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Abstract
Many heterogeneous materials have microstructures which are hierarchically organized

across several orders of magnitude. It is of fundamental scientific interest in engineering me-
chanics to establish quantitative links between microstructural properties and the macroscopic
behavior of such materials. This is setting the scene for the theoretical part of the present
thesis. It is methodically rooted in continuum micromechanics and focused on innovative
approaches to the “stress average rule” and “strain concentration tensors”. The latter render
scale transitions possible, e.g. they enable (i) downscaling of the macrostrains imposed on
representative volume elements of microheterogeneous materials to the strains experienced
by the microstructural constituents, as well as (ii) upscaling of the elastic stiffness and the
eigenstress of the microstructural constituents to their macroscopic counterparts.

Cementitious materials are particularly challenging when it comes to multiscale modeling.
They exhibit evolving microstructures at early material ages, because of the chemical reaction
between the water and the binder. The finally formed microstructures consist of solid
constituents and pores with characteristic sizes ranging across four orders of magnitude:
from a few tens of micrometers to a few single nanometers. Many macroscopic properties of
cementitious materials result from physico-chemical processes occurring at nanometric scales.
This is setting the scene for the application part of the present thesis. It is focused on two
challenging topics regarding multiscale modeling of cement pastes: the evolution of the volume
fractions of the microstructural constituents at early material ages and sorption-induced
macroscopic volume changes at mature material ages.

The present thesis strives for establishing a synthesis between fundamental developments
and challenging applications in the field of multiscale mechanics. To this end, the core of
the thesis is organized in five chapters. Following an overall Introduction, three of the core
chapters are devoted to theoretical advances. The remaining two core chapters are devoted to
the practical applications, followed by overall Conclusions.

Chapter 2 is dedicated to the revision of the foundations of one of the central pillars
of continuum micromechanics: the derivation of the stress and strain average rules. Tra-
ditionally, these rules are derived from equilibrium and compatibility conditions, together
with microdisplacement and microtraction boundary conditions associated with homogeneous
macrostrains and macrostresses, respectively. However, only displacements or tractions can
be prescribed at the boundary of bodies, such that the remaining average rule turns out as a
mere definition. The present thesis suggests a way to do without such a definition, resorting
to the principle of virtual power as a vehicle to guarantee mechanical equilibrium. The strain
average rule is traditionally derived from homogeneous strain boundary conditions. Then,
arbitrary differentiable, so-called virtual microvelocities are prescribed at the boundary of
a representative volume element. They are linked to corresponding homogeneous virtual
macrovelocities and macrostrain rates. The latter are related multilinearly to the microscopic
virtual strain rate fields inside the representative volume element. Under this setting, the
equivalence of the macroscopic and the microscopic expressions for the virtual power densities
yields the well-known stress average rule and, in case of microscopically uniform force fields, a
volume force average rule.

Chapter 3 refers to homogenization over a representative volume element of complex
material microstructures which cannot be satisfactorily represented by an assemblage of
homogeneous subdomains called phases. The contribution of the present thesis complements
existing methods which depend on the boundary conditions applied to the representative
volume element, and which do not provide direct access to the macro-micro-relations in terms
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of concentration tensors. As a remedy, a Green’s function-based homogenization method
for complex microstructures is introduced. The new method rests on mapping, through
the strain average rule, the microscopic strain fields associated with an auxiliary problem
to the macroscopic strains subjected to the representative volume element. Thereby, the
auxiliary problem is defined on a homogeneous infinite matrix subjected to homogeneous
auxiliary strains and to inhomogeneous polarization stresses representing the fluctuations of
the microscopic stiffness field of the complex microstructure within the representative volume
element. The corresponding microscopic strains appear as the solution of a Fredholm integral
equation. It delivers a multilinear operator linking the homogeneous auxiliary strains to the
microscopic strains. This operator, together with the aforementioned mapping, eventually
allows for completing the model in terms of concentration tensor and homogenized stiffness
quantification. As for illustration, a microstructure with harmonically fluctuating stiffness
is exemplarily homogenized. The corresponding singular convolution integrals are evaluated
from the solution of the Poisson’s equation. This evaluation strategy is then verified through
a Cauchy principal value analysis.

Chapter 4 refers to micromechanics of composites with multiple phases of different shapes
embedded into a matrix phase. Homogenization of such materials by means the classical
Mori-Tanaka scheme yields non-symmetric homogenized stiffness tensor. For energetic reasons,
the latter need to be explicitly symmetrized. In the present thesis, the implications of such
symmetrization techniques on the concentration tensors are explored, i.e. implications on
the relations between macroscopic strains imposed onto a representative volume element
of a microheterogeneous material, and the microscopic phase strains developing across the
material microstructure. Thereby, the important idea of Mori and Tanaka to approximate
the phase strains by the homogeneous strains inside an Eshelbian inhomogeneity embedded
into an infinite matrix, together with the phase strains fulfilling the strain average rule, is
adopted. However, the proposed approach refrains from the identification of the strain in
the matrix phase as the auxiliary strain imposed remotely at the infinite matrix of Eshelby’s
matrix-inhomogeneity problem. Instead, a conversion tensor is introduced, in order to provide
a multilinear relation between the auxiliary strains, on the one hand, and the macroscopic
strains imposed onto a representative volume element of a microheterogeneous material, on the
other hand. The homogenized stiffness is expressed as (i) a function of the conversion tensor
quantifying the aforementioned multilinear relation, and (ii) as the symmetrized Mori-Tanaka
estimate. In this way, the conversion tensor and all phase concentrations tensors can be
determined in a way which allows the overall elastic stiffness to remain symmetric.

Chapter 5 is devoted to the hydration-driven evolution of the volume fractions of mi-
crostructural constituents of Portland cement pastes at early material ages. The analysis is
based on results from proton nuclear magnetic resonance relaxometry (1H NMR) tests taken
from the literature. These data provide access to the evolution of the amounts of hydrogen in
calcium hydroxide, calcium-silicate-hydrates, water in capillary pores, and water in gel pores.
The presented developments suggest a change of the variable used for parametrization of
formulae describing the early-age evolution of phase volume fractions. Traditional approaches
use the hydration degree. The latter is equal to the percentage of cement clinker which
has dissolved in water. Herein, the precipitation degree is introduced. It is equal to the
fraction of hydrogen bound into solid constituents divided by the total amount of hydrogen
in the material. Mix-, storage-, and temperature-invariant precipitation characteristics are
found when illustrating the 1H NMR signal fractions as a function of the precipitation degree.
This allows for developing a set of formulae describing the early-age evolution of the volume
fractions of the constituent of cement pastes, as a function of the initial composition (ini-
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tial water-to-cement mass ratio), the storage conditions (either sealed curing or underwater
storage), and the curing temperature.

Chapter 6 is devoted to modeling of wetting-induced macroscopic swelling of mature
cement paste by means of a multiscale poromechanical approach accounting for eigenstrains.
Cement paste is represented by means of four scale-separated matrix-inclusion composites
consisting of residual cement clinker, calcium hydroxide, capillary pores, gel pores, and
calcium silicate hydrates. Experimental data include adsorption isotherms and macroscopic
swelling measurements taken from the literature. The radii of spherical gel and capillary pore
populations are assumed to follow exponential distributions. The latter are identified by means
of adsorption porosimetry. This is the basis for a poromechanical analysis. Wetting-induced
changes of effective pore pressures of gel and capillary pores are quantified and upscaled to the
macroscale of cement paste. This explains the measured macroscopic swelling only partially.
Thus, the modeling approach is enriched by including an additional nanoscopic process:
adsorption-induced swelling of nanoscopic calcium-silicate-hydrates, modeled by means of
a function linking nanoscopic eigenstrains and relative humidity. This function is identified
from experimental data referring to mature cement paste with an initial water-to-cement
mass ratio amounting to 0.40. The validity of this humidity-eigenstrain function is then
tested through prediction of the macroscopic swelling of mature cement paste with an initial
water-to-cement mass ratio amounting to 0.55. The results are satisfactory and underline
that sorption-induced nanoscopic volume changes of calcium-silicate-hydrates contribute
significantly to corresponding macroscopic volume changes of mature cement paste.



