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A B S T R A C T   

The consideration of vehicle-bridge-interaction effects can be crucial in the computational determination of 
realistic dynamic bridge vibrations during train crossing. In order to implement these effects into calculations 
with the simplified Moving Load Model, the concept of additional mass or additional damping of the bridge 
structure was developed. Besides normative specifications, further numerically and analytically derived ap
proaches are now available to determine the bridge structure’s additional damping value. In this numerical 
study, one approach for determining an additional mass and four different approaches to determine additional 
damping are applied to dynamic calculations of 65 railway bridges. The calculation results are compared with 
those obtained by applying a more sophisticated multi-body model of the train, yielding results closer to reality. 
All calculations are performed for two train types, a conventional locomotive-hauled Railjet and the ICE 4 with 
partly powered passenger cars. The comparison of results indicates that applying one of the redesigned ap
proaches can reflect the influence of vehicle-bridge-interaction for the investigated trains significantly better 
than the approach according to current calculation standards. However, several application limitations due to 
structural and train properties were observed.   

1. Introduction 

The expansion of railway traffic as a highly efficient, economical, 
and environmentally sustainable means of transport plays a central role 
in achieving the overarching goal of climate neutrality. In this context, 
expanding the existing high-speed rail network led to several challenges 
for engineers and researchers aiming to preserve a well-functioning 
infrastructure and to enable economical operation planning. One pri
mary goal is to computationally predict structural vibrations of railway 
bridges subjected to high-speed traffic as reliably as possible, with 
particular consideration of effects of resonance which more frequently 
occur in high-speed traffic. 

There are various calculation models with different levels of 
complexity, calculation efficiency, and accuracy applicable for dynamic 
calculations of railway bridges. The definition of the mechanical model 
representing the dynamic excitation exerted by high-speed train transit 
proved to be an essential influencing factor on the quality of calculation 
results of dynamic bridge vibrations. When choosing a vehicle model, 

different criteria are pursued; On the one hand, the selected vehicle 
models should allow the calculation of bridge vibrations as realistic as 
possible. On the other hand, the computational efficiency and man
ageability of the models should be preferably high without the need for a 
high number of input parameters to enable a wide range of applications. 

Detailed and complex calculation models generally provide a better 
concordance of calculation results with the actual structural behavior. 
Those more detailed models require good knowledge of the trains’ 
properties, the bridge structures, and the superstructure’s dynamic 
behavior. Furthermore, they involve a high number of degrees of 
freedom at the expense of computational efficiency. The European and 
national standards (EN 1991–2:2003/AC:2010 [1] and national an
nexes) allow for dynamic calculations with strongly simplified and 
easily manageable models, such as the commonly adopted moving load 
model (MLM), which idealizes the train as a sequence of axle loads 
moving over the structure with constant velocity. However, the MLM 
cannot capture effects due to the dynamic interaction of vehicle and 
bridge vibrations and, thus, can yield excessive structural vibrations, 
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especially in the case of resonance events (among others, described in 
[2–6]). 

More sophisticated mechanical models depicting the vehicles as 
multi-body systems like the detailed interaction model (DIM) can 
consider these, in most cases, vibration-reducing effects of vehicle- 
bridge-interaction (VBI) and produce more realistic results of struc
tural vibrations. Thus, they can facilitate the computational verification 
of compliance with the serviceability limits specified in EN 1990:2002/ 
A1:2005/AC:2010 [7], ensuring traffic safety. This is particularly the 
case for the maximum vertical structural accelerations, which are 
limited to 3.5 m/s2 by [7] if no other national limit must be applied. 
Vertical deformations of the bridge structure are also limited to L/600, 
with L being the bridge span, but since this design criterion is generally 
less critical than the vertical acceleration limit, the focus of the following 
investigations was laid on the latter. 

According to the investigations in [8], the vibration-reducing influ
ence of the VBI on the structural accelerations correlates in particular 
with three parameters that can be formulated as length, mass, and fre
quency ratios of the bridge structure and the crossing vehicle. The in
fluence is most pronounced when the fundamental frequency of the 
considered structures corresponds approximately to the bogie fre
quencies (the primary suspension stage), and the bridge mass is low 
compared to the bogie masses. 

While producing more realistic and generally less critical calculation 
results in terms of design-relevant accelerations, more complex vehicle 
models require more input parameters and higher computational per
formance. Therefore, current research in railway bridge dynamics aims 
to extend simplified calculation models to depict the beneficial effects of 
VBI with moderate effort. 

One approach is to account for the train masses resonating with the 
bridge structure by adding its distributed mass to the latter, as proposed 
in the Austrian guidelines for dynamical calculations of railway bridges 
[9]. This approach entails some disadvantages described in [9], such as 
manipulating the structures’ fundamental frequencies, which makes its 
applicability depend on the considered structural properties. 

The European standard EN 1991–2:2003/AC:2010 [1] to be adopted 
for dynamic calculations of railway bridges propose the so-called addi
tional damping method to include the effects of the VBI while applying 
the simplified MLM. Following this method, an additional damping 
value dependent on the bridge span is assigned to the bridge structure. 
However, numerous studies show that the structural accelerations 
resulting from calculations according to the current standard specifica
tions differ significantly from results obtained with more sophisticated 
vehicle models (see [3–5,8]). For instance, depending on considered 
train and bridge characteristics, the maximum bridge accelerations can 
either be significantly overestimated, subsequently leading to uneco
nomical operational planning and rehabilitation methods, or they might 
even yield unsafe results (see [4,5,8]). 

Several alternative proposals were recently published in [10–12] to 
determine the additional damping, taking into account key parameters 
of the structure and trains to address this problem. The contributions in 
[10,11] present analytically derived methods to determine the addi
tional damping factors, while the formulas given in [12] are based on 
the evaluation of a numerical study conducted on a fictitious parametric 
field of bridges and four different trains. The studies in [10–12] verify 
the respective methods by applying them to individual calculation ex
amples of bridges and trains. They find good agreement between the 
calculated vibrations and the results obtained using a more complex 
vehicle model. 

This contribution presents an extensive numerical study of 65 
existing structures with a broad range of spans, masses, damping, and 
fundamental frequencies aiming to evaluate the influence of the 
different approaches to consider VBI by implementing an additional 
mass distribution or additional damping to the bridge structures and 
detect eventual shortcomings of each method. The effect of applying one 
of the recently published alternative methods in [10–12] for additional 

damping on MLM calculations compared to the standard specification in 
[1] and the approach of additional mass according to [9] is evaluated for 
two high-speed trains, the Austrian Railjet and the German ICE 4. As a 
reference, all calculations were performed with the DIM of both trains. 

This contribution aims to find answers to the following questions:  

• How much do the calculation results of structural accelerations 
based on the MLM and the alternative formulations of additional 
damping differ from the reference values obtained with the DIM?  

• How do the calculation results of accelerations obtained with the 
alternative formulation of additional damping compare to those 
obtained with normative specifications?  

• Can a recommendation be given for applying the methods for specific 
structural properties? 

It should be noticed that the structural model used depicts all the 
properties through a beam element with a limited number of considered 
vibration modes (see descriptions in section 2.1). Investigations in [13] 
have shown that with a more precise three-dimensional model of the 
bridge structure, significantly higher accelerations may occur in the 
bridge deck area due to local vibration modes in the higher frequency 
range of up to 30 Hz, which cannot be recorded by solely considering the 
global vibration modes. Moreover, the bridge model of the example 
examined in [13] reacted to the consideration of VBI by increased deck 
accelerations, in contrast to the accelerations of the main girders, which 
the VBI mainly reduced. Since these effects cannot be taken into account 
in the study presented here due to the selected computationally efficient 
two-dimensional modeling of the bridge structures, the following results 
are limited to the influence on the main structural vibration modes. 

2. Mechanical models 

The mechanical models of the bridge structures and vehicles used in 
this study are exclusively two-dimensional models whose degrees of 
freedom can only record vertical vibrations of the bridge structures, in 
contrast to more complex and computationally expensive three- 
dimensional models, e.g., described in [14–20]. Planar models cannot 
consider horizontal deformations in the transverse direction and 
torsional vibrations. However, the idealization using two-dimensional 
models is sufficiently accurate in many cases if lateral loads are not to 
be expected or investigated and it is a bridge structure with beam-like 
behavior [21]. This condition is met for the structures considered 
here, all designed as single-track bridges with no excentrical loading. 
Still, it should be pointed out that in reality, interactions between the 
torsional and bending vibrations can also occur, especially when the 
natural frequencies for both are close, as, for example, for the structure 
investigated in [6]. The planar modeling of the following study cannot 
take these interference effects into account. Furthermore, horizontal 
deformations in longitudinal direction, which could, for instance, occur 
when considering track-bridge-interaction and horizontal bearing dis
placements, were not considered. 

