
Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Evaluation of
Epistemic Logic Programs
Based on External Atoms

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Logic and Computation

eingereicht von

Anton Strasser, BSc
Matrikelnummer 00527527

an der Fakultät für Informatik der
Technischen Universität Wien

Betreuung: Prof. Dr. Thomas Eiter
Mitwirkung: Dr. Christoph Redl

Wien, 2022-09-16
Anton Strasser Thomas Eiter

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Evaluation of
Epistemic Logic Programs
Based on External Atoms

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Logic and Computation

by

Anton Strasser, BSc
Registration Number 00527527

to the Faculty of Informatics
at the TU Wien

Advisor: Prof. Dr. Thomas Eiter
Assistance: Dr. Christoph Redl

Vienna, 2022-09-16
Anton Strasser Thomas Eiter

Zusammenfassung

Answer Set Programming (ASP) mit epistemischen Spezifikationen erweitert die
Sprache der disjunktiven Logikprogramme (DLP) um die epistemischen Modalope-
ratoren K und M, die ausdrücken, dass eine Formel in allen Answer Sets bzw. in
mindestens einem Answer Set wahr ist. Da die Erfüllbarkeit unterModaloperatoren
ein Konzept ist, das über eine Sammlung von Answer Sets, dieWorld View genannt
wird, definiert ist, kann die Berechnung derAnswer Sets eines Programmsmit episte-
mischen Spezifikationen nicht direkt auf die gleiche Aufgabe reduziert werden wie
für ein gewöhnliches DLP-Programm. Stattdessen generieren aktuelle Algorithmen
eine Obermenge von Answer Sets, indem sie ein spezielles Programm auswerten,
um mögliche Lösungen zu generieren und falsche Lösungen in einer Nachprüfung
auszusortieren. In dieser Arbeit wird ein neuartiger Ansatz zur Auswertung episte-
mischer Logikprogramme (ELP) vorgestellt, der auf hex-Programmen basiert. Letz-
tere sind eine weitere Erweiterung von DLP in Richtung externer Rechenquellen.
Konkret basiert unser Algorithmus zur Auswertung von ELP-Programmen auf hex-
Programmen, die deklarative Prüfregeln mit externen Atomen enthalten. Darüber
hinaus stellen wir eine Implementierung des Algorithmus und seine experimentelle
Auswertung vor, die deutliche Verbesserungen gegenüber einer Referenzimplemen-
tierung zeigt.

Abstract

Answer set programming (ASP)with epistemic specifications extends the language of
disjunctive logic programs (DLP) to include the epistemic modal operators K andM,
which express that a formula is true in all answer sets and at least one answer set,
respectively. Since satisfiability under modal operators is a concept defined over a
collection of answer sets called world view, computing the answer sets of a program
with epistemic specifications cannot be directly reduced to the same task as for an
ordinary DLP program. Instead, current algorithms generate a superset of answer
sets by evaluating a special program to generate possible solutions and sorting out
incorrect solutions in a post-check. In this thesis, we present a novel approach to
evaluating epistemic logic programs (ELP) based on hex programs. The latter are
a further extension of DLP towards external computational sources. Specifically,
our algorithm for evaluating ELP programs is based on hex programs that contain
declarative checking rules with external atoms. Moreover, we present an implemen-
tation of the algorithm and its experimental evaluation, which shows significant
improvements over a reference implementation.

Contents

1 Introduction 1
1.1 Motivation and Problem Statement 1

1.1.1 A Declarative Checking Approach 1
1.2 State of the Art . 2

1.2.1 Program Transformations and Semantics 3
1.2.2 Algorithms and Solvers . 4
1.2.3 Our Contributions . 6

1.3 Structure of this Thesis . 7

2 Preliminaries 9
2.1 Epistemic Logic Programs . 9

2.1.1 Syntax . 9
2.1.2 Satisfaction and Models . 11

2.2 Program Transformations . 12
2.2.1 Truth Assignments of Modal Literals 13
2.2.2 The Epistemic Reduct . 14

2.3 Epistemic Answer Set Semantics . 15

3 Evaluating Epistemic Logic Programs 19
3.1 Logic Programs with External Atoms 19

3.1.1 hex Syntax . 20
3.1.2 hex Semantics . 20

3.2 Brave and Cautious Atoms . 21
3.2.1 Syntax of Brave and Cautious Atoms 22
3.2.2 Satisfaction of Brave and Cautious Atoms 22
3.2.3 Applications . 24

3.3 Building Blocks . 25
3.3.1 The Generic Epistemic Reduct 25
3.3.2 Guessing Programs . 27
3.3.3 Consistency Checking Programs 28
3.3.4 Guessing Constraints . 29

3.4 The Ehex Algorithm . 30
3.5 Correctness of the Ehex Algorithm 33

3.5.1 Soundness of the Algorithm 35
3.5.2 Completeness of the Algorithm 36

x Contents

3.6 Optimizations . 37
3.6.1 Computing a Positive Envelope 39
3.6.2 Brave and Cautious Consequences 41
3.6.3 Guessing Hints . 42
3.6.4 Using an ASP Grounder . 42
3.6.5 Satisfiability Checking . 43
3.6.6 Problem-Specific Optimizations 44

4 Implementation 45
4.1 The dlvhex System . 45

4.1.1 Programs with Nested Program Calls 45
4.1.2 The Nested hex Plugin . 46

4.2 The ehex Solver . 47
4.2.1 Running the Solver . 48
4.2.2 Dependencies . 52

5 Experimental Evaluation 53
5.1 The Solvers . 53

5.1.1 ELPsolve . 53
5.1.2 ehex . 54

5.2 Problem Instances . 54
5.2.1 The Scholarship Eligibility Problem 55
5.2.2 The Yale Shooting Problem 55

5.3 Experimental Results . 55
5.3.1 Testing Environment . 55
5.3.2 Expected Results . 56
5.3.3 Tables Showing Results . 56
5.3.4 Results with the Eligibility Problem 56
5.3.5 Results with the Yale Shooting Problem 57
5.3.6 Results with Different Semantics 58
5.3.7 Results with Satisfiability Checking 58

5.4 Summary of the Results . 60

6 Conclusion 61
6.1 Summary . 61
6.2 On Program Transformations and Epistemic Semantics 62
6.3 Outlook and Issues . 64

Introduction 1

In thiswork,we evaluate epistemic logic programs that extendordinary logic programs
with modal operators as in modal logic. Epistemology is the branch of philosophy
concerned with the nature of knowledge and belief. Modal logic extends classical
logic with modal operators to qualify statements withmodalities, e.g., the traditional
modalities of truth include possibility (“It is possible that ϕ”) and necessity (“It is nec-
essary that ϕ”). The modalities in epistemic modal logic capture the semantics of
knowledge (Hintikka, 1962), e.g., “It is known that ϕ”. Epistemic logic programs –
which extend ordinary logic programs with epistemic modal operators – can thus
be seen as an application of epistemic modal logic in answer set programming.

1.1 Motivation and Problem Statement

Answer set programming (ASP) is a well-established logic programming paradigm
in the style of declarative programming. It has its roots in logic programming and
nonmonotonic reasoning (Gelfond and Leone, 2002; Baral, 2003; Eiter et al., 2009).
In ASP, the semantics of a logic program is defined over its stablemodels (answer sets)
(Gelfond andLifschitz, 1991). Searchproblems are reduced to computing answer sets
for logic programs. An ASP solver performs the search, which generates answer sets
that represent solutions.

A logic program consists of a set of rules that are expressed in a formal language.
Such languages differ in expressivity and reasoning complexity. In this workwe eval-
uate epistemic logic programs expressed in the ELP language. This language extends
the language of disjunctive logic programs (DLP) (Gelfond and Lifschitz, 1991) with
epistemic modal operators K andM to express that a formula is true in all or at least
one answer set, respectively (Gelfond, 1991).

1.1.1 A Declarative Checking Approach

As satisfiability of a program under modal operators is a concept defined over a col-
lection of answer sets, calledworld view, computing a world view of an ELP program
is not directly reducible to computing answer sets of an ordinary DLP program.
Instead, current algorithms transform an ELP program into a DLP program whose
answer sets represent candidate solutions that are checked in a second computa-
tion step. The language of higher-order logic programs with external atoms (hex)

2 Chapter 1 Introduction

is another extension of the DLP language, where the evaluation of external atoms
is delegated to an external computation resource (Eiter et al., 2005). This motivates
a novel approach in which the checking part is also expressed in a declarative way,
using hex programs containing external atoms. The answer sets of these programs,
which represent world views, are computed with a hex solver, in particular the
dlvhex system (Eiter et al., 2015).

1.2 State of the Art

In the following we give a state-of-the-art overview of ELP semantics and ELP
solvers and then state our contributions. We assume that the reader is familiar with
the basic concepts of answer set programming and the usual notation.1

Programswith epistemic specificationswere first introduced inDeep Introspection
by Gelfond (1991). In this article, he introduces the epistemic modal operator K,
which allows to express that something is known to a reasoner. The dual modal
operatorM, which expresses that somethingmay be believed, is then defined in terms
of the K operator, i.e., given a formula ϕ, he definesMϕ as semantically equivalent
to ¬K¬ϕ.2

Example 1. (Edible fruits) To give an example using the modal operator 𝐾 , the rule

¬edible(X) ← not K edible(X), fruit(𝑋),
expresses the closed world assumption3 (CWA) with regards to the edibility of fruits.
Intuitively, this rule determines that a fruit is not edible if we do not know if it is
edible.

Epistemic specifications play an important role in knowledge representation
and nonmonotonic reasoning. The initial approach (G91 semantics, Gelfond (1991))
suffers from the problem of so-called unintended world views due to recursion trough
themodal operatorsK andM. Other attempts to avoid unintendedworld views, such
as the G94 semantics (Gelfond, 1994), the G11 semantics (Gelfond, 2011), and the
K14 semantics (Kahl, 2014), were still not satisfactory in this regard. To illustrative
unintended world views, we borrow the following example from (Kahl, 2014) .

Example 2 (Unintended World Views). Under G91 semantics, unintended world
views may occur due to recursion through the modal operator M. Consider the
program Π1 = {𝑎 ← M 𝑎} containing some atom 𝑎, which states that 𝑎 is true
provided 𝑎 is possible. Under G11 semantics, this program has the two world views1 = {{𝑎}} and2 = {∅}. While an agentmay accept the one or the other collection
1For an introduction, see, e.g., (Eiter et al., 2009).
2In later semantics (Gelfond, 2011),Mϕ is defined as ¬Knotϕ.
3We informally state Reiter’s (1978) closed world assumption as “if no proof of a positive ground
literal exists, then the negation of that literal is assumed true”.

1.2 State of the Art 3

as a world view of Π1, the agent should not accept both collections as world view.
Intuitively, the agent can see the program Π1 as in Murphy’s Law “Anything that
can go wrong will go wrong” and go for1. Or he sees the program as a tautology
and accept2. But ifΠ1 is seen as a tautology, then it seems not reasonable to see it
as Murphy’s Law at the same time. In contrast, the program {𝑎 ← K 𝑎} is clearly a
tautology.

A satisfactory solution to the problem of unintended world views was proposed
in the seminal article Evaluating epistemic negation in answer set programming by Shen
and Eiter (2016). This paper also adopts a completely different modal operator not
in the style of negation operators to expresses epistemic negation. An epistemic nega-
tion notϕ expresses the lack of evidence proving that ϕ is true, e.g., the rule of
Example 1 would be written as ¬edible(X) ← not edible(X), fruit(X).
1.2.1 Program Transformations and Semantics

Logic programs are often evaluated based on an assumption that leads to a simpler
program that is free of negation and modal literals. Solutions of the simpler pro-
gram then represent solutions of the initial program if they are consistent with the
assumption. This program transformation is commonly referred to as the reduct
of a program relative to an assumption. For instance, the FLP reduct 𝑓Π𝑀 (Faber
et al., 2010) of a programΠ relative to an interpretation𝑀 consists of the rules ofΠ
whose body is satisfied by 𝑀. The assumption here is that 𝑀 is a subset minimal
model of 𝑓Π𝑀, and if the assumption holds, then 𝑀 is an answer set ofΠ.

In a similar way, Gelfond (1991, 2011), Truszczynski (2011) and Kahl (2014) de-
fined different reducts of epistemic logic program Π relative to a collection  of
interpretations. These reducts are obtained fromΠ by removing or replacing modal
literals inΠ depending on their truth in.

We take a closer look at Kahl’s modal reduct Π. In particular, for modal liter-
als of the form M 𝑎 that are false in  there is a rule to replace them with doubly
negated literals of the form not not 𝑎 in the reduct. Then, to test whether is a world
view ofΠ, the modal reductΠ is evaluated under the answer set semantics defined
in Lifschitz et al. (1999), under which double negation does not cancel each other
out. Recall that the program Π1 = {𝑎 ← M 𝑎} from Example 2 has two conflicting
world views {{𝑎}} and {∅} under G11 semantics. Under Kahl’s new semantics, the
collection  = {∅} is no longer a world view of Π1, since  is not the collection{{𝑎},∅} of all answer sets of the modal reduct Π

1 = {𝑎 ← not not 𝑎} of Π1.
4 How-

ever, three shortcomings of the K14 semantics were later identified in the article
Evaluating epistemic negation in answer set programming by Shen and Eiter (2016):

1. Lack of a deeper discussion or justification for the replacements of modal

4Note that, e.g., under FLP answer set semantics, double negation cancels each other out resulting
in the singleton answer set ∅ of Π

1 .

4 Chapter 1 Introduction

literals in program transformations
2. The choice of a semantics for nested expressions with double nonmonotonic

negation that suffers from circular justifications
3. For some programs, unintended world views due to recursion through the

modal operatorMmay still occur

In this article, Shen and Eiter introduce the general epistemic answer set semantics
(SE16semantics) for general logic programs. The new semantics is defined via the
so-called epistemic reduct under  answer set semantics. By comparison with previ-
ous reducts, the epistemic reduct is obtained relative to an epistemic guess rather than
a collection of interpretations. The basic idea is to assume an epistemic negation
notϕ in a program to be true whenever possible, which is referred to as knowledge
minimization with epistemic negation in the article. Put roughly, an epistemic guess
of an epistemic logic program Π is defined as a subset of the epistemic negations
obtained from Π. Any epistemic guess that leads to a world view is by definition
i) consistent with the world view and ii) maximal with respect to subset inclusion.

We can apply the new semantics to programs expressed in the traditional syntax,
since we can convert all expressions that use the modal operators K and M into
equivalent expressions that use the epistemic negation operator not. In this thesis,
we will employ a variant of the traditional syntax and define the epistemic reduct
accordingly.

1.2.2 Algorithms and Solvers

To date, a number of solvers for epistemic logic programs (ELP solvers) have been
developed (Leclerc and Kahl, 2018). The solvers shown in Table 1.1 have in common
that they offload search tasks to an ASP solver by generating logic programs that
simulate some sort of reduct. But they implement different semantics and prune the
search space in different ways.

Solver Semantics ASP Backend Reference

Wviews G94 dlv Kelly (2007)
ESmodels G11 clasp Zhang et al. (2013)
ELPS K14 clingo Balai and Kahl (2014)
ELPsolve K14, K16 clingo Kahl et al. (2016)
EP-ASP K14, K16 clingo Son et al. (2017)
selp SE16FLP clingo Bichler et al. (2018)

Table 1.1: Overview of ELP solvers and supported semantics.

The first general ELP solverWviews (Kelly, 2007) implements the G94 semantics.
The underlying algorithm tries one epistemic guess (truth assignment of modal lit-
erals) at a time and uses the ASP solver dlv (Citrigno et al., 2004). Since the number

1.2 State of the Art 5

of guesses to try is exponential in the number of modal literals that can be guessed
and no pruning of the search space is involved, larger problems are not feasible with
this approach.

The ELP solver ESmodels (Zhang et al., 2013) implements the G11 semantics,
which prevents unintendedworld views from recursion through themodal operator
K and uses an algorithm that calls a preprocessing routine for each guess before
handing the problem over to the ASP solver clasp. In (Leclerc and Kahl, 2018) it
was reported that ESmodels works reasonably well for a small number of modal
literals, but that runtime errors or incomplete results sometimes occurred for larger
problems.

In his PhD thesis, Kahl (2014) proposes a refined semantics (K14 semantics) that
addresses unintended world views in the G11 semantics through recursion through
the modal operatorM. The ELP solver ELPS (Balai and Kahl, 2014) is the first solver
to implement an algorithm (Kahl et al., 2015) with K14 semantics. In contrast to
previous solver implementations, ELPS creates all candidate solutions to the search
problem in a single call to the ASP solver clingo. In the worst case however, the solver
generates a number of solutions that is exponential in the number of modal literals
that need to be guessed, which may require more memory than is available to the
solver process.

For the algorithm implemented by the ELP solver ELPsolve, Kahl et al. (2016)
adopted the new definition of world views from Shen and Eiter (2016), with ELP-
solve still supporting K14 semantics. We refer to the resulting semantics, which im-
posesmaximality requirements on epistemic guesses, as the K16 semantics. As stated
in (Leclerc and Kahl, 2018), the primary efficiency goals of ELPsolve were i) to avoid
the large memory requirements of ELPS, and ii) to take advantage of multi-core
processors. To this end, the algorithm splits the search space by guesses, i.e., guesses
are grouped by their cardinality and those groups are split into smaller groups that
contain at most 𝑛 guesses, where 𝑛 is the number of guesses per ASP solver call.
Because any two groups containing guesses of the same cardinality are pairwise
disjoint, ELPsolve is able to execute ASP solver calls in parallel. Grouping guesses by
their cardinality also allows for pruning of guesses that do not meet the maximality
requirements of the K16 semantics. The answer sets of the individual ASP solver
calls represent candidate solutions that are checked by ELPsolve for consistency with
their respective guesses.

EP-ASP (Son et al., 2017) is another ELP solver that supports both the K14 and
the K16 semantics but uses a different algorithm. Instead of generating answer sets
of candidate solutions for multiple guesses at once, EP-ASP uses the ASP solver
clingo with a special transformation Γ of the input program to iteratively select
guesses such that the epistemic reduct with respect to this guess is consistent. Each
guess is tested to see whether it leads to a world view; only after the test passes, the
solver generates the answer sets of the corresponding epistemic reduct. After this
test, the program Γ is extend with constraints such that the guess is excluded from
selection in subsequent iterations. The maximality condition of the K16 semantics

6 Chapter 1 Introduction

is implemented by additionally requiring that it is impossible to select a superset of
the selected guess relative to the program Γ . To our knowledge, this is the first ELP
solver to employ brave and cautious reasoning for pruning the search space.

In (Bichler et al., 2018) the authors show that the consistency problem for an
ELP program Π is reducible to the consistency problem of an ordinary ASP pro-
gramΠ′ in the sense thatΠ has a candidate world view5 exactly whenΠ′ is consis-
tent. They refer to this method in their paper as single-shot ELP solving because it
requires only a single ASP solver call. The associated selp6 system implements this
reduction, which is a collection of tools that can be used to ground and transform
an ELP program, and to group the answer sets obtained from the ASP solver call
into candidate world views. The selp system works with SE16semantics, where 
is the FLP answer set semantics.

1.2.3 Our Contributions

In this thesis, we present a novel algorithm based on higher-order programs with
external atoms (hex programs). A hex program uses so-called external atoms to
access an external computation resource, e.g., an external database interface. But
also another instance of a hex solver can be an external computation resource. With
this it becomes possible to reason over the answer sets of a subprogram within the
main program through external atoms. Such a program that evaluates a subprogram
through external atoms is called a nested hex program (Eiter et al., 2013). With nested
hex programswe can check truth assignments of epistemic formulas in a declarative
way, by reasoning over the answer sets of a specific subprogram through external
atoms. Our algorithm transforms an ELP program into a collection of intermediate
hex programs containing external atoms. The answer sets of these programs then
encode world views of the input program.

In the following list we summarize our contributions:

1. A syntax that is suitable for defining the language of epistemic logic programs
as an extension of the language of disjunctive logic programs. In this syntax,
we prefer the traditionalmodal operatorsK andM over the epistemic negation
operator not to qualify atoms or negated atoms with epistemic modalities.

2. The notion of weak and strong modal literals and related notions. In our
syntax, an expression that starts with the modal operatorM is a weak modal
literal, and an expression that starts with the modal operator K is a strong
modal literal.

3. An algorithm that outputs solutions to the world view enumeration problem
as it finds them.

4. Optimizations of the algorithm with the aim of reducing the search space.

5As defined in (Shen and Eiter, 2016).
6https://dbai.tuwien.ac.at/proj/selp/

https://dbai.tuwien.ac.at/proj/selp/

1.3 Structure of this Thesis 7

5. An implementation of the algorithm in formof a configurable prototype solver
for ELP programs.

6. An experimental evaluation of the algorithm using our prototype solver with
different configurations compared to the reference solver ELPsolve.

1.3 Structure of this Thesis

This thesis consists of six chapters. The first two chapters are the introduction and
the preliminaries. The main chapters cover the introduction, the implementation,
and the evaluation of the Ehex algorithm. The final chapter is the conclusion.

