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Abstract

Providing higher data rates in mobile communication systems without increas-
ing bandwidth can be achieved with techniques such as multi-user multiple-input
and multiple-output transmissions using linear precoding. One popular precod-
ing strategy that is often used in practice is zero-forcing precoding, which utilises
multiple antennas to cancel the interference between users. The performance of
zero-forcing precoding strongly depends on the similarities of the channels of sched-
uled users. Therefore, a user grouping heuristic is proposed that optimises the
transmission in terms of sum-throughput. In addition, an extension is introduced
to trade-off throughput against fairness among users. The proposed algorithm is
compared to a semi-orthogonal user selection algorithm by performing system level
simulations. The performance of the algorithms is also investigated in a cellular
scenario together with fractional frequency reuse.
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1. Introduction

In this chapter the motivation behind this work is discussed and the current state of
the art is presented. Furthermore, the structure of the thesis and the mathematical
notation is established.

1.1. Motivation

Due to the growth of mobile networks and the rapid evolution of technologies such
as online conferences or video streaming that initiate an ever increasing demand
for more data traffic, the necessity for more throughput in mobile cells arises. In
[1], the authors expect that in 2022 the average traffic usage per smartphone will
surpass 15GB. Just from an economic standpoint, the classical way of increas-
ing throughput, namely by adding more bandwidth, is connected with acquiring
expensive spectrum licences. Furthermore, today there is not much unoccupied
spectrum left at the frequency bands below 6GHz, which are useful for large-
area coverage. Therefore, finding other ways to push spectral efficiency without
changing the bandwidth are an everlasting topic of interest.

Adding more antennas to transmitters and receivers has the potential to signifi-
cantly increase throughput and reliability without additional bandwidth or power
[2][3, p. 445]. It has been shown that the maximum achievable capacity for a
Rayleigh-fading Gaussian channel with multiple antennas can be calculated and
is depended on the number of antennas at the transmitter and the receiver side
[4]. To achieve the maximum capacity, the receiver is required to have at least as
many antennas as the transmitter. In terms of a mobile communication system,
this presents a problem. While it is feasible to increase the number of antennas
at the base station, it is challenging to add antennas at the user side. The reason
for this is the limited size of a modern cell phone that imposes challenging de-
vice design constraints. Furthermore, placing antennas in close proximity to each
other increases channel correlation, which decreases diversity and throughput [5][3,
p. 253]. The limited number of antennas at the user limits the total throughput.

Instead of transmitting to a single user over multiple antennas, MIMO systems
can be used to serve multiple users at the same time. One technique is called
space-division multiple access (SDMA). It uses the available degrees of freedom
of the multiple-input and multiple-output (MIMO) system to simultaneously send
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1. Introduction

symbols to multiple users at once, separated in spatial data streams [6]. In such
a system, the number of users served is determined by the number of transmit
antennas. SDMA allows to achieve a spatial multiplexing gain, even if each user is
only equipped with a single receive antenna. By serving multiple users at once, the
total throughput can be increased by serving more users instead of adding more
receiver antennas at a single user.

Of course, increasing throughput with more antennas does not come free, it
requires signal processing techniques to leverage the gain. In terms of that, it
has been shown that dirty paper precoding (DPC) achieves the capacity of the
MIMO broadcast channel [7], [8]. However, DPC is challenging to implement,
since it requires non-causal knowledge about interference at the receiver and is
computationally infeasible in practise. For multi-user systems there exist a sub-
optimum technique for the case of single antenna users called zero-forcing dirty-
paper coding that achieves asymptotically capacity with a growing number of users
[9].

A reasonable trade-off for multi-user systems is linear precoding, where the
signal is filtered by a linear transformation. A popular method is zero-forcing (ZF)
precoding, where interference among users in the same cell is cancelled. Although
it is in general suboptimal, ZF precoding has been shown to achieve asymptotically
capacity with a growing number users [10] and is feasible to implement. In such
a ZF system, the system throughput depends on the group of scheduled users,
more specifically, on the similarity of their channels. A poorly selected user can
decrease the performance of all other participants. Therefore, in addition to the
regular decisions that a scheduler has to make, user grouping must be performed.

Finding the optimal user grouping is a nontrivial problem and requires signif-
icant computational effort, especially for a large number of users and transmit
antennas. In fact, the optimal choice leads to a combinatorial optimisation prob-
lem of exponential complexity [11].

In this work, a novel user grouping algorithm for ZF precoding is introduced that
optimises the communication system in terms of sum-throughput. The algorithm is
designed to account for fairness and provide a mechanism for balancing complexity
with throughput. The performance of the proposed algorithm is compared to the
semi-orthogonal user selection (SUS) algorithm proposed in [10] and investigated
by simulations with the Vienna 5G System Level Simulator [12]. To perform this,
a system level abstraction model for multi-user transmissions is proposed.

1.2. State of the Art

Various user grouping algorithms were already proposed and classified in literature.
In [13], the authors distinguish between two groups, algorithms that optimise
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1. Introduction

towards the sum-throughput and those that are based on the channel correlation
and the Frobenius norm.

In [14], the authors propose a framework called G-Greedy for general greedy
user grouping algorithms. They showed that, with an optimum parameter choice,
such algorithms are capable of achieving capacity in the asymptotic case, where
the number of users approaches infinity.

The SUS algorithm proposed in [10] can be formulated in the aforementioned
G-Greedy framework and therefore achieves asymptotic capacity, while keeping
computational complexity low. Here, users are selected on the basis of their channel
correlation and their channel magnitude.

Other approaches, such as zero-forcing with selection (ZFS) greedily add users
that maximise the group sum-rate and stop if no increase is possible [15]. In [13],
the authors addresses the problem of "redundant" users. This problem occurs due
to the greedy nature of ZFS, where at the end it can be beneficial to remove a
user previously scheduled to further increase the sum-rate. The authors propose
a modified algorithm called greedy user selection with swap (GUSS), where users
can also be deleted or swapped. For DPC systems there are also capacity greedy
algorithms, called CGUS, as shown in [16] and [15].

In [17], the authors propose a CGUS algorithm for zero-forcing beamforming
that aims to lower the computational complexity by approximating the precoder
calculation with a less complex algorithm.

The single path random sampling (SPRS) algorithm proposed in this thesis, can
be classified as an algorithm that optimises towards the sum-throughput. Like
many of the mentioned algorithms it is also greedy, but in contrast it additionally
performs a search reduction by introducing a random sampling step to reduce the
number of possible candidates. In addition it can also optimise towards fairness
to achieve best-rate, proportional fair (PF), or max-min scheduling.

1.3. Structure of the Work

The work is structured as follows: In Chapter 2 the concept of system level sim-
ulation is introduced as it is the base for all simulations in this work. The basic
simulation flow is described briefly, and features important for this thesis are out-
lined in more detail. In Chapter 3 a multi-user MIMO extension for the simulator’s
existing link quality model is proposed. In Chapter 4 a novel user grouping al-
gorithm and an extension for fairness are presented, together with a performance
evaluation by simulation. In Chapter 5 the scenario is extended to a cellular system
and the performance of the user grouping algorithms is investigated in a fractional
frequency reuse scenario. Finally, in Chapter 6 the conclusion and an outlook is
presented.
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1. Introduction

1.4. Notation
x . . . scalar
|x| . . . absolute value
x . . . column vector
X . . . matrix
[X]mn . . . element of matrix X in the m-th row and n-th column
xH . . . conjugate transpose
X+ . . . Moore-Penrose pseudo-inverse
∥x∥ . . . Euclidian norm
∥x∥p . . . p-norm
E{X} . . . expectation of random variable X
δi,j . . . Kronecker delta
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2. System Level Simulation

A mobile communication system is defined by parameters that are either related to
hardware and software specifications, or to the environment, such as the number of
connected users, distances, antennas or the behaviour of the wireless channel. Our
goal is to assess the performance of a system by obtaining the expected throughput
for each user. With such performance metric it is possible to compare different
algorithms, techniques and scenarios.

Unfortunately, due to the complexity of big systems it is infeasible to find an
analytical solution and we therefore rely on simulations. Such simulation is a
computational heavy problem and detailed simulations, that compute in acceptable
time, are only feasible for a limited amount of users and base stations. Hence, a
common technique is to rely on system level simulations, that abstract low level
communication processes, to simulate larger networks in less time.

The question arises which simulator shall be used and therefore a brief overview
of available simulators is presented. The Vienna 5G System Level Simulator [12] is
based on object oriented MATLAB and free for academic use. The WiSE simulator
[18] is implemented in C++. Also the MATLAB 5G Toolbox offers support for
system level simulations. The Simu5G [19] simulator is based on the OMNeT++
[20] discret event simulator. Due to the authors previous knowledge the Vienna
5G System Level was selected and extended with new models and algorithms.
Explaining the entire simulator in this thesis would go beyond the scope of the
work and is already handled in [12]. Therefore, this sections briefly introduces the
main concepts and the parts used to obtain simulation results.

2.1. Methodology

Simulations are based on the Monte Carlo approach by simulating over a large
number of random realisations. Based on the law of large numbers the sample
mean of the simulation results will approximate the expectation of the throughput
if the number of samples is sufficiently large.