2.1. Applied bridge model 

The bridge structures in the numerical calculations of this paper are 
modeled as simply-supported single-track and single-span girders, 
considering bending deformations only (Bernoulli-Euler beam). The 
following equation of motion is derived by modal analysis: 

MB q̈+CB q̇+KB q = pB (1) 

The modal mass, damping, and stiffness matrices MB, CB and KB on 
the left side of Eq. (1) are calculated using the span L, mass per unit 
length μ, bending stiffness EAzz , and Lehr’s damping ratio ζ (by 
applying Rayleigh damping) of the bridge. 

The vector of eigenfunctions 
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can be used to transform the time-dependent generalized 
displacements 

q(t) = [q1(t), q2(t),⋯, qn(t) ] (3) 

and their time derivatives (velocities q̇(t) and accelerations q̈(t)) for 
n considered vibration modes into the time- and place-dependent dy
namic bending deflection wB(x, t) and its time derivatives as follows: 

wB(x, t) ≈ w*
B(x, t) = q(t)ϕ(x) (4)  

2.2. Applied vehicle models 

The generalized load vector pB in Eq. (1) depends on the applied 
load model. The European standard [1] prescribes dynamic calculations 
with the moving load model (MLM, see Fig. 1-a and section 2.2.1) 
though acknowledging that this very simplified excitation model cannot 
include the (mostly vibration-damping) effects of vehicle-bridge- 
interaction (VBI). According to [1], these effects can be included by 
using more complex vehicle models like the detailed interaction model 
(DIM, Fig. 1-b and section 2.2.2) or by applying additional damping to 
the model of the structure (see section 2.3.2). The following calculations 
use both models, the MLM and the DIM. 

Both vehicle models assume a constant train speed and rigid and 
continuous contact between rail and wheelsets, the latter forming the 
following coupling condition in which ww,i is the displacement of a 
wheelset i at the point of contact xi: 

ww,i(t) = wB(xi, t) (5) 

No track irregularities were considered in the here described studies. 
However, it should be noted that they can have a decisive influence on 
the compliance with running safety requirements, described, for 
example, in [18]. 

2.2.1. Moving load model (MLM) 
In the case of the MLM consisting of m axle loads Fstat,i representing 

the static contact forces of each wheelset (see Fig. 1-a), the load vector 
pB can be defined by Eq. (6) with the rectangular function Γ(x) to 
ensure that only loads located on the bridge are considered in the dy
namic calculation. 

pB =
∑m

i=1
Fstat,i Γ(xi)ϕ(xi) (6) 

The equation of motion of the bridge can subsequently be solved 
using numeric time integration methods. In the numerical studies 
described in the following, a differential equation solver for stiff prob
lems (MATLAB ode15s, see [22]) based on the numerical differentiation 
formulas (NDFs) was used to solve the equations of motion. 

2.2.2. Detailed interaction model (DIM) 
In calculations using the detailed interaction model, the load vector 

pB is extended to p*
B by the dynamic force components Fk,i and Fc,i due 

to the spring and damper elements representing the primary suspension 
(see Fig. 1-b) and the inertia forces of the wheelsets mw,iẅw,i(t): 

p*
B =

∑m

i=1

[

Fstat,i − Fk,i(t) − Fc,i(t) − mw,i ẅw,i(t)
]

Γ(xi)ϕ(xi) (7) 

Additionally, a second equation of motion (8) for the kinematics of 
the vehicle multi-body system connected to the equation of the bridge by 
the coupling condition acc. to Eq. (5) has to be solved for each time step. 
The properties of the car bodies, bogies, and primary and secondary 
suspension elements are included in the mass, damping, and stiffness 
matrices MV, CV and KV. The vector u and its time derivatives u̇ and ü 
contain six degrees of freedom for each coach, one translational, and one 
rotatory for each car body, respectively bogie (see Fig. 1-b). 

MV ü+CV u̇+KV u = Fẇ +Fw (8) 

The load vector on the right side of Eq. (8) consists of the spring and 
damper forces Fẇ and Fw acting on each bogie. More detailed infor
mation regarding both vehicle models can be found, for instance, in 
[23–28]. 

2.3. Consideration of vehicle-bridge-interaction (VBI) 

This paper focuses on investigating the effects of applying one of five 
different methods for considering the influence of VBI in calculations 
with the simplified load model (MLM). These approaches are referred to 
as M1 to M5 and are briefly explained below. 

2.3.1. M1 – Additional mass acc. to ÖBB guidelines [9] 
The ÖBB guideline for dynamic calculations of railway bridges [9] 

provides a simple approach to considering the inertia of the train masses 
in MLM calculations by increasing the mass distribution μ of the 
examined bridge structures by ΔμM1 = 2 000 kg m− 1. This additional 
mass corresponds approximately to the average mass per unit length of a 
train of the high-speed load model A (HSLM-A) for passenger trains, 
required for dynamic analyses according to the EN 1991–2:2003/ 
AC:2010 [1]. The size of the constant axle loads acting on the structure 
when applying the MLM is unchanged. 

The distributed train masses generally lead to lower structural ac
celerations in the event of resonance due to the higher inertia forces with 
respect to static equilibrium. Furthermore, it reduces the fundamental 
bending frequencies of the examined structures, and thus the corre
sponding resonance velocities decrease. Consequently, calculations 
using this method can result in the computational occurrence of reso
nance events that would be observed at higher train speeds in calcula
tions without an additional mass. 

The significant reduction in the structural acceleration in the case of 
resonance can yield unsafe results in structures with short spans 
(compared to the car lengths d), usually related to relatively high 
fundamental frequencies n0 where the VBI has little influence (e.g., 
observed in [8]. Therefore, the ÖBB guideline prescribes the additional 
mass to be considered only for structures exceeding 20 m span. For 
medium-sized structures (spans from 7 to 20 m), the calculation must be 
carried out with and without additional mass, and the case yielding the 

Fig. 1. Schematic representation of applied vehicle models. (a) moving load model; (b) detailed interaction model.  
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highest accelerations shall be used for design purposes. The calculations 
in this paper were performed applying method M1 for all considered 
structures (described in section 3.2), regardless of their spans. 

2.3.2. M2 - additional damping acc. to EN 1991–2:2003/AC:2010 [1] 
The European design standard EN 1991–2:2003/AC:2010 [1] 

applying for dynamic calculations allows taking the vibration-reducing 
influences of VBI into account for structures with spans up to 30 m 
through the approach of additional damping Δζ which can be added to 
the structural damping ratio ζ usually obtained from in–situ measure
ments or defined in normative specifications (see Fig. 2). 

The specifications of the additional damping ratio Δζ in [1] are 
based on comparative calculations carried out in [29] for bridge struc
tures with spans from 5 to 30 m. The calculations in [29] use moving 
load models as well as multi-body models (a simplified interaction 
model) of two trains, the ICE 2 and the Eurostar. In the case of calcu
lations with the moving load model, an additional damping Δζ was 
iteratively assigned to the structure until the calculated maximum ac
celerations matched the results of the calculations with the more com
plex multi-body model. The following span-dependent regression 
function for the additional damping ratio, hereafter referred to as ΔζM2, 
for structures with spans up to 30 m (9) was subsequently derived to: 

ΔζM2 =
0, 0187 L − 0, 00064 L2

1 − 0, 0441 L − 0, 0044 L2 + 0, 000255 L3, with L [m] (9) 

In the underlying calculations, negligibly slight deviations in the 
maximum structural acceleration with and without consideration of the 
VBI were computed for structures with spans exceeding 30 m, which is 
why the specifications in EN 1991–2:2003/AC:2010 [1] assume that the 
calculations with the moving load model for structures with larger spans 
are sufficiently accurate. 

The assumptions on which these specifications are based comprise 
several inconsistencies and simplifications described in several studies 
[3,4,12]. As a result, calculations applying the additional damping ac
cording to [1] can, on the one hand, still yield very uneconomical results 
since the effects of the VBI cannot be taken into account sufficiently. On 
the other hand, in some applications, the accelerations comprising 
additional damping can result in excessive damping of the structures, 
thus yielding unsafe results compared to ones obtained with a more 
sophisticated interaction model. 

2.3.3. M3 – Additional damping acc. to Yau et al. [10] 
Yau et al. present in [10] an alternative analytical formulation of the 

additional damping that considers a larger number of bridge and vehicle 
parameters. The basis of the formulation is the comparison of a me
chanical model of a train on the bridge structure (modeled as Bernoulli- 
Euler or Timoshenko beam) and an equivalent system of the bridge 

structure without train but with an additional viscous damping ratio Δζ, 
which accounts for the damping contribution of interaction effects. 
From this, Yau et al. derive analytically an equation for the additional 
damping (schematically displayed in Fig. 3). 