In Chapter 2, we introduce the syntax and the semantics of epistemic logic pro-
grams and define when a program is satisfied. For this we also introduce the notion
of weak and strong modal literals. The epistemic answer set semantics of ELP programs
is then defined in terms of the answer sets of the epistemic reduct of the program
relative to a set of modal literals.

In Chapter 3,we present the Ehex algorithm. This algorithm takes ELP programs
as input and outputs their world views, in case some world view exists. It is based
on hex programs that use brave and cautious external atoms. These programs are
composed out of smaller programs, which we call building blocks. We also show that
the algorithm is correct and that it can be optimized.

In Chapter 4,we present a prototype implementation of the Ehex algorithm. The
resulting solver is called ehex. Under the hood, ehex uses the dlvhex system, which is
also described in this chapter.

In Chapter 5 we present results from the experimental evaluation of the ehex
solver. The running times are compared with the running times of the reference
solver ELPsolve on a set of standard problems.

Finally, in Chapter 6,we summarize ourwork anddiscuss howdifferent epistemic
semantics emerge from different program transformations. This chapter concludes
with an outlook and open issues.

Preliminaries 2

In the following, we give an intuition for modal operators and define the language
of epistemic logic programs (ELP) and its world view semantics.

2.1 Epistemic Logic Programs

An epistemic logic program is a set of rules that allow to express problems including
statements that are qualified with epistemic modalities. The modal operators K and
M are commonly used to qualify expressions with “it is known that” or “it may be
known that”, respectively, e.g., (Gelfond, 1991; Kahl, 2014). But recently, an alter-
native operator, the epistemic negation operator not, has been introduced to qualify
statements with “there is no evidence proving that” (Shen and Eiter, 2016).

To avoid confusion with the default negation operator not and for convenience,
from now on we denote the epistemic negation operator by the capital letter N
and use the modal operators M and K as shorthand for semantically equivalent
expressions with the epistemic negation operator, where

Mϕ is equivalent to N notϕ, and
Kϕ is equivalent to notNϕ.

Also, we abstain from using negation in front of the modal operators K and M to
give greater emphasis to the modalities they express.

2.1.1 Syntax

For simplicity but without loss of generality, our input language ELP is based on a
subset of the ASP-Core syntax (Calimeri et al., 2012). In particular our syntax does
not include classic negation, aggregates, or built-in atoms.

By convention, a constant is either a string starting with a lowercase letter, a
quoted string, or an integer; a variable is a string starting with an uppercase letter.
A term is either a constant, a variable, or a functional term. Given a function name 𝑓
and a list of terms 𝑡1, . . . , 𝑡𝑛, the expression 𝑓(𝑡1, . . . , 𝑡𝑛) denotes a functional term if
𝑛 > 0 or a constant term if 𝑛 = 0.

An atom is an expression of the form 𝑝(𝑡1, . . . , 𝑡𝑛) with predicate name 𝑝 and
terms 𝑡1, . . . , 𝑡𝑛, where 𝑛 ≥ 0 is the arity of the atom. A standard literal is an atom or

10 Chapter 2 Preliminaries

an atom preceded by the default negation operator not. The expressions K ℓ andM ℓ
denote modal literals, where ℓ is a standard literal and K andM are modal operators.
A literal is either a standard literal or a modal literal.

The standard literals 𝑎 and not 𝑎 over an atom 𝑎 are are said to be the opposite of
each other. Modal literals also have opposites, as shown in Table 2.1. For a literal ϕ,
we denotes its opposite by ϕ.

Literal ϕ Opposite ϕ

𝑎 not 𝑎
not 𝑎 𝑎
K 𝑎 Mnot 𝑎
Knot 𝑎 M 𝑎
M 𝑎 Knot 𝑎
Mnot 𝑎 K 𝑎

Table 2.1: Opposites of each other cannot both be true or both be false at the same time

Definition 1 (ELP programs). A disjunctive epistemic logic program (ELP program
for short) is a set of rules of the form

𝑎1 ∨ . . . ∨ 𝑎𝑚 ← 𝑏1, . . . , 𝑏𝑛, (2.1)

where 𝑎1, . . . , 𝑎𝑚 are atoms, 𝑏1, . . . 𝑏𝑚 are standard literals or modal literals, and 𝑚 ≥
0, 𝑛 ≥ 0, 𝑚 + 𝑛 > 0.

For a rule 𝑟 of the form (2.1), the head of 𝑟 is Head(𝑟) ≔ {𝑎1, . . . , 𝑎𝑚}, and the body
of 𝑟 is Body(𝑟) ≔ {𝑏1, . . . , 𝑏𝑛}.

A structure (term, atom, literal, rule or program) is called ground if it contains no
variables. A fact is a ground rule of the form 𝑎 ← (or 𝑎 for short) with an empty body
and a single disjunct in the head, and a constraint is a rule of the form ← 𝑏1, . . . , 𝑏𝑛
with an empty head.

An ELP program without modal literals is a disjunctive logic program (DLP pro-
gram for short). Unless otherwise stated, a program is an ELP program.

Remark 1 (Strong negation). The strong (classical) negation ¬ of atoms can be seen
as a special syntax to make programs easier to read. A program containing strongly
negated atoms can be rewritten into an equivalent programwithout strong negation:

1. Each strongly negated atom ¬𝑎 is viewed as an atom with the fresh predicate
symbol ¬𝑎

2. For each ¬𝑎 the constraint← 𝑎,¬𝑎 is added to prevent that 𝑎 and ¬𝑎 are both
true in the same model

To give an intuition, a rule of the formψ ← ϕ can be read as an if-then statements
in the type of “ifϕ holds then inferψ” or as thematerial implicationϕ ⊃ ψ. However,

2.1 Epistemic Logic Programs 11

in general, rules in logic programs have a differentmeaning. For example, in classical
logic, the formula ϕ ⊃ ψ is logically equivalent to its contrapositive ¬ψ ⊃ ¬ϕ. In
some applications, this expectationmay be translated into a logic program by stating
both directionsψ ← ϕ and ¬ϕ ← ¬ψ explicitly. Nevertheless, a formula like ¬ϕ ⊃
ϕ is equivalent to ϕ in classical logic, but the rule ϕ ← ¬ϕ is not equivalent to the
fact ϕ ← in a logic program (Shen et al., 2014).

2.1.2 Satisfaction and Models

The truth value of a ground atom is relative to an interpretation, which is a set of
ground atoms. A ground atom is true if it is contained in the interpretation and false
otherwise.

For an ELP program Π, the Herbrand universe of Π, in symbols 𝑈Π , is the set
of all ground terms of Π. In case that no constant appears in Π, an arbitrary new
constant is added to𝑈Π . TheHerbrand base ofΠ, in symbols 𝐵Π , is the set of ground
atoms 𝑝(𝑡1, . . . , 𝑡𝑛), where 𝑝 occurs in Π and each 𝑡1 is in 𝑈Π . A Herbrand interpre-
tation 𝐼 of Π is any subset 𝐼 of the Herbrand base 𝐵Π . Unless otherwise stated, an
interpretation of a program is a Herbrand interpretation.

A variable substitution is a mapping from a set 𝑉 of variables to the Herbrand
universe 𝑈Π of a program Π. A ground instance of a rule 𝑟 of the form (2.1) is any
rule 𝑟′ obtained from 𝑟 by applying a variable substitution to the variables in 𝑟. For
any rule 𝑟, we denote by ground(𝑟) the set of all possible ground instances of 𝑟, and
for any programΠ we let

ground(Π) ≔ ⋃
𝑟∈Π

ground(𝑟) (2.2)

be the grounding ofΠ.

Definition 2 (Satisfaction of standard literals). A ground atom 𝑎 is true under an
interpretation 𝐼 , denoted 𝐼 ⊨ 𝑎, if 𝑎 ∈ 𝐼 ; otherwise 𝑎 is false under 𝐼 . A default
negated ground atom not 𝑎 is true under an interpretation 𝐼 , in symbols 𝐼 ⊨ not 𝑎,
if 𝑎 ∉ 𝐼 ; otherwise not 𝑎 is false under 𝐼 , in symbols 𝐼 ⊭ not 𝑎.

By contrast, the truth value of modal literals depends on a nonempty collection
of interpretations.

Definition 3 (Satisfaction of modal literals). Let  be a nonempty collection of
interpretations and let ℓ be a ground standard literal. Then

1. K ℓ is true in, if 𝐼 ⊨ ℓ for all 𝐼 ∈ ,
2. M ℓ is true in, if 𝐼 ⊨ ℓ for some 𝐼 ∈ .

A modal literal ϕ is satisfied by, in symbols ⊨ ϕ, if ϕ is true in.

12 Chapter 2 Preliminaries

Intuitively, a strong modal literal K ℓ is true if all interpretations satisfy ℓ , and a
weak modal literalM ℓ is true if some interpretation satisfies ℓ . Checking the satis-
faction of weak and strong modal literals is related to brave and cautious reasoning,
as we will see in Section 3.2.

In Figure 2.1 we illustrate important relations between modal literals that are
immediately evident from Definition 3.

K 𝑎 Knot 𝑎

M 𝑎 Mnot 𝑎

implies

either is false

implies

either is true

opposite

Figure 2.1: Relations between pairs of modal literals over an atom 𝑎 relative to a collection of
interpretations.

In principle, a model of a program is an interpretation that satisfies all rules of a
program. But the satisfaction of modal literal depends on a collection of interpreta-
tions, which leads to the following definition.

Definition 4 (Models of a program). Let be a collection of interpretations and
let 𝐼 ∈ . Then 𝐼 satisfies a ground rule 𝑟 relative to, in symbols 𝐼 ⊨ 𝑟, if either
i) 𝐼 ⊨ 𝑎 for some atom 𝑎 ∈ Head(𝑟), ii) 𝐼 ⊭ ℓ for some standard literal ℓ ∈ Body(𝑟),
or iii) ⊭ ϕ for some modal literal ϕ ∈ Body(𝑟). We say 𝐼 is a model ofΠ relative
to if 𝐼 satisfies all rules in ground(Π) relative to.

2.2 Program Transformations

For logic programs that cannot be evaluated in a deterministic way, it is common to
assume the truth value of some parts of the program and then create a reduct of the
program relative to that assumption. The reduct is typically a simpler logic program
with well known semantics for which a solver is readily available. Solutions of the
reduct must then be checked for consistency with the initial assumption.

For example, the well known GL reduct (Gelfond and Lifschitz, 1991) for disjunc-
tive logic programs or the more general FLP reduct (Faber et al., 2010) are program
transformations relative to a fixed interpretation. The GL reduct is a program that
is free of negation, which results from the original program by applying transforma-
tion rules that depend on the interpretation. The FLP reduct is a program consisting

2.2 Program Transformations 13

exactly of those rules of the original program whose bodies are satisfied by the in-
terpretation. In both examples, the interpretation is an answer set of the original
program if it is a subset minimal model of the reduct.

In this section, we define the epistemic reduct (Shen and Eiter, 2016) relative to an
epistemic guess. An epistemic guess of a program represents a truth assignment of
the modal literals occurring in the program.

2.2.1 Truth Assignments of Modal Literals

An expression of the formM ℓ over a standard literal ℓ is weaker than an expression
of the form K ℓ over the same literal in the sense that M ℓ is true whenever K ℓ is
true but not the other way round.

Definition 5 (Weak and strongmodal literals). Wecall amodal literal over a standard
literal ℓ weak if it has the formM ℓ , and strong if it has the form K ℓ . By weak(ϕ) we
denote the mapping of modal literals ϕ to their weak form, where

weak(ϕ) ≔ {ϕ if ϕ is weak,
ϕ if ϕ is strong.

(2.3)

We already know that a strong modal literal K ℓ and its weak form M ℓ cannot
both be true and cannot both be false at the same time, since they are opposites of
each other. This allows us to represent the set of all modal literals that occur in a
program in a canonical way. The following mapping Ep1 defines the set of weak
modal literals of a program by mapping all modal literals to their weak form.

Definition 6 (Set of weak modal literals). LetΠ be a program. We denote by

Ep(Π) ≔ {weak(ϕ) ∣ϕ occurs in ground(Π) } (2.4)

the set of weak modal literals ρ obtained from Π such that ρ or its opposite occurs in
ground(Π).
Remark 2. Disjunctive epistemic logic programs, as defined above, are a special class
of general logic programs, as defined in (Shen and Eiter, 2016). We view weak modal
literals M ℓ over a standard literal ℓ as shorthand for epistemic negations N not ℓ .
Thus, each set of weak modal literals corresponds to a set of epistemic negations.

Now any subset of Ep(Π) represents a truth assignment of the modal literals
occurring inΠ, which leads to the following definition.

1The symbol Ep is borrowed from (Shen and Eiter, 2016) in which Ep(Π) maps a program Π to
the set of epistemic negations occurring inΠ.

14 Chapter 2 Preliminaries

Definition 7 (Epistemic guess). An epistemic guess on the truth of weak modal literals
of Π (guess ofΠ for short) is a subset Φ of Ep(Π).

With a guess Φ of a ground programΠ, we can determine the truth value of any
modal literal occurring inΠ:

1. IfM ℓ ∈ Φ, thenM ℓ is true and K ℓ is false
2. IfM ℓ ∈ Ep(Π) \ Φ, then K ℓ is true andM ℓ is false

Example 3 (Guesses on truth). For the epistemic logic program

Π2: a ← Knot b. 𝑟1
b ← Knot a. 𝑟2
c ← Mnot a. 𝑟3

the set of weak modal literals Ep(Π2) is {M a,M b,Mnot a}. There are eight possible
subsets of Ep(Π2) each representing a guess of Π2 (Figure 2.2).

{M a,M b,Mnot a}
{M a,Mnot a}{M a,M b} {M b,Mnot a}

{M b}{M a} {Mnot a}
∅

𝐿2

𝐿3

𝐿1

𝐿0

Figure 2.2: The partial order of guesses ofΠ2 defined by the subset relation is shown in form of
a Hasse diagram. Note that at each level 𝐿𝑘 guesses have cardinality 𝑘.

2.2.2 The Epistemic Reduct

In previous works, reducts of programs with epistemic specifications are often
defined relative to a collection of interpretations, see, e.g., (Gelfond, 1991, 2011;
Truszczynski, 2011; Kahl, 2014). The epistemic reduct of (Shen and Eiter, 2016)
follows a different approach as it is defined relative to an epistemic guess. Below we
have adapted its definition to the syntax of ELP programs.

2.3 Epistemic Answer Set Semantics 15

Definition 8 (Epistemic reduct). Let Π be an ELP program and let Φ ⊆ Ep(Π)
be a guess of Π. The epistemic reduct ΠΦ of Π with respect to Φ is obtained from
ground(Π) by applying the transformation rules of Table 2.2 for each pair (𝑟,ϕ),
where 𝑟 is a rule in ground(Π) and ϕ is a modal literal occurring in 𝑟.

Modal literal ϕ ρ = weak(ϕ) If ρ ∈ Φ If ρ ∈ Ep(Π) \ Φ
M ℓ M ℓ remove ϕ replace ϕ with ℓ
K ℓ M ℓ remove 𝑟 replace ϕ with ℓ

Table 2.2: Transformation rules of the epistemic reduct

Remark 3. The epistemic reduct of a program Π, as defined here, is a disjunctive
logic program without modal literals and without nested expressions. This differs
from the original definition of the epistemic reduct in (Shen and Eiter, 2016). As
an example, suppose M 𝑎 ∈ Ep(Π) \ Φ is false w.r.t. some guess Φ of Π. By the
original definition, M 𝑎, which is seen as a shorthand for the epistemic negation
N not 𝑎, is replaced with the doubly negated expression not not 𝑎 wherever it occurs
in ground(Π). In our definition,we replaceM 𝑎with 𝑎 instead,which is semantically
equivalent to not not 𝑎 in a program under FLP answer set semantics.

A program Π with 𝑛 = ∣Ep(Π)∣ has 2𝑛 possible epistemic guesses with respect
to which we can create epistemic reducts.

Example 4. We can transform the following program into four different reducts:

Π3: a ← Knot b. 𝑟1
b ← Knot a. 𝑟2

The first rule 𝑟1 contains the strong modal literalϕ1 = Knot b and the second rule 𝑟2
contains the strong modal literal ϕ2 = Knot a. Let ρ1 = M b and ρ2 = M a be the
two weak modal literals obtained from Π3, i.e., Ep(Π3) = {ρ1,ρ2}. We transform
Π3 into all possible epistemic reducts ΠΦ𝑖3 by applying the transformation rules in
Definition 8 relative to each Φ𝑖 ⊆ {ρ1,ρ2} for the pairs (𝑟1,ϕ1) and (𝑟2,ϕ2):

Φ1 = {ρ1,ρ2} Π
Φ1
3 = ∅

Φ2 = {ρ2} Π
Φ2
3 = {a ← not b}

Φ3 = {ρ1} Π
Φ3
3 = {b ← not a}

Φ4 = ∅ Π
Φ4
3 = {a ← not b; b ← not a}

2.3 Epistemic Answer Set Semantics

The general epistemic semantics in (Shen et al., 2014) is defined in terms of the
answer sets of the epistemic reduct under some answer set semantics  for logic

16 Chapter 2 Preliminaries

programs without epistemic specifications. However, as noted in Remark 3, doubly
negated expressions may still occur when applying the original definition of the
epistemic reduct to ELP programs. If  is the FLP semantics (Faber et al., 2010),
then double negation cancels each other out. Under this assumption, our definition
of the epistemic reduct, which does not contain nested expressions, is semantically
equivalent to the original epistemic reduct. For further discussion, see Section 6.2.

Definition 9 (Answer sets of DLP programs). Let the FLP reduct of a disjunctive
logic programΠ with respect to an interpretation 𝐼 be the set

𝑓Π 𝐼 ≔ { 𝑟 ∈ Π ∣ 𝐼 ⊨ 𝑏 for all 𝑏 ∈ Body(𝑟) } (2.5)

of all rules whose body is satisfied by 𝐼 . Then 𝐼 is an answer set ofΠ, if 𝐼 is a subset-
minimal model of 𝑓Π 𝐼 .

In the remainder of this work, we will assume FLP answer set semantics for
programsΠ withoutmodal literals. By AS(Π)we denote the collection of all answer
sets ofΠ.

Example 5. Let Π be the program ΠΦ43 = {a ← not b; b ← not a} from Example 4.
We transformΠ into all possible FLP reductsΠ 𝐼𝑖 with respect to each 𝐼𝑖 ⊆ {a, b}:

𝐼1 = {a, b} 𝑓Π 𝐼1 = ∅

𝐼2 = {a} 𝑓Π 𝐼2 = {a ← not b}
𝐼3 = {b} 𝑓Π 𝐼3 = {b ← not a}
𝐼4 = ∅ 𝑓Π 𝐼4 = {a ← not b; b ← not a}

The interpretation 𝐼1 is a model of 𝑓Π 𝐼1 but not a subset-minimal one, since every
subset of 𝐼1 is also a model of 𝑓Π 𝐼1 . The interpretations 𝐼2 and 𝐼3 are subset-minimal
models of 𝑓Π 𝐼2 and 𝑓Π 𝐼3 , respectively. The interpretation 𝐼4 is not a model of 𝑓Π 𝐼4 .
So AS(Π) = {{a}, {b}}.

By replacing  with FLP in Definition 8 (General epistemic semantics) of (Shen
andEiter, 2016),we obtain the epistemic FLP answer set semantics (EFLP or SE16FLP
semantics for short).

Definition 10 (EFLP semantics). Let Π be an ELP program, let Φ be a guess of Π.
The collection  of all answer sets of the epistemic reduct ΠΦ under FLP answer
set semantics is a candidate world view ofΠ with respect to Φ, if

i)  ≠ ∅, i.e.,ΠΦ is consistent,
ii) every ρ ∈ Φ is true in, and
iii) every ρ ∈ Ep(Π) \ Φ is false in.

2.3 Epistemic Answer Set Semantics 17

A candidate world viewwith respect to Φ is a world view if Φ is maximal, i.e., there
is no other candidate world view with respect to a guess Φ′ ⊃ Φ.

Example 6 (Presumption of innocence). Thewell-known presumption of innocence
can be expressed as the following ELP program2:

Π4: innocent(“John”) ∨ guilty(“John”). 𝑟1
innocent(“John”) ← Mnot guilty(“John”). 𝑟2

Here, the weak modal literal ρ = Mnot guilty(“John”) expresses that John might not
be guilty, which is the opposite of saying that it is known that John is guilty.

