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Abstract
Lasers are a flexible and powerful tool in many modern technological and scientific
applications. A special type of lasers used in these applications are high-energy pulsed
lasers, which need special optical amplifiers to achieve the required energy levels. Among
these amplifiers are regenerative amplifiers (RA), which use multiple passes through a gain
medium to amplify incoming seed pulses. RAs can show bifurcation due to the coupling of
subsequent pulses introduced by the dynamics of the stored energy of the amplifier, which is
undesirable for most applications. A control oriented reduced-order mathematical model of
such an amplifier is investigated in this thesis in order to suppress these bifurcations using
model-based control methods. This model uses small gain estimations of the individual
passes through the gain medium combined with slowly varying envelope estimates and
spatial averaging to achieve a simplified state-space model of the observed dynamics. Based
on this description, a linear quadratic regulator (LQR) combined with an extended Kalman
filter (EKF) is designed. The suppression of bifurcations due to feedback stabilization
achieved by the LQR then enables the use of output pulse shaping techniques using
iterative learning control (ILC) at arbitrary operating points. The designed system is
shown to achieve pulse shaping for different operating points while staying within the
input constraints introduced by the optical filter.
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Kurzzusammenfassung
In vielen wissenschaftlichen und industriellen Anwendungen hat sich der Laser als wichtige
und flexible Komponente von vielen modernen Prozessen etabliert. Eine spezielle Variante
dieser Laser ist der hoch-energetische, gepulste Laser. Um einen solchen Laser zu erzeugen,
sind spezielle optische Verstärker notwendig. Häufig werden hierfür regenerative Verstärker
(RA) verwendet welche mehrere Verstärkungszyklen durch das selbe Verstärkungsme-
dium nutzen um sehr hohe Verstärkungswerte zu erzeugen. Diese Verstärker zeigen
Bifurkationen an Betriebspunkten mit starker Kopplung zwischen aufeinanderfolgenden
Pulsen aufgrund der unterlagerten Dynamik der gespeicherten Energie. In den meisten
Anwendungen ist dies unerwünscht, da es zu einer ungleichmäßigen Energieübertragung
führen kann. Ein regelungs-orientiertes reduziertes mathematisches Modell, welches dieses
Verhalten reproduzieren kann und in weiterer Folge fÃ¼r den Reglerentwurf genutzt.
Basierend auf diesem Modell wurde ein ein LQR (linear quadratic regulator) Entwurf
durchgefÃ¼hrt und mit einem erweiterten Kalman-Filter (EKF) kombiniert, um die
Bifurkationen zu unterdrücken. Diese Unterdrückung der Bifurkationen kann nun genutzt
werden, um modellbasierte iterativ lernende (ILC) Regelung anzuwenden und damit eine
spektrale Pulsformung zu ermöglichen. Das implementierte System wurde für verschiedene
Arbeitspunkte getestet und zeigt erfolgreiche Unterdrückung der Bifurkationen und eine
gewÃ¼nschte Pulsformung innerhalb der Beschränkungen des optischen Filters.
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in(ω) = 1√
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1 Introduction
The development of the first lasers in the 1950s and 1960s marked a breakthrough for
modern optics and quantum physics [1]. Their spatial coherence and narrow frequency
band enable their usage in a wide range of fields. These include medical applications
(e.g., eye surgery [2]), manufacturing (e.g., laser ablation [3], cutting [4], drilling [5]),
scientific research (e.g., nuclear fusion [6], interferometry [7]) and communication (e.g.,
fiber-optic [8] and free-space optical communication [9]). Many of these applications
benefit from high-energy laser pulses compared to continuous wave operation.

A standard approach to obtain high-energy laser pulses is to amplify existing seed pulses
(e.g., from a mode-locked laser) to desired energy levels. Typical for the amplification of
ultra short high-energy pulses are regenerative amplifier (RA) and related chirped pulse
amplifiers (CPAs). RAs use multiple passes through a gain medium to achieve high pulse
energy gain [10]. This is generally done by placing the medium inside a resonator cavity.
CPAs augment RAs by using a temporal stretcher/compressor scheme to achieve very short
pulses without damaging the optical medium with their high energy densities [11]. Both
amplifiers deplete their gain capacity, represented by the population inversion of the gain
medium, during these passes, which needs to be regenerated in between the amplification
of consecutive pulses. If this depletion is not compensated by the regeneration before the
next pulse arrives, subsequent pulses are dynamically coupled by the amplifier. This can
lead to the amplifier jumping between two or more distinct output pulse energies for equal
input pulses or even display chaotic behavior [12]. Behavior like this is called bifurcation
and is undesirable for most applications, because they require equal power being delivered
with each pulse.

1.1 Pulse shaping
For some applications, not only the amount of energy but also the spectral distribution of
the field quantities inside the pulse needs to be adjusted. This is done in a process called
pulse shaping [13] using spectral optical filters (e.g., spatial light modulators [14], acousto-
optic modulators [15] and deformable mirrors [16]). While such filters can only decrease
the total pulse energy, a pulse shaping filter can be combined with an amplifier (e.g., an
RA) to generate high-energy pulses with arbitrary spectral profile [17] by accounting for
the spectral distribution due to the amplifier. Because of the nonlinear properties of the
amplification process, such prefilters need to be adapted for each operating point.

In general, control methods applied to pulse shaping tasks use model-free concepts, such
as genetic algorithms [18] or extremum-seeking [19] [20] as well as model-free iterative
learning control (ILC) variants [21]. This is justified by the highly complex effects the
nonlinear distributed-parameter system displays, as well as the degree of uncertainty
which is inherent to some parameters of the system. Some work has been done on using
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an ILC-based approach on single-pass and double-pass amplifiers [21]. Recent work has
also extended ILC approaches to multi-pass chirped pulse amplifiers [22], which, due to
their high gain values and spectrally inhomogeneous saturation, are more challenging.
Some remaining open questions of this paper sparked interest in the research done in
this thesis. These chirped pulse amplifiers are typically operated in a regime at high
pulse repetition rates with coupling of consecutive pulses, the effects of which have been
discussed previously. Since this coupling can lead to bifurcation and therefore unstable
operation, the adaptive strategy presented in the previous work needed to be limited to
stable operating points. This thesis aims at developing a model to reproduce this coupling
behavior, applying model-based control concepts to stabilize it and using model-based
ILC methods for pulse shaping at these stabilized operating points.

1.2 Iterative learning control
For systems working in a repetitive mode, iterative learning control (ILC) offers a system-
atic approach to reduce the tracking error of desired output quantities [23]. This is done
by adapting the input values ui+1 of iteration i + 1 based on the measured tracking error
of the previous iteration i. A typical linear update law used for ILCs is

ui+1 = ui + Li yd − yi , (1.1)

with the input values ui+1 and ui, the learning operator Li, as well as the desired and
measured output quantities yd and yi. This law is frequently augmented using an operator
Q, which can be used to suppress the influence of disturbances and increase robustness.
This leads to the modified update law

ui+1 = Q

ui + Li yd − yi . (1.2)

There are a multitude of different methods available to design the learning parameter
L and the filter Q. Among these are very simple methods such as P-Type ILCs using
a constant L parameter. In [24], L = kp I is employed, with the constant kp and the
identity operator I, for tracking control of a nonlinear systems. A combination of this
proportional component with a differential component kd D, with a constant kd and a
derivative operator D, results in PD-Type ILCs. An example of such a system is given
in [25] for servo control of a permanent magnet synchronous motor. More complex ILC
variants follow an inversion-based approach, which inverts the connection between the
input values ui to the output values yi and uses this as the learning operator L. Often
some kind of optimization approaches are utilized to calculate an approximate inversion
Examples for this can be found in [26] for over-actuated systems and in [27] using a
pseudo-inverse approach.

There are also multiple ways to design Q [28]. Many of these filters are designed to
feature a low-pass characteristic [29]. This leads to high-frequency components of the error
not being learned, which in general leads to better rejection of noise and high frequency
disturbances and ensures the stability of the ILC. For specific applications, band-pass
characteristics might also be useful to reject given disturbances.
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1.3 Structure of this thesis
Since this thesis aims to develop model-based control methods for regenerative amplifiers
that combine bifurcation suppression and pulse-shaping strategies, Chapter 2 starts
with the development of reduced-order mathematical models. A complex, nonlinear and
distributed-parameter model of the amplifier is shortly introduced and serves as a reference
for all further simulations. Based on this reference model, two submodels are derived,
with the first modeling the amplification due to a single pass through the medium and
the resulting depletion in population, and the second model capturing the regeneration
of the population inversion during the regeneration phases between two pulses. These
two submodels can be combined to a full model of the pulse amplification and population
dynamics of an RA, which also covers the coupling of subsequent pulses, i.e., the pulse-to-
pulse dynamics. This reduced-order model then needs to be calibrated. In Chapter 3, this
is tested for data only available from the simulations of the reference model to establish
a baseline, as well as from data which are available from measurements for comparison.
The resulting pulse-to-pulse dynamics can be represented in a discrete-time state-space
representation. A state feedback controller as well as a state observer are designed for
this system in Chapter 4. The feedback controller is based on linearization and solving a
linear-quadratic-regulator (LQR) problem. For state estimation an extended Kalman filter
is designed in Chapter 4. The combined controller and estimator are used to suppress
bifurcations at unstable operating points. This stabilization approach is then combined
with an ILC-based pulse-shaping scheme and tested for unstable as well as stable operating
points in Chapter 5. Chapter 6 then summarizes the developments and gives an outlook
on further extensions of this thesis. In addition to these chapters, the thesis contains an
appendix with four subsections. Section A.1 shows the assumptions associated with the
slowly varying envelope approximation (SVEA) used in the derivation of the reference
model in Chapter 2. A selection of identities for the Fourier transform of a time function
is given in Section A.2, which are used in Chapter 2 to derive the reduced-order model.
Section A.3 deals with the derivation of the imaginary difference method, which can be
used for numerical differentiation and is applied multiple times in this thesis. A detailed
description of the steady-state calibration done in Chapter 3 is presented in Section A.4.



2 Mathematical models of regenerative
optical amplifiers

In this thesis, a detailed mathematical model which is presented in this chapter is used as
a reference to evaluate the performance of the developed control algorithms.

This thesis aims to apply iterative learning control (ILC) to shape the input pulse of the
amplifier in order to yield a desired output pulse. These ILC algorithms all use some type
of model inversion for their learning iterations. Using the reference model to calculate this
inversion is not feasible due to the extremely high numerical effort. Therefore, a model of
reduced complexity is needed which can be used for online calculations.

The following sections go through a detailed description of the modeling applied to
the regenerative laser amplifier covered in this thesis. Starting with an overview of the
basic functionality of a regenerative amplifier a description of the equations used in the
reference model analogous to [22] is given. Based on these equations, the reduced-order
model is derived afterwards. The two models are then compared in the last section.

2.1 Reference model of the regenerative amplifier
Regenerative optical amplifiers (RA) use multiple passes through an active laser medium to
achieve high-gain values, a schematic overview of this is presented in Figure 2.1. Once the
energy stored in the medium is depleted, the pulse is released. The energy is replenished
by a constant stream of pumping light, regenerating the gain available for the next pulse.
A special type of RA is the chirped pulse amplifier (CPA), which uses an optical stretcher
and a compressor to avoid damaging the optical components due to the atomic energy
density of ultra-short pulses. For simplicity, we will restrict ourselves to RAs in this thesis,
although the developed algorithms can be directly applied to CPAs.

