA

Figure 2.3: 4-phase handshake timing diagram.

In contrast the 2-phase handshake protocol as shown in Figure 2.4 needs only one edge for
each request and acknowledge signal for one transaction. Therefore the 2-phase protocol
can perform two data transactions per one 4-phase transaction. In particular for the
2-phase protocol the request signal performs an edge so that the receiver knows valid data

9

2. Related Work

is applied. When the receiver caught the data it performs an edge on the acknowledge
signal to indicate this. An edge is an edge here, rising or falling does not matter at all.
Hence, the 2-phase protocol is transition/edge indicating.

REQ

ACK

DATA

Figure 2.4: 2-phase handshake timing diagram.

Muller C-Element
A core component for ACs is the Muller C-element (MCE). It has been already described
in the oldest source for AC design by Muller [8]. It is the only state holding element in
pure ACs. Verbally described it changes the state of its output signal, only if all input
signals match, otherwise it holds the previous state. So if all inputs are ’1’, then the
output will rise to ’1’, but if now only one input becomes ’0’, the MCE will still hold ’1’
until bot are ’0’ again. For a further characterization see Figure 2.5.

C
A
B

Z

(a) Gate schematic of MCE.

A B Z
0 0 0
0 1 hold state
1 0 hold state
1 1 1

(b) Truth table of MCE.

A

B

Z

(c) Timing diagram of MCE.

Figure 2.5: Characterization of the MCE.

The Muller Pipeline
Figure 2.6 shows the Muller pipeline for 4-phase operation. The figure shows two registers
with combinational logic between them. The above part is the control path. The data
path below is implemented with D-Latches. Strictly the Muller pipeline is only the control
part consisting of MCEs and inverters. Therefore the Muller pipeline itself is adequate for
both 4-phase and 2-phase operation. It is only a matter of signal interpretation. While
for 4-phase operation the D-Latch is just fine, for 2-phase operation as in Figure 2.7 a
Capture-Pass-Latch from the Micropipelines paper of Ivan E. Sutherland [22], which
originally introduced this concept, is used. Figure 2.8 shows a schematic for the Capture-

10

2.3. Fundamentals for Asynchronous Circuit Design

Pass-Latch. Note that a delay element (∆) is needed in the control path to ensure that
the second latch does not catch still unstable data from the logic cloud. The signals of
the individual control elements of the Muller pipeline correspond to the according timing
diagrams Figure 2.3/Figure 2.4 from before.

C C

ACK OUT

REQ IN

ACK IN

REQ OUT

Latch Logic Latch

Δ

EN EN

DATA IN DATA OUT

Figure 2.6: 4-phase Muller pipeline.

C C

ACK OUT

REQ IN

ACK IN

REQ OUT

Latch Logic Latch

Δ

C

DATA IN DATA OUT

P C P

Figure 2.7: 2-phase Muller pipeline.

IN OUT

C P

Figure 2.8: Capture-Pass-Latch schematic [22].

11

2. Related Work

4-Phase Dual-Rail Protocol
The 4-phase DR protocol uses a special encoding to make the request signal obsolete.
In theory there exists also a 2-phase version, but the 4-phase version is much more
common. As the table in Figure 2.9 shows a single bit is represented by two rails. If
the true/false-rail is high the bit value is true/false. At no point in time both rails are
allowed to be high. As the timing diagram further shows between each data transaction
there is a spacer, the NULL-phase. If one of the two rails is high, then the protocol is
in the data-phase. In particular, if the sender wants to initiate a transaction it raises
one of the rails, so the data content is also already encoded. The receiver recognizes
this procession from NULL- to data-phase usually with a completion detector (CD)
component and will raise the acknowledge signal as soon as it has caught the data. If
the acknowledge signal is high, the sender again enters the NULL-phase by setting both
rails to zero. Then after the acknowledge signal falls to zero, the next data transaction
can occur. See therefore also the timing diagram Figure 2.9b. The dominant buffer type
in this thesis is the weak-conditioned-half-buffer (WCHB) as show in Figure 2.10 already
in action with logic between two WCHBs. The preceding WCHB has two bits (a and
b) as input/output, so 4 input/output rails in total. The AND gate then reduces this
two bits to one, which is then passed to the succeeding one-bit WCHB. The MCEs of
the WCHBs provide the buffer functionality. Then there are two CDs in Figure 2.10.
Each CD generates the acknowledge signal of its buffer by OR-reduction of both rails
(false-rail OR true-rail) of each output bit to effectively one bit, which indicates, whether
the current bit is in NULL- or data-phase, and then passes all these bits to a MCE, if the
WCHB holds multiple bits. A MCE with three inputs or a tree MCEs would be used for
a WCHB holding three bits. A DIMS AND gate is an AND gate, which is synthesized
by the delay-insensitive-minterm-synthesis (DIMS) approach. More about DIMS and
alternatives to it follows in the next paragraph.

Value false rail true rail
False 1 0
True 0 1

NULL 0 0
Illegal 1 1

(a) Encoding.

ACK

FALSE RAIL

TRUE RAIL

NULL FALSE NULL TRUE NULL FALSE

(b) Timing diagram.

Figure 2.9: 4-phase DR protocol.

12

2.3. Fundamentals for Asynchronous Circuit Design

C

C

C

C

C

C

C

C

C

C

Cack_out

z.F

z.T

ack_in

a.F

a.T

b.F

b.T

DIMS AND gatepreceding WCHB

succeeding WCHB

Figure 2.10: WCHB pipeline with DIMS AND gate as combinational logic.

Different Logic Styles for Dual-Rail
A trivial logic gate for the 4-phase DR protocol is the inverter. Just switching the
false-rail with the true-rail is enough. For other logic like AND or OR gates more effort is
needed. Hence, there are three common approaches to design arbitrary logic compatible
with the 4-phase DR protocol:

• Delay-Insensitive-Minterm-Synthesis (DIMS): As already shown by the
exemplary AND gate in Figure 2.10 this approach needs one MCE for each element
in the Cartesian product of all input bits, where each bit is the set of its rails. So
for our example this can be described by the following formula:

{a.F, a.T} × {b.F, b.T} = {(a.F, b.F), (a.F, b.T), (a.T, b.F), (a.T, b.T)}

MCEs of the AND gate in Figure 2.10 from top to bottom follow the order given
by the chosen representation of the resulting set above. Then common logic gates
can be used to implement a function that raises the relevant output rail depending
on the outputs of the MCEs.

13

2. Related Work

• Null-Convention-Logic (NCL): This approach introduces threshold gates, which
can be seen as a generalization of MCEs. The number annotated on each threshold
gate in Figure 2.11a denotes the number of inputs that must agree so that the
output changes. Threshold gates, for which all inputs must agree, are equivalent to
MCEs. Figure 2.11b shows an AND gate implemented with threshold gates. NCL
logic is more efficient compared to DIMS, but one downside of it is that it is not
trivial to automate the generation of arbitrary logic functions.

1 1 1

2 2 2

3 3

4

OR gates

C gates

(a) Threshold gates for NCL.

3

2

a.T

b.T

a.F

b.F z.F

z.T

2

(b) NCL AND gate.

Figure 2.11: 4-phase DR protocol.

• NCL with Explicit Completeness (NCLX): A first optimization, which aimed
to top the previous approaches, was proposed by [52] and then refined by [53],
where it is called NCL with Explicit Completeness (NCLX). In theory only one
AND gate and one OR gate are needed to generate a DR AND gate. But this
yields the risks that the gate already generates an output, even if one bit is still
in the NULL-phase. Therefore the acknowledge signal of the succeeding buffer is
maybe set too soon and so the late bit is neglected at all. To correct this a CD can
be added before and the output can be masked with a MCE. Now usually when
using WCHBs the CD at the input is already given by the preceding buffer and the
masking by the succeeding buffer. To prevent a possible deadlock of this optimized
circuit an additional MCE is added with the output of the CD of the preceding
buffer and the acknowledge signal of the succeeding buffer as inputs. Figure 2.12
shows this, please note that the CD shown corresponds to that of the preceding
buffer and may compare with Figure 2.10

14

2.3. Fundamentals for Asynchronous Circuit Design

a.F

b.F

b.T

a.T

ackout

acknowledge to
preceding buffer

completion detector
output from

succeeding buffer

z.F

z.T

C

C

Figure 2.12: NCLX AND gate.

Delay Insensitivity of Asynchronous Circuits
A circuit is (truly) delay-insensitive (DI), if for correct operation the only timing restriction
is that each gate and wire delay is positive and finite. Unfortunately the class of such
circuits is limited to those constructed only with inverters and MCEs as shown by
[54]. Hence, the Muller pipeline is delay insensitive. A less strict classification is speed
independence, i.e. all wire delays are assumed to be zero, but the gate delays can be
arbitrary. This is basically a less realistic phrasing, because interconnect delays are quite
significant in modern circuits, for specification of QDI circuits. For QDI it is assumed
that gates have arbitrary delays, but for all wires an isochronic fork [55] condition applies.
This condition says that the delay of each wire after a fork must be equal. Hence, a QDI
circuit can be viewed as a speed independent one, if all wire delays are just moved (i.e.
added) to the gate delay of their source. QDI circuits are dominantly used in this thesis.

15

CHAPTER 3
Design Flow by TU Wien

The Embedded Computing Systems (ECS) group, which is a part of the Institute of
Computer Engineering at TU Wien and whose research ranges by self definition from
"dependable and power-efficient digital circuits to future generation computer architectures
to networked embedded systems and fault-tolerant distributed systems" [94], recently
developed a design flow starting with the high level design of asynchronous circuits
(ACs) and going down to gate level simulation with fault-injection. The design of the
ACs is intended to be modular and highly configurable, so for example a buffer type
like the weak-conditioned-half-buffer (WCHB) can easily be exchanged with another
possibly enhanced version. Therefore, the fault-resilience of many circuit variations can
be analyzed by exposing them to fault-injections. The design flow consists mainly of
Python scripts, which delegate some work to external tools like Modelsim for simulation
or communicate to a Structured Query Language (SQL) database to store results and
query next tasks. Overall the design flow is quite focused on fault-injection, however
development is still in progress and so with the progression of research interests of the
ECS group group it will evolve. Incremental publishing of parts as open-source code is
planned for mid- to long-term. The following sections will provide an overview over the
design flow, and then examine all scientific reference work related to the flow itself, its
developments process and the future plans for it.

17

3. Design Flow by TU Wien

3.1 Overview
The design flow can be considered as a collection of Python scripts utilizing some
additional tools. Especially for AC generation the Python production rule package (pypr)
backs the front-end scripts shown in Table 3.1, which further describes them briefly, as
well as Table 3.2 does for preexistent external tools.

Python script Description

simple_qdi_synth.py
Converts provided combinatorial single-rail Verilog
designs into a quasi-delay-insensitive (QDI) dual-rail
(DR) production rule set (PRS).

bmc.py
Bounded-model-checker, which checks a circuit
described in PRS format for specific properties.

prscom.py

Handles the conversion of PRS format to a hardware
description language (HDL) like Very High Speed
Integrated Circuit Hardware Description Language
(VHDL) or Verilog.

tbgen.py
Generates VHDL testbenches for ACs featuring fault
injections according to a YAML file configuration.

dbplotter.py
A tool that plots results of simulation jobs executed
by dbworker.py.

autosetup.py
Wraps around the dbworker.py to calibrate some
settings for fault-injection experiments.

dbworker.py

Communicates with the SQL database and according
to configuration adds open tasks to the database or
executes one task from it and then stores the results
in the database. Uses multithreading.

Table 3.1: Front-end Python scripts of the design flow of TU Wien.

External tool Description

Modelsim Is used for gate level simulation of VHDL code and
applying the fault injections using the force command.

Yosys
Provides a framework for register-transfer level (RTL)
synthesis. For now mainly used by
simple_qdi_synth.py.

Z3 A theorem prover developed by Microsoft Research [95].
Is mainly used by bmc.py.

GHDL
An analyzer, compiler, simulator and synthesizer for
VHDL. GHDL is mainly planned as simulator alternative
to Modelsim.

OSVVM A VHDL library used for random number generation in
the testbenches generated by tbgen.py.

Table 3.2: External tools used by the design flow of TU Wien.

18

3.1. Overview

combinatorial single‐rail
verilog design

.v

(flattended) production rule set
.prs

Python circuit description
.py

execute
.py file

VHDL description
.vhd

prscom.py prscom.py

SQL database
.db

yaml config file
.yml

signal list
.siglist

QDI DR production
rule set
.py

autosetup.py

dbworker.py

Modelsim

output.txttimings.txt

tbgen.py

VHDL testbench
.vhd

find timings for
pipeline fill factor

various overview plots
.png

Table
…

simple_qdi_synth.py

pypr python package
• gate library
• optimizer
• bounded model

checker
• channel abstraction
• …

dbplotter.py extractor.py

processing by (Python) tools/scripts

(imports) pypr Python package

description generated by flow

dark orange
light orange tool (respectively binary) name

(optional) input description to flow

green (proposed) file type

Figure 3.1: Design flow for gate level fault-injection analysis.

Figure 3.1 visualizes the design flow. The darker blueish boxes represent descriptions
or configurations that should be present as an input to the flow. The lighter represent
intermediate descriptions or outputs generated by the flow. Additionally each box
is labeled (in black) with what it represents. Proposed file types are labeled green.
Production rule set (PRS) is a special circuit description format originally established at
California Institute of Technology (Caltech), but here the acronym usually refers to a
concrete implementation of such a PRS description developed at TU Wien (see [6]). The
application of a (Python) tool/script to progress from one circuit or result representation
to another is usually shown by orange arrows or in case of more comprehensive processing
they lead to orange boxes. Script/tool names are written in dark or light orange.
Darkening of orange boxes or arrows is only for visual contrast, as well as lighter and

19

3. Design Flow by TU Wien

darker orange lettering. Most functionality for describing and further processing circuits
with Python scripts is provided by the Python package pypr. Therefore this package is
included in practically every other Python script. This is visualized by the green arrows.

The flow starts by describing an AC with a Python script. The pypr package will provide
appropriate classes and functions for this description. Combinational logic described
by Verilog code can be translated (by simple_qdi_synth.py) and then be loaded
into the main Python circuit description. By execution the Python script conventionally
stores its circuit as a (flattened) PRS representation. From there the representation
can be further translated to e.g. VHDL, or some properties like a list of signals can be
extracted using prscom.py. The section of Figure 3.1 consisting of autosetup.py
and dbworker.py basically visualizes how the former executes the latter multiple times
to first calibrate various settings (most importantly a pipeline-fill-factor) for the following
fault-injection experiments (see [7]). Setup instructions of an experiment are stored to
the SQL database by the first execution of autosetup.py/dbworker.py and then
queried by dbworker.py later to actually perform all the simulations. Results will
be stored back to the database. The tbgen.py script creates the VHDL testbench
according to the calibration and settings in the YAML config file. dbplotter.py and
extractor.py are just examples for further Python tools, which perform SQL queries
on the database to analyze results. However, the flow is still work in progress, so not every
(proposed) component is presented in Figure 3.1. For example the bounded-model-checker
(bmc.py), which at the moment just checks for deadlock, orphans or some set assertions,
is missing.

C

C

C

C

C

C

C

C

C

C

Cack_out

z.F

z.T

ack_in

a.F

a.T

b.F

b.T

DIMS AND gatepreceding WCHB

succeeding WCHB

Figure 3.2: QDI 4-phase DR circuit featuring WCHBs and a DR AND gate.

20

3.1. Overview

To further demonstrate how a usual path through the design flow looks like, a comprehen-
sive path example follows. Listing 3.1 shows Python code describing a QDI 4-phase DR
circuit featuring WCHBs and a DR AND gate. The circuit is visualized in Figure 3.2. The
circuit consists of a delay-insensitive-minterm-synthesis (DIMS) AND gate preceded and
succeeded by WCHBs. The Python code in Listing 3.1 starts with declaring a production
rule set library (PRSLib) in Line 2, a packing of all input/output signals to an input/out-
put channel (chin/chout, Line 4/5) and declaring of two intermediate channels for
the connection from the preceding WCHB to the DIMS AND gate and from there to
the succeeding WCHB. Afterwards the individual components of the circuit itself are
added to the library (line 12 onward). The two buffers are elements of the built-in library
and the DIMS AND gate is imported as PRS description from the bitwise_and.prs
file. The file has been generated by the Python script simple_qdi_synth.py, which
translated the Verilog description shown in Listing 3.2 to the corresponding production
rule set shown in Listing 3.3. In Line 13 of Listing 3.1 the final circuit object is declared
as data-flow-graph. The following lines add the previously declared channels, buffers and
the DIMS AND gate to the circuit. From Line 21 to 24 the Connect and Pipeline
functions are used to connect the different blocks.

1 . . .
2 l i b = PRSLib () # i n i t i a l i z e production r u l e s e t l i b r a r y
3 # d e c l a r e channels
4 chin = DIDRChannel (name=" chin " , d i r e c t i o n=ChannelDirect ion . Input , ack=" ack_out "

, data =[" a " , " b "])
5 chout = DIDRChannel (name=" chout " , d i r e c t i o n=ChannelDirect ion . Output , ack="

ack_in " , data =[" z "])
6 b1Out = DIDRChannel (name=" b1Out " , data =[" a " , " b "])
7 b2In = DIDRChannel (name=" b2In " , data =[" z "])
8 # add needed components to l i b r a r y
9 l i b . AddPRS(ParsePRSFile (" bitwise_and . prs "))

10 l i b . AddPRS(DRBuffer (name=" buf1 " , input_channel=chin , output_channel=b1Out))
11 l i b . AddPRS(DRBuffer (name=" buf2 " , input_channel=b2In , output_channel=chout))
12 # d e c l a r e and add components to c i r c u i t bufferedAnd
13 bufferedAnd = DFG()
14 bufferedAnd . AddIOChannel ([chin , chout])
15 bufferedAnd . AddLogicBlock (" op_and " , l i b [" bitwise_and "])
16 bufferedAnd . AddHandshakingBlock (" b1 " , l i b [" buf1 "])
17 bufferedAnd . AddHandshakingBlock (" b2 " , l i b [" buf2 "])
18 # connect components of c i r c u i t
19 bufferedAnd . P i p e l i n e (" chin " , " b1 ")
20 bufferedAnd . Connect (" b1 : b1Out " , " op_and " , { " a_out " : " a " , " b_out " : " b " })
21 bufferedAnd . Connect (" op_and " , " b2 : b2In ")
22 bufferedAnd . P i p e l i n e (" b2 " , " chout ")
23 # generate production r u l e set , f l a t t e n and optimize i t
24 l i b . AddPRS(bufferedAnd . CreatePRS (" bufferedAnd "))
25 f l a t _ p r s = F l a t t e n (" bufferedAnd " , l i b)
26 Optimize (f l a t _ p r s)
27 # save i t to f i l e
28 with open(" buf feredAnd_f lat . prs " , "w") as f i l e :
29 f i l e . w r i t e (f l a t _ p r s . ToCode ())
30 . . .

Listing 3.1: Python description of a QDI 4-phase DR circuit featuring WCHBs and a
DR AND gate.

21

3. Design Flow by TU Wien

1 module bitwise_and #(parameter
DATA_WIDTH = 4) (a , b , z

) ;
2 input [DATA_WIDTH−1:0] a ;
3 input [DATA_WIDTH−1:0] b ;
4 output [DATA_WIDTH−1:0] z ;
5 assign z = a & b ;
6 endmodule

Listing 3.2: Combinational single-rail
Verilog design.

1 prs bitwise_and i s
2 i n p u t s
3 a : DRBit a t t r i b u t e s (needs_cd :=

f a l s e) ;
4 b : DRBit a t t r i b u t e s (needs_cd :=

f a l s e) ;
5 outputs
6 z : DRBit ;
7 begin
8 cell_0__onehot00 := cgate (b . F , a . F) ;
9 cell_0__onehot01 := cgate (b . F , a .T) ;

10 cell_0__onehot10 := cgate (b .T, a . F) ;
11 z .T := cgate (b .T, a .T) ;
12 z . F := or_gate (cell_0__onehot00 ,

cell_0__onehot01 ,
cell_0__onehot10) ;

13 end prs ;

Listing 3.3: QDI production rule set description.

Afterwards the circuit is flattened, optimized and finally stored in PRS format to the file
bufferedAND_flat.prs. The content of this file is shown in Listing 3.4. The PRS
format represents a circuit similar to the module representation in Verilog. The circuit
is named (prs <name> is ...) and then declarations of inputs and outputs follow
before local variables can be defined. Finally logic gates with their connections are listed.
Concerning the description of an inputs, outputs or locals consider the declaration of the
input signal a on Line 3 in Listing 3.4:

a : DRBit attributes (channel := chin , role := data);

• <signal_name> : <signal_type> [attributes(...)]; is how a signal
declaration line looks in general.

• DRBit is the type of a DR bit used for QDI circuits.
• With the optional attributes keyword an input/output can be affiliated to a

communication channel and its role therein can be specified. Obviously this matches
the channel declarations of the Python description.

• Various other attributes, which e.g. mark the need of a completion detection for
local variables, are available as well.

Nevertheless, attributes are optional as they are only preserved as comments when
translated to a HDL. From Line 14 onward logic gates are described. Note that single
bit boolean local variables (like e.g. op_and__cell_0__onehot00) do not need to
be declared. This is considered a feature. Logic gates can be described as software-like
functions taking input signals as parameters and return the output signal. A line like
op_and__cell_0__onehot00 := cgate (op_and__b.F, op_and__a.F); should be
self-explanatory. .F and .T refer to the two rails of a DR bit. Then rules can also have
attributes like the following:

• init: specifies the reset signal and value for a state holding gate.
• delay: specifies a transport delay for gates (not used in Listing 3.4).