Kurzfassung
Viele heterogene Materialien weisen Mikrostrukturen auf, die über mehrere Größenordnun-

gen hierarchisch organisiert sind. Es ist von grundlegendem wissenschaftlichem Interesse in der
Ingenieurmechanik, quantitative Zusammenhänge zwischen mikrostrukturellen Eigenschaften
und dem makroskopischen Verhalten solcher Verbundwerkstoffe herzustellen. Diesem Interesse
widmet sich der theoretische Teil der vorliegenden Arbeit. Er ist methodisch in der Kontinu-
umsmikromechanik verwurzelt und innovativen Zugängen zur „Spannungsmittelungsregel“
und den „Verzerrungs-Konzentrationstensoren“ gewidmet. Letztere machen Skalenübergänge
möglich, z.B. ermöglichen sie (i) das Herunterskalieren von Makroverzerrungen, die reprä-
sentativen Volumenelementen von mikroheterogenen Materialien eingeprägt werden, zu den
Verzerrungen der mikrostrukturellen Bestandteile, sowie (ii) das Hochskalieren der elasti-
schen Steifigkeiten und der Eigenspannungen der mikrostrukturellen Bestandteile auf ihre
makroskopischen Gegenstücke.

Zementgebundene Materialien stellen eine besondere Herausforderung für die Mehrska-
lenmodellierung dar. Aufgrund der chemischen Reaktion zwischen dem Wasser und dem
Bindemittel weisen sie im frühen Materialalter sich entwickelnde Mikrostrukturen auf. Die
schlussendlich geformten Mikrostrukturen bestehen aus Festkörperbestandteilen und Poren
mit charakteristischen Größen, die sich über vier Größenordnungen erstrecken: von einigen
Duzend Mikrometern bis zu einigen wenigen Nanometern. Viele makroskopische Eigenschaften
zementgebundener Materialien resultieren aus physikalisch-chemischen Prozessen, die auf der
Nanoskala ablaufen. Diesen Aspekten widmet sich der Anwendungsteil der vorliegenden Arbeit.
Er bezieht sich auf zwei herausfordernde Themen der Mehrskalenmodellierung von Zement-
steinen: die Entwicklung der Volumenanteile der mikrostrukturellen Bestandteile im frühen
Materialalter und sorptionsinduzierte makroskopische Volumenänderungen im ausgehärteten
Zustand.

Die vorliegende Arbeit stellt eine Synthese zwischen grundlegenden Entwicklungen und
anspruchsvollen Anwendungen auf dem Gebiet der Mehrskalenmechanik dar. Nach einer
allgemeinen Einführung widmen sich drei Kernkapitel den theoretischen Arbeiten. Die ver-
bleibenden zwei Hauptkapitel sind den praktischen Anwendungen gewidmet, gefolgt von
allgemeinen Schlussfolgerungen.

Kapitel 2 widmet sich der Überarbeitung des Fundaments für eine der zentralen Säulen der
Kontinuumsmikromechanik: der Herleitung der Spannungs- und Verzerrungs-Mittelungsregeln.
Traditionell werden diese Regeln aus Gleichgewichts- und Kompatibilitätsbedingungen ab-
geleitet, zusammen mit Randbedingungen in den mikrosopischen Verschiebungen und den
mikroskopischen Spannungen, die mit homogenen makroskopischen Verzerrungen bzw. homo-
genen makroskopischen Spannungen verbunden sind. An der Oberfläche von Körpern können
jedoch streng genommen nur Verschiebungen oder Spannungen vorgeschrieben werden, so dass
sich die verbleibende Mittelungsregel als bloße Definition herausstellt. Die vorliegende Arbeit
schlägt einen Weg vor, auf eine solche Definition zu verzichten, und greift dabei auf das Prinzip
der virtuellen Leistungen als Konzept zur Gewährleistung des mechanischen Gleichgewichts zu-
rück. Die Verzerrungs-Mittelungsregel wird traditionell hergeleitet: ausgehend von homogenen
Verzerrungsrandbedingungen. Dann werden beliebige, differenzierbare, so genannte virtuelle
Mikrogeschwindigkeiten an der Berandung eines repräsentativen Volumenelements vorgegeben,
die mit beliebigen homogenen virtuellen Makrogeschwindigkeiten und Makroverzerrungsraten
verknüpft sind. Letztere sind multilinear mit den mikroskopischen virtuellen Verzerrungsra-
tenfeldern innerhalb des repräsentativen Volumenelements verknüpft. In diesem Setting führt
die Äquivalenz der makroskopischen und der mikroskopischen Ausdrücke für die virtuellen
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Leistungsdichten auf die bekannte Spannungsmittelungsregel und im Falle mikroskopisch
gleichförmiger Volumenkraftfelder auf eine Volumenkraftmittelungsregel.

Kapitel 3 bezieht sich auf die Homogenisierung von repräsentativen Volumenelementen
komplexer Materialmikrostrukturen, die nicht zufriedenstellend durch endliche Anzahl homo-
gener Teilbereiche dargestellt werden können. Der Beitrag der vorliegenden Arbeit ergänzt
bestehende Methoden, die von den Randbedingungen des repräsentativen Volumenelements
abhängen und keinen direkten Zugang zu den Makro-Mikro-Beziehungen im Sinne von Kon-
zentrationstensoren bieten. Als Abhilfe wird ein Homogenisierungsverfahren vorgestellt, das
auf Greenschen Funktionen fußt. Beim neuen Verfahren werden aus Hilfsproblemen gewonnene
mikroskopische Verzerrungen kraft Mittelungsregel über das repräsentative Volumselement
den makroskopischen Verzerrungen zugeordnet. Dabei wird das Hilfsproblem auf einer homo-
genen unendlichen Matrix definiert. Letztere ist homogenen Hilfsdehnungen und inhomogenen
Polarisationsspannungen unterworfen, wobei die Polarisationsspannungen die Fluktuationen
des mikroskopischen Steifigkeitsfeldes der komplexen Mikrostruktur innerhalb des repräsenta-
tiven Volumenelements abbilden. Die entsprechenden mikroskopischen Dehnungen ergeben
sich als Lösung einer Fredholm-Integralgleichung. Sie liefert einen multilinearen Operator,
der die homogenen Hilfsdehnungen mit den mikroskopischen Dehnungen verknüpft. Dieser
Operator und die zuvor genannte Verknüpfung erlauben schließlich die Vervollständigung des
Modells in Bezug auf den Konzentrationstensor und die Quantifizierung der homogenisierten
Steifigkeit. Beispielhaft wird eine Mikrostruktur mit harmonisch fluktuierender Steifigkeit
homogenisiert. Mit Hilfe der Lösung der Poisson-Gleichung werden die entsprechenden singu-
lären Faltungsintegrale ausgewertet. Diese Auswertungsstrategie wird abschließend durch eine
Cauchy-Hauptwertanalyse verifiziert.