A Holmium-doped yttrium aluminum garnet (Ho:YAG) is used in the amplifier. This
type of solid-state medium features five resonant transitions in the mid-infrared region. A
simple energy level diagram and the coupling transitions are shown in Figure 2.2.

Any electromagnetic wave propagating through the crystal interacts with the population
densities Nj of the different energy levels. Photons with energies matching the energy
level differences can trigger stimulated emission or be absorbed. Stimulated emission
is when the photon interacts with an ion at the higher energy state and releases an
additional photon with the same energy, effectively doubling the amount of photons.
During absorption, the photon interacts with a ion on the lower energy level, raising it to
the higher level, with the photon being absorbed in the process. A typical pulse inside
the RA at 1, 5mJ is made up of about 16 quadrillion individual photons. The interaction
of any single photon is irrelevant, it is only of interest whether the amount of photons
is increased or reduced for a frequency. Interactions with either of the energy levels are
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Figure 2.1: Layout of the regenerative amplifier, with the input filter fk(ω) generating the
k-th initial input pulse Ek,0
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ηRC represent all losses during the return trip of the pulse. After a set amount
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Figure 2.2: Simple energy level diagram for the Ho:YAG, with all five resonant transitions
in red and eleven radiative as well as non-radiative relaxation transitions in
blue.
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more likely if its associated population is higher. On average, more stimulated emission
will happen if the population difference between the higher and the lower energy level,
called the inversion, is positive. Otherwise absorption will be dominant.

The non-radiative transitions also present inside the crystal work differently. Interactions
along these are either spontaneous in nature or triggered by phononic excitation of the
crystal. Spontaneous lattice non-radiative interactions lead to an ion dropping from a
higher to a lower energy level, releasing a phonon into the crystal. The ones triggered
by a phonon absorb it and raise an ion to the higher energy level. These transitions are
qualified by their relaxation probabilities γij .

As discussed above, the amplification of an optical pulse is driven by stimulated emission
of photons, which is dominant if the population inversion is positive. Therefore inversion
needs to be built up in any radiating transitions used for amplification. This is done by
exciting a large amount of ions to the higher energy level. In the Ho:YAG medium this is
E5. This excitation is typically done by using one of the radiative transitions, shining a
continuous beam of high intensity light of its frequency at the crystal, a process called
optical pumping. The laser modeled in this thesis uses the transition between E0 and E5
for pumping. To quantify the strength of this pumping light its intensity IP is used.

Every pulse propagating through the gain medium can be described by two field
quantities, the electric field strength E and the atomic polarization P of the doped ions,
both of which are complex quantities distributed over time and space. Since four resonant
transitions are used for Ho:YAG media, P can be split into four polarization contributions
P1, P2, P3, P4. As is typical for laser applications over relatively short propagation
distances, the pulse can be represented using plane waves. Setting the axis z on the
propagation direction and assuming a homogeneous transversal profile, a field quantity
can be written in envelope representation as

A(z, t) = A(z, t)e−i(k0z−ω0t),

with the time t, the spatial coordinate z, the imaginary unit i, the central angular frequency
ω0, the corresponding spatial wave number k0 and the complex pulse envelope A(z, t). In
the following derivations, the time, space and frequency dependence of field quantities is
omitted, unless needed for better understanding. All spatial and temporal variations of
the pulse envelope are assumed slow compared to the carrier frequency, using the slowly
varying envelope approximation (SVEA). An overview of the approximations is given in
Section A.1.

Using these approximations yields the polarization-driven nonlinear Schrödinger equa-
tion [22]

i
∂E

∂z
+ k2

2
∂2E

∂t2 − 1
2ω0ε0n0n2|E|2E = ω2

0
2c0ε0k0

(P1 + P2 + P3 + P4) (2.3a)

together with the resonant dipole equation [22]

∂Pj

∂t
= −ω2

j + jω0∆ωj − ω2
0

∆ωj + 2iω0
Pj + κj

∆ωj + 2iω0
(Nj − N5)E, j = 1, . . . , 4, (2.3b)
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and the associated population dynamic [22]

∂N1
∂t

= 1
2ℏ Im E∗P1 − (γ10 + γ12)N1 + γ21N2 + γ51N5 + γ01N0 (2.3c)

∂N2
∂t

= 1
2ℏ Im E∗P2 + γ12N1 − (γ20 + γ20 + γ23)N2 + γ32N3 + γ52N5 + γ02N0 (2.3d)

∂N3
∂t

= 1
2ℏ Im E∗P3 + γ23N2 − (γ30 + γ32 + γ34)N3 + γ43N4 + γ53N5 + γ03N0 (2.3e)

∂N4
∂t

= 1
2ℏ Im E∗P4 + γ34N3 − (γ40 + γ43 + γ45)N4 + γ54N5 + γ04N0 (2.3f)

∂N5
∂t

= − 1
2ℏ Im E∗

4

j=1
Pj − (γ50 + γ51 + γ52 + γ53 + γ54)N5 + σIP

ℏωP
(N0 − N5). (2.3g)

The equation for the spatial distribution of the pumping intensity is given by

∂IP

∂z
= σP (N5 − N0)IP . (2.3h)

Here the spectral dependence of the wave number is represented by k2, c0 is the speed
of light, µ0 the permeability of free space, ε0 the permittivity of free space and ℏ is the
reduced Plank constant. The parameters ωj and ∆ωj are the resonant frequency and
spectral width for the resonant transition 5 ↔ j, respectively. In addition κj = ωjε0c0∆ωjσj

ω0
with the transition cross section σj , is used as shorthand. The population dynamics
uses the direct relaxation probability γij for the transition i ↔ j, the local pumping
field intensity IP (z, t), the pumping field’s cross section σP and its angular frequency ωP .
Equation (2.3a) represents the influence of the polarization on the electric field and linear
and nonlinear effects during the propagation of the pulse. The resonant dipole equations
represent the dynamic of the polarization due to the population inversions of the resonant
transitions. There is no extra equation for the ground level population density N0 because
the sum of all population densities is equal to the dopant density, i.e.

N0 + N1 + N2 + N3 + N4 + N5 = Ndop. (2.4)

For a more detailed derivation of these equations, see [22]. The simulation model using
(2.3) was calibrated to closely match the measurements of an experimental amplifier.

The set of equations in (2.3) offer a very detailed model of a single pulse’s amplification.
The full model of the amplifier is then given by successive application of the model
(2.3) for each round trip while considering losses in between, see [22]. The distributed
characteristics of (2.3) in space and time is challenging for numerical evaluations, leading
to very long computation-times. Hence, it is not feasible for real-time applications using
model-based methods. For these applications, a different model needs to be derived.

2.2 Small gain approximation of pulse propagation
As discussed previously, regenerative amplifiers feature relatively small pulse gain values
during one propagation through the gain medium. Since any energy added to the pulse is
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balanced by a reduction of the population inversion, the change in population during one
propagation can also be assumed small. We can therefore assume that the gain during
one propagation is not changed significantly if we keep the population inversion constant

Nj(z, t) = Nj(z, 0) = N0
j (z). (2.5)

Using this assumption and neglecting the nonlinear components, (2.3a) and (2.3b) can be
written as

i
∂E

∂z
= −k2

2
∂2E

∂t2 + ω2
0

2c0ε0k0
(P1 + P2 + P3 + P4) (2.6a)

and

∂Pj

∂t
= −ω2

j + jω0∆ωj − ω2
0

∆ωj + 2iω0
Pj − κj

∆ωj + 2iω0
(N0

5 − N0
j )E. (2.6b)

This now makes it possible to apply the Fourier transform to both equations. Using
(A.99), this results in

i
∂Ê

∂z
= k2

2 ω2Ê + ω2
0

2c0ε0k0
(P̂1 + P̂2 + P̂3 + P̂4) (2.7a)

and

iωP̂j = −ω2
j + jω0∆ωj − ω2

0
∆ωj + 2iω0

P̂j − κj

∆ωj + 2iω0
∆N0

5jÊ, (2.7b)

with the initial population inversion ∆N0
5j = N0

5 − N0
j . Note that all quantities in the

Fourier space are represented with a hat, e.g.

Â(z, ω) = F A(z, t) (ω). (2.8)

Solving the resulting linear set of differential and algebraic equations for Ê and P̂j yields

P̂j =
−κj∆N0

5j

ω2
j + iω(∆ωj + 2iω0) + iω0∆ωj − ω2

0
Ê = χj(ω, ∆N0

5j)Ê, (2.9a)

with the electric susceptibility χj and

Ê(z, ω) = exp − i
z

0

k2
2 ω2 + ω2

0
2c2

0ε0k0

4

j=1
χj(ω, ∆N0

5j)dz Êin,RA(ω). (2.9b)

Since the electric susceptibility is linear with respect to the population inversion, we can
solve the integral by using the mean population ∆N̄0

5j = 1
L

L
0 N0

5j(z)dz. Evaluating (2.9b)
at the length L of the crystal, yields the pulse exiting the gain medium

Êout,RA(ω) = exp − iL
k2
2 ω2 + ω2

0
2c2

0ε0k0

4

j=1
χj(ω, ∆N̄0

5j) Êin,RA(ω) (2.10)

= G(ω, N̄0)Êin,RA(ω),
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with the complex gain spectrum G(ω, N0), using the vector of the population densities

N = N1, N2, N3, N4, N5
T

. (2.11)

This gain can be split into an absolute component

G(ω, N0) = exp L
ω2

0
2c2

0ε0k0

4

j=1
Im χj(ω, ∆N̄0

5j) (2.12a)

and a phase component

φG(ω, N0) = −k2L

2 ω2 − ω2
0L

2c2
0ε0k0

4

j=1
Re χj(ω, ∆N̄0

5j) . (2.12b)

We now know that we need the mean initial population at the beginning of the propagation
for a good estimate of the pulse gain. The following section derives a method to calculate
the population change during the propagation of one pulse through the gain medium in
order to calculate this mean initial population for each propagation.