22

3.1. Overview

1 prs bufferedAnd i s
2 i n p u t s
3 a : DRBit a t t r i b u t e s (channel := chin , r o l e := data) ;
4 b : DRBit a t t r i b u t e s (channel := chin , r o l e := data) ;
5 ack_in : Bit a t t r i b u t e s (channel := chout , r o l e := ack , channel_type := DIDR

) ;
6 r e s e t : Bit a t t r i b u t e s (r o l e := r e s e t) ;
7 outputs
8 ack_out : Bit a t t r i b u t e s (channel := chin , r o l e := ack , channel_type := DIDR

) ;
9 z : DRBit a t t r i b u t e s (channel := chout , r o l e := data) ;

10 l o c a l s
11 op_and__a : DRBit a t t r i b u t e s (needs_cd := f a l s e) ;
12 op_and__b : DRBit a t t r i b u t e s (needs_cd := f a l s e) ;
13 b2__z_in : DRBit a t t r i b u t e s (channel := " b2−>b2In " , r o l e := data) ;
14 begin
15 op_and__cell_0__onehot00 := cgate (op_and__b . F , op_and__a . F) ;
16 op_and__cell_0__onehot01 := cgate (op_and__b . F , op_and__a .T) ;
17 op_and__cell_0__onehot10 := cgate (op_and__b .T, op_and__a . F) ;
18 b2__z_in .T := cgate (op_and__b .T, op_and__a .T) ;
19 b2__z_in . F := or_gate (op_and__cell_0__onehot00 , op_and__cell_0__onehot01 ,

op_and__cell_0__onehot10) ;
20 b1__c_a_out := or_gate (op_and__a . F , op_and__a .T) ;
21 op_and__a . F := cgate (a . F , b1__en) i n i t (0 , r e s e t) ;
22 op_and__a .T := cgate (a .T, b1__en) i n i t (0 , r e s e t) ;
23 b1__c_b_out := or_gate (op_and__b . F , op_and__b .T) ;
24 op_and__b . F := cgate (b . F , b1__en) i n i t (0 , r e s e t) ;
25 op_and__b .T := cgate (b .T, b1__en) i n i t (0 , r e s e t) ;
26 ack_out := cgate (b1__c_a_out , b1__c_b_out) ;
27 b1__en := nor_gate (z . F , z .T) ;
28 z . F := cgate (b2__z_in . F , b2__en) i n i t (0 , r e s e t) ;
29 z .T := cgate (b2__z_in .T, b2__en) i n i t (0 , r e s e t) ;
30 b2__en := inv (ack_in) ;
31 end prs ;

Listing 3.4: Production rule set description of a QDI 4-phase DR circuit featuring WCHBs
and a DR AND gate.

For a more detailed examination of all the features and tools provided by pypr for
describing ACs including the custom PRS format of TU Wien consider the Ph.D. thesis
of Florian Huemer [6]. In general the thesis elaborates extensively about QDI circuits.

Now using prscom.py this PRS description can be further translated to VHDL in order
to perform fault-injection experiments using Modelsim. Listing 3.5 shows an exemplary
translation of one rule in the PRS to VHDL. Due to its scope neither the whole VHDL
representation of the circuit, nor any further explanation of the translation process is
considered appropriate for discussion here. So a very simple way to proceed would
be feeding the dbwoker.py script directly with a YAML configuration file and the
corresponding VDHL description of a circuit. Listing 3.6 shows the clipped content of
such an exemplary YAML file. Currently the YAML file defines properties for gate level
simulation as following:

• Properties like circuit type, pipeline style, logic type, data width etc. mainly to
categorize simulation results in the SQL database.

• Input channel timings, i.e. timing of data-phase and NULL-phase alternation.
Usually randomized for each single bit signal within a set range.

• Output channel timing for the acknowledge signal of the sink (provided by testbench).
• Perhaps a check function, which the testbench utilizes to check correctness of logic

operations and log violation.

23

3. Design Flow by TU Wien

• The number of tokens (i.e. data and NULL-phase alternations), which should be
passed through the circuit until simulation is done.

• Fault-injection configurations like when to inject for what duration and how many
iterations (i.e. repetitions of simulation with altered fault-injection details).

Additionally to the properties above the YAML file contains for now build instructions as
shell commands, because the build process (i.e. advancing a Python file description to a
ready-to-simulate VHDL circuit) is not enough standardized yet, so needed flexibility is
given by the option to include arbitrary shell commands to the build process. Alongside
that there are also various file naming related configurations considered not worth
explaining explicitly.

1 −−op_and__a .F := cgate (a .F, b1__en)
i n i t (0 , r e s e t) ;

2 \\RULE: op_and__a . F\\ : process (a l l)
3 begin
4 \\op_and__a \\.F <= \\op_and__a \\.

F ;
5 i f (a . F and \\b1__en\\) then
6 \\op_and__a . F <= ’ 1 ’ ;
7 end i f ;
8 i f (not (a . F or \\b1__en\\))

then
9 \\op_and__a \\.F <= ’ 0 ’ ;

10 end i f ;
11 i f (r e s e t) then
12 \\op_and__a \\.F <= ’ 0 ’ ;
13 end i f ;
14 end process ;

Listing 3.5: Exemplary translation of one rule
in the PRS to VHDL code.

1 . . .
2 b u i l d :
3 tb:
4 channe l s :
5 chout:
6 log_tokens: true
7 ack_delay:
8 up:
9 type: random

10 min: 10 ns
11 max: 20 ns
12 c r e a t e _ g e n e r i c : true
13 . . .
14 # The fault injection parameters
15 f a u l t _ i n j e c t i o n :
16 v ict im:
17 mode: random
18 f i l e : a lu . s i g l i s t
19 i n j e c t i o n _ v a l u e :
20 mode: random
21 i n j e c t i o n _ t i m e :
22 mode: random
23 range: [1 0 0 0 0 0 , 2000000]
24 i n j e c t i o n _ d u r a t i o n :
25 mode: f i x e d
26 value : 1000
27 i t e r a t i o n s : 100000
28 . . .

Listing 3.6: Clipped YAML configuration
file.

For some of these properties, especially the timing of data- and NULL-phase alternation
and acknowledge edges, one might want to generate them in an automatic way to get
e.g. a desired fill level of the pipeline, so that the fault-injection experiments will be
performed on an appropriately utilized pipeline. Hence, the autosetup.py script is
there to perform this task. The script takes basic configurations via the YAML file and of
course a VHDL circuit as input and then sets everything up for meaningful fault-injection
experiments. In detail autosetup.py simulates the circuit multiple times. Each time
the timing of the testbench is a bit altered to approximate desired characteristics, which
usually have been empirically determined for a certain circuit type so that the final
fault-injection experiments yield significant results. For more details on that consider the
master’s thesis of Patrick Behal [7]. The thesis presents an analysis of transient faults of

24

3.1. Overview

QDI circuits with different pipeline styles. Results of more than 1 billion fault-injections,
for which the design flow of TU Wien was used, have been evaluated.

Finally the interaction of autosetup.py/dbworker.py with the SQL database should
be elaborated here. First note that autosetup.py usually only executes dbworker.py,
which then executes tbgen.py, whose scope is also beyond appropriate for being
discussed in detail here, and ultimately Modelsim to perform a simulation. Hence,
dbworker.py actually communicates with the SQL database or more specifically it
inserts scheduled tasks, queries them later to execute them and eventually inserts the
results back to the database. The following enumeration elucidates the process further:

1. autosetup.py/dbworker.py is executed with a configuration YAML file, which
also specifies (how to build) the VHDL entity to simulate.

2. (dbworker.py is executed multiple times by autosetup.py to perform simula-
tions for calibration of the pipeline fill factor. Temporary VHDL testbenches for
this step are created by tbgen.py.)

3. Appropriate simulation configurations are inserted as an open task to the SQL
database.

4. When dbworker.py is executed in run mode, it will query open tasks from the
SQL database and execute the simulations. In case a simulation is done, its results
are stored back to the database.

5. The database results can be queried by various means. Two example tools are the
dbplotter.py and extractor.py script.

It should be emphasized that after step 3 another or even multiple other workstations can
proceed with step 4 and query the (partial) task from an online SQL database. Hence, in
combination with the multiprocessing capability, which the dbworker.py script already
provides, a larger fault-injection experiment for research can be distributed over multiple
CPU cores on multiple workstations. This is intentional design from the start to aim
for a comprehensive fault-injection framework suitable for very large scale experiments.
The storage strategy for simulation tasks and their results in the SQL database is also
designed to occupy minimal disk space.

Table 3.3 shows exemplary (clipped) content of significant tables of the SQL database.
In particular the subtables present the following:

• Table 3.3a shows two independent fault-injection experiments (denoted as simula-
tions). One performed with a multiplier circuit and the other one with an ALU
circuit. Each one is described by its corresponding YAML file, which describes
also the build process to obtain the circuit in VHDL alongside with properties for
testbench generation.

• Table 3.3b shows the splitting of the two simulations into 4 tasks (2 each). Thereby
actual Modelsim usage can be distributed better to different workstations.

• Table 3.3c shows the simulation results. So each time when a fault-injection resulted
in one tracked error type (here timing, coding, value or glitch), it is logged as one
entry in the results table.

25

3. Design Flow by TU Wien

• Table 3.3d stores the relation of a signal ID to the actual signal name in VHDL
circuit description.

id githash settings settingspath ...
1 b18f... <content of YAML file> settings_mul.yml ...
2 b18f... <content of YAML file> settings_alu.yml ...

(a) Table of simulations.

id simulation_id status seed iterations ...
1 1 DONE 718... 250 ...
2 1 DONE 638... 250 ...
3 2 DONE 610... 250 ...
4 2 DONE 167... 250 ...

(b) Table of tasks.

id simulation_id task_id injected_signal_id inject_time error_type ...
1 1 1 44 132062 timing ...
2 1 1 287 171471 coding ...
3 1 2 59 191181 timing ...

...
7 2 3 593 205707 coding ...
8 2 3 550 467798 value ...

...
14 2 4 600 476654 coding ...

...
(c) Table of results.

id simulation_id name
1 1 umul4x4_tb/uut/ack_out_lvl0_0

...
44 1 umul4x4_tb/uut/b1__a_in(3).F
287 1 umul4x4_tb/uut/logic_ls__cell_7__a.T
59 1 umul4x4_tb/uut/b1__c_s_out_3

...
593 2 alu_tb/uut/op_addsub__cell_10__onehot11
550 2 alu_tb/uut/op_addsub__a(2).T
600 2 alu_tb/uut/op_addsub__cell_12__b.T

(d) Table of signals.

Table 3.3: Exemplary content of significant tables of the SQL database.

26

3.2. Related Literature

The two scripts dbplotter.py, which plots a basic overview of applied fault injections
and resulting deviation from the golden run, and extractor.py, which converts the
results stored in the SQL database to a more processable format, are really just exemplary
and with given specification of the SQL database the results may be specifically extracted
according to actual desired usage.

3.2 Related Literature
This section aims to provide an overview over scientific literature, which relates to the
design flow of TU Wien or specifically to pypr or dbworker.py. The ECS group has
been interested in ACs and fault-injection experiments for years now. A few of the first
publications are [56], [57] and [58], which elaborate about delay-insensitive (DI) 4-phase
data transmitting, benefits and downsides of their various coding schemes and present
a novel one, respectively. Considerations about timing robustness and fault-sensitivity
follow ([59], [60]). Eventually the design flow around pypr and dbworker.py evolved
with the master thesis of Patrick Behal [7], picking up the pipeline-load-factor (PLF)
already described in [60] as pipeline-fill-level and creating the automatic fault-injection
engine with workload distribution referred to as dbworker.py. pypr is presently best
examined by the Ph.D. thesis of Florian Huemer [6]. However, prior versions of it have
existed since 2018 and so ACs designed by pypr (or results of experiments with them)
were already published since then.
Table 3.4 provides a backwards chronologically ordered and commented list of the
significant publications related to the designs flow of TU Wien. The table starts at the
bottom with [60], because this paper established basics like the pipeline-fill-level (then
further examined as PLF in [7]) or the inter- and deadlocking variant of the WCHB
(visualized in Figure 3.7). For [60] still an one-time-setup was used for fault-injection
and retrieving results. [7] lifted it to the status presented in section 3.1 (visualized
by Figure 3.1). The papers listed above [7] in the table then rely on the automatic
fault-injection engine developed alongside [7] and usually exploit its capabilities to run
large-scale experiments to advance knowledge about QDI circuits. The backwards listing
ends with [6] as the most recent work comprehensively covering QDI circuits from theory
to practice, presenting also various fault-injection experiments to characterize certain
QDI circuit variations better and in general is the reference for pypr and the PRS format.
Now the publications of Table 3.4 should be discussed a bit more. Hence, a short
paragraph dedicated to each follows in bottom to top order.

Identification and Confinement of Fault Sensitivity Windows in QDI
Logic [60]
The paper studies the natural resilience of different QDI circuits. Therefore with
extensive fault-injection experiments the sensitivity windows are visualized by a
novel approach to retrieve detailed information about the sensitivity of individual
signals and its dependence on the pipeline-fill-level, implementation details, path
delays etc. For the fault-injection experiments the same fault categorization scheme

27

3. Design Flow by TU Wien

as later supported by the dbworker.py was used. Further the paper compares
different methods from literature that claim to enhance the resilience of WCHBs.
Finally after identifying the main vulnerabilities of conventional WCHBs the paper
proposes two enhanced WCHBs, the inter- and deadlocking variant better illustrated
in Figure 3.7. So synoptically the paper already introduced key elements of the pa-
rameterization strategy (pipeline-fill-level, variations of WCHB, input/output/path
delays, etc.) later used for billions of fault-injection experiments performed with the
dbworker.py for other publications.

Title Description Authors Publication date
and reference

Contributions to
Efficiency and Robustness
of Quasi Delay-Insensitive

Circuits

Ph.D. thesis of Floarian Huemer. It discusses
theoretic foundation of DI communication, sync to
async domain crossing, various (efficient) QDI logic
and pipeline styles and presents results of
fault-injection experiments to elaborate on
fault-tolerance. Main reference for pypr, PRS and
synthesis to it from Verilog.

F. Huemer May 2022
[6]

On SAT-Based Model
Checking of

Speed-Independent
Circuits

Presents how SAT-based bounded-model-checking
can be used to prove function correctness of ACs.
Paper to the bmc.py tool. Utilizes the open-source
Z3 theorem prover [95].

F. Huemer,
R. Najvirt,
A. Steininger

April 2022
[61]

Towards Explaining the
Fault Sensitivity of

Different QDI Pipeline
Styles

Analyzes fault sensitivity of QDI circuits subjected
to single-event-upsets (SEUs). Experiments with
different multiplier implementations and buffer
styles. Explicitly mentions the design flow tools of
TU Wien as setup.

P. Behal,
F. Huemer,
R. Najvirt,
A. Steininger,
Z. Tabassam

September 2021
[62]

An Automated Setup for
Large-Scale

Simulation-Based
Fault-Injection
Experiments on

Asynchronous Digital
Circuits

Presents also the design flow of the TU Wien as
toolset (visualized in Figure 3.5) for fault-injection
experiments. Elaborates on the huge parameter
space (visualized in Figure 3.6) to be considered to
obtain representative results. In general focused on
the toolset itself, its automation concerning
parameter selection and simulation run time
speedup by workload distribution.

P. Behal,
F. Huemer,
R. Najvirt,
A. Steininger

September 2021
[63]

Quantitative Comparison
of the Sensitivity of

Delay-Insensitive Design
Templates to Transient

Faults

Master thesis of Patrick Behal. Tools for automated
parameter generation for fault-injection experiments
and the distribution of workload were developed
alongside this thesis. The PLF was refined by it.
Over one billion fault-injection experiments on QDI
circuits with alternating pipeline styles have been
performed for it.

P. Behal May 2021
[7]

Identification and
Confinement of Fault

Sensitivity Windows in
QDI Logic

Aims to analyze the natural resilience of different
QDI circuit types and then determines the window
of vulnerability using fault-injection experiments. It
provides a visualization of sensitivity windows
related to the pipeline-fill-level and eventually
presents the inter- and deadlocking variant of the
WCHB, as in Figure 3.7.

F. Huemer,
R. Najvirt,
A. Steininger

October 2020
[60]

Table 3.4: Selection of more significant literature related to the design flow of TU Wien.

Quantitative Comparison of the Sensitivity of Delay-Insensitive Design
Templates to Transient Faults [7]
Alongside the master thesis of Patrick Behal all core tools (autosetup.py,
dbworker.py) for automated parameter generation for fault-injection experiments

28

3.2. Related Literature

and the workload distribution of the needed simulations to multiple cores on multiple
workstations have been developed. As motivation the thesis states that until then
to the authors awareness a satisfying, comprehensive and quantitative comparison
of the robustness of different design styles for ACs to transient faults was not
published. So to change this the respective tools were developed to perform over one
billion simulations with injections of transient faults on QDI 4-phase DR circuits
with varying pipeline styles. The thesis deepens the theoretical foundation for
simulation parameters like the PLF or the fault categorization and the developed
tools consequently establish them after their just experimental use in [60]. After an
extensive statistical evaluation of the simulation results further plans to expand the
research to other types of ACs, which are indeed realized by following publications,
are already stated as an outlook.

An Automated Setup for Large-Scale Simulation-Based Fault-Injection
Experiments on Asynchronous Digital Circuit [63]
This paper followed thesis [7] to presents the tool chain for highly automated fault-
injections into ACs in a condensed format. It again highlights the capabilities of
the tool chain to perform billions of meaningful fault-injection experiments. It
mentions the features of autosetup.py to generate parameters (like e.g. the
PLF) automatically for simulations. Then the extensive parameter span needed
to achieve representative results is quite well illustrated. See also Figure 3.6. The
paper categorizes the individual parts of the flow as following:

• Task generation: A given or partially auto-generated parameter set is added to
the SQL database alongside the AC to simulate.

• Simulation execution: Open tasks are executed with workload distribution over
multiple workstations and CPU cores. Results are stored back to the database.

• Data extraction: Various routines to extract and process results in the database
were developed and are utilized accordingly to favor sophisticated conclusions.

So basically the presented tool flow examined by this paper is already very close
to the whole design flow described in the last section of this thesis. For circuit
generation also the pypr for describing an AC is mentioned.

Towards Explaining the Fault Sensitivity of Different QDI Pipeline Styles
[62]
Here another paper focusing on fault sensitivity of QDI ACs to single-event-transients.
Experiments were done on ACs with varying multiplier logic and buffer styles. The
paper shares the great vision of performing large-scale fault-injection experiments in
order to narrow down vulnerabilities accurately to finally develop enhancements to
buffer or logic style from the gained insight. The paper again elaborates about the
parameter space and provides a minimal visualization of the design flow. See therefore
Figure 3.6 and Figure 3.5. Of course the existing tools from pypr for circuit generation
to the known automatic fault-injection engine (autosetup.py/dbworker.py)
are advertised as well. As an outlook, after better insight into fault-sensitivity
relations of QDI circuits is achieved and therefore parameter space can be reduced

29

3. Design Flow by TU Wien

to focus on only parameter choices that are then deemed significant, a progression
to more complex target circuits is announced.

On SAT-Based Model Checking of Speed-Independent Circuits [61]
This is the paper to the tool bmc.py. The tool implements a bounded-model-checker,
so it converts a circuit into a SAT problem to model its state progression for a certain
(bounded) time. The Z3 theorem solver from Microsoft Research [95] is used for the
implementation. bmc.py checks a PRS description for various custom properties
stated as static assertions in the circuit description, if the circuit deadlocks or for
gate orphans (a gate whose output may changes to some input pattern, but this is
not reflected by the observable output of the circuit). DI 4-phase DR ACs are used
as target circuits for the experiments.

Contributions to Efficiency and Robustness of Quasi Delay-Insensitive
Circuits [6]
The Ph.D. thesis of Florian Huemer covers crossings from synchronous to asyn-
chronous domains and vice versa, elaborates about efficiency of different DI commu-
nication schemes, AC description methods (so pypr, PRS and more) and of course
the fault-tolerance of QDI circuits. The thesis is the reference for the PRS format
and other pypr related content including the synthesis of Verilog code to PRS and
the conversion of PRS to VHDL. As expected for a Ph.D. thesis it covers each topic
comprehensible, from theoretical considerations (like how to transmit information in
a in a DI way in general) to presenting the results of practical case studies with vary-
ing QDI logic and buffer designs. It also relates itself to various other papers from
Florian Huemer et al. not listed ([64], [57], [56], [58], [59]) and listed ([61], [60], [62])
in Table 3.4. General work leading up to this thesis has started long before the tools
for automation of the fault-injection procedure (autosetup.py/dbworker.py)
were developed, nevertheless (predecessors of) pypr were developed much earlier and
so also used for mere AC generation.

Hopefully the above commentary to related work has deepened the understanding of the
reasons for the creation of the design flow of TU Wien and showed the knowledge gain
already achieved by the referenced work, as well as the amount of reasonable investigations
that come within reach by the flow’s capabilities. While the overview of the last section
presented the design flow with original content, what follows now is a recap of a historic
representation of the design flow alongside with consideration about the parameter space
investigated in past research.