The simulation is performed in a time unit called slots, and for each slot through-
put for each user is calculated. One slot is equivalent to a fifth generation (5G)
sub-frame, assuming the default numerology. To discuss this time unit we first in-
troduce the radio access. The 5G radio access uses orthogonal frequency-division
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Figure 2.1.: Illustration of the resource grid. The radio resources are sliced in time
and frequency and assigned by a scheduler. The smallest elements are
the resource blocks. Two resource blocks form a slot, which is indicated
by a thick line. With multi-user transmissions resource blocks are
shared by multiple users.

multiplexing (OFDM) modulation. Here, a wideband channel is divided into many
orthogonal small band channels. It is hence possible to divide radio resources in
time and frequency which is called the resource grid. Since the users share the
channel, a scheduler has to manage the wireless access of the users. This is done
by slicing the grid into resource blocks and assigning them to users as shown in
Fig. 2.1. There are multiple possible resource grid configurations, depending on the
5G numerology parameter. Here, a resource grid is assumed as shown in Fig. 2.1,
with two resource blocks per slot. Hence, this grid defines some important time
scales for the simulation. The smallest time period corresponds to the duration of
one resource block (RB) which is 0.5ms.

We introduce the concept of slots and segments as shown in Fig. 2.2 due to the
time scale of the channel. Wireless channels are fluctuating and described by rapid
changes called the small-scale fading and slow changes, called large-scale fading.
We assume that the small-scale fading is much slower than the duration of a RB.
This time during which the the small-scale fading is constant is called a slot and
always contains two resource blocks. Multiple slots during which the macroscopic
fading is constant form a segment together.

Finally, the largest time scale is the chunk. It is assumed that enough time has
passed that user positions are uncorrelated between chunks.

In the system level abstraction, the transmission between a user and base station
is not modelled in every detail, but abstracted by two models. The first one assess
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Figure 2.2.: Time line of the simulator. Chunks contain segments during which the
macroscopic fading is constant. The segment consists out of various
slots. The concept of slots and segments is introduced to handle times
of constant small-scale and large-scale fading effects. The smallest
unit is the resource block.

the link quality of the user and is called link quality model (LQM). The second
one maps the link quality to a throughput and a block error rate (BLER) value
and is called link performance model (LPM). The individual parts are described
in the following sections.

2.2. Channel Model

The wireless channels between users and base stations are described by path loss,
small-scale fading and large-scale fading. In addition, the antenna characteristics
also play a role, but in scope of this work uniform antenna patterns were used.

The free space path loss (FSPL) model is used to describe the attenuation of
the signal and is calculated as

FSPL(d, λ) = −20 log


λ

4πd

�
, (2.1)

where d is the distance between transmitter and receiver and λ the wave length.
The centre frequency in this work is 2GHz and hence, λ is 155mm.
Due to multipath propagation, the channel is frequency selective and modelled

by a power delay profile. The 3GPP PedA channel model as described in [21] is
used as the simulations focus mainly on the profile of slow moving pedestrians,
since multi-user MIMO relies on accurate channel state information (CSI) at the
transmitter to be effective and this is only achievable if the channel varies slowly,
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Figure 2.3.: Downlink and uplink slots are consecutive. The uplink is used to
estimate the downlink channel.

as will be discussed in Section 2.3. Due to the movement of users and obstacles
the channel is also time-variant. To obtain time correlation with correct statistical
properties, the Rosa Zheng model is used as described in [22].

2.3. Channel Estimation and Feedback

The base station relies on accurate channel estimation and channel quality indica-
tor (CQI) feedback from the user to select an appropriate modulation and coding
scheme and to perform the user grouping. To obtain accurate CSI we assume a
time division duplex (TDD) system in which the uplink and downlink slots are
consecutive, as shown in Fig. 2.3. With the pilot information from the uplink, the
base station can estimate the downlink channel without any additional feedback
channel. Since the focus of the work is on user grouping algorithms, we assume per-
fect CSI knowledge. To fulfil that assumption, the channel must remain constant
during uplink and downlink slots.

In addition, a limited feedback channel is required and if a user is scheduled,
CQI feedback is sent to the base station to determine the modulation and coding
scheme used for the next transmission. The feedback mechanism is necessary,
since the signal to interference and noise ratio (SINR) is not known on the side
of the base station and CSI is not sufficient to recover it. Therefore, the user
grouping should not change too often, otherwise only outdated CQI information is
available at the base station, since the user grouping influences the SINR. Hence,
the scheduler holds the grouping constant for some number of slots.

To determine this number we require knowledge of the channel coherence time,
since after some time the channel will change and the grouping will not match to
the current conditions. The simulations focus on pedestrian users, but to cover the
worst case, we require that the system works for users that move with a maximum
speed of 100 kmh−1. The resulting maximum Doppler spread is

fD =
fcv

c0
= 185.31Hz, (2.2)
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2. System Level Simulation

where fc is the centre frequency of 2GHz, v is the user velocity, and c0 the speed of
light. A rough estimate of the coherence time is given by the uncertainty relation
from [23] as

TC ≤ 1

fD
= 5.4ms. (2.3)

Since one slot has a duration of 1ms, we can keep the grouping constant for 5 slots,
which is used as the default value for the simulations. Under this assumptions the
channel coherence is sufficient for accurate channel estimation and CQI feedback.

2.4. Base Station Handover and Scheduler

Users connect to base stations based on the strength of the received signal. Once
connected, the base station scheduler allocates resource blocks to a user, which
are used for data transmission. We distinguish between single user and multi user
transmissions, where in the former only one user can be assigned to a resource
block, and in the latter several users can be assigned to the same resource block.
Additionally, the scheduler selects the modulation and coding schemes for each
user based on their CQI feedback.

As mentioned in the introduction, and also explained in more detail in Chapter 4,
it is important which users are scheduled together in a multi-user transmission.
This is the task of a user grouping algorithm, which relies on accurate CSI of the
users, that is obtained by the channel estimation discussed in Section 2.3.

To summarise this section the simulation flow is depicted from a scheduler per-
spective in Fig. 2.4. Here, we see the user grouping algorithm, the scheduler, the
precoding, and its connection to the link quality and link performance model based
on perfect CSI from the uplink channel and the CQI feedback.

2.5. Link Quality Model

The LQM abstraction calculates the user’s SINR values based on environment
parameters. In Fig. 2.5 a schematic overview of the LQM is shown. The inputs
are path loss, antenna gain and the small scale fading channel and scheduling
decisions such as precoding and power allocation. The output of the LQM is the
post equalisation SINR for each resource block of the user. The LQM is only
briefly discussed here since it’s extension for multi-user transmissions is derived in
Chapter 3.
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User
Grouping

Scheduler Digital
Precoding

TDD
Channel

Perfect CSI assumed.

LQM, LPM

CQI Feedback

For each user

Figure 2.4.: Shows the simulation flow from a scheduler perspective. Users provide
channel quality indicator (CQI) feedback to the scheduler. For user
grouping and precoding perfect channel state information (CSI) is
assumed.

Figure 2.5.: Representation of the data flow between link quality and link perfor-
mance model. The link quality model aggregates the time-dependent
and position-dependent parameters together with the scheduling de-
cisions and calculates a post equalisation SINR for each RB. The post
equalisation SINR and the CQI set by the scheduler gets mapped to
BLER and throughput values. Figure reproduced from [24].
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2. System Level Simulation

Figure 2.6.: Illustration of the link performance model The post-equalisation SINR
values from the link quality model, together with a CQI value is
mapped to a single effective SINR value. This single value is used
to determine a BLER and throughput value for the user.

2.6. Link Performance Model

In the LPM the post-equalisation SINR values and the user CQI are assigned to
a single throughput value as shown in Fig. 2.6. The CQI is set by the scheduler
and depends on the user feedback. An effective SINR mapping (ESM) technique
is used to compress the resource block post-equalisation SINR values and the CQI
to a single effective SINR value. By performing mutual information effective SINR
mapping (MIESM) [25] the resulting effective SINR value is mapped to a BLER
value using an additive white Gaussian noise (AWGN) performance curve.

The BLER value is used to calculate the user throughput. The LPM operates
in two modes: either the CQI value set by the scheduler is used for the calculation
of the throughput or the throughput for the ideal CQI value is calculated. There-
fore, the simulator always produces throughput results for the best CQI case and
the case where the CQI is set by scheduler. Since this is dependent on the user
feedback, it is called the feedback case.

2.7. Beamforming and Precoding

Beamforming and precoding are two techniques to steer the beams of antenna
arrays. Figure 2.7 shows an antenna that steers multiple beams to groups of users.
Since the beams are spatially separated, it is possible to transmit to these users
at the same time. This principle is called SDMA. The more spatial separation is
achieved, the less interference will impair the channel quality of other users.

In general, we distinguish between analog and digital beamforming as depicted in
Fig. 2.8. With analog beamforming a single radio frequency (RF) chain supplies
the antennas. Furthermore, each antenna is equipped with an analogue phase
shifter that steers the overall beam in a specific direction. In contrast to that,
in digital beamforming each antenna is driven by an independent RF chain and
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2. System Level Simulation

Figure 2.7.: With Space-division multiple access the base station steers radio
beams to users. Therefore, multiple users can be served simulta-
neously. For zero-forcing precoding the situation is more complex,
since beams are formed such that multi-path components add up de-
structively to eliminate interference. Therefore, this picture should be
treated as simplistic illustration.

the signal processing is performed in the base band. Compared to the analogue
case, it is possible to form complicated beam patterns and therefore apply more
advanced signal processing techniques such as ZF beamforming. The scope of this
work is purely on digital beamforming.

Another distinction is made with respect to the terms beamforming and precod-
ing. Beamforming is a name that applies if each user has a single antenna. The
name precoding is used if users are equipped with more than one antenna. This
allows to serve them with more than one spatial data stream. The scope of this
work is mainly on beamforming, since users in the simulations have one receive
antenna.