Now, from the set of weak modal literals Ep(Π4) = {ρ} we get two possible
guesses Φ1 = {ρ} and Φ2 = ∅. To satisfy the maximality condition, we first try the
largest guess Φ1 and check if there is a world view with respect to Φ1. The epistemic
reduct of Π4 with respect to Φ1 is the program

Π
Φ1
4 : innocent(“John”) ∨ guilty(“John”). 𝑟1

innocent(“John”). 𝑟′2

Under FLP semantics, the program ΠΦ14 is consistent and has the unique answer set
𝐼 = {innocent(“John”)}. Let = {𝐼}. As guilty(“John”) is false in 𝐼 , it follows that
Mnot guilty(“John”) is true in, thus is a candidate world view of Π4. As Φ1 is
the largest possible guess, is a world view of Π4 with respect to Φ1. As Φ2 ⊂ Φ1,
there is no world view with respect to Φ2. Hence, = {{innocent(“John”)}} is the
only world view of Π4. Therefore, the atom innocent(“John”) is true in Π4, which
means that John is innocent, as expected.

2This example is borrowed from (Shen and Eiter, 2016).

Evaluating Epistemic Logic Programs 3

Solving the world view enumeration problem of an epistemic logic program means
computing all its world views. A common approach, followed by (e.g.) the solvers
Wviews, ESmodels, ELPS, and ELPsolve (cf. Table 1.1), is to use an ASP solver to com-
pute candidate solutions with a single ore multiple solver calls. The problem associ-
ated with this approach is that there may be exponentially many candidate solutions
in the number of modal literals (epistemic negations) of a program, even if no world
view exists. To avoid this problem, epistemic guesses of programs that do not lead
to a solution must be filtered out in the first place. For example, the solver ELP-ASP
eliminates in advance all epistemic guesses that would not lead to a world view. This
is done by iteratively evaluating checking programs relative to the answer set of a
guessing program (Son et al., 2017). In our approach, the input program is trans-
formed into a series of hex programs containing declarative guessing and checking
rules, so that the answer sets of these hex program encode world views of the input
program. The hex programs contain brave or cautious atoms, which are external
atoms with access to an ASP solver under brave or cautious reasoning mode.

With modularity in mind, we will compose these hex programs from smaller
programs, namely the building blocks presented in Section 3.3. These building blocks
consist of: the generic epistemic reduct, the guessing program, the consistency check-
ing program, the cardinality checking program, and the subset checking program.

The Ehex algorithm presented in Section 3.4 performs an ordered search, or-
dered by the cardinality of epistemic guesses of the input program, to satisfy the
maximality condition of world views. Thus, when the algorithm finds a guess Φ
representing a world view, it then adds constraints that prevent it from generating
new guesses that are a subset of Φ in the next iteration.

In Section 3.5 we show the correctness of the algorithm, i.e., its soundness and
completeness.

We close this chapter with Section 3.6 proposing some possible optimization that
aim at pruning the search space.

3.1 Logic Programs with External Atoms

Higher-order logic programs with external atoms (hex programs, Eiter et al. (2005))
extenddisjunctive logic programswith higher-order atoms aswell as external atoms. In
this work,we use only external atoms, throughwhich it is possible for hex programs

20 Chapter 3 Evaluating Epistemic Logic Programs

to access any external source of computation with respect to an interpretation. In
practice, access to an external source of computation depends onwhether all possible
combinations of inputs and outputs to and from external atoms can be interpreted
in ameaningful way. Such interpretations of inputs and outputs are formally defined
via a Boolean-valued oracle function.

Later in this sectionwewill introduce external atomswith access to an ASP solver
in brave or in cautious reasoning mode. Those atoms take as input a DLP program
extended with a dynamically generated set of facts and a query, and output the result
of the query. But first, we define hex programs in general.

3.1.1 hex Syntax

The syntax of hex programs is analogous to the syntax of ELP programs, except
that hex programs do not contain modal literals, but external atoms of the form

&𝑔[𝑝1, . . . , 𝑝𝑛](𝑐1, . . . , 𝑐𝑚). (3.1)

Here, &𝑔 is an external predicate name, 𝑝1, . . . , 𝑝𝑛 is a list of terms or predicate sym-
bols, called input list, and 𝑐1, . . . , 𝑐𝑚 are constant terms, called output list. Each external
predicate &𝑔 is assumed to have a fixed input arity 𝑛 ≥ 0 and a fixed output arity
𝑚 ≥ 0. A hex atom is either an atom or an external atom. A hex literal is of the form
𝑎 or not 𝑎 where 𝑎 is a hex atom and not is the default negation operator. If clear
from the context, we refer to a hex literal as literal.

Definition 11 (hex programs). A hex program is a set of rules of the form

𝑎1 ∨ . . . ∨ 𝑎𝑚 ← 𝑏1, . . . , 𝑏𝑛, (3.2)

where each 𝑎𝑖 is an atom and each 𝑏𝑖 is a hex literal. The notions of the head and
the body of a rule, as well as as the notion of a ground program (rule, literal, atom,
term) and the notions of facts and constraints, are defined as for ELP programs.

Additionally, for a rule 𝑟 of the form (3.2), the positive body of 𝑟 is

Body+(𝑟) ≔ {𝑎 ∣ 𝑎 ∈ Body(𝑟), where 𝑎 is an atom}, (3.3)

and the negative body of 𝑟 is

Body−(𝑟) ≔ {𝑎 ∣ not 𝑎 ∈ Body(𝑟), where 𝑎 is an atom}. (3.4)

As in ELP programs, we consider strong (classical) negation to be a special syntax
to make programs easier to read (see Remark 1).

3.1.2 hex Semantics

The semantics of hex programs is a proper generalization of the answer set seman-
tics by Gelfond and Lifschitz (1991), but using the FLP reduct (Faber et al., 2010);

3.2 Brave and Cautious Atoms 21

while the reduct is equivalent to the Gelfond-Lifschitz reduct reduct for ordinary
DLP programs, the FLP reduct provides a more natural semantics for extensions
like aggregate atoms or hex atoms.

The semantics of a ground external atom &𝑔[𝒑](𝒄), where 𝒑 = 𝑝1, . . . , 𝑝𝑛 and
𝒄 = 𝑐1, . . . , 𝑐𝑚, with respect to an interpretation 𝐼 is given by the value of a (1+𝑛+𝑚)-
ary Boolean-valued oracle function 𝑓&𝑔 that is defined for all possible values of 𝐼 , 𝒑,
and 𝒄. An external atom &𝑔[𝒑](𝒄) is true relative to 𝐼 if and only if 𝑓&𝑔(𝐼, 𝒑, 𝒄) = 1.

Given the satisfaction of external atoms, the satisfaction of ground rules in a
hex program is defined as usual.

Definition 12 (Answer sets of a hex program). Let the FLP reduct of a hex pro-
gramΠ with respect to an interpretation 𝐼 be the set

𝑓Π 𝐼 ≔ { 𝑟 ∈ Π ∣ 𝐼 ⊨ 𝑏 for all 𝑏 ∈ Body(𝑟) } (3.5)

of all rules whose body is satisfied by 𝐼 . Then 𝐼 is an answer set ofΠ, if 𝐼 is a subset-
minimal model of 𝑓Π 𝐼 .

Example 7. Consider the hex program Π5 = {p ← &id[p]}, where &id[p] is true
under an interpretation 𝐼 exactly when p is true under 𝐼 . It has the single answer set
𝐼 = ∅, which is indeed a subset-minimal model of 𝑓Π𝐼

5 = ∅.

3.2 Brave and Cautious Atoms

Since disjunctive logic programsΠ have multiple answer sets in general, inference
from Π is often defined in two dual reasoning modes. A ground atom 𝑎 can be
inferred from Π in i) brave reasoning mode if 𝑎 is contained in some answer sets
of Π, and in ii) cautious reasoning mode if 𝑎 is contained in all answer sets of Π.
We express this in symbols as Π ⊨b 𝑎 and Π ⊨c 𝑎, respectively. Clearly, the set of
all brave consequences of Π is the union of all answer sets of Π and the set of all
cautious consequences ofΠ is the intersection of all answer sets ofΠ.

If  is the collection of all answer sets of a consistent program Π, i.e.,  =
AS(Π) and ≠ ∅, then we can reduce checking the satisfaction of ground modal
literals by  to reasoning over Π under brave or cautious reasoning mode. The
next proposition follows from Definition 3, where interpretations is replaced with
all answer set of Π.

Proposition 1. Let Π be a consistent logic program under FLP answer set semantics
and let 𝑎 be a ground atom. Furthermore, let  be the nonempty collection of all answer
sets of Π. Then the strong modal literal K 𝑎 is true in  if and only if 𝑎 is a cautious
consequence ofΠ, and the weak modal literal M 𝑎 is true in  if and only if 𝑎 is a brave

22 Chapter 3 Evaluating Epistemic Logic Programs

consequence of Π; in symbols:

 ⊨ K 𝑎 iff Π ⊨c 𝑎 (3.6)
 ⊨ M 𝑎 iff Π ⊨b 𝑎 (3.7)

Checking the satisfaction of modals of the two other forms Knot 𝑎 and Mnot 𝑎
can be reduced toΠ ⊭b 𝑎 andΠ ⊭c 𝑎, respectively:

 ⊨ K 𝑛𝑜𝑡𝑎 iff Π ⊭b 𝑎 (3.8)
 ⊨ M 𝑛𝑜𝑡𝑎 iff Π ⊭c 𝑎 (3.9)

We now have all the necessary ingredients to introduce external atoms for check-
ing epistemic guesses. As mentioned earlier, hex programs allow bidirectional com-
munication between a program and an external sources of computation via external
atoms. If we have access to an external source that can enumerate all answer sets of
a given program, i.e., access to another instance of a hex solver, then we can express
brave and cautious queries over a subprogram through dedicated external atoms.
The general concept of nested hex programs, i.e., hex programs that communicate
with each other via external atoms, was introduced in (Eiter et al., 2013).

3.2.1 Syntax of Brave and Cautious Atoms

We use a syntax for external atoms similar to that of the Nested hex Plugin,1 but
adapted for brevity. We revisit this plugin in Chapter 4.

Definition 13. A brave atom or a cautious atom is an external atom of the form

&𝑏[Π, 𝑝, 𝑞](𝑡1, . . . , 𝑡𝑛) or &𝑐[Π, 𝑝, 𝑞](𝑡1, . . . , 𝑡𝑛), (3.10)

respectively, where &𝑏 and &𝑐 are uniquely associated external predicate names, the
input list specifies a DLP programΠ, an input predicate 𝑝, and a query predicate 𝑞,
and the output list specifies 𝑛 ≥ 0 terms such that 𝑞(𝑡1, . . . , 𝑡𝑛) is a query atom.

3.2.2 Satisfaction of Brave and Cautious Atoms

With a brave or cautious atom that has the input list Π, 𝑝, 𝑞 and the output list
𝑡1, . . . , 𝑡𝑛 we want to express a brave or cautious query 𝑞(𝑡1, . . . , 𝑡𝑛) over the spec-
ified program Π extended with a variable set of input facts Γ𝑝(𝐼) that depends on
the satisfaction of atoms of the form 𝑝(𝑎), where 𝑝 is the input predicate and 𝑎 is a
functional term, by an interpretation 𝐼 .

1The Nested hex Plugin for dlvhex by Christoph Redl is available at http://www.kr.tuwien.ac.
at/research/systems/dlvhex/nestedhexplugin.html (visited on 2022-07-29)

http://www.kr.tuwien.ac.at/research/systems/dlvhex/nestedhexplugin.html
http://www.kr.tuwien.ac.at/research/systems/dlvhex/nestedhexplugin.html

3.2 Brave and Cautious Atoms 23

Definition 14 (Input facts). Let 𝑝 be a predicate name. By Γ𝑝 we denote the function
associated with 𝑝 that maps each interpretation 𝐼 to a set

Γ𝑝(𝐼) ≔ {𝑎 ∣ 𝐼 ⊨ 𝑝(𝑎)} (3.11)

of facts 𝑎 such that each 𝑎 is encoded as a functional term of an atom 𝑝(𝑎) that is
satisfied by 𝐼 . We refer to Γ𝑝(𝐼) as the set of input facts due to 𝑝 under 𝐼 .

Example 8 (Graph input). Suppose we want a graph as input for a brave or cautious
atom ξ in a hex program Π. To this end, we specify g as the input predicate of ξ.
Now, for example, if we have an interpretation

𝐼 = {. . . , g(node(v)), g(node(w)), g(edge(v,w)), . . .},
where g encodes two nodes and an edge as functional terms, then the resulting graph
input due to g under 𝐼 is the set Γg(𝐼) = {node(v),node(w), edge(v,w)}.

In Section 3.1.2, we have already stated that the satisfaction of an external atom
&𝑒[𝒑](𝒕) under an interpretation 𝐼 is defined via its associatedBoolean-valuedoracle
function 𝑓&𝑒, in symbols:

𝐼 ⊨ &𝑒[𝒑](𝒕) iff 𝑓&𝑒(𝐼, 𝒑, 𝒕) = 1. (3.12)

It remains to define the oracle functions associated with brave and cautious atoms.

Definition 15 (Oracle functions of brave and cautious atoms). The oracle functions
𝑓&𝑏 and 𝑓&𝑐 associated with brave and cautious atoms, respectively, take as arguments
an interpretation 𝐼 , a DLP programΠ, an input predicate 𝑝, a query predicate 𝑞, and
a list of ground terms 𝒕 = 𝑡1, . . . , 𝑡𝑛, 𝑛 ≥ 0. They are defined as

𝑓&𝑏(𝐼,Π, 𝑝, 𝑞, 𝒕) ≔ {1 ifΠ ∪ Γ𝑝(𝐼) ⊨b 𝑞(𝒕),
0 otherwise.

(3.13)

𝑓&𝑐(𝐼,Π, 𝑝, 𝑞, 𝒕) ≔ {1 ifΠ ∪ Γ𝑝(𝐼) ⊨c 𝑞(𝒕),
0 otherwise.

(3.14)

where Γ𝑝(𝐼) is the set of input facts due to 𝑝 under 𝐼 .

The following proposition establishes the relationship between modal literals
and external atoms.

Proposition 2. Let Π be a DLP program and let∆ be a set of facts such that Π ∪∆ is
consistent. For any interpretation 𝐼 with Γ𝑝(𝐼) = ∆, the following equivalences hold:

24 Chapter 3 Evaluating Epistemic Logic Programs

𝐼 ⊨ &𝑏[Π, 𝑝, 𝑞](𝒕)
Π ∪ Γ𝑝(𝐼) ⊨b 𝑞(𝒕)

AS(Π ∪∆) ⊨ M 𝑞(𝒕) (i)
𝐼 ⊨ &𝑐[Π, 𝑝, 𝑞](𝒕)

Π ∪ Γ𝑝(𝐼) ⊨c 𝑞(𝒕)
AS(Π ∪∆) ⊨ K 𝑞(𝒕) (ii)

𝐼 ⊨ not&𝑏[Π, 𝑝, 𝑞](𝒕)
Π ∪ Γ𝑝(𝐼) ⊭b 𝑞(𝒕)

AS(Π ∪∆) ⊨ Knot 𝑞(𝒕) (iii)
𝐼 ⊨ not&𝑐[Π, 𝑝, 𝑞](𝒕)

Π ∪ Γ𝑝(𝐼) ⊭c 𝑞(𝒕)
AS(Π ∪∆) ⊨ Mnot 𝑞(𝒕) (iv)

Proposition 2 follows directly from the semantics of external atoms (3.12), Defi-
nition 14, Definition 15, and Proposition 1.

Remark 4. A special case of Proposition 2 iswhen∆ is empty. In this case, for example,
for any interpretation 𝐼 with Γ𝑝(𝐼) = ∆, the following equivalence holds:

𝐼 ⊨ &𝑏[Π, 𝑝, 𝑞](𝒕) iff Π ⊨b 𝑞(𝒕) iff AS(Π) ⊨ M 𝑞(𝒕). (3.15)

3.2.3 Applications

We can now use brave and cautious atoms to check whether an epistemic guess
is consistent. The example below outlines the idea by means of a simple checking
program.

Example 9 (Checking consistency). Consider the ELP program Π3 of Example 4
where Ep(Π3) = {M a,M b} and let Φ = {M a} be a guess of Π3. Then the epistemic
reduct ΠΦ3 of Π3 with respect to Φ is:

Π
Φ
3 : a ← not b. 𝑟1

Now, let = {{𝑎}} be the collection of all answer sets of ΠΦ3 . To check the consis-
tency of Φ with, we need to check whether i) ⊨ M a and ii) ⊭ M b hold.To
this end, we construct the hex program Πok such that it has the the single answer
set {ok} iff i) and ii) hold:

Πok: ok ← &𝑏[ΠΦ3 ,p, a],not&𝑏[ΠΦ3 ,p, b]. 𝑟1

Note that no atom over the input predicate p occurs inΠok and thus for any interpre-
tation 𝐼 ofΠok, Γp(𝐼) is empty (cf. Remark 4). As 𝑎 is a brave consequence ofΠΦ3 , the
brave atom &𝑏[ΠΦ3 ,p, a] is true under all interpretations of Πok. As b is not a brave
consequence of ΠΦ3 , the brave atom &𝑏[ΠΦ3 ,p, b] is false under all interpretations of
Πok. Therefore, the body of 𝑟1 inΠok is satisfied by any interpretation ofΠok. Hence,{ok} is the only FLP answer set of Πok, which means that Φ is consistent with.

The programΠok in itself is not very useful, as it only checks a specific guess – but
it does so in a declarative way. In the following section, we develop this idea further
using building blocks.

3.3 Building Blocks 25

3.3 Building Blocks

In the ongoing subsectionswe introduce the building blocks generated by the Ehex al-
gorithm at run time. Building blocks are hex programs. The algorithm combines
these building blocks into larger hex programs whose answer set collections repre-
sent one or more world views of the input program.

To simplify programs, we use a shorthand notation for auxiliary atoms.

Notation 1 (Auxiliary atoms). An auxiliary atom is an ordinary atom associated with
an intended meaning. The following expressions, where ϕ is a modal literal, ρ is a
weakmodal literal, andΦ is an epistemic guess, are shorthand notations for auxiliary
atoms:

guess(ρ) expresses that ρ is guessed to be true.
true(ϕ) expresses that ϕ is true.

member(ρ,Φ) states that ρ is a member of Φ.
input(guess(ρ)) specifies guess(ρ) as input fact due to input.

gnd(ρ) represents a ground modal literal ρ.

For a set 𝐴 of ground atoms, we denote by Aux(𝐴) the set of auxiliary atoms in 𝐴.

Definition 16 (Aux-equivalence). Let  be an answer set semantics for logic pro-
grams without epistemic specifications. Two programsΠ1,Π2 are said to be equiv-
alent with respect to auxiliary atoms (aux-equivalent for short) under  if they have
the same answer sets minus auxiliary atoms, i.e., if

{𝐴1 \ Aux(𝐴1) ∣ 𝐴1 ∈ AS(Π1)} = {𝐴2 \ Aux(𝐴2) ∣ 𝐴2 ∈ AS(Π2)}. (3.16)

Example 10. Consider the program Π7 = {a ← not not a} containing the nested ex-
pression not not 𝑎 and the program Π′

7 = {a ← notnot_a,not_a ← not a} containing
the auxiliary atom not_a. Under NEX semantics they are aux-equivalent, because
here both have the same answer sets {a} and ∅ minus auxiliary atoms. But under
FLP semantics they are not aux-equivalent, because here Π7 has the single answer
set ∅ and Π′

7 has the answer sets {a} and ∅minus auxiliary atoms.

For the auxiliary atoms in Notation 1, we assume that they are fresh with respect
to pre-existing atoms. For example, if guess(M 𝑏) is the auxiliary atom 𝑎, whereM 𝑏
is a modal literal over the pre-existing atom 𝑏, then 𝑎 and 𝑏 have different predicate
names.

3.3.1 The Generic Epistemic Reduct

Recall the epistemic reduct ΠΦ of a program Π, which is a transformation of Π
relative to an epistemic guess Φ ofΠ (cf. Definition 8). The basic idea of the generic

26 Chapter 3 Evaluating Epistemic Logic Programs

epistemic reduct, denoted Π̊, is to decouple this transformation from a specific guess.
Instead of removing or replacing modal literals based on their truth value with re-
spect to Φ, in the generic epistemic reduct, modal literals are replaced with ordinary
literals over auxiliary atoms. The satisfaction of these replacement literals depends
on the satisfaction of additional rules in Π̊, which in turn depends on the satisfaction
of guessing atoms of another building block.

Definition 17 (Generic epistemic reduct). Let Π be an ELP program. The generic
epistemic reduct Π̊ ofΠ is obtained fromΠ by applying the transformation rules of
Table 3.1 for each modal literal ϕ occurring inΠ such that

i) each ϕ is replaced with a substitution literal ℓϕ , and
ii) Π̊ contains the substitution rules for each ℓϕ .

Modal literal ϕ Substitution literal ℓϕ Substitution rules for ℓϕ
M 𝑎 true(M 𝑎) } {true(M 𝑎) ← guess(M 𝑎);

true(M 𝑎) ← 𝑎,¬guess(M 𝑎)}Knot 𝑎 not true(M 𝑎)
K 𝑎 true(K 𝑎) } {true(K 𝑎) ← 𝑎,¬guess(Mnot 𝑎)}Mnot 𝑎 not true(K 𝑎)

Table 3.1: Transformation rules of the generic epistemic reduct

Remark 5 (On grounding). Note that, in contrast to the epistemic reduct, the ground-
ing of Π is not required to obtain the epistemic reduct. However, if we want to
extend Π̊ with a guessing program for Π, then we need to compute the complete
set Ep(Π) of ground weak modal literals obtained fromΠ (cf. Definition 6).