The visualization of the design flow of TU Wien in Figure 3.1 in the last section is original
to this thesis. A more minimalist version here shown in Figure 3.5 was already presented
in [7], [63], [62] and [6]. It hides all concrete tools and just shows a conceptional view,
which is explained and related to the actual tools in the following:

• It starts with PARAMETER SETS (including the circuit description). Concretely pa-
rameter sets are given in YAML config files or may be generated by autosetup.py.

30

3.2. Related Literature

• The SIMULATION TASK GENERATOR then synthesizes the target circuit and
performs a golden run (from which deviations are considered as errors). The synthesis
is implemented by the pypr package, while performing simulations is already a task
for the dbworker.py.

• Planned simulations with all circuit details and fault-injection specifications are
then inserted to a SQL database, from which later the results are extractable, as
tasks.

• SIMULATION WORKER refers to the dbworker.py in run-mode, so when it
queries tasks from the database, performs the needed simulations and inserts the
results back afterwards.

An excellent illustration of the parameter span of interest for (future) research and also
supported by current design flow is shown in Figure 3.6. The overall parameter span
is huge due to being the Cartesian product of seven sets of possibly infinitely different
options. For some of the options like LEVEL OF PIPELINING, BIT WIDTH, DELAY
PARAM. or LOAD SCENARIO an inductive approach can be considered, i.e. experiment
with a few different options and discover a pattern which the results follow when increasing
this numeric option. LOGIC FUNCTION here refers to the functionality the actual AC
is expected to implement. Obviously results differ for different circuits. LOGIC STYLE
refers to currently three different approaches how to synthesize custom logic for 4-phase
QDI DR ACs. There are two original different PIPELINE STYLEs (i.e. buffer styles)
WCHB and MOUSETRAP [65]. The dead- and interlocking variant are both developed by
the ECS group based on gained insight from their research to increase fault-resilience. See
therefore Figure 3.7. The deadlocking variant just hinders the Muller C-element (MCE) to
change its state after a coding violation (so when both rails indicate ’1’) occurred, hence
stopping the pipeline operation until reset. The interlocking variant just prevents both
output rails from indicating ’1’ by favoring the first arriving ’1’ on either rail and basically
neglecting the later ’1’ on the other rail. For further explanation see [60]. So synoptically
recent research has explored only the tip of a huge parameter set. Future work will
continue to dig deeper. The comprehensive circuit generation and automated fault-
injection framework provided by pypr and autosetup.py/dbworker.py is needed to
deal with the enormous parameter space.

Database

RESULT
EXTRACTION

GOLDEN
RUN

TARGET
SYNTHESIS

SIMULATION
TASK

GENERATOR

PARAMETER
SETS

SIMULATION
WORKER

Figure 3.5: Design flow as presented in original publications ([7], [63], [62]).

31

3. Design Flow by TU Wien

1
2
4
8
IT.

LEVEL OF
PIPELINING

4
8

BIT
WIDTH

DIMS
NCLX
NCL

LOGIC
STYLE

WCHB
DeadWCHB
InterWCHB
DualCDWCHB
MOUSETRAP

PIPELINE
STYLE

1/4
1/2
1
2
4

LOAD
SCENARIO

FIFO
ADDER
IIR
CRC
MULT

LOGIC
FUNCTION

FAULT
DURATION

FAULT
LOCATION

FAULT
POLARITY

FAULT PARAMETERS

TARGET PARAMETERS

1
2
3

DELAY
PARAM.

INJECTION
TIME

Figure 3.6: Illustrated parameter space as presented in [63].

−

−

C

C

in.t

in.f

en

out.t

out.f

(a) Deadlocking WCHB.

+

+

C

C

in.t

in.f

en

out.t

out.f

(b) Interlocking WCHB.

Figure 3.7: Modified WCHBs as in [60].

32

CHAPTER 4
Design Flow by Yale University

Inter alia motivated by lack of design tools for asynchronous circuits (ACs) needed for
the design of the TrueNorth chip [3] (see also section 2.2), the asynchronous VLSI and
architecture (asyncVLSI) group at Yale University, assembled the Asynchronous Circuit
Toolkit (ACT). For ACT various tools have been specially developed, as well as preexistent
open-source tools have been integrated to yield a comprehensive design flow for ACs. It
provides high level design entries like dataflow descriptions and Communicating Hardware
Processes (CHP), as well as notions for very low level descriptions like size and leakage
of individual transistors. Combined with the open-source very large-scale integration
(VLSI) layout tool MAGIC the design flow aims to output a circuit layout description in
GDSII/CIF format. ACT is still work in progress, nevertheless some parts have already
been published. On GitHub under asyncvlsi1 all currently published components, as well
as other open-source repositories related to ACT or other projects by the asyncVLSI
group are listed. The following sections will first provide an overview over the different
parts of ACT and their common operation as one design flow. Then an extensive analysis
of scientific work related to ACT follows.

1https://github.com/asyncvlsi/

33

https://github.com/asyncvlsi/
https://github.com/asyncvlsi/

4. Design Flow by Yale University

4.1 Overview

The design flow can be considered as a collection of tools or binaries. Table 4.1 lists all
tools affiliated to ACT. For convenience also links to the corresponding source code and
documentation are attached. Each preexistent tool (i.e. not specially developed for ACT)
is denoted as external.

Binary Description External Code Source / Documentation

aflat
Translates (low level) ACT code to a

https://github.com/asyncvlsi/act
https://avlsi.csl.yale.edu/act/doku.php

flat production rule representation.

prs2sim
Translates production rules to sim
format (used by IRSIM).

prs2net
Translates production rules to a
SPICE netlist.

ext2sp
Converts MAGIC extract files into a
hierarchical SPICE file.

Prsim
Gate level simulation tool specially
for ACT.
Standard library for ACT code (used

https://github.com/asyncvlsi/stdlibwith binaries aflat and chp2prs.)

chp2prs
Translates CHP code to (low level)

https://github.com/asyncvlsi/chp2prsACT code.

prs2fpga
Translates production rules to

https://github.com/asyncvlsi/prs2fpgasynthesizable Verilog code, see also [66].

IRSIM Switch level simulator. × https://github.com/RTimothyEdwards/irsim/
http://opencircuitdesign.com/irsim/

MAGIC VLSI layout tool. × https://github.com/RTimothyEdwards/magic
http://opencircuitdesign.com/magic/

Xyce Analog circuit simulator × https://github.com/Xyce/Xyce
(alternative to e.g. LTspice). https://xyce.sandia.gov/

Table 4.1: Individual tools affiliated to ACT.

Figure 4.1 visualizes the design flow. The bluish boxes represent different description
options for an AC. The shade of blue describes the design level. Simulation outputs
are also represented as bluish boxes, because they also describe (the behavior of) a
circuit. Additionally the circuit description type of each box is labeled on each box
(black) along with a proposed file type. Furthermore the various tools of ACT, converting
more high level descriptions to lower levels possibly adding some low level specifications
automatically, are represented with arrows. Tool names are written in orange. Orange
arrow filling indicates that the tool was specifically developed for ACT, yellow arrows
that it is an external (preexistent) open-source tool. One oddity, which should be clarified
here, is that various tools converting from low level ACT are usually named prs2...
(e.g. prs2sim), despite the file type for this description type is .act. This is correct
and seemingly intended by ACT developers. The .prs file ending is an acronym for
production rule set. This is a flattened version of low level ACT, i.e. ACT only using
the prs {...} body. The flow in Figure 4.1 is not complete, additional tools (like e.g.
prs2fpga) are omitted to keep it simple, so the (automated) progression from high to
low level description is well illustrated.

34

https://github.com/asyncvlsi/act
https://avlsi.csl.yale.edu/act/doku.php
https://github.com/asyncvlsi/stdlib
https://github.com/asyncvlsi/chp2prs
https://github.com/asyncvlsi/prs2fpga
https://github.com/RTimothyEdwards/irsim/
http://opencircuitdesign.com/irsim/
https://github.com/RTimothyEdwards/magic
http://opencircuitdesign.com/magic/
https://github.com/Xyce/Xyce
https://xyce.sandia.gov/

4.1. Overview

dataflow
.act

CHP
.act

chp2prs

low level ACT
.act

production rules
.prs

gate level simulation output
.log

dataflowmap

netlist
.sim, .al

switch level simulation output
.log

netlist
.spice

analog simulation output
.prn

aflat prs2netprs2sim

cell description
.ext

circuit layout by MAGIC
.mag

MAGIC ext2spice
netlist with parasitics

.spice

Xyce
LTspice

strict layout
verification:

gemini

permissive
layout

verification:
lvp

IRSIM Xyce
LTspiceprsim

MAGIC

GDSII / CIF

high level

low level

tool specially developed for ACT

external tool

green: (proposed) file type
dark orange: tool (respectively binary) name

Figure 4.1: Design flow utilizing ACT.

The following examples traverse all tools of the flow in Figure 4.1 except MAGIC, ext2sp,
gemini and lvp, so basically no layout is done, because here only a basic understanding
of the different design entry points and simulation levels should be conveyed. Hence,
circuit description types are shown as (clipped) code to show how descriptions are really
coded and what information is complemented by the tools.

35

4. Design Flow by Yale University

The highest level design entry available is to design a circuit by specifying a dataflow.
Listing 4.1 shows how a simple adder with synchronization at input and output can be
implemented. chan?(int<32>) denotes an input channel (?) transferring a 32-bit
integer with 4-phase dual-rail (DR) synchronization included. chan!(int<32>) then
denotes the corresponding output channel (!). When using the keyword chan, per default
DR logic will be used to implement the abstract channel notion, but bundled-data (BD)
is an option too, when tools are configured accordingly. The command $ dflowmap
dfBufferedAdder.act will translate the dataflow description to a CHP description.
The output code is very mechanical, therefore the following CHP example will continue
with manually created code.

Listing 4.2 shows the same buffered adder as in the dataflow example before, but coded
in CHP, i.e. the next lower design entry. The syntax of *[I1?x, I2?y; z:=x+y;
O!z] can be disassembled as following:

• *[...]: repeat ... infinitely.
• I1?x: perform synchronization operation for receiving data on channel I1 and

store it to x.
• O!z: perform synchronization operation for transmitting data stored in z on channel

O.
• P,Q execute P and Q simultaneously.
• P;Q execute P and Q sequentially.

Further syntax is considered trivial. Hence, it can be seen here nicely that CHP requires
the synchronization operations coded explicitly, while the dataflow description assumes
them implicitly. The CHP description of Listing 4.2 can be translated to low level
ACT using the command $ chp2prs chpBufferedAdder.act bufferedAdder
lowLevelACTbufferedAdder.act. The code witten to
lowLevelACTbufferedAdder.act is again very mechanical, so it is not shown here.

Listing 4.3 shows how a low level ACT description can be coded manually. The circuit is
much simpler, because it is already close to transistor level, so a full DR adder would be
cumbersome. Each line inside prs {...} is a production rule mapping, i.e. a boolean
condition mapped to either a pull down or a pull up. More specifically on the left of ’->’
a logic expression evaluating to true or false is required. On the right a pull down (’-’)
or pull up (’+’) rule is required. Listing 4.3 implements a CMOS-compatible Muller
C-element (MCE). For CMOS-compatibility the condition on the left side is only allowed
to consist of non inverted variables, if it is a pull down rule, and only inverted variables
for a pull up rule. Due to that limitation a non inverted MCE has to be implemented by
first implementing production rules for an inverted one, where the output is mapped to
a local variable (here b), and then an inverter has to be implemented with additional
production rules. There are also alternatives to ’->’ to reduce code a bit.

36

4.1. Overview

1 // f i l e : d fBuf feredAdder . ac t
2 defproc buf feredAdder (chan?(int <32>) I1 , I2 ; chan ! (int

<32>) O)
3 {
4 dataflow {
5 I1 + I2 −> O
6 }
7 }

Listing 4.1: Dataflow description of a buffered adder.

1 // f i l e : chpBufferedAdder . ac t
2 defproc buf feredAdder (chan?(int <32>) I1 , I2 ; chan ! (int

<32>) O)
3 {
4 int<32> x , y , z ; // z = x + y
5 chp {
6 ∗ [I1 ?x , I2 ?y ; z :=x+y ; O! z]
7 }
8 }

Listing 4.2: CHP description of a buffered adder.

1 // f i l e : mce . ac t
2 defproc mce (bool? i1 , i 2 ; bool ! o)
3 {
4 bool b ;
5 prs {
6 i 1 & i 2 −> b−
7 ~ i 1 & ~ i 2 −> b+
8 b −> o−
9 ~b −> o+

10 // s imp ler way to s p e c i f y MCE beh :
11 // i1 & i2 #> b−
12 // ~b −> o+ w i l l be a u t o m a t i c a l l y assumed :
13 // b => o−
14 }
15 }
16 // c r ea t e in s tance o f mce
17 mce mce_inst ;

Listing 4.3: Low level ACT description of MCE.

37

4. Design Flow by Yale University

The low level ACT description of Listing 4.3 can further be flattened to the pure
production rule description of Listing 4.4 by using the command $ aflat mce.act.
Of course the mere process definition of mce must also be instantiated (e.g. as instance
mce_inst), because when flattening uninstantiated process definitions are ignored. The
flattened description basically only consists of the plain production rules without any
declarations of input, output, internal etc..

The production rule description of Listing 4.4 can then be simulated with the gate level
simulation tool Prsim. Listing 4.5 shows the simulation using the interactive shell of
Prsim executed via $ prsim mce.prs. The cycle command of Prsim maybe requires
a bit explanation. It simulates until the circuit has reached a stable state, hence possibly
forever. One can write cycle <node> to simulate only until the value of the specified
node changed.

Alternatively to a gate level simulation also a switch level simulation can be performed
using IRSIM. Therefore the low level ACT description must be converted to a netlist first
using the command $ prs2sim mce.act mce. The netlist is shown in Listing 4.6.
E.g. p mce_inst/i1 Vdd mce_inst/n#6 2 5 can be disassembled as follows:

• p denotes a PMOS transistor.
• mce_inst/i1 is connected to the gate.
• Vdd is connected to the source.
• mce_inst/n#6 is connected to the drain. n#6 denotes here just a new temporary

wire.
• 2 and 5 denote the width and length of the transistor.

See also Figure 4.4 for a visualization of the netlist. Listing 4.7 is a list of aliases for
various node names.

Using the command $ irsim scmos30 mce.sim mce.al -irsim.inp the netlist
of Listing 4.6 can be simulated with the instructions of Listing 4.8. A short syntax
explanation of Listing 4.8:

• h: set node to high.
• l: set node to low.
• ana: add to analyzer window.
• w: add to watchlist.
• s: perform simulation step.

IRSIM features a graphical analyzer window, hence the visual simulation output is shown
in Figure 4.3.

1 " mce_inst . i 1 "&" mce_inst . i 2 "−>"mce_inst . b"−
2 ~" mce_inst . i 1 "&~" mce_inst . i 2 "−>"mce_inst . b"+
3 " mce_inst . b"−>"mce_inst . o"−
4 ~" mce_inst . b"−>"mce_inst . o"+

Listing 4.4: Production rule set (.prs) of MCE.

38

4.1. Overview

1 (Prsim) i n i t i a l i z e
2 (Prsim) s e t mce_inst . i 1 0
3 (Prsim) s e t mce_inst . i 2 0
4 (Prsim) w a t c h a l l
5 (Prsim) c y c l e
6 0 mce_inst . i 1 : 0
7 0 mce_inst . i 2 : 0
8 10 mce_inst . b : 1 [by mce_inst . i 2 :=0]
9 20 mce_inst . o : 0 [by mce_inst . b :=1]

10 (Prsim) s e t mce_inst . i 2 1
11 (Prsim) c y c l e
12 20 mce_inst . i 2 : 1
13 (Prsim) s e t mce_inst . i 1 1
14 (Prsim) c y c l e
15 20 mce_inst . i 1 : 1
16 30 mce_inst . b : 0 [by mce_inst . i 1 :=1]
17 40 mce_inst . o : 1 [by mce_inst . b :=0]
18 (Prsim) e x i t

Listing 4.5: Interactive shell of Prsim.

1 | u n i t s : 30 tech : scmos format : MIT
2 p mce_inst / i 1 Vdd mce_inst /n#6 2 5
3 p mce_inst /b Vdd mce_inst /o 2 5
4 p GND Vdd mce_inst /n#8 18 3
5 n mce_inst / i 1 GND mce_inst /n#3 2 3
6 n mce_inst /b GND mce_inst /o 2 3
7 n Vdd GND mce_inst /n#9 46 3
8 n mce_inst / i 2 mce_inst /n#3 mce_inst

/b 2 3
9 p mce_inst / i 2 mce_inst /n#6 mce_inst

/b 2 5
10 p mce_inst /o mce_inst /n#8 mce_inst /

b 2 3
11 n mce_inst /o mce_inst /n#9 mce_inst /

b 2 3

Listing 4.6: Netlist of MCE for switch level
simulation (.sim).

1 = Vdd Vdd !
2 = GND GND!

Listing 4.7: Alias file (.al) for IRSIM.

1 #setup e v e r y t h i n g
2 l o g f i l e i r s i m . l o g
3 h Vdd !
4 l GND!
5 # add to w a t c h l i s t and gui
6 ana mce_inst / i 1 mce_inst / i 2

mce_inst /o
7 w mce_inst / i 1 mce_inst / i 2 mce_inst /

o
8 # run sim
9 l mce_inst / i 1

10 l mce_inst / i 2
11 s
12 h mce_inst / i 2
13 s
14 h mce_inst / i 1
15 s

Listing 4.8: Simulation instructions for IRSIM.

Figure 4.3: IRSIM analyzer window showing switch level simulation of MCE.

39

4. Design Flow by Yale University

Finally also an asynchronous SPICE simulation is possible. Therefore the low level
ACT description must be translated to a SPICE netlist using the command $ prs2net
mce.act -p "mce<>". Listing 4.9 shows the resulting SPICE file. The netlist is
basically the same as in Listing 4.6. However, to break down one line consider line M0_
Vdd i1 #6 Vdd p W=1.5U L=0.6U:

• M0_: MOSFET transistor.
• Vdd: source.
• i1: gate.
• #6: drain (#6 new temporary wire).
• Vdd: bulk.
• p: model of MOSFET (specified by model.sp (see Line 14 in Listing 4.10)).
• W and L: width and length of MOSFET.

The netlist description of Listing 4.9 is then included into the test harness shown in
Listing 4.10, as well as a concrete model for the MOSFET transistors. Test parameters
(like e.g. the input pattern) are specified in the test harness. Every proper SPICE simu-
lator can be used from hereon. The asyncVLSI group recommends Xyce on their tutorial
page. Hence, using $ Xyce mce_test_harness.sp -o results.prn and after-
wards $ gnuplot -p -e "set style data lines; set multiplot layout
3,1; plot ’results.prn’ using (
$2*1e9):3 title ’voltage in1’; plot ’results.prn’ using (
$2*1e9):4 title ’voltage in2’; plot ’results.prn’ using (
$2*1e9):5 title ’voltage out’;" yields Figure 4.6.

M0

M7

M3

M6

M2

M8

M9

M5

M1

M4

VCC

#6

#3

b

VCC

i1

i2

i2

i1

o

#8

#9

Figure 4.4: Transistor level representation of CMOS MCE.

40

4.1. Overview

1 ∗
2 ∗−−−− act d e f p r o c : mce<> −−−−−
3 ∗ raw p o r t s : i 1 i 2 o
4 ∗
5 . subckt mce i 1 i 2 o
6 ∗ . PININFO i 1 : I i 2 : I o :O
7 ∗ .POWER VDD Vdd
8 ∗ .POWER GND GND
9 ∗ .POWER NSUB GND

10 ∗ .POWER PSUB Vdd
11 ∗
12 ∗ −−− node f l a g s −−−
13 ∗
14 ∗ b (s t a t e −hold ing) : pup_reff =0.8 ;

pdn_reff =1.33333
15 ∗ o (combinat ional)
16 ∗
17 ∗ −−− end node f l a g s −−−
18 ∗
19 M0_ Vdd i 1 #6 Vdd p W=1.5U L=0.6U
20 M1_ Vdd b o Vdd p W=1.5U L=0.6U
21 M2_keeper Vdd GND #8 Vdd p W=0.9U L

=5.4U
22 M3_ GND i 1 #3 GND n W=0.9U L=0.6U
23 M4_ GND b o GND n W=0.9U L=0.6U
24 M5_keeper GND Vdd #9 GND n W=0.9U L

=13.8U
25 M6_ #3 i 2 b GND n W=0.9U L=0.6U
26 M7_ #6 i 2 b Vdd p W=1.5U L=0.6U
27 M8_keeper #8 o b Vdd p W=0.9U L=0.6

U
28 M9_keeper #9 o b GND n W=0.9U L=0.6

U
29 . ends
30 ∗−−−− end o f p r o c e s s : mce<> −−−−−

Listing 4.9: Netlist of MCE for SPICE
simulation.