In the combined mechanical model, both the bridge structure and the 
vehicle are converted into an equivalent oscillator with a single degree 
of freedom (SDOF) according to their respective fundamental mode 
through modal analysis. Based on the assumption that there are always 
one front and one rear bogie of two adjacent coaches located on the 
bridge structure, the effective modal mass m1, stiffness k1, and damping 
coefficient c1 of each half coach (one bogie, one half car body) can be 
calculated using the detailed interaction model as shown in Fig. 3 
(modified from [10]). The equivalent SDOF oscillator of the bridge 
structure is based on the fundamental bending mode with its effective 
modal mass M1, stiffness K1, and damping coefficient C1. Since the 
position of the two half coaches acting as passive vibration dampers on 
the equivalent system of the bridge structure is fixed in this approach 
(located symmetrically in the middle of the bridge), it is not possible to 
consider any time-depending effects due to the varying position of the 
train. 

The damping contribution ca of the vehicle (see Fig. 3 in far-right 
illustration) can be determined from the adjustment of the dynamic 
equivalence SDOF system of the bridge structure with the mass M1, 
stiffness K1, and damping coefficient C1 +ca to the above-described 
multi-degree of freedom (MDOF) system concerning the vibration 
amplitude at resonance. Finally, this approach results in a formulation of 
the additional damping ratio ΔζM3 by the following Eq. (10): 

ΔζM3 = μ1r1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2
1 + (2 ξ1)

2
√

(10)  

with μ1 =
m1

M1
; ξ1 =

c1

2 m1 ω1
; r1 =

ω1

Ω1
; ω1 =

̅̅̅̅̅̅̅
k1

m1

√

and Ω1 =

̅̅̅̅̅̅̅
K1

M1

√

(11) 

The main influencing parameters in this equation are the ratio μ1 of 
the modal mass of a half coach to the modal mass of the structure (only 
the first vibration modes), the ratio r1 of the fundamental angular fre
quencies, and the Lehr’s damping ratio ξ1 of the modal equivalence 
system of the half coach. 

2.3.4. M4 – Additional damping acc. to Stoura and Dimitrakopoulos [11] 
Stoura and Dimitrakopoulos describe in [11] an analytical derivation 

of the additional damping, which the authors define based on the 
equations of motions for a bridge structure with arbitrary boundary 
conditions and a multi-body system of the crossing train. Both equations 
are subsequently coupled by assuming rigid and constant contact of 
wheelsets and the bridge structure, leading to an extended equation of 

F1F2
...

Fi

x
w(x,t)

v = const.

L, EAzz, μ, ζtotal

ζtotal = ζ + ΔζM2

Δζ
 [%

]

Bridge span L [m]

0.7

0 5 10 30252015

0.6
0.5
0.4
0.3
0.2
0.1

ΔζM2 = f (L)

Fig. 2. M2 - span-dependent additional damping function acc. to [1].  

Fig. 3. M3 - schematic procedure of determination of additional damping acc. to [10].  

L. Bettinelli et al.                                                                                                                                                                                                                                



Engineering Structures 270 (2022) 114897

5

motion for the bridge structure. The resulting notation enables the 
identification and further analysis of the time-dependent contributions 
due to VBI to the damping and stiffness matrix of the bridge structure 
and the vector containing the external loading. In addition, it allows to 
determine and evaluate the influence of controlling parameters on the 
damping contribution due to VBI, in other words, on the additional 
damping of the bridge. 

Subsequently, the authors use simplified assumptions to define a 
time-independent formulation of the additional damping, which, ac
cording to numerical investigations, well conform with the results of 
calculations that take into account the time-dependent position change 
of the wheelsets on the bridge. 

The additional time-independent damping for single-span girders, 
neglecting the wheelset masses, can be defined as modal damping ratios 
Δζi,M4 for each mode i and depends on the damping coefficient cp of 
the primary suspension, the modal bridge mass Mi and angular eigen
frequency Ωi of the bridge. Furthermore, the distance d, which typically 
is not constant for every train coach, is included in Eq. (12). In the 
following investigations, d is determined in accordance with the 
approach of Stoura and Dimitrakopoulos [11] using the average distance 
between the maximum number n of axle loads which find place on the 
bridge (with span L) simultaneously acc. to Eq. (13). 

Δζi,M4 =
cp

4 Mi Ωi

(
L
i d

+
1
2

)

(12)  

with d =
L

n − 1
(13) 

For a better overview, the same symbols were used in Eq. (12), taken 
from [11] as by Yau et al. in [10]. 

2.3.5. M5 – Additional damping acc. to Glatz and Fink [12] 
In [12], Glatz and Fink conduct extensive computational studies for 

four European high-speed trains (ICE 2, ICE 4, Eurostar, and Railjet) and 
a parameter field of bridge properties based on the characteristics of 210 
single-span bridges. 

The authors define span- and train-dependent regression functions 
for the lower and upper bound of fundamental frequencies n0 and mass 
distribution μ of the bridges. With these functions, they specified 1080 
different combinations of spans L, mass distributions μ, and funda
mental frequencies n0 for the calculations. The additional damping for 
each combination of bridge properties was determined by iteratively 
adapting the input parameters for MLM calculations until the results for 
the maximum acceleration in the predefined speed range met the results 
of reference calculations using the DIM. 

Finally, a lower boundary function for the additional damping ratio 
ΔζM5 (see Eq.(14)) is determined as a cubic polynomial function 
depending on the bridge’s fundamental frequencies n0, specified for 
each train and six different mass distributions (from μ1 for heavy con
crete structures to μ6 for light steel structures). 

ΔζM5[%] = a n3
0 + b n2

0 + c n0 + d (14) 

The functions for either of the high-speed trains considered in this 
paper (Railjet and ICE 4) are plotted in Fig. 4 for masses from μ1 to μ6. 
The required function parameters for Eq. (14) are given in Table 1. 

Glatz and Fink determine a strong dependency of the function course 
of ΔζM5 on the considered train, while the mass distribution of the 
bridges primarily has a scaling effect (with ΔζM5 increasing with 
decreasing mass distribution μ). Accordingly, the approach described in 
[12] can be applied only to the trains mentioned above, and bridge 
structures with properties within the examined parametric field of 
bridges (4 m ≤ L ≤ 40 m, natural frequencies n0 and mass distributions 
μ within regressions functions acc. to [12]). The structural damping 
ratio ζ in [12] was taken from the base values described in [1] and 
specified as follows: 

L < 20m L ≥ 20m  

Steel and composite bridges :
L < 20 m : ζ[%] = 0.5 + 0.125 (20 − L)

L ≥ 20 m : ζ[%] = 0.5
(15)  

Filler beam and reinforced concrete bridges :
L < 20 m : ζ[%] = 1.5 + 0.07 (20 − L)

L ≥ 20 m : ζ[%] = 1.5
(16) 

Furthermore, the authors encountered a substantial variation across 
results above a specific limit of fundamental frequencies for each of the 
considered train configurations and mass distributions. Consequently, 
they defined upper limits for the applicability of the derived regression 
functions. 

The calculations in the present paper are based on linear interpola
tion of the resulting regression functions for ΔζM5 for bridge structures 
with mass distributions in-between the defined functions for μ1 to μ6, 
following the recommendations in [12]. 

Fig. 4. M5 - additional damping functions acc. to [12] for two high-speed trains. (a) – Railjet; (b) – ICE 4.  

Table 1 
Parameters for the lower bound function of additional damping acc. to [12].    

a b c d 

Railjet μ1 − 5.631e-4  0.007015  − 0.02098  0.2931 
μ2 − 5.083e-4  0.004266  0.006318  0.2768 
μ3 − 0.001104  0.01497  − 0.05015  0.4376 
μ4 − 0.004615  0.07522  − 0.3699  1.172 
μ5 − 0.007272  0.1238  − 0.6329  1.78 
μ6 − 0.01547  0.2867  − 1.598  3.844  

ICE 4  μ1 − 0.003214  0.07749  − 0.6049  1.604 
μ2 − 0.004115  0.09777  − 0.7529  1.964 
μ3 − 0.005526  0.1301  − 0.9886  2.531 
μ4 − 0.01156  0.252  − 1.783  4.283 
μ5 − 0.01389  0.3006  − 2.11  5.076 
μ6 − 0.02314  0.4684  − 3.087  7.118  
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3. Scope of the numerical investigations 

In order to evaluate the effect of considering the influence of VBI 
according to the five mentioned approaches M1 to M5, calculations are 
performed for two different high-speed trains and 65 bridge structures. 

3.1. Vehicle properties 

The two considered high-speed trains are the Railjet and the ICE 4. 
The Railjet is a conventional train with fourteen passenger cars (PC) and 
two locomotives (Loc), one at each end of the train. The ICE 4 is a 
multiple-unit train with partly powered axles. In the following, a twelve- 
part train consisting of six powered passenger cars (PPC) and six 
unpowered passenger cars (UPC) will be investigated. All calculations 
described in the following sections were carried out with the MLM and 
the DIM of both trains. The required vehicle parameters (compiled in 
Table 2) were taken from [26,30]. 