2.8. Performance Metrics

This section defines metrics used later in the simulations, since the simulator pro-
duces BLER and throughput values on a slot basis and some derived metrics are
used to analyse the results.

The user throughput is the number of bits that a user transmitted in a time
interval. The user throughput for user k in slot n is defined as tk,n. If we assume
K users and N simulated slots, the sum over the individual user throughput in a
slot n is called the slot sum-throughput and expressed as

Tslot,n =
K�
k=1

tk,n, (2.4)
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2. System Level Simulation

Figure 2.8.: Analog and digital beamforming. In analog beamforming one RF-
chain is shared by all antennas and phase shifters are used to steer
the beam. In contrast, digital beamforming spends one RF-chain per
antenna and therefore allows to steer the beams by baseband signal
processing. The beam patterns are a simplistic illustration.

and the total throughput of a user averaged over slots is called the user sum-
throughput

Tuser,k =
1

N

N�
n=1

tk,n. (2.5)

The average sum-throughput is the total number of bits transmitted over the
simulated time and expressed as

Tavg,sum =
1

N

N�
n=1

Tslot,n. (2.6)

Fairness is measured with the Jain’s fairness index. The fairness in a slot is
calculated by the expression

Jn =
(
�K

k=1 tk,n)
2�K

k=1 t
2
k,n

. (2.7)

Here, the maximum fairness of 1 is achieved if all tk,n have the same value. The
minimum value of 1/K occurs if all but one user have zero throughput.
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3. Proposed Multi-User Link
Quality Model

The task of the LQM is to assess the signal quality in terms of a post-equalisation
SINR. This is the ratio of the intended signal power to noise and interference after
the receiver’s equaliser. In this chapter, a LQM for multi-user MIMO transmissions
is proposed.

The Vienna 5G System Level Simulator uses as LQM for single-user transmis-
sions. The derivation of this model can be found in [24, p. 28], while this section
extends the model for multi-user transmissions. Although this thesis investigates
in users with single-antennas, the proposed model is formulated for an arbitrary
number of user antennas.

An example of how interference can occur in a wireless network is depicted in
Fig. 3.1, where a user receives the intended signal and interference from other
base stations. To keep indices simple the user of interest k is connected to base
station number 1 and gets interference from M base stations. Each base station
has several users connected and the user indices of base station i are contained in
the set Gi. The channel between the user of interest k and base station i is denoted
as Hi. The digital precoder for any user g at base station i is Fg,i. The symbols
for any user g connected to a base station i are sg,i. The user of interest k utilises
a receive filter which is described by the matrix Rk. In addition, the user receives
noise denoted as zk.

The received signal for the user of interest k results in a superposition of signals
originating from the connected base station and all the other interfering base
stations, at it is depicted in Fig. 3.2. This is mathematically expressed as

yk = RkH
H
1

�
g∈G1

Fg,1sg,1 +Rk

M+1�
m=2

HH
m

�
g′∈Gm

Fg′,msg′,m +Rkzk. (3.1)

The channel matrices Hi are defined in a conjugate transpose manner to keep
consistency with Chapter 4. For sake of a simple notation the matrix dimensions
are not written explicitly, since they depend on the number of user antennas and
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H1

H2
H3

Cell 1

Cell 2 Cell 3

Figure 3.1.: Interference in a scenario with multiple cells. The coloured users are
served simultaneously by their respective base stations. The blue
users experiences interference from users in his home cell, and all users
scheduled by other cells.

base station antennas, but are indicated as:

Fk ∈ CnTxAntennas×nSymbols

Hk ∈ CnTxAntennas×nRxAntennas

Rk ∈ CnSymbols×nRxAntennas

The signal of interest is at g = k, all other received symbols are interference.
Therefore, the first term of Eq. (3.1) is split up into two parts and the received
signal is written as

yk = RkH
H
1 Fk,1sk,1 +RkH

H
1

�
g∈G1,g ̸=k

Fg,1sg,1+ (3.2)

+Rk

M+1�
m=2

HH
m

�
g′∈Gm

Fg′,msg′,m +Rkzk. (3.3)

Our goal is to calculate the SINR for which we will treat the symbols as well as
the noise as random variables and calculate the expectation of the received signal’s
power. We assume that the user symbols are independent to each other and to
the noise. In addition, the noise is assumed to be zero mean.

E{si,msHj,n} = 0, i ̸= j, ∀m,n (3.4)

E{si,mzH
k } = 0 (3.5)

E{zkz
H
k } = I σ2

z (3.6)
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FilterChannel

Channel
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Precoder
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Base station 1

Base station M+1
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Precoder

Precoder

Precoder

1
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User of
interest

Figure 3.2.: Block diagram for the calculation of the received symbols. Each base
station has to serves multiple users. The user of interest is denoted
with k and is highlighted in orange to emphasise that his symbols
are of interest. All other users are denoted by arbitrary index values
sgx , where gx comes from the set Gi. It is assumed that the user
k is connected to base station number 1. The received signal is a
superposition of all base station signals, including each user’s precoded
symbols.
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To obtain the expectation of the received symbols power the correlation matrix of
vector yk is calculated and expressed as

E{yky
H
k } = (RkH

H
1 Fk,1)E{sk,1sHk,1}(RkH

H
1 Fk,1)

H (3.7a)

+
�

g∈G1,g ̸=k

(RkH
H
1 Fk,g)E{sg,1sHg,1}(RkH

H
1 Fk,g)

H (3.7b)

+
M+1�
m=2

�
g′∈Gm

(RkH
H
mFg′,m)E{sg′,1sHg′,1}(RkH

H
mFg′,m)

H (3.7c)

+RkR
H
k σ

2
z , (3.7d)

where Eq. (3.7a) contains the intended symbol and also inter-layer interference,
Eq. (3.7b) contains multi-user interference from the same cell, Eq. (3.7c) interfer-
ence from other base stations and Eq. (3.7d) noise.

The layer symbols in the signal vector are uncorrelated and are the result of a
bit to symbol mapping. Therefore, the expectation of the power of a symbol is
denoted as

E{si,msHi,m} = Pi,mI. (3.8)

Therefore the correlation matrix is

E{yky
H
k } = Pk,1(RkH

H
1 Fk,1)(RkH

H
1 Fk,1)

H (3.9a)

+
�

g∈G1,g ̸=k

Pg,1(RkH
H
1 Fg,1)(RkH

H
1 Fg,1)

H (3.9b)

+
M+1�
m=2

�
g′∈Gm

Pg′,m(RkH
H
mFg′,m)(RkH

H
mFg′,m)

H (3.9c)

+RkR
H
k σ

2
z . (3.9d)

To obtain the power of a received symbol we are interested in the diagonal elements
of the correlation matrix. The following lemmas are used.

Lemma 1 The diagonal elements cnn of a matrix C = AAH , where A ∈ CM×N

are calculated by

cmm =
N�

n=1

|amn|2. (3.10)

Lemma 2 Using Lemma 1 the diagonal elements of a matrix C = AAH +BBH

are

cmm = [AAH ]mm + [BBH ]mm =
N�

n=1

|amn|2 +
N�

n=1

|bmn|2. (3.11)
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The correlation matrix from Eq. (3.9) is the sum of matrix products and hence
Lemma 2 can be applied.

E{yky
H
k } = Pk,1AAH (3.12a)

+
�

g∈G1,g ̸=k

Pg,1D
(g)(D(g))H (3.12b)

+
M+1�
m=2

�
g′∈Gm

Pg′,mC
(g′,m)(C(g′,m))H (3.12c)

+BBHσ2
z (3.12d)

With the new introduced matrices:

A = RkH
H
1 Fk,1 (3.13)

D(g) = RkH
H
1 Fg,1 (3.14)

C(g′,m) = RkH
H
mFg′,m (3.15)

B = RkR
H
k (3.16)

The diagonal element yii of the correlation matrix is then

yii = Pk,1

�
j

|aij|2 (3.17a)

+
�

g∈G1,g ̸=k

Pg,1

�
j

|d(g)ij |2 (3.17b)

+
M+1�
m=2

�
g′∈Gm

Pg′,m

�
j

|c(g′,m)
ij |2 (3.17c)

+ σ2
�
j

|bij|2. (3.17d)

Finally, the SINR γk,i of user k in symbol i can be expressed. The power of the
symbol of interest is only from element |aii|2, while other contributions are inter-
layer interference and all other terms are either noise, interference from signals
intended for users in the same cell or interference from signals from other base
stations.

γk,i =
|aii|2Pk,1

Pk,1

�
j ̸=i

|aij|2 +
�

g∈G1,g ̸=k

Pg,1

�
j

|d(g)ij |2 +
M+1�
m=2

�
g′∈Gm

Pg′,m

�
j

|c(g′,m)
ij |2 + σ2

z

�
j

|bij|2

(3.18)
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|aii|2 . . . signal
|aij|2 . . . inter-layer interference
|bij|2 . . . noise enhancement

|d(g)ij |2 . . . inter-cell interference

|c(g′,m)
ij |2 . . . intra-cell interference

Furthermore, if we assume a ZF receive filter, the receiver will recover the sent
symbols by suppressing the channel with

Rk = (HH
1 Fk,1)

+ (3.19)

and hence
A = I. (3.20)

This is equivalent to aii = 1 and aij = 0. In this case no inter-layer interference
occurs. If the base station performs ZF precoding, in addition to the ZF receive
filter, interference to users in the same cell will be cancelled as derived in Chapter 4.
In this case dij = 0.