1 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

2 ∗ Xyce t e s t harness
3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

4
5 ∗∗∗ Defau l t supply nodes ∗∗∗
6 . g l o b a l vdd
7 . g l o b a l gnd
8
9 ∗∗∗ Set Vdd to 5V, GND to 0V ∗∗∗

10 vd vdd 0 dc 5 . 0 v
11 vg gnd 0 dc 0 . 0 v
12
13 ∗∗ i n c l u d e n f e t and p f e t models ∗∗∗
14 . i n c model . sp
15
16 ∗∗∗ i n c l u d e c i r c u i t model ∗∗∗
17 . i n c mce . sp
18
19 ∗∗∗ s e t the v o l t a g e o f " in " ∗∗∗
20 vp1 i 1 0 PAT(5 0 0n 0 . 1 n 0 . 1 n 4n

b00111010)
21 vp2 i 2 0 PAT(5 0 0n 0 . 1 n 0 . 1 n 4n

b01100001)
22
23 ∗∗∗ I n s t a n c e o f the i n v e r t e r

s u b c i r c u i t ∗∗∗
24 X1 i 1 i 2 out mce
25
26 ∗∗∗ S p e c i f y s i m u l a t i o n and o p t i o n s

∗∗∗
27 . p r i n t tran format=gnuplot v (i 1) v (

i 2) v (out)
28
29 ∗∗∗ Run a t r a n s i e n t s i m u l a t i o n f o r

32 ns with 1 ps t imestep ∗∗∗
30 . tran 1p 32n
31
32 . end

Listing 4.10: Xyce test harness for SPICE
simulation.

Figure 4.6: Plotted Xyce simulation output of MCE.

41

4. Design Flow by Yale University

4.2 Related Literature

This section aims to provide an overview over scientific literature, which relates to
ACT. Specifically for the evolution of Computer-aided-design (CAD) tools from original
Caltech Asynchronous Synthesis Tools (CAST) [67] to the finally published open-source
Asynchronous Circuit Toolkit (ACT) [89] a narration will be provided. Table 4.2 provides
a backwards chronologically ordered and commented list of significant publications related
to ACT, i.e. publications that describe parts of ACT, classify its areas of application or
provide an insight into its evolution from its predecessors. The later is especially true for
the older ones. An underlined title means that the reference is describing the whole ACT
flow in a comprehensible way, so it is recommended as a start to read, especially [35].
Core references for the creation of the Table 4.2 and the following narration are [35] and
the Language History2 section of the ACT documentation page [91].

Roughly 30 years ago the development of the Caltech Asynchronous Synthesis Tools
(CAST), a language for hierarchical production rules, by Alan J. Martin’s research
group has begun2. The earliest comprehensive publication about it seems to be [67]
in the early 2000s. However, still back in 1991 Alan J. Martin also presented CHP
[68]. CHP is based on Hoare’s Communicating Sequential Processes (CSP) language
[69]. A newer publication about CHP by Alain J. Martin and Chris Moore is [70]. Then
in 19952 Rajit Manohar came into play and implemented a new CAST [96]. The first
prominent usage of CAST was at the design of the MIPS R3000 Microprocessor [23].
Approximately 1998 Andrew Lines and Uri Cummings launched the startup later named
Fulcrum Microsystems, which licensed various tools developed at California Institute of
Technology (Caltech), developed some proprietary extensions to CAST, as well as the
Proteus flow [46], before it was bought by Intel. Some more use cases of CAST according
to the Language History2 are the development of programmable asynchronous pipeline
arrays [24], the asynchronous processor SNAP [25] and the Lutonium microcontroller [26].
Ultimately ACT was created in 2005 by Rajit Manohar’s research group to overcome
some limitations of CAST (as [35] states). One of ACTs first versions was published [97]
under the name Hierarchical Asynchronous Circuit Kompiler Toolkit (HACKT) as a part
of David Fang’s Ph.D. dissertation [71]. [35] and [72], also suggest that ACT was used
in the design of the ULSNAP microcontroller [73] and the TrueNorth chip [3]. Finally
ACT had its open-source release in 2019 [89]. Gradually additional components were
published as open-source (at GitHub under asyncvlsi3) or at least teased by literature.
Table 4.2 shows the literature in an ordered fashion.

2https://avlsi.csl.yale.edu/act/doku.php?id=history:start
3https://github.com/asyncvlsi

42

https://github.com/asyncvlsi
https://avlsi.csl.yale.edu/act/doku.php?id=history:start
https://github.com/asyncvlsi

4.2. Related Literature

Title Description Authors Publication date
and reference

General Approach to
Asynchronous Circuits

Simulation Using
Synchronous FPGAs

Paper to the tool prs2fpga, which
implements mapping of ACs to synchronous
Field Programmable Gate Arrays (FPGAs)
to provide a fast gate level simulation
technique.

R. Dashkin, R. Manohar December 2021
[66]

Fluid: An Asynchronous
High-level Synthesis Tool

for Complex Program
Structures

Fluid is a HLS tool that translates C
programs into asynchronous dataflow
circuits. Compatibility to ACT dataflow
representation and CHP is implied.

R. Li, L. Berkley,
Y. Yang, R. Manohar

September 2021
[74]

An Open-Source EDA
Flow for Asynchronous

Logic

Extensive presentation of ACT as
open-source Electronic Design Automation
(EDA). References alternatives (Haste [41],
Balsa [44], Proteus [46]). History of ACT is
examined. However, it is quite theoretical,
hence no manual.

S. Ataei, W. Hua,
Y. Yang, R. Manohar,
Y. Lu, J. He, S. Maleki,
K. Pingali

January 2021
[35]

Dali: A Gridded Cell
Placement Flow

Provides gridded cell layout for ACs.
Associated to ACT by [35], but tool itself
not published yet.

Y. Yang, J. He,
R. Manohar

November 2020
[75]

Cyclone: A Static Timing
and Power Engine for
Asynchronous Circuits

Cyclone is a timing and power analysis
engine for ACs. Associated to ACT by [35],
but also not published yet.

W. Hua, Y. Lu,
K. Pingali, R. Manohar

May 2020
[76]

SPRoute: A scalable
parallel negotiation-based

global router

Global router for ACs. Based on ideas in
[77]. Also associated to ACT by [35]. Newer
version at [78]. On GitHub [98].

J. He, M. Burtscher,
R. Manohar, K. Pingali

November 2019
[79]

Toward a digital flow for
asynchronous VLSI

systems

Conference Paper teasing ACT. Seems to
precede [35]. Gives a good overview over the
physical design flow.

S. Ataei, J. He, W. Hua,
Y. Lu, S. Maleki,
Y. Yang, K. Pingali,
R. Manohar

November 2019
[80]

AMC: An Asynchronous
Memory Compiler

Based on OpenRAM [81]. Generates
on-chip memory with an (ACT-compatible)
asynchronous interface to it. Claims
competitiveness. On GitHub [99].

S. Ataei, R. Manohar May 2019
[82]

An Open-Source Design
Flow for Asynchronous

Circuits

Brief report describing ACT as
prospectively planned. Narration closest to
official documentation [91].

R. Manohar March 2019
[72]

Timing driven placement
for quasi-delay-insensitive

circuits

Presents A-NTUPLACE, a timing-driven
placer for quasi-delay-insensitive (QDI)
circuits. Based on [83]. Associated to the
ACT by [35].

R. Karmazin,
S. Longfield,
C. T. O. Otero,
R. Manohar

May 2015
[84]

cellTK: Automated
Layout for Asynchronous
Circuits with Nonstandard

Cells

Introduces cellTK, a tool for physical design
and nonstandard cell generation compatible
with common ASIC flows. cellTK takes
production rule sets of ACT as an input.

R. Karmazin,
C. T. O. Otero,
R. Manohar

May 2013
[85]

Proteus: An ASIC Flow
for GHz Asynchronous

Designs

Alternative design flow for ACs, which was
developed by Fulcrum. Proteus and ACT
are both successors of CAST [67].

P. A. Beerel,
G. D. Dimou,
A. M. Lines

September 2011
[46]

Profiling Infrastructure for
the Performance

Evaluation of
Asynchronous Systems

Ph.D. dissertation for which ACT v0
variant (called HACKT) was developed.
HACKT on GitHub [97].

D. Fang May 2008
[71]

Design Tools for
Integrated Asynchronous

Electronic Circuits

Alternative Title: CAST: A Suite of CAD
Tools for Asynchronous VLSI. Hence,
explicit source for Caltech Asynchronous
Synthesis Tools (CAST).

A. J. Martin,
M. Nystroem,
C. G. Wong

June 2003
[67]

Table 4.2: Selection of more significant literature related to ACT.

43

4. Design Flow by Yale University

Table 4.2 starts bottom up with three references for historic context to ACT:

Design Tools for Integrated Asynchronous Electronic Circuits [67]
Provides an example of CAST, or in a broader sense the Caltech tools for ACs
design in general still in Alan J. Martin’s era at Caltech. It introduces itself as a
phase I study, which aims to demonstrate the feasibility of industrial CAD tools for
the design of ACs. Further it surmises that there maybe is a market for ACs, where
low volume high profit chips are needed, hence for instance for defense or space. For
high level design CHP is advertised.

Profiling Infrastructure for the Performance Evaluation of Asynchronous
Systems [71]
This is the Ph.D. dissertation of David Fang, who was a student in the group of Rajit
Manohar at Cornell University. It represents a huge step in coming from CAST
to ACT and even publishing it under the name Hierarchical Asynchronous Circuit
Kompiler Toolkit (HACKT). The Ph.D. thesis in general presents a framework for
analysis of simulated execution of high level concurrent programs as a basis for
synthesis of ACs and further optimization.

Proteus: An ASIC Flow for GHz Asynchronous Designs [46]
Proteus is here to remind of an alternative branch of all the tools around CAST
and ACT, which is now owned by Intel after they bought Fulcrum. The Proteus
flow is capable of translating high level Communicating Sequential Processes (CSP)
programs into synthesizable register-transfer level (RTL) and further uses standard
tools intended for synchronous design to generate an image-netlist. This synchronous
image-netlist is then translated to a really asynchronous netlist. Various performance
optimizations are claimed to be done by this step too.

Starting at the fourth entry from the bottom, the literature about the actual components
of present ACT and the literature providing an overall view is listed. The overall view is
provided by:

An Open-Source Design Flow for Asynchronous Circuits [72]
The report presents ACT as planned. It highlights the abstraction of asynchronous
data transfers as channels, so actual implementation can be achieved with either QDI
or BD style. In its overview it emphasizes CHP as a high level design entry. Then it
elaborates about the multiple abstraction levels (CHP, HSE, gate-level, transistor-
level) ACT is capable to represent an AC. It further traverses a custom design flow
(logic design → logic simulation → circuit optimizations → analog simulation →
layout → post-layout simulation → verify layout) and explains how ACT aims to
fits all needs, before explaining plans how to deliver the usual automated digital
design flow (design entry → logic synthesis → floorplanning → placement and
routing → layout finishing). Overall the report does not go so much in depth with
physical design as others do and so it provides a nice overview over (planned) ACT
capabilities aside from physical design.

44

4.2. Related Literature

Toward a digital flow for asynchronous VLSI systems [80]
The paper focuses more on the physical part of the ACT design flow. It again starts
by explaining the importance of CHP as a high level entry point, but quickly arrives
at the gates to GDSII part, where it is emphasized that the physical design flow
is also capable of accepting common design description (design exchange format
(DEF), library exchange format (LEF)) not affiliated to ACT. A conversation from
and to Verilog is also provided. The usual steps of physical design of digital circuits
(technology mapping → floorplanning → placement → routing → layout finishing)
are traversed. Using MAGIC is here only shown as one alternative to the usage of
cellTK [85], Dali [75] and Cyclone [76] for arriving at GDSII format. Hence, the
compatibility of the physical part of the flow to common formats (LEF, DEF) and
the alternative physical flows are here even better examined as in [35].

An Open-Source EDA Flow for Asynchronous Logic [35]
This is the most extensive literature about present ACT published yet. At first the
motivation to tackle the lack of tools for ACs design by providing an open-source
EDA, which is also easy to use, because it aim to hide the details of physical
implementation technology from the designer, is stated. Then there is given credit
to the Galois framework [100] for providing needed parallelization in circuit timing
and power usage analysis. Also all the three alternative flows Haste [41], Balsa
[44], Proteus [46] are mentioned here. However, ACT should outdo them, because
these and usually all especially free available design flows for ACs are restricted to
only a certain type of AC (e.g. QDI). ACT aims to provide a solution for a very
broad range of AC styles. It provides an overview over many other papers describing
components of the ACT design flow. Further it examines timing and power usage
analysis [76], design partitioning, floorplanning, placement [75], routing [79] and
how to provide memory cells [82]. Currently the flow works stable with BD and
QDI circuits. Future work will focus on supporting more classes of ACs and provide
a more general timing analysis.

The references describing individual components of (or attachable to) ACT are:

cellTK: Automated Layout for Asynchronous Circuits with Nonstandard
Cells [85]
cellTK is a nonstandard cell generator, which provides custom cells that fit into
common standard cell flows. The authors claim that it mitigates drawbacks of
custom standard cell design, while still offering the flexibility of a full custom design
and the utility of technology mapping. It takes a production rule set or its transistor
level description as input and outputs a corresponding physical implementation.
Specifically the generated customized logic is packaged into the form of standard
cells, which are compatible with established synchronous tool flows.

Timing driven placement for quasi-delay-insensitive circuits [83]
This reference focuses on the problem of timing driven placement for ACs. Most
publications about this attempt to fit ACs and their timing assumptions into

45

4. Design Flow by Yale University

preexisting timing analysis tools for synchronous design flows. However, here
NTUPLACE, a timing aware placer especially suited to handling QDI circuits
and their timing characteristics, is presented. In contrast to tools intended for
synchronous flows NTUPLACE is aware of certain timing assumptions unique to
QDI circuits (e.g. isochronic forks).

AMC: An Asynchronous Memory Compiler [82]
Presents an Asynchronous Memory Compiler (AMC), which generates SRAM mod-
ules with a BD data path and a QDI control. AMC outputs fabricable GDSII
layouts with corresponding SPICE, Verilog and timing/power models. The authors
claim that the memory designs by AMC are competitive with synchronous and
asynchronous memories in literature. It is also stated that asynchronous SRAM,
instead of clocked SRAM, has the potential to improve latency, reduce sensibility to
fabrication variations and provides higher throughput. So in general AMC offers
high average-case performance and supports non-uniform memory access times.
There is an open-source distribution of AMC even with a SCMOS reference design
on GitHub [99].

SPRoute: A scalable parallel negotiation-based global router [79]
SPRoute implements a two-phase maze routing approach, which initially exploits
net-level parallelism, but is also capable of switching to fine-grain parallel processing
of individual nets, if necessary. It is inspired by FastRoute [77] and uses the Galois
framework [100] for parallelization. Further it is quite extensively examined, how
parallelization can be exploited to reduce run time, which as chips grow larger is
increasing rapidly, and how to to deal with a livelock (of concurrent threads).

Cyclone: A Static Timing and Power Engine for Asynchronous Circuits
[76]
Cyclone is an engine for comprehensive timing and power usage analysis of ACs in
general, so not only of QDI circuits. It takes as inputs an AC netlist, cell libraries
and timing constraints for the desired AC type. Then after performing a multi-corner
analysis it outputs the maximum cycle ratio, power consumption, and two types of
timing slacks (performance slack of each gate and correctness slack of each timing
constraint). The Galois framework [100] is here used for parallelization too. Cyclone
is planned to be release for open-source. Furthermore the authors claim that, to
their best knowledge, this is the first engine for timing and power analysis designated
to ACs in public research.

Dali: A Gridded Cell Placement Flow [75]
Presents Dali, a said open-source (still not published) gridded cell placer for ACs. It
claims to combine the shape regularity of standard cells and the size flexibility of
custom cells. Various legalization algorithms for gridded cells are presented as well.
The authors further claim that the placement and routing quality of the gridded
cell design is comparable to standard cells produced by commercial tools with even
less area. The paper stays vague about input and output formats.

46

4.2. Related Literature

Fluid: An Asynchronous High-level Synthesis Tool for Complex Program
Structures [75]
Fluid translates C programs into asynchronous dataflow circuits, which can be
further processed by ACT. It is claimed that the work extends existing dataflow
synthesis techniques to a wider class of software programs by expanding the range of
supported control flow structures. Also an improvement in terms of energy efficiency
and throughput is claimed.

General Approach to Asynchronous Circuits Simulation Using Syn-
chronous FPGAs [66]
Commercially available FPGAs only provide support for synchronous circuits (SCs).
There has already been quite much effort to map AC designs to synchronous FP-
GAs and so this reference presents another solution to map ACs to FPGAs. A
synchronous model of the original AC will be build based on event drive simulation
concepts. The conversation preserves the communication protocols as well as the
whole gate topology. As input a ACT description of the AC is taken. The output is
a Verilog model. Furthermore it should be stated that the solution targets gate level
simulation rather than RTL prototyping. The tool is available at GitHub [101].

After a hopefully enlightening overview over all the ACT literature has been provided, a
further visualization of the design flow by the Yale university, which is alternative to the
presentation in section 4.1 (especially Figure 4.1), follows. Figure 4.1 showed the design
flow as it is explained on the official documentation page [91] and therefore usable for the
public at the moment. It focused on portraying the different design level representations,
as well as usable simulation levels and tools. Regarding physical design it only referred
to MAGIC and the layout verification tools lvp and gemini.

The flow shown in Figure 4.7 instead focuses on physical design. Hence, the path from a
high level representation to a low level expanded technology mapped representation is
condensed to just one arrow. Note also that a possible conversion from and to Verilog
representation is shown here and is also publicly available. However, using MAGIC is
here only presented as one side path in the flow. Mainly it visually relates the tools
cellTK [85], Dali [75], SPRoute [79] and Cyclone [76], which are unfortunately still not
open-source.

In general all the yellow arrows are paths using tools, which are not publicly available at the
moment, while the orange arrows represent paths, where all (open-source) tools needed,
are already published. So the main path, which automates floorplaning, placement,
routing and therefore finishes the layout to achieve fabricable GDSII format is at the
moment only described in literature ([80] and [35] provide a good overview). The darker
blueish boxes represent (optional) preexisting inputs to the flow. So it is assumed one
starts with a design either described in (high level) ACT, Verilog or design exchange
format (DEF), which is then converted to the according expanded and technology mapped
version, there is a preexisting standard cell library in the library exchange format (LEF)
and optionally also parasitics information in the standard parasitic exchange format

47

4. Design Flow by Yale University

(SPEF) is available. The light blue boxes represent are intermediate descriptions usually
created by cellTK to describe a new cell custom made for the current AC. cellTK is
quite essential to model all the cells frequently used by ACs, but usually not available in
common standard cell libraries. A SPICE model of those custom cells is also provided
by cellTK to characterize timing and power usage in a later step, so it can be passed
to Cyclone, which mutually exchanges data with the other tools in a loop as usual for
a physical design routine. The final goal is of course to reach fabricable GDSII format
representation, which is therefore highlighted by using dark blue.

high level ACT design
.act

parasitic information
.spef

timing and power usage
characterization of custom cell

.lib

standard cell library
.lef

custom cell description
.lef

geometry of
custom cell

.rect
SPICE model of custom cell

.spice

cellTK

placement
Dali

floorplan

routing
SPRoute

complete IC layout in GDSII format
.gds

act2v
v2act

verilog description
.v

expanded technology mapped AC design
.act / .def

e.g.
dataflowmap

chp2prs
….

cellTK

cellTK

layout editor
e.g. MAGIC

asynchronous
static timing

engine:
Cyclone

layout finishing

.<filetype> flow specific file format

.def design exchange format

.lef library exchange format

.spef standard parasitic exchange format

.gds GDSII format, i.e. de facto
industry standard for IC layout
exchange

published open source tool

only described in literature

dark orange tool (respectively binary) name

description generated by flow

(optional) input description to flow
final IC layout output

Figure 4.7: Physical design flow to generate layout corresponding to an ACT description.

48

4.2. Related Literature

In summary it can be said that section 4.1 describes the flow of a custom design approach,
where focus is put on presenting the different design entries as well as different simulation
levels, while the flow described above features more automated design, so that after
describing a circuit in ACT (or alternatively Verilog or DEF) a physical implementation
of that circuit is generated automatically. However, inconveniently all the tools needed
for this automated flow are still not published, therefore it is reasonable that e.g. the
official documentation [91] and some other sources declare currently the custom design
flow with MAGIC as the main (or only) flow.

49

CHAPTER 5
Integration of Design Flows and

Comparison

After the separate presentation of the design flow developed by the Embedded Computing
Systems (ECS) group at TU Wien in chapter 3 and the design flow developed by the
asynchronous VLSI and architecture (asyncVLSI) group at Yale University in chapter 4,
now the centerpiece of this work, the integration of these two flows will be presented.
Alternatively the integration of both can also be framed as integrating (some of) the tools
from the Yale University to the fault-injection experiment flow of the TU Wien. Therefore
various new tools/scripts, extensive complements and alternations to the existing design
flow of TU Wien have been added. In particular a translation script from the production
rule set (PRS) format, usual at the ECS group at TU Wien, to the Asynchronous Circuit
Toolkit (ACT) language developed by asyncVLSI group at Yale University was added.
Furthermore the gate level simulation tool Prsim has been incorporated to the engine for
fault-injection experiments developed at TU Wien. It should also be noted that alongside
this thesis a substantial refactoring (especially of the Python scripts) of various parts
of the flow for fault-injection experiments was accomplished. In this chapter now at
first an overview over the integrated flow and therefore all new paths for designing and
simulating an asynchronous circuit (AC), which can now be taken, will be presented.
Then the integration of Prsim as an alternative to Modelsim is examined. Parameter set
and performance issues are discussed in section 5.3. In section 5.4 the results of (partial)
reruns of the fault-injection experiments presented in [7], [63], [62] and [6] with the new
integrated flow, which features besides a performance upgrade also a more strict fault
model, follow as a proof of concept. A comparison of the capabilities of the the two
original and the integrated flow follows.