Kapitel 4 bezieht sich auf die Mikromechanik von Verbundwerkstoffen mit mehreren
Phasen unterschiedlicher Form, die in eine Matrixphase eingebettet sind. Das populäre Mori-
Tanaka-Schema liefert bei Homogenisierung solcher Materialien unsymmetrische homogeni-
sierte Steifigkeitstensoren. Letztere müssen explizit symmetrisiert werden. In der vorliegenden
Dissertation werden die Auswirkungen solcher Symmetrisierungstechniken auf die Konzentra-
tionstensoren untersucht, d.h. Auswirkungen auf die Beziehungen zwischen makroskopischen
Verzerrungen, die einem repräsentatives Volumenelement eines mikroheterogenen Materials
eingeprägt werden, und den mikroskopischen Phasenverzerrungen, die sich innerhalb der Mate-
rialmikrostruktur einstellen. Dabei wird die wichtige Idee von Mori und Tanaka übernommen,
die Phasenverzerrungen durch die homogenen Dehnungen innerhalb Eshelbischer Inhomoge-
nitäten zu approximieren, die jeweils in eine unendliche Matrix eingebettet sind, wobei die
Phasenverzerrungen die Verzerrungsmittelungsregel erfüllen. Der vorgeschlagene Ansatz sieht
jedoch davon ab, die Verzerrung in der Matrixphase als jene Hilfsverzerrung zu identifizieren,
die im Unendlichen der Matrix der Eshelbischen Matrix-Inhomogenitätsprobleme auferlegt ist.
Stattdessen wird ein Umwandlungstensor eingeführt, um einen multilinearen Zusammenhang
zwischen den Hilfsdehnungen und den makroskopischen Verzerrungen, die einem repräsenta-
tiven Volumenelement eines mikroheterogenen Materials eingeprägt sind, herzustellen. Die
homogenisierte Steifigkeit wird ausgedrückt als (i) eine Funktion des Umwandlungstensors,
der die oben erwähnte multilineare Beziehung quantifiziert, und (ii) als die symmetrisierte
Mori-Tanaka-Abschätzung. Auf diese Weise können der Umwandlungstensor und alle Phasen-
konzentrationstensoren so bestimmt werden, dass die elastische Gesamtsteifigkeit symmetrisch
bleibt.

Kapitel 5 widmet sich der hydratationsgetriebenen Entwicklung der Volumenanteile der
mikrostrukturellen Bestandteile von Portlandzementsteinen im frühen Materialalter. Die
Studie basiert auf Ergebnissen von Protonen-Kernmagnetresonanz-Relaxometrie (1H NMR)-
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Tests aus der Literatur. Diese Daten bieten quantitativen Einblick in die Entwicklung der
Wasserstoffmengen, die in Kalziumhydroxid, in Kalzium-Silikat-Hydraten, sowie in Kapillar-
und Gelwasser gebunden sind. Dieser Einblick motiviert einen Paradigmenwechsel hinsichtlich
der Variable, mittels der die Entwicklung von Phasenvolumenanteilen im frühen Materialalter
beschrieben wird. Einschlägige Entwicklungsansätze basieren auf dem Hydratationsgrad. Letz-
terer entspricht dem Prozentsatz an Zementklinker, der sich in Wasser aufgelöst hat. In der
vorliegenden Arbeit wird der Ausfallgrad eingeführt. Er ist gleich dem Anteil des in Festkör-
perbestandteilen gebundenen Wasserstoffs dividiert durch die Gesamtmenge an Wasserstoff
im Material. Mischungs-, lagerungs- und temperaturinvariante Ausfallcharakteristiken finden
sich bei der Darstellung der 1H NMR-Signalanteile als Funktion des Ausfallgrades. Letzterer
erscheint als die Zementsteinentwicklung quantifizierendes Argument in Funktionen für die
Volumsfraktionen seiner Bestandteile. Diese Funktionen hängen auch von der Ausgangszu-
sammensetzung (anfängliches Wasser-zu-Zement-Massenverhältnis), den Lagerbedingungen
(entweder versiegelte Aushärtung oder Unterwasserlagerung) und der Aushärtungstemperatur
ab.

Kapitel 6 widmet sich der Modellierung des befeuchtungsinduzierten makroskopischen
Schwellens von ausgehärtetem Zementstein mittels eines mehrskaligen poromechanischen An-
satzes unter Berücksichtigung von Eigendehnungen. Zementstein wird durch Matrix-Inklusions-
Komposite auf vier verschiedenen Maßstäben dargestellt. Diese Komposite bestehen aus übrig
gebliebenem Zementklinker, Kalziumhydroxid, Kapillarporen, Gelporen und Kalzium-Silikat-
Hydraten. Zugehörige experimentelle Daten umfassen Adsorptionsisotherme und makroskopi-
sche Schwellmessungen aus der Literatur. Im Rahmen der Modellierung wird angenommen,
dass die Radien der kugelförmigen Gel- und Kapillarporenpopulationen durch Exponential-
verteilungen beschrieben werden können. Letztere werden mittels Adsorptionsporosimetrie
identifiziert. Dies ist die Grundlage für eine poromechanische Analyse. Die durch Befeuch-
tung induzierte Änderungen des effektiven Porendrucks von Gel- und Kapillarporen werden
quantifiziert und auf die Makroskala von Zementstein hochskaliert. Dies erklärt die gemessene
makroskopische Schwellung nur teilweise. Daher wird der Modellierungsansatz durch die
Einbeziehung eines weiteren nanoskopischen Prozesses bereichert: Adsorptionsinduzierte Quel-
lung von nanoskopischen Kalzium-Silikat-Hydraten, modelliert in Form von Eigenspannungen
die sich als Funktion der relativen Feuchtigkeit entwickeln. Diese Beziehung wird mittels
experimenteller Daten identifiziert, die sich auf ausgereiften Zementstein mit einem anfängli-
chen Wasser-zu-Zement-Massenverhältnis von 0,40 beziehen. Die identifizierte Beziehung wird
sodann getestet, in dem sie zur mikromechanischen Vorhersage der makroskopischen Quellung
von reifem Zementstein mit einem anfänglichen Wasser-zu-Zement-Massenverhältnis von 0,55
herangezogen wird. Die Ergebnisse sind zufriedenstellend und unterstreichen, dass sorptions-
induzierte nanoskopische Volumenänderungen von Kalzium-Silikat-Hydraten signifikant zu
entsprechenden makroskopischen Volumenänderungen von reifem Zementstein beitragen.
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Chapter1
Introduction
1.1 Introduction to micromechanics: concentration tensors

and homogenization
The field of continuum micromechanics is devoted to establishing a link between the microscopic
mechanical properties of a microheterogenous material and the effective mechanical properties
that this material exhibits at the macroscopic scale (Zaoui, 2002). Thus, in continuum
micromechanics, a macroscopic point of the studied material is conceptually set equivalent to
a microscopic representative volume elements (RVEs) of the material, see Fig. 1.1. For this
equivalence to be mathematically sound, the principle of separation of scales must be fulfilled.
The principle of separation of scales states that, on the one hand, the characteristic size of
the RVE, ℓ, must be much smaller than the structural length, L, and, on the other hand, the
characteristic size ℓ must be much larger than the characteristic size of the inhomogeneities in
the RVE, d. Mathematically, the principle of separation of scales reads as

d ≪ ℓ ≪ L . (1.1)

The first ≪-sign admits factor on the order of 2 to 3 (Drugan and Willis, 1996), with the
resulting uncertainties below 5%. The second ≪-sign, in turn, refers to a factor of 5 to 10
(Kohlhauser and Hellmich, 2013).

After the macro- and microscopic scales have been clearly defined, the RVE must be
described in detail. First, the microscopic constituents (also called phases) must be identified.
Each material phase has associated mechanical properties, as well as geometric properties
such as shape, orientation and volume. The phases are statistical representations of the
inhomogeneities of the RVE. Thus, every (microscopic) point in the RVE, x ∈ VRVE is inside
of a phase. For this reason, it is important to note that the results of these homogenization
techniques are approximations or estimates of the real properties.

1.1.1 Homogenization of linear elastic media
In the context of linear elasticity, a physically realistic RVE must fulfill a set of mechanical
laws (Zaoui, 2002):

• linearized symmetric strain ε as the symmetric gradient of the displacement u

ε(x) = gradS u(x) ; (1.2)
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L

ℓ

ℓ

d

microscopically
finite RVE

macroscopically
infinitesimal
volume
element

Fig. 1.1. Illustrative sketch of a microheterogeneous material. At the microscale (below),
the first inequality in (1.1) is represented, with the characteristic size of the inhomogeneities,
d, being much smaller than the characteristic size of the RVE, ℓ. At the macroscale (above),
the second inequality in (1.1) is represented, with the characteristic size of the RVE, ℓ, being
much smaller than the structural length, L.