2.3 Population dynamic during the propagation
This population change is based on the population dynamics of the reference model in
(2.3c) to (2.3g). The right sides of the equations can be split into two parts, the inversion
reduction due to the resonant transitions and the relaxation and pumping component.
These two parts work on very different timescales, with the relaxation and pumping being
significantly slower than the pulse interaction. Therefore, we can assume that its influence
on the population change during one propagation is negligible. This results in the new
population dynamics equations

∂N1
∂t

= 1
2ℏ Im E∗P1 , (2.13a)

∂N2
∂t

= 1
2ℏ Im E∗P2 , (2.13b)

∂N3
∂t

= 1
2ℏ Im E∗P3 , (2.13c)

∂N4
∂t

= 1
2ℏ Im E∗P4 , (2.13d)

∂N5
∂t

= − 1
2ℏ Im E∗

4

j=1
Pj . (2.13e)

We can now calculate the change of population N1 due to the propagation of one pulse by
integrating both sides of (2.13a), yielding

∆tN1(z) = N1,end(z) − N0
1 (z) =

∞

−∞
∂N1(z, t)

∂t
dt (2.14a)

= 1
2ℏ

∞

−∞
Im E∗(z, t)P1(z, t) dt. (2.14b)
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Applying the identity in (A.100), we can replace the right side with the zero frequency
component

∆tN1(z) = 1
2ℏF Im E∗(z, t)P1(z, t) (ω)

ω=0
. (2.15a)

Due to the linearity of the Fourier transform and the imaginary part, we can rearrange
the right side to get

∆tN1(z) = 1
2ℏ Im F E∗(z, t)P1(z, t) (ω)

ω=0
. (2.15b)

Applying the identities (A.102) and (A.101) to (2.15b) yields

∆tN1(z) = 1
2ℏ Im

∞

−∞
Ê∗(z, −ω′)P̂1(z, ω − ω′)dω′

ω=0
(2.15c)

= 1
2ℏ Im

∞

−∞
Ê∗(z, −ω′)P̂1(z, −ω′)dω′ (2.15d)

= 1
2ℏ Im

∞

−∞
Ê∗(z, ω)P̂1(z, ω)dω . (2.15e)

Using the definition of the electric susceptibility in (2.9a), we get

∆tN1(z) = 1
2ℏ Im

∞

−∞
Ê∗(z, ω)χ1(ω, ∆N0

51)Ê(z, ω)dω (2.15f)

= 1
2ℏ Im

∞

−∞
Ê(z, ω) 2

χ1(ω, ∆N0
51)dω . (2.15g)

The small gain estimate of the pulse amplification only needs the mean value of the initial
population for each propagation. Therefore, we apply the spatial mean to the population
change to get the change in the mean population

∆tN̄1 = N̄1,end − N̄0
1 = 1

L

L

0
∆tN1(z)dz. (2.16a)

Using the derivations above, we can write

∆tN̄1 = 1
2ℏ

1
L

L

0

∞

−∞
Ê(z, ω) 2Im χ1(ω, ∆N0

51) dω dz. (2.16b)

If we assume that the variation of the population is small across the spatial dimension, we
can replace ∆N0

5j with ∆N̄0
5j and shift the susceptibility out of the spatial integral to get

∆tN̄1 = 1
2ℏ

∞

−∞
1
L

L

0
Ê(z, ω) 2

dz Im{χ1(ω, ∆N̄0
51)}dω. (2.16c)

Applying the same assumption to the population, we can expect the absolute of the
spectral gain in (2.12a) to be of exponential shape in the spatial dimension, meaning

|G(ω, N0)| ≈ exp αG(ω, N̄0)L , (2.16d)
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with

αG(ω, N̄0) = ω2
0

2c2
0ε0k0

4

j=1
Im χj(ω, ∆N̄0

5j) . (2.16e)

This exponential shape can now be used to calculate the mean squared electric field
strength

1
L

L

0
|G|2dz =

exp 2αG(ω, N̄0)L − 1
2αG(ω, N̄0)L

(2.16f)

and use it to calculate the population change during one propagation depending on the
input pulse

∆tN̄1 = 1
2ℏ

∞

−∞
exp 2αG(ω, N̄0)L − 1

2αG(ω, N̄0)L
Ê(0, ω) 2Im{χ1(ω, ∆N̄0

51)}dω. (2.16g)

We can also calculate this change depending on the pulse after its amplification

∆tN̄1 = 1
2ℏ

∞

−∞
exp − 2αG(ω, N̄0)L − 1

−2αG(ω, N̄0)L
Ê(L, ω) 2Im{χ1(ω, ∆N̄0

51)}dω. (2.16h)

With the derivation above, the mean population after the propagation of pulse Êin(ω),
starting at a mean population N̄0 can now be estimated using

N̄1,end = N̄0
1 + 1

2ℏ
∞

−∞
exp 2αG(ω, N̄0)L − 1

2αG(ω, N̄0)L
Êin(ω) 2Im{χ1(ω, ∆N̄0

51)}dω. (2.17a)

Proceeding analogously for the other populations yields

N̄2,end = N̄0
2 + 1

2ℏ
∞

−∞
exp 2αG(ω, N̄0)L − 1

2αG(ω, N̄0)L
Êin(ω) 2Im{χ2(ω, ∆N̄0

52)}dω, (2.17b)

N̄3,end = N̄0
3 + 1

2ℏ
∞

−∞
exp 2αG(ω, N̄0)L − 1

2αG(ω, N̄0)L
Êin(ω) 2Im{χ3(ω, ∆N̄0

53)}dω, (2.17c)

N̄4,end = N̄0
4 + 1

2ℏ
∞

−∞
exp 2αG(ω, N̄0)L − 1

2αG(ω, N̄0)L
Êin(ω) 2Im{χ4(ω, ∆N̄0

54)}dω, (2.17d)

N̄5,end = N̄0
5 −

4

j=1

1
2ℏ

∞

−∞
exp 2αG(ω, N̄0)L − 1

2αG(ω, N̄0)L
Êin(ω) 2Im{χj(ω, ∆N̄0

5j)}dω.

(2.17e)

These equations can now estimate the change of all five populations during the propa-
gation of one pulse. The ground state population N0 does not experience any population
change induced by the pulse. This is easily visible in two ways. Firstly, the population
changes in (2.17) cancel each other. Secondly, in Figure 2.2 no resonant transition used
for amplification is interacting with the ground state, except for the one used for pumping.
With a set of equations to calculate the population change during one propagation, we
still need a way to describe the population dynamics between two pulses. A model for
this process is derived in the next section.
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2.4 Population regeneration between pulses
During phases with no pulse inside the gain medium, the influence of relaxation and
pumping on the population density can not be neglected. Taking the population dynamic
in (2.3c) to (2.3h) and setting the electric field strength to zero results in

∂N1
∂t

= −(γ10 + γ12)N1 + γ21N2 + γ51N5 + γ01N0 (2.18a)
∂N2
∂t

= γ12N1 − (γ20 + γ21 + γ23)N2 + γ32N3 + γ52N5 + γ02N0 (2.18b)
∂N3
∂t

= γ23N2 − (γ30 + γ32 + γ34)N3 + γ43N4 + γ53N5 + γ03N0 (2.18c)
∂N4
∂t

= γ34N3 − (γ40 + γ43 + γ45)N4 + γ54N5 + γ04N0 (2.18d)
∂N5
∂t

= −(γ50 + γ51 + γ52 + γ53 + γ54)N5 + σIP

ℏωP
(N0 − N5) (2.18e)

and

∂IP

∂z
= σP (N5(z, t) − N0(z, t))IP (z, t). (2.18f)

As discussed previously, we can expect the population density variation across the
spatial dimension to be relatively small, they are therefore replaced by mean population
densities N̄5 and N̄0 in (2.18f), yielding

∂IP

∂z
(z, t) = σP (N̄5(t) − N̄0(t))IP (z, t), (2.19)

which can be solved

IP (z, t) = exp σP (N̄5(t) − N̄0(t)) z Ip(0, t). (2.20)

By using the information in (2.4) about the sum of the population being constant, the
pump intensity can be calculated without the need for N0, i.e.

IP (z, t) = exp σP (N̄1(t) + N̄2(t) + N̄3(t) + N̄4(t) + 2N̄5(t) − Ndop) z Ip(0, t). (2.21)

With the vector of mean populations N̄ = N̄1, N̄2, N̄3, N̄4, N̄5 , this can be rewritten as

IP (z, t) = exp σP ( 1 1 1 1 2 N̄ − Ndop) z Ip(0, t). (2.22)

By applying (2.4) to (2.18) and rearranging it into a matrix equation, we get

∂N
∂t

= ΓN + ΓdopNdop, (2.23)
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with

Γ =


Γ11 (γ21 − γ01) −γ01 −γ01 γ51 − γ01

γ12 − γ02 Γ22 γ32 − γ02 −γ02 γ52 − γ02
−γ03 γ23 − γ03 Γ33 γ43 − γ03 γ53 − γ03
−γ04 −γ04 γ34 − γ04 Γ44 −γ04

−σIP (z,t)
ℏωP

−σIP (z,t)
ℏωP

−σIP (z,t)
ℏωP

−σIP (z,t)
ℏωP

Γ55(IP (z, t))

, Γdop =


γ01
γ02
γ03
γ04

σIP (z)
ℏωP


Γ11 = −(γ10 + γ12 + γ01), Γ22 = −(γ20 + γ21 + γ23 + γ02),
Γ33 = −(γ30 + γ32 + γ34 + γ03), Γ44 = −(γ40 + γ43 + γ45 + γ04),

Γ55(z, t) = −(γ50 + γ51 + γ52 + γ53 + γ54 + 2σIP (z, t)
ℏωP

).

Once again, only the change of the spatial mean population is needed. By applying the
spatial mean to (2.23), we get

∂N̄
∂t

= 1
L

L

0
Γ(z, t)N(z, t)dz + 1

L

L

0
Γdopdz Ndop. (2.24)

The first integral has no algebraic solution and (2.24) cannot be reduced to include average
populations only. By once again assuming that the population does not vary greatly
across the spatial dimension, i.e. N(z, t) ≈ N̄(t), we can simplify (2.24) to

∂N̄
∂t

= 1
L

L

0
Γ(z, t)dz N̄(t) + 1

L

L

0
Γdopdz Ndop. (2.25)

= Γ̄N̄ + Γ̄dopNdop. (2.26)

Inside the matrix Γ as well as the vector Γdop only the pump beam intensity IP depends
on the position and is linear in all their components. We can therefore get Γ̄ and Γ̄dop by
replacing IP by its spatial mean value ĪP , which can be calculated using

ĪP =
exp σP ( 1 1 1 1 2 N̄ − Ndop)L − 1

σP ( 1 1 1 1 2 N̄ − Ndop)L
IP (0, t), (2.27)

yielding

Γ̄ =


Γ11 (γ21 − γ01) −γ01 −γ01 γ51 − γ01

γ21 − γ02 Γ22 γ32 − γ02 −γ02 γ52 − γ02
−γ03 γ23 − γ03 Γ33 γ43 − γ03 γ53 − γ03
−γ04 −γ04 γ34 − γ04 Γ44 −γ04

−σĪP (t)
ℏωP

−σĪP (t)
ℏωP

−σĪP (t)
ℏωP

−σĪP (t)
ℏωP

Γ̄55(ĪP (t))

, Γ̄dop =


γ01
γ02
γ03
γ04

σĪP (t)
ℏωP



Assuring that the pump light intensity only changes slowly, enables us to set the pump
intensity constant in between two pulses. The change in population during the pumping
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process does not change the spatial mean of the pump intensity by much i.e. ĪP (t) ≈ ĪP (0).
Equation (2.26) can then be solved using methods for linear differential matrix equations.

N̄(t) = exp Γ̄t N̄(0) +
t

0
exp Γ̄t′ dt′ Γ̄dopNdop (2.28)

This equation can now be used to calculate the population change between two pulses by
setting the time accordingly.