51

5. Integration of Design Flows and Comparison

5.1 Overview

Figure 5.1 shows the integrated design flow. It can be considered as a rough combination
of Figure 3.1 from section 3.1 and Figure 4.1 from section 4.1, where some finer details
shown in the original illustrations are omitted to keep the overall view compact. Blueish
arrows and boxes indicate a derivation from the design flow of TU Wien, greenish too,
but it specially marks an import relation of one Python script into another, and yellowish
a derivation from the design flow of the Yale University. The different shades of blue
are purely for aesthetics. The light yellow distinguishes the merely unused content
of the Yale design flow regarding fault-injection experiments, but which is now also
accessible to ACs described by Python scripts as usual to the work of TU Wien due to
the translation tool prs2act. The dark red lines and boxes mark the revisions and
complements alongside this thesis. In particular the tool prs2act has been developed
to translate code described by the Python production rule package (pypr) to ACT. The
respective Python libraries providing all necessities to describe a circuit and translate it
to Very High Speed Integrated Circuit Hardware Description Language (VHDL) have
been complemented to also support a translation to ACT. For practical use the concrete
Python script prs2act.py is provided to take a PRS description of TU Wien as an
input and output a corresponding ACT description. Given that it is already possible
to utilize the full capabilities of the design flow developed at Yale University, but with
pypr as design entry point standard at TU Wien. Note that in theory this does not
only apply to the incomplete light yellow paths shown in Figure 5.1, but also to the
physical layout design tools like e.g. MAGIC (as shown in Figure 4.1 in section 4.1) or
the still not fully published (but specially developed at Yale University) physical design
flow illustrated by Figure 4.7 in section 4.2. Furthermore the dark red arrow from the
box labeled low level ACT to the autosetup.py/dbworker.py complex indicates
that circuits described in ACT are now also suitable for fault-injection experiments.
No translation to VHDL is needed. Prsim is used instead of Modelsim to simulate
ACT descriptions. A distinct tbgen.py has been written to generate a corresponding
ACT testbench. dbworker.py got an extensive refinement to enable the capability
to manage fault-injection experiments with circuits described in ACT. The logging of
Prsim is obviously different, so a prsim.log file is introduced. autosetup.py does
currently not entirely support simulations with ACT code, however great gratitude
should be expressed to Robert Najvirt, who made the autosetup.py script compatible
to the heavily refactored dbworker.py. Compatibility to preceding tools (like e.g.
prscom.py) as well as to the Structured Query Language (SQL) database still persists.
Nevertheless one noteworthy change is that Prsim simulations do model metastable
behaviour, therefore the fault model now also features a metastability fault. This resulted
in an additional columns in one table in the SQL database.

Table 5.1 finally gives a synoptic overview over all the revisions and complements made to
integrate the two design flows into one. Also recall that the changes to autosetup.py
and dbworker.py were immense also for pure refactoring purposes.

52

5.1. Overview

dataflow
.act

CHP
.act

chp2prs

low level ACT
.act

dataflowmap

netlist
.sim, .al

switch level simulation output
.log

netlist
.spice

analog simulation output
.prn

prs2netprs2sim

IRSIM Xyce
LTspice

(combinatorial single‐rail)
verilog design

.v

(flattended) production rule set
.prs

Python circuit description
.py

execute
.py file

VHDL description
.vhd

prscom.py prscom.py

yaml config file
.yml

signal list
.siglist

QDI DR production
rule set
.py

simple_qdi_
synth.py

autosetup.py

dbworker.py

Modelsim / Prsim

output.txttimings.txt

tbgen.py

SCM/CHP/VHDL testbench
.act/.vhd

find timings for
pipeline fill factor

prs2act

Python import

v2act/act2v

prsim.log
SQL database

.db

affiliated to (preexistent) design flow of TU
Wien

affiliated to design flow of Yale University

dark orange
light orange tool (respectively binary) name

revisions and complements by this thesis

green (proposed) file type

Figure 5.1: Integrated flow.

53

5. Integration of Design Flows and Comparison

New or revised component Description

pypr library The pypr library was extended to support the
translation from PRS format to ACT.

prs2act.py
Python script utilizing the translation capabilities of
pypr from PRS to ACT.

dbworker.py
Has been heavily refactored. Now also supports
fault-injection experiments with circuits described in
ACT.

autosetup.py
Still not entirely compatible with ACT, but at least
compatible with the refactored dbworker.py
thanks to Robert Najvirt.

Prsim The new simulation tool as it is provided by the
ACT repository [89].

tbgen.py
Distinct Python script to generate testbench for
ACT circuits.

prsim.log Prsim outputs a different log file format.

YAML config file
It is now configurable which simulation tool
(Modelsim or Prsim) should be used. Also various
Prsim specific configurations have been added.

SQL database New column to indicate fault due to metastability
has been added to the according results table.

prscom.py
Some minor changes were made so that e.g. the
signal list of signals appropriate for fault-injections is
usable for Prsim.

Table 5.1: Refinements and complements done to integrate the design flow of TU Wien
and the one of Yale University to one.

5.2 Integration of Prsim

Prsim is the gate level simulation software specially developed for the Yale flow. It
is as the rest of the flow open-source. Here its incorporation into the fault-injection
engine of the TU Wien flow as an alternative to Modelsim is discussed. Hence, to
make the dbworker.py script and related scripts compatible for the usage of Prsim an
extensive overhaul of the existing Python code was needed. Now individual classes with
standardized interface orchestrate the usage of each simulation software. Nevertheless
the dbworker.py does still mainly prepare folders and files, which are specified by
YAML configuration files, and then executes the according simulation software within
the corresponding context. For the preparation of the new testbench files for ACT a new
tbgen.py script has been written, as well as many code fragments for dealing with the
new simulation log format of Prsim, but especially interesting is the generation of ACT
testbenches and their interactions with Prsim. Currently there are two different simulation
approaches or testbench generation approaches, but beforehand a few clarifications how
Prsim interacts with a given testbench shall be provided. A testbench for Prsim is a

54

5.2. Integration of Prsim

regular circuit designed the usual way with e.g. dataflow, Communicating Hardware
Processes (CHP), PRS etc. The original target circuit described by a process in ACT is
instantiated in this testbench circuit and eventually connected to some helper circuits like
a sink. Prsim also takes a script file as an input, which specifies how to interact with the
testbench circuit. Prsim takes here two different input files, where in Modelsim maybe
everything is specified in just one VHDL testbench file. The reason is that Prsim circuit
descriptions can not (or it is very cumbersome to) wait for a specified amount of time
and pull down or up signals in between in a sequential order. So delays need to be coded
into components connected to the target circuit in the testbench. Two different ways of
accomplishing this are presented by the testbench code for Prsim in Listing 5.1, which is
illustrated by Figure 5.2, and the alternative shown in Listing 5.2 and Figure 5.3.

For both illustrations the target circuit is represented by a box labeled with UUT (unit-
under-test) the amount of input ports and output ports is not important in that example
as just the delay management should be demonstrated and not the actual operation the
target circuit performs. However, notice that the quasi-delay-insensitive (QDI) dual-rail
(DR) standard is used here. Hence, each logic data bit is represented by two rails, the true
and false rail. For the fault-injection experiments common at TU Wien each individual
rail, as well as signals of control logic need to feature a different and changing signal
delay per token. One way of achieving this is by setting the delay of the input buffer per
rail/signal accordingly, simulate, stop when the delay is supposed to change, change it,
continue simulation and repeat this cycle. Here the actual testbench ACT code shown
in Listing 5.1 does not do much besides attaching input buffers to all input signals, for
which delays can be repeatedly changed during runtime of Prsim, and determining the
phase (DATA- or NULL-phase) of each QDI DR port by completion detectors (CDs)
so that the CYCLE TRIGGER component can trigger each time a transition from one
phase to another has occurred and therefore the simulation should be halted and delays
adjusted. Remember that Prsim takes two files as an input to run a simulation. The
testbench file of this approach is shown in Listing 5.1 and illustrated by Figure 5.2. The
other contains a list of commands including start and stop commands for simulation
similar to a tcl script when using Modelsim. However, the real magic of this approach
does not occur in this command file itself, but in the mini-scheme file included into this
file. Mini-Scheme is a minimal version of the functional programming language Scheme
[86]. For specific mini-scheme reference see the README in the miniscm1 folder in
the ACT core repository. New commands for Prsim can be defined in mini-scheme or
in other terms the mini-scheme language can be used to augment the command(-line)
interface to Prsim. So the procedure for one simulation works conceptually as following:

1. Run Prsim with the according ACT testbench and prescripted command file.
2. The first few commands in the command file will categorize input and output signals

of the target circuit and probably apply the reset signal.
3. Then delays will be configured for the first token and the simulation is started

within a special environment set up by the mini-scheme language.
1https://github.com/asyncvlsi/act/tree/master/miniscm

55

https://github.com/asyncvlsi/act/tree/master/miniscm

5. Integration of Design Flows and Comparison

4. As soon as one of the CDs detects a phase change the CYCLE TRIGGER component
will indicate this to the environment and certain mini-scheme procedures will halt
the simulation and update the delays accordingly.

5. The simulation then continues with adjusted delays before it is halted again, when
the CYCLE TRIGGER component triggers again.

6. This continues until certain end conditions for the simulation are reached.

The above approach may sound simple and light weighted, but the simulation performance
is very bad due to the recurring halting and continuing of the simulation. Furthermore the
procedures written in mini-scheme needed for this approach are quite lengthy, complex
and difficult to adapt. Hence, the approach shown in Figure 5.3 with the corresponding
testbench ACT code shown in Listing 5.2 is much more performant and easier to maintain.
The target circuit is shown in Figure 5.3 and is connected to the testbench. Again the
count of input and output ports are not important here, because it is again neglected
here what actual operation the target circuit may perform. The deciding difference is
that for this approach every more complex procedure has been implemented in CHP
instead of relying on mini-scheme. So all test logic is directly implemented in the ACT
testbench including the target circuit and everything can be simulated in one run without
halt in between. The SOURCE and SINK components in Figure 5.3 are implemented in
CHP. The reason why there are multiple sources and sinks is that each source produces
one token. So the schematic view in Figure 5.3 actually shows a simulation, where three
tokens (i.e. data values) are sent to the target circuit. There is one source per token,
because for each token the distinct delays need to be hard coded into a delay component
beforehand. The delay components for each data rail and acknowledge signal are labeled
with ∆+/∆− to hint that the delay for pull up and pull down is obviously different. All
other Muller C-elements (MCEs) and OR gates basically form a merge logic for the input
port of the target circuit and a fork logic for the output port. These two logics are quite
specific, because they need to comply to the CHP described sources and sinks. Each
token is really distributed to its own source, which is then deciding only once, because
only this way each rail of each token could get its specific preconfigured delay element.
In particular one simulation works as follows:

1. Run Prsim with the according ACT testbench and the much more light weighted
command file.

2. The first few commands in the command file will categorize input and output signals
of the target circuit and probably apply the reset signal (as before).

3. Then the simulation is started to run. In this approach everything is done without
ever halting the simulation again.

4. Initially all output rails/signals of one SOURCE block (of Figure 5.3) are ’0’.
5. The data rails of the first SOURCE block get their values assigned (DATA-phase).

Through the delay components and OR gates the signals progress to the target
circuit.

6. When the acknowledge signal of the target circuit rises, the SOURCE 1 block applies
again ’0’ to each rail (NULL-phase).

56

5.2. Integration of Prsim

7. When the acknowledge signal of the target circuit then falls again, the SOURCE 2
block starts its transaction. This continues until the last source block is done. It
is coded in CHP that the SOURCE 2 block starts its transaction only after the
transition with the SOURCE 1 block is done.

8. When for the first time the output rails of the target circuit indicate completion,
the SINK 1 block raises its acknowledge signal.

9. The acknowledge signal of SINK 1 progresses through the delay component and the
OR gate to the target circuit.

10. The target circuit will again apply ’0’ to each output rail. The acknowledge signal
of SINK 1 will fall again and the cycle continues with SINK 2.

The second approach is by far more stable, performant and easier to maintain than the
first one, even if there seems to be more redundant logic. Building a larger testbench
circuit around the target circuit can be done more generic in CHP than any mini-scheme
coding. Mini-scheme coding is in general cumbersome. Prsim is much faster, if simulations
are not halted.

57

5. Integration of Design Flows and Comparison

∆

∆

UUT

CYCLE TRIGGER

CD CD CD

∆ ackinackout

b[0].f
b[0].t
b[1].f
b[1].t

a[0].f
a[0].t
a[1].f
a[1].t z[0].f

z[0].t
z[1].f
z[1].t

Figure 5.2: Testbench design for fault injection experiments using Prsim, where inputs
are orchestrated by the mini-scheme command line augmenting language.

1 import " a l u _ f l a t . act " ;
2 import " a u x i l i a r y . act " ;
3
4 uut uut_inst ;
5
6 complet ion_detector <2> completion_detector_a (. z=uut_inst . a) ;
7 complet ion_detector <2> completion_detector_b (. z=uut_inst . b) ;
8 complet ion_detector <2> complet ion_detector_z (. z=uut_inst . z) ;
9 // b u f f e r s i nc l u d e the de lay components

10 d u a l r a i l _ b u f f e r <2> d u a l r a i l _ b u f f e r _ a (. o=uut_inst . a) ;
11 d u a l r a i l _ b u f f e r <2> d u a l r a i l _ b u f f e r _ b (. o=uut_inst . b) ;
12 b i t _ b u f f e r bit_buffer_ack_in (. o=uut_inst . ack_in) ;
13 b i t _ b u f f e r b i t _ b u f f e r _ r e s e t (. o=uut_inst . r e s e t) ;
14
15 b i t _ b u f f e r a f t e r _ r e s e t _ d e l a y ;
16
17 // f o r each change on an input (. i) the s imulat ion i s h a l t e d .
18 c y c l e _ t r i g g e r <6> c y c l e _ t r i g g e r _ i n s t (. i ={completion_detector_a . done ,

completion_detector_b . done , a lu_inst . ack_in , a lu_in st . r e s e t , a lu _inst . ack_out ,
complet ion_detector_z . done }) ;

Listing 5.1: Testbench ACT code for fault-injection experiments using Prsim. Inputs are
orchestrated by the mini-scheme command line augmenting language.

58

5.2. Integration of Prsim

SOURCE 1

SOURCE 2

SOURCE 3

x1[0].f ∆+

∆−
x1[0].t ∆+

∆−
x1[1].f ∆+

∆−
x1[1].t ∆+

∆−

x2[0].f ∆+

∆−
x2[0].t ∆+

∆−
x2[1].f ∆+

∆−
x2[1].t ∆+

∆−

x3[0].f ∆+

∆−
x3[0].t ∆+

∆−
x3[1].f ∆+

∆−
x3[1].t ∆+

∆−

C

C

C

UUT

SINK 1

SINK 2

SINK 3

ackout

∆+

∆−

ackout

∆+

∆−

ackout

∆+

∆−

ackin

y[0].f

y1[0].f

y[0].t

y1[0].t

y[1].f

y1[1].f

y[1].t

y1[1].t

y2[0].f

y2[0].t

y2[1].f

y2[1].t

y3[0].f

y3[0].t

y3[1].f

y3[1].t

x[0].f

x[0].t

x[1].f

x[1].t

ackin

ackin

ackin

ackout

Figure 5.3: Testbench design for fault-injection experiments using Prsim with sources
and sinks described via CHP.

1 import " chp_tb . act " ;
2 import " a l u _ f l a t . act " ;
3
4 // aMx1of2<2> i s the type f o r dual−r a i l encoding of a two b i t vector with

acknowledge s i g n a l
5 aMx1of2<2> x ;
6 aMx1of2<2> y ;
7 uut uut_inst ;
8 uut_inst . x=x . d . d ; /∗ x . d . d r e f e r s to the raw dual−r a i l data vector ∗/
9 uut_inst . y=y . d . d ;

10 uut_inst . ack_in=y . a ;
11 uut_inst . ack_out=x . a ;
12 sdt_chp_tb sdt_chp_tb_inst (. x=x , . y=y) ;
13 // omitted in the schematic view
14 uut_inst . r e s e t=Reset ;
15 r e s e t _ d e l a y r e s e t _ d e l a y _ i n s t (. in=Reset) ;

Listing 5.2: Testbench ACT code for fault-injection experiments using Prsim with sources
and sinks described via CHP.

59

5. Integration of Design Flows and Comparison

5.3 Covered Parameter Space with Resulting Performance

Section 3.2 has already shown in Figure 3.6 the parameter span of interest for previous
fault-injection experiments done at TU Wien. The respective section alongside with the
presented papers there is advised for comprehensibility of the offered parameter span.
The target parameter span for fault-injection experiments performed with the integrated
flow is given by the Cartesian product shown in Equation 5.1.

CIRCUIT × DATA_WIDTH × BUFFER × LOGIC × GATE_DELAY × PLF
=

ADDER
MULT
ALU

 ×

4
8

�
×


WCHB

DeadlockingWCHB
InterlockingWCHB

DualCDWCHB

 ×
DIMS

NCL
NCLX

 × [0.9, ..., 1.1] ×


0.25
0.5
1
2
4


(5.1)

The three different circuits in the target parameter span can be further characterized as
following:

• ADDER: Simple Ripple-Carry-Adder circuit with a buffer before and after the
according logic.

• MULT: Pipelined multiplier with the number of stages related to DATA_WIDTH.
• ALU: Very small arithmetic logic unit featuring an adder, OR and NOT operation.

Shown in Figure 5.4.

For the different weak-conditioned-half-buffer (WCHB) types again see section 3.2. The
logic styles are explained in section 2.3. The gate delays are randomized between 0.9
and 1.1 nanoseconds. The pipeline-load-factor (PLF) works as described in [7]. The
fault parameter span is the same as in section 3.2. Hence, the fault location (i.e. the
signal chosen for a single-event-upset (SEU)) is determined randomly, as well as the fault
polarity (force to ’0’ or ’1’) and the time of injection. In fact the autosetup.py script,
which conceptionally still works like in [7] is used to calibrate the circuits for a given
parameter set.

Obviously the concrete chosen parameter set influences the simulation performance, as
the choice of the simulation software does. Table 5.2 presents a few examples of reachable
simulations per second (SPS) with the Intel Core i7-4790K CPU at 4-4.6GHz speed on 8
threads. The chosen simulation software, the token count, the concrete circuit and the
data width mainly influence the performance.

60

5.3. Covered Parameter Space with Resulting Performance

TOKENS Circuit DW Modelsim SPS Prsim SPS
5 ALU 4 ≈43 ≈57
5 ALU 8 ≈43 ≈47
5 MULT 4 ≈44 ≈58
10 ALU 4 ≈40 ≈39

Table 5.2: Performance comparison of Modelsim and Prsim.

Table 5.2 is definitely no comprehensive performance evaluation. Currently the flow is
not optimized and presumably bottlenecks, because of implementation details. Hence,
the main intent here is just to show quickly that there is definitely a performance gain
for the average case of up to 24% by using Prsim instead of Modelsim. The average
case uses 5 tokens, because two are used for initial pipeline filling to then inject at the
desired PLF, which happens within the next two tokens. Then with the final token all
possible effects of the SEU should be observed. The examples with a token count of 10
are just there to estimate the impact of this parameter. The multiplier is also there to
provide simply a bit of variation. In particular the following conclusions can be drawn
from Table 5.2:

• Prsim is more performant than Modelsim in the average setup used for fault-injection
experiments.

• A higher token count, which per definition demands a longer simulation time, leads
obviously to less SPS.

• The different circuit types in the parameter space seem to be all similar enough to
not have a significant influence on the SPS.

• The data width has a huge impact on the SPS for Prsim simulations. Probably this
results from the testbench construction for Prsim circuits as described in section 5.2.
For Modelsim this is not the case.

• Given that the SPS for Modelsim simulations are not influenced by the other
parameters as strong as Prsim simulations are, Modelsim simulations presumably
just face a bottleneck for reasons outside of the parameter choice.

The results of the simulations of the ALU will be presented and interpreted in section 5.4.
Therefore everything is quite centered about this circuit. Many more simulations in the
parameter span of Equation 5.1 have been run mainly for testing the integrity of Prsim.
Hence, the main focus of these runs was always to check the comparability of the results
yielded by Prsim to those of Modelsim regardless of performance.

61

5. Integration of Design Flows and Comparison

5.4 Comparison of Fault-Injection Experiment Results
This section compares the results of fault-injection experiments performed by Modelsim
with those performed by Prsim. The concrete parameter set given by Equation 5.2 is
used for the example. So basically only the PLF is varied here, because the calibration
for it is the main feature of the autosetup.py. The representative aspects that are
suitable for discussion are already plenty enough in this example.

CIRCUIT × DATA_WIDTH × BUFFER × LOGIC × GATE_DELAY × PLF
=

�
ALU

�
×

�
4
�

×
�
WCHB

�
×

�
DIMS

�
× [0.9, ..., 1.1] ×


0.25
0.5
1
2
4


(5.2)

The two tools process the equivalent simulation tasks with the given parameter sets quite
differently. Great effort was put into equalizing the outputs, nevertheless several fixed
constraints contribute to an inevitable differentiation in the results. The most significant
are the following:

• The SEU mechanic is different. The injection duration differs necessarily for Prsim
with equal configuration. In Modelsim the force command is used to inject an
upset into a target signal. The original signal value is instantaneously overridden
at the configured timestamp. If the configured injection duration has expired, the
signal value again instantaneously returns to its original value. Prsim features
a special SEU command, which also immediately applies the upset to the target
signal. However, the signal does not necessarily return to its original value after the
configured injection duration. It depends on the individual gate delay, which drives
the signal, and the time offset to the nearest regular signal transition. Hence, the
actual injection duration for Prsim deviates from the configured one and can not be
determined easily in advance, but the configured injection duration is a minimum.