As all simulations performed in this thesis are assumed to have ZF receive filters
as well as ZF precoding, the calculation of Eq. (3.18) simplifies to

γk,i =
Pk,1

M+1�
m=2

�
g′∈Gm

Pg′,m

�
j

|c(g′,m)
ij |2 + σ2

z

�
j

|bij|2
. (3.21)

If users are equipped with a single antenna, then only one symbol can be trans-
mitted. Hence, only one SINR value has to be calculated and channel and precoder
matrices degenerate to vectors. Anyways, the calculation of the SINR remains a
computational expensive problem since it has to be performed for each user in
every resource block. Hence the reduction in complexity given by Eq. (3.21) helps
in decreasing the simulation duration.
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In this section the system model for a multi-user single cell scenario utilising ZF
precoders is established. It is investigated how user grouping affects the channel
conditions of users. An optimisation problem for user grouping is formulated and
implementation challenges are presented. Additionally a user grouping heuristic
called SPRS is proposed, and compared to the SUS algorithm from literature, to
mitigate the problem of high computational complexity. An extension to SPRS is
presented to account for fairness. The performance of the techniques is investigated
by performing system level simulations.

4.1. System Model

We consider downlink multi-user transmissions with a single base station with NT

transmit antennas and K users with a single antenna, as shown in Fig. 4.1. To keep
the notation simple the problem is considered for a single resource block. The base
station transmits to G users simultaneously and applies digital precoding prior to
sending the signal over the channel, where user k receives the symbol

yk = hH
k

�
g∈G

fgsg + zk (4.1)

hk,fg ∈ CNT , zk ∈ C (4.2)

with the channel hk, the precoder fg and the information symbol sg. The informa-
tion symbols are zero-mean random variables with a variance of Pg. The precoding
vectors are of unit norm ∥f∥ = 1, because otherwise they would contribute to the
power allocation and this should only be controlled by the power of the symbols.
Set G contains the scheduled user indices. Variable zk denotes a zero-mean com-
plex Gaussian random variable with a variance of σ2

z . ZF precoding is a technique
to cancel interference to other users by requiring

hH
i fj = cjδi,j, ∀i, j ∈ G. (4.3)

This requirement is only feasible under conditions on the set size of G, which will
be discussed later. With this, Eq. (4.1) is

yk = cksk + zk. (4.4)
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NT
NR=1

NR=1

NR=1

NR=1

Figure 4.1.: Multi-User MIMO system, several users with NR = 1 receive antennas
are served by a base station with NT transmit antennas. The users
receive a mixture of signals from the transmitting antennas indicated
by the dotted lines. The transmit antennas have to send signals in a
way that the superposition of the transmit signals can be decoded by
the receiver.

The precoders transform the effective channel such that each user is served by an
independent data stream. Interference from other users is thereby cancelled.

Therefore, the signal to noise ratio (SNR) γk of user k depends on the inner
product of the channel and the precoder.

γk =
Pk|ck|2
σ2
z

(4.5)

In general, a base station is free to choose the scheduled users. For that, a binary
indicator vector g is introduced

g =
�
g1 g2 . . . gK

�T
, gi ∈ {0, 1}, (4.6)

where gi = 1 means that user i is scheduled and gi = 0 means not scheduled.
Therefore, the set of grouped users is also described as

G = {i|gi ̸= 0}, (4.7)

and the number of grouped users is G = |G|. For sake of simplicity we assume
that after scheduling the indices 1 to G are used for the scheduled users. Defining

f̃k = fk/ck, (4.8)
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we can compactly write Eq. (4.3) as
hH

1 f̃1 hH
1 f̃2 . . . hH

1 f̃G

hH
2 f̃1 hH

2 f̃2 . . . hH
2 f̃G

...
... . . . ...

hH
G f̃1 hH

G f̃2 . . . hH
G f̃G

 =


1 0 . . . 0
0 1 . . . 0
...

... . . . ...
0 0 . . . 1

 , (4.9)

which is equivalent to�
h1 h2 . . . hG

�H �
f̃1 f̃2 . . . f̃G

�
= IG, (4.10)

where, for the sake of simplicity, hi, f̃i denotes the channel and precoder of the
i-th scheduled user. We define

HHF̃ = IG, (4.11)

where H contains the stacked channels and F̃ the stacked precoders. We emphasise
here again that the channel matrix only contains the channels of the scheduled
users and is therefore a function of the indicator vector written as

H = H(g). (4.12)

The pseudo-inverse, for G ≤ NT , of the combined channel matrix solves the equa-
tion and is expressed as

F̃ = H(HHH)−1 = H+. (4.13)

This defines the feasibility condition: the maximum number of users in a group
G is upper bounded by the number of transmit antennas NT . From Eq. (4.8) we
conclude that

|ck|2 = 1

∥f̃k∥2
. (4.14)

We are therefore ready to express the SNR from Eq. (4.5) of a scheduled user as

γk =
Pk

σ2
z

��f̃k

��2 . (4.15)

It is assumed that the base station serves G ≤ min{K,NT} users simultaneously.
Utilising Eq. (4.4) the achievable rate of a scheduled user is calculated by Shannon’s
AWGN channel capacity [26] and is a function of the power allocation and the user
grouping vector from Eq. (4.6).

Rk(g, Pk) = log2
�
1 + γk

�
= log2

�
1 +

Pk

σ2
z

��f̃k

��2

�
(4.16)
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Sum-rate R is the sum of the individual user rates and expressed as

R(g,p) =
K�
k=1

gkRk(g, Pk). (4.17)

Vector p contains the power allocation values Pk. At the base station, a maximum
transmit power Pt is imposed. The objective of maximising the sum-rate under
ZF precoding is formulated in the following optimisation problem

maximize
g,p

K�
k=1

gk log2

�
1 +

Pk

σ2
z

��f̃k

��2

�
(4.18a)

subject to
K�
k=1

gkPk ≤ Pt (4.18b)

K�
k=1

gk ≤ NT , (4.18c)

where Eq. (4.18a) is called the optimisation function. The constraint in Eq. (4.18b),
ensures that the maximum transmit power is not exceeded and Eq. (4.18c) ensures
that not more users than antennas are scheduled.

The problem has to be solved with respect to the user allocation and the power
allocation. If we only look at this problem with respect to the power allocation,
meaning that we assume a given user grouping, this was already solved and the
solution is the water-filling algorithm [26].

Therefore, we now focus on looking at the problem only with respect to the user
allocation. We impose that the transmit power is uniformly distributed between
the scheduled users, since this will not artificially change the macroscopic channel
conditions defined by the environment and is allocating a fair share of power to
each user. In addition, it is also a simple method to keep the complexity low.
Therefore, for the rest of this thesis the sum-rate is expressed as

R(g) =
K�
k=1

gkRk(g, Pt/G). (4.19)

In optimisation theory, it is convenient to have convex problems for which nu-
merical solvers exist. To use the framework of convex optimisation the problem
has to fulfil three basic properties: the optimisation variable has to come from
a convex set, the objective function has to be a convex function, and also the
inequality constraint functions have to be convex functions [27, p. 127].

The integer-valued user allocation variable g imposes a challenge, since it is not
from a convex set. Integer relaxation provides the possibility to use the convex
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optimisation framework to find a sub-optimum solution as described in [27, p. 194].
Here, the integer variable is relaxed to a real number. In the solution, the variable
is rounded to the closest integer.

It was mentioned that it is also required that the objective function is convex. A
function can be determined to be convex by disassembling it into basic functions
and checking if each function preserves convexity. The outer function of Eq. (4.18a)
is the sum of negative logarithms. The negative logarithm is a convex function,
and the sum an affine mapping, both operations that preserve convexity. Inside
the logarithm there is the precoder magnitude. It depends on the user selection
variable and the pseudo-inverse in Eq. (4.13). This function is not convex, since
its domain is not a convex set.

Therefore, problem 4.18 is neither convex nor is it obvious to find a relaxation.
To find an optimum solution, all possible user allocations have to be checked. In
each of these steps, the calculation of the pseudo-inverse requires one to calculate
the matrix inverse of a G×G matrix, where G is the size of the user group. This
imposes heavy computational effort. In [11] it is defined as a complex combinatorial
problem. Therefore, we rely on heuristics to find sub-optimum solutions in feasible
time.

4.2. Semi-Orthogonal User Selection

Semi-Orthogonal User Selection (SUS) [10] is a heuristic that groups users by
channel correlation and magnitude. The motivation for this relies on the behaviour
of the precoder with regards to correlation. Equation (4.15) shows that the SNR
of a user depends on the squared inverse of the precoder magnitude. Hence, it is
desired to have small precoder magnitudes to increase the SNR and therefore the
rate.

We will show the dependency of the SNR to the channel correlation by a simple
example, where two users are served by two transmit antennas. Let the channels
be defined as

h1 =
�
1 0

�T
, h2 =

�
cosα sinα

�T
. (4.20)

Using Eq. (4.13), the precoders are calculated

H =
�
h1 h1

�
(4.21)

HHH =

�
1 0

cosα sinα

� �
1 cosα
0 sinα

�
=

�
1 cosα

cosα 1

�
(4.22)

F = H[HHH]−1 =
1

sinα

�
sinα 0

− cosα 1

�
. (4.23)
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Figure 4.2.: Normalised user SNR in a two user and two antenna scenario over the
channel correlation.

This allows to express the magnitude��f̃1

��2
=

��f̃2

��2
=

1

1− cos2 α
=

1

1− ρ2(h1,h2)
, (4.24)

where the channel correlation is defined as

ρ(hi,hj) =
|hH

i hj|
∥hi∥ ∥hj∥ = cosα. (4.25)

The user SNR according to Eq. (4.15) is then

γ(ρ) =
P

σ2
[1− ρ2(h1,h2)]. (4.26)

This function is plotted in Fig. 4.2 for a logarithmic SNR, where the SNR is nor-
malised with respect to transmit power and noise. With an increase in correlation
the SNR diminishes.