• geometrical boundary conditions prescribed at the boundary of the RVE, which yields
the so-called strain average rule, stating that the macroscopic strain E is equal to the
average of the microscopic strain ε over the entire RVE (Hashin, 1963, 1965, 1983)

E = 1
VRVE

�
VRVE

ε(x) dV (x) ; (1.3)

• the microscopic elastic law relates the microscopic strain and stress σ by means of the
microscopic stiffness tensor c

σ(x) = c(x) : ε(x) ; (1.4)

• equilibrium conditions

∇x · σ(x) + f(x) = 0 , ∀x ∈ VRVE , (1.5)

where ∇x stands for the nabla operator and f denotes the volume forces;

• the stress average rule as (Hill, 1963; Zaoui, 2002)

Σ = 1
VRVE

�
VRVE

σ(x) dV (x) . (1.6)

Moreover, due to the linearity of the field equations, the microscopic strains are related to
the macroscopic strain in a multilinear manner. Therefore, it is possible to introduce a strain
concentration (or downscaling) relation that reads as (Zaoui, 2002; Hill, 1963)

ε(x) = A(x) : E , (1.7)
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where A is the concentration (or downscaling) tensor. The concentration tensor is characteristic
of the microstructure, i.e. it is independent of the loading scenario. Consequently, combining
(1.4), (1.6), and (1.7), the macroscopic elastic law is derived as

Σ = Chom : E , (1.8)

with the homogenized stiffness tensor reading as (Zaoui, 2002; Hill, 1963)

Chom = 1
VRVE

�
VRVE

c(x) : A(x) dV (x) . (1.9)

Thus, the identification of a suitable estimate for the concentration tensors A is the key to a
successful homogenization scheme.

A classical way to simplify the complexity of the RVE is to identify a finite number of
material phases, Nr, such that

Nr*
i=1

Vr = VRVE . (1.10)

Therefore, volume fractions associated to the phases are defined as

fr = Vr

VRVE
. (1.11)

This simplification allows to rewrite (1.3), (1.6), (1.4), (1.7), and (1.9) as (Hill, 1963; Laws,
1973; Zaoui, 2002)

E =
Nr*
r=1

fr εr , (1.12)

Σ =
Nr*
r=1

fr σr , (1.13)

σr = cr : εr , (1.14)

εr = Ar : E , ∀r = 1, . . . , Nr , (1.15)

Chom =
Nr*
r=1

fr cr : Ar , (1.16)

respectively; with εr, σr, and Ar as the average strain, stress, and concentration tensor,
respectively, associated to phase r, and with cr as the stiffness of that phase.

Thus, after this simplification, the task of a homogenization scheme is to provide estimates
for the Nr concentration tensors associated with the phases. To this end, the famous Eshelby’s
inhomogeneity problem (Eshelby, 1957) is used, consisting of an ellipsoidal domain of stiffness
ci (the inhomogeneity), which is embedded into an infinite matrix with stiffness cm, see
Fig. 1.2. The latter matrix is subjected to uniform strains E∞ at infinity. For this problem,
classical analytical solutions (Eshelby, 1957; Laws, 1977) link E∞ to the uniform strains in the
inhomogeneity. These solutions, together with the strain average rule, are used to establish a
link between the auxiliary strain E∞ and the real macroscopic strain of the RVE E. Then, the
estimates for the microscopic average strains in the phases, and therefore the concentration
tensors, are calculated.

On the one hand, in the case of a microstructure which consists of inclusions embedded
in a matrix phase, the Mori-Tanaka scheme (Mori and Tanaka, 1973; Benveniste, 1987) is a
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uniform strains at infinity:
ε(x → ∞) = E∞

infinite 3D matrix:
stiffness: cm

ellipsoidal (3D) inclusion:
stiffness: ci

Fig. 1.2. Two-dimensional sketch illustrating Eshelby’s three-dimensional matrix-
inhomogeneity problem: E∞ denotes the remote strain, x is the position vector, while
cm and ci, i ∈ 1, . . . Nr, respectively, are the stiffness tensors of the matrix, and of the
ellipsoidal inhomogeneity. The stiffness of the matrix depends on the chosen scheme: in
the Mori-Tanaka scheme, this stiffness is equal to the stiffness of the matrix phase in the
RVE (Mori and Tanaka, 1973; Benveniste, 1987); in the self-consistent scheme, the stiffness of
the infinite matrix is equal to the homogenized stiffness (Kröner, 1958).

suitable choice. In this scheme, the stiffness of the auxiliary infinite matrix is set equal to
the stiffness of the real matrix phase of the RVE, see Fig. 1.2. This scheme provides explicit
formulae for the concentration and homogenized stiffness tensors. However, one must be
careful in the case of complex, multiphase microstructures, since it may lead to unsymmetric
homogenized stiffness tensors (Ferrari, 1991; Sevostianov and Kachanov, 2014).

On the other hand, in the case of a polycrystalline microstructure, the self-consistent
scheme (Kröner, 1958) represents a more suitable choice. In this scheme, the stiffness of the
infinite matrix is set equal to the resulting homogenized stiffness, see Fig. 1.2. Therefore,
this scheme provides implicit expressions for the homogenized stiffness tensors. Then, the
homogenized stiffness tensor can be computed by means of an iteration process.

1.1.2 Extension towards eigenstressed media
Extending simple linear elasticity towards eigenstressed media, a larger number of physical
phenomena can be studied. Eigenstresses σE are stresses arising from non-elastic origins. In
order to account for these eigenstresses, the microscopic and macroscopic elastic laws must be
rewritten as (Zaoui, 2002)

σr = cr : εr + σE
r , (1.17)

and
Σ = Chom : E + ΣE , (1.18)
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where ΣE is the homogenized macroscopic eigenstress, defined by Levin’s theorem as (Levin,
1967)

ΣE =
Nr*
r=1

fr σE
r : Ar . (1.19)

Since the concentration tensors are characteristics of the microstructure, they are independent
of the presence of eigenstresses.

The presented homogenization schemes can be applied in hierarchical material systems,
such as wood (Bader et al., 2010), shale (Gruescu et al., 2007), fired clay (Kiefer et al., 2020),
bituminous mixes (Somé et al., 2022), fiber-reinforced composites including soft biological
tissues (Guilleminot et al., 2008; Morin et al., 2018, 2021), nanoclay composites (Cauvin et al.,
2007), or cement pastes (Ulm et al., 2004; Pichler et al., 2008; Koichi et al., 2009; Pichler and
Dormieux, 2010; Pichler and Hellmich, 2011). The latter are discussed in more detail in the
following section.

1.2 Introduction to cementitious materials
Cement, mainly used to form concrete, is one of the most consumed materials in the world.
The reason why cement and concrete are the most valued construction materials is their
strength, durability, and versatility.

Concrete consists of sand, aggregates, and cement paste, as well as other minor components.
In concrete, cement paste acts as a binding matrix. For this reason, the properties of concrete
greatly depend on those of the cement paste which forms it.

Cement paste, in turn, consists of clinker grains, water, and the reaction products of
the mix of these two components, of which the most important is calcium-silicate-hydroxide
(C-S-H). The production of clinker emits CO2 and, due to the massive consumption of cement
and concrete worldwide, it translates into a considerable effect on global warming.

Therefore, a better understanding of the properties of cement, its hydration, and its role in
concrete is crucial, since it allows to optimize the obtained product, reducing the production
of clinker and, subsequently, the CO2 emissions.

Concrete is a composite material. At the macroscopic scale, i.e. few centimeters and
larger, concrete behaves as a homogeneous material. However, at smaller scales, the dif-
ferent constituents of concrete present different properties, which result in a heterogeneous
microstructure.

The same holds true for cement paste, but at smaller scales. In the order of magnitude of
several millimeters, cement paste presents homogeneous material properties. At the smaller
scales, a heterogeneous microstructure can be resolved, see Fig. 1.3. The microstructure of
cement paste is truly complex, with connected pores ranging from few nanometers to several
microns. Such complexity throughout several orders of magnitude becomes a real challenge
when it comes to modeling the properties of cement paste. Well-known modeling techniques
such as the Finite Element Method (Zienkiewicz et al., 2005) or molecular dynamics (Hansson
et al., 2002) are not suitable to approach multiscale materials such as cement paste (from
nano- to milli- meters) because the needed computation power would be just boundless. For
this reason, the homogenization techniques described in the previous section are employed to
study the mechanical properties of cement pastes. One of the essential inputs required to use
the homogenization schemes is the phase assemblage of the material, i.e. the volume fractions
of the different constituents of the material. In order to quantify these volume fractions,
nuclear magnetic resonance relaxometry (NMR) is an ideal technique.
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Fig. 1.3. Microstructure of cement paste at the scale of observation of several tens of microns
(Diamond, 2004): unhydrated clinker grains in white, and embedded in a “foam” consisting of
different hydrates and capillary pores.