The natural frequency np for vertical vibrations of the primary sus
pension stage can be approximated according to [8] by applying Eq. 
(17), whereby the bogie mass supported by two springs is assumed 
isolated from the rest of the vehicle. 

np =
1

2π

̅̅̅̅̅̅̅̅̅

2 kp

mb

√

(17) 

Calculations were also performed with the MLM and the five 
different approaches for considering VBI effects, which are subsequently 
referred to with the indices M1 (ÖBB guidelines [9]), M2 (EN 
1991–2:2003/AC:2010 [1]), M3 (Yau et al. [10]), M4 (whereby modal 

damping ratios ΔζM4,i were applied acc. to Stoura and Dimitrakopoulos 
[11]), and M5 (Glatz and Fink [12]). 

The modal vehicle parameters of the Railjet, required for the calcu
lation of the additional damping acc. to M3 [10] and M4 [11], are based 
on the data of the passenger cars (see Table 2). Since there are also 
significant differences in the properties of the powered and unpowered 
passenger cars of the ICE 4 – especially regarding the damping proper
ties of the primary stage – the additional damping acc. to M3 was 
determined for both car types. For the application of M4, the specifi
cation of a primary damping coefficient cp is essential (see Eq. (12)). 
Since in [30] cp is assumed to be zero for the unpowered car, M4 can 
only be applied to the powered cars. 

3.2. Structural properties 

The properties of the 65 considered bridge structures were taken 
from a catalog of existing single-span bridges in Austria, subdivided into 
17 steel or composite structures and 48 reinforced concrete or filler 
beam structures. Their characteristics L, n0, μ and ζ and the linear 
regression functions for μ1 to μ6 as defined in [12] are represented 
graphically in Fig. 5. Additionally, the combinations of properties used 
for the calculations in [29] (forming the basis of the current standard 
specifications M2 acc. to [1]) are plotted as black squares in Fig. 5. 

The structural damping ratios ζ of 26 of the 65 bridges were 
determined experimentally through in-situ measurements. The damping 
ratios of the other bridges were calculated using the span-dependent 
lower bound functions for ζ specified in [1] for different bridge types 
(illustrated in Fig. 5–c). 

Table 2 
Train parameters for the MLM and the DIM of the Railjet and ICE 4.  

Train type Railjet [26] ICE 4 [30] 

car order [Loc - 7 × PC] - [7 × PC - Loc] → [UPC - 2 × PPC - UPC - 2 × PPC -  
UPC - PPC - UPC - PPC - 2 × UPC] →   

Loc PC PPC UPC 

Fstat [kN] 215.6 148.4 174.2 161.4 
mc [kg] 51 500 47 316 52 896 55 279 
Ic [kg m] 882e3 307e4 355e4 391e4 
mb [kg] 13 220 2 800 4 427 2 414 
Ib [kg m] 27 100 1 700 3 090 770 
mw [kg] 2 495 1 900 2 322 1 430 
d [m] 18.59 26.50 28.75 28.75 
r [m] 9.90 19.00 19.50 19.50 
b [m] 3.00 2.50 2.60 2.30 
kp [kN m¡1] 3 680 1 690 2 000 13 000 
cp [kN s m¡1] 80 20 20 0 
ks [kN m¡1] 2 720 280 5 000 720 
cs [kN s m¡1] 200 14 20 10 
np [Hz] 3.76 5.53 4.78 16.52  

Fig. 5. Structural properties of 65 bridges for numerical analysis. (a) – span/fundamental frequency; (b) – span/mass per unit length; (c) – span/damping ratio.  
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4. Evaluation of results 

Comparative calculations with either load models DIM and MLM are 
performed to evaluate the success of considering the vibration-damping 
effects of VBI in calculations with the simplified MLM by applying one of 
those methods. Seven different calculations were performed for each 
bridge: one reference calculation with the DIM, one MLM calculation 
without any additional mass or damping, and five MLM calculations 
applying one of the approaches M1 to M5. 

The bridge vibrations are numerically calculated considering three 
bridge vibration modes in Eq. (4) and a speed range of the trains be
tween 100 and 350 km/h, discretized in 1 km/h steps. 

The maximum accelerations ẅMLM at the midspan of the bridge in 
the considered range of speeds calculated with the MLM with and 
without additional mass or damping are compared to the more realistic 
and usually smaller accelerations ẅDIM obtained with the DIM. The 
relative deviation δẅ acc. to Eq. (18) is used as a comparative value. 
Likewise, the deviation of the train speed δv at which the maximum 
acceleration peaks of different calculations occur can be determined. 

δẅ[%] = 100
ẅMLM − ẅDIM

ẅDIM
,

δv[%] = 100
vMLM − vDIM

vDIM

(18) 

The vertical deformations w could be compared according to the 
same principle. The following evaluations focus on the accelerations 
since the calculations yield deformations wMLM above the normative 
limit of L/600 acc. to [7] in very few of the 65 investigated structures 
(ICE 4: 0 bridges, Railjet: 3 bridges), whereas the accelerations ẅMLM 

exceed the normative limit of ẅ ≤3.5 m/s2 in a considerable number of 
cases (for both trains: 46 bridges) in the investigated speed range. It 
should be noted that the following findings regarding the effects of 
applying M1 to M5 generally also apply to the calculation results of 
vertical deformations. For more clarity, these evaluations were not 
included in this article. 

This evaluation focused on the acceleration peaks due to resonance, 
which generally represent the maximum acceleration values within the 
considered speed range. Only local maximum values were considered in 
the evaluations according to Eq. (18). Resonance peaks occur mainly at 
train speeds in proximity to vcrit,i,j, the critical speeds at which the 
regularly spaced train axles exert a periodic excitation with a frequency 
nj = j vcrit,i,j/d corresponding to the fundamental frequency n0,i of the 
bridges: 

vcrit,i,j =
n0,i d

j
, i = 1, 2,⋯; j = 1, 2,⋯ (19) 

Peak values of accelerations in calculations using the DIM tend to 
occur at lower crossing speeds than those using the MLM. This is 
explained by the decrease of the fundamental frequencies of the bridges 
due to the consideration of the unsprung wheelset masses and other VBI 

effects, which leads to resonance vibrations at lower train speeds. Only 
local maxima of accelerations at similar train speeds are included in the 
following evaluations. Thus, just peak accelerations corresponding to 
the same resonance situation are compared. 

In the case of MLM calculations applying one of the five additional 
mass/damping approaches, positive values of δẅ generally correspond 
to results on the safe side since the results from MLM calculations tend to 
overestimate the more realistic calculation results from the DIM. 
Therefore, positive values of δẅ are explicable with insufficient addi
tional damping or mass. The smaller the positive values δẅ, the better is 
the desired approximation of the acceleration results of calculations 
with the different vehicle models. Also, in the few cases in which the 
acceleration results obtained with the DIM exceed the results obtained 
with the MLM, positive values of δẅ correspond to results on the safe 
side since they imply higher acceleration results in calculations with the 
MLM and additional mass/damping than in calculations with the DIM. 
Negative results characterize a non-conservative reduction in the 
maximum acceleration due to the additional mass or damping. 

4.1. Exemplary structure 

The calculation results of all seven calculation variants (Railjet: MLM 
with and without additional mass/damping, DIM) for one exemplary 
bridge are displayed in Fig. 6. The structural parameters of the bridge, 
summarized in Table 3 and highlighted in Fig. 5 (“exemplary struc
ture”), correspond to the properties of an existing steel structure for 
which the fundamental frequency n0 and Lehr’s damping ratio ζ were 
determined experimentally. The mass per unit length μ of this bridge 
structure lies slightly above the linear regression function μ5[kgm− 1] =

121.4 L + 5918 for steel and composite bridges (see Fig. 5). 
The additional parameters required for applying M3 (Eq. (10)) and 

M4 (Eq. (12)) are given in Table 4. The modal vehicle parameters of the 
Railjet, necessary for the calculation of the additional damping ratios 
ΔζM3 and ΔζM4,i acc. to [10] and [11] are based on the information of 
the passenger cars (see Table 2). 

The bold gray line with the highest acceleration peak in Fig. 6 cor
responds to the calculation results obtained with the MLM and no 
additional mass or damping of the bridge structure. The highest accel
eration peak occurs at v = 211 km/h, which represents the resonance 
speed at which the fundamental mode of vibration is being exerted in 
every third oscillation period (vcrit,1,3[km/h] = 3.6 n0,1d

3 , with d = 26.5 m). 
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Fig. 6. Maximum acceleration over train speed - comparative calculations for one exemplary bridge.  

Table 3 
Exemplary bridge: structural parameters.  

L[m] μ[kg m¡1] EAzz[kN m2] n0[Hz] ζmeas.[%] 

16 8 690 10.1e3  6.63  1.9  
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A second acceleration peak can be observed at vcrit,1,2 = 317 km/h. 
The lowest gray dashed line illustrates the results of the DIM calcu

lation. As mentioned before, the maximum acceleration peaks occur at 
lower critical speeds υ = 207 km/h and v = 312 km/h, respectively, due 
to the additional train masses, the contribution of which is considered in 
the DIM calculations implicitly. 

The calculation results obtained from the MLM with additional mass 
or damping acc. to the five methods are displayed with thin lines. 