For an increasing number of antennas and users, the situation becomes more
complex. Here, user channels have correlation to multiple other channels. Fig-
ure 4.3 depicts the situation with three users. Although the situation is now more
complex, the same principle applies and precoding magnitudes will tend to adopt
larger values if channels are correlated.

Based on this insight, the SUS algorithm performs the user grouping by selecting
users that are not too correlated to each other. This property of weak correlation
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Figure 4.3.: Illustration of the behaviour of zero-forcing precoders in the 3D space.
In Fig. 4.3a we see three orthogonal channels. The resulting precoders
in Fig. 4.3c are also orthogonal. The situation changes in Fig. 4.3b,
where channel h2 is correlated. The resulting precoders in Fig. 4.3d
are much larger and result in a poor signal to noise ratio.
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is called semi-orthogonality. The algorithm works in two steps: an election step,
where a user is added to the group, and a filtering step, where correlated users are
removed from the candidate pool.

In Algorithm 1 a pseudo-code for SUS is shown. The program starts by adding
the user with the strongest channel as the first grouped user. The remaining users
form the user pool. As long as there is a user in the pool, an orthonormal basis is
constructed with the basis vectors of the already grouped users and the candidate.
The channel vectors in the pool are projected on the basis and the user whose
projected vector has the largest norm is added into the group. Afterwards, in the
filtering step, the correlation between the projected vectors and the users in the
pool is compared with a parameter α. Users with high correlation are removed
from the pool. The algorithm ends if the pool is empty.

Algorithm 1 Semi-Orthogonal User Selection Algorithm
1: g1 = argmaxk hk ▷ Initialise with the strongest user.
2: P = {1 . . . K} \ {g1} ▷ Rest of the users form the pool.
3: G=1
4: while |P| > 0 and G < NT do ▷ Pool is not empty and system is feasible.
5: for k ∈ P do ▷ Election step
6: rk = hk −

�G
g=1 h

H
k gggg ▷ Calculate orthonormal basis.

7: end for
8: G ← G+ 1
9: k̂ = argmaxk∥rk∥ ▷ Pick the strongest candidate.

10: gG = k̂
11: gG =

rk̂
∥rk̂∥

12: P ← P \ {gG} ▷ Filter step. Remove candidate from pool.
13: P ← {k ∈ P|hH

k gG
∥hk∥ < α} ▷ Remove correlated users from pool.

14: end while
15: G = {g1, g2, . . . , gG} ▷ A set containing the grouped users.

Compared to the exhaustive search, the algorithm provides a significant reduc-
tion in complexity. First, because the users are added in a greedy manner. And
second, its not necessary to compute any matrix inverse. A downside to this is that
the algorithm does not directly maximise the sum-rate. In addition, a value for
the α parameter has to be found. Its optimum value is unknown and is depending
on the number of users, antennas, and the channel condition. Therefore practical
simulations must be performed to find a suitable value.
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4.3. Single Path Random Sampling

The section above describes that the SUS algorithm performs grouping based on
the semi-orthogonality properties of the channels. In [10], the authors showed that
for K → ∞ this scheme is asymptotically optimal. For a finite number of K this
does not hold and opens the possibility to find other heuristics.

This work proposes a novel heuristic, which is called single path random sam-
pling (SPRS), for finding a subset of users that maximise the sum-rate. Its re-
quirement is to get closer to the sum-rate optimisation goal.

This comes with a price, since we showed in Eq. (4.19), that the calculation of
the sum-rate requires the calculation of a pseudo-inverse. Hence, to reduce time
complexity, SPRS is based on four techniques: (1) The user with the strongest
channel is elected as the first user in the group. (2) The algorithm is greedy. In
each iteration step, a user is added to the group. (3) To reduce complexity, not all
users in the pool are considered as candidates. In each iteration step, the algorithm
samples candidates from the user pool as shown in Fig. 4.4. This candidate pool
is used for further calculations. (4) Users with strongly correlated channels will
be sorted out. Compared to SUS, this last step is not to reduce complexity, but
to ensure numerical stability. Since the sum-rate calculation requires to calculate
an inverse matrix, it is important to have a suitable matrix condition.

In Algorithm 2 a pseudo-code of the algorithm is presented. As described above,
the algorithm works with a user pool and a candidate pool. Parameter PS, the
skip probability, is introduced to control the size of the candidate pool. PS is a
real number between 0 and 1. It represents the probability that a user will not be
part of the candidate pool. The expected value of the size of the candidate pool
for K users is therefore (1−PS)K. The lower the skip probability, the more users
will be part of the candidate pool. This will increase the computational effort,
but also provides better solutions. Therefore, the skip probability can be seen as
a trade-off parameter, adjusting complexity at the cost of throughput.

Compared to SUS, the SPRS algorithm provides some advantages and disadvan-
tages. SUS suffers from the problem that users are removed in an early iteration.
Once removed, they are never considered again as possible candidates, whereas in
the SPRS case, a user always has the opportunity to be reconsidered again. By
design, the optimisation is performed with regards to the sum-rate. Simulations
will show in the later sections that this indeed leads to higher rates. A downside
is an increase in complexity, which arises from the matrix inverse calculations.
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Algorithm 2 The SPRS algorithm. For sake of simplicity, the function R(G)
maps the user grouping set to the achieved sum-rate. This is equivalent to the
notation in Eq. (4.19), but with set G as function argument.
g1 = argmaxk∥hk∥ ▷ Initialise with the strongest user.
G = {g1} ▷ Initialise group of scheduled users.
P = {1 . . . K} \ {g1} ▷ Rest of the users form the pool.
Rmax = R(G) ▷ Initialise sum-rate of grouped users.
i = 1 ▷ Initialise iteration index.
while P ̸= ∅ and i < NT do

gi = 0
P ← {k ∈ P| hH

k hi

∥hk∥∥hi∥ < α} ▷ Filter correlated users from pool.
i = i+ 1
C ← Sample from set P with skip probability PS

for c ∈ C do ▷ For each user in the candidate pool
R′ = R(G) ▷ Calculate rate
if R′ > Rmax then ▷ If the rate increases

gi ← c ▷ Save user
Rmax ← R′

end if
end for
if gi == 0 then

End algorithm ▷ End if no user increased the rate.
end if
G ← G ∪ {gi} ▷ Add user that maxed out rate.
P ← P \ {gi}

end while

User pool

Candiate
Grouped

Figure 4.4.: Illustration of the SPRS algorithm. Purple users are already part of
the group. The remaining black users form the user pool. Out of
these, the algorithm samples the circled candidates.
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4.4. SPRS Fairness Extension

The SPRS algorithm presented in the last section optimises for sum-throughput
and fairness is not considered. Users with favourable channel conditions will be
preferentially scheduled and users with bad channels are starved. This section
aims to extend the algorithm to consider fairness. For this, instead of using the
sum-rate R as shown in Algorithm 2, a weighted sum-rate metric is used. Priority
P is introduced and defined as

P =
R̂a

Rb
avg

. (4.27)

Here R̂ is the expected throughput and Ravg is the past average throughput of the
user. Parameters a and b tune the optimisation goal. Choosing a = 1, b = 0 leads
to

Pbest-rate = R̂ (4.28)

and therefore to the SPRS algorithm introduced in the former section. The com-
bination a = 0, b = 1 results in

Pmax-min =
1

Ravg
(4.29)

and prefers users with low average throughput. Hence, a uniform distribution
of user throughput is expected. The combination a = 1, b = 1 leads to a PF
scheduling with

PPF =
R̂

Ravg
, (4.30)

where the expected throughput is weighted against the past average throughput.
Otherwise the algorithm is identical with Algorithm 2, with the exception of in-
terchanging the sum-rate mapping to the priority mapping. Due to the random
nature of the algorithm the number of slots until a certain fairness is reached de-
pends on the skip probability. If many users are skipped it can take some time until
fairness is achieved, since in each iteration the skipped users are not considered
for fairness.

4.5. Performance of SUS and SPRS

The rest of this chapter presents and discusses simulation results of various per-
formance comparisons between grouping algorithms. Simulations are performed
with the Vienna 5G System Level Simulator which is described in Chapter 2. For
the following simulations users are randomly placed around the base station, as in
Fig. 4.5. The high number of users will ensure a wide variety of channel strengths
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due to path loss. During simulation the users will move with constant velocity in
a random direction at moderate speed to create time-varying correlated channels.
To ensure a fair comparison all algorithms start with the same user positions. From
there users perform walks in random directions. This is important for simulations
presented in Section 4.7, since fairness among individual users is examined.

The first simulation compares the performance of the SUS and SPRS algorithm,
where we investigate the best-rate version of SPRS. Table 4.1 shows the key pa-
rameters of the simulation. The number of users is much higher than the number
of antennas, which ensures multi-user diversity. Since the performance is depen-
dent on the algorithm parameters, the simulation is performed for a SUS α value
of 0.2 and 0.5, and for a SPRS skip probability of 0.9 and 0.7. This shall give
an idea for the parameter choice of α and PS. The performance is evaluated in
terms of the sum-throughput per slot as defined in Eq. (2.4) an the results are
plotted as an empirical cumulative distribution function (ECDF) in Fig. 4.6. It
is shown once for the case where the users reported CQI values are used and for
the case where the CQI value that maximises the throughput was chosen by the
scheduler. The results show that SPRS is achieving higher sum-throughput values
compared to the SUS algorithm. The influence of the grouping parameter is clearly
visible, emphasising the importance of choosing a suitable value. Here, choosing
α too small degrades the performance because this results in many filtered users
and hence small group sizes, which reduces the rate. A similar observation holds
for the skip probability of SPRS, but with a smaller influence. Choosing a skip
probability of 0.9 instead of 0.7, meaning that from 100 possible users only 10
and not 30 users are searched in each iteration, degrades the throughput a bit,
but still offers high sum-throughput. Hence, the skip probability is more of a
throughput-to-complexity trade-off parameter.