2.5 Assembling the reduced-order model
The operation of the regenerative amplifier can be split into three phases.

1. the pulse amplification inside the gain medium during a single passage

2. the pulse circulating back inside the resonator cavity

3. a regeneration phase after release of the last pulse until the next seed pulse is injected

In the first phase, we can use (2.10) and (2.17) to calculate the population change and
use (2.12) to estimate the amplification of the pulse. These equations can be collected in
two mappings, the vector functional

fN (N̄, Êin,RA) = N̄ +



1
2ℏ

∞
−∞

exp 2αG(ω,N̄)L −1
2αG(ω,N̄)L |Êin,RA(ω)|2Im{χ1(ω, ∆N̄51)}dω,

1
2ℏ

∞
−∞

exp 2αG(ω,N̄)L −1
2αG(ω,N̄)L |Êin,RA(ω)|2Im{χ2(ω, ∆N̄52)}dω,

1
2ℏ

∞
−∞

exp 2αG(ω,N̄)L −1
2αG(ω,N̄)L |Êin,RA(ω)|2Im{χ3(ω, ∆N̄53)}dω,

1
2ℏ

∞
−∞

exp 2αG(ω,N̄)L −1
2αG(ω,N̄)L |Êin,RA(ω)|2Im{χ4(ω, ∆N̄54)}dω,

− 4
j=1

1
2ℏ

∞
−∞

exp 2αG(ω,N̄)L −1
2αG(ω,N̄)L |Êin,RA(ω)|2Im{χj(ω, ∆N̄5j)}dω.


(2.29a)

connecting initial and end populations, as well as the functional

fE(N̄, Êin,RA(ω)) = exp − i L
k2
2 ω2 + ω2

0
2c2

0ε0k0

4

j=1
χj(ω, ∆N̄0

5j) Êin,RA(ω), (2.29b)

connecting the input and output pulses. These equations can be combined in the pulse
model 

N̄k,n+1

Êk,n
out,RA

=

fN (N̄k,n, Êk,n

in,RA)
fE(N̄k,n, Êk,n

in,RA)
, (2.30)

which describes the effect of a single passage of a pulse Êk,n
in,RA through the gain medium.

One round trip is completed after the circulation of the pulse through the cavity, which
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introduces the cavity losses ηRC , resulting in the inputs for the next round trip
N̄k,n+1

Êk,n+1
in,RA

=


fN (N̄k,n, Êk,n
in,RA)

ηRCfE(N̄k,n, Êk,n
in,RA)

. (2.31)

= fRT


N̄k,n

Êk,n
in,RA


(2.32)

The second phase is a pumping and relaxation phase and can be described using (2.28)
with a pump time t equal to the return time of the pulse circulating back through the
cavity

LRC − L

c0
≈ 13ns, (2.33)

with the length of the resonator cavity LRC , the length of the gain medium L and the
speed of light c0. Within such a short time, the effect of relaxation and pumping is
minimal. We can therefore neglect the population change during this phase. The third
phase is also a pumping and relaxation phase, which can be described with (2.28). The
total time of this third phase

1
frep

− NRT (LRC − L

c0
+ L

c
), (2.34)

with the seed repetition rate frep, the speed of light c inside the medium and the number
of round trips NRT . We can mitigate some of the error caused by neglecting the effects of
relaxation and pumping during the pulse propagation, see the derivations of Section 2.3,
as well as during the second phase by extending the time of this third phase to include
phases one and two as well. The full pumping time is therefore defined as

Tpump = 1
frep

. (2.35)

This procedure is similar to applying operator splitting to the reference model. The
resulting equation

fpump(N̄) = exp Γ̄ 1
frep

N̄(0) +
1

frep

0
exp Γ̄ t dt Γ̄dopNdop (2.36)

comprises the pump model.
We can now use the pulse and pump models to assemble the reduced-order model. A

schematic overview of the model is shown in Figure 2.3.

1. The k-th pulse starts with an initial pulse generated by filtering the seed pulse
Êk,1

in,RA = fk(ω)Êseed at an initial population N̄k,1 = N̄k
init.

2. Propagation through the gain medium is modeled using (2.29a), resulting in N̄k,2

and Êk,1
out,RA.
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3. During the return trip the pulse is reduced by the cavity losses ηRC to get Êk,2
in,RA =

ηRCÊk,1
out,RA.

4. The next propagation is run immediately with the initial population N̄k,2 and an
input pulse Êk,2

in,RA, resulting in N̄k,3 and Êk,2
out,RA.

5. Steps 2 - 4 are repeated NRT times.

6. The last output pulse Êk,NRT
out,RA is then released from the cavity as the fully amplified

pulse Êk
out.

7. Now the last end population N̄k,NRT +1 is fed into the pump model (2.36) to get the
initial population for the (k + 1)-th pulse N̄k+1.

Using the shorthand for function composition

fN (x) = f ◦ f ◦ · · · ◦ f(x), (2.37)

we can combine the functions (2.32) and (2.36) to get the next initial population

N̄k+1 = fpump


1 0 fNRT

RT


N̄k

Êk
in(ω)


= F N̄k, Êk

in(ω) (2.38)

and the amplified pulse

Êk
out(ω) = 0 1 fNRT

RT


N̄k

Êk
in(ω)


, (2.39)

the equations above constitute a nonlinear discrete-time dynamic system in state-space
form

N̄k+1 = F N̄k, Êk
in(ω) , N̄0 = N̄init (2.40a)

Êk
out(ω) = h N̄k, Êk

in(ω) . (2.40b)

2.6 Model comparison
In order to evaluate and visualize the validity of the reduced-order model, a single pulse
was propagated through the reference model as well as the reduced-order model, starting
from the same initial population. The number of round trips NRT was set high enough
to almost deplete the population inversion for all transitions. This is not a typical mode
of operation, but is considered for illustrative purposes. Following the last round trip
of the pulse, the pump model is run consecutively until a steady state is reached for all
populations. Figure 2.4 shows the evolution of the different population inversions as well
as the current energy of the circulating pulse

W n = Abeam

2Z0

∞

−∞
|Ên

out,RA(ω)|2dω, (2.41)
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pulse model
(2.29a)

pulse model
(2.29a)

pulse model
(2.29a)

pump model
(2.32)

N̄k,2

N̄k,3

N̄k,NRT

N̄k,NRT +1

N̄k+1
in

N̄k,1 = N̄k
in

Êk,1
in,RA = fk(ω)Êseed

Êk,2
in,RA = ηRCÊk,1

out,RA

Êk,3
in,RA = ηRCÊk,2

out,RA

Êk,NRT
in,RA = ηRCÊk,NRT −1

out,RA

Êk
out = Êk,NRT

out,RA

Figure 2.3: Coupling diagram of the reduced-order model.
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with the beam area Abeam and the wave impedance Z0. Because the dynamics of the
pump model is significantly slower than the pulse model, a homogeneously scaled x-axis
normalized to the total round-trip time

TRT = LRC

c
= 13.5ns (2.42)

is used.
These results show a good agreement of the mean population inversion ∆N̄5j = N̄5 − N̄j

at highly saturated operation. This is true for both, the pulse propagation phase and
the pumping phase. Mainly during the build-up phase of the pulse energy, significant
deviations between the models are visible. These build-up phases, however, determine the
pulse-to-pulse dynamics of the system.

We can also see here that the assumption about the difference in the dynamics between
the pulse amplification and the pumping and relaxation is satisfied. The pump model
needs a factor of 104 more time to regenerate the inversion than the pulse needed to
deplete it, which confirms the assertion that the effect of pumping and relaxation during
the amplification of the pulse is negligible.

2.7 Operating regions of regenerative amplifiers
The comparison in the previous section was concerned with the evolution of one laser
pulse as well as the population inversion during the pumping phase afterwards. If this
recovery is not sufficient to reach the initial inversion again, the amplification of the input
pulse, as well as the change in population, are going to be different for the next pulse, as
is described by the pulse-to-pulse dynamics (2.40). This dynamic can be split into three
distinct regions.

1. Asymptotic and stable dynamics

2. Oscillating and stable dynamics

3. Unstable dynamics

An example of the first is plotted in Figure 2.5 using the reduced-order model. The
asymptotic behavior is clearly visible in the output pulse energy, which monotonically
approaches its steady-state value after around 12 pulses. An operation of the second type
is plotted in Figure 2.6, again converging after around 12 pulses. The transient oscillation
typical for the third type of operation is plotted in Figure 2.7. Due to the nonlinear
behavior of the system, this unstable operation does not diverge to plus and minus infinity,
instead it converges towards a limit cycle with a finite number of points.

Which of the three operation types is seen, mainly depends on four parameters:

1. The pump light intensity IP : lower values generally tend to instability, because less
inversion is build up between two pulses.

2. The frequency of the seed pulses frep: higher values tend to instability, because the
shorter time between two pulses means less inversion is build up as well.
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Figure 2.5: Pulse-to-pulse dynamics of the regenerative amplifier for an asymptotically
stable operating point.
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Figure 2.6: Pulse-to-pulse dynamics of the regenerative amplifier for an oscillating stable
operating point.

3. The energy of the input pulse: lower energy generally tends to instability.

4. higher output pulse energies also lead to less stable behavior.

5. The number of round trips for each pulse NRT : Round-trip numbers with high
amplification generally also tend to more instability.

It is well known that this coupling of subsequent pulses can destabilize the amplifiers’ dy-
namics and lead to period-doubling bifurcations and ultimately deterministic chaos [30][22].
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Figure 2.7: Pulse-to-pulse dynamics of the regenerative amplifier for an unstable operating
point.



3 Parameter identification
Simplification steps to obtain the reduced-order model (2.40) necessarily entail errors, e.g.,
a slight overestimation of the actual gain by not considering depletion effects immediately.
Such effects can be partly mitigated by adjusting selected parameter values of the reduced-
order model. Moreover, most mathematical models have to be calibrated by measurements.
This chapter thus aims to elucidate how well the reduced-order model can be fitted to
the reference model and to measurement data. To facilitate this procedure the selection
of viable parameters needs to be identified first. No implementation capable of online
calibration for such a system has been explored previously, only one semi-automatic
method was presented in [31].

3.1 Identifying viable parameters
A number of different parameters come into consideration for calibration. These parameters
need to represent the interaction of the resonant transitions with the pulse as well as the
dynamics of the pumping process. For the pulse interactions, the transition cross sections
σj , j = 1, . . . , 4 are chosen as parameters. The pumping process is represented by the
transition cross section σP of the pumping field as well as the relaxation probabilities γi0,
i = 1, . . . 5,. Note here that the relaxation probabilities γ0i are given by γ0i = BF0iγi0
using their respective Boltzmann factors

BF0i = exp −Ei

kBT
. (3.43)

In addition to this, the round-trip losses ηRC are also calibrated to represent the dissipative
processes. Thus, the set of parameters pj ∈ {σ1, σ2, σ3, σ4, σP , ηRC , γ01, γ02, γ03, γ04, γ05}
is considered in the following.

To assess the viability of these parameters for calibration, the sensitivity of a set of
values yi ∈ {N̄1, N̄2, N̄3, N̄4, N̄5, Wout} for a single step of the pulse-to-pulse dynamics
(2.40) to changes of the parameters pj is calculated using the sensitivity

Syi,pj =
∂yi
∂pj

yi
. (3.44)

The output energy Wout is calculated by

Wout = Abeam

2Z0

∞

−∞
|Êk

out(ω)|2dω. (3.45)

These output values are chosen because they represent the pulse-to-pulse dynamics, which
are important for the controller design later on. The derivative is calculated using the
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Table 3.1: Overview of the absolute value of the sensitivity |Syi,pj | in percent.
σ1 σ2 σ3 σ4 σP ηRC γ01 γ02 γ03 γ04 γ05

N̄1 0.297 0.132 0.14 0.157 4.435 0.11 0.196 7.11 0.096 5.083 0.89
N̄2 0.689 3.457 2.01 6.886 2.7 3.22 0.002 56.2 0.101 2.427 0.42
N̄3 0.312 0.147 0.15 0.182 3.463 0.11 0.002 7.05 11.77 5.074 0.69
N̄4 5.934 8.712 5.99 15.71 2.838 4.45 0.002 4.22 0.111 76.93 0.50
N̄5 0.358 0.194 0.18 0.26 3.871 0.10 0.002 6.85 0.096 5.032 0.82

Wout 20.46 21.36 27.9 8.487 0 237 0 0 0 0 0

complex step differentiation method, which is detailed in Section A.3. An overview of the
sensitivity values is shown in Table 3.1.