The additional mass ΔμM1 = 2 000 kg m− 1 applied acc. to M1 [9] 
significantly reduces the local acceleration maximum. In addition, 
increasing the structural mass leads, as described in [9], to a decrease in 
the natural frequency of the bridge and thus the critical speed v at 
which the acceleration maximum occurs to v = 190 km/h (δv = -8.21 
%). Also, the train speed at which second highest peak occurs is reduced 
to v = 283 km/h (δv = -10.73 %). In the case of the exemplary structure, 
however, increasing the structural mass does not result in any additional 
acceleration peaks in the high-speed range that would not be recorded 
by DIM calculations. For such cases, the ÖBB guidelines [9] prescribe 
that these additional acceleration peaks must also be used to verify 
compliance with normative limits. 

It can be observed that the consideration of additional damping ra
tios ΔζM2 to ΔζM5 in MLM calculations exerts only a scaling influence 
on the results and leads to significantly decreased maximum structural 
accelerations compared to calculations without additional damping. The 
respective peak accelerations still exceed the results obtained with the 

DIM by at least δẅ = 23.1 %, i. e., on the safe side. The numerically 
derived additional damping ratio ΔζM5 acc. to [12] features the highest 
value of δẅ. Thus, in the case of this exemplary bridge, its consideration 
leads to results closest to the ones obtained with the DIM calculations. 
The calculation results taking into account ΔζM3 acc. to [10] and ΔζM4 
acc. to [11] are very close to each other, but both exceed the results 
obtained with the normatively specified additional damping ratio ΔζM2 
acc. to [1]. 

The values Δμ or Δζ of each calculation method (in the case of the 
method acc. to [11], the modal values ΔζM4,i) and the obtained 
maximum bridge accelerations ẅmax are compiled in Table 5. Addi
tionally, the resulting relative deviations δẅ and δv for each calculation 
variant but only the maximum acceleration peak are given. 

4.2. Numerical study 

Following the same procedure described in section 4.1, the 65 bridge 
structures were examined with vehicle models of both trains (Railjet and 
ICE 4) and applying the five additional mass or damping methods, and 
the results of the maximum accelerations were compared to each other. 
As observable in Fig. 6 at υ = 317 km/h, lower acceleration maxima will 
not be considered in the following evaluations since only the largest 
acceleration maximum of each bridge is taken into account. An overview 
regarding the reduction potential by considering the effects of VBI is 
given in Fig. 7. 

Table 4 
Input parameters for calculating the additional damping.  

Modal bridge parameters Modal vehicle parameters 

Ωi[rad s¡1] Mi[kg] Ki[kN m¡1] ω1[rad s¡1] m1[kg] c1[kN s m¡1] d[m] 

i=1 i=2 i=3 i=1 i=2 i=3 

41.56 166.25 374.07 69 520 120e3 192e4 973e4 3.3049 24 074 12.367 5.333  

Table 5 
Additional mass/damping and calculation results for exemplary structure.   

DIM MLM M1 [9] M2 [1] M3 [10] M4 (ΔζM4,i) [11] M5 [12] 

Δμ [kg m¡1] 
or 
Δζ [%] 

– – 2 000 kg m− 1 0.637 % 0.481 % i = 1  0.606 % 0.854 % 

i = 2  0.087 % 
i = 3  0.030 %  

ẅmax [m s¡2] 6.06 12.80 10.27 8.36 9.16 8.85 7.46  

δẅ [%] ∓0 +111.22 +69.47 +37.95 +51.16 +46.04  +23.10 
δv [%] ∓0 +1.93 − 8.21 +1.93 +1.93 +1.93 +1.93  

Fig. 7. Relative deviations of accelerations for 65 bridge structures (MLM compared to DIM). (a) – results sorted by structure’s fundamental frequency; (b) – his
togram and fitted probability density function of results. 

L. Bettinelli et al.                                                                                                                                                                                                                                



Engineering Structures 270 (2022) 114897

9

Fig. 7-a shows graphically the resulting values of δẅ which is the 
relative deviations of the maximum accelerations from MLM calcula
tions (without additional mass or damping) compared to the reference 
values of the DIM calculations. The results are generally plotted as 
markers, while the connecting lines are only for further visualization, 
whereby the results obtained with the Railjet are displayed in red, those 
obtained with the ICE 4 in green color. The bridges are sorted by their 
fundamental frequencies n0 visualized by the bold black line corre
sponding to the right ordinate (3.25 Hz ≤ n0 ≤ 32.4 Hz). The bold gray 
line visualizes the mass distribution μ (7 620 kg m− 1 ≤ μ ≤ 38 450 kg 
m− 1) of each bridge. 

Fig. 7-b shows the histogram and a fitted probability density function 
of the resulting δẅ for both train types, whereas calculations performed 
with the vehicle model of the Railjet lead to results with a broader 
spread and for a larger number of bridge structures (64) to values of δẅ 
significantly above zero. The contrast of shading of the histogram dis
tinguishes the bridge types. It should be noted that, for both trains, the 
highest results of δẅ and, therefore, the most significant potential for 
vibration-reducing impact of VBI is in the steel and composite structures. 

The consideration of VBI by applying the DIM usually leads to 
decreased structural vibrations, which is reflected in the results of δẅ 
for both train types, represented by the red and the green markers in 
Fig. 7-a that take negative values only in four cases (three for the ICE 4, 
for the Railjet). Generally, it can be observed that, especially for bridges 
with n0≲ 12 Hz, there is a significant potential to reduce the accelera
tion maxima by considering VBI, as the MLM results without additional 
damping take values up to 138 %. Furthermore, the most significant 
reduction of maximum accelerations due to consideration of VBI effects 
can be observed in bridges with a low mass distribution μ. This corre
sponds to the findings in [12] that a particularly strong influence of the 
VBI is to be expected for low bridge masses and similarity of the natural 
frequency of the bridge n0 and the primary suspension stage np 

according to equation (17), which is for both trains (except for the 
unpowered passenger cars of the ICE 4) below 6 Hz. In this regard, the 
bridge mass seems to be of greater importance. 

With increasing fundamental frequencies of the considered bridge 
structures, the maximum acceleration peaks occur at high-order reso
nance events vcrit,i,j. Concurrently, high fundamental frequencies are 
associated with a lower influence of the vehicle-bridge-interaction and 
thus with a lower relative deviation δẅ of the maximum acceleration 
results of both train models MLM and DIM. 

Fig. 8 illustrates the values of δẅ based on the maximum accelera
tion results from MLM calculations – in contrast to the previous evalu
ations displayed in Fig. 7 with additional mass or damping – compared 
to maximum accelerations of the corresponding DIM calculations for the 
considered 65 bridges and the Railjet (Fig. 8-a) and ICE 4 (Fig. 8-b). The 
results of δẅ obtained without considering additional mass or damping 
in the underlying MLM calculation results (displayed in Fig. 7-a by the 
red and green markers) can be considered as upper bounds for results 
with consideration of vehicle-bridge-interaction and are in Fig. 8 rep
resented by the upper limitations of the white areas. The lower bound is 
formed by δẅ = 0 % since, as mentioned above, negative values of δẅ 
indicate excessive additional damping by the considered approach and 
unsafe results. 

In most cases, the implementation of an additional damping ratio Δζ 
yields results closer to the ones obtained with the DIM, but a large 
number of negative and, therefore, non-conservative values of δẅ is 
apparent, especially in the case of the ICE 4. Implementing an additional 
mass Δμ acc. to [9] shifts for the ICE 4, in two cases, the critical speed v 
at which the maximum acceleration occurs below 100 km/h. These two 
bridges are excluded from the following evaluations. 

In Table 6, the minimum, maximum, arithmetic mean results and 
standard deviation σ of δẅ as well as the number of negative (unsafe) 
results for each method of determination of Δμ or Δζ are compiled. The 

Fig. 8. Relative deviation of acceleration results from five approaches for consideration of VBI. (a) – results for the Railjet; (b) – results for the ICE 4.  

Table 6 
Characteristic results of δẅ for 65 bridge structures and five approaches for vehicle-bridge-interaction.  

Train Railjet ICE 4  

δẅ [%] No. of δẅ < 0 % δẅ [%] No. of δẅ < 0 %  

Min Max Mean σ Min Max Mean σ 

Δμ¼Δζ¼0 % − 0.40 137.86 27.77 27.59 1 − 5.01 80.21 13.77 13.44 3 
M1 [9] − 15.73 90.77 11.02 20.40 17 − 19.52 44.37 − 0.56 9.95 37 
M2 [1] − 6.57 66.60 9.28 14.10 15 − 20.34 80.21 − 1.29 14.28 44 
M3 

[10] 
PC/PPC − 13.34 55.77 11.98 13.37 8 − 55.29 − 2.08 − 30.13 13.09 65 
UPC / / / / / − 14.54 13.94 − 3.19 5.53 57 

M4 [11] − 7.85 50.14 12.81 11.23 4 − 17.30 16.75 0.90 6.40 28 
M5 [12] − 6.89 38.40 8.37 7.14 5 − 6.98 27.97 6.02 6.80 7  
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best and worst results (best results defined as closest to the DIM results 
with a minimum number of negative results) in each category are 
marked with green or red shading respectively (excluding the results 
obtained with Δμ = Δζ = 0). Further, the evaluation of the histograms 
and probability density functions (assuming generalized extreme value 
distribution) is graphically displayed in Fig. 9. 