It is observed in the difference between the feedback and best CQI case, that
incorrect CQI feedback deteriorates the performance. A user has to report his CQI
value for every slot. At the same time the precoder changes from slot to slot, and
with it the SNR, making it hard to deliver an up-to-date value to the base station.

4.6. SPRS Compared to the Exhaustive Search

This scenario compares the performance of the exhaustive search and SPRS in
the best-rate version. Although the exhaustive search is not feasible for a large
number of users it can still be performed for a small number of users. In this
case the performance of SPRS can be compared to the optimum solution. It is
intended to show how far the result deviates from the optimal solution due to
the greedy approach and the reduction of search space due to random sampling.
The complexity limits the number of users and antennas to 18 with the simulation
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Table 4.1.: Simulation Parameters for Section 4.5
Base stations 1
Transmit antennas 32
TX power 1W
Users 100
Small-scale fading model PedA 5 kmh−1

Bandwidth 9MHz
Number of slots per chunk 200
Number of chunks 72
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Figure 4.5.: Fixed user and base station positions of the single cell scenarios.
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Figure 4.6.: Sum-throughput on a slot basis comparing SUS and SPRS best-rate.
In Fig. 4.6a CQI values are reported from the users. In Fig. 4.6b
optimum CQI values are used.

parameters shown in Table 4.2.
In Fig. 4.7 the slot sum-throughput results are shown. What can be seen on

first sight is the similar performance of all three algorithms. This concludes that
the greedy approach is finding solutions close to the optimum. Also reducing the
search set by 50% still yields good results. But also the multi-user diversity is still
high and the algorithm has nine candidates available in each iteration step.

Table 4.2.: Simulation Parameters for Section 4.6
Base stations 1
Transmit antennas 18
TX power 1W
Users 18
Small-scale fading model PedA 5 kmh−1

Bandwidth 4MHz
Number of slots per chunk 150
Number of chunks 36
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Figure 4.7.: Slot sum-throughput for SPRS best-rate and the exhaustive Search.

4.7. Performance of SPRS Fairness Extension

This scenario examines the performance of SPRS with its fairness extension as
proposed in Section 4.4. Three operation modes are examined: the best-rate
version that optimises for throughput, the PF version, and the max-min version.
The simulation parameters are shown in Table 4.3. The number of antennas was
set back to 32, but the number of users was reduced to 12 to ease the illustration.
Users were sorted by their path loss in ascending order. Hence, a user with low
index is close to the base station.

In Fig. 4.8 the total throughput per user averaged over slots is plotted. In
case of the original SPRS algorithm the users with strong channels are preferred
and users with bad channels are almost completely starved. The max-min variant
balances the throughput among the users, at the cost of reducing the average
sum-throughput. The PF variant operates in-between those regimes, allocating
proportionally more resources to strong users, without starving weak users. In
Fig. 4.9 the price, in terms of the slot sum-throughput, that must be paid for the
fairness is shown.

The two parameters a and b allow an easy control of the system’s fairness.
Furthermore, it opens the possibility for future work to investigate in more complex
priority control for scenarios where users have traffic policies. This policies could
be directly implemented in the user grouping algorithm.
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Table 4.3.: Simulation Parameters for Section 4.7
Base stations 1
Transmit antennas 32
TX power 1W
Users 100
Small-scale fading model PedA 5 kmh−1

Bandwidth 9MHz
Number of slots per chunk 200
Number of chunks 72
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Figure 4.8.: User sum-throughput to compare SPRS fairness. Users with a lower
index have higher macroscopic SNR conditions.
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Figure 4.9.: Slot sum-throughput comparison of the different fairness options.

4.8. SPRS Algorithm Complexity

It is still an open question what value to choose for the skip probability and
how it influences the complexity. Complexity is an important topic, since the
grouping algorithms have to be executed periodically by the base station. The
computational effort should not be too high to reduce power consumption. If the
user grouping should be performed every five slots, the algorithm has to deliver a
solution every 5ms. To get an idea of its influence, simulations are performed for
a skip probability ranging from 0 to 1. The average sum-throughput as well as the
time spent for simulation are saved and compared to the SUS algorithm. Here, we
choose the SUS parameter α = 0.2, since it delivers the highest throughput with
the lowest simulation duration.

The simulation is performed over 56 chunks with 200 slots each, as shown in
Table 4.4. The user positions are randomly generated for each chunk according
to a Poisson 2D process and the average sum-throughput over slots, as defined in
Eq. (2.6), is calculated over all chunks.

The run-time and average sum-throughput over the slots is shown in Fig. 4.10.
As can be seen, an increasing skip probability has a strong impact on the sim-
ulation time. For low skip probabilities the simulation time is high because of
the large candidate sets. Large candidate sets have the advantage that the multi-
user diversity is higher, but the simulation time is larger. One may think that a
smaller candidate set size for higher skip probabilities is the only reason for the
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Table 4.4.: Simulation Parameters for Section 4.8
Base stations 1
Transmit antennas 100
TX power 1W
Users 100
Small-scale fading model PedA 5 kmh−1

Bandwidth 9MHz
Number of slots per chunk 200
Number of chunks 54

faster simulation time. But also a second effect comes into play: if the set is too
small, the algorithm will abort with higher probability since no user can increase
the sum-rate.

Although the candidate sets get smaller and the algorithm aborts earlier with
increasing PS, we observe that the throughput is still unaffected until PS = 0.8.
There are variations in the throughput and the curve is not monotonic, but this
is explained by the random nature of the algorithm. It is not guaranteed that a
global optimum is found and some solutions will be less favourable.

With an increasing PS the algorithm runs less iterations, since the pools are
smaller, but it does not affect the throughput a lot since users added at the last
iteration stage usually contribute only with small throughput gains. Only if the
candidate sets get too small, the throughput abruptly collapses, since too many
users are skipped.

To compare it with the SUS algorithm, the graph shows two dashed lines for
α = 0.2. As it can be seen SUS has overall a lower run time complexity compared
to SPRS, but also its throughput is lower. The points at PS = 0.8 and PS = 0.9
are especially of interest, since they achieve a significant throughput gain with
moderate complexity. At PS = 0.8, SPRS achieves a throughput that is about
1.74 times higher than the SUS throughput. On the other hand, it is slower by
a factor of 2.76. For PS = 0.9, it achieves a throughput that is about 1.5 times
higher than the SUS throughput, and is slower by a factor of 2.5.

One could have the idea to find the point where SUS and SPRS produce the same
throughput values. Unfortunately, this is hard to achieve since after PS = 0.95,
the throughput decreases significantly. Due to the many random variables, lengthy
simulations are necessary to produce a stable point, which is infeasible.
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Figure 4.10.: Complexity in terms of simulation duration and average sum-
throughput of the SPRS best-rate algorithm. The dashed lines show
the performance of the SUS algorithm with α = 0.2. The bars at the
throughput points show the 80-th and 20-th percentiles.
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This chapter extends the previous chapter from a single cell to a cellular scenario.
The optimisation problem is formulated, and difficulties due to the even higher
complexity are discussed. An approach to suboptimal user grouping is investigated
in combination with fractional frequency reuse (FFR). The performance of SUS
and SPRS in scenarios with and without FFR is investigated with system level
simulations.

5.1. System Model

In Section 4.1 a system model was presented for a scenario with a single base station
and multiple users. We extend the model to the cellular case, where multiple base
stations serve multiple users. It is assumed that all base stations use ZF precoding
to serve their users, and therefore no intra-cell interference is created. Users not
only receive noise, but also interference coming from neighbouring base stations,
but in general, a base station is capable to use the available degrees of freedom
to form beams that avoid interference to users of a neighbouring cell. As we are
now considering multiple base stations, we assume that each user is connected to
one of the B base stations. Therefore, the user SNR from Eq. (4.15) is extended
with the interference from the other base stations and is now called the user SINR.
Hence, the SINR of user k scheduled at base station b is expressed as

γk =
Pkb/

��f̃kb

��2

σ2
z +

B�
i=1,i ̸=b

(1− gki)
�
k′∈Ki

Pk′i|hH
kif̃k′i|2

. (5.1)

Here, Pkb and f̃kb denote the power and precoder allocated for user k from base
station b. The noise is assumed to be zero-mean Gaussian with a noise variance
of σ2

z . Variable gkb = 1 denotes that the base station b is scheduling the user k
and variable cki = 1 denotes that the base station i is zero-forcing the channel
of user k, therefore creating no interference. This models the possibility of base
stations cancelling interference to users of other cells. Set Ki contains indices of
users served by base station i. Variable hki represents the channel between base
station i and user k.
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Similar to the single base station case in Chapter 4, it is again desired to for-
mulate an optimisation problem. Therefore an extension to Eq. (4.18) is derived
with objective of maximising the sum-rate in a cellular system using the Shannon
channel capacity.

maximize
g,P

B�
b=1

�
k∈Kb

gkb log2

�
1 +

Pkb/
��f̃kb

��2

σ2
z +

B�
i=1,i ̸=b

(1− cki)
�
k′∈Ki

Pk′i|hH
kifk′i|2

�
(5.2a)

subject to
K�
k=1

gkbPkb ≤ Pb,total (5.2b)

K�
k=1

(gkb + ckb) ≤ Nb,T (5.2c)

B�
b=1

gkb = 1 (5.2d)

The objective function in Eq. (5.2a) is constrained by Eq. (5.2b) such that the
total transmit power Pb,total of a base station is not exceeded. Equation (5.2c)
ensures that the number of scheduled and zero-forced users is not larger than the
number of transmit antennas Nb,T at a base station. Equation (5.2d) ensures that
a user is at most scheduled by one base station.