• Prsim simulations are sensible to metastability. It is introduced as a new error type.
A signal is considered metastable, if it is undecidable from its voltage level, whether
it should be interpreted as ’1’ or ’0’. A signal can enter this state, if, e.g. by a
SEU, its regular charging is interrupted at a critical instant. Metastability can then
spread to other signals until eventually the whole circuit is infected. Various other
fault types may be originally caused by (internal) metastability. A metastability
error is only reported, if an output signal becomes metastable.

• The deadlock and tokencount error type are equivalent in some sense. The deadlock
error is reported, if Modelsim runs in a timeout, because presumably the circuit
is stuck. Hence, not all expected tokens have arrived at the sink. Tokencount

62

5.4. Comparison of Fault-Injection Experiment Results

errors are used by Prsim, because Prsim never runs in a timeout, it just stops early,
probably skipping remaining tokens. So basically both cases indicate that a genuine
deadlock has very likely occurred, deadlock is exclusive to Modelsim and tokencount
to Prsim.

The results of hundreds of thousands of simulations of the QDI 4-phase DR AC shown in
Figure 5.4 over five different PLFs are shown in Figure 5.5 (simulations performed by
Modelsim) and Figure 5.6 (Prsim). The error counts on the vertical axis are given as
percentage of the corresponding injection counts. The injection counts are different per
PLF, because to keep an equal density of injections, the injection count must be adapted,
if the injection time frame changes caused by a different PLF.

0

1

S0

DEMUX

op[2]

b[4]

0

1

S0

DEMUX

a[4]

op

z[4]

op

WCHB

WCHB

ADDSUB

NOT

OR

Figure 5.4: QDI 4-phase DR AC implementing a minimal arithmetic logic unit.

The tasks delegated to Modelsim and Prsim were equivalent. Therefore an overall
similarity of the results is clearly present. However, there are differences urging for
reasoning. The injection count is usually between 80,000 and 350,000 per PLF. The
timing error results show quite different patterns. In a narrow sense the reason for
that is still unknown. In a broader sense it is reasonable by the differences already
explained above. Probably longer injection durations or internal metastability are causing
it. Furthermore note that the different error types shown in Figure 5.5 and Figure 5.6
also overlap regularly.

63

5. Integration of Design Flows and Comparison

Figure 5.5: Percentage of different error types in Modelsim simulations.

Figure 5.6: Percentage of different error types in Prsim simulations.

64

5.4. Comparison of Fault-Injection Experiment Results

Figure 5.7: Overlaps of different error types in Modelsim simulations.

Figure 5.7 shows the overlapping of different error types for the simulations performed
with Modelsim. The underlying data is the same as before, but the plot for the PLF of
4 is omitted for reasons of space. Also the timing errors are omitted, because usually
more than 95% of all errors are also timing errors. The following points are considered
especially noteworthy:

• The most common error type beside the timing is the coding error, because each
illegitimate drive to ’1’ at a signal influencing the data output rails results quite
likely in a coding error.

• Exclusive value errors do not happen. Mostly they occur together with coding
errors. This makes sense by cycling through the different scenarios. A ’0’ can be
illegitimately driven to ’1’ on one of the data output rails and usually this alone
already indicates a coding error. If not, then probably this will not result in an
error at all. If it does, it will result in a glitch, as well as a drive to ’0’ will do at a
critical instant.

• Glitches are rare. This is reasonable, because in most cases therefore a CD needs to

65

5. Integration of Design Flows and Comparison

be tricked. This is not easy with SEUs, because the probability to hit exactly the
deciding signal at a critical time frame is low.

• Deadlock errors only occur together with glitches, because it needs at least a glitch
to deadlock a standard WCHB.

• The PLF seems not to influence the error type overlapping significantly. The seen
deviations can be reasoned by the randomness involved in each simulation.

Figure 5.8 shows the overlapping for the simulations performed with Prsim. Conclusions
originally concerning Figure 5.7 obviously also apply here, if applicable. E.g. value errors
sill do not occur exclusively. So complements special to error type overlapping for Prsim
simulations are the following:

Figure 5.8: Overlaps of different error types in Prsim simulations.

• The deadlock error type has been switched for the tokencount error type and the
new metastability error type is featured as well.

• Interestingly metastability occurs mainly exclusive, i.e. the circuit can continue

66

5.4. Comparison of Fault-Injection Experiment Results

operation even with (short) metastability occurrence at the output in most cases.
This is reasonable, because in many circumstances an metastable signal at e.g. an
output data rail will just stabilize again before the sink finally catches it. If it does
spread, glitches and eventually tokencount errors are likely to follow.

• Most glitches and tokencount errors are caused by metastability.
• Tokencount errors occur also exclusively. This occurs, if the last NULL-phase is

missing. The last data-phase was maybe processed correctly, but without the final
NULL-phase one token is considered as missing. Due to slightly different operation
of the testbenches this is not reported, when using Modelsim, and for sure does not
count as a deadlock.

To further characterize the similarities and differences between Prsim and Modelsim
simulations with equal configurations, Figure 5.9 provides a scatter plot over injection
timestamps (horizontal axis), error types (vertical axis) and simulation tool choice (color).
The Modelsim dots are a bit lifted and the Prsim dots lowered, so each dot can be well
seen. Hence, the following conclusion can be drawn from Figure 5.9:

• The injection time frame with PLF one is the smallest, because, if source and sink
are equally fast, the tokens traverse the pipeline in the fastest way possible.

• Characteristic gaps are shared among Modelsim and Prsim injection time lines for
timing, value and coding errors with a few outliers.

• Metastability and tokencount errors do obviously only appear for Prsim simulations,
while deadlock errors are exclusive to Modelsim.

Finally Figure 5.10 shows the overlaps of timing, coding, value and glitch errors of
Modelsim and Prsim simulations. The PLF one has been picked for this example. Plots
with other PLFss show no significant differences. The following conclusions can be drawn:

• The proportion of timing errors that are exclusive to their simulation tool, are
maybe also caused by different conceptional views about when a timing variation is
actually illegitimate in the implementation. There is some ambiguity.

• Coding errors overlap are as expected.
• Value errors were expected to also overlap a bit more. However, reasons for

exclusivity need to be investigated further.
• It is good to see that Prsim recognizes every glitch that Modelsim does too. Addi-

tional glitches are most likely caused by (internal) metastability as Figure 5.8 and
the corresponding discussion have shown.

Synoptically it can be said that Modelsim and Prsim report mostly the same errors, where
they are expected to do so. In a wide sense deviations can be generally blamed on the
differences pointed out at the beginning of this section. However, in a narrow sense there
are still investigations required beyond the scope of this thesis. The investigated QDI
4-phase DR AC shown in Figure 5.4 was just exemplary, nevertheless other ACs show
similar characteristics. In particular a plain adder and multiplier circuit with varying
buffer and logic styles have also been examined behind the curtain. The specific AC

67

5. Integration of Design Flows and Comparison

from Figure 5.4 has been chosen, because it is compact, easy to understand, nonetheless
contains multiple combinational and control logic elements.

Figure 5.9: Comparison of Modelsim and Prsim injection timestamps and their impact.

Figure 5.10: Overlapping of error types of Modelsim and Prsim simulations for PLF 1.

68

5.5. Capability Comparison

5.5 Capability Comparison
As already mentioned multiple times in this thesis, the motivation of the design flow of
TU Wien and the flow of Yale University are quite different. The former is focused on
gate level fault-injection experiments due to current research interests at TU Wien. The
later aims for a complete coverage of AC design from high level description to fabricable
GDSII format. Hence, the Yale flow is definitely more elaborated, especially when it
comes to (industrial) chip design. The asyncVLSI group participated in the development
of impressive industrial showcases like e.g. the TrueNorth [3]. Thereby massive industrial
experience influenced the currently published flow of the Yale University, i.e. ACT.
However, the flow of TU Wien does feature competitive components in the author’s
opinion. The high level design in Python provided by pypr is an easy entrance, overall
handy and versatile. I.e., multiple design levels are covered by pypr and code can be
as generic as Python allows. Also an extensive and easily expandable standard library
for AC buffers and logic is provided. ACT does feature multiple design levels and a
standard library as well, but the scope Python itself provides is often a clear advantage
to the standalone languages bundled in ACT. Furthermore, the fault-injection engine
composed of autosetup.py and dbworker.py adds substantial to the TU Wien flow,
if fault-injection is an aspect of interest. The Yale flow by itself, in particular Prsim,
provides here just a simple SEU command similar to the force command of Modelsim.

The two original flows from TU Wien and Yale University are also compared against
their integration to one flow as described in section 5.1. Thereby the enhancements by
integration are apparent alongside the original differences. Table 5.3 shows a first clear
comparison of unambiguous properties. A cross (×) indicates that a property applies, a
dash (−) that it does not. The classification (very) low, medium or high is frequently
used to indicate the level of satisfaction provided by the respective flow for the property.
Otherwise simple adjectives are used to classify the appliance of a property. Mostly the
integrated flow inherits the superior classification. Showcase examples are the standard
library support and the design entry points.

Additionally to Table 5.3 each individual property will be discussed below. Note that
some more detailed aspects will be mentioned without a special explanation. Please
refer to chapter 3 for a comprehensive explanation of the design flow of TU Wien and to
chapter 4 for the Yale flow.

• VHDL support: The flow of TU Wien necessarily supports VHDL, because
simulations are performed with Modelsim. Therefore the PRS representation has to
be translated to VHDL by prscom.py. The flow of Yale University currently does
not support VHDL at all to the author’s awareness. The integrated flow preserves
the conversion from PRS to VHDL, but does not complement it.

• Verilog support: Verilog is supported by both original flows. simple_qdi_synth.py
of the TU Wien flow features the synthesis of a combinational single-rail Verilog
design to a QDI DR PRS design. Hence, this feature is contributed to the integrated
flow. The Yale flow offers the tools v2act and act2v, which provide a structural

69

5. Integration of Design Flows and Comparison

Property Design flow of TU Wien Design flow of Yale University Integrated flow
VHDL support × − ×
Verilog support × × ×
bundled-data
support × × ×
dual-rail support × × ×
standard library
support medium high very high

fault-injection
support high minimal high

physical design
support − × ×
footprint on
development
system

high low high

publication
status planned published considered

Circuit Description
design entry
points few many plenty

high level
support medium high very high

parameterization high medium high
low level support medium high high

Simulation
gate level
simulation × × ×
switch level
simulation − × ×
analog level
simulation − × ×
metastability
modeling − × ×
simulation
performance low high high

Table 5.3: Comparison of various properties of the three different flows.

translation to and from Verilog. Structural translation means that only the module
structure of a hierarchical design is translated. So the relation of a top level module
to its included modules stays intact. Probably arbitrary logic (e.g. given by pro-
duction rules) at lower levels is not translated. For e.g. act2v this means that the
hierarchy of ACT processes is reconstructed with Verilog modules, but statements
inside prs {...} are ignored. The integrated flow inherits the tools v2act and
act2v as they are.

• bundled-data support: The flow of TU Wien and Yale University both support
bundled-data (BD), but DR is default for both. So does the integrated flow.

• dual-rail support: The default AC type all flows operate with.
• standard library support: pypr of TU Wien offers an extensive and easily

expandable standard library featuring different buffers and logic for ACs. The Yale
flow does so as well. At the moment the standard library coming with pypr is quite
competitive. However, it is almost certain that Yale will surpass the TU Wien in
time. The integrated flow shines here, because both libraries can complement each

70

5.5. Capability Comparison

other.
• fault-injection support: Fault-injections are the main focus of the TU Wien

flow. Hence, it features a sophisticated fault-injection engine. The simulation tools
affiliated to the Yale flow just provide usual SEU/force commands one would expect
from every serious simulation software. It is one of the main contributions of this
thesis to incorporate Prsim as an alternative to Modelsim into the fault-injection
engine for the integrated flow.

• physical design support: The flow of TU Wien does not support physical design
at all. The flow of Yale University does offer extensive physical design capabilities.
Currently there are two paths supported, a full custom layout by the open-source
tool MAGIC and a special path designed at Yale with self-made tools like cellTK
(custom cell generator), Dali (physical placement tool), SPRoute (routing tool),
Cyclone (asynchronous static timing engine) etc. It is another main contribution
of this thesis that the physical design tools of the Yale flow are now accessible to
pypr designs in the integrated flow.

• footprint on development system: Modelsim as part of the TU Wien flow occu-
pies several gigabytes on the hard drive. The occupation by the Yale flow is clearly
below one gigabyte, depending a bit on the number of installed modules/repositories
of it. The integrated flow inherits the large footprint of Modelsim.

• publication status: The publication of the flow of TU Wien is planned mid- to
long-term. The flow of the Yale University is open-source and published under [89].
Probably the integrated flow will be published one day as enhancement to the TU
Wien flow, but at the moment there are no concrete plans.

• design entry points: The main entry point of the TU Wien flow is pypr, which
provides by itself multiple levels of AC description. A pure dataflow description
with almost automatic choice of the according standard library elements is possible,
as well as a specification of each individual gate and its connections. For the Yale
flow ACs are usually described by data flows, with CHP or by plain ACT with
production rules specified inside prs {...}. Furthermore Fluid [74] is a tool
capable of translating C code to asynchronous data flows. Here the integrated flow
shines again, because the possible design entries to chose from increase.

• high level support: Both original flows provide AC synthesis from a data flow
description. This is already quite high level. However, the Yale flow is additionally
compatible to Fluid [74] and its custom languages are also a bit less verbose than
Python with pypr. pypr functionality could be packed in even more compact Python
functions, but theoretically this is also possible with ACT code. The integrated
flow offers here for sure an enhancement, because of more choice and combination
possibilities.

• parameterization: The capability to describe ACs in Python allows immense
parameterization. Hence, this is one strength of the TU Wien flow. The Yale flow
offers some basics like templates for processes, but nothing extraordinary. The
integrated flow inherits the capabilities of the original flows here, but provides no
enhancements.

71

5. Integration of Design Flows and Comparison

• low level support: The flow of TU Wien does not aim for physical design, so no
annotations designated to it are available. Nevertheless, pypr allows the specification
of custom attributes per port, entity etc. This could be used to specify lower level
details. In contrast the Yale flow provides even the possibility to annotate type, size
and leakage of individual transistors. The integrated flow does not add to this.

• gate level simulation: The gate level simulation tool used by the TU Wien flow is
Modelsim. The Yale flow provides its own special gate level simulation tool, Prsim.
The integrated flow enhances the fault-injection engine by allowing Prsim as an
alternative to Modelsim.

• switch level simulation: Switch level simulation is a term used in the self
description of the open-source tool IRSIM. Basically IRSIM takes a netlist as an
input and performs a transistor level simulation. Finally the waveform view looks
very similar to a gate level simulation. The flow of the Yale University supports the
translation of ACT to a IRSIM compatible netlist. The integrated flow inherits this.

• analog level simulation: The flow of Yale University also provides an analog
level simulation (i.e. a SPICE simulation) using the open-source version of Xyce.
Therefore ACT code is translated to a SPICE compatible netlist. The integrated
flow again inherits this functionality.

• metastability modeling: While metastability modeling is neglected in the current
Modelsim setup for the TU Wien flow, Prsim of the Yale flow features unavoidably
metastability modeling. Hence, fault-injection experiments with integrated flow
yield different results depending on the chosen simulation software.

• simulation performance: Prsim of the Yale flow is more performant in the average
case than Modelsim of the TU Wien flow. See also section 5.3.

Synoptically it can be said that the integrated flow successfully enhances the variety of
design paths significantly. The two standard libraries are practically combined, because a
component designed by pypr can always be translated to ACT. The synthesis of single-rail
Verilog logic can now also be utilized for ACT designs. Many more (high level) design
entries are there to chose. The low level annotations missing in pypr can be substituted
by attributes. These can then be easily applied as the corresponding annotations in ACT
by e.g. a few simple helper scripts. All the other simulation tools/levels are accessible to
ACs designed by pypr now as well. Especially the analog simulation with Xyce might be
interesting. Finally also the physical design flow of the Yale University can be fueled by
ACs (partially) described by pypr.

72

CHAPTER 6
Conclusion and Outlook

The contribution of this thesis is split into two aspects. First the related work coverage
is extensive and therefore hopefully enlightens the reader about the historical path of
asynchronous circuits (ACs) and their prospects today. Chapter 2 started with a history
about ACs, which is not complete, but probably one of the rarer approaches to outline
one, oriented on multiple source branches. The state of the art section then continued
with presenting examples mainly from the field of brain-inspired hardware. The Spiking
Neural Network architecture (SpiNNaker) [1], the neuromorphic system for simulating
large-scale neural models Neurogrid [2] and the neurosynaptic processor TrueNorth [3]
have been presented. The examples show that, despite being aced out by synchronous
design, ACs still produce prominent innovations. Also there is a rising awareness in the
async community that the lack of design tools especially dedicated to ACs is one of the
major obstacles for them to shine. Nevertheless some tools usually from University origin
have been developed over the years, which were featured at the end of the state of the
art section. The last section of chapter 2 covered fundamentals of AC design. However,
probably an even more extensive covering of related work was done by section 3.2 and
section 4.2, which covered the creation process of the two design flows serving as a basis
for this thesis. The stories behind the two flows, as derivable from published literature,
were covered there. The flow of TU Wien (chapter 3) is strongly focused on fault-injection
experiments. Alongside [7] and [6] this thesis contributes to describing the flow. Also a
massive overhaul of many old functionalities was done. Publication of the flow is planned
for mid- to long-term. The flow of the Yale University aims for a complete coverage of all
design steps needed from conceptual high level descriptions to fabricable GDSII format.
Additionally to the official documentation page [91] this thesis offered an overview with
easy examples to comprehend the flow and its versatility. Physical design was not covered,
because it is no real concern at TU Wien with the focus on fault-injections at gate level.
Explanations and examples to the Yale flow are of course unofficially, because there is no
affiliation of the author to the group behind the Yale flow.

73

6. Conclusion and Outlook

Now secondly this thesis came up with its own integration approach of the flows from
TU Wien and Yale. This was covered in chapter 5. The intention behind this was
to achieve a connection of the TU Wien flow to all capabilities the Yale flow offers.
The flow of Yale University is by far more elaborated and covers many fields like e.g.
physical design, which the TU Wien flow does not. So for the research of TU Wien it
is for sure a progress to access this functionality with circuits still designed with the
Python production rule package (pypr) as common at TU Wien. However, not only a
translation from AC descriptions used at TU Wien to the Yale flow was contributed, but
also the fault-injection engine as part of the TU Wien flow was made fit for experiments
with Asynchronous Circuit Toolkit (ACT) code from the Yale flow. Especially this
complement has been utilized to provide a proof of concept by running about a million
fault-injections with a circuit originally designed with pypr, translated to ACT and then
simulated with Prsim (i.e. the gate level simulation tool of the Yale flow) orchestrated
by the fault-injection engine of the TU Wien flow. As a reference the simulations have
also been performed by Modelsim as usual at TU Wien and were then compared. The
simulation tools, as well as other details are different and so the results were necessarily
not exactly equal, but overlapped to a certain extent, see again section 5.4. Finally a
comprehensive comparison section completed the chapter. There the capabilities of the
two original and the integrated flow were compared. Hence, for the integrated flow it
was discussed what complements to the overall capabilities have been contributed by the
integration. It is remarkable that comprehensive fault-injection experiments for ACT
circuits are now possible thanks to the connection to the fault-injection engine. Also the
connection the TU Wien flow now has to the physical design capabilities of the Yale flow
is enriching. In general the high level AC design approaches using pypr by TU Wien are
quite competitive, but the overall coverage of aspects needed for chip design of the Yale
flow is not even slightly contested by it.

Points the thesis considered out of scope should be addressed here as an outlook. Theo-
retically the integration of the two flows could be even more tight. A translation from
higher levels of ACT/Communicating Hardware Processes (CHP) to the production rule
set (PRS) format as implemented at TU Wien could be added. It was spared, because the
fault-injection engine could utilize Prsim for ACT code anyways. Then much optimization
potential and refactoring would be applicable for large parts of especially the Python code
of the fault-injection engine before an eventual open-source publication. Then already
section 5.3 and section 5.4 themselves stated that a more extensive performance and
result analysis would probably dig up some enlightening outcomes. However, this thesis
mainly focused on the extensive discussion of the two original flows and the creation of
the integrated flow. Therefore the million fault-injections should only present a small
proof of concept example.

The future research interests of the Embedded Computing Systems (ECS) group at TU
Wien are currently re-evaluated, because the project, which initiated the fault-injection
interest, is ending. Nevertheless there is a strong interest in ACs in general and especially
the design flow of the Yale University (ACT) is seen as very promising. This thesis can

74

be interpreted as a first approach to it.