The normatively specified approach acc. to [1] yields negative and, 
therefore, unsafe values of δẅ in 15 of 65 cases (for the Railjet) and in 
44 of 65 cases (for the ICE 4). Applying an additional mass acc. to the 
ÖBB guidelines [9] to Railjet calculations causes an increase in the mean 
and maximum values δẅ compared to the standard [1], and also a 
higher number of unsafe results (17 out of 65). In the case of the ICE 4, 
the approach of the ÖBB guidelines performs slightly better than the 
standard specifications [1], but it is still associated with a high number 
of negative values of δẅ and therefore, in individual cases, a substantial 
overestimation of the damping effects of vehicle-bridge-interaction. 

In the case of the ICE 4, the consideration of additional damping acc. 
to Yau [10] also appears to overestimate the damping effect strongly. If 
applied based on the characteristics of the powered car (PPC - yellow 
diamonds in Fig. 8-b), all results are significantly on the unsafe side, and 
for unpowered cars (UPC - yellow circles) in 57 of 65 cases. 

For calculations with the Railjet, the results obtained by applying 
ΔζM5 acc. to [12] yield, on average, the results closest to those obtained 
with the DIM. The approaches described in [10] (only applied to the 
passenger car PC) and [11] yield, on average, worse results than the 
normatively specified approach in [1] but still produce lower maximum 
values of δẅ than the normative approach, and very few negative re
sults. For the ICE 4, both the approaches acc. to [11] (green markers) 
and [12] (red markers) are capable of reflecting the influence of vehicle- 
bridge-interaction quite well, with the approach in [12] yielding fewer 
non-conservative results and the approach in [11] resulting in the lowest 
average deviation of <1 %. 

Fig. 9 again visualizes the substantial underestimation of damping 
effects due to vehicle-bridge-interaction by applying additional mass 
Δμ acc. to the ÖBB guidelines [9] or additional damping ΔζM2 acc. to 
the normative recommendations [1] in calculations performed for the 

Railjet, as well as the overestimation in the case of the ICE 4 leading to a 
high number of unsafe results. Especially both recently developed 
methods M4 and M5 for determining the additional damping ratio acc. 
to [11,12] perform better, which is apparent in the lower spread of re
sults and shift towards positive values of δẅ. 

The contrast of shading of the histogram distinguishing between 
steel and concrete structures shows, especially with method M5 for both 
trains, a relatively similar distribution of the results, while M1, M3, and 
M4 in the case of the Railjet yield high values of δẅ in steel and com
posite structures. 

4.3. Influence of structural parameters 

This section deals with the question of whether the deviation δẅ of 
the maximum acceleration values obtained by applying one of the five 
methods for consideration of VBI in MLM calculations, in comparison to 
applying the more accurate DIM, is dependent on any structural pa
rameters. To distinguish between the different methods, the notation 
δẅMLM for results of δẅ obtained without additional damping or mass, 
and δẅMj for results of δẅ obtained by applying method Mj (j = 1, 2, …, 
5) will be used in the following evaluations. Both δẅMLM and δẅMj use 
the acceleration maxima from calculations with the DIM as the reference 
value, as specified in Eq. (18). 

In order to visualize potential dependencies, it is helpful to plot the 
results of δẅMj against structural parameters coming into question as 
explanatory variables and to fit a regression model to the results. The 
aim is to find a simple linear regression model with only one indepen
dent variable x and a preferably high significance. The linear regression 
models for each method, M1 to M5, take the form 

δẅMj,i = α + βxi + εi, j = 1, 2,⋯, 5; i = 1, 2,⋯ (20)  

with xi being the explanatory variable and εi the error of each obser
vation. The coefficients α and β were estimated with ordinary least 
squares without weighting (for instance, described in [31]). 

First, the relation between the general effect of considering VBI by 
applying a multi-body vehicle model (DIM) and the effect of applying 

Fig. 9. Evaluation of histograms and fitted probability density functions of δẅ. (a) – Railjet; (b) – ICE 4.  

L. Bettinelli et al.                                                                                                                                                                                                                                



Engineering Structures 270 (2022) 114897

11

one of the alternative methods, M1 to M5, is evaluated. Fig. 10 shows in 
each subdiagram the resulting relative deviations δẅMj calculated with 
method Mj against the respective deviations δẅMLM of each bridge on 
the abscissa, characterizing the vibration damping benefit of applying 
the DIM. Furthermore, the bridge type is identified using different 
marker types, whereby again, reinforced concrete and filler structures 
are marked with triangles and steel and composite structures with 
circles. 

The respective span L of each bridge is given on a color scale, which 
takes on a gray shade at the average span of L = 12.77 m, and displays 
larger spans with red and smaller spans with green color. The gray areas 
in the top left represent the upper boundary of results δẅMj, i. e., the 
acceleration results obtained by applying M1 to M5 equal or exceed the 
results obtained without additional mass or damping (Δμ = Δζ = 0). 

Finally, linear regression functions of the form given in Eq. (20) are 
fitted to the results of δẅMj, whereby δẅMLM is used as an explanatory 
variable. Fig. 10 graphically shows the estimated regression functions 
and 95 % confidence intervals. The results of M3 applied for the pow
ered passenger cars of the ICE 4 are plotted with low opacity and are 
disregarded in the following evaluations. The correlation coefficients r 
and the p-value (p) for each regression function are noted in the sub
figures, and their definition can be found, amongst others, in [31]. The 
Pearson correlation factor r reflects the degree of linear relation between 
the results of δẅMj and δẅMLM, while the p-value gives the probability 
of the assumed null hypothesis being true, which is, in this case, no 
relationship of δẅMj and δẅMLM. Therefore, high values of p would 
require the rejection of the linear correlation model while low values 
(usually p ≤ 0.05) indicate a high significance of the chosen correlation 
model. 

From the subfigures in Fig. 10-a and b corresponding to M1, it can be 
observed that there is a strong positive correlation between the 
vibration-damping impact of applying the method and utilizing the 
more complex DIM. This indicates that M1 can generally reproduce the 
impact of the VBI less well as the influence of the VBI increases. With a 
modest influence of the VBI on the maximum accelerations (δẅMLM < 20 
%), applying M1 often results in negative results. 

This tendency is also given in the results of the other four methods, 
but the correlation factors between δẅMLM and δẅMj is generally lower, 
especially in the case of the ICE 4. In particular, when M3 is applied to 
the unpowered and M4 to the powered passenger cars, the correlation 

factors are very low. 
It can be observed in both trains that a significant underestimation of 

the damping effect occurs for structures with a particularly small or 
large span. This indicates that the span-dependent determination func
tion acc. to Eq. (9) [1] reflects the damping effect of VBI in its edges 
insufficiently. 

In order to determine the relation between δẅMj and the bridge’s 
structural parameters, linear regression models with one explanatory 
variable as described in Eq. (20) were fitted to the results of δẅMj with 
different structural properties as the independent variable xi. The four 
structural parameters span L, mass per unit length μ, fundamental fre
quency n0 and structural damping ratio ζ, as well as their linear, 
quadratic, and rational combinations, were considered explanatory 
variables. 

In order to keep the regression model as simple as possible, only one 
linear term, i.e., only one possible explanatory variable, was taken into 
account. With this restriction, regression models with xi = L/μ as the 
explanatory variable result in high significance for all methods, recog
nizable by low p–values ≤ 0.05. 

This evaluation is displayed in Fig. 11. Again, the respective values of 
δẅMj obtained with each method are plotted in the subfigures, but now 
against the spans L of the bridges. The color scale characterizes the mass 
distribution of the bridges, with gray markers indicating an average 
mass distribution μ, and again green and red markers indicating lower 
respective higher values of μ. In each subfigure for one method and 
train, the resulting linear regression functions xi = L/μ were evaluated 
and plotted for three constant-held mass distributions: for μmin = 7 620 
kg m− 1 (green dashed line), for μmax = 38 440 kg m− 1 (red dashed line) 
and for the average mass distribution μ = 16 540 kg m− 1. Therefore, 
possible interaction effects of span L and mass distribution μ can be 
observed in Fig. 11. The annotated correlation coefficients r and 
p-values refer to the correlation of δẅMj and L/μ. 

All methods (except for M3 for the ICE 4) display a positive corre
lation of span L and relative deviation δẅMj, whereby M5 in the case of 
the Railjet and M3 to M5 in the case of Railjet feature an almost constant 
slope. The p-values of M3 and M4 in the case of the ICE 4 indicate no 
statistical significance and suggest evidence for the null hypothesis (no 
linear relation of δẅMj and L/μ). 