The sensitivity values of each output to changes of the four transition cross sections
σj are very similar. All the sensitivities of the pump light cross section σP are very
similar, except for the |SWout,σP

|, which is zero because the pump model is only run after
the amplification is finished as seen in (2.40). For the round-trip losses ηRC , we have
very different sensitivities. The high sensitivity of |SWout,ηRC

| is expected because the
round-trip losses directly impact the pulse energy every round trip. We can see very
different sensitivities for the relaxation probabilities, with the highest values of S being
much lower for γ01 and γ05 when compared to the other three relaxation probabilities.
Once again we can see the zero sensitivity of the pulse energy, which is due to the pump
model only being executed after the amplification as well. Based on these observations all
transition cross sections σ and the path losses ηRC are used as calibration parameters,

pj ∈ {σ1, σ2, σ3, σ4, σP , ηRC}. (3.46)

While the relaxation probabilities γ02, γ03 and γ04 could be added as well, we note here
that this only marginally improves the results.

3.2 Calibration with simulation data
This calibration scenario is designed to test how much the error between the two models can
be reduced if we have access to all populations and energies during one pulse propagation
due to (2.40). Such an approach is only possible because the data are generated by the
reference model. This data is taken from the comparison simulation scenario of Figure 2.4
in the previous chapter.

The calibrated parameters p∗ are calculated by solving the optimization problem

p∗ = arg min
p

J(p). (3.47)

The cost function J(p) is assembled using the simulation data of the reference model. Set-
ting k = 1, this data can be split into the populations N̄1,n

ref during the pulse amplification,
the corresponding pulse energies

W 1,n
ref = Abeam

2Z0

∞

−∞
|Ê1,n

out,RA|2dω (3.48)
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and the populations N̄k,n
pump,ref during the recovery phase, which can be seen in Figure ??

for t
TRT

≥ 60, of which NRT are taken equally spaced in time. Using the squared error in
the cost function yields

J(p) =
NRT

j=1
(|W 1,j(p) − W 1,j

ref | 1
WNorm

)2 + ∥N̄1,j(p) − N̄1,j
ref ∥2

1
NNorm

)2 (3.49)

+
NRT

j=1
(∥N̄1,j

pump(p) − N̄1,j
pump,ref ∥2

1
NNorm

)2 (3.50)

with the scaling factors WNorm and NNorm. The optimization is solved using a trust-region
type solver build into the lsqnonlin function provided by the Matlab Optimization Toolbox.
Because all parameters are in very different value regions, the calibration results are going
to be presented as multiplicative factors p̃j of the parameters used in the reference model
pj = pj,ref p̃j .

Table 3.2: Calibration results from full propagation information
NNorm WNorm p̃1 (σ1) p̃2 (σ2) p̃3 (σ3) p̃4 (σ4) p̃5 (σP ) p̃6 (ηRC)

V1 1.3592e25 0.0105 0.8213 0.8861 0.9875 0.9719 0.7636 0.9454
V2 1.3592e25 2.095e-4 1.0851 0.6203 1.0638 1.1807 0.7932 0.9468

This optimization was run with two different sets of scaling parameters. The resulting
scaling factors for the parameters p̃j as well as the scaling in the cost function NNorm and
WNorm are shown in Table 3.2. For these results, the relative energy error

eW =
W k,n − W k,n

ref

WNorm,1
(3.51)

and the population inversion error between the calibrated and reference models are plotted
in Figure 3.1. Both versions reduce the error of the pulse energy in the saturated operation
and also reduce the error during the pumping process. The main difference between the
two versions lies in how much the pulse energy error and the population inversion error
are reduced during the regions with higher energy gain. Version 1 reduces the error of the
population inversion further, but has increased pulse energy error in these high energy
gain phases. Version 2 works opposite to that, by reducing the pulse energy error while
not reducing the population inversion error as much as version 1 does. This behavior is as
expected based on the higher cost of the pulse energy error in J(p) of version 2. Adding
in three relaxation probabilities γ02, γ03 and γ04 as calibration parameters only marginally
decreases the model error. The calibration using simulated data of a full propagation is
clearly able to achieve better matching of the reduced-order and the reference model. We
can also see the importance of scaling parameters on the quality of the results.

3.3 Calibration with steady-state measurements
Even though the calibration shown in the previous section is capable of reducing the error
between the models in simulation, its usefulness in real-life application is very limited due
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Figure 3.1: Comparison of the model error for the uncalibrated model and different
calibration versions based on simulated data of the reference model. Wnorm is
set to be half of the maximum output energy.
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to the lack of population measurements. Therefore, an alternate calibration regime using
achievable measurements is introduced in this section. For a regenerative amplifier at 1
to 10 kHz, the system rapidly enters a steady-state regime for stable operating points,
for which the pulse energy can be measured. These measurements are limited to stable
operating points because the bifurcation of unstable operating points leads to a mean value
being measured, which in general does not correspond to the corresponding steady-state
value. To generate steady-state measurement data for this section, forward simulation of
the reference model are used.

For the discrete-time system (2.40), we can calculate the steady-state mean populations
N̄ss of the reduced-order model for a known input pulse Êss

in(ω) by solving

N̄ss − F(N̄ss
, Êss

in(ω)) = 0. (3.52)

The corresponding steady-state output pulse can then be calculated as

Êss
out(ω) = h(N̄ss

, Êss
in(ω)). (3.53)

To solve (3.52), different algorithms can be used. In this work fsolve from the Matlab
Optimization Toolbox was employed.

Using only one steady-state measurements is clearly not sufficient because we want
to optimize 6 parameters. Therefore, we want to use multiple different steady states,
which can be generated by using different input pulses and pump intensities. Only using
measurement of the full output pulse energy for the steady states of the reference model
is problematic for the optimization algorithm used. The pulse energy is influenced by the
cross sections σj of all transitions in a similar fashion, which leads to poor convergence
of the optimization. To counteract this problem, spectrally resolved measurements are
needed. They enable us to split the output pulse energy into multiple different partial
energies, which correspond to specific spectral regions of the output pulse. Since the four
transitions mainly amplify in their respective spectral regions, changes in one of these
partial energies can be associated to the calibration parameters in different ways. Using
the electric susceptibilities χj(ω) for this splitting is practical because they correspond to
the amplification by the different resonant transitions. Scaling them to have a maximum
value of one yields the scaled susceptibilities χ̃j(ω) plotted in Figure 3.2. To calculate the
split energies, the scaled susceptibilities are multiplied with the absolute squared output
pulse and integrated, yielding

W ss
j =

∞

−∞
|Êss

out(ω)|2χ̃j(ω)dω, j = 1, . . . , 4. (3.54)

For NW input pulses and NP pump intensities, the optimization problem

p∗ = arg min
p

J(p), (3.55)

with

J(p) =
NW

i=1

NP

l=1

4

j=1

W ss
j (p, Win,i, IP,l) − W ss

j,ref (Win,i, IP,l)
Ess

j,ref (Win,i, IP,l)

2
, (3.56)
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Figure 3.2: The scaled susceptibility functions used in the energy splitting needed for
calibration.

must be solved, which is again done using the Matlab function lsqnonlin. The different
input energies Win,i are achieved by scaling the input pulse

Êin,i(ω) = Êin,norm(ω) Win,i

Win,norm
, (3.57)

The calibration parameters obtained by solving (3.55) are presented in Table 3.3. For
a detailed breakdown of the calibrations results for different input energy and pump
intensity selections, as well as the comparison criteria, see Section A.4.

Table 3.3: Chosen calibration results from steady-state measurements.
p̃1 (σ1) p̃2 (σ2) p̃3 (σ3) p̃4 (σ4) p̃5 (σP ) p̃6 (ηRC)
0.9377 0.9692 0.9880 1.0037 1.0701 1.0901

Overall we can see that most of the scaling factors do differ significantly from the
calibration in the previous section. The same scenario as previously, but simulated with
the new calibrated parameters, is plotted in Figure 3.3 for comparison. The quality of
the calibration based on steady-state measurements in most cases is worse than using
the simulated data, especially the pulse energy for high round-trip values, which is
expected because the steady-state measurements used for calibration are all gathered at
NRT = 21. The reproduction of the population inversions is better using the steady-state
measurements even though they are not directly weighted in the cost function. This
is likely due to the population dynamics dictating the steady-state populations and
thus the steady-state output energies W ss

out. Since the pulse-to-pulse dynamics of the
model is of interest, an example of a stable operation is plotted in Figure 3.4 and of an
unstable operation in Figure 3.5. Starting with the same initial mean population, all
three models converge to a steady state, with a stationary difference remaining. The
calibrated model shows less divergence from the reference model, with the pulse energy
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showing the lowest error just as expected, except for ∆N̄54 for which the uncalibrated
model matches quite good already. Overall the presented steady-state calibration using
spectral output measurements appears to be a valid strategy. It is important to note here
that the spatially averaged populations of the reference model are calculated ex post and
do not necessarily have to be reproduced by the reduced-order model, which is calibrated
to the input-output behavior.
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Figure 3.3: Comparison of the model errors of the uncalibrated and two calibrated models,
one using the whole propagation and one using steady-state measurements of
the reference model. The same propagation as in Figure 2.4 and Figure 3.1 is
used.
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4 Stabilization of unstable operating points
As shown in Section 2.7, the regenerative amplifier can enter unstable operating points
that result in period-doubling bifurcation. To suppress these bifurcations, a stabilizing
state feedback controller, using the Linear Quadratic Regulator (LQR) method, combined
with an Extended Kalman Filter (EKF) state estimator, is designed in this chapter.

4.1 State feedback controller design
This feedback control algorithm shall use measurements of the output pulse energy W k

out

to modify the pulse-to-pulse dynamics using Êk
in(ω). The input pulse Êk

in(ω) can be freely
adjusted via the optical filter fk(ω), except for limitations due to the passive nature of
fk(ω), i.e., |fk(ω)| ≤ 1 or equally |Êk

in(ω)| ≤ |Êseed(ω)|. See Figure 4.1 for a graphical
representation of Êseed(ω). The resulting input pulse Êk

in(ω) for a desired input pulse
Êk,des

in (ω) can be defined as

Êk
in(ω) = Êk,des

in (ω) |Êk,des
in (ω)| ≤ |Êk

seed(ω)|
Êk

seed(ω) else.
(4.58)

Alternatively this can be written by defining the input filter

fk(ω) =


1exp i(ϕ(Êk,des

in (ω)) − ϕ(Êk
seed(ω)) |Êk,des

in (ω)|
|Êk

seed
(ω)| ≥ 1

Êk,des
in (ω)

Êk
seed

(ω) else,
(4.59)

with ϕ(Ê) denoting the phase of Ê.
This adjustment influences the shape and energy of the input pulse. Since the population

dynamics are mainly driven by the input pulse energy, we choose to modify the energy of
Êk

in(ω) with the controller while keeping the shape fixed, i.e.