75

List of Figures

2.1 Synchronous circuit. 8
2.2 Asynchronous circuit. 9
2.3 4-phase handshake timing diagram. 9
2.4 2-phase handshake timing diagram. 10
2.5 Characterization of the Muller C-element (MCE). 10
2.6 4-phase Muller pipeline. 11
2.7 2-phase Muller pipeline. 11
2.8 Capture-Pass-Latch schematic [22]. 11
2.9 4-phase dual-rail (DR) protocol. 12
2.10 weak-conditioned-half-buffer (WCHB) pipeline with delay-insensitive-minterm-

synthesis (DIMS) AND gate as combinational logic. 13
2.11 4-phase DR protocol. 14
2.12 NCL with Explicit Completeness (NCLX) AND gate. 15

3.1 Design flow for gate level fault-injection analysis. 19
3.2 quasi-delay-insensitive (QDI) 4-phase DR circuit featuring WCHBs and a DR

AND gate. 20
3.5 Design flow as presented in original publications ([7], [63], [62]). 31
3.6 Illustrated parameter space as presented in [63]. 32
3.7 Modified WCHBs as in [60]. 32

4.1 Design flow utilizing ACT. 35
4.3 IRSIM analyzer window showing switch level simulation of MCE. 39
4.4 Transistor level representation of CMOS MCE. 40
4.6 Plotted Xyce simulation output of MCE. 41
4.7 Physical design flow to generate layout corresponding to an ACT description. 48

5.1 Integrated flow. 53
5.2 Testbench design for fault injection experiments using Prsim, where inputs

are orchestrated by the mini-scheme command line augmenting language. 58
5.3 Testbench design for fault-injection experiments using Prsim with sources and

sinks described via CHP. 59
5.4 QDI 4-phase DR AC implementing a minimal arithmetic logic unit. . . . 63
5.5 Percentage of different error types in Modelsim simulations. 64

77

5.6 Percentage of different error types in Prsim simulations. 64
5.7 Overlaps of different error types in Modelsim simulations. 65
5.8 Overlaps of different error types in Prsim simulations. 66
5.9 Comparison of Modelsim and Prsim injection timestamps and their impact. 68
5.10 Overlapping of error types of Modelsim and Prsim simulations for pipeline-

load-factor (PLF) 1. 68

78

List of Tables

3.1 Front-end Python scripts of the design flow of TU Wien. 18
3.2 External tools used by the design flow of TU Wien. 18
3.3 Exemplary content of significant tables of the Structured Query Language

(SQL) database. 26
3.4 Selection of more significant literature related to the design flow of TU Wien. 28

4.1 Individual tools affiliated to ACT. 34
4.2 Selection of more significant literature related to ACT. 43

5.1 Refinements and complements done to integrate the design flow of TU Wien
and the one of Yale University to one. 54

5.2 Performance comparison of Modelsim and Prsim. 61
5.3 Comparison of various properties of the three different flows. 70

79

Listings

3.1 Python description of a QDI 4-phase DR circuit featuring WCHBs and a
DR AND gate. 21

3.2 Combinational single-rail Verilog design. 22
3.3 QDI production rule set description. 22
3.4 Production rule set description of a QDI 4-phase DR circuit featuring

WCHBs and a DR AND gate. 23
3.5 Exemplary translation of one rule in the PRS to Very High Speed Integrated

Circuit Hardware Description Language (VHDL) code. 24
3.6 Clipped YAML configuration file. 24
4.1 Dataflow description of a buffered adder. 37
4.2 CHP description of a buffered adder. 37
4.3 Low level ACT description of MCE. 37
4.4 Production rule set (.prs) of MCE. 38
4.5 Interactive shell of Prsim. 39
4.6 Netlist of MCE for switch level simulation (.sim). 39
4.7 Alias file (.al) for IRSIM. 39
4.8 Simulation instructions for IRSIM. 39
4.9 Netlist of MCE for SPICE simulation. 41
4.10 Xyce test harness for SPICE simulation. 41
5.1 Testbench ACT code for fault-injection experiments using Prsim. Inputs

are orchestrated by the mini-scheme command line augmenting language. 58
5.2 Testbench ACT code for fault-injection experiments using Prsim with

sources and sinks described via CHP. 59

81

Glossary

2-phase handshake protocol
Asynchronous handshake protocol by transition indication. It needs 1 transition
for the request and for the acknowledge signal per data transition. See section 2.3.
9–12, 77

4-phase handshake protocol
Asynchronous handshake protocol by value indication. It needs 2 transitions for
the request and for the acknowledge signal for one data transition. See section 2.3.
8–14, 20, 21, 23, 27, 29–31, 36, 63, 67, 77, 81, 86

Asynchronous Circuit (AC)
Sequential digital logic circuit, which does not use a global clock for synchronization.
Instead, individual components use handshaking for synchronization. See section 2.3
ix, 1–10, 17, 18, 20, 23, 27–31, 33, 34, 43–48, 51, 52, 63, 67, 69–74, 77, 84–86

Asynchronous Circuit Toolkit (ACT)
See chapter 4, https://github.com/asyncvlsi/act or https://avlsi.
csl.yale.edu/act/doku.php. ix, 2, 4, 5, 33–38, 40, 42–45, 47–49, 51, 52,
54–56, 58, 59, 69–72, 74, 77, 79, 81, 83

Asynchronous VLSI and architecture (asyncVLSI) group
Research group at Yale University in New Haven (Connecticut), which published
the Asynchronous Circuit Toolkit (ACT). See http://avlsi.csl.yale.edu/,
ix, 1, 33, 40, 51, 69

Bundled-data (BD)
Asynchronous handshake protocol using a request and an acknowledge signal. See
section 2.3. 9, 36, 44–46, 70

California Institute of Technology (Caltech)
A prestigious private research University in Pasadena, California, which developed
(predecessors of) various tools discussed in this thesis. See https://www.caltech.
edu/. 4–6, 19, 42, 44, 84, 85

83

https://github.com/asyncvlsi/act
https://avlsi.csl.yale.edu/act/doku.php
https://avlsi.csl.yale.edu/act/doku.php
http://avlsi.csl.yale.edu/
https://www.caltech.edu/
https://www.caltech.edu/

Caltech Asynchronous Synthesis Tools (CAST)
A language for hierarchical production rules developed at California Institute of
Technology (Caltech). See [67]. 4, 42–44

Caltech Intermediate Form (CIF)
"Low level graphics language for specifying the geometry of integrated circuits" [87].
33

Communicating Hardware Processes (CHP)
Programming notion for description of asynchronous circuits (ACs). See https://
www.cs.yale.edu/flint/cs428/notes/chp_introduction.pdf, http://
vlsi.cornell.edu/~fang/hackt/hac/CHP.html or [70]. 33, 34, 36, 37, 42–
45, 55–57, 59, 71, 74, 77, 81, 84

Communicating Sequential Processes (CSP)
Basis of Communicating Hardware Processes (CHP). A formal language first de-
scribed by C. A. R. Hoare in [69]. 7, 8, 42, 44

Completion detector (CD)
Circuit component to detect if a dual-rail (DR) circuit is in NULL- or data-phase.
See section 2.3. 12, 14, 55, 56, 65

Computer-aided-design (CAD)
Use of computers to aid in design tasks. In this thesis often synonymously used
with Electronic Design Automation (EDA). 6, 7, 42, 44, 84

Delay-insensitive (DI)
Timing model where arbitrary gate and wire delays are allowed, as long as they are
positive and finite. See section 2.3. 15, 27, 28, 30

Delay-insensitive-minterm-synthesis (DIMS)
Synthesis strategy for quasi-delay-insensitive (QDI) dual-rail (DR) logic. See sec-
tion 2.3. 12–14, 21, 77, 85

Dual-rail (DR)
Encoding of one bit in two rails, the true- and false-rail. See section 2.3. 8, 9, 12–14,
18, 20–23, 29–31, 36, 55, 63, 67, 69, 70, 77, 81, 84, 86

Electronic Design Automation (EDA)
Category for Computer-aided-design (CAD) tools specially designated to the design
of electronic systems. 43, 45, 84, 85

Embedded Computing Systems (ECS) group
Research group at TU Wien (Austria), which developed the the design flow in
chapter 3. ix, 1, 17, 27, 31, 51, 74

Field Programmable Gate Array (FPGA)
An integrated circuit designed to be reconfigurable in the field after manufacturing.
1, 5, 43, 47

84

https://www.cs.yale.edu/flint/cs428/notes/chp_introduction.pdf
https://www.cs.yale.edu/flint/cs428/notes/chp_introduction.pdf
http://vlsi.cornell.edu/~fang/hackt/hac/CHP.html
http://vlsi.cornell.edu/~fang/hackt/hac/CHP.html

Graphic Design System II (GDSII)
Industry standard for Electronic Design Automation (EDA) of integrated circuits.
ix, 2, 33, 69, 73

Hardware description language (HDL)
E.g. VHDL or Verilog. 18, 22

Muller C-element (MCE)
State holding gate, which changes its state only, if all inputs agree. See section 2.3
for a further characterization. 4, 10, 12–15, 31, 36–41, 56, 77, 81

NCL with Explicit Completeness (NCLX)
Optimization to top delay-insensitive-minterm-synthesis (DIMS) and NULL-Convention-
Logic (NCL). See section 2.3. 14, 15, 77

NULL-Convention-Logic (NCL)
Logic design style using threshold gates. See section 2.3 or e.g. [48]. 5, 14, 85

Pipeline-load-factor (PLF)
A PLF of e.g. 2 indicates that the source is twice as fast as the sink. Vice versa for
a PLF of 0.5. See [7] for a further explanation. 27–29, 60–63, 65–68, 78

Production rule set (PRS)
Description concept for (asynchronous) circuits originally established at California
Institute of Technology (Caltech). However, in this thesis it usually refers to a
concrete implemented format to represent asynchronous circuits (ACs) of the design
flow of TU Wien. ix, 18–24, 27, 28, 30, 51, 52, 54, 55, 69, 74, 81

Python production rule package (pypr)
Python package, which provides various classes and functions for description of
an asynchronous circuit (AC) in Python. Part of the design flow of TU Wien
(chapter 3). See also [6]. vii, 1, 2, 18, 20, 23, 27–31, 52, 54, 69–72, 74

Quasi-delay-insensitive (QDI)
The QDI model allows arbitrary gate delays, but for wires the isochronic fork [55]
condition must apply. See section 2.3. 8, 15, 18, 20–23, 25, 27–31, 43–46, 55, 63, 67,
69, 77, 81, 84, 86

Register-transfer level (RTL)
Used by hardware description languages to present a high level view of a digital
circuit. 1, 8, 18, 44, 47

Simulation Program with Integrated Circuit Emphasis (SPICE)
SPICE is an open-souce analog level simulator for electrical circuits. 34

85

Simulations per second (SPS)
The SPS metric is used to compare the performance of different simulation tools.
60, 61

Single-event-upset (SEU)
Here an upset (i.e. illegitimate value change) of a single signal for a limited amount
of time. 28, 60–62, 66, 69, 71

Structured Query Language (SQL)
Standard language for the communication with databases. 17, 18, 20, 23, 25–27, 29,
31, 52, 54, 79

Synchronous Circuit (SC)
Sequential digital logic circuit, where state changes of memory elements are syn-
chronized by a (global) clock signal. ix, 1, 8, 47

Verilog
IEEE standard hardware description language. 7, 18, 20–22, 28, 30, 34, 45–47, 49,
69, 70, 72, 81

Very High Speed Integrated Circuit Hardware Description Language (VHDL)

IEEE standard hardware description language. 18, 20, 23–26, 30, 52, 55, 69, 81
Very large-scale integration (VLSI)

The process of combining millions of MOSFETs onto a single chip to create an
integrated circuit. 33, 34

Weak-conditioned-half-buffer (WCHB)
Most common buffer for QDI 4-phase DR ACs. See e.g. [88]. 12–14, 17, 20, 21, 23,
27, 28, 31, 32, 60, 77, 81

YAML
Originally an acronym for Yet Another Markup Language. It is the human-readable
language for configuration files. Used by the flow of TU Wien (chapter 3). 18, 20,
23–25, 30, 54, 81

86

Bibliography

Literature
[1] E. Painkras, L. A. Plana, J. Garside, et al., „Spinnaker: A 1-w 18-core system-

on-chip for massively-parallel neural network simulation“, IEEE Journal of Solid-
State Circuits, vol. 48, no. 8, pp. 1943–1953, 2013. doi: 10.1109/JSSC.2013.
2259038.

[2] B. V. Benjamin, P. Gao, E. McQuinn, et al., „Neurogrid: A mixed-analog-digital
multichip system for large-scale neural simulations“, Proceedings of the IEEE,
vol. 102, no. 5, pp. 699–716, 2014. doi: 10.1109/JPROC.2014.2313565.

[3] F. Akopyan, J. Sawada, A. Cassidy, et al., „Truenorth: Design and tool flow of a
65 mw 1 million neuron programmable neurosynaptic chip“, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 10,
pp. 1537–1557, 2015. doi: 10.1109/TCAD.2015.2474396.

[4] K.-S. Chong, B.-H. Gwee, and J. S. Chang, „Energy-efficient synchronous-logic
and asynchronous-logic fft/ifft processors“, IEEE Journal of Solid-State Circuits,
vol. 42, no. 9, pp. 2034–2045, 2007. doi: 10.1109/JSSC.2007.903039.

[5] O. C. Akgun and Y. Leblebici, „Energy efficiency comparison of asynchronous and
synchronous circuits operating in the sub-threshold regime“, Journal of Low Power
Electronics, vol. 4, no. 3, pp. 320–336, Dec. 2008. doi: 10.1166/jolpe.2008.
185. [Online]. Available: https://doi.org/10.1166/jolpe.2008.185.

[6] F. Huemer, „Contributions to efficiency and robustness of quasi delay-insensitive
circuits“, Ph.D. dissertation, TU Wien, 2022.

[7] P. Behal, „Quantitativer vergleich der empfindlichkeit von delay-insensitiven design
templates gegenüber transienten störungen“, M.S. thesis, TU Wien, 2021.

[8] D. E. Muller, „Theory of asynchronous circuits, report no. 66“, Digital Computer
Laboratory, University of Illinois at Urbana-Champaign, 1955.

[9] H. C. Brearley, „Illiac ii-a short description and annotated bibliography“, IEEE
Transactions on Electronic Computers, vol. EC-14, no. 3, pp. 399–403, 1965. doi:
10.1109/PGEC.1965.264146.

[10] R. E. Miller, Switching Theory. New York: John Wiley, Aug. 1979, isbn: 9780882757599.

87

https://doi.org/10.1109/JSSC.2013.2259038
https://doi.org/10.1109/JSSC.2013.2259038
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/JSSC.2007.903039
https://doi.org/10.1166/jolpe.2008.185
https://doi.org/10.1166/jolpe.2008.185
https://doi.org/10.1166/jolpe.2008.185
https://doi.org/10.1109/PGEC.1965.264146

[11] C. J. Myers, Asynchronous Circuit Design. Wiley-Interscience, Jul. 2001, isbn:
9780471415435.

[12] S. H. Lavington, A history of Manchester computers, 2nd ed. British Computer
Society, 1998.

[13] R. Ibbett, „The university of manchester mu5 project“, IEEE Annals of the History
of Computing, vol. 21, no. 1, pp. 24–33, 1999. doi: 10.1109/85.759366.

[14] J. Woods, P. Day, S. Furber, J. Garside, N. Paver, and S. Temple, „Amulet1: An
asynchronous arm microprocessor“, IEEE Transactions on Computers, vol. 46,
no. 4, pp. 385–398, 1997. doi: 10.1109/12.588033.

[15] S. Furber, P. Day, J. Garside, N. Paver, and J. Woods, „Amulet1: A micropipelined
arm“, in Proceedings of COMPCON ’94, 1994, pp. 476–485. doi: 10.1109/
CMPCON.1994.282880.

[16] S. Furber, J. Garside, P. Riocreux, et al., „Amulet2e: An asynchronous embedded
controller“, Proceedings of the IEEE, vol. 87, no. 2, pp. 243–256, 1999. doi:
10.1109/5.740018.

[17] S. Furber, J. Garside, S. Temple, J. Liu, P. Day, and N. Paver, „Amulet2e: An
asynchronous embedded controller“, in Proceedings Third International Symposium
on Advanced Research in Asynchronous Circuits and Systems, 1997, pp. 290–299.
doi: 10.1109/ASYNC.1997.587182.

[18] J. Garside, S. Temple, and R. Mehra, „The amulet2e cache system“, in Proceedings
Second International Symposium on Advanced Research in Asynchronous Circuits
and Systems, 1996, pp. 208–217. doi: 10.1109/ASYNC.1996.494452.

[19] S. Furber, D. Edwards, and J. Garside, „Amulet3: A 100 mips asynchronous
embedded processor“, in Proceedings 2000 International Conference on Computer
Design, 2000, pp. 329–334. doi: 10.1109/ICCD.2000.878304.

[20] J. Garside, S. Furber, and S.-H. Chung, „Amulet3 revealed“, in Proceedings. Fifth
International Symposium on Advanced Research in Asynchronous Circuits and
Systems, 1999, pp. 51–59. doi: 10.1109/ASYNC.1999.761522.

[21] S. Furber, J. Garside, and D. Gilbert, „Amulet3: A high-performance self-timed
arm microprocessor“, in Proceedings International Conference on Computer Design.
VLSI in Computers and Processors (Cat. No.98CB36273), 1998, pp. 247–252. doi:
10.1109/ICCD.1998.727058.

[22] I. E. Sutherland, „Micropipelines“, Commun. ACM, vol. 32, no. 6, pp. 720–738,
Jun. 1989, issn: 0001-0782. doi: 10.1145/63526.63532.

[23] A. Martin, A. Lines, R. Manohar, et al., „The design of an asynchronous mips r3000
microprocessor“, in Proceedings Seventeenth Conference on Advanced Research in
VLSI, 1997, pp. 164–181. doi: 10.1109/ARVLSI.1997.634853.

[24] J. Teife and R. Manohar, „Programmable asynchronous pipeline arrays“, vol. 2778,
Sep. 2003, pp. 345–354, isbn: 978-3-540-40822-2. doi: 10.1007/978-3-540-
45234-8_34.

88

https://doi.org/10.1109/85.759366
https://doi.org/10.1109/12.588033
https://doi.org/10.1109/CMPCON.1994.282880
https://doi.org/10.1109/CMPCON.1994.282880
https://doi.org/10.1109/5.740018
https://doi.org/10.1109/ASYNC.1997.587182
https://doi.org/10.1109/ASYNC.1996.494452
https://doi.org/10.1109/ICCD.2000.878304
https://doi.org/10.1109/ASYNC.1999.761522
https://doi.org/10.1109/ICCD.1998.727058
https://doi.org/10.1145/63526.63532
https://doi.org/10.1109/ARVLSI.1997.634853
https://doi.org/10.1007/978-3-540-45234-8_34
https://doi.org/10.1007/978-3-540-45234-8_34

[25] C. IV, V. Ekanayake, and R. Manohar, „Snap: A sensor-network asynchronous
processor“, Jun. 2003, pp. 24–33, isbn: 0-7695-1898-2. doi: 10.1109/ASYNC.
2003.1199163.

[26] A. Martin, M. Nystroem, K. Papadantonakis, et al., „The lutonium: A sub-
nanojoule asynchronous 8051 microcontroller“, Jun. 2003, pp. 14–23, isbn: 0-7695-
1898-2. doi: 10.1109/ASYNC.2003.1199162.

[27] A. Martin, M. Nystrom, and C. Wong, „Three generations of asynchronous
microprocessors“, IEEE Design & Test of Computers, vol. 20, no. 6, pp. 9–17,
2003. doi: 10.1109/MDT.2003.1246159.

[28] K. M. Fant, Logically Determined Design. Jan. 2005, isbn: 9780471684787.
[29] E. Izhikevich, „Simple model of spiking neurons“, IEEE Transactions on Neural

Networks, vol. 14, no. 6, pp. 1569–1572, 2003. doi: 10.1109/TNN.2003.820440.
[30] A. L. Hodgkin and A. F. Huxley, „A quantitative description of membrane

current and its application to conduction and excitation in nerve“, The Journal of
Physiology, vol. 117, no. 4, pp. 500–544, Aug. 1952. doi: 10.1113/jphysiol.
1952.sp004764.

[31] A. Martin, „Programming in vlsi: From communicating processes to delay-insensitive
circuits“, Developments in Concurrency and Communication, Mar. 1991.

[32] A. Martin and M. Nystrom, „Asynchronous techniques for system-on-chip design“,
Proceedings of the IEEE, vol. 94, no. 6, pp. 1089–1120, 2006. doi: 10.1109/
JPROC.2006.875789.

[33] Z. Tabassam, S. R. Naqvi, T. Akram, M. Alhussein, K. Aurangzeb, and S. A.
Haider, „Towards designing asynchronous microprocessors: From specification to
tape-out“, IEEE Access, vol. 7, pp. 33 978–34 003, 2019. doi: 10.1109/ACCESS.
2019.2903126.

[34] D. Bhadra and K. S. Stevens, „Design of a low power, relative timing based
asynchronous msp430 microprocessor“, in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017, 2017, pp. 794–799. doi: 10.23919/
DATE.2017.7927097.

[35] S. Ataei, W. Hua, Y. Yang, et al., „An open-source eda flow for asynchronous
logic“, IEEE Design and Test, vol. 38, pp. 1–10, Jan. 2021. doi: 10.1109/MDAT.
2021.3051334.

[36] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, A. Yakovlev, and N.
England, „Petrify: A tool for manipulating concurrent specifications and synthesis
of asynchronous controllers“, Jan. 2000.