1.2.1 Nuclear magnetic resonance relaxometry in cementitious materials
Proton nuclear magnetic resonance (NMR) relaxometry is a powerful technique to quantify
amounts of bound water in a sample. NMR is a non-destructive, non-invasive technique, which
means that the sample does not require drying or damage during the preparation process.
In the case of cementitious materials, NMR probes hydrogen atoms chemically bound in the
reaction products, i.e. solid C-S-H and calcium hydroxide (CH), and in the water present in
the porosity of the sample. The mobility of the hydrogen atoms depends on its surroundings.

Thus, NMR identifies populations of hydrogen atoms with similar surroundings. NMR
relaxometry quantifies the amounts of these populations, since these amounts are proportional
to the amplitude of the signal intensity associated to each group. Each group is characterized
by its relaxation time T2. The relaxation time T2 is the smaller the more confined environment.
For example, strongly bound hydrogen in reaction products exhibits smaller relaxation time
T2 than weakly bound hydrogen in bulk water.

In more detail, NMR identifies four different populations of hydrogen atoms in cement
paste, with different relaxation times (McDonald et al., 2010; Valori et al., 2013; Muller
et al., 2013a): (i) stronger chemical bonding in crystals such as calcium hydroxide, (ii) weaker
chemical bonding in calcium-silicate-hydrate building blocks (solid C-S-H), (iii) stronger
confinement in gel pores, and (iv) weaker confinement in capillary pores. Thus,one proton
NMR test provides four signal intensities associated with these populations.

The hydrogen-containing phases of cement pastes are the reaction products (CH and solid
C-S-H), and the water in its porosity. Moreover, focusing on C-S-H, its water content is not
constant. Curing temperature of cement paste is a crucial factor, since the water-to-silica
ratio which is the larger of the precipitated solid C-S-H depends on it (Bahafid et al., 2017).
Moreover, the water content in the solid C-S-H present in mature cement paste varies as well.
Both temperature and relative humidity (RH) changes results in a release/uptake of water by
solid C-S-H. In the case of temperature changes, molecular dynamics simulations coupled with
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a Grand Canonical Monte-Carlo approach suggests that an increase of temperature results in
a release of water by solid C-S-H (Bonnaud et al., 2013), which was proved experimentally
by proton nuclear magnetic resonance relaxometry (Wyrzykowski et al., 2017). Thus, the
water content of solid C-S-H decreases upon heating and increases upon cooling in a quasi
instantaneous and reversible manner. The water released/adsorbed by the solid C-S-H water
migrates to the gel (or capillary) porosity, which results in changes of the internal relative
humidity, as well as the effective porewater underpressures acting on the solid skeleton.
These changes of effective pore pressures provide a microporomechanical explanation for
the anomalous macroscopic thermal expansion of mature cement paste (Wang et al., 2018).
Regarding changes of relative humidity, the water content of solid C-S-H is altered when the
internal relative humidity drops below 20% (Feldman, 1968; Muller et al., 2013b; Pinson et al.,
2015). Reduction of internal relative humidity below this level results in progressive drying of
the solid C-S-H. After such a decrease of the water content of solid C-S-H has taken place,
a subsequent increase in relative humidity results in re-adsorption of water into the solid
C-S-H (Feldman, 1968; Muller et al., 2013b; Pinson et al., 2015). Thus, isothermal drying
and re-wetting of cementitious materials may also change the water content of solid C-S-H.
This process presents a hysteresis, since the water released by solid C-S-H while drying below
20% is progressively re-adsorbed during adsorption in the entire RH-range.

However, cement pastes also consist of phases with no hydrogen, such as the unhydrated
clinker and, in the case of sealed samples, vapor-filled voids. In order to compute the phase
assemblage of the studied cement from the NMR data correctly, the data must be processed
taking under consideration the characteristics of the material, e.g. initial composition, age of
the material, curing conditions, etc.

Once the phase assemblage of the material is known, the mechanical properties of the
constituents must be identified. Then, homogenization techniques can be applied. In the
present work, these multiscale models will be applied to the study of volume changes of cement
pastes induced by changes in the relative humidity.

1.2.2 Volume changes of cement pastes induced by changes in the relative
humidity

The volume changes that take place when cement pastes are exposed to an unsaturated medium
are typically referred to as drying shrinkage (Feldman and Sereda, 1964a,b). Drying shrinkage
may results in cracking which, in turn, reduces the mechanical properties and constitutes
a durability issue since it accelerates, for instance, the corrosion of the reinforcements in
concrete.

The mechanisms behind drying shrinkage are not yet fully understood. It is generally
accepted that, when a sample is dried for the first time, irreversible changes occur. There are
several mechanisms which can be the cause of this deformation:

• Changes in the capillary pressure, based on the Kelvin-Laplace theory (Powers, 1968;
Grasley et al., 2006; Wang et al., 2018).

• Movement of interlayer water (Feldman, 1968; Pinson et al., 2015).

• Disjoining pressure (Bažant, 1972; Maruyama, 2010).

It seems likely that a combination of these mechanisms is responsible for the shrinkage.
A hysteresis exists both in the content of water in the sample and in the induced deforma-

tion, see Fig. 1.4.
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Fig. 1.4. Experimentally measured (a) water content and (b) deformation mature cement
pastes during isothermal desorption and adsorption (Maruyama, 2010).

After the first drying and its irreversible changes, the following drying-wetting cycles appear
to be reversible (Pinson et al., 2015). Therefore, before probing the irreversible phenomena
taking place during the first drying, it seems reasonable to investigate the reversible cycle.
Thus, in the present work, multiscale homogenization techniques will be used to study the
swelling of cement paste during isothermal adsorption.

1.3 Outline of the thesis
The thesis is organized into several chapters, starting with the very fundamentals of continuum
micromechanics, spanning all the way from both re-examination and extension of the funda-
mentals of continuum micromechanics, via the chemical physics-based hydration modeling of
cementitious materials, to the multiscale micromechanics-enabled quantification of swelling -
one of the most challenging, still fairly open topics in cement and concrete research. All these
chapters are written in the format of scientific papers, being published, under revision, under
review, or in preparation for publication in peer-reviewed scientific journals. In more detail,

• Chapter 2 deals with most fundamental pillars of the field of continuum micromechanics:
the stress and strain average rules. Accordingly, it is generally accepted that the so-called
microscopic stress and strain fields inside a representative volume element characterizing
a piece of matter can be spatially averaged in order to come up with so-called macroscopic
stresses and strains associated with the macroscopic material point describing the very
same piece of matter. The rationale for these averaging processes, however, is much less
clear than it seems on a first glance. In fact, it is current standard to derive only one of
the aforementioned average rules (either on geometrical or on statical grounds), and
then introduce the other merely as a definition. A remedy is given in Chapter 2, by
adopting classical reasonings for the strain average rule, and then re-deriving the stress
average rule from the principle of virtual power.

• While averaging provides a way from “micro” to “macro”, the opposite way, from
“macro” to “micro” is standardly called concentration, localization, or downscaling,
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with corresponding tensorial operators linking macroscopic strains (and stresses) to
corresponding microscopic strain (and stress) fields. Again, the existence and the format
of these operators are often kind of postulated, from the “structure of the underlying
differential equations”, and moreover, they are simply unknown for various types of more
or less complex microstructures. Remedies are formulated in Chapters 3 and 4, both
giving new expressions for concentrations tensors, in two fundamentally different settings:
on the one hand, for continuously fluctuating microstructures on the basis of a Green’s
functions approach associated with an auxiliary problem of the Lippmann-Schwinger
type (with mathematical structures known from quantum mechanics), and on the other
hand, for phase-based composite-type microstructures where classical approaches such as
the Mori-Tanaka estimate do not properly perform, and hence need to be complemented
by stiffness tensor symmetrization techniques.