Êk
in(ω) = Êss

in(ω) 1 + uk
F B, (4.60)

for the input energy this means that

W k
in = W ss

in (1 + uk
F B), (4.61)

with the input energy scaling parameter uF B. The steady-state input pulse Êss
in(ω) can

be chosen arbitrarily, which is used in the following chapter to shape the output pulse. A
particularly easy input pulse choice is a scaled version of the seed pulse Êseed(ω), e.g.

Êss
in(ω) = 1√

2
Êseed(ω) (4.62)
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with the resulting input pulse

Êk
in(ω) = 1√

2
Êseed(ω)

√
1 + uF B, for uF B ∈ − 1; 1 . (4.63)

This can be achieved using a simple gray-scale optical filter. Since the energy of a pulse
scales with the squared electric field strength this results in uk

F B = 1 corresponding to
Êk

in(ω) =
√

2Êss
in(ω) = Êseed(ω). Note here that the upper limit of uk

F B changes with
shape of the input pulse. The discrete-time system in (2.40) can be reshaped for this
new input pulse and using the easily measurable total output energy W k

out, which can be
calculated using (2.41), to get the discrete-time system for feedback control

N̄k+1 = F

N̄k

, Êss
in(ω) 1 + uk

F B , (4.64a)

W k
out = hmeas


N̄k

, Êss
in(ω) 1 + uk

F B = Abeam

2Z0

∞

−∞
h


N̄k

, Êss
in(ω) 1 + uk

F B

2
dω.

(4.64b)

The first step in designing the state feedback controller is linearizing the dynamics in
(4.66) around the steady state

N̄ss = F(N̄ss
, Êss

in(ω)), (4.65)

yielding

∆N̄k+1 = Φ∆N̄k + Γuk
F B, (4.66a)

∆W k
out = C∆N̄k + duk

F B, (4.66b)

with

Φ = ∂F
∂N̄k

(N̄k
, Êss

in(ω)), Γ = ∂F
∂uk

F B

(N̄k
, Êss

in(ω)), (4.66c)

C = ∂hmeas

∂N̄k
(N̄k

, Êss
in(ω)), d = ∂hmeas

∂uk
F B

(N̄k
, Êss

in(ω)), (4.66d)

and the linearized state ∆N̄k = N̄k−N̄ss and output energy ∆W k
out = W k

out−hmeas(N̄ss
, Êss

in(ω)).
This linearization is once again calculated using the complex step differentiation method
in Section A.3. The controllability and observability of the linearized system (4.66) can
always be shown for steady states where coupling between consecutive pulses is present.
We now want to design a linear feedback control law

uk
F B = KF B∆N̄k, (4.67)

using the control gain matrix KF B . One simple method to calculate KF B is pole placement,
where it is calculated such that the eigenvalues of the closed-loop system are placed at
specific values. A problem with this method is the choice of the desired eigenvalues and
high values of uF B if these eigenvalues are chosen poorly. To circumvent this problem,
the Linear Quadratic Regulator (LQR) method is used. This feedback controller design
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Figure 4.1: Seed pulse Êk
seed which is filtered to be used as the input pulse Êk

in of the
regenerative amplifier.

method calculates a time-dependent Kk
F B such that the resulting series of N̄k and uk

F B

minimizes the cost function

J(N̄0) =
N−1

k=0
((∆̄Nk)T Q∆̄Nk + R(uk

F B)2 + 2uk
F BS∆̄Nk), (4.68)

with the weighting matrix for the states Q, the weighting vector for the product of state
and input S and the weighting factor R for the input. Which must be chosen such that

Q S
ST R

(4.69)

is positive definite. A constant KF B can be obtained by calculating the solution of
(4.68) for N → ∞. This desired feedback gain can be computed by solving the discrete
Riccati-Equation

Ps = (Q + ΦT PsΦ) − (S + ΓT PsΦ)T (R + ΓPsΓ)−1(S + ΓT PsΦ) (4.70a)

for Ps and calculating

KF B = −(R + ΓPsΓ)−1(S + ΓT PsΦ). (4.70b)

For a detailed breakdown of the derivations for this controller design, see, e.g. [32]. Using
this feedback law results in the closed-loop dynamics

N̄k+1 = F

N̄k

, Êss
in(ω) 1 + KF B∆̄Nk

, (4.71)



4 Stabilization of unstable operating points 4.1 State feedback controller design 35

2.08 2.08 2.09 2.09 2.1 2.1 2.11 2.11 2.12
×10−6

0

2

4

wavelength λ in m

Ê
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Figure 4.2: Experimental input pulse Êss
in(ω) = 1√

2Êseed(ω) used for testing the stabiliza-
tion of an unstable operating point.

with the linearized dynamic matrix of the closed loop system

Φcl = Φ + ΓKF B. (4.72)

If all eigenvalues of Φcl lie within the unit circle, the closed-loop system is stable in a
local region around the steady state N̄ss for uF B = 0.

The main parameters of the uncontrolled system are the seed pulse frequency frep, the
seed pulse energy Win as well as its spectral shape, the pump intensity IP , and the number
of round trips NRT , as discussed in Section 2.7. For example using the input pulse in
Figure 4.2, which has a seed energy of 2.7 µJ, with a pump intensity of 119.37 W/mm2, at
a seed pulse frequency of 10 kHz and a round-trip number of 35, results in an unstable
operating point. The eigenvalues of the open-loop dynamic matrix Φ are plotted in
Figure 4.3, together with the eigenvalues of the closed-loop dynamic matrix Φcl, for Q = I,
S = 0 and R = 1.

The evolution of the output energy as well as the population inversion for a stabilized
amplifier using the feedback law (4.67) with (4.70) is shown in Figure 4.4 with the
corresponding steady-state of the reduced-order model. The system is simulated for
15 pulses before the plotted values, so that the limit cycle is fully emerged. Then the
controller is activated after the 10th plotted pulse, which enables to dampen the limit-cycle
oscillations to a steady-state. The controller clearly accomplishes the goal of stabilizing
the system. Also apparent is the constant population and output energy error that
remains, which also means that uF B reaches a nonzero steady state. This is a result
of the error between the reference and reduced-order models, which brings along that
the mean population of the reference model’s steady state is different from the steady-
state population of the reduced-order model. This is in principle not a problem for the
application in this thesis, since subsequent pulse shaping methods only require the system
to be stable, but it may limit the available control range of the optical filter, as can be
seen in Figure 4.4.
In order to force the system to reach a steady state with uss

F B = 0, the system is extended
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Figure 4.3: Eigenvalues of the dynamic matrix for the open-loop and closed-loop system.

by a differentiator directly in front of the control input uF B . This implementation can also
mitigate problems originating from an output energy error of the reduced-order model’s
steady-state compared to the reference model. By introducing an additional state zk,
which follows the discrete dynamics

zk+1 = rk (4.73)

with the new input rk and defining

uk
F B = zk+1 − zk = rk − zk, (4.74)

the extended system can be written as
N̄k+1

zk+1 = Fe(N̄k, zk, rk) =

F

N̄k

, Êss
in(ω)

√
1 + rk − zk

rk

. (4.75)

This extended system also again be stabilized by means of a LQR. Using the linearized
model of the extended system

∆N̄k+1

zk+1 = Φe


∆N̄k

zk + Γerk, (4.76)

with the matrices

Φe =

Φ −Γ
0 0 and Γe =


Γ
1 , (4.77)
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the equations in (4.70) can be used to calculate the control gain matrix for the extended
system. The controllability and observability of the linearized extended system (4.77)
can be shown for steady states where coupling between consecutive pulses is present.
Following the design in (4.70) for the extended matrices returns the control gain matrix
KF Be for the extended system

rk = KF Be


∆̄Nk

zk
. (4.78)

In order to keep the feedback controller input uk
F B = rk −zk inside the required constraints,

rk ∈ − 1 + zk; 1 + zk which can be enforced using a state-dependent restriction. The
same simulation scenario as used in Figure 4.4 is performed with the extended controller
designed with Q = I, S = 0T −1

T
and R = 1. The new entry in S is set to −1 in

order to weight the system input uk
F B = rk − zk evenly. The evolution of the pulse energy

as well as the mean population inversions together with their corresponding steady states
of the reduced model are plotted in Figure 4.5. Additionally the controller input values
uk

F B for the extended system design as well as from Figure 4.4 are plotted for comparison.
This extended controller design is able to dampen excitations, but achieves a steady state
closer to the calculated steady state of the reduced model and the system input uF B

vanishes stationary as required.

4.2 EKF-based state estimation
As discussed previously, online measurements of the populations are generally not available.
Therefore, a method to estimate these populations needs to be used. In this thesis,
an extended Kalman-filter (EKF) is utilized for this purpose. This section shows the
derivation of an extended Kalman filter to estimate the current mean population based
on the dynamics of the reduced model.

Kalman-filters are optimal state estimators [33]. They always make two estimates
of the state for a given iteration k, the a-priori estimate N̄k

pri calculated before the
measurement and the a-posteriori estimate N̄k

post which uses measured data to achieve
a better estimate. The extended variant of the Kalman-filter uses a nonlinear model of
the system dynamics to calculate the a-priori estimate N̄k

pri. After the measurement, the
a-priori estimate N̄k

pri is updated to the a-posteriori estimate N̄k
post using the linearized

system. The EKF also incorporates information about the statistical properties of system
disturbances and measurement noise. They are represented by the covariance matrix Q̂
for the system disturbance wk and the covariance R̂ for the measurement noise nk, using
a simple stochastic system model

N̄k+1 = F

N̄k

, Êss
in(ω) 1 + uk

F B + wk, (4.79a)

W k
out = hmeas


N̄k

, Êss
in(ω) 1 + uk

F B + nk. (4.79b)

To get the linearized system, we use the linearization in (4.66c) around N̄k
post and (4.66d)
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the steady-state equation of the reduced model (4.65).
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around N̄k
pre yielding

Φk = ∂F
∂N̄k

(N̄k
post, Êk

in(ω)) Ck = ∂hmeas

∂N̄k
(N̄k

pri, Êk
in(ω)). (4.80)

These derivatives are again calculated using the complex step differentiation method. For
a given a-posteriori estimate N̄(k−1)

post of the previous state as well as the corresponding
covariance matrix P(k−1)

post , we can calculate the best estimate of the current state using
the nonlinear dynamics of the reduced model

N̄k
pri = F(N̄(k−1)

post , Ê
(k−1)
in (ω)) (4.81a)

and the change of the covariance matrix due to the dynamics

Pk
pri = Φ(k−1)P(k−1)

post (Φ(k−1))T + Q̂. (4.81b)

After measuring W k
out we can use the Kalman gain

L̂k = Pk
pri(Ck)T


CkPk

pri(Ck)T + R̂
−1

(4.81c)

to update the a-priori to the a-posteriori estimate

N̄k
post = N̄k

pri + L̂k

W k

out − hmeas(N̄k
pri, Êk

in(ω)) , (4.81d)

which is also done for the covariance matrix.