Bridges with a low mass distribution μ yield in the case of the Railjet 
and especially at medium spans L the highest values of δẅMj, i.e., 

Fig. 10. Relation between the effect of applying M1 to M5 (δẅMj) and general VBI effects on maximum bridge acceleration (δẅMLM). (a) – Railet; (b) – ICE 4.  
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insufficient allowance for VBI effects with the alternative consideration 
methods. Also, in the case of the ICE 4, these bridges tend to result in the 
highest and lowest values of relative deviation δẅMj. 

Following the same principle as in Fig. 11, Fig. 12 shows the corre
lation of δẅMj and n0/ζ and potential interaction effects of the funda
mental frequency n0 and damping value ζ of the bridges. All 65 bridges 
were included in this evaluation, regardless of whether the structural 
damping value was determined experimentally or by applying the lower 
bound functions acc. to [1]. Statistically significant correlations were 
only determined for M1 to M4 in the case of the Railjet and M1 in the 
case of the ICE 4. 

As shown in Fig. 8, it can be observed from Fig. 12 that the highest 
deviations δẅMj occur for bridges with a fundamental frequency n0≲ 12 
Hz, while negative values mainly occur for bridges with higher funda
mental frequencies, except for the results of δẅM3 in the case of the ICE 

4. In this regard, M2 acc. to [1] yields for bridges with a similar 
fundamental frequency, especially in the case of the ICE 4, very high as 
well as negative values of δẅMj, indicating additional interaction effects 
due to the length L and mass distribution μ as shown in Fig. 11. There is 
no apparent relation of δẅMj and the structural damping ζ. 

4.4. Applicability and accuracy of alternative methods for consideration 
of vehicle-bridge-interaction 

This section aims to give an overview of the applicability and accu
racy of the five previously described methods for considering VBI effects 
in simplified MLM calculations, M1 to M5, as observed in the numerical 
study. 

Fig. 11. Relation between the effect of applying M1 to M5 (δẅMj) and L/μ. (a) – Railet; (b) – ICE 4.  

Fig. 12. Relation between the effect of applying M1 to M5 (δẅMj) and n0/ζ. (a) – Railet; (b) – ICE 4.  
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4.4.1. M1 – Additional mass acc. to ÖBB guidelines [9] 
Implementing an additional mass Δμ to MLM calculations as pro

posed by M1 acc. to the ÖBB guidelines [9] represents an easy-to-handle 
approach with no need for any vehicle information. 

However, in the numerical study described in the previous sections, 
the application of M1 yield a large number of high values of δẅM1, 
especially in the case of the Railjet for bridges with a low fundamental 
frequency (n0≲ 12 Hz, see Fig. 12), while, at the same, also producing a 
high number of negative and, therefore, unsafe results. According to 
Fig. 11, bridges with a low mass distribution below the average value of 
μ≲ 16 540 kg m− 1 are related to a strong over- and underestimation of 
the maximum acceleration, i. e., very high or negative values of δẅM1. A 
strong positive correlation between the general effect of VBI and the 
effect of applying M1 could be observed whereby in cases of a moderate 
influence of the VBI (δẅMLM≲ 15 % see Fig. 10, the acceleration results 
obtained by applying M1 tend to underestimate the results obtained 
with the more complex DIM significantly (δẅM1 < 0 %). 

In conclusion, the alternative method M1 of implementing an addi
tional mass to reflect the impact of vehicle-bridge-interaction performs 
best for bridges with above-average mass distribution μ (also related to 
a smaller influence of VBI) and for bridges with large spans L≳ 20 m. The 
recommendation to not apply this method for bridges with short spans 
(L < 7 m) given in [9] could be confirmed since almost exclusively 
negative values of δẅM1 were calculated for bridges in this range. 

4.4.2. M2 - additional damping acc. to EN 1991–2:2003/AC:2010 [1] 
The method M2 of considering an additional damping ΔζM2 to 

consider VBI effects, which must currently be used acc. to EN 
1991–2:2003/AC:2010 [1], is also very user-friendly and does not 
require any vehicle information. It performs similarly to M1 in terms of 
the number of bridge structures experiencing exceptionally high 
(insufficiently damped) and negative (excessively damped) values of 
δẅM2. For structures with particularly wide spans (L≳ 25 m), for which 
the determination function for ΔζM2 by definition results in minimal 
additional damping, there are correspondingly high structural acceler
ations that significantly exceed those from DIM calculations and do not 
represent any improvement compared to the MLM calculation. 

In the case of medium spans L, both significant overestimation 
(δẅM2 ≥ 20 %, see Fig. 11 for the Railjet) and underestimation of the 
bridge accelerations (δẅM2 < 0 %) are possible. This is possibly related 
to the fundamental frequency of the bridges since, especially with low 
fundamental frequencies n0 ≤ 12 Hz, large deviations can be observed 
in the results obtained from MLM and M2 and those generated with the 
DIM. The results obtained from this numerical study confirm the find
ings in [3–5]. 

4.4.3. M3 – Additional damping acc. to Yau et al. [10] 
In order to apply method M3 according to [10] and determine the 

additional damping ΔζM3 more precise knowledge of the vehicle 
properties is required. The results generated by implementing ΔζM3 are, 
in the case of the Railjet, apart from the structures with wide spans 
(L≳ 25 m), scarcely better than the results obtained with ΔζM2, whereby 
the accuracy of method M3 decreases as the influence of the VBI in
creases (see Fig. 10). In the case of the ICE 4 and the vehicle properties of 
the powered passenger cars, applying M3 yields accelerations that are 
significantly too low and, therefore on the unsafe side. When using the 
unpowered car’s vehicle data, the calculation results are much closer to 
those generated by the more complex DIM. Here, however, the occur
rence of many negative results of δẅM3 is noteworthy, which, despite 
the tendency towards relatively small deviations (δẅM3 ≈ 0 %), repre
sent acceleration results on the unsafe side. 

The deviations of accelerations obtained with the MLM and M3 from 
those obtained with the DIM observed in the numerical study could be 
due to the simplified assumptions on which the equivalence system 
explained in section 2.3.3 is based, such as the assumption of two half 

coaches on the structure without taking into account the geometrical 
compatibility, the neglection of time-dependent wheelset positions, and 
the limitation to the first vibration mode. 

4.4.4. M4 – Additional damping acc. to Stoura and Dimitrakopoulos [11] 
Essential vehicle information is also required to apply M4 to [11], 

namely knowledge of the damping coefficients of the primary stage. This 
restricts the applicability of M4, as in the examinations described in 
section 4.2 and the unpowered passenger cars of the ICE 4 with no 
known damping coefficient cp. With the time-independent formulation 
of the determination function for ΔζM4,i, the distance d also represents a 
critical unknown variable, the influence of which should be examined in 
more detail in further studies. 

The acceleration results generated using M4 are, on average, for both 
trains, closer to those obtained with the DIM than the accelerations 
resulting from applying both normative methods M1 and M2. The 
method performs well with steel bridges, while with concrete bridges, 
where the influence of the VBI is moderate, only insignificant reductions 
in the maximum accelerations can be generated (δẅM4 ≈ δẅMLM, see 
Fig. 10). Nevertheless, with this method, the most considerable de
viations δẅM4 also occur in the case of the Railjet in steel structures with 
low mass distribution μ ≤ μ. In the case of the ICE 4, as with the M3, the 
accelerations generated are much closer to those obtained with the DIM. 
The number of structures for which the influence of the VBI is over
estimated (δẅM4 < 0 %) is, compared to M1 to M3, smaller but still not 
negligible. 

4.4.5. M5 – Additional damping acc. to Glatz and Fink [12] 
The additional damping ΔζM5 is with the numerically derived 

regression functions acc. to M5 [12] easy to determine and independent 
from vehicle data. However, the applicability of M5 is limited by the 
scope of the numerical investigations the method is based on, e. g., the 
restriction to specific trains. The applicability for other trains and coach 
sequences would have to be examined more closely. 

With the trains used in this study, as described in section 3.1, whose 
properties correspond to those used in [12], M5 produces structural 
acceleration results with relatively good agreement with those produced 
using the DIM. This is characterized by a low number of negative and 
exceptionally high results of δẅM5. As with M4, there is compared to the 
MLM calculations without additional damping no improvement for 
concrete structures with rather short spans L ≤ L and related high 
natural frequencies n0, which can be traced back to the upper limit of 
the frequency-dependent regression functions for determining ΔζM5 in 
[12] at n0 = 10 to 13 Hz. This limitation is motivated by the mostly 
negligible influence of VBI for bridges with high natural frequencies 
observed in [12], which is also observable in this contribution’s nu
merical study. For bridge structures with lower natural frequencies, the 
application of M5 yields, in the case of the ICE 4, relatively small values 
of δẅM5 while producing less negative values than M3 and M4. 