• Phase identification (in terms of occupied space and physico-mechanical behavior) is one
of the most challenging tasks in applied micromechanics, where a bridge between physical
chemistry/chemical physics and engineering needs to be established. In cementitious
materials, phases (such as clinker, hydrates, and different types of pores) are driven
through the hydration process, and corresponding hydration-dependent phase volume
fractions are normally challenging to be rigorously derived, because of dependencies on
temperature, mix proportions, and storage conditions. Chapter 4 presents an interesting
way out of this dilemma, by introducing a new variable into the world of cement
chemistry: the precipitation degree, accessible through NMR measurements quantifying
water contained in different phases at different mobilities. As concerns, the physico-
mechanical behavior of cementitious materials, one of the most unexplored aspects
concerns nanoscopic hydrate swelling: combining theoretical aspects of Chapters 2, 3,
and 4, with physical aspects of Chapter 5, Chapter 6 presents the micromechanics-guided
re-evaluation of macroscopic isothermal adsorption and swelling tests, so as to quantify
humidity-driven eigenstrains in the solid C-S-H.

Finally, Chapter 7 provides a summary, conclusions, and an outlook to further research
avenues having been opened by the novel results achieved in the present thesis.
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Abstract: Stress and strain average rules are the key conceptual pillars of the wide field
of continuum micromechanics of materials. The aforementioned rules express that the
spatial average of (micro-)stress and (micro-)strain fields throughout a microscopically finite
representative volume element (RVE) are equal to the (macro-)stress and (macro-)strain values
associated with the corresponding macroscopically infinitesimal volume element (macroscopic
material point). According to the famous contribution of Hashin, stress and strain average rules
are derived from equilibrium and compatibility conditions, together with (micro-)displacement
and (micro-)traction boundary conditions associated with homogeneous (macro-)strains and
(macro-)stresses, respectively. However, as, strictly speaking, only displacements or tractions
can be described at the boundary, the remaining average rule turns out as a mere definition.
We here suggest a way to do without such a definition, by resorting to the principle of virtual
power as a means to guarantee mechanical equilibrium: At the boundary of the RVE, we
prescribe virtual (micro-)velocities which are linked to arbitrary, but homogeneous virtual
(macro-)velocities and (macro-)strain rates, while the latter are also linked, in a multilinear
fashion, with the microscopic virtual strain rate fields inside the RVE. Considering, under
these conditions, equivalence of the macroscopic and the microscopic expressions for the
virtual power densities of the internal and the external forces yields the well-known stress
average rule and, in case of microscopically uniform force fields, a volume force average rule.
The same strategy applied to an RVE hosting single forces between atomistic mass points,
readily yields the macroscopic “internal virial stress tensor”.
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2.1 Introduction – Motivation and Scope
Composite material mechanics (Hill, 1965b; Hashin, 1983), also referred to as continuum
micromechanics (Zaoui, 2002), is a very successful and versatile branch of continuum mechanics.
It describes the mechanical behavior of a representative volume element (RVE) of matter,
coinciding with the infinitesimal volume of classical continuum mechanics, but being considered,
at the same time, as a finite volume at the microscopic scale, see Fig. 2.1(a). Stresses and
strains are introduced both at the microscopic and at the macroscopic level, and their relation
is governed by average rules. Hashin (Hashin, 1963, 1965) considered fields of microstrains
and microstresses depending on a microscopic location variable x, so that the strain and stress
average rules read as

E = 1
VRVE

�
VRVE

ε(x) dV (x) , (2.1)

Σ = 1
VRVE

�
VRVE

σ(x) dV (x) , (2.2)

with ε standing for the microscopic linearized strain tensor, σ standing for the microscopic
Cauchy stress tensor, E denoting the macroscopic linearized strain, Σ denoting the macroscopic
Cauchy stress tensor, and VRVE denoting the volume of the RVE. Hashin (Hashin, 1963, 1965)
showed that - in case of kinematically compatible microstrains, and of equilibrated microstresses
in the absence of body forces, respectively - the relations (2.1) and (2.2) imply the following
boundary conditions for the RVE:

ξ(x) = E · x , ∀x ∈ SRVE , (2.3)

t(x) = Σ · n(x) , ∀x ∈ SRVE , (2.4)

with ξ as microdisplacements, t as micro-tractions, n as outward-oriented unit normal vector,
and SRVE as the surface of the RVE. Accordingly, Eqs. (2.3) and (2.4) are standardly referred to
as the “Hashin boundary conditions" (Hashin, 1983). It should be noted that the rules (2.1) and
(2.2) are normally applied simultaneously, and since the boundary conditions (2.3) and (2.4)
cannot be applied simultaneously to one and the same RVE, the "Hashin boundary conditions"
are less convincing than they might appear on first sight. In other words, one of the rules (2.1)
and (2.2) needs to remain a definition, whenever the other one has been formulated on the basis
of equilibrium or compatibility considerations. A very pragmatic way out of this somewhat
unsatisfactory solution was proposed by Hori and Nemat-Nasser (Hori and Nemat-Nasser,
1999) by considering the RVE as a (presumably cuboidal or cylindrical) macroscopic sample
undergoing a mechanical test, see Fig. 2.1(b). Hori and Nemat-Nasser consider the surface
integrals over micro-tractions and micro-displacements as “natural quantities” arising from
such a mechanical test. By means of micro-stress equilibrium and micro-strain compatibility,
respectively, the aforementioned surface integrals are then transformed into volume integrals
over stress and strain, giving way to the average rules (2.1) and (2.2). However, there are
cases where the tested sample does not coincide with the RVE: In the context of ultrasonic
test with different frequencies (Fritsch and Hellmich, 2007; Kohlhauser and Hellmich, 2013),
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the size ℓ of the RVE is governed by the wavelength λ, i.e. (Zaoui, 2002):ℓ ≪ λ, see Fig. 2.1(c).
This situation goes beyond the reasoning of Hori and Nemat-Nasser (Hori and Nemat-Nasser,
1999).

microscopically
finite RVE

dV

macroscopically
infinitesimal
volume
element

(a)

ℓRVE

ξ

t

t

(b)

transmitter

receiver

λ ℓ
RVE

(c)

Fig. 2.1. Different characteristics of the representative volume element (RVE): (a) scale
separation between structural scale and material scale; (b) RVE coinciding with samples
undergoing a classical mechanical test (Hori and Nemat-Nasser, 1999); (c) RVE not coinciding
with a sample undergoing an ultrasonic test with wavelength λ (Zaoui, 2002; Fritsch and
Hellmich, 2007; Kohlhauser and Hellmich, 2013).

Hence, we consider the derivation of strain and stress average rules governing simultaneously
the behavior of an RVE as a topic of on-going interest. In this context, we here aim at
preserving the conceptual beauty of Hashin’s geometrical boundary conditions leading to
Eq. (2.1), while looking for a simultaneously open rigorous way to derive Eq. (2.2) from a
fundamental principle of continuum mechanics. In more detail, we employ the principle of
virtual power as stated by Germain (Germain, 1973) in 1973: a mechanical system is in
equilibrium if the power performed by the external and internal forces on any virtual velocity
field characterizing the aforementioned system vanishes. After recalling this principle for
a standard macroscopic continuum mechanical system, we employ it for a microscopically
finite representative volume element playing the role of an infinitesimal volume element at
the macroscopic level (see Section 2.2). Thereafter, we link the microscopic virtual velocity
field to the virtual quantities governing the macroscopically infinitesimal volume element, i.e.
velocity and strain rate tensor (see Section 2.3). Next, the implications for computational
homogenization in atomistic systems and continuum RVEs undergoing large deformations are
discussed (see Section 2.4). The paper is concluded by setting our derivation in context to
somehow related deliberations in the rich field of micromechanics (Section 2.5).
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2.2 Principle of Virtual Power applied to a continuum
mechanics system and its microstructurally representative
volume elements