[37] K. Christensen, P. Jensen, P. Korger, and J. Sparso, „The design of an asynchronous
tinyrisc/sup tm/ tr4101 microprocessor core“, in Proceedings Fourth International
Symposium on Advanced Research in Asynchronous Circuits and Systems, 1998,
pp. 108–119. doi: 10.1109/ASYNC.1998.666498.

89

https://doi.org/10.1109/ASYNC.2003.1199163
https://doi.org/10.1109/ASYNC.2003.1199163
https://doi.org/10.1109/ASYNC.2003.1199162
https://doi.org/10.1109/MDT.2003.1246159
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1109/JPROC.2006.875789
https://doi.org/10.1109/JPROC.2006.875789
https://doi.org/10.1109/ACCESS.2019.2903126
https://doi.org/10.1109/ACCESS.2019.2903126
https://doi.org/10.23919/DATE.2017.7927097
https://doi.org/10.23919/DATE.2017.7927097
https://doi.org/10.1109/MDAT.2021.3051334
https://doi.org/10.1109/MDAT.2021.3051334
https://doi.org/10.1109/ASYNC.1998.666498

[38] V. Khomenko, D. Sokolov, A. Yakovlev, and D. Lloyd, „Handshake verification in
workcraft“, in 2020 26th IEEE International Symposium on Asynchronous Circuits
and Systems (ASYNC), 2020, pp. 63–64. doi: 10.1109/ASYNC49171.2020.
00016.

[39] D. Sokolov, V. Khomenko, A. Yakovlev, and D. Lloyd, „Design and verification
of speed-independent circuits with arbitration in workcraft“, in 2018 24th IEEE
International Symposium on Asynchronous Circuits and Systems (ASYNC), 2018,
pp. 30–31. doi: 10.1109/ASYNC.2018.00017.

[40] K. van Berkel, Handshake Circuits: An Asynchronous Architecture for VLSI
Programming. USA: Cambridge University Press, 1993, isbn: 0521452546.

[41] S. F. Nielsen, J. Sparsø, J. B. Jensen, and J. S. R. Nielsen, „A behavioral syn-
thesis frontend to the haste/tide design flow“, in 2009 15th IEEE Symposium on
Asynchronous Circuits and Systems, 2009, pp. 185–194. doi: 10.1109/ASYNC.
2009.10.

[42] A. Bink and R. York, „Arm996hs: The first licensable, clockless 32-bit processor
core“, IEEE Micro, vol. 27, no. 2, pp. 58–68, 2007. doi: 10.1109/MM.2007.28.

[43] A. Yakovlev, P. Vivet, and M. Renaudin, „Advances in asynchronous logic: From
principles to gals & noc, recent industry applications, and commercial cad tools“,
in 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE),
2013, pp. 1715–1724. doi: 10.7873/DATE.2013.346.

[44] D. Edwards and A. Bardsley, „Balsa: An asynchronous hardware synthesis lan-
guage“, The Computer Journal, vol. 45, no. 1, pp. 12–18, 2002. doi: 10.1093/
comjnl/45.1.12.

[45] Q. Zhang and G. Theodoropoulos, „Modelling samips: A synthesisable asyn-
chronous mips processor“, in 37th Annual Simulation Symposium, 2004. Proceed-
ings., 2004, pp. 205–212. doi: 10.1109/SIMSYM.2004.1299484.

[46] P. A. Beerel, G. D. Dimou, and A. M. Lines, „Proteus: An asic flow for ghz
asynchronous designs“, IEEE Design Test of Computers, vol. 28, no. 5, pp. 36–51,
2011. doi: 10.1109/MDT.2011.114.

[47] R. Diamant, R. Ginosar, and C. Sotiriou, „Asynchronous sub-threshold ultra-low
power processor“, in 2015 25th International Workshop on Power and Timing
Modeling, Optimization and Simulation (PATMOS), 2015, pp. 89–96. doi: 10.
1109/PATMOS.2015.7347592.

[48] J. Sparsø, Introduction to Asynchronous Circuit Design, English. DTU Compute,
Technical University of Denmark, 2020, Paperback edition available here: https:
//www.amazon.com/dp/B08BF2PFLN.

[49] S. M. Nowick and M. Singh, „Asynchronous design—part 1: Overview and recent
advances“, IEEE Design Test, vol. 32, no. 3, pp. 5–18, 2015. doi: 10.1109/
MDAT.2015.2413759.

90

https://doi.org/10.1109/ASYNC49171.2020.00016
https://doi.org/10.1109/ASYNC49171.2020.00016
https://doi.org/10.1109/ASYNC.2018.00017
https://doi.org/10.1109/ASYNC.2009.10
https://doi.org/10.1109/ASYNC.2009.10
https://doi.org/10.1109/MM.2007.28
https://doi.org/10.7873/DATE.2013.346
https://doi.org/10.1093/comjnl/45.1.12
https://doi.org/10.1093/comjnl/45.1.12
https://doi.org/10.1109/SIMSYM.2004.1299484
https://doi.org/10.1109/MDT.2011.114
https://doi.org/10.1109/PATMOS.2015.7347592
https://doi.org/10.1109/PATMOS.2015.7347592
https://www.amazon.com/dp/B08BF2PFLN
https://www.amazon.com/dp/B08BF2PFLN
https://doi.org/10.1109/MDAT.2015.2413759
https://doi.org/10.1109/MDAT.2015.2413759

[50] ——, „Asynchronous design—part 2: Systems and methodologies“, IEEE Design
Test, vol. 32, no. 3, pp. 19–28, 2015. doi: 10.1109/MDAT.2015.2413757.

[51] P. A. Beerel, R. O. Ozdag, and M. Ferretti, A Designer’s Guide to Asynchronous
VLSI. Cambridge: Cambridge University Press, 2010, isbn: 978-1-139-48528-9.

[52] I. David, R. Ginosar, and M. Yoeli, „An efficient implementation of boolean
functions as self-timed circuits“, IEEE Transactions on Computers, vol. 41, no. 1,
pp. 2–11, 1992. doi: 10.1109/12.123377.

[53] A. Kondratyev and K. Lwin, „Design of asynchronous circuits by synchronous
cad tools“, in Proceedings 2002 Design Automation Conference (IEEE Cat.
No.02CH37324), 2002, pp. 411–414. doi: 10.1109/DAC.2002.1012660.

[54] A. J. Martin, „The limitations to delay-insensitivity in asynchronous circuits“,
in Beauty Is Our Business, Springer New York, 1990, pp. 302–311. doi: 10.
1007/978-1-4612-4476-9_35. [Online]. Available: https://doi.org/10.
1007/978-1-4612-4476-9_35.

[55] K. van Berkel, „Beware the isochronic fork“, Integration, vol. 13, no. 2, pp. 103–128,
1992, issn: 0167-9260. doi: https://doi.org/10.1016/0167-9260(92)
90001-F.

[56] F. Huemer and A. Steininger, „Advanced delay-insensitive 4-phase protocols“, in
2018 Austrochip Workshop on Microelectronics (Austrochip), 2018, pp. 50–55. doi:
10.1109/Austrochip.2018.8520702.

[57] ——, „Partially systematic constant-weight codes for delay-insensitive communi-
cation“, in 2018 24th IEEE International Symposium on Asynchronous Circuits
and Systems (ASYNC), 2018, pp. 17–25. doi: 10.1109/ASYNC.2018.00014.

[58] ——, „Novel approaches for efficient delay-insensitive communication“, Journal
of Low Power Electronics and Applications, vol. 9, Jun. 2019. doi: 10.3390/
jlpea9020016.

[59] ——, „Sorting network based full adders for qdi circuits“, in 2020 Austrochip
Workshop on Microelectronics (Austrochip), 2020, pp. 21–28. doi: 10.1109/
Austrochip51129.2020.9232987.

[60] F. Huemer, R. Najvirt, and A. Steininger, „Identification and confinement of fault
sensitivity windows in qdi logic“, in 2020 Austrochip Workshop on Microelectron-
ics (Austrochip), 2020, pp. 29–36. doi: 10.1109/Austrochip51129.2020.
9232985.

[61] ——, „On sat-based model checking of speed-independent circuits“, in 2022 25th
International Symposium on Design and Diagnostics of Electronic Circuits and
Systems (DDECS), 2022, pp. 100–105. doi: 10.1109/DDECS54261.2022.
9770165.

91

https://doi.org/10.1109/MDAT.2015.2413757
https://doi.org/10.1109/12.123377
https://doi.org/10.1109/DAC.2002.1012660
https://doi.org/10.1007/978-1-4612-4476-9_35
https://doi.org/10.1007/978-1-4612-4476-9_35
https://doi.org/10.1007/978-1-4612-4476-9_35
https://doi.org/10.1007/978-1-4612-4476-9_35
https://doi.org/https://doi.org/10.1016/0167-9260(92)90001-F
https://doi.org/https://doi.org/10.1016/0167-9260(92)90001-F
https://doi.org/10.1109/Austrochip.2018.8520702
https://doi.org/10.1109/ASYNC.2018.00014
https://doi.org/10.3390/jlpea9020016
https://doi.org/10.3390/jlpea9020016
https://doi.org/10.1109/Austrochip51129.2020.9232987
https://doi.org/10.1109/Austrochip51129.2020.9232987
https://doi.org/10.1109/Austrochip51129.2020.9232985
https://doi.org/10.1109/Austrochip51129.2020.9232985
https://doi.org/10.1109/DDECS54261.2022.9770165
https://doi.org/10.1109/DDECS54261.2022.9770165

[62] P. Behal, F. Huemer, R. Najvirt, A. Steininger, and Z. Tabassam, „Towards
explaining the fault sensitivity of different qdi pipeline styles“, in 2021 27th IEEE
International Symposium on Asynchronous Circuits and Systems (ASYNC), 2021,
pp. 25–33. doi: 10.1109/ASYNC48570.2021.00012.

[63] P. Behal, F. Huemer, R. Najvirt, and A. Steininger, „An automated setup for
large-scale simulation-based fault-injection experiments on asynchronous digital
circuits“, in 2021 24th Euromicro Conference on Digital System Design (DSD),
2021, pp. 541–548. doi: 10.1109/DSD53832.2021.00087.

[64] F. Huemer and A. Steininger, „Timing domain crossing using muller pipelines“, in
2020 26th IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC), 2020, pp. 44–53. doi: 10.1109/ASYNC49171.2020.00014.

[65] M. Singh and S. M. Nowick, „Mousetrap: High-speed transition-signaling asyn-
chronous pipelines“, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 15, no. 6, pp. 684–698, 2007. doi: 10.1109/TVLSI.2007.898732.

[66] R. Dashkin and R. Manohar, „General approach to asynchronous circuits simu-
lation using synchronous fpgas“, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, pp. 1–1, 2021. doi: 10.1109/TCAD.2021.
3131546.

[67] A. Martin, M. Nystroem, and C. Wong, „Design tools for integrated asynchronous
electronic circuits“, p. 17, Jun. 2003.

[68] A. J. Martin, „Synthesis of asynchronous vlsi circuits“, USA, Tech. Rep., 1991.
[69] C. A. R. Hoare, „Communicating sequential processes“, Commun. ACM, vol. 21,

no. 8, pp. 666–677, Aug. 1978. doi: 10.1145/359576.359585.
[70] A. J. Martin and C. D. Moore, Chp and chpsim: A language and simulator for

fine-grain distributed computation, 2011.
[71] D. Fang, „Profiling infrastructure for the performance evaluation of asynchronous

systems“, Ph.D. dissertation, Cornell University, Aug. 2008.
[72] R. Manohar, „An open-source design flow for asynchronous circuits“, Government

Microcircuit Applications and Critical Technology Conference, Mar. 2019.
[73] C. T. O. Otero, J. Tse, R. Karmazin, B. Hill, and R. Manohar, „Ulsnap: An ultra-

low power event-driven microcontroller for sensor network nodes“, in Fifteenth
International Symposium on Quality Electronic Design, 2014, pp. 667–674. doi:
10.1109/ISQED.2014.6783391.

[74] R. Li, L. Berkley, Y. Yang, and R. Manohar, „Fluid: An asynchronous high-level
synthesis tool for complex program structures“, in 2021 27th IEEE International
Symposium on Asynchronous Circuits and Systems (ASYNC), 2021, pp. 1–8. doi:
10.1109/ASYNC48570.2021.00009.

[75] Y. Yang, J. He, and R. Manohar, „Dali: A gridded cell placement flow“, in 2020
IEEE/ACM International Conference On Computer Aided Design (ICCAD), 2020,
pp. 1–9.

92

https://doi.org/10.1109/ASYNC48570.2021.00012
https://doi.org/10.1109/DSD53832.2021.00087
https://doi.org/10.1109/ASYNC49171.2020.00014
https://doi.org/10.1109/TVLSI.2007.898732
https://doi.org/10.1109/TCAD.2021.3131546
https://doi.org/10.1109/TCAD.2021.3131546
https://doi.org/10.1145/359576.359585
https://doi.org/10.1109/ISQED.2014.6783391
https://doi.org/10.1109/ASYNC48570.2021.00009

[76] W. Hua, Y.-S. Lu, K. Pingali, and R. Manohar, „Cyclone: A static timing and power
engine for asynchronous circuits“, in 2020 26th IEEE International Symposium on
Asynchronous Circuits and Systems (ASYNC), 2020, pp. 11–19. doi: 10.1109/
ASYNC49171.2020.00010.

[77] M. Pan, Y. Xu, Y. Zhang, and C. Chu, „Fastroute: An efficient and high-quality
global router“, VLSI Design, vol. 2012, Aug. 2012. doi: 10.1155/2012/608362.

[78] J. He, U. Agarwal, Y. Yang, R. Manohar, and K. Pingali, „Sproute 2.0: A detailed-
routability-driven deterministic parallel global router with soft capacity“, in 2022
27th Asia and South Pacific Design Automation Conference (ASP-DAC), 2022,
pp. 586–591. doi: 10.1109/ASP-DAC52403.2022.9712557.

[79] J. He, M. Burtscher, R. Manohar, and K. Pingali, „Sproute: A scalable parallel
negotiation-based global router“, in 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2019, pp. 1–8. doi: 10.1109/ICCAD45719.
2019.8942105.

[80] S. Ataei, J. He, W. Hua, et al., „Toward a digital flow for asynchronous vlsi sys-
tems“, in 2nd Workshop on Open-Source EDA Technology (WOSET), Westminster,
CO, Nov. 2019.

[81] M. R. Guthaus, J. E. Stine, S. Ataei, B. Chen, B. Wu, and M. Sarwar, „Openram:
An open-source memory compiler“, in 2016 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2016, pp. 1–6. doi: 10.1145/2966986.
2980098.

[82] S. Ataei and R. Manohar, „Amc: An asynchronous memory compiler“, in 2019 25th
IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC),
2019, pp. 1–8. doi: 10.1109/ASYNC.2019.00009.

[83] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang, „Ntuplace3:
An analytical placer for large-scale mixed-size designs with preplaced blocks and
density constraints“, Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 27, pp. 1228–1240, Aug. 2008. doi: 10.1109/TCAD.
2008.923063.

[84] R. Karmazin, S. Longfield, C. T. O. Otero, and R. Manohar, „Timing driven
placement for quasi delay-insensitive circuits“, in 2015 21st IEEE International
Symposium on Asynchronous Circuits and Systems, 2015, pp. 45–52. doi: 10.
1109/ASYNC.2015.16.

[85] R. Karmazin, C. T. O. Otero, and R. Manohar, „Celltk: Automated layout for
asynchronous circuits with nonstandard cells“, in 2013 IEEE 19th International
Symposium on Asynchronous Circuits and Systems, 2013, pp. 58–66. doi: 10.
1109/ASYNC.2013.27.

[86] R. K. Dybvig, The Scheme Programming Language, 4th ed. The MIT Press, Jul.
2009, isbn: 9780262512985.

93

https://doi.org/10.1109/ASYNC49171.2020.00010
https://doi.org/10.1109/ASYNC49171.2020.00010
https://doi.org/10.1155/2012/608362
https://doi.org/10.1109/ASP-DAC52403.2022.9712557
https://doi.org/10.1109/ICCAD45719.2019.8942105
https://doi.org/10.1109/ICCAD45719.2019.8942105
https://doi.org/10.1145/2966986.2980098
https://doi.org/10.1145/2966986.2980098
https://doi.org/10.1109/ASYNC.2019.00009
https://doi.org/10.1109/TCAD.2008.923063
https://doi.org/10.1109/TCAD.2008.923063
https://doi.org/10.1109/ASYNC.2015.16
https://doi.org/10.1109/ASYNC.2015.16
https://doi.org/10.1109/ASYNC.2013.27
https://doi.org/10.1109/ASYNC.2013.27

[87] R. W. Hon and C. H. Séquin, A Guide to LSI Implementation, 2nd ed. Palo Alto,
California: Xerox Palo Alto Research Center, 1980.

[88] C.-C. Chuang, Y.-H. Lai, and J.-H. R. Jiang, „Synthesis of pchb-wchb hybrid quasi-
delay insensitive circuits“, in 2014 51st ACM/EDAC/IEEE Design Automation
Conference (DAC), 2014, pp. 1–6.

Online References
[89] R. Manohar. „Github - asyncvlsi/act: The act language and core tools“. (2021),

[Online]. Available: https://github.com/asyncvlsi/act (visited on May 7,
2022).

[90] J. Bohn. „Ems - history - illiac i“. (), [Online]. Available: https://music.
illinois.edu/ems-history-illiac-i (visited on Apr. 21, 2022).

[91] R. Manohar. „The act vlsi design tools - documentation“. (2021), [Online]. Avail-
able: https://avlsi.csl.yale.edu/act/doku.php (visited on Apr. 21,
2022).

[92] U. P. de Catalunya. „Petrify: A tool for synthesis of petri nets and asynchronous
circuits“. (1999), [Online]. Available: https://www.cs.upc.edu/~jordicf/
petrify/ (visited on Aug. 16, 2022).

[93] „Tam16: 16-bit microcontroller ip core“. (2008), [Online]. Available: http://
www.tiempo-ic.com/uploads/Docs/TAM16_Datasheet.pdf (visited on
Apr. 21, 2022).

[94] T. Wien. „Embedded computing systems group“. (), [Online]. Available: https:
//ti.tuwien.ac.at/ecs (visited on May 31, 2022).

[95] M. Research. „Github - z3prover/z3: Z3“. (2022), [Online]. Available: https:
//github.com/Z3Prover/z3 (visited on Jun. 16, 2022).

[96] R. Manohar. „Cast“. (1997), [Online]. Available: https://avlsi.csl.yale.
edu/act/lib/exe/fetch.php?media=history:cast.pdf (visited on
May 8, 2022).

[97] D. Fang. „Github - fangism/hackt: Hackt (hierarchical asynchronous circuit kom-
piler toolkit) a compiler suite for asynchronous system design“. (2018), [Online].
Available: https://github.com/fangism/hackt (visited on Apr. 21, 2022).

[98] J. He, Y. Yang, and R. Manohar. „Github - asyncvlsi/sproute: A scalable parallel
global router“. (2022), [Online]. Available: https://github.com/asyncvlsi/
SPRoute (visited on Apr. 21, 2022).

[99] S. Ataei and R. Manohar. „Github - asyncvlsi/amc: Asynchronous memory com-
piler“. (2020), [Online]. Available: https://github.com/asyncvlsi/AMC
(visited on Apr. 21, 2022).

[100] U. of Texas at Austin. „Galois“. (2020), [Online]. Available: https://iss.oden.
utexas.edu/?p=projects/galois (visited on May 9, 2022).

94

https://github.com/asyncvlsi/act
https://music.illinois.edu/ems-history-illiac-i
https://music.illinois.edu/ems-history-illiac-i
https://avlsi.csl.yale.edu/act/doku.php
https://www.cs.upc.edu/~jordicf/petrify/
https://www.cs.upc.edu/~jordicf/petrify/
http://www.tiempo-ic.com/uploads/Docs/TAM16_Datasheet.pdf
http://www.tiempo-ic.com/uploads/Docs/TAM16_Datasheet.pdf
https://ti.tuwien.ac.at/ecs
https://ti.tuwien.ac.at/ecs
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
https://avlsi.csl.yale.edu/act/lib/exe/fetch.php?media=history:cast.pdf
https://avlsi.csl.yale.edu/act/lib/exe/fetch.php?media=history:cast.pdf
https://github.com/fangism/hackt
https://github.com/asyncvlsi/SPRoute
https://github.com/asyncvlsi/SPRoute
https://github.com/asyncvlsi/AMC
https://iss.oden.utexas.edu/?p=projects/galois
https://iss.oden.utexas.edu/?p=projects/galois

[101] R. Dashkin and R. Manohar. „Github - asyncvlsi/prs2fpga: Translate production
rules into verilog for accelerated simulation on fpgas“. (2021), [Online]. Available:
https://github.com/asyncvlsi/prs2fpga (visited on Apr. 21, 2022).

95

https://github.com/asyncvlsi/prs2fpga

	Abstract
	Contents
	Introduction
	Related Work
	History of Asynchronous Circuits
	State of the Art
	Fundamentals for Asynchronous Circuit Design

	Design Flow by TU Wien
	Overview
	Related Literature

	Design Flow by Yale University
	Overview
	Related Literature

	Integration of Design Flows and Comparison
	Overview
	Integration of Prsim
	Covered Parameter Space with Resulting Performance
	Comparison of Fault-Injection Experiment Results
	Capability Comparison

	Conclusion and Outlook
	List of Figures
	List of Tables
	Glossary
	Bibliography
	Literature
	Online References