Pk
post = (I − L̂kCk)Pk

pri. (4.81e)

With these estimates we can now again estimate the next state using the nonlinear dynamic
of the reduced model

N̄(k+1)
pri = F(N̄k

post, Êk
in(ω)). (4.81f)

The set of equations in (4.81) can be implemented to estimate the current a-priori state
Pk

pri used in a state feedback controller. To test the feasibility of the estimation alone, a
stable operating point was simulated without the state feedback controller active, using
the covariance matrices Q̂ = diag(10−3 ·N̄ss)2 and R̂ = (10−5)2 as well as the initial values
P0

post = diag(10−3 · N̄ss)2 and N̄0
post = N̄ss. See Figure 4.6 for the plotted estimation

error propagation. This operation clearly shows that the Kalman-filter reproduces the
population of the reference model quite well. Combining Kalman-filter and feedback
controller and testing it on the same unstable operating point used in Figure 4.4, results
in the plots of Figure 4.7. This combination is clearly able to stabilize the reference model.
A comparison of the necessary control input uk

F B of the EKF + LQR with the LQR alone,
using the mean populations of the reference model in Figure 4.8, shows that the EKF +
LQR with extension needs less control reserve while also reaching smaller control input
values uk

F B faster. This can be attributed to the reduced model being calibrated to the
input-output behavior of the amplifier, leading to the LQR + EKF performing better than
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Figure 4.6: Estimation error of the EKF for the states at a stable operating point. Using
Q̂ = diag(10−3 · N̄ss)2, R̂ = (10−5)2, P0

post = diag(10−3 · N̄ss)2 and N̄0
post =

N̄ss.

the LQR using the populations directly, which is unusual, but is a result of the populations
of the reduced-order model not being calibrated directly. Using the EKF with the LQR
without extension uses a lot more control reserve and approaches a nonzero steady state,
which is closer to zero than the steady state of the LQR without extension and without
EKF. To test the extended LQR with the EKF, a simulation was run using different NRT ,
frep and IP values to achieve a variety of unstable operating points. Figure 4.9 shows the
control input uF B needed for systems with different maximum absolute eigenvalues |λ|max.
The increasing control reserve required for increasingly unstable system is clearly visible.
Even with the control input uF B reaching the boundaries, the combination of LQR and
EKF is still able to dampen excitations of the amplifier dynamics. This ability to stabilize
operating points with higher absolute eigenvalues is important because changing the input
pulse shape can move the amplifier into regions with higher absolute eigenvalues during
operation of the pulse shaping.
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5 ILC-based spectral pulse shaping
In the previous chapter, we used uk

F B to stabilize the amplifier based on measurements of
the output energy W k

out. The spectral shape of the resulting steady-state output pulse
is thus determined by the amplifier’s behavior and the chosen shape of Êss

in in (4.60).
The goal of this chapter is to use additional measurements of the output pulse Êk

out(ω),
available for each Nm-th pulse, to subsequently reproduce a desired pulse Êdes

out (ω) using
iterative learning control (ILC) methods. To allow for an operation in unstable regimes,
the ILC needs to be combined with the extended LQR and the EKF setup designed in
the previous chapter.

5.1 ILC design
An intuitive way to combine these two methods is to let the ILC algorithm shape the
input pulse Êk

in while letting the feedback controller change its energy, i.e. the input pulse
for iteration k can be written as

Êk
in(ω) = ÊILC

in (ω) 1 + uk
F B. (5.82)

Measurements of the output pulses spectral shape typically require steady-state operation
of the amplifier. I.e. if the change in output energy is smaller than a threshold Wout,th

and the control input value uF B is also smaller than a threshold uF B,th, the next available
output pulse measurement Êk

out(ω) with mod(k, Nm) = 0 is used to update the ILC pulse
shape

ÊILC
in (ω) = ÊILC

in (ω) + L̂k(ω)

Êdes

out (ω) − Êk
out(ω) . (5.83)

To force the ILC algorithm to only adapt the shape of the input pulse and not its energy,
which helps to ensure a control reserve for the feedback controller, we can replace (5.83)
with an energy-conserving formulation

ÊILC
in (ω) =

ÊILC
in (ω) + L̂k(ω)


Êdes

out (ω) − Êk
out(ω)

∥ÊILC
in (ω) + L̂k(ω)


Êdes

out (ω) − Êk
out(ω) ∥

∥ÊILC
in (ω)∥ (5.84)

to update the ILC pulse shape. The learning operator L̂ for both laws is designed using
the pseudo-inverse-based Wien-filtering approach presented in [34] Both update laws use
the same learning operator

L̂(ω) = dILC

S(ω)(Gk
amp(ω))∗

γILC + (Gk
amp(ω))∗Gk

amp(ω)
, (5.85)
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with a dampening parameter dILC ∈ 0; 1 , a positive regularization parameter γILC , the
learning region selector S(ω) and the estimated complex spectral gain of the amplifier
Gk

amp(ω). The learning region selector is chosen such that learning is only done in regions
where the significant gain of the amplifier is required, i.e.

S(ω) = 1 |Êout,des(ω)| ≥ 104 max |Êout,des(ω)|
0 else

. (5.86)

To calculate the complex spectral gain Gamp(ω), we can exploit the special form of the
output map (2.40b) of the reduced model

Êk
out(ω) = h N̄k, Êk

in(ω) = Gamp ω, N̄k, Êk
in(ω) Êk

in(ω) (5.87)

which is a direct result of (2.29b) and (2.32). For given N̄k, Êk
in(ω) and Êk

out(ω) this
equation can easily be solved for Gamp ω, N̄k, Êk

in(ω) . After each update the LQR needs
to be recalculated, since the underlying linearization depends on the spectral shape of the
current input pulse.

Now we only need to choose a suitable initial shape ÊILC
in (ω) for the ILC algorithm.

A simple choice would be the same as used in testing the control algorithms in the
previous chapter, i.e. ÊILC

in (ω) = 1√
2Êseed(ω),. For a more sensible initial choice, we

can use the gain equation in (5.87). By neglecting the influence that Êk
in(ω) has on

Gamp ω, N̄k, Êk
in(ω) , i.e. neglecting the reduction in population during amplification, we

can get the initial input pulse ÊILC
in (ω) and the corresponding steady-state population of

the reduced model by solving

N̄ss = F(N̄ss
, ÊILC

in (ω)) (5.88a)
Êdes

out (ω) = Gus(ω, N̄ss)ÊILC
in (ω) = ηNRT

RC fNRT
E (N̄ss

, ÊILC
in (ω)), (5.88b)

with fE from (2.29b), for the steady-state population N̄ss and then solving (5.88b) for
the initial pulse ÊILC

in (ω). The second method produces good initial guesses for the ILC
algorithm, in particular for stable operating points. All following simulations of the ILC
use the first method to better show the convergence of the ILC for stable operating points.
The full implemented ILC algorithm can now be assembled. A flow diagram of the whole
system is depicted in Figure 5.1.

5.2 Simulation scenarios
Multiple operating points, both stable and unstable, were tested to validate the developed
algorithm’s functionality. A stable and an unstable operating point are presented in more
detail here.

5.2.1 Stable operating point with energy-normalized learning
To get a stable operating point, the amplifier is operated with a pump intensity IP =
155 W/mm2, with the seed pulse source set to frep = 10 kHz and each pulse amplified for
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Figure 5.1: Flow diagram of the ILC algorithm including the EKF as well as the adaptation
of the extended LQR.
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NRT = 17 round trips. A desired output pulse in the shape of a Gaussian distribution and
an energy of W des

out = 79 µJ is chosen. As discussed in the previous section, (5.1) is used
to calculate the initial ILC pulse shape which is updated using the energy-normalized
learning in (5.84). The amplifier is initially in steady-state operation and the EKF is
activated at k = 0 using the same parameters as in Figure 4.6 and the LQR is activated
at k = 10 after the estimation error converged with the same parameters as in Figure 4.5.
The linearized system dynamics of the reduced model has eigenvalues with a maximum
absolute value of 0.9730. The full spectral measurements of Êk

out(ω) necessary for these
updates are assumed to be available every fifth pulse, i.e. Nm = 5. To classify the
deviation of the output pulse from its desired shape, we can use the relative pulse energy
error

ek
pulse =

∞
−∞ |Êout(ω)k − Êdes(ω)|2dω

∞
−∞ |Êdes(ω)|2dω

. (5.89)

Figure 5.2 presents the results of this simulation scenario. The ILC algorithm is clearly
able to reduce the relative pulse energy error using the update law (5.84), these update
steps are visible at pulse 20, 30, 40, 50, 55 and so on in Figure 5.2b. The updates start
getting ineffective after pulse 100, which can be attributed to the pulse having too much
energy. While the pulse’s shape is matching the desired pulse, the energy-normalized
learning is not adjusting the total energy.

5.2.2 Unstable operating point with energy-normalized learning
A similar simulation scenario with an unstable operating point is achieved by using a higher
number of round trips NRT = 35, while keeping the pump intensity at IP = 155 W/mm2

and the seed pulse frequency at frep = 10 kHz. Since this operation achieves higher pulse
energy gain, a desired pulse with the same shape and an energy of W des

out = 514 µJ was used.
With the same simple initial pulse shape (5.1), this results in a linearized system with
features a maximum absolute eigenvalue of 1.6987. See Figure 5.3 for the results of this
simulation scenario. These plots clearly show that the LQR stabilizes the amplifier. The
ILC updates at pulse 45, 55, 65, 70 and so on only introduces minor dynamic excitations
due to the energy-normalized learning. Once again, these learning updates start becoming
ineffective after pulse 120, but they are still visible in Figure 5.3b because of the excitation
of the amplifier dynamics. The output pulse strongly deviates in Figure 5.3a from the
desired pulse, which can mainly be attributed to the achieved output energy being too
high, which the ILC can only influence slightly due to the energy-normalized learning.

5.2.3 Stable and unstable operation without energy-normalizing learning
Using the same operating parameters from the previous two simulations but swapping
from the energy normalizing ILC update law (5.84) to the ILC update law without energy
normalization (5.83), i.e. letting the ILC influence the input pulse energy, results in the
two simulations presented next. The results of the stable operating point are plotted in
Figure 5.4. This operation achieves the goal of the output pulse Êk

out(ω) converging to
the desired output pulse Êk

out(ω), with the smallest ek
pulse values reaching around 0.04%.
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Figure 5.3: ILC convergence for an unstable operating point with energy-normalized
learning (5.84)-logarithmic scaling



5 ILC-based spectral pulse shaping 5.2 Simulation scenarios 50

The only problem with this operation are the small absolute values of f(ω) necessary to
achieve this operating point, which are generally not achievable with reasonable accuracy
by optical filters. This problem is even more pronounced for the unstable operating point,
with the necessary absolute value of the input filter being nearly indistinguishable from
zero in Figure 5.5.

5.2.4 Reduced pump intensity
Another more applicable option to reduce the output energy of the amplifier is to reduce the
pump intensity IP of the pumping beam. For example, reducing it from IP = 155 W/mm2

to IP = 24 W/mm2 in Section 5.2.1 and still using the same initial ILC pulse shape
combined with the energy-altering ILC update (5.83) results in the output pulse and
input filter spectra presented in Figure 5.6. Looking at the absolute value of the filter, we
can see that more control reserve is used, just as desired while still reducing the relative
pulse energy error ek

pulse to values below 0.01%. Actively controlling the quantity IP as
an additional input, such that the output energy of the stead state W ss

out matches the
desired output energy W des

out using a feedback controller should achieve better convergence
of the ILC while keeping the input filter in a usable operating region. It can also be used
to keep the learned input shape ÊILC

in (ω) in a range such that the full control reserve
uF B ∈ − 1; 1 is always available within the input filter constraints.