The Principle of Virtual Power (PVP) states that a mechanical system is in equilibrium if,
under any virtual motion V̌ defining the type of mechanical system considered, the virtual
power of forces associated with the mechanical system vanishes (Germain, 1972, 1973),

P(V̌ ) = 0 , (2.5)

with the virtual power P being a multilinear form on V̌ . In the case of classical continuum
mechanics under quasistatic conditions, the principle (2.5) takes the form (Germain, 1972,
1973),

Pext[V̌ (X)] + P int[Ď(X)] = 0 , (2.6)
with the virtual power of external forces Pext, the virtual power of internal forces P int, with
V̌ (X) being any three-dimensional continuous vector field across all (macroscopic) points X
of the continuum with volume V and surface S, and with Ď(X) as the (macroscopic) virtual
Eulerian strain rate tensor, mathematically reading as

Ď(X) = 1
2


∂V̌

∂X
(X) +

� ∂V̌

∂X
(X)

�T



= 1
2

�
GRADX V̌ (X) +



GRADX V̌ (X)

�T
�

= GRADS
X V̌ (X) , (2.7)

whereby GRADX is the (macroscopic) gradient operator with respect to variable X, and
GRADS

X is its symmetrized counterpart. Pext and P int are linear forms on V̌ and Ď,
respectively

Pext =
�

V
F (X) · V̌ (X) dV (X) +

�
S

T (X) · V̌ (X) dS(X) , (2.8)

P int = −
�

V
Σ(X) : Ď(X) dV (X) , (2.9)

with F as the (macroscopic) volume forces and T as the (macroscopic) surface forces.
In continuum micromechanics (Zaoui, 2002), any infinitesimal volume element dV around

any macroscopic material point X is represented by a microscopically finite representative
volume element (RVE) with a characteristic size ℓ; such an RVE carrying all features of
a classical continuum mechanics system at the microscopic scale. In order to maintain
the physical relevance of the infinitesimally small macroscopic volume elements dV , the
corresponding RVEs need to be much smaller than the structural length L, i.e. (Zaoui, 2002;
Auriault et al., 2010):

ℓ ≪ L = ||Σ(X)||
|||GRADX Σ(X)||| . (2.10)

Thereby, the ≪-sign typically refers to a factor (Kohlhauser and Hellmich, 2013) of 5 to 10.
Applying the PVP to such an RVE yields

Pext
RVE =

�
VRVE

f(x) · v̌(x) dV (x) +
�

SRVE
t(x) · v̌(x) dS(x) , (2.11)

P int
RVE = −

�
VRVE

σ(x) : ď(x) dV (x) , (2.12)



Stress average rule from PVP 14

so that�
VRVE

f(x) · v̌(x) dV (x) +
�

SRVE

t(x) · v̌(x) dS(x) −
�

VRVE

σ(x) : ď(x) dV (x) = 0 , (2.13)

with v̌ as the microscopic virtual velocities, f and t as the microscopic volume and surface
forces, and ď as the microscopic virtual strain rates, the latter reading as

ď(x) = 1
2


∂v

∂x
(x) +

� ∂v

∂x
(x)

�T



= 1
2

�
gradx v̌(x) +



gradx v̌(x)

�T
�

= gradS
x v̌(x) . (2.14)

In (2.14), gradx denotes the microscopic gradient operator, and gradS
x denotes its symmetrized

counterpart. This operator induces the microheterogeneity size d as

d = ||σ(X)||
|||gradx σ(X)||| ≪ ℓ . (2.15)

Thereby, the ≪-sign refers to a factor of 2 to 3 for spherical or parallel cylindrical inclusions
embedded in a continuous matrix phase (Drugan and Willis, 1996; Gusev, 1997; Grimal et al.,
2011). Integration by parts of the power of internal forces of the RVE according to (2.12)
yields

P int
RVE = −

�
VRVE

divx

�
σ(x) · v̌(x)

�
dV (x) +

�
VRVE

divx σ(x) · v̌(x) dV (x) . (2.16)

with the divergence operator standing for

divx(•) = ∇x · (•) with ∇x =
3*

i=1

∂

∂xi
ei , (2.17)

whereby e1, e2, and e3 are orthonormal base vectors. Application of the divergence theorem
to the first term of the right-hand side in (2.16) yields

−
�

VRVE

divx

�
σ(x) · v̌(x)

�
dV (x) = −

�
SRVE

n(x) · σ(x) · v̌(x) dS(x) . (2.18)

Insertion of (2.18) into (2.16), and of the respective result into (2.13), yields, after re-
arrangement of the terms integrated over volumes and surfaces, respectively, the following
expression:�

VRVE

�
f(x) + divx σ(x)

�
· v̌(x) dV (x) +

�
SRVE

�
t(x) − σ(x) · n(x)

�
· v̌(x) dS(x) = 0 . (2.19)

As (2.19) needs to hold for any virtual microscopic velocity field v̌, it readily delivers equilibrium
conditions for all microscopic points inside the RVE,

divx σ(x) + f(x) = 0 , ∀x ∈ VRVE , (2.20)

and Cauchy’s fundamental theorem for the microscopic points at the surface of the RVE,

t(x) = σ(x) · n(x) , ∀x ∈ SRVE . (2.21)
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2.3 Equivalence of macroscopic and microscopic expressions
for internal and external power densities – stress and
volume force averaging rules

Still, the RVE-related virtual powers need to be fully governed by the virtual kinematical
properties of the infinitesimal volume elements dV (X) at the macroscopic scale, i.e. being
proportional to the macroscopic location-dependent macroscopic virtual velocities and strain
rates, V̌ (X) and Ď(X). Accordingly, we impose the latter two macroscopic quantities onto the
RVE, in terms of the following microscopic virtual velocity fields prescribed at the boundary
of the RVE,

∀x ∈ SRVE : v̌(x, X) = V̌ (X) + Ď(X) · x , (2.22)

noting that Eq. (2.22) can be seen as a modification and extension of the so-called “Hashin
boundary conditions" (Hashin, 1983). Expressions (2.22) and (2.14) imply an average rule for
the virtual strain rates, reading as

Ď(X) = 1
VRVE(X)

�
VRVE(X)

ď(x, X) dV (x, X) , (2.23)

which appears as the rate form of the well-known strain average rule, see Eq. (2.1). Note that
dV (x, X) refers to integration over the microscopic variables x, at the macroscopic position
X. Within the RVE, the microscopic virtual strain rate needs to be proportional to the
macroscopic strain rate, which we express by a multilinear downscaling relation of the form

ď(x, X) = Ad(x, X) : Ď(X) , (2.24)

with a yet-to-be-determined continuous downscaling tensor field Ad(x, X).
Identification of the RVE-related and macroscopic volume element-related expressions for

the power densities of internal forces, as derived from (2.9), (2.12), and (2.24), yields

πint(X) = −Σ(X) : Ď(X) != πint
RVE(X) = − 1

VRVE(X)

�
VRVE(X)

σ(x, X) : Ad(x, X) dV (x, X) : Ď(X) ,

(2.25)
where != indicates the bridging of scales. Namely, the internal and external power densities
remain the very same physical quantities, regardless of whether they are expressed in terms of
macroscopic or microscopic virtual velocities or strain rates. An alternative expression for
the internal power density as a function of the macroscopic virtual strain rate is obtained
from insertion of (2.18) into the first integral on the right-hand side of (2.16), followed by
specifying the corresponding result for the boundary conditions (2.22) and the equilibrium
conditions (2.20). Accordingly, this alternative power density expression reads as

πint(X) = − 1
VRVE(X)

�
SRVE(X)

�
V̌ (X) + x · Ď(X)

�
· σ(x, X) · n(x, X) dS(x, X)

− 1
VRVE(X)

�
VRVE(X)

�
f(x, X)

�
· v̌(x, X) dV (x, X) . (2.26)

Taking the macroscopic virtual strain rate out of the first integral of (2.26), and applying the
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divergence theorem to this first integral, while considering equilibrium condition (2.20), yields

πint(X) = −
�

1
VRVE(X)

�
VRVE(X)

σ(x, X) dV (x, X)
�

: Ď(X)

− 1
VRVE(X)

�
VRVE(X)

f(x, X) ·
�
v(x, X) − V̌ (X) − Ď(X) · x

�
dV (x, X) .(2.27)

Identity of (2.27) and (2.25) requires the concentration tensor Ad to be equal to the identity
tensor

Ad(x, X) = I → ď(x, X) = Ď(X) , ∀x ∈ VRVE(X) , (2.28)

and the expression (2.22) to be not only valid at the boundary, but also throughout the entire
volume of the RVE,

v̌(x, X) = V̌ (X) + Ď(X) · x , ∀x ∈ VRVE(X) . (2.29)

Requirement (2.28), together with (2.25), yields the classical stress average rule, reading as

Σ(X) = 1
VRVE(X)

�
VRVE(X)

σ(x, X) dV (x, X) . (2.30)

We note that the derivation of Eq. (2.30), different from the classical derivations (Hashin,
1983; Zaoui, 2002), did without the requirement of vanishing volume forces f .