Example 11. To illustrate the generic epistemic reduct, we use a simple program:

Π8: p ← Mp. 𝑟1
r ← Mnotp. 𝑟2

After applying the transformation rules for the two modal literalsMp andMnotp,
the resulting program is the generic epistemic reduct Π̊8 of Π8:

Π̊8: p ← true(Mp). 𝑟1
r ← not true(Kp). 𝑟2

true(Mp) ← guess(Mp). 𝑟3
true(Mp) ← p,¬guess(Mp). 𝑟4
true(Kp) ← p,¬guess(Mnotp). 𝑟5

Here, the rules 𝑟1 and 𝑟2 result from 𝑟1 and 𝑟2, respectively, by replacing the modal
literals with auxiliary ordinary literals (substitution literals). The rules 𝑟3, 𝑟4 are the
substitution rules for true(Mp) and 𝑟5 is the substitution rule for not true(Kp).

3.3 Building Blocks 27

3.3.2 Guessing Programs

In what follows, we describe guessing programs, which are programs whose answer
sets each encode a different epistemic guess.

Definition 18 (Guess encoding). Let Π be an ELP program and let 𝐴 be a set of
ground atoms. Then 𝐴 encodes an epistemic guess Φ ofΠ if for every ρ ∈ Ep(Π),

1. guess(ρ) is in 𝐴 iff ρ is in Φ, and
2. ¬guess(ρ) is in 𝐴 iff ρ is in Ep(Π) \ Φ.

The guess encoding GΦ of Φ is the smallest set of ground atoms that encodes Φ.

For convenience, we identify sets of ground atoms with programs in which those
atoms are seen as facts.

Example 12. For a programΠ and an epistemic guess Φ ofΠ, the program Π̊ ∪GΦ
composed of the generic epistemic reduct Π̊ and the guess encoding GΦ is aux-
equivalent to the epistemic reductΠΦ.

Definition 19 (Guessing program). LetΠ be an ELP program. A guessing rule for a
(ground) weak modal literal ρ ∈ Ep(Π) is of the form

guess(ρ) ∨ ¬guess(ρ). (3.17)

The guessing program GΠ forΠ consists of the guessing rules for all ρ ∈ Ep(Π).
For referring to epistemic guesses encoded by sets of ground atoms or by the

answer sets of a program, we introduce the following notation.

Notation 2. For a set 𝐴 of ground atoms we denote by

Φ(𝐴) ≔ {ρ ∣ guess(ρ) ∈ 𝐴} (3.18)

the set of weak modal literals encoded by 𝐴. For a hex programΠ we denote by

Ω(Π) ≔ {Φ(𝐴) ∣ 𝐴 ∈ AS(Π)} (3.19)

the collection of all sets of weak modal literals obtained from the answer sets ofΠ.

Using this notation, if a set 𝐴 encodes an epistemic guess Φ, then Φ = Φ(𝐴) holds,
i.e., we obtain Φ from the auxiliary atoms of the form guess(ρ) in 𝐴, where ρ is a
weak modal literal. For an ELP programΠ, the collection Ω(GΠ) of sets of modals
obtained from the answer sets of the guessing program GΠ for Π represents all
possible epistemic guesses ofΠ, i.e., it coincides with the power set of Ep(Π). Also,
a guess Φ ofΠ is in Ω(Π̊ ∪GΦ) if and only ifΠΦ is consistent.

28 Chapter 3 Evaluating Epistemic Logic Programs

3.3.3 Consistency Checking Programs

We now describe checking epistemic guesses in a declarative way using external
atoms. An epistemic logic programΠ is consistent if it has a candidate world view, or
equivalently, if there is a guessΦ ofΠ such that the epistemic reductΠΦ is consistent
and Φ is consistent with the answer sets ofΠΦ. The former corresponds to checking
the condition i) and the latter to checking the conditions ii) and iii) of candidate
world views in Definition 10.

The epistemic reduct ΠΦ and the program Π̊ ∪ GΦ are aux-equivalent by con-
struction, so we can check the consistency of Φ by reasoning over the answer sets of
Π̊ ∪GΦ. The hex program CΠ defined below does just that with the help of brave
and cautious atoms.

Definition 20 (Consistency checking program). Let Π be an ELP program. First,
for each ρ ∈ Ep(Π), define the input declaration Dρ of ρ as the program

Dρ ≔ { input(guess(ρ)) ← guess(ρ).
input(¬guess(ρ)) ← ¬guess(ρ).}, (3.20)

such that, for each guess Φ of Π, the equation Γinput(𝐴) = GΦ holds due to input
under the unique answer set 𝐴 of the program Dρ ∪GΦ.

Next, for eachρ ∈ Ep(Π), using brave or cautious atoms depending on ρ, define
the modal consistency constraints Cρ of ρ. Let 𝑎(𝒕) be the atom occurring in ρ and
let 𝒑 be the input list Π̊, input, 𝑎, where Π̊ is the generic epistemic reduct ofΠ. If ρ
is of the formM 𝑎(𝒕), define Cρ using brave atoms as the program

Cρ ≔ {← guess(ρ),not&𝑏[𝒑](𝒕).
← ¬guess(ρ),&𝑏[𝒑](𝒕). }, (3.21a)

otherwise, if ρ is of the form Mnot 𝑎(𝒕), define Cρ using cautious atoms as the
program

Cρ ≔ {← guess(ρ),&𝑐[𝒑](𝒕).
← ¬guess(ρ),not&𝑐[𝒑](𝒕).}. (3.21b)

Finally, the consistency checking program CΠ ofΠ is the program

CΠ ≔ ⋃
ρ∈Ep(Π)(Dρ ∪ Cρ), (3.22)

such that, for each guess Φ of Π, the program CΠ ∪ GΦ is consistent if and only if
for the collection of all answer sets of Π̊ ∪GΦ,

every ρ ∈ Φ is true in, and
every ρ ∈ Ep(Π) \ Φ is false in.

3.3 Building Blocks 29

The following proposition holds by the construction of CΠ .

Proposition 3. An ELP program Π has a candidate world view w.r.t. a guess Φ of Π if
and only if the hex program CΠ ∪GΦ is consistent.

3.3.4 Guessing Constraints

The numberof answer sets of a guessing programGΠ for an ELPprogramΠ depends
on the number of weak modal literals in Ep(Π), that is, for 𝑛 modal literals there
are 2𝑛 answer sets each encoding a different guess of Π. We define two checking
programs that, when GΠ is extended with either of them, put constraints on the
guessing. The first checking program restricts the cardinality of generated guesses
depending on the current evaluation level. The second checking program refers to a
collectionΩ of guesses representing the world views already found. The constraints
in this program prevent guesses from being generated that are not maximal relative
to the guesses in Ω.

In both checking programs, for simplicity, we express the constraints using ag-
gregate atoms of the form #count 𝑇 = 𝑘, where 𝑇 is a set of terms and 𝑘 is an integer.
Intuitively, such an atom evaluates to true if the number of terms in 𝑇 equals 𝑘.2

Definition 21 (Cardinality checking program). Let Π be an ELP program. The
cardinality checking program L𝑘 of evaluation level 𝑘, 0 ≤ 𝑘 ≤ ∣Ep(Π)∣, is the program

L𝑘 ≔ {← not #count{X ∶ guess(X)} = 𝑘}, (3.23)

such that, for each guess Φ ⊆ Ep(Π) and guess encoding GΦ, the program L𝑘 ∪GΦ
is consistent exactly when Φ has cardinality 𝑘.

Definition 22 (Subset checking program). LetΠ be an ELP program and letΩ be a
collection of guesses ofΠ. First, define the set FΩ of facts encoding all guesses in Ω:

FΩ ≔ ⋃
Φ∈Ω

{member(ρ,Φ) ∣ ρ ∈ Φ} (3.24)

Then, assuming this encoding, define the generic subset checking constraint:

𝑟⊂ ≔ ← #count{X ∶ guess(X),notmember(X ,Y)} = 0,member(_,Y). (3.25)

Finally, define the subset checking program SΩ relative to Ω

SΩ ≔ FΩ ∪ {𝑟⊂} (3.26)

such that for allΦ ⊆ Ep(Π), the program SΩ∪GΦ is consistent exactly when Φ is not
a subset of any guess in Ω.
2For brevity, our syntax definition in Section 3.1.1 does not include aggregate atoms. They are
described in more detail in, e.g., (Faber et al., 2008, 2010; Calimeri et al., 2012).

30 Chapter 3 Evaluating Epistemic Logic Programs

Algorithm 1: Basic solver for ELP programs
Input: An epistemic logic programΠ
Output: A stream of tuples of the form (Φ, 𝐴), where Φ is a guess ofΠ and 𝐴 is an

answer set of the world view = AS(ΠΦ)
Basic-Ehex(Π)
1 generate Π̊ ▹ generic epistemic reduct (Def. 17)
2 generate GΠ ▹ guessing program (Def. 19)
3 generate CΠ ▹ consistency checking (Def. 20)
4 Ω ← ∅
5 for 𝑘 ← ∣Ep(Π)∣ downto 0:
6 generate L𝑘 ▹ cardinality checking (Def. 21)
7 generate SΩ ▹ subset checking (Def. 22)
8 Π̊Ω𝑘 ← Π̊ ∪GΠ ∪ CΠ ∪ L𝑘 ∪ SΩ
9 foreach 𝐴′ ∈ AS(Π̊Ω𝑘):
10 Φ ← Φ(𝐴′) ▹ decode Φ from 𝐴′

11 Ω ← Ω ∪ {Φ} ▹ collect Φ
12 𝐴← 𝐴′ \ Aux(𝐴′) ▹ remove auxiliary atoms
13 print (Φ, 𝐴)

The subset constraint 𝑟⊂ in SΩ under an interpretation 𝐼 means: if ∣Φ(𝐼) \Φ∣ = 0
holds for some Φ ∈ Ω, then reject 𝐼 ; or equivalently, if Φ(𝐼) ⊆ Φ holds for some
Φ ∈ Ω, then reject 𝐼 .

With these building blocks at hand, we are now able to construct an algorithm
that solves the world view enumeration problem for ELP programs.

3.4 The Ehex Algorithm

The Basic-Ehex procedure shown in Algorithm 1 represents the Ehex algorithm
without optimizations.3 Given an ELP program Π as input, the algorithm iterates
over evaluation levels in descending order. Evaluation levels correspond to cardi-
nalities of epistemic guesses. At each evaluation level 𝑘, 0 ≤ 𝑘 ≤ ∣Ep(Π)∣, guesses
Φ ⊆ Ep(Π) with cardinality ∣Φ∣ = 𝑘 are considered. To this end, the algorithm gen-
erates level programs Π̊Ω𝑘 ofΠ relative to 𝑘 andΩ, whereΩ is a collection of guesses
ofΠ representing world views already found at levels greater than 𝑘.

A level program Π̊Ω𝑘 can be broken down into a shared part and a level-specific
part. The shared part consists of: the generic epistemic reduct Π̊, the guessing pro-
gram GΠ , and the consistency checking program CΠ ; the level-specific part consists
of the cardinality checking program L𝑘 and the subset checking program SΩ .

The programs of the shared part are generated at lines 1–3 and the programs of
the level-specific part are generated at lines 6–7. The outer loop starting at line 5

3Optimizations of the algorithm are discussed in Section 3.6.

3.4 The Ehex Algorithm 31

iterates over the evaluation levels 𝑘 in descending order, and the inner loop starting
at line 9 iterates over all answer sets of Π̊Ω𝑘 . To get a sense of these answer sets, we
first look at answer sets of simpler programs.

For a guess Φ ofΠ, the program Π̊∪GΦ, where Π̊ is the generic epistemic reduct
ofΠ and GΦ the guess encoding of Φ, is aux-equivalent to the epistemic reductΠΦ

ofΠ; this means thatΠΦ has the same answer sets as Π̊∪GΦ minus auxiliary atoms.
Extending Π̊∪GΦ with the checking programCΠ ensures the consistency of guesses
ofΠ. Thus, if is a candidate world view ofΠ w.r.t. Φ, then is also the collection
of all answer sets of Π̊∪GΦ∪CΠ minus auxiliary atoms. Now, substituting the guess
encodingGΦ for the guessing programGΠ , we obtain the shared part Π̊∪GΠ∪CΠ of
the level program. IfΠ is consistent, then each answer set of the shared part encodes
both a guess Φ ofΠ and an answer set belonging to the candidate world view ofΠ
with respect to Φ.

The level-specific part is needed to ensure the maximality condition of the epis-
temic semantics; it consists of the cardinality checking program L𝑘 and the subset
checking program SΩ . Together with the shared part, we obtain the level program

Π̊
Ω
𝑘 = Π̊ ∪GΠ ∪ CΠ�

�

 �

shared part

∪ L𝑘 ∪ SΩ�

�

�
level-specific part

. (3.27)

Remark 6. Loosely following the “Guess&Check” paradigm (Eiter et al., 2000), the
level program can also be divided into a guessing part and a checking part,

Π̊
Ω
𝑘 = Π̊ ∪GΠ�

�

�

guessing part

∪ CΠ ∪ L𝑘 ∪ SΩ�

�

 �
checking part

, (3.28)

where the answer sets of the guessing part encode all answer sets of all consistent
epistemic reducts ofΠ, and the checking part tests whether the answer sets represent
world views with respect to guesses of cardinality 𝑘.

All guesses ofΠ encoded in the answer sets of Π̊Ω𝑘 are maximal and have cardi-
nality 𝑘 only if Ω contains all maximal guesses with cardinality greater than 𝑘. In
the algorithm, this is ensured by iterating over the values of 𝑘 in descending order.

After initializing Ω as the empty set at line 4, the algorithm iterates from the
largest to the smallest guess cardinality 𝑘, i.e., at line 5, it assigns values ranging
from ∣Ep(Π)∣ to 0 to the variable 𝑘 in descending order. If Ω is empty, then any
guess Φ decoded at line 10 is maximal and is added to Ω at line 11. At subsequent
evaluation levels, 𝑘 is decremented andΩ contains Φ, so guesses Φ′ that are a subset
of Φ are not produced as L𝑘 and SΩ are regenerated. As a result, at no time are there
two guesses Φ1, Φ2 in Ω such that Φ1 ⊂ Φ2 and every Φ in Ω is a maximal guess
representing a world view.

If Π̊Ω𝑘 is inconsistent for all possible values of 𝑘 andΩ, then no world view exists.
But if Π̊Ω𝑘 is consistent for some 𝑘, 0 ≤ 𝑘 ≤ Ep(Π), and Ω = ∅, then a world view

32 Chapter 3 Evaluating Epistemic Logic Programs

exists and the procedure enters the body of the inner loop starting at line 10. Each
answer set 𝐴′ of Π̊Ω𝑘 encodes both a guess Φ ofΠ and an answer set 𝐴 ofΠΦ. In the
procedure, Φ is obtained from 𝐴′ at line 10 by extracting all modals ρ encoded with
guess(ρ) atoms in 𝐴′, and 𝐴 is obtained from 𝐴′ at line 11 by removing all auxiliary
atoms in 𝐴′. Finally, the procedure outputs the pair (Φ, 𝐴) at line 13.
Example 13 (Applying the algorithm). We now apply the Ehex algorithm to the
program Π3 from Example 4:

Π3: a ← Knot b. 𝑟1
b ← Knot a. 𝑟2

The Basic-Ehex procedure starts with generating the generic epistemic reduct
of Π3 on the first line:

Π̊3: a ← not true(M b). 𝑟1
b ← not true(M a). 𝑟2

true(M a) ← guess(M a). 𝑟3
true(M a) ← a,¬guess(M a). 𝑟4
true(M b) ← guess(M b). 𝑟5
true(M b) ← b,¬guess(M b). 𝑟6

On line 2, it generates get the guessing program of Π3, which consists of guessing
rules for the weak modal literalsM a,M b ∈ Ep(Π3):

GΠ3 : guess(M a) ∨ ¬guess(M a). 𝑟1
guess(M b) ∨ ¬guess(M b). 𝑟2

On line 3, it generates the checking program of Π3, which consists of input declara-
tions and modal consistency constraints:

CΠ3 : input(guess(M a)) ← guess(M a). 𝑟1
input(¬guess(M a)) ← ¬guess(M a). 𝑟2
input(guess(M b)) ← guess(M b). 𝑟3

input(¬guess(M b)) ← ¬guess(M b). 𝑟4

← guess(M a),not&𝑏[Π̊3, input, a]. 𝑟5

← ¬guess(M a),&𝑏[Π̊3, input, a]. 𝑟6

← guess(M b),not&𝑏[Π̊3, input, b]. 𝑟7

← ¬guess(M b),&𝑏[Π̊3, input, b]. 𝑟8

On line 4, the procedure initializes Ω as the empty set, and on line 5, it enters the
outer loop iterating over the evaluation levels 𝑘 from ∣Ep(Π3)∣ = 2 down to 0.

3.5 Correctness of the Ehex Algorithm 33

Evaluation level 𝑘 = 2, Ω = ∅. On line 6, the procedure generates the cardinality
checking program L2, which has the effect that only the guess Φ1 = {M a,M b}
of cardinality 2 will be considered. On line 7, the procedure generates the subset
checking program SΩ , which has no effect as Ω is currently empty. On line 8,
the generated building blocks are combined into the level program (Π̊3)Ω2 =
Π̊3∪GΠ3 ∪CΠ3 ∪L2∪SΩ , which has no answer sets because the single answer set
of Π̊3 ∪GΠ3 ∪ L2 does not satisfy CΠ3 ,

4 or equivalently, becauseM a andM b are
true in Φ1 but false under the collection {∅} of all answer sets of the epistemic
reduct ΠΦ13 = ∅. No worldviews were found at level 2.

Evaluation level 𝑘 = 1, Ω = ∅. On line 6 on the second iteration, the procedure gen-
erates the cardinality checking program L1, which has the effect that both guesses
Φ2 = {M a} and Φ3 = {M b} of cardinality 1 will be considered. As on the previ-
ous level 2, the subset checking program SΩ has no effect becauseΩ is still empty.
On line 8, the generated building blocks are combined into the level program(Π̊3)Ω1 = Π̊3 ∪ GΠ3 ∪ CΠ3 ∪ L1 ∪ SΩ . This time (Π̊3)Ω1 is consistent since any
answer set of Π̊3 ∪ GΠ3 ∪ L1 also satisfies CΠ3 . The procedure enters the inner
loop iterating over the two answer sets of (Π̊3)Ω1 :

𝐴′
1 = {a, true(M a), guess(M a),¬guess(M b),

input(guess(M a)), input(¬guess(M b))} (3.29)

𝐴′
2 = {b, true(M b), guess(M b),¬guess(M a),

input(guess(M b)), input(¬guess(M a))} (3.30)

On line 13 under 𝐴′
1, the output is (Φ2, 𝐴1) where Φ2 = Φ(𝐴′

1) and 𝐴1 = 𝐴′
1 \

Aux(𝐴′
1) = {a}, and analogously under 𝐴′

2 the outputs is (Φ3, 𝐴2) = (Φ(𝐴′
2), {b}).

Indeed the whole output corresponds to world views of Π3, namely1 = {{a}}
w.r.t. Φ2 and2 = {{b}} w.r.t. Φ3. Two world views were found at level 1.

Evaluation level 𝑘 = 0, Ω = {Φ2,Φ3}. On line 6 on the third and last iteration, the
procedure generates the cardinality checking program L0, which has the effect
that only the guess Φ4 = ∅ of cardinality 0 will be considered. Now Ω is not
empty. With the subset checking program SΩ generated on line 7, the program(Π̊3)Ω0 does not generate any answer sets on line 9 since Φ4 is the empty set and
thus a subset of every other guess. No world views were found at level 0.

The procedure ends after iterating the last evaluation level. It has found both
world views of Π3 at level 1.

3.5 Correctness of the Ehex Algorithm

In the following sections, we show the correctness of the Ehex algorithm by ana-
lyzing the Basic-Ehex procedure. The procedure is correct if it is both sound and
4For more details, please refer to Section 3.1.2 on hex semantics.

34 Chapter 3 Evaluating Epistemic Logic Programs

complete. It is sound if, on inputΠ, every output (Φ, 𝐴) is associated with a world
view ofΠ w.r.t. Φ and 𝐴 ∈ ; and complete if, for any world view ofΠ w.r.t. Φ,
the procedure outputs (Φ, 𝐴) with inputΠ for each 𝐴 ∈  = AS(ΠΦ).

The following lemma explicitly states the aux-equivalence between the generic
epistemic reduct extended with a guess encoding and the epistemic reduct.