The presented ILC algorithm combined with the extended LQR controller and EKF is
clearly able to suppress bifurcation while simultaneously correcting the pulse shape within
the physical limits of the amplifier. Since the reference model closely matches a (Ho:YAG)
laser amplifier, we can expect the ILC to also work on a real-life implementation.
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Figure 5.5: The output pulse Êk
out(ω) compared to the desired pulse Êdes

out(ω) as well as
the initial and end filter settings of f(ω) for an unstable operating point with
energy-altering learning (5.83).

2.09 2.09 2.1 2.1
0

1

wave length λ in µm

ou
tp

ut
pu

lse
in

m
V

/m
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Figure 5.6: The output pulse Êk
out(ω) compared to the desired pulse Êdes

out(ω) as well as
the initial and end filter settings of f(ω) for a stable operating point with
reduced pump intensity and energy-altering learning (5.84).



6 Conclusions and Outlook
The main goal of this thesis was to extend existing pulse-shaping schemes for regenerative
amplifiers (RAs) to dynamically unstable operating points. To this end, a reduced dynamic
model of RAs was derived in Chapter 2. This was done by using the Fourier space to
linearly approximate the amplification of a pulse propagating through the gain medium
while using this approximation to estimate the amount of population being lost due to
this amplification. In combination with the population change due to the pumping during
the regeneration phase between two pulses, this model can reproduce the dynamics and
the spectral behavior of regenerative amplifiers using a nonlinear discrete-time dynamic
system. After calibration to steady-state output measurements in Chapter 3, this model
can be used to design a state estimator and a state feedback controller in Chapter 4 to
suppress the bifurcation of the RA. Pulse shaping through iterative learning control (ILC)
methods can subsequently be applied to the feedback-stabilized amplifier in Chapter 5.
This combined application of state feedback control and ILC was shown to be able to
suppress bifurcation and achieve output pulse shaping, while still being applicable to
open-loop stable operating points. The implemented pulse shaping still has some problems
if the pump light intensity and thus the operating point is chosen poorly for the desired
output pulse, the presented algorithms either fail to deliver the desired energy or lead to
unreasonable input pulse values. By adding the pump intensity as a (slowly) adjustable
control input, the presented scheme could be augmented to deliver stable pulses of desired
shape and energy.

In addition to this, different types of model predictive control could also be applied.
This should enable us to take input (and other safety) constraints systematically into
account. The application of other optimal estimation methods, such as unscented Kalman
filters and Bayesian state estimation methods, could also be explored further.

Since the testing of the developed bifurcation suppression and pulse shaping algorithm
is only done using simulation, testing the proposed concept on a real amplifier would
also be desirable, since these implementations generally reveal additional challenges. The
implemented algorithm’s robustness to measurement noise can then also be investigated.

Overall, the reduced model shows good performance in pulse shaping while not being
numerically expensive, making online operation of such an algorithm possible. The
calibration method could also be used in a startup initialization since it only uses a variety
of steady-state measurements, which can be measured during operation.



A Appendix

A.1 Slowly varying envelope approximation
The slowly varying envelope approximation (SVEA) assumes that the envelope of a
propagating pulse is varying slowly in time and space compared to the carrier frequency
and wavelength, respectively [1]. For a wave in the form

A(z, t) = A(z, t) exp i(ω0t − k0z) , (A.90)

we can write this using the two temporal approximations

∂A(z, t)
∂t

≪ ω0 A(z, t) (A.91)

and

∂2A(z, t)
∂2t

≪ ω0
∂A(z, t)

∂t
≪ ω2

0 A(z, t) . (A.92)

Further, the two spatial approximations are given by

∂A(z, t)
∂z

≪ k0 A(z, t) (A.93)

and

∂2A(z, t)
∂2z

≪ k0
∂A(z, t)

∂z
≪ k2

0 A(z, t) . (A.94)

These approximations can be used to reduce the complexity of spatial and temporal
derivatives of the wave function in (A.90). For example, if we apply the second time
derivative we get

∂2A(z, t)
∂t2 = ∂2

∂t2


A(z, t) exp i(ω0t − k0z)


, (A.95)

using the product rule twice yields

∂2A(z, t)
∂t2 =


∂2A(z, t)

∂2t
+ i2ω0

∂A(z, t)
∂t

− ω2
0 A(z, t)


exp i(ω0t − k0z) . (A.96)
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By using the temporal approximations we can simplify this to

∂2A(z, t)
∂t2 ≈ −ω2

0 A(z, t)exp i(ω0t − k0z) . (A.97)

This can also be applied to the spatial derivatives

∂2A(z, t)
∂z2 ≈ −k2

0 A(z, t)exp i(ω0t − k0z) . (A.98)

A.2 Selected Fourier transform identities
The following identities [35] have been used extensively in this thesis. The Fourier
transform of a time derivative read as

F


∂f(t)
∂t

(ω) = iω F ∂f(t) . (A.99)

The integral over the time function corresponds to the zero frequency component of the
Fourier transform

∞

−∞
f(t)dt = F f(t) (ω)

ω=0
. (A.100)

To calculate the Fourier transform of the complex conjugate of a time function, we can use

F f∗(t) (ω) = F f(t) ∗(−ω). (A.101)

The Fourier transform of a product of time functions can be calculated using the convolution
of the Fourier transformed functions

F f(t)g(t) (ω) =
∞

−∞
F f(t) (ω′)F g(t) (ω − ω′)dω′. (A.102)

A.3 Complex step differentiation method
A few different numerical methods are available to calculate the derivative of a function
f(p) with respect to a parameter p. Most of these are based on the Taylor series expansion
with the step width h

f(p + h) = f(p) + h
∂f(p)

∂p
+ h2

2
∂2f(p)

∂p2 + h3

6
∂3f(p)

∂p3 + h4

24
∂4f(p)

∂p4 + . . . . (A.103)

Among these are the forward and backward difference methods

∂f(p)
∂p

≈ 1
h


f(p + h) − f(p) , (A.104)

and
∂f(p)

∂p
≈ 1

h


f(p) − f(p − h) , (A.105)
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both of which have an error scaling with h2. Another typical method is the central
difference

∂f(p)
∂p

≈ 1
2h


f(p + h) − f(p − h) , (A.106)

which has an error that scales with h3. For values of h ≪ 1, higher orders of the error
are usually advantageous. All these methods share the problem of elimination which
originates from the subtraction involved in all of them. This means that for large values
of f(p) and small values of h the difference can be around the computational numerical
accuracy of the number system used, leading to inaccurate estimates of the derivative.
For holomorphic functions [36], a different method without this problem is available. It
uses the Taylor series expansion with a complex step ih

f(p + ih) = f(p) + ih
∂f(p)

∂p
− h2

2
∂2f(p)

∂p2 − i
h3

6
∂3f(p)

∂p3 + h4

24
∂4f(p)

∂p4 + . . . . (A.107)

By taking the imaginary part of this expansion, we get

Im f(p + ih) = h
∂f(p)

∂p
− h3

6
∂3f(p)

∂p3 + . . . , (A.108)

and thus an approximation of the first derivative is given by

∂f(p)
∂p

≈ 1
h

Im f(p + ih) , (A.109)

which has an error that scales with h3. Since no subtraction of the evaluated function is
calculated, the problem of elimination does not arise.

A.4 Steady-state calibration variants
The steady-state calibration uses two parameters which change the operating point and
therefore the steady state of the system, i.e. the input energy Win and the pump intensity
IP . To get robust calibration results, a combination of multiple of these parameters
have to be used. However, the number and range required is a-priori unclear. Thus, a
number of variants is explored in the following. A detailed overview of the parameters
used for the different calibration versions is shown in Table A.1. The parameters IP and
Win are presented as factors fI and fW of the reference values IP,ref = 119 MW/m2 and
Wref = 2 mJ, i.e., IP = IP,ref fI and Win = Wref fW .

Since the different calibration variants use different numbers of points, the value of the
cost function J to compare the results is not practical. We therefore need to introduce
a new metric for comparison. To achieve this, a 15 by 15 grid of steady states for the
reference model was calculated. By calculating the root mean squared value of the relative
error between the reduced model for each calibration and these steady states using

eRMS,X = 1
15 · 15

15

i=1

15

j=1

Xss,ref,ij − Xss,red,ij

Xss,ref,ij

2
, (A.110)
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Table A.1: Input values used for the different calibration variants. With the number of
parameters as well as min and max values of these parameters if multiple are
used. The parameters are presented as factors of the reference values. Variant
1 and 18 seem identical, but the fI values where chosen linearly in Variant 1
and logarithmic (except for 0) in Variant 18.

Variant NWin fW NIP
fI

1 1 1 5 0 to 2
2 1 3 5 0 to 2
3 1 1/3 5 0 to 2
4 1 1 3 0 to 2
5 1 1 10 0 to 2
6 2 1/2 to 2 5 0 to 2
7 3 1/4 to 2 5 0 to 2
8 3 1/20 to 2 5 0 to 2
9 3 1/100 to 2 5 0 to 2
10 5 1/20 to 2 5 0 to 2
11 5 1/20 to 2 5 0 to 2
12 7 1/100 to 2 5 0 to 2
13 1 1 5 0 to 1
14 1 1 3 0 to 1.3
15 3 1/100 to 2 3 0 to 2
16 3 1/3 to 2 3 0 to 2
17 1 1 3 0 to 2
18 1 1 5 0 to 2
19 1 3/2 5 0 to 2
20 1 3/4 5 0 to 2
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we can get a value that does not depend on the number of steady states. This value is
calculated for all the split energies X ∈ {W1, W2, W3, W4} as well as the full energy Wout.
To reduce the amount of metrics the combined RMS value and the combined RMS value
of the split energies are calculated

eRMS,comb = e2
RMS,W1

+ e2
RMS,W2

+ e2
RMS,W3

+ e2
RMS,W4

+ e2
RMS,Wout

(A.111)

and

eRMS,comb,split = e2
RMS,W1

+ e2
RMS,W2

+ e2
RMS,W3

+ e2
RMS,W4

. (A.112)

Every variant of the chosen calibration points was run four times using different calibration
parameters:

1. without calibrating the three relaxation probability values {γ02, γ03, γ04} and without
using the full energy Wout inside the cost function J(p).

2. with the relaxation probabilities {γ02, γ03, γ04} as calibration variables, also without
the full energy Wout in the cost function J(p).

3. not calibrating the relaxation probabilities {γ02, γ03, γ04}, but with the full energy
Wout in the cost function J(p).

4. with both, the relaxation probabilities {γ02, γ03, γ04} as calibration values and the
full energy Wout inside the cost function J(p).

The resulting RMS values of the different variants are displayed in Figure A.1 and the
combined RMS values is in Figure A.2. To better compare the bar heights, the minimum
value is displayed as a line in every plot. Because the lowest combined RMS value was
achieved for variant 6, it was chosen as the best calibration result.
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