Compared to the optimisation formulated in Eq. (4.18) the problem increased
in complexity. Although a relaxation of the problem is possible by assuming a
uniform power distribution and only optimise with regards to the user grouping,
and removing the possibility of cancelling interference to other users from other
cells, the problem is still not fitting in an optimisation framework and an exhaus-
tive search is required. For a large number of users, this is infeasible to solve in
an acceptable time. In the next section we will therefore focus on feasible user
grouping heuristics to find suboptimal user groups in acceptable time.

5.2. Fractional Frequency Reuse

Modern mobile networks are operated in a single-frequency deployment, since this
increases the spectral efficiency. Here, all base stations operate in the same fre-
quency band. However, while the spectral efficiency is increased, users at the cell
edge suffer from bad channel conditions and become strongly limited by interfer-
ence. This creates a challenge for the grouping heuristics, since now not only noise,
but also interference has to be considered. One strategy for designing a heuristic is
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Figure 5.1.: The macroscopic signal-to-interference ratio of two base stations with
1 km distance assuming a free space path loss model. The cell-edge
users are interference limited and suffer from bad reception quality
due to a low macroscopic SIR.

to first find a method to mitigate this additional interference. For example, having
two base stations transmitting with equal power and assuming the FSPL model
from Eq. (2.1), the macroscopic signal to interference ratio (SIR) is expressed by

γ(d) = 20 log


D − d

d

�
, (5.3)

where D is the distance between the base stations and d the distance between the
base station and the user along the connecting line. Figure 5.1 represents this
equation with a distance D of 1 km, assuming that the user is always connected
to the closer base station.

A way to mitigate this high interference, is to use different frequency bands at
the cell edge. The frequency band for the inner users is common for all cells, and
therefore called the full reuse band. Contrary, the cell edge users are served in
a band called the partial reuse band. This strategy for interference mitigation is
called fractional frequency reuse (FFR), as shown in [28].

A common example is the reuse-3 pattern for hexagonal grids, shown in Fig. 5.2.
It provides three partial reuse bands, making it possible that neighbouring base
stations in a hexagonal arrangement never share a partial reuse band. The band-
width parameter βFR is the fraction of the bandwidth reserved for inner users. For
the reuse-3 pattern the rest of the bandwidth is shared evenly by three partial
reuse bands.
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Figure 5.2.: Fractional frequency reuse-3 pattern. The hexagons from Fig. 5.2a rep-
resent cells, where each cell is served by a base station in the hexagon’s
centre. All base stations share a full reuse band that is represented by
the circles. Users at the cell edge are assigned to partial reuse bands.
With three partial bands, as shown here, a pattern can be found where
base stations mitigate interference to neighbouring cell edge users. In
Fig. 5.2b the full reuse and partial reuse bands are drawn in a power
spectrum density graph with the threshold and the bandwidth param-
eter.

As users are now served in different bands the scheduler has to decide which
users are at the cell edge. To achieve this, it is assumed that users report their
SIR to the base station. This value is compared to a threshold γthr, and a user k is
considered to be at the edge of the cell if its SIR γk is smaller; hence the inequality

γk < γthr (5.4)

is fulfilled. Therefore, parameter βFR, together with parameter γthr determine
characteristics of the FFR network. If the threshold is high, many users are at the
cell edge, diminishing the throughput as most of the users are scheduled in the
smaller partial reuse band. Low thresholds will decrease the number of users in
the partial reuse band, and if no fairness scheduling strategy is applied the fairness
in the system decreases. The system has to be designed, such that only users that
suffer from bad channel conditions are served in the less interfered partial reuse
bands. Therefore, the combination of bandwidth share and threshold is expected
to control the trade-off between throughput and fairness.

A network with such a reuse-3 pattern has been studied in [24] for the case
of single user MIMO transmissions. Hence, only a single user per RB is served
by a base station. Here, the author compares the performance of the network
in terms of fairness for various values of βFR and γthr. They investigate how
different scheduling strategies, namely round robin and best CQI scheduling, are
affecting the throughput and fairness. It was shown that for round robin scheduling
it is possible to achieve a throughput and fairness gain compared to a reuse-
1 network, while with PF scheduling no throughput gains are possible, without
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diminishing the fairness. Nevertheless, FFR provides a way to control overall
fairness by adjusting the cell edge threshold and the fractional bandwidth share
[24].

Although the single-user case was extensively studied in [24], it is the goal to
investigate the performance if multi-user transmissions are performed. For this we
first investigate a scenario without FFR and compare how SUS and SPRS perform
in a cellular scenario. Then a scenario with FFR is used with SPRS in the best-rate
mode and with PF scheduling.

5.3. SUS and SPRS in a Cellular Scenario

This section investigates the performance of the SUS and SPRS algorithm in a
cellular scenario without FFR. This is equivalent to defining the parameters βFR =
1 and γthr = −∞. Hence, all bandwidth is allocated for the full reuse band, and all
users are inner users. The base stations are placed on a hexagonal grid as shown
in Fig. 5.3. The users are distributed by a random Poisson point process and
are surrounded by an additional ring of interfering base stations. The simulation
parameters are listed in Table 5.1. Each base station is equipped with 32 antennas
and the SPRS algorithm is executed with PS = 0.4 and PS = 0.7 and SUS with
α = 0.2 and α = 0.5.

Before SPRS and SUS are ready to operate in a cellular scenario one additional
challenge has to be solved. The cellular optimisation problem in Eq. (5.2) is more
complex compared to the single cell case due to an additional interference term.
The interference is dependent on the scheduling decisions of all base stations,
requiring that the optimisation is performed jointly. To keep the complexity low
the SUS or SPRS heuristic will be performed independently for each base station.
Hence, the interference created by the neighbouring base stations is unknown. To
solve this, the grouping heuristics are provided with an estimate of the macroscopic
SINR, which is assumed to be delivered by the user together with the CQI. Using
this modification the two algorithms are ready for cellular scenarios.

Figure 5.4 shows the ECDF of the sum-throughput per slot for SUS and SPRS
where the throughput is summed over all base stations. It is visible that SPRS
is delivering the highest rates and the influence of the parameters α and PS is
observable. This is similar to the behaviour of the single cell scenario in Sec-
tion 4.5 as seen in Fig. 4.6. Directly comparing this scenario and the scenario in
Section 4.5 reveals that the overall throughput is higher in the multi-user scenario.
This is explained by the larger number of base stations and therefore antennas in
the system, which enables scheduling more users at the same time. So a direct
comparison between these two scenarios is unfair. For SPRS again a larger PS

decreases the throughput, while for SUS the parameter value α = 0.5 performs
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Table 5.1.: Simulation Parameters for Section 5.3
Base stations 17
Transmit antennas 32
Users 100
Small-scale fading model PedA 5 kmh−1

Bandwidth 9MHz
Number of slots per chunk 200
Number of chunks 18
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Figure 5.3.: User and base station positions. User are distributed according to a
Poisson 2D process and base stations in a hexagonal grid arrangement.

better than for α = 0.2. This is surprising as SUS performed better with α = 0.2
in single cell case. This emphasises the sometimes surprising α dependence of the
throughput when using the SUS algorithm.

5.4. Performance with FFR

We are now interested in the performance if FFR is enabled. The cells utilise a
reuse-3 pattern, as described in Fig. 5.2. User grouping is performed independently
for the inner users and the cell edge users. Simulations are performed with the
SPRS grouping algorithm, first for best-rate and then for PF scheduling and the
difference between them is analysed. The FFR bandwidth βFR and the threshold
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Figure 5.4.: Slot sum-throughput for the comparison of SUS and SPRS in the
cellular scenario without FFR. The throughput is summed over all
base stations.

γthr are parameters and swept in the intervals

βFR ∈ [0, 1], γthr ∈ [−3 dB, 15 dB], (5.5)

where the step size is chosen to obtain ten values for both of them. Therefore, in
total 100 simulations are performed.

Performance is evaluated using the mean throughput, Jain’s fairness index, the
edge throughput and the peak throughput. Edge throughput is defined as the fifth
percentile (5 percent of the values are below this value), and peak throughput is
the 95th percentile. This gives an idea of the throughput for the lowest and highest
five percent values.

Best-Rate Scheduling
The scenario is first simulated with the SPRS best-rate algorithm for all combi-
nations of the sweep parameters. Figure 5.5 depicts the throughput and fairness
results of the 100 performed simulations over the parameters βFR and γthr.

By analysing Fig. 5.5a, it can be observed that the highest mean throughput is
achieved if all bandwidth is assigned to the full reuse band. This is intuitive, since
we expect that the inner users, that are near to the base station and have therefore
good SINR values, will significantly contribute to the mean and profit from the
additional bandwidth. It is clearly visible that the throughput is also dependent
on the threshold; as it grows bigger, most of the users will be considered to be
at the cell edge and scheduled in the partial reuse band, resulting in a smaller
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bandwidth and hence smaller throughput.
In Fig. 5.5b, Jain’s fairness index is shown to be mainly controlled by the band-

width share. The behaviour of Jain’s fairness is contrary to the mean throughput,
as it grows larger with an increasing partial reuse bandwidth. Therefore, this
shows that FFR offers a trade-off between fairness and throughput, controlled by
the parameters βFR and γthr.