Lemma 1 (Epistemic reduct aux-equivalence). Let Π be an ELP program and let
Φ ⊆ Ep(Π) be a guess ofΠ. Then 𝐴′ is an answer set of Π̊ ∪GΦ, where Π̊ is the generic
epistemic reduct ofΠ and GΦ is the guess encoding of Φ, if and only if 𝐴 = 𝐴′ \Aux(𝐴′)
is an answer set of the epistemic reduct ΠΦ of Π w.r.t. Φ.

Proof. In this proof, we simplify Π̊ ∪GΦ into a ground program Π̊
GΦ w.r.t. GΦ such

that Π̊GΦ is free of auxiliary atoms and both have the same answer sets minus auxil-
iary atoms.

Let Π be an ELP program and let Φ ⊆ Ep(Π) be a guess of Π. Define Π̊GΦ as
the program obtained from ground(Π̊) w.r.t. GΦ, where Π̊ is the generic epistemic
reduct ofΠ and GΦ is the guess encoding of Φ, by the following transformation.

1. Apply for each pair (𝑟, ℓ), where 𝑟 is a rule in ground(Π̊) and ℓ is a substitution
literal from Table 3.1 that occurs in 𝑟, the transformation rules of Table 3.2.

2. Remove all substitution rules from Table 3.1 occurring in ground(Π̊).
ℓ ∈ Body(𝑟) ρ If guess(ρ) ∈ GΦ If ¬guess(ρ) ∈ GΦ
true(M 𝑎) M 𝑎 remove ℓ replace ℓ with 𝑎
not true(M 𝑎) M 𝑎 remove 𝑟 replace ℓ with not 𝑎

true(K 𝑎) Mnot 𝑎 remove 𝑟 replace ℓ with 𝑎
not true(K 𝑎) Mnot 𝑎 remove ℓ replace ℓ with not 𝑎

Table 3.2: Transformation rules of Π̊GΦ

Then Π̊GΦ contains no auxiliary atoms and has the same answer sets as Π̊ ∪ GΦ
minus auxiliary atoms. Observe that Π̊GΦ is exactly the epistemic reduct ΠΦ of Π
w.r.t. Φ. We conclude that Π̊ ∪GΦ andΠ

Φ are aux-equivalent.

The following proposition intuitively states that a level program Π̊Ω𝑘 is consistent
exactly when there is a guess Φ with ∣Φ∣ = 𝑘 such that the program Π̊ΩΦ resulting
from Π̊Ω𝑘 by substituting GΠ for GΦ is consistent. The subsequent proof uses the
Splitting Theorem for hex programs given in (Eiter et al., 2016, Theorem 1).

Proposition 4. Let Π̊Ω𝑘 be a level program of a program Π, where Ω is a collection of
guesses of Π with cardinality greater than 𝑘, 0 ≤ 𝑘 ≤ ∣Ep(Π)∣. Then Π̊Ω𝑘 is consistent

3.5 Correctness of the Ehex Algorithm 35

if and only if there is a guess Φ with ∣Φ∣ = 𝑘 such that by substituting GΠ for GΦ also
the program

Π̊
Ω
Φ ≔ Π̊Ω𝑘 \GΠ ∪GΦ = Π̊ ∪GΦ ∪ CΠ ∪ L𝑘 ∪ SΩ (3.31)

is consistent.

Proof.Note that no rule in GΠ ∪L𝑘 depends
5 on rules in Π̊Ω𝑘 \(GΠ ∪L𝑘). Therefore,

according to the Splitting Theorem with 𝐺Π ∪ L𝑘 as the rule splitting set of Π̊
Ω
𝑘 ,

𝐴 ∈ AS(Π̊Ω𝑘) iff 𝐴 ∈ AS(Π̊Ω𝑘 \GΠ ∪GΦ) (3.32)

with GΦ ∈ AS(GΠ ∪ L𝑘) where ∣Φ∣ = 𝑘 due to the cardinality checking program L𝑘.

3.5.1 Soundness of the Algorithm

Assume Basic-Ehex(Π) outputs (Φ, 𝐴) on line 13. Then there is a collection Ω of
guesses ofΠ such that the level program

Π̊
Ω
𝑘 = Π̊ ∪GΠ ∪ CΠ ∪ L𝑘 ∪ SΩ (3.33)

is consistent at evaluation level 𝑘 = ∣Φ∣. Some rules in the building blocks Π̊, CΠ ,
L𝑘, and SΩ depend on facts in GΦ but not vice versa (cf. Section 3.3). Moreover,
these building blocks do not dependent on each other, as shown in Figure 3.1. Thus,
since Π̊ΩΦ is consistent by Proposition 4, the subprograms Π̊ ∪ GΦ, GΦ ∪ CΠ , and
GΦ ∪ SΩ are also consistent.

GΦΠ̊ CΠ

SΩ

L𝑘

Figure 3.1: Rule dependencies between building blocks of Π̊ΩΦ : an arrow from one building
block 𝐵1 to another 𝐵2 indicates that some rules in 𝐵1 depend on rules in 𝐵2.

Let (Φ, 𝐴) be an output of Basic-Ehex on input Π, where the sets Φ = Φ(𝐴′)
and 𝐴 = 𝐴′ \ Aux(𝐴′) were computed at evaluation level 𝑘 from an answer set 𝐴′

of Π̊Ω𝑘 . Then Φ is an epistemic guess ofΠ by the construction of GΠ . Further let
be the collection of all answer sets of the epistemic reductΠΦ ofΠ w.r.t. Φ

5Rules with an empty body such as all rules in GΠ do not depend on other rules; the one rule in L𝑘
depends only on the rules in GΠ . For a detailed description and associated definitions of rule
dependencies, please refer to (Eiter et al., 2016).

36 Chapter 3 Evaluating Epistemic Logic Programs

Claim 1. The epistemic reductΠΦ ofΠ w.r.t. Φ is consistent. This means that is
nonempty.

Proof. As stated above, if the procedure outputs (Φ, 𝐴) on inputΠ, then Π̊ ∪GΦ is
consistent. Thus, by Lemma 1, alsoΠΦ is consistent and 𝐴 ∈ AS(ΠΦ). Hence, is
not empty.

Claim 2. The guess Φ is consistent with. This means that is a candidate world
view ofΠ w.r.t. Φ.

Proof. Since GΦ ∪ CΠ is consistent, the claim follows from Proposition 3.

Claim 3. The guess Φ is maximal. This means that is a world view ofΠ w.r.t. Φ.

Proof. Assume Φ is not maximal although GΦ ∪ SΩ is consistent for Ω at evaluation
level ∣Φ∣. Then there is a world view ofΠ w.r.t. Φ′ such thatΦ′ ⊃ Φ andΦ′ is not inΩ.
IfΦ′ is not inΩ at evaluation level ∣Φ∣ andΦ′ is maximal, thatmeans that Π̊∪GΦ′∪CΠ
is not consistent at evaluation level ∣Φ′∣; otherwise the algorithm would have added
Φ′ toΩ as it iterates over the evaluation levels in descending order and ∣Φ′∣ > ∣Φ∣. But
then either Π̊ ∪GΦ′ or GΦ′ ∪ CΠ is inconsistent. This contradicts that Φ′ represents
a world view ofΠ and therefore Φ is a maximal guess.

The Claims 1 and 2 say that is a candidate world view ofΠ, and Claim 3 says
that is an actual world view of Π. By proving these claims, we have shown that
the output (Φ, 𝐴) is associated with a world view ofΠ w.r.t. Φ and 𝐴 ∈ . This
means that Basic-Ehex is sound.

3.5.2 Completeness of the Algorithm

Assume is a world view ofΠ w.r.t. Φ ⊆ Ep(Π) and 𝐴 ∈ , then the Basic-Ehex
procedure outputs (Φ, 𝐴). Then the epistemic reduct ΠΦ is consistent and thus, by
Lemma 1, also Π̊ ∪GΦ is consistent. As Φ is consistent with, also the consistency
checking program CΠ extended with the guess encoding GΦ of Φ, i.e., CΠ ∪GΦ, is
consistent. Since Φ is maximal and Basic-Ehex is sound, each Φ′ collected at line 11
of the procedure in Ω is not a superset of Φ. Thus, at evaluation level ∣Φ∣, also the
maximality checking program SΩ extended with GΦ, i.e., SΩ ∪GΦ, is consistent. As
a result, the program Π̊ΩΦ = Π̊ ∪GΦ ∪CΠ ∪L∣Φ∣ ∪ SΩ is consistent and therefore, by
Proposition 4, also Π̊Ω∣Φ∣ is consistent. The procedure eventually reaches line 13 at
evaluation level ∣Φ∣ where it outputs (Φ, 𝐴), because every answer set of Π̊ΩΦ is also
an answer set of of Π̊Ω∣Φ∣. This means that Basic-Ehex is complete.

3.6 Optimizations 37

3.6 Optimizations

In general, the search space for world views of an ELP programΠ grows exponen-
tially in the number of ground modal literals of Π, that is, the number of possible
epistemic guesses is 2𝑛, where 𝑛 = ∣Ep(Π)∣. By definition, the set Ep(Π) contains
the weak forms of all modal literals that occur in the (potentially large) grounding
ofΠ. However, in some cases it is possible to enumerate all world views of a program
with a smaller effective set  ⊆ Ep(Π) of weak modal literals.

Φ ∩ Φ 

Ep(Π)

Figure 3.2: Effective sets are a tool to reduce the number of possible truth assignments

In this section, we mainly describe different techniques to compute effective sets.
However, we also discuss some other techniques, such as, e.g., exploiting problem-
specific properties or skipping evaluation levels due to information from precom-
puted brave or cautious consequences.

Definition 23 (Effective set of weak modal literals). LetΠ be an ELP program. An
effective set  (of weak modal literals) ofΠ is any subset of Ep(Π) such that for all
guesses Φ∗ ⊆ Ep(Π) and Φ = Φ∗∩  , the epistemic reductsΠΦ

∗

andΠΦ both have
the same answer sets.

Example 14 (Grounding). The set Ep(Π9) of the program
Π9: p(c, “s”, 1). 𝑟1

← K q(X). 𝑟2

is {Mnot q(c),Mnot q(“s”),Mnot q(1)}. Here ∣Ep(Π9)∣ = 3, which gives 8 epistemic
guesses. This program has one world view {{p(c, “s”, 1)}} with respect to the guess
Φ = Ep(Π9). But the smallest effective set ofΠ9 is the empty set∅, since the epistemic
reduct Π∅

9 of Π9 with respect to ∅

Π
∅
9 : p(c, “s”, 1). 𝑟1

← q(c). 𝑟2
← q(“s”). 𝑟3
← q(1). 𝑟4

38 Chapter 3 Evaluating Epistemic Logic Programs

has the same answer sets as the epistemic reduct ΠΦ9 = {p(c, “s”, 1)} of Π9 with
respect to Φ.

The largest effective set of Π is Ep(Π) and the smallest effective set of Π is the
intersection of all effective sets ofΠ. In practice, this means that we can compute all
world views ofΠ using the smallest effective set  ofΠ that we can find. To this end
we substitute Ep(Π) for  in the definitions of building blocks and in the algorithm.
This works because of the following proposition.

Proposition 5. Let  ⊆ Ep(Π) be an effective set of a programΠ and a let Φ ⊆  be a
guess of Π. Then there is a guess Φ∗ ⊆ Ep(Π) such that Φ = AS(ΠΦ) is a world view
of Π w.r.t. Φ∗ if the following conditions hold:

(i) Φ is nonempty,
(ii) Φ is consistent relative to  , i.e.,

• every ρ ∈ Φ is true in Φ and
• every ρ ∈  \ Φ is false in Φ,

(iii) Φ is maximal relative to  , i.e., there is no guess Φ′ ⊆  with Φ′ ⊃ Φ, such the
conditions (i) and (ii) are satisfied for Φ′.

Proof. Let Φ ⊆  be a guess ofΠ such thatΦ is nonempty, Φ is consistent relative
to  , and Φ is maximal relative to  . Define Φ∗ ⊆ Ep(Π) as the set

Φ
∗≔ {ρ ∈ Ep(Π) ∣Φ ⊨ ρ} (3.34)

of all weak modal literals ρ true in Φ. Then Φ = Φ∗∩  because Φ is consistent
and maximal relative to  and hence, by Definition 23, Φ = AS(ΠΦ∗). So Φ is
a candidate world of Π w.r.t. Φ∗ by the construction of Φ∗. Assume Φ∗ is not a
maximal guess ofΠ, i.e., there is a larger guess Φ′ ⊃ Φ∗ such that AS(ΠΦ′) is a world
view ofΠ w.r.t. Φ′. Then Φ′∩ = Φ because Φ is maximal relative to  and therefore
AS(ΠΦ′) = Φ. But then 𝐺′ is not consistent withΦ because every ρ true inΦ
is already in Φ∗. It follows thatΦ is a world ofΠ w.r.t. Φ∗.

Remark 7. (Caveat) Note that the use of effective sets can eliminate world views that
might be considered unintended. For example, consider the following program:

Π10: p ← M q,not q. 𝑟1
q ← Mp,notp. 𝑟2
z. 𝑟3
z ← Knot r. 𝑟4
r ∨ ¬r ← Knotp. 𝑟5

Under EFLP semantics, the program Π10 has two world views:

1 = {{p, z}, {q, z}} w.r.t. Φ1 = {Mp,M q}
2 = {{r, z}, {¬r, z}} w.r.t. Φ2 = {M r}

3.6 Optimizations 39

When the algorithm is run with the effective set  = {Mp,M q}, only1 is found.
The reason for this is that Φ2 ∩  is a proper subset of Φ1 ∩  and thus Φ2 ∩  is
not maximal relative to  . One could argue that 2 is an unintended world view
because the rule 𝑟4 containing the modal literal Knot r has no effect on the answer
sets of any epistemic reduct and can thus be ignored.

In summary, the truth assignments of weak modal literals that are not in an ef-
fective set of Π have no effect effect on the answer sets of epistemic reducts of Π.
So we may be able to compute world views of Π much more efficiently by using
effective sets.

Below we present two methods for computing effective sets. The first method
uses the positive envelope ofΠ, and the second uses an optimizing ASP grounder.

As in traditional ASP, ensuring finite grounding of an ELP programΠ requires
safety restrictions on rules inΠ.

Definition 24 (Rule Safety). We say a rule 𝑟 in an ELP program Π is safe if each
variable 𝑋 occurring in 𝑟 occurs in a positive literal of the form 𝑎 or K 𝑎, where 𝑎 is
an atom, in the body of 𝑟.

Example 15. The rule p(X) ← K q(X) is safe while the rule p(X) ← M q(X) is not
safe. An epistemic reduct of the former rule is safe because either the rule is removed
or the modal literal K q(X) is replaced with the positive atom q(X). An epistemic
reducts of the latter rule is not safe because themodal literalM q(X) is either replaced
with the positive atom q(X) or removed from the rule. If it is removed, thenX occurs
only in the head of the rule in p(X). Intuitively, if all rules of a programΠ are safe,
then all rules of epistemic reducts ofΠ are safe.

Below we assume that all rules of ELP programs are safe.

3.6.1 Computing a Positive Envelope

It is possible to compute an effective set of a program Π using a superset of all
ground atoms that can be true in the world views ofΠ. The smaller this superset is,
the smaller the effective set can become. The idea of computing a positive envelope
is to derive such a superset from a positive version ofΠ that contains only positive
information and is thus monotonic.6

In Section 3.1.1 we defined the positive body for rules in hex syntax. The follow-
ing definition applies for rules in ELP syntax.

Definition 25 (Positive body of ELP rules). Let 𝑟 be a rule in ELP syntax of the

6If 𝐼 is a model of a monotonic programΠ+ then any interpretation 𝐼 ′ ⊇ 𝐼 is also a model ofΠ.

40 Chapter 3 Evaluating Epistemic Logic Programs

form (2.1). Then the positive body of 𝑟, denoted by Body+(𝑟), is defined as the set
Body+(𝑟) ≔ {𝑎 ∣ 𝑎 or K 𝑎 is in Body(𝑟), where 𝑎 is an atom} (3.35)

of atoms 𝑎 that occur without negation in the body of 𝑟 or without negation in a
strong modal literal in the body of 𝑟.

Definition 26 (Positive envelope). Given an ELP program Π, generate a positive
programΠ+ fromΠ so thatΠ+ contains no disjunction, no constraints, no modal
literals, and no default negated atoms, i.e., define Π+ as the program consisting of
all rules 𝑟𝑎 of atoms 𝑎 occurring in the head of a rule 𝑟 ∈ Π, where

𝑟𝑎 ≔ 𝑎 ← Body+(𝑟). (3.36)

Then Π+ is monotonic and the unique answer set 𝐴+
Π of Π+ is called the positive

envelope ofΠ.7

Lemma 2. LetΠ be an ELP program and let Φ ⊆ Ep(Π) be any guess ofΠ. Then each
answer set 𝐴 of ΠΦ is a subset of the positive envelope 𝐴+

Π of Π.

Proof. Let 𝐴 be an answer set ofΠΦ and letΠ+
𝐴 ≔ {𝑟𝑎 ∈ Π+ ∣ 𝐴 ⊨ 𝑟𝑎} be the subset

of rules ofΠ+ that are satisfied by 𝐴. Then 𝐴 is the unique answer set ofΠ+
𝐴 because

for each atom 𝑎 in the head of a rule 𝑟 ∈ ΠΦ satisfied by 𝐴 there is a monotonic
rule 𝑟𝑎 ∈ Π+

𝐴 satisfied by 𝐴. Since 𝐴+
Π is the unique answer set of Π+ and by the

monotonicity of bothΠ+
𝐴 andΠ+ it follows that 𝐴 is a subset of 𝐴+

Π becauseΠ+
𝐴 is

a subset ofΠ+.

To get an effective set of Π, extend the following program MΠ with Π+ and
extract the effective set encoded with gnd atoms in the unique answer set of the
resulting program.

Proposition 6. Let Π be an ELP program. Define MΠ as the program consisting of all
rules 𝑟ϕ of modal literals ϕ occurring in a rule 𝑟 ∈ Π, where

𝑟ϕ ≔ gnd(weak(ϕ)) ← Body+(𝑟). (3.37)

Let 𝐴 be the unique answer set ofMΠ ∪Π+. Then  = {ρ ∣ gnd(ρ) ∈ 𝐴} is an effective
set of Π.

Proof. Let Φ∗ be any guess of Π and let Φ = Φ∗∩  . Assume AS(ΠΦ∗) ≠ AS(ΠΦ).
Then there is a rule 𝑟 ∈ Π containing a modal literal ϕ with weak(ϕ) ∉  and
7Remember that we view strong negated atoms as atoms with a fresh predicate symbol and an
associated constraint. For this reason, an atom 𝑎 and its syntactical opposite ¬𝑎 can both occur
in a positive envelope. For example, if Π = {𝑎 ∨ ¬𝑎} then {𝑎,¬𝑎} is the unique answer of Π+,
because the implicit constraint← 𝑎,¬𝑎 is not inΠ+.

3.6 Optimizations 41

an answer set 𝐴 of either ΠΦ
∗

or ΠΦ such that 𝐴 satisfies all atoms in the positive
body of 𝑟 (otherwise, if no answer set satisfies the positive body of such a rule, then
both reducts have the same answer sets). Since 𝐴 is a subset of the positive envelope
𝐴+
Π by Lemma 2, also 𝐴+

Π satisfies the positive body of 𝑟. But then 𝐴+
Π also satisfies

𝑟ϕ ∈ 𝑀Π and thus weak(ϕ) ∈  , which contradicts weak(ϕ) ∉  . It follows that
AS(ΠΦ∗) = AS(ΠΦ) for arbitrary Φ∗ where Φ = Φ∗∩ and thus  is an effective set
ofΠ.

3.6.2 Brave and Cautious Consequences

In Proposition 1 we have made the connection between brave and cautious conse-
quences of a logic program Π under FLP answer set semantics and modal literals
over atoms inΠ. As before, byΠ ⊨c 𝑎 we denote that 𝑎 is a cautious consequence
ofΠ, and byΠ ⊨b 𝑎 that 𝑎 is a brave consequence ofΠ.

Now let Π be an ELP program. Then Π̊ ∪ GΠ is a logic program under FLP
semantics, where Π̊ is the generic epistemic reduct of Π and GΠ is the guessing
program forΠ. Intuitively, the answer sets of Π̊ ∪GΠ encode all answer sets of all
epistemic reducts ofΠ.