5. Conclusions and outlook 

The effects of applying additional mass or damping on moving load 
model (MLM) calculations to account for vehicle-bridge-interaction 
(VBI) following five different approaches are evaluated for 65 existing 
bridges and two high-speed trains, the Railjet and the ICE 4. The indi
vidual results of acceleration peaks are compared with those obtained by 
applying the more sophisticated DIM of each train, resulting in the 
comparative value δẅ. 

In general, the considered bridges that are categorized as steel- or 
composite structures, bridges with low fundamental frequencies n0 ≤

12 Hz and bridges with low mass distribution μ benefit the most from 
considering vehicle-bridge-interaction effects by applying the DIM of 
the vehicle. 

The subsequent evaluation allows assessing the benefits of the 
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different calculation concepts for the additional mass or damping 
regarding their accuracy and possible applications. For the scope of the 
previously described investigations, the following conclusions can be 
drawn:  

1. All approaches M1 to M5 yield for the considered bridges, on 
average, a reduction of acceleration peaks calculated with the MLM, 
leading to better compliance with results obtained with the detailed 
interaction model (DIM). However, the different approaches differ in 
the level and prevalence of particularly strong over- /underestima
tion of the beneficial effects of VBI.  

2. By applying one of the redesigned additional damping methods M3 
[10], M4 [11], and M5 [12] to MLM calculations, the acceleration 
results can reflect the damping influence of VBI on the design- 
relevant structural accelerations considerably more reliable than 
by using normative specifications as described in methods M1 [9] 
and M2 [1]. 

3. Applying M3, M4, or M5 leads, compared to the normative ap
proaches M1 or M2, in a lower number of bridge structures to an 
excessive reduction of the acceleration peaks and, therefore, non- 
conservative results (δẅ < 0 %). This does not apply to calcula
tions using M3 and the ICE 4, which tend to overestimate the 
damping effect of VBI significantly. 

4. Furthermore, the observed number of bridges subjected to substan
tial underestimation of the beneficial effect of VBI (δẅ ≫ 0 %) and its 
level is lower if M3 to M5 instead of M1 or M2 is applied.  

5. No specific application recommendations can be given for the 
analytically derived method M3 as described by Yau et al. in [10] 
since its application leads to strongly divergent outcomes for 
different train properties. Based on the properties of the ICE 4, it 
produces, in almost all cases, non-conservative acceleration results. 
Based on the properties of the Railjet, M3 performs better than the 
normative M2 as especially bridge structures with medium spans and 
low natural frequencies are less likely to get overly damped.  

6. The analytically derived approach M4 acc. to [11] can only be 
applied if the vehicle’s primary damping coefficient is known. It 
performs best with bridge structures with medium to high mass 
distributions. It generally produces less non-conservative (over
estimated VBI) accelerations than the normative approaches.  

7. The approach acc. to Glatz and Fink [12] performs best for bridge 
structures with a generally strong impact of VBI and those with spans 
over average. For both trains, it leads to a low number of excessively 
damped bridge structures and only few strong underestimations of 
additional damping due to VBI. This can be explained by the fact that 
this approach is derived from numerical studies explicitly conducted 
for both considered high-speed trains. Therefore, further analysis of 
the performance for deviating train parameters is advised. 

Further research incorporating existing research should give closer 
consideration to the extent of VBI effects on bridge vibrations and, 
therefore, the benefit of applying one of the methods. 

The findings in this contribution are limited to the two considered 
train configurations, for which the effects of implementing one of the 
five methods differ, in parts, significantly. Further analysis of the per
formance of the methods for deviating train parameters is advised. For 
the two trains considered, the properties of the locomotives and pas
senger cars (Railjet) or the powered and unpowered cars (ICE 4) differ 
significantly concerning the car masses (Railjet) and properties of the 
primary and secondary stages (Railjet and ICE 4) which complicates the 
application of methods M3 and M4 in particular. The influence of the 
VBI and the application of the methods examined here to determine the 
additional damping for trains with similar characteristics of all cars, 
such as trains with exclusively powered axles (power distribution trains) 
or articulated trains, should be addressed in further investigations. 

The applicability of methods M1 to M5 to other types of trains, such 
as articulated trains, heavily depends on the different methods’ 

derivation. The train-independent methods M1 [9] and M2 [1] can be 
applied to calculations with articulated trains without problems. Since 
only coupling properties between wheelsets and bogies are included in 
the derivation of M4 [11] and the additional damping is determined 
specifically for each individual train in the M5 [12], these two methods 
can also be easily transferred to other train types. In contrast, the 
formulation of the additional damping acc. to M3 [10] depends on the 
underlying model of two consecutive but decoupled bogies, which 
cannot be directly transferred to a model for articulated trains. The 
applicability needs to be checked accordingly. 

The applicable methods discussed in this article are based on the 
determination of additional damping or mass contributions from VBI, 
which consider its influence independent of time over the total duration 
of the train crossing. However, the influence of VBI depends on the time- 
variant position of the vehicle axles on the bridge structure, thus leading 
to different effects with diverging bridge spans and train axle distances 
(see findings in [32]). The continuous further development of numerical 
methods for identifying the instantaneous modal frequencies and 
damping of bridge structures from measured vibration responses, such 
as those presented by Matsuoka et al. [32] or Yuan et al. [33], enable a 
more detailed investigation of the time-variant influence of the inter
action dynamics between train and bridge structure. Future research 
activities on the development of simplified methods of considering VBI 
can make use of such time-dependent analyses of its influence, for 
example, for verification purposes and differentiated adjustment of the 
methods to deviating boundary conditions. 
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[10] Yau JD, Martínez-Rodrigo MD, Doménech A. An equivalent additional damping 
approach to assess vehicle-bridge interaction for train-induced vibration of short- 
span railway bridges. Eng Struct 2019;188:469–79. 

L. Bettinelli et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S0141-0296(22)00975-0/h0010
http://refhub.elsevier.com/S0141-0296(22)00975-0/h0010
http://refhub.elsevier.com/S0141-0296(22)00975-0/h0020
http://refhub.elsevier.com/S0141-0296(22)00975-0/h0020
http://refhub.elsevier.com/S0141-0296(22)00975-0/h0025
http://refhub.elsevier.com/S0141-0296(22)00975-0/h0025
http://refhub.elsevier.com/S0141-0296(22)00975-0/h0030
http://refhub.elsevier.com/S0141-0296(22)00975-0/h0030
http://refhub.elsevier.com/S0141-0296(22)00975-0/h0030
http://refhub.elsevier.com/S0141-0296(22)00975-0/h0040
http://refhub.elsevier.com/S0141-0296(22)00975-0/h0040
http://refhub.elsevier.com/S0141-0296(22)00975-0/h0040
http://refhub.elsevier.com/S0141-0296(22)00975-0/h0050
http://refhub.elsevier.com/S0141-0296(22)00975-0/h0050
http://refhub.elsevier.com/S0141-0296(22)00975-0/h0050


Engineering Structures 270 (2022) 114897

15

[11] Stoura CD, Dimitrakopoulos EG. Additional damping effect on bridges because of 
vehicle-bridge interaction. J Sound Vib 2020;476:115294. https://doi.org/ 
10.1016/j.jsv.2020.115294. 

[12] Glatz B, Fink J. A redesigned approach to the additional damping method in the 
dynamic analysis of simply supported railway bridges. Eng Struct 2021;241: 
112415. https://doi.org/10.1016/j.engstruct.2021.112415. 

[13] Matsuoka K, Collina A, Somaschini C, Sogabe M. Influence of local deck vibrations 
on the evaluation of the maximum acceleration of a steel-concrete composite 
bridge for a high-speed railway. Eng Struct 2019;200:109736. https://doi.org/ 
10.1016/j.engstruct.2019.109736. 

[14] Wu Y-S, Yang Y-B, Yau J-D. Three-Dimensional Analysis of Train-Rail-Bridge 
Interaction Problems. Veh Syst Dyn 2001;36(1):1–35. 

[15] Yang YB, Yau JD, Vehicle-Bridge WYS. Interaction Dynamics: WORLD SCIENTIFIC 
2004. 

[16] Zhang N, Xia He, Guo W. Vehicle–bridge interaction analysis under high-speed 
trains. J Sound Vib 2008;309(3-5):407–25. 

[17] Dinh VN, Kim KD, Warnitchai P. Dynamic analysis of three-dimensional 
bridge–high-speed train interactions using a wheel–rail contact model. Eng Struct 
2009;31(12):3090–106. 

[18] Peixer MA, Montenegro PA, Carvalho H, Ribeiro D, Bittencourt TN, Calçada R. 
Running safety evaluation of a train moving over a high-speed railway viaduct 
under different track conditions. Eng Fail Anal 2021;121:105133. https://doi.org/ 
10.1016/j.engfailanal.2020.105133. 

[19] Wu Y, Zhou J, Zhang J, Wen Q, Li X. Train-Bridge Dynamic Behaviour of Long- 
Span Asymmetrical-Stiffness Cable-Stayed Bridge. Shock Vib 2021;2021:1–15. 
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