Furthermore, Fig. 5.5c shows that in most cases the edge throughput is low and
close to 0Mbit s−1, so many users are experiencing no throughput. Significant
edge throughput is achieved when using a threshold of 6 dB. Beside this, the
edge throughput rapidly decreases for smaller or larger threshold values. This is
explained by looking at Fig. 5.6, which shows the number of users considered as
cell edge users over the threshold, and reveals that for small threshold values, no
users are at the cell edge. Therefore, this is a waste of bandwidth, since no users
are in the partial reuse band. On the other hand, if the threshold is high, all users
are scheduled in the partial reuse band. The best-rate scheduler then decides to
only select the nearest users to maximise the rate, since they have the highest
SINR. Also here bandwidth is wasted, since the full reuse band is mostly unused
and only a third of the available bandwidth is used.

Surprisingly, Fig. 5.5d, shows that a large full reuse band and a high threshold
lead to the highest peak values. This observation reveals that the highest peak
throughput is not achieved with the same parameters as the highest mean through-
put. At the second thought it is explained by the number of users in the full reuse
band, since now only few users very close to the base station remain in the full
reuse band, as shown in Fig. 5.6. In addition to the large bandwidth, which they
can exclusively use, they also form smaller user groups due to the smaller number
of users in the inner cell, so individual users experience high peak values. Although
a few users experience high peak throughput the mean is not growing, because the
majority of users are in the partial reuse band and experience low throughput.

Proportional Fair Scheduling
The simulations are repeated for the PF scheduling version of SPRS as defined
in Section 4.4. Therefore, we set the parameter of the SPRS algorithm to a = 1
and b = 1 and all other parameters are left unchanged and again the simulation is
performed for 100 parameter combinations and results are shown in Fig. 5.7.

For the mean throughput in Fig. 5.7a the throughput is smaller than for the
best-rate case, which is expected, as scheduling is now also performed with respect
to fairness.

Also for Jain’s fairness in Fig. 5.7b the results show the same trend as in the
best-rate scheduling case. Again, it is seen that the parameters βFR and γthr control
the trade-off between throughput and fairness. The major difference is that more
parameter combinations lead to a higher fairness, leading to the conclusion that
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Figure 5.5.: Results for cellular best-rate scheduling. The graphs a,c,d show the
user throughput encoded in a colour map. The graph b shows Jain’s
fairness index encoded in a colour map. The axes show the bandwidth
share and the threshold parameter.
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Figure 5.6.: Average number of cell edge users over the threshold γthr extracted
from the simulation results.

the optimisation towards fairness is also working in a FFR deployment.
Major differences can be seen in the edge throughput results in Fig. 5.7c, where

compared to the best-rate case, edge users experience significant throughput values
for much more parameter constellations. Interestingly, significant contributions
show up in a diagonal shape in the figure. Before, the algorithm decided to only
schedule the most favourable cell edge users, which means that the closest ones
were picked. Now, the balancing behaviour of the fairness algorithm also picks the
weaker users at the far-cell edge, enabling more users to transmit, also with worse
channel conditions.

The peak throughput in Fig. 5.7d behaves almost identically to the best-rate
case, and the same reasoning as in the best-rate case can be applied to the question
why maximum peak and mean throughput values appear in different parameter
constellations.

Operating Points
In Table 5.2 three operating points are shown with their corresponding results for
best-rate and proportional fair SPRS scheduling and named (a), (b) and (c).

Operating point (a) uses approximately a third of the bandwidth for the full
reuse band with a threshold of 3.6 dB. As can be seen, using the PF SPRS scheduler
does not bring any benefit at this point, since it only increases the edge throughput
by a small amount while decreasing the mean throughput. However, a high mean
throughput can be achieved with the best-rate scheduler while maintaining a high
edge and peak throughput. The Jain’s fairness index for both algorithms is similar
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Figure 5.7.: Results for cellular proportional fair scheduling. The graphs a,c,d
show the user throughput encoded in a colour map. The graph b
shows Jain’s fairness index encoded in a colour map. The axes show
the bandwidth share and the threshold parameter.
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Table 5.2.: Three selected operating points for best-rate and proportional fair
SPRS scheduling with PS = 0.4 in a fractional frequency reuse sce-
nario.

Name βFR γthr Metric Best-Rate Proportional Fair
(a) 0.63 3.6 dB Mean 7.15Mbit s−1 6.93Mbit s−1

Edge 0.60Mbit s−1 0.78Mbit s−1

Peak 17.17Mbit s−1 20.82Mbit s−1

Fairness 0.6 0.58
(b) 0.32 9.3 dB Mean 6.03Mbit s−1 5.15Mbit s−1

Edge 0.29Mbit s−1 1.00Mbit s−1

Peak 19.38Mbit s−1 19.22Mbit s−1

Fairness 0.43 0.48
(c) 0.94 −0.1 dB Mean 9.22Mbit s−1 7.06Mbit s−1

Edge 0.11Mbit s−1 0.60Mbit s−1

Peak 31.59Mbit s−1 17.18Mbit s−1

Fairness 0.49 0.62

and has a value of 0.6.
At operating point (b), two thirds of the bandwidth are reserved for the full

reuse band the threshold is at 9.3 dB. In this case, the PF scheduler is beneficial
as it increases the edge throughput by a factor of 3.48, while keeping the peak
throughput at the same level and decreasing the throughput by a factor of 0.8.

The majority of the bandwidth was allocated for the full reuse band at operating
point (c), and the threshold is very low. Here, the best-rate algorithm achieves a
high mean user throughput, while PF delivers a high Jain’s fairness index.

This leads to the conclusion that FFR in combination with SPRS allows finer
control and trade-off for fairness and mean, edge, and peak throughput. If the pri-
mary goal is to increase the fairness, FFR in combination with best-rate scheduling
can be employed. Also, using a PF scheduler without FFR at all increases fair-
ness. This is not the case for the edge throughput, which is influenced more by the
scheduler type than the FFR parameters. If edge throughput should be increased
significantly it is necessary to employ PF scheduling. The most effective increase
in edge throughput is achieved at operating point (c).

55



6. Conclusion and Outlook

Within this thesis an analysis of multi-user MIMO transmission is given by com-
paring the performance of user grouping algorithms in system level simulations.
Additionally, an overview of the Vienna 5G System Level Simulator is presented
to ease the understanding of the utilised methodology. The main contributions of
the work are a multi-user system level abstraction model to perform system level
simulations and a novel user grouping algorithm called SPRS.

It is shown how the mathematical expressions of the proposed multi-user trans-
mission abstraction model for the Vienna 5G system level simulator are simplified
if ZF receiver filters and ZF precoding are used, enabling the simulation of large-
scale networks.

By deriving a system model for a downlink ZF multi-user single cell scenario, an
optimisation problem was formulated to optimise the sum-throughput with respect
to the user grouping. After deriving the optimisation problem, it was shown that
it does not classify as a convex problem and an infeasible exhaustive search is
required.

This lead to the necessity of finding heuristics to obtain user groups in acceptable
time. A novel heuristic called SPRS is proposed that performs a greedy search with
a random sampling step to find groups that deliver high throughput. It is shown,
by conducting simulations, that SPRS delivers higher sum-throughput than the
well-known SUS algorithm by a slight increase in computational complexity.

Furthermore, an SPRS extension for fairness is proposed that allows to trade-
off the user grouping optimisation between rate or fairness. This allows to apply
scheduling strategies such as best-rate, proportional fair, or max-min scheduling.

It is also investigated how the user grouping heuristics perform in a cellular
scenario with and without the deployment of FFR. Here, a scheduling strategy
is proposed in which users are divided into a full reuse and partial reuse band
and grouped independently with the SPRS algorithm. It was investigated how the
throughput and fairness changes with respect to the FFR and SPRS parameters.
It is shown that FFR in combination with a proportional fair SPRS user grouping
allows to control the fairness among users.

For future work, an investigation of the proposed SPRS algorithm with respect
to non-power delay profile-based channel models is of interest. Especially, models
that do not only rely on statistics could be of interest, for example geometric
models that take the environment and spatial correlation into account.
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Furthermore, an extension of SPRS to support users with multiple antennas and
multiple data streams per user is of interest. Also, supporting other precoding
strategies, for example minimum mean square error (MMSE) based precoding,
would be valuable.
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A. Abbreviations

5G fifth generation

LQM link quality model

LPM link performance model

RB resource block

SNR signal to noise ratio

SINR signal to interference and noise ratio

SIR signal to interference ratio

CQI channel quality indicator

BLER block error rate

OFDM orthogonal frequency-division multiplexing

TDD time division duplex

MIMO multiple-input and multiple-output

DPC dirty paper precoding

ESM effective SINR mapping

MIESM mutual information effective SINR mapping

AWGN additive white Gaussian noise

SDMA space-division multiple access

SUS semi-orthogonal user selection

SPRS single path random sampling

PF proportional fair
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A. Abbreviations

ZF zero-forcing

RF radio frequency

FFR fractional frequency reuse

ZFS zero-forcing with selection

GUSS greedy user selection with swap

FSPL free space path loss

ECDF empirical cumulative distribution function

CSI channel state information

PF proportional fair

MMSE minimum mean square error
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