Proposition 7. (Properties of consequences of Π̊ ∪GΠ)

1. If 𝑎 is not a brave consequence of Π̊ ∪GΠ
then M 𝑎 is false and Mnot 𝑎 is true in every world view  of Π.

2. If 𝑎 is a cautious consequence of Π̊ ∪GΠ
then Mnot 𝑎 is false and M 𝑎 is true in every world view  of Π.

With this we aggregate the weak modal literals ofΠ that are false in any reduct
ofΠ into the set

Φ⊥
Π ≔ {M 𝑎 ∈ Ep(Π) ∣ Π̊ ∪GΠ ⊭b 𝑎}

∪ {Mnot 𝑎 ∈ Ep(Π) ∣ Π̊ ∪GΠ ⊨c 𝑎}. (3.38)

And analogously, we aggregate the weak modal literals of Π that are known to be
true in any reduct ofΠ into the set

Φ⊤
Π ≔ {Mnot 𝑎 ∈ Ep(Π) ∣ Π̊ ∪GΠ ⊭b 𝑎}

∪ {M 𝑎 ∈ Ep(Π) ∣ Π̊ ∪GΠ ⊨c 𝑎}. (3.39)

The algorithm can now use Φ⊥
Π and Φ⊤

Π to extend the level programs Π̊Ω𝑘 , for all
possible values of 𝑘 and Ω, with the set of guessing facts

FGΠ ≔ {¬guess(ρ) ∣ ρ ∈ Φ⊥
Π} ∪ {guess(ρ) ∣ ρ ∈ Φ⊤

Π}, (3.40)

which reduces guesswork if FGΠ is not empty. The algorithm can also skip all levels
𝑘 < ∣Φ⊤

Π∣ or 𝑘 > ∣Ep(Π)∣−∣Φ⊥
Π∣, since every epistemic guess that represents a world

view ofΠ contains all weak modal literals of Φ⊤
Π and no weak modal literals of Φ⊥

Π .

42 Chapter 3 Evaluating Epistemic Logic Programs

This technique can be refinedwith level specific information. We get the sets Φ⊥
Π,𝑘

and Φ⊤
Π,𝑘 when we extend Π̊ ∪GΠ with L𝑘 ∪ SΩ in (3.38) and in (3.39), respectively.

Then every ρ ∈ Φ⊥
Π,𝑘 is false and every ρ ∈ Φ⊤

Π,𝑘 is true in any world view ofΠ
found at evaluation level 𝑘. This allows the algorithm to skip the current evaluation
level 𝑘 if 𝑘 < ∣Φ⊤

Π,𝑘∣ or 𝑘 > ∣Ep(Π)∣ − ∣Φ⊥
Π,𝑘∣. Otherwise the algorithm can attempt

to reduce the search space by extending Π̊Ω𝑘 with the level-specific guessing facts
FGΠ,𝑘 , which is defined similarly to FGΠ , but using Φ

⊤
Π,𝑘 and Φ

⊥
Π,𝑘.

3.6.3 Guessing Hints

We may avoid some epistemic guessing for an ELP programΠ with the set

HΠ ≔ {← ¬guess(M ℓ), ℓ ∣M ℓ ∈ Ep(Π)}, (3.41)

of guessing hints forΠ, where ℓ is a standard literal. These constraints are based on
the observation that if a literal ℓ is true in some answer set of Π̊ ∪GΦ withM ℓ ∉ Φ,
then AS(ΠΦ) is not a world view of Π and therefore the answer sets containing ℓ
can be killed right away.

In the algorithm, the guessing hints can extend the level programs, which may
avoid some computation. Note that guessing hints must not be used with the sub-
programs for consistency checking with external atoms.

3.6.4 Using an ASP Grounder

Grounding with an optimizing ASP grounder allows us to identify additional weak
modal literals in an ELP programΠ that are not effective.

Example 16. In the following programΠ11 the third rule is superfluous because its
head atom r also occurs in the second rule as fact and therefore any answer set in
any world view of Π11 must contain r, regardless of whether Kp is true or not.

Π11: p ∨ q. 𝑟1
r. 𝑟2
r ← Kp. 𝑟3

But this case is not covered by the other optimizations in this section, i.e., the atom
p is in the positive envelope 𝐴+

Π = {p, q, r} and it is neither always true nor is it
never true in the answer sets of Π̊11 ∪GΠ . Manually, we immediately get the world
view {{𝑝, 𝑟}, {𝑞, 𝑟}} w.r.t. {Mnotp} by removing the third rule and observing that
Kp is false in the resulting answer sets. In the algorithm, the truth value ofMnotp ⊆
Ep(Π11) will be guessed and checked.

By an optimizing ASP grounder we mean a grounder (such as gringo) that trans-
forms a ground ASP program into a strongly equivalent ground program with

3.6 Optimizations 43

a simpler syntactical structure (Gebser et al., 2015; Harrison et al., 2015). For an
ASP programΠ we denote by groundopt(Π) a transformation of ground(Π) such
that groundopt(Π) ∪Π′ andΠ ∪Π′, whereΠ′ is any other ASP program, have the
same answer sets.

Given an ELP program Π, its generic epistemic reduct Π̊ and its guessing pro-
gram GΠ are ASP programs. Below we denote groundopt(Π̊ ∪GΠ) by Π̊gnd.

Example 17. An optimizing grounder may transform Π̊11 ∪GΠ11 into the strongly
equivalent ground program(Π̊11)gnd: p ∨ q. 𝑟1

r. 𝑟2
true(Kp) ← p,¬guess(Mnotp). 𝑟3
guess(Mnotp) ∨ ¬guess(Mnotp). 𝑟4

where the rule r ← true(Kp) has been omitted.

Observe that, by the construction of Π̊, if no rule in Π̊gnd contains the auxiliary
atom true(ϕ) in its body, then guessing ϕ is superfluous. This does not necessarily
mean that weak(ϕ) ∈ Ep(Π) is not effective; when a grounder determines that
true(ϕ) is a fact, it can, e.g., remove true(ϕ) from all rule bodies or remove rules
that contain not true(ϕ) in their body.8 But if true(ϕ) occurs neither in the body of
a rule nor in a fact, then weak(ϕ) is not effective. In Example 17 the weak modal
literalMnotp is not effective because true(Kp) occurs neither in the body of a rule
nor in a fact. This is summarized in the following proposition.

Proposition 8. Let 𝐴true be the set of all auxiliary atoms of the form true(ϕ) over modal
literals ϕ occurring in Π̊gnd, let 𝐵true be the subset of all atoms in 𝐴true that occur in the
body of a rule 𝑟 ∈ Π̊gnd, and let 𝐹true be the subset of all atoms in 𝐴true that occur in facts
in Π̊gnd. Then  ≔ {weak(ϕ) ∣ true(ϕ) ∈ 𝐵true ∪ 𝐹true} is an effective set of Π.

Proof. In this proof, we assume that an optimizing ASP grounder removes an atom 𝑎
from a rule body only if 𝑎 occurs in a fact. Then, by the strong equivalence of Π̊∪GΠ
and Π̊gnd and by the aux-equivalence with the epistemic reduct (Lemma 1), any two
epistemic reductsΠΦ

∗

andΠΦ w.r.t. Φ∗ ⊆ Ep(Π) and Φ = Φ∗∩  , respectively, have
the same answer sets.

3.6.5 Satisfiability Checking

The output of an epistemic guess representing a candidate world view is sufficient
to testify the satisfiability of an ELP program. The algorithm can be modified to run
8Note that facts in Π̊gnd are also cautious consequences of Π̊ ∪GΠ . We can take advantage of this
as described in Section 3.6.2.

44 Chapter 3 Evaluating Epistemic Logic Programs

in satisfiability checking mode. In this mode, the algorithm can just output the first
guess it finds and exit. It is also possible to remove constraints on the cardinality of
guesses, since guesses do not need to be maximal for satisfiability checking; but this
may result in higher memory requirements.

Other optimizations outside of the algorithm, such as configuring the underlying
hex solver for satisfiability checking, are also possible.

3.6.6 Problem-Specific Optimizations

Sometimes the solutions to a particular problem have properties that we can use to
narrow the search space. A well-known example are conformant planning problems
with incomplete knowledge of the initial states, where each problem instance defines
a goal that must be reached by a sequence of actions (i.e., a plan) (Smith and Weld,
1998).

We show optimizations for ELP programs Π that encode planning problem as
proposed in (Kahl et al., 2015), where the answer sets in a world view ofΠ represent
plans that reach the goal in exactly 𝑛 steps, where 𝑛 is encoded inΠ. Such programs
encode the condition to reach the goal with the constraints

C𝑔 ≔{← 𝑔,Mnot 𝑔
← Knot 𝑔 } (3.42)

where 𝑔 is an atom that represents the goal. These constraints enforce that in every
world view of Π both M 𝑔 is true and Mnot 𝑔 is false whenever 𝑔 is true. The car-
dinality of guesses of world views of Π is 𝑛 + 1 because, by construction, a modal
literal of the form Moccurs(𝑎, 𝑖) must be true at each step 𝑖 ∈ {0 . . . 𝑛 − 1} for an
action 𝑎, andM 𝑔 must be true.

To reduce the guessing in the algorithm, we define the set G𝑔 of guessing facts
for 𝑔:

G𝑔 ≔{¬guess(Mnot 𝑔) ← 𝑔
guess(M 𝑔) ← } (3.43)

A plan for a problem encoded inΠ exists if and only if the program Π̊𝑔 ≔ Π̊∅
𝑛+1∪G𝑔

is consistent, where Π̊∅
𝑛+1 is the level program used in the algorithm at level 𝑛 + 1.

This allows us to change the algorithm so that it switches to planning mode for this
type of programs, where it evaluates Π̊𝑔 at level 𝑛 + 1 and exits.

Implementation 4

In this chapterwe present the ehex solver,which is an implementation of the Ehex al-
gorithm using the dlvhex system.

4.1 The dlvhex System

The dlvhex system (Eiter et al., 2015) is a reasoner for computing models of hex pro-
grams. It comes with a flexible system architecture allowing authors to extend the
reasonerwith dedicated external atoms via plugins. The truth of such external atoms
is determined by means of an external computation resource.

The following program, which we borrowed from dlvhex homepage,1 illustrates
the usage of external atoms:

Π12: reached(𝑋) ← &reach[edge, a](𝑋). 𝑟1

The unique answer set ofΠ12 contains ground atoms of the form reached(𝑣) taking
values 𝑣 from the external predicate &reach. These values are computed via the
external atom &reach[edge, a] and represent all nodes that are reachable from a
node labelled “a” in a graph named “edge”. During the evaluation of the program, the
task of computing the values is transparently delegated to an external computation
source (e.g., a query to a graph database).

Some “real world” examples of plugins that implement external atoms can be
found on the dlvhex homepage,1 e.g., the String Plugin, which provides external
atoms that allow for common string operations, or the Description Logic Plugin,
which provides external atoms that interface with OWL ontologies over HTTP.

Dedicated external atoms can also be used to “call” hex programs from within
the evaluation of another hex programs and reason about its answer sets (Eiter et al.,
2013). In our implementation we use such external atoms provided by the Nested
hex Plugin for dlvhex.

4.1.1 Programs with Nested Program Calls

To better understand the external atoms of the Nested hex Plugin, we first give a
brief overview of the Nested hex system architecture.
1http://www.kr.tuwien.ac.at/research/systems/dlvhex/

http://www.kr.tuwien.ac.at/research/systems/dlvhex/

46 Chapter 4 Implementation

Main hex
program dlvhex Answer sets

External atomsSubprograms Answer set cache

data flow
control flow

Figure 4.1: Nested HEX system architecture

Nested hex program calls are realized via plugins for the reasoner dlvhex. Such
plugins provide a set of external atoms and an answer set cache for the results.

The general system architecture is pictured in Figure 4.1. A subprogram call
corresponds to the evaluation of a special external atom. The program that contains
the external atom is called the calling program (host program) and the subprogram
being called via the external atom is called the callee. When a subprogram call is
encountered in the host program, the plugin creates another instance of the dlvhex
reasoner to evaluate the subprogram. Its result is then stored in the answer set cache
and identified with a unique handle, which can later be used to access the cached
result. The subprogram is either directly embedded in the host program or it is
stored in a separate file on the file system such that it can be included in the host
program by filename.

4.1.2 The Nested hex Plugin

The Nested hex Plugin2 implements nested program calls and provides, among oth-
ers, the two external atoms &hexBrave and &hexCautious. These external atoms are
of particular interest for checking the consistency of epistemic guesses of a program
with respect to the answer sets of the corresponding epistemic reducts.

An atom 𝑎 is a brave consequence of a program Π, in symbols Π ⊨b 𝑎, if it is in
some answer set ofΠ, or it is a cautious consequence ofΠ, in symbolsΠ ⊨c 𝑎, if it is
in all answer sets ofΠ.

The external atoms allow to query whether an atom 𝑎 is brave or cautious conse-
quences of an input programΠ. A query is specified in terms of a query predicate 𝑞
and a list of output terms 𝑡1, . . . , 𝑡𝑛 such that 𝑎 = 𝑞(𝑡1, . . . , 𝑡𝑛) is the atom to check.
Additionally a set ∆ of facts can be added to Π prior to evaluation via an input
predicate.

Intuitively, a &hexBrave atom evaluates to true if the specified atom is a brave
consequence ofΠ ∪∆, and likewise, a &hexCautious atom evaluates to true if the

2The Nested hex Plugin for dlvhex by Christoph Redl is available at http://www.kr.tuwien.ac.
at/research/systems/dlvhex/nestedhexplugin.html (visited on 2022-07-29)

http://www.kr.tuwien.ac.at/research/systems/dlvhex/nestedhexplugin.html
http://www.kr.tuwien.ac.at/research/systems/dlvhex/nestedhexplugin.html

4.2 The ehex Solver 47

specified atom is a cautious consequence ofΠ ∪∆.
Let Π be a hex program that is to be called from a host program. An external

&hexBrave-atom is of the form

&hexBrave[𝑡, 𝑠Π , 𝑝, 𝑞](𝑐1, . . . , 𝑐𝑛),
with input list 𝑡, 𝑠Π , 𝑝, 𝑞 and output list 𝑐1, . . . , 𝑐𝑛, 𝑛 ≥ 0. The parameters in the input
list are:

𝑡 The type of the source 𝑠Π where 𝑡 ∈ {file, string}.
𝑠Π The source of the subprogramΠ to be evaluated such that 𝑠Π is a string that

either contains the source code of Π if 𝑡 = string, or the path to a file that
contains the program if 𝑡 = file.

𝑝 The input predicate that is used to specify input facts to be added to the sub-
program.

𝑞 A query predicate of arity 𝑛.

Prior to evaluation,Π is extended with factual knowledge in form of facts that are
specified by the input predicate 𝑝. The arity of 𝑝 is the maximum arity 𝑚 of all
facts to be added plus 2. For adding some fact of the form 𝑎(𝑐1, . . . , 𝑐𝑘), the input
predicate 𝑝 is supposed to specify the fact with 𝑝(𝑎, 𝑘, 𝑐1, . . . , 𝑐𝑘, ϵ, . . . , ϵ); here ϵ is a
special constant indicating empty terms, and the number of terms of the form ϵ is
𝑚− 𝑘, i.e., the empty terms fill the remaining term positions in 𝑝 that are not needed
for specifying a certain fact due to its smaller arity.

An external &hexCautious-atom is of the same form, exceptwith a different name.

4.2 The ehex Solver

The ehex solver is a prototype implementation of the Ehex algorithm extended
with the optimizations presented in Section 3.6. The solver takes as input a problem
encoded as an ELP program Π and outputs world views of Π that represent solu-
tions to the problem (Figure 4.2). During this process ehex generates intermediate
ASP or hex programs, which are evaluated with either clingo (Gebser et al., 2014)
or dlvhex (Eiter et al., 2015). The required Nested hex Plugin for dlvhex handles the
external atoms that occur in hex programs (cf. Section 4.1.2).

We implemented the solver as the Python application ehex, which is organized
into three so-called import packages.3 The first package ehex.parser contains mod-
ules for parsing programs and answer sets; the second package ehex.codegen con-
tains modules for generating and rendering logic programs; and the third package
ehex.solver contains the module that implements the algorithm and modules for
communicating with clingo and dlvhex subprocesses. The source code and installing
instructions are available on GitHub.4

3https://packaging.python.org/en/latest/glossary/#term-Import-Package
4https://github.com/hexhex/ehex/.

https://packaging.python.org/en/latest/glossary/#term-Import-Package
https://github.com/hexhex/ehex/

48 Chapter 4 Implementation

ehex

ehex.parser
ehex.solver
ehex.codegen

clingo dlvhex

ELP program World views

data flow
control flow

Figure 4.2: Data and control flow of the ehex solver

Between reading the input and printing the solutions, the solver performs a series
of tasks. First it parses the input program, which results in an abstract syntax tree
(AST). Using theAST, it then generates an intermediate logic program that is required
for computing the set of all ground modal literals. Tho this end, it opens a clingo
subprocess, writes the rendered intermediate program to its standard input, and
reads the unique answer set from its standard output. The set of all ground modal
literals is then obtained from the parsed answer set. In a similar way, the solver
generates the level programs required by the algorithm, evaluates them with dlvhex,
and processes the generated answer sets. This includes user-friendly formatting of
the extracted solutions, e.g. grouped by world views, and printing the formatted
solutions on the standard output.

4.2.1 Running the Solver

The solver can be used as a library or as a command line application. On the com-
mand line, ehex accepts programs on its standard input:

> echo "a :- M a." | ehex
World: 1@1
Modal literals: {M a}
{a}

Here we have run the solver with the input program Π = {a ← M a}. The out-
puts corresponds to the unique world view1@1 = {{a}} of Π with respect to the
set {M a} of modal literals that are true in1@1, found at evaluation level 1.

In the following run we provide the input program eligible.elp (Listing 1) as
a command line argument:

> ehex eligible.elp
World: 1@2
Modals: {M not eligible("Mike"), M not ¬eligible("Mike")}
{fairGPA("Mike"), interview("Mike"), student("Mike")}
{eligible("Mike"), highGPA("Mike"), interview("Mike"), student("Mi
ke")}

4.2 The ehex Solver 49

1 eligible(X) ← highgpa(X), student(X).
2 eligible(X) ← minority(X), fairGPA(X), student(X).
3 ¬eligible(X) ← ¬fairGPA(X), ¬highGPA(X), student(X).
4 interview(X) ← not K eligible(X), not K ¬eligible(X), student(X).
5 student("Mike").
6 fairGPA("Mike") | highGPA("Mike").

Listing 1: The file eligible.elp contains an instance of the Scholarship Eligibility
problem encoded as ELP program

1 eligible(X) :- highGPA(X), student(X).
2 eligible(X) :- minority(X), fairGPA(X), student(X).
3 z_Neg_eligible(X) :- z_Neg_fairGPA(X), z_Neg_highGPA(X), student(X).
4 interview(X) :- student(X).
5 student("Mike").
6 fairGPA("Mike").
7 highGPA("Mike").
8 z_Gnd_M_Not_eligible(X) :- student(X).
9 z_Gnd_M_Not_Neg_eligible(X) :- student(X).

Listing 2: The positive envelope program

The second output corresponds to the unique world view 1@2 of eligible.elp
w.r.t. {Mnot eligible(“Mike”),Mnot¬eligible(“Mike”)}, found at evaluation level 2.
During this run, ehex parsed the input file and generated intermediate programs,
which we discuss now.

In Listing 1, the traditional syntax for modals is used, e.g., not K eligible(X) in the
body of the rule at line 4. The ELP parser of ehex accepts syntax of the form M 𝑎,
K 𝑎, notM 𝑎, or not K 𝑎 for modals over an atom 𝑎 and equivalent syntax of the form
M ℓ or K ℓ for modals over a standard literal ℓ .

After parsing the input file, ehex computed the set of ground modals of the input
program. To this end, the positive envelope program (cf. Section 3.6.1) shown in
Listing 2 was generated.

In the generated programs, atoms whose predicate name starts with z_ represent
auxiliary atoms as defined inNotation 1, except atomswhose name startwithz_Neg_,
which represent strong negated atoms. The atom z_Gnd_M_Not_eligible(X) at
line 9, for example, corresponds to the auxiliary atom gnd(Mnot eligible(X)).

After parsing the ground modal literals from the single answer set of the positive
envelope program, the shared building blocks (cf. Section 3.3) of the algorithm were
generated, namely: the generic epistemic reduct (Listing 3), the guessing program
(Listing 4), and the consistency checking program (Listing 5).

The constraints in the lines 11–13 in Listing 3 of the generic epistemic reduct

50 Chapter 4 Implementation

1 eligible(X) :- highGPA(X), student(X).
2 eligible(X) :- minority(X), fairGPA(X), student(X).
3 z_Neg_eligible(X)
4 :- z_Neg_fairGPA(X), z_Neg_highGPA(X), student(X).
5 interview(X)
6 :- not z_True_K_eligible(X), not z_True_K_Neg_eligible(X),
7 student(X).
8 student("Mike").
9 fairGPA("Mike") | highGPA("Mike").
10

11 :- eligible(X), z_Neg_eligible(X).
12 :- fairGPA(X), z_Neg_fairGPA(X).
13 :- highGPA(X), z_Neg_highGPA(X).
14

15 z_True_K_eligible(X)
16 :- eligible(X), z_Neg_G(z_M_Not_eligible(X)).
17 z_True_K_Neg_eligible(X)
18 :- z_Neg_eligible(X), z_Neg_G(z_M_Not_Neg_eligible(X)).

Listing 3: The generic epistemic reduct

resulted from rewriting the strong negated atoms that occur in the input program.
The variables in the generated guessing rules at in the lines 1–5 in Listing 4 are

bound by grounding atoms. The grounding atoms themselves, which were obtained
from the answer set of the positive envelope program, occur in the facts in the
lines 7–8. The grounding atoms also occur in the checking program.

The generated checking program in Listing 5 corresponds to Definition 20, but
differs from it in that the number of ground rules containing external atoms is re-
duced by half; we have observed shorter running times with this encoding. In the
external atoms, the path reduct.lp to the file containing the generic epistemic
reduct is specified as a string in the input list, e.g., at line 6.

The level-specific building blocks were generated inside the evaluation loop, i.e.,
the cardinality checking program and the subset checking program, for each evalua-
tion level . The generated building blocks of evaluation level 1 are shown in Listing 6.
The cardinality checking program (cf. Definition 21), which consists of a single con-
straint, is listed in line 1; the subset checking program (cf. Definition 22) is listed
in the lines below, where the epistemic guess of world view1@2 is encoded in the
lines 3–4.

In fact, ehex did not enter level 1 and did not generate Listing 6 during this run.
After ehex found aworld viewwith respect to the largest guessΦ, it stopped searching
because all guesses are a subset of Φ and therefore Φ is the only maximal guess.

4.2 The ehex Solver 51

1 z_G(z_M_Not_Neg_eligible(X)) | z_Neg_G(z_M_Not_Neg_eligible(X))
2 :- z_Gnd_M_Not_Neg_eligible(X).
3

4 z_G(z_M_Not_eligible(X)) | z_Neg_G(z_M_Not_eligible(X))
5 :- z_Gnd_M_Not_eligible(X).
6

7 z_Gnd_M_Not_Neg_eligible("Mike").
8 z_Gnd_M_Not_eligible("Mike").
9

10 :- z_G(X), z_Neg_G(X).

Listing 4: The guessing program

1 z_Input(z_G, 1, X) :- z_G(X).
2 z_Input(z_Neg_G, 1, X) :- z_Neg_G(X).
3

4 z_Cautious_Neg_eligible(X)
5 :- z_Gnd_M_Not_Neg_eligible(X), z_Neg_eligible(X),
6 &hexCautious[file, "reduct.lp", z_Input, z_Neg_eligible](X).
7

8 :- z_G(z_M_Not_Neg_eligible(X)), z_Cautious_Neg_eligible(X).
9 :- z_Neg_G(z_M_Not_Neg_eligible(X)), not z_Cautious_Neg_eligible(X).
10

11 z_Cautious_eligible(X)
12 :- z_Gnd_M_Not_eligible(X), eligible(X),
13 &hexCautious[file, "reduct.lp", z_Input, eligible](X).
14

15 :- z_G(z_M_Not_eligible(X)), z_Cautious_eligible(X).
16 :- z_Neg_G(z_M_Not_eligible(X)), not z_Cautious_eligible(X).

Listing 5: The checking program

1 :- not #count{M : z_G(M)} = 1.
2

3 z_Member(z_M_Not_eligible("Mike"), "world1@2").
4 z_Member(z_M_Not_Neg_eligible("Mike"), "world1@2").
5 :- #count{M : z_G(M), not z_Member(M, S)} = 0, z_Member(_, S).

Listing 6: Level-specific building blocks of level 1

52 Chapter 4 Implementation

4.2.2 Dependencies

In its current version, ehex depends on Python ≥ 3.105 and the TatSu grammar
compiler ≥ 5.8.6 It expects recent binaries of clingo7 and dlvhex8 in one of the user’s
PATH directories. Additionally the Nested hex Plugin9 for dlvhexmust be installed.

5https://www.python.org
6https://github.com/neogeny/TatSu
7https://github.com/potassco/clingo
8https://github.com/hexhex/core
9https://github.com/hexhex/nestedhexplugin

https://www.python.org
https://github.com/neogeny/TatSu
https://github.com/potassco/clingo
https://github.com/hexhex/core
https://github.com/hexhex/nestedhexplugin

Experimental Evaluation 5

In this chapter, we evaluate our solver ehex against the reference solver ELPsolve
(Kahl et al., 2016) by comparing the running times of the solvers with different prob-
lems and different configurations. We use the benchmarks provided by Patrick Kahl
together with ELPsolve. The benchmarks include instances of the Scholarship Eligi-
bility problem (Gelfond, 1991) and instances of the Yale Shooting problem (Hanks
and McDermott, 1987).

In the next subsection, we briefly describe the solvers and the problem instances.
We then present experimental results and conclude with a summary.

5.1 The Solvers

The main difference between ehex and ELPsolve lies in the approach they take to
check epistemic guesses for consistency. Both solvers ensure the maximality con-
dition for epistemic guesses of world views by iterating over evaluation levels in
descending order; during evaluation, both solvers produce answer sets that encode
epistemic guesses. However, while ELPsolve produces (a potentially large number of)
answer sets of ASP programs that encode epistemic guesses that must be checked for
consistency in a post-processing step, ehex produces answer sets of hex programs
that encode epistemic guesses that are already consistent.

5.1.1 ELPsolve

At a given evaluation level 𝑘 with inputΠ, ELPsolve generates answer the sets of a
special ASP program Π′ that encode all answer sets of epistemic reducts ofΠ and
their associated epistemic guesses Φwith cardinality 𝑘. In the case of a large number
of guesses, the computation of these answer sets is divided such that the resulting
groups of answer sets form a partition of all answer sets. This reduces the memory
requirements of individual ASP solver calls and enables parallel execution of solving
tasks. The answer sets of a group, which now encode a subset of answer sets of
epistemic reducts and associated guesses, are then checked for consistency in an
subsequent computational step. The number of processors to be used and the size
of answer set groups are configurable.

54 Chapter 5 Experimental Evaluation

Letter code Option Description

c --compute-consequences Compute brave and cautious
consequences

r --ground-reduct Compute an effective set by
grounding the generic
epistemic reduct

g --guessing-hints Add guessing hint rules
p --planning-mode Enable planning mode

Table 5.1: Letter codes of ehex optimization options

5.1.2 ehex

At a given evaluation level 𝑘with inputΠ, ehex evaluates a special hex program that
contains external atoms to check for consistency of epistemic guesses ofΠ during
a hex solver call. Also part of this level-specific hex program are constraints that
eliminate all answer sets that do not correspond to world views w.r.t. guesses of of
cardinality 𝑘 (cf. Section 3.4).

The solver implements the optimizations presented in Section 3.6. They are
disabled by default and can be enabled with the command line options listed in
Table 5.1. In the following we refer to these options by their letter codes; for ex-
ample, we write ehexcg to express that the options --compute-consequences and
--guessing-hints are enabled in ehex.

In addition to the optimization options, ehex has options to select either FLP
or NEX answer set semantics for the epistemic reduct and options to switch into
satisfiability checking mode and into planning mode for planning problems. By
default, ehex assumes the FLP answer set semantics and performs a full search in
standard mode for general problems.

5.2 Problem Instances

This section describes the instances of the Scholarship Eligibility problem and the
Yale Shooting problem that we used in our experiments. Since ehex has its own
ELP parser, we adapted the original problem instances to our the syntax.1 The
adapted instances are available on the ehex project page.2

1One goal in designing the parserwas to allow the user to enter examples directly from the literature
without special directives.

2https://github.com/hexhex/ehex/tree/master/examples

https://github.com/hexhex/ehex/tree/master/examples

5.3 Experimental Results 55

5.2.1 The Scholarship Eligibility Problem

The Scholarship Eligibility problem is a classic problem for epistemic logic programs.
It was introduced by Gelfond Lifschitz in the paper Strong Introspection (Gelfond,
1991) to describe the problem of “incomplete information in the presence ofmultiple
answer sets”. Each instance of the problem is expressed over a number 𝑁 of students
that may be eligible for an interview. We use the labels E𝑁 to refer to particular
instances of the Scholarship Eligibility problem over 𝑁 students. These instances
share a generic part, but otherwise differ in structure, whichmeans that the difficulty
of an instance does not necessarily scale with the number of students.

5.2.2 The Yale Shooting Problem

The Yale Shooting problem presented in (Hanks and McDermott, 1987) is a classic
planning problem. To solve a Yale Shooting problem, one has to find a plan to reach
the goal of shooting a turkey in 𝑁 steps. In general, more than one plan might be
possible. Such a problem can be encoded as an epistemic logic program as described
in (Kahl et al., 2015), where the number of steps 𝑁 is called the horizon.

We refer to specific instances of the Yale Shooting problem by the labels Y𝑁 ,
where 𝑁 is the horizon. Instances with different horizons share the same goal and
a conformant planning module, but otherwise differ in structure, which means that
the difficulty of an instance does not necessarily scale with the horizon. In general,
instances of planning problem can have multiple initial states; the instances at hand
have at most two initial states.

Instances with this encoding have properties that can be exploited for shorter
running times. For example, since the solutions to a Yale Shooting problem must
reach the goal in a fixed number of steps, there is a fixed correspondence between
the horizon of a problem and the cardinality of epistemic guesses of solutions (cf.
Section 3.6.6). To take advantage of this and other properties, both solvers can run
in planning mode.

5.3 Experimental Results

In this section, we contrast our expectations with experimental results.

5.3.1 Testing Environment

Themeasurements of the running times of both solverswere taken on aThinkPadX1
series laptopwith an Intel Core i7–8550UCPU and 16GB of RAM. ELPsolvewas run
with the supplied script elps2, which configures the solver to use three processors
and a group size of 300 for epistemic guesses. Both solvers used clingo 5.4, and ehex
additionally used dlvhex 2.5. The measured times include the preprocessing times
and the times to output the complete solutions.

56 Chapter 5 Experimental Evaluation

5.3.2 Expected Results

One advantage of external atoms is that answer sets that do not contribute to world-
views need not be held in memory for consistency checking of epistemic guesses.
Thus, we expected ehex to scale at least as well as ELPsolve with the number of epis-
temic guesses. We also expected that the optimizations implemented in ehex would
result in shorter running times, since the optimizations aim to reduce the amount
of guesswork.

For Yale Shooting problem instances,we expected ehex running times in planning
mode to be comparable to ELPsolve running times in a similar planning mode (Kahl
et al., 2016).

We also experimented with the NEX answer set semantics for the epistemic
reduct, which is the semantics of programs with nested expression (Lifschitz et al.,
1999) and which is the semantics ELPsolve assumes. We expected no notable differ-
ences between the running times of ehex with different semantics.

For the sake of completeness, we also tested ehex in satisfiability checking mode,
where the solver exits as soon as it has handled the first answer set. We expected
ehex to always terminate faster in this mode.

5.3.3 Tables Showing Results

The results of the evaluation are schown in the Tables 5.2, 5.3, 5.4 and 5.5. Each row
of a table contains a problem label 𝑃 in the first column, which refers to either an
instance of the Eligibility problem or the Yale Shooting problem. The second column
contains the number 2𝑛 of epistemic guesses of 𝑃, where 𝑛 is the cardinality of the
initial effective set computed by ehex using the method described in (Section 3.6.1).
The other columns contain the wall-clock time of runs with either ehex𝑥 , where 𝑥 is
a string of letter codes representing optimizations as in Table 5.1, or with ELPsolve
under its default configuration.

Values set in bold represent the shortest running time in a row or between two
configurations. A dash in a cell indicates that the solver process terminated unexpect-
edly, e.g., the operating system killed the solver process or the computer crashed.

5.3.4 Results with the Eligibility Problem

The results of the Eligibility problem in Table 5.2 confirm our expectation that ehex
scales well in the number of epistemic guesses. As can be seen in the first column of
running times, ehex solved the Eligibility problems E1–E16 in about three minutes
without any optimizations, whereas ELPsolve reached the timeout of 10 minutes
with the instances E14 and E16.

The running times of ehexg, ehexr, and ehexgr correspond to enabling guessing
hints, grounding the generic epistemic reduct, and both, respectively. Enabling guess-
ing hints slightly improved the running times with E16. Grounding the generic

5.3 Experimental Results 57

Results with Optimizations

P # ehex ehexg ehexr ehexgr ehexc ehexcg ehexcr ehexcgr ELPsolve

E1 22 0.19 0.29 0.30 0.31 0.31 0.21 0.21 0.21 0.10
E4 28 0.79 0.87 0.47 0.54 0.24 0.23 0.26 0.26 0.12
E8 216 1.90 2.01 1.10 1.14 0.25 0.25 0.26 0.26 0.91
E10 220 4.46 4.62 2.92 3.01 0.28 0.28 0.29 0.29 6.19
E12 224 13.82 14.18 11.90 12.16 0.31 0.31 0.32 0.32 202.45
E14 228 27.84 27.86 23.91 24.19 0.32 0.32 0.34 0.33 > 600
E16 232 136.33 116.34 104.81 104.91 0.36 0.36 0.37 0.37 > 600
E25 250 – – – – 1.32 1.59 1.33 1.60 –

Y1 24 0.68 0.50 0.54 0.56 0.32 0.31 0.33 0.32 0.14
Y2 26 0.86 0.70 0.77 0.77 0.51 0.50 0.54 0.51 0.13
Y3 28 1.44 1.11 1.27 1.23 0.89 0.81 0.94 0.81 0.13
Y4 210 2.17 1.49 1.89 1.63 1.06 0.94 1.12 0.96 0.14
Y5 217 16.95 9.71 15.57 10.50 10.37 6.48 10.72 6.63 0.22
Y6 220 80.47 49.35 78.14 52.70 61.26 40.02 62.22 39.67 0.72
Y7 223 412.97 197.61 414.54 201.01 358.04 165.14 356.42 164.98 3.18
Y8 234 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600 151.21

Table 5.2: Experimental results of comparing ELPsolve with ehex with different optimizations
using instances of the Eligibility problem and the Yale Shooting problem.

epistemic reduct further improved the running times with E12–E16. But the runs
with E25 did not complete with either optimization before the operating system
terminated the solver process, which is indicated by a dash in the table.

The optimizations enabled by computing brave and cautious consequences (col-
umn ehexc) resulted in significant shorter running times, as the solver was able to
compute the world views of all instances E1–E25 in about three seconds. In com-
binations with the other optimizations, the running times did not become shorter.
Enabling guessing hints actually made the results slightly worse with E25.

5.3.5 Results with the Yale Shooting Problem

We measured the running times of ehex with the Yale Shooting problem instances
in both standard mode for solving general problems and planning mode for solving
planning problems. ELPsolve seemed to recognize these instances as planning prob-
lems, as the solver switched into a corresponding planning mode on these instances
by itself. The respective results are shown in Table 5.2 and Table 5.3.

Not surprisingly, the running times in standardmode are consistently longer than
they are in planningmode. In standardmode in Table 5.2, ehex did not find a solution
for Y8 with any combination of optimizations before the timeout of 10 minutes
occurred. However, we note that ehex solved Y7 in half the time when guessing hints
were enabled and that the combination of all optimizations performed best overall.

58 Chapter 5 Experimental Evaluation

Results in PlanningMode

P # ehexp ehexpg ehexpr ehexpgr ehexpc ehexpcg ehexpcr ehexpcgr ELPsolve

Y1 24 0.29 0.28 0.29 0.30 0.31 0.31 0.32 0.32 0.14
Y2 26 0.28 0.29 0.29 0.31 0.31 0.32 0.32 0.32 0.13
Y3 28 0.29 0.31 0.31 0.32 0.33 0.33 0.34 0.34 0.13
Y4 210 0.31 0.32 0.33 0.33 0.35 0.35 0.36 0.36 0.14
Y5 217 0.38 0.40 0.40 0.41 0.42 0.43 0.44 0.44 0.22
Y6 220 0.51 0.53 0.53 0.55 0.56 0.57 0.58 0.58 0.72
Y7 223 1.06 1.09 1.09 1.11 1.14 1.14 1.15 1.15 3.18
Y8 234 0.46 0.48 0.49 0.49 0.52 0.52 0.53 0.54 151.21

Table 5.3: Experimental results of comparing ELPsolve with ehex in planning mode using in-
stances of the Yale Shooting problem.

In planning mode in Table 5.3, much shorter running times occur in the results;
in particular, ehex performed better than ELPsolve with Y6–Y8. Adding other opti-
mizations had no particular effect on the running times.

5.3.6 Results with Different Semantics

In this experiment, ehex was configured with different answer set semantics for
the epistemic reduct, namely FLP and NEX semantics. This configurations corre-
sponds to the evaluation of ELP programs under EFLP (SE16FLP) andK16 (SE16NEX)
epistemic semantics, respectively. We discuss epistemic semantics in more detail in
Section 6.2.

Table 5.4 shows the results for ehex with FLP and NEX semantics under four
different configurations.

ForEligibility instances, the results show that running timeswere not consistently
shorterwith either semantics. This is in line with our expectation that the differences
in running times between the two semantics are negligible.

More surprisingly, on the larger Yale Shooting instances Y5–Y7 in standard
mode for general problems but with NEX semantics, running times were either
consistently longer or the solver crashed.

5.3.7 Results with Satisfiability Checking

In satisfiability checking mode, ehex turns off cardinality checking of epistemic
guesses, thereby removing the maximality condition of world views, and exits as
soon as it finds a consistent guess indicating satisfiability.

Table 5.5 shows the results for ehex in full searching (FS) and in satisfiability
checking (SC) mode under four different configurations. Note that all optimization
strings contain the letter code ‘c’ because we decided to let ehex compute brave and

5.3 Experimental Results 59

Semantics Results

ehex ehexg ehexr ehexc

P # FLP NEX FLP NEX FLP NEX FLP NEX

E1 22 0.19 0.19 0.29 0.19 0.30 0.19 0.31 0.20
E4 28 0.79 0.85 0.87 0.81 0.47 0.46 0.24 0.23
E8 216 1.90 1.95 2.01 1.93 1.10 1.07 0.25 0.25
E10 220 4.46 4.53 4.62 4.02 2.92 3.25 0.28 0.27
E12 224 13.82 14.00 14.18 16.40 11.90 11.63 0.31 0.30
E14 228 27.84 27.85 27.86 27.62 23.91 23.51 0.32 0.31
E16 232 136.33 135.75 116.34 115.85 104.81 104.48 0.36 0.36

Y1 24 0.68 0.56 0.50 0.69 0.54 0.62 0.32 0.48
Y2 26 0.86 0.79 0.70 0.84 0.77 0.79 0.51 0.61
Y3 28 1.44 1.28 1.11 1.30 1.27 1.34 0.89 1.14
Y4 210 2.17 1.94 1.49 1.79 1.89 1.93 1.06 1.17
Y5 217 16.95 18.47 9.71 12.88 15.57 19.02 10.37 16.17
Y6 220 80.47 125.45 49.35 62.77 78.14 127.91 61.26 118.41
Y7 223 412.97 – 197.61 366.04 414.54 – 358.04 –

Table 5.4: Experimental results of comparing the default FLP semantics with NEX semantics for
the epistemic reduct.

Results in Satisfiability Checkingmode

ehexc ehexcg ehexcr ehexcgr

P # FS SC FS SC FS SC FS SC

E1 22 0.31 0.31 0.21 0.21 0.21 0.23 0.21 0.23
E4 28 0.24 0.25 0.23 0.24 0.26 0.27 0.26 0.27
E8 216 0.25 0.27 0.25 0.27 0.26 0.27 0.26 0.27
E10 220 0.28 0.29 0.28 0.29 0.29 0.30 0.29 0.30
E12 224 0.31 0.31 0.31 0.31 0.32 0.32 0.32 0.32
E14 228 0.32 0.32 0.32 0.33 0.34 0.34 0.33 0.33
E16 232 0.36 0.34 0.36 0.35 0.37 0.36 0.37 0.35
E25 250 1.32 0.55 1.59 0.58 1.33 0.56 1.60 0.56

Table 5.5: Experimental results of comparing the default full searchingmode (FS) with the satis-
fiability checkingmode (SC).

60 Chapter 5 Experimental Evaluation

cautious consequences to prune the search space. Without this optimization, the
solver on our system would run out of memory or be terminated by the operating
system, since the number of epistemic guesses per hex solver call is not constrained
in this mode.

The data show that satisfiability checking mode only made a difference with the
largest instance E25, since the running times with the other instances were already
short. Different configurations did not seem to make a difference either.

5.4 Summary of the Results

In our results, we found that ehex performed better than ELPsolve on the largest
instances of the Eligibility problem without optimizations. We attribute this to the
fact that ehex cancels invalid guesses at evaluation time, thereby pruning the search
space. The data suggest that the effectiveness of particular optimizations depends on
the problem instance. Instances of the Eligibility problem were solvable in shorter
time when we let ehex ground the epistemic reduct or compute brave and cautious
consequences. Instances of the Yale Shooting problem were solvable in less time
when we enabled guessing hints and in much less time when we ran the solver in
planning mode. Running ehex with NEX answer set semantics for the epistemic
reduct as opposed to FLP semantics did not affect the running time in a significant
way with instances of the Eligibility problem. But with instances of the Yale Shoot-
ing problem the running times were longer when using NEX semantics. Finally, in
satisfiability checking mode, we saw shorter running times only with the largest
problem instance, as running times with other instances were already short.

Conclusion 6

Below we conclude this thesis with a summary, a discussion on program transfor-
mations and semantics, and outlook and issues.

6.1 Summary

Our motivation for this work was to provide an efficient algorithm for the world
view enumeration problem of epistemic logic programs (ELP), which extend disjunc-
tive logic programs with the modal operatorsM and K (Gelfond, 1991). Satisfaction
of modal literals occurring in a program, i.e., standard literals qualified with modal
operators, is defined relative to a collection of interpretations. The semantics of ELP
programs is defined over epistemic reducts (Shen and Eiter, 2016). The epistemic
reduct of a given program is obtained by applying transformation rules with respect
to an epistemic guess on truth of the modal literals occurring in the program.

In Algorithm 1 we present a novel procedure (Basic-Ehex) to solve the world
view enumeration problem of ELP programs based on special logic programs con-
taining external atoms (hex programs). The algorithm evaluates an ordered sequence
of dynamically generated hex programs whose iterative construction depends on
previously obtained solutions. These hex programs consist of the generic epistemic
reduct (Section 3.3.1) extended with rules that are intended to either guess solutions,
restrict the search space, or check solutions. The rules for checking solutions are
expressed declaratively by means of external atoms that allow brave and cautious
reasoning over answer sets of subprograms. The algorithm is sound an complete
and it is possible to optimize it with different pruning techniques.

A prototype implementation of the algorithm with optional optimizations is
provided in form of the ehex solver, which is a configurable Python application that
depends on dlvhex and clingo for reasoning tasks. The solver accepts an ELP program
as input, for which it can output all solutions, provided there are sufficient resources.
We describe ehex by running it and inspecting the generated programs.

In our experiments, ehex performed quite well in terms of running times with
large instances of the Eligibility problem and the Yale Shooting problem, i.e., prob-
lems with up to 250 possible epistemic guesses were solved with optimizations in
less than one second on a laptop.

62 Chapter 6 Conclusion

6.2 On Program Transformations and Epistemic Semantics

Generally speaking, an epistemic logic program Π can be evaluated by making an
assumption ofΠ on the truth values of the modal literals occurring in Π. For this
purpose the program is transformed into another program such that the resulting
program is free of modal literals. This program is then evaluated under answer set
semantics and its solutions are checked for consistency with the initial assumption.

There are several ways of expressing assumptions, and given an assumption, there
are also several ways of transforming the program so that it does not contain modal
literals. Consider, for example, the modal reduct (Kahl, 2014) for the K14 semantics
on the one hand and the epistemic reduct (Shen and Eiter, 2016) for the SE16
semantics under answer set semantics on the other. The modal reduct is based on
a nonempty collection of consistent sets of ground literals, whereas the epistemic
reduct is based on a set Φ of weak modal literals ofΠ (Definition 7).

For the K14 semantics, the modal reduct Π of an epistemic logic program Π
relative to is defined by transformation rules as in the following table, where 𝑎 is
an atom:

Modal literal ϕ If satisfies ϕ If does not satisfy ϕ

K 𝑎 replace ϕ with 𝑎 delete rule containing ϕ
not K 𝑎 remove ϕ replace ϕ with not 𝑎
M 𝑎 remove ϕ replace ϕ with not not 𝑎
notM 𝑎 replace ϕ with not 𝑎 delete rule containing ϕ

A programΠ is transformed into the modal reduct by applying the corresponding
rule to each occurrence of a modal literal inΠ. As stated in (Kahl, 2014, p. 16), if the
syntax allows standard literals ℓ next to the K operator, thenM 𝑎 and notM 𝑎 can be
seen as a shorthand for not K not 𝑎 and Knot 𝑎, respectively. Now the transformation
rules can be expressed in terms of the K operator:

Modal literal ϕ If satisfies ϕ If does not satisfy ϕ

K ℓ replace ϕ with ℓ delete rule containing ϕ
not K ℓ remove ϕ replace ϕ with not ℓ

Note the rule that applies when does not satisfyM 𝑎 (which expands to not K not 𝑎),
i.e., no interpretation 𝐼 ∈  satisfies 𝑎. The application of this rule replacesM 𝑎with
the doubly negated expression not not 𝑎. The modal reduct is evaluated under the
semantics of logic programs with nested expressions (Lifschitz et al., 1999). Under
this answer set semantics (NEX semantics), the program {p ← not notp}, for example,
has the two answer sets {p} and ∅.1

For the SE16 semantics, the epistemic reduct ΠΦ of an epistemic logic pro-
gramΠ is defined with respect to an epistemic guess Φ ofΠ, where Φ represents a
complete truth assignment for modal literals occurring inΠ. As before, we denote
1This is also how clingo evaluates double negation.

6.2 On Program Transformations and Epistemic Semantics 63

the epistemic negation operator by N to distinguish it from our default negation
operator not.2 Here N ℓ over a standard literal ℓ expresses that ℓ cannot be proved
to be true, i.e., some answer set ofΠΦ does not satisfy ℓ . Remember that K ℓ andM ℓ
are viewed as shorthand for notN ℓ and N not ℓ , respectively. The following table
lists modal literals in ELP syntax over an atom 𝑎 and their corresponding epistemic
negations.

Modal literal Epistemic formula Intuition

Mnot 𝑎 N not not 𝑎 “𝑎 is sometimes false”
K 𝑎 notN 𝑎 “𝑎 is always true”
M 𝑎 N not 𝑎 “𝑎 is sometimes true”
Knot 𝑎 notN not 𝑎 “𝑎 is always false”

The epistemic reductΠΦ ofΠw.r.t.Φ is obtainedby first replacing inΠ the epistemic
negations that are assumed to be true with⊤, leading to the programΠ⊤. Then the
remaining epistemic negationsNψ occurring inΠ⊤, whereψ is a formula without
epistemic negation, are replacedwithnotψ, resulting in the epistemic reductΠΦ. The
following tables show the substitutions of both steps formodal literals in ELP syntax:

Step 1: Replace epistemic negations Nψ ∈ Φ with⊤:

Modal literal ϕ Epistemic formula Replace ϕ with

Mnot 𝑎 N not not 𝑎 ⊤
K 𝑎 notN 𝑎 not⊤
M 𝑎 N not 𝑎 ⊤
Knot a notN not 𝑎 not⊤

Step 2: Replace epistemic negations Nψ ∈ Ep(Π) \ Φ with notψ:

Modal literal ϕ Epistemic formula Replace ϕ with

Mnot 𝑎 N not not 𝑎 not not not 𝑎
K 𝑎 notN 𝑎 not not 𝑎
M 𝑎 N not 𝑎 not not 𝑎
Knot a notN not 𝑎 not not not 𝑎

If Φ is a correct guess, then for the epistemic negations Nψ remaining inΠ⊤ after
step 1, the formulaψ is supposed to be satisfied by each answer set of Π⊤. Conse-
quently, sinceΠΦ is obtained fromΠ⊤ by replacing Nψ with notψ in step 2, both
Π⊤ andΠΦ are expected to have the same answer sets.

Note that the resulting epistemic reduct may contain rules with multiply negated
expressions in their bodies, which some ASP solvers do not accept. Thus, to compute
the answer sets of the epistemic reduct with an ASP solver that does not accept such
expressions, one has to
2In (Shen and Eiter, 2016) the symbols not and ¬ are used for epistemic negation and default
negation, respectively.

64 Chapter 6 Conclusion

1. chose a suitable answer set semantics for programs containing such expres-
sions, e.g., FLP or NEX semantics, and

2. redefine the replacements rules of the epistemic reduct such that the ASP
solver accepts the syntax and the newly defined epistemic reduct has the same
answer sets as the original epistemic reduct under the chosen answer set se-
mantics.

Example 18. The program Π13 = {p ← Mp;← Kp} has the modal reducts

Π
1
13 = {p;← p} w.r.t.1 = {{p}},
Π

2
13 = {p; } w.r.t.2 = {{p},∅},
Π

3
13 = {p ← not notp; } w.r.t.3 = {∅},

which under EFLP semantics correspond to the epistemic reducts

Π
Φ1
13 = {p;← p} w.r.t. Φ1 = {Mp},
Π
Φ2
13 = {p; } w.r.t. Φ2 = {Mp,Mnotp},
Π
Φ3
13 = {p ← p; } w.r.t. Φ3 = {Mnotp},

respectively,where double negation is canceled. Note thatΠ13 has noworld view un-
der K14 semantics, because AS(Π𝑖

13) ≠ 𝑖 for 𝑖 = 1, 2, 3. But under EFLP (SE16FLP)
semantics it has the unique world view {∅} = AS(ΠΦ3).

The EFLP (SE16FLP) semantics is an instance of the general epistemic semantics,
where the epistemic reduct is evaluated under FLP semantics. However, evaluating
the epistemic reduct under the semantics for logic programswith nested expressions
(NEX semantics) results in the K16 (SE16NEX) semantics.

6.3 Outlook and Issues

The semantics of programs with epistemic specifications does not seem to be set-
tled yet. Above we discuss that K16 semantics is slightly different from SE16FLP
semantics. As noted in Cabalar et al. (2019b), both fail to satisfy the epistemic splitting
property, which holds for, e.g., their newly proposed Founded Autoepistemic Equi-
librium Logic semantics (Cabalar et al., 2019a) or the semantics of Gelfond’s initial
approach (G91 semantics). Common to most semantics, however, is the general goal
of avoiding self-supporting world views; they differ mainly in the definition of “self-
supportedness”.

Another issue is the choice of the answer set semantics for logic programswith-
out epistemic negation as in Definition 8 of the general epistemic semantics of (Shen
and Eiter, 2016). The choice depends on being able to delete double negation (as in
FLP semantics) or having the semantics of double negation syntactically for evalua-
tion. For example, if double negations are deleted, then K16 and SE16NEX semantics
do not coincide because the epistemic reduct contains no nested expressions.

6.3 Outlook and Issues 65

On the implementation side, one could think of more efficient external atoms for
consistency checking of epistemic guesses instead of the external atoms of theNested
hex Plugin. For example, a dedicated hex plugin for epistemic logic programs could
compute sets of brave and cautious consequences of a subprogram only once per
epistemic guess. This might be more (memory) efficient in case that a subprogram
(which in this context represents some epistemic reduct of a program) has a large
number of answer sets. One can also easily imagine a parallel version of the Ehex al-
gorithm that works similar to the parallel version of the algorithm implemented by
ELPsolve (Kahl et al., 2016).

In recent years, new approaches to ELP solvers have emerged. For instance, the
solver selp (Bichler et al., 2018) encodes an input programusing large rules and checks
for its satisfiability using a single solver call. Other solvers such as EP-ASP (Son et al.,
2017) or eclingo (Cabalar et al., 2020) make use of advanced clingo features.

On a concluding note, many problems can be reduced in polynomial time to ELP
as computing world views is Σ𝑝

4-hard, since deciding the existence of a world view
is Σ𝑝

4-complete. Having a larger number of standard problems in addition to the set
of problems that are currently used in the literature (e.g., Scholarship Eligibility, Yale
Shooting) could inspire more research and better solvers.

Bibliography

Balai, E. and P. Kahl (2014). Epistemic logic programs with sorts. In Proceedings of
ASPOCP 2014. Source code available at https://github.com/iensen/elps.

Balduccini, M., Y. Lierler, and S. Woltran (Eds.) (2019). Logic Programming and Non-
monotonic Reasoning. Springer International Publishing.

Baral, C. (2003). Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press.

Bichler, M., M. Morak, and S. Woltran (2018). Single-shot epistemic logic program
solving. In Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI 2018, July 13–19, 2018, Stockholm, Sweden., pp. 1714–
1720. Source code available at https://dbai.tuwien.ac.at/proj/selp/.

Cabalar, P., J. Fandinno, and L. Fariñas del Cerro (2019a). Founded world views with
autoepistemic equilibrium logic. See Balduccini et al. (2019), pp. 134–147.

Cabalar, P., J. Fandinno, and L. Fariñas del Cerro (2019b). Splitting epistemic logic
programs. See Balduccini et al. (2019), pp. 120–133.

Cabalar, P., J. Fandinno, J. Garea, J. Romero, and T. Schaub (2020). eclingo: A solver
for epistemic logic programs. Theory and Practice of Logic Programming 20(6),
834–847.

Calimeri, F., W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone,
F. Ricca, and T. Schaub (2012, 13 December). ASP-Core-2: Input language format.
Technical report, ASP Standardization Working Group.

Citrigno,S.,T. Eiter,W. Faber,G.Gottlob,C. Koch,N. Leone,C.Mateis,G. Pfeifer, and
F. Scarcello (2004). The dlv system: Model generator and application frontends.
In Proceedings of the 12th Workshop on Logic Programming.

Eiter, T., W. Faber, N. Leone, and G. Pfeifer (2000). Declarative Problem-Solving Using
the DLV System, pp. 79–103. Boston, MA: Springer US.

Eiter, T., M. Fink, G. Ianni, T. Krennwallner, C. Redl, and P. Schüller (2016). A model
building framework for answer set programming with external computations.
Theory and Practice of Logic Programming 16 (4), 418–464.

https://github.com/iensen/elps
https://dbai.tuwien.ac.at/proj/selp/

68 Bibliography

Eiter, T., G. Ianni, and T. Krennwallner (2009). Answer Set Programming: A Primer,
Volume 5689, pp. 40–110. Berlin, Heidelberg: Springer Berlin Heidelberg.

Eiter, T., G. Ianni, R. Schindlauer, and H. Tompits (2005). A uniform integration of
higher-order reasoning and external evaluations in answer set programming. In
L. P. Kaelbling and A. Saffiotti (Eds.), Proceedings of the 19th International Joint Con-
ference on Artificial Intelligence (IJCAI-05), pp. 90–96. Professional Book Center.

Eiter, T., T. Krennwallner, and C. Redl (2013, October). HEX-programs with nested
program calls. In H. Tompits (Ed.), Proceedings of the Nineteenth International
Conference on Applications of Declarative Programming and Knowledge Management
(INAP 2011), Volume 7773 of LNAI, pp. 1–10. Springer.

Eiter, T., M. Mehuljic, C. Redl, and P. Schüller (2015). User guide: dlvhex 2.X. Tech-
nical Report INFSYS RR-1843-15-05, Vienna University of Technology, Institute
for Information Systems.

Faber, W., G. Pfeifer, and N. Leone (2010). Semantics and complexity of recursive
aggregates in answer set programming. Artificial Intelligence 175(1), 278–298.

Faber, W., G. Pfeifer, N. Leone, T. Dell’Armi, and G. Ielpa (2008). Design and imple-
mentation of aggregate functions in the DLV system. Theory and Practice of Logic
Programming 8(5–6), 545–580.

Gebser, M., A. Harrison, R. Kaminski, V. Lifschitz, and T. Schaub (2015). Abstract
Gringo. Theory and Practice of Logic Programming 15(4–5), 449–463.

Gebser,M., R. Kaminski, B. Kaufmann, and T. Schaub (2014). Clingo = ASP + control:
Preliminary report. CoRR abs/1405.3694.

Gelfond, M. (1991). Strong introspection. In Proceedings of the 9th National Confer-
ence on Artificial Intelligence, pp. 386–391. G91 semantics.

Gelfond,M. (1994). Logic programming and reasoningwith incomplete information.
Annals of Mathematics and Artificial Intelligence 12(1–2), 89–116. G94 semantics.

Gelfond, M. (2011). New semantics for epistemic specifications. In Logic Program-
ming and Nonmonotonic Reasoning – 11th International Conference LPNMR, pp.
260–265. G11 semantics.

Gelfond, M. and N. Leone (2002). Logic programming and knowledge representa-
tion – the A-Prolog perspective. Artificial Intelligence 138(1–2), 3–38.

Gelfond, M. and V. Lifschitz (1991). Classical negation in logic programs and dis-
junctive databases. New Generation Computing 9, 365–385.

Hanks, S. and D. McDermott (1987). Nonmonotonic logic and temporal projection.
Artificial Intelligence 33(3), 379–412.

Bibliography 69

Harrison, A., V. Lifschitz, D. Pearce, and A. Valverde (2015). Infinitary equilibrium
logic and strong equivalence. In F. Calimeri, G. Ianni, and M. Truszczynski (Eds.),
Logic Programming and Nonmonotonic Reasoning, Cham, pp. 398–410. Springer
International Publishing.

Hintikka, J. (1962). Knowledge and Belief – an Introduction to the Logic of the Two
Notions. Contemporary philosophy. Cornell University Press.

Kahl, P., R. Watson, E. Balai, M. Gelfond, and Y. Zhang (2015). The language of
epistemic specifications (refined) including a prototype solver. Journal of Logic
and Computation.

Kahl, P. T. (2014). Refining the Semantics for Epistemic Logic Programs. Ph. D. thesis,
Texas Tech University, Lubbock, USA. K14 semantics.

Kahl, P. T., A. P. Leclerc, and T. C. Son (2016). A parallel memory-efficient epistemic
logic program solver: Harder, better, faster. In Proceedings of ASPOCP 2016. Solver
software available on request: patrick.kahl@navy.mil.

Kelly,M. (2007). Wviews: Aworldview solver for epistemic logic programs. Honour’s
thesis, University of Western Sydney. Source code available at https://github.
com/galactose/wviews.

Leclerc, A. P. and P. T. Kahl (2018, September). A survey of advances in epistemic
logic program solvers.

Lifschitz, V., L. R. Tang, and H. Turner (1999). Nested expressions in logic programs.
Annals of Mathematics and Artificial Intelligence 25(3/4), 369–389.

Reiter, R. (1978). On closed world data bases. In H. Gallaire and J. Minker (Eds.),
Logic and Data Bases, pp. 119–140. New York: Plennum Press.

Shen, Y.-D. and T. Eiter (2016). Evaluating epistemic negation in answer set pro-
gramming. Artificial Intelligence 237, 115–135. SE16 semantics.

Shen, Y. D., K. Wang, T. Eiter, M. Fink, C. Redl, T. Krennwallner, and J. Deng (2014).
FLP answer set semantics without circular justifications for general logic pro-
grams. Artificial Intelligence.

Smith, D. E. and D. S. Weld (1998). Conformant graphplan. In Proceedings of the 15th
National Conference on Artificial Intelligence (AAAI-98), pp. 889–896.

Son, T. C., T. Le, P. Kahl, and A. Leclerc (2017). On computing world views of
epistemic logic programs. In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI-17, pp. 1269–1275. Source code available
at https://github.com/tiep/EP-ASP.

mailto:patrick.kahl@navy.mil
https://github.com/galactose/wviews
https://github.com/galactose/wviews
https://github.com/tiep/EP-ASP

70 Bibliography

Truszczynski, M. (2011). Revisiting epistemic specifications. In Logic Program-
ming, Knowledge Representation, and Nonmonotonic Reasoning – Essays Dedicated
to Michael Gelfond on the Occasion of His 65th Birthday, Volume 6565 of Lecture
Notes in Computer Science, pp. 315–333. Springer.

Zhang, Z., K. Zhao, and R. Cui (2013, November). ESmodels: An inference engine of
epistemic specifications. In 2013 IEEE 25th International Conference on Tools with
Artificial Intelligence, pp. 769–774.

	Introduction
	Motivation and Problem Statement
	A Declarative Checking Approach

	State of the Art
	Program Transformations and Semantics
	Algorithms and Solvers
	Our Contributions

	Structure of this Thesis

	Preliminaries
	Epistemic Logic Programs
	Syntax
	Satisfaction and Models

	Program Transformations
	Truth Assignments of Modal Literals
	The Epistemic Reduct

	Epistemic Answer Set Semantics

	Evaluating Epistemic Logic Programs
	Logic Programs with External Atoms
	HEX Syntax
	HEX Semantics

	Brave and Cautious Atoms
	Syntax of Brave and Cautious Atoms
	Satisfaction of Brave and Cautious Atoms
	Applications

	Building Blocks
	The Generic Epistemic Reduct
	Guessing Programs
	Consistency Checking Programs
	Guessing Constraints

	The Ehex Algorithm
	Correctness of the Ehex Algorithm
	Soundness of the Algorithm
	Completeness of the Algorithm

	Optimizations
	Computing a Positive Envelope
	Brave and Cautious Consequences
	Guessing Hints
	Using an ASP Grounder
	Satisfiability Checking
	Problem-Specific Optimizations

	Implementation
	The dlvhex System
	Programs with Nested Program Calls
	The Nested HEX Plugin

	The ehex Solver
	Running the Solver
	Dependencies

	Experimental Evaluation
	The Solvers
	ELPsolve
	ehex

	Problem Instances
	The Scholarship Eligibility Problem
	The Yale Shooting Problem

	Experimental Results
	Testing Environment
	Expected Results
	Tables Showing Results
	Results with the Eligibility Problem
	Results with the Yale Shooting Problem
	Results with Different Semantics
	Results with Satisfiability Checking

	Summary of the Results

	Conclusion
	Summary
	On Program Transformations and Epistemic Semantics
	Outlook and Issues