As regards the latter, the equivalence of the macroscopic and microscopic expressions for
the external power density, i.e. of (2.8) and (2.11), mathematically reads as

πext(X) = F (X) · V̌ (X) != πext
RVE(X) = 1

VRVE(X)

�
VRVE(X)

f(x, X) · v̌(x, X) dV (x, X) . (2.31)

Inserting (2.29) into (2.31) results in

F (X) · V̌ (X) =
 1

VRVE(X)

�
VRVE(X)

f(x, X) dV (x, X)


· V̌ (X)

+
 1

VRVE(X)

�
VRVE(X)

f(x, X) ⊗ x dV (x, X)


: Ď(X) . (2.32)

We will show in the following that the term in the second pair of square brackets will vanish
if (i) the microscopic volume forces arise from a microscopically uniform field (such as the
gravitational field), and if (ii) the microscopic location is measured from the center of gravity
of the RVE. As a microscopically parallel force field, i.e. as a microscopic field of uniform
direction, we choose the gravitational field, which reads mathematically as

f(x, X) = g(X) ρ(x, X) , (2.33)

with the gravitational acceleration g and the microscopic mass density ρ. Specifying the term
in the second pair of square brackets in (2.32), for the parallel force field (2.33), yields

g(X) ⊗
 1

VRVE(X)

�
VRVE(X)

ρ(x, X) x dV (x, X)

. (2.34)
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We are left with showing that the integral in Eq. (2.34) vanishes if x is measured from the
center of gravity of the RVE. Therefore, we adopt a location vector x̃ measured from an
arbitrary origin, locating the center of gravity at x̃CG. According to the very definition of the
center of gravity, x̃CG needs to fulfill�

VRVE(X)

ρ(x̃, X) x̃ dV (x̃, X) = x̃CG

�
VRVE(X)

ρ(x̃, X) dV (x̃, X) , (2.35)

and since x is measured from the center of gravity, it is related to x̃ and x̃CG through

x = x̃ − x̃CG . (2.36)

Use of Eqs. (2.36) and (2.35) in Eq. (2.34) yields�
VRVE

ρ(x, X) x dV (x, X) =
�

VRVE
ρ(x̃, X)

�
x̃−x̃CG

�
dV (x̃, X) =

�
x̃CG−x̃CG

� �
VRVE

ρ(x̃, X) dV (x̃, X) = 0 .

(2.37)
Accordingly, a microscopically parallel force field (i.e. one with a uniform direction at the
microscale) delivers the following volume force average rule

F (X) = 1
VRVE(X)

�
VRVE(X)

f(x, X) dV (x, X) . (2.38)

2.4 Implications for computational homogenization: internal
virial stresses of atomistic systems, and continuum RVEs
undergoing large deformations

Our derivation of the stress average rule also has interesting implications with respect to
computational homogenization. The latter is definitely required when it comes to homoge-
nization over discrete mechanical systems, such as atoms represented by mass points in a
molecular dynamics setting (Chen and Fish, 2006). In such a system, hosted within an RVE,
the resultant internal force acting on the i-th atom of the assembly is the sum of all interaction
forces f

ij
between this atom and all the other atoms in the RVE. This reads mathematically

as
f int

i
=

*
j( ̸=i)

f int
ij

, (2.39)

with the law of action and reaction (Newton’s third law) requiring that (Salençon, 2018;
Newton, 1687)

f int
ij

= −f int
ji

, with f
ij

× xij = 0 , (2.40)

whereby
xij = xj − xi (2.41)

denotes the vector pointing from position xi to xj .
The virtual power density of internal forces acting on the atomic mass points hosted inside

an RVE of volume VRVE reads as

πint
RVE = 1

VRVE

*
i

f int
i

· v̌(xi) = 1
VRVE

*
i

� *
j( ̸=i)

f int
ij


· v̌(xi) , (2.42)
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where the virtual velocity v̌, following Eq. (2.29), appears as the mathematical tool for
homogenizing the discrete mechanical systems made of mass points representing single atoms.
Accordingly, specification of Eq. (2.29) for x = xi, and insertion of the result into Eq. (2.42)
yields

πint
RVE = 1

VRVE

*
i

� *
j( ̸=i)

f int
ij


· �

V̌ + Ď · xi

�
= 1

VRVE

� *
i

� *
j( ̸=i)

f int
ij


⊗ xi

�
: Ď . (2.43)

Setting equal Eq. (2.43) with the macroscopic “homogenized” continuum mechanics expression
for the power density of internal forces, see the left portion of Eq. (25), yields the macroscopic
Cauchy stress as

Σ = − 1
VRVE

� *
i

� *
j( ̸=i)

f int
ij


⊗ xi

�
, (2.44)

which is fully equivalent with the expressions which were quite recently provided by Zhou (Zhou,
2003) and Chen and Fish (Chen and Fish, 2006). Actually, an only slight formalistic difference
in the latter references arises from the use of Eq. (2.41) in (2.44), leading to the following
alternative format for the macroscopic stresses

Σ = 1
2 VRVE

� *
i

� *
j( ̸=i)

xij ⊗ f int
ij

�
, (2.45)

whereby we have made use of Eq. (2.40) and, consequently, of f
ij

⊗ xij = f
ji

⊗ xji.
We note the brevity and elegance of our approach to the homogenized stresses of Eq. (2.45),

when compared to the more expensive derivations of Zhou (Zhou, 2003) and Chen and
Fish (Chen and Fish, 2006). In fact, Chen and Fish (Chen and Fish, 2006) applied an
asymptotic expansion-based homogenization approach to a periodic discrete system of atomic
mass points, while Zhou (Zhou, 2003) started with formulating the balance of linear momentum
in terms of the macroscopic spatial gradient of the homogenized stress, on the one hand, and
of a discrete system of mass points, on the other hand. Subsequent Fourier transformation of
the aforementioned formulation, followed by a particular inversion technique (Cormier et al.,
2001), yields an explicit formula for the macroscopic stress, which eventually turns out to be
fully equivalent to Eq. (2.45). In this context, Zhou (Zhou, 2003) particularly emphasizes that
the macroscopic Cauchy stresses according to Eq. (2.45) are only related to the interaction
forces between atomic mass points, and do not depend on an additional kinetics energy term
which is often motivated by the famous 1870 paper of Clausius (Clausius, 1870). Zhou’s
reasoning is fully consistent with our derivation of Eq. (2.45); and we may also note that,
already as early as 1897, Finger (Finger, 1897) pointed out that mechanical stresses are only
associated with the internal virial, i.e. the interaction forces between point forces, and not
with additional kinetic energy terms. In this sense, the macroscopic stresses Eq. (2.45) may
be appropriately called “internal virial stresses” or “interatomic virial stresses”.

Computational homogenization in the classical narrower sense relates to continuous
systems undergoing large deformations; and the average rule for the Cauchy stress according
to Eq. (2.30) is indeed valid, regardless of whether the system has undergone small or
large deformations leading to its current configuration. Still, for the study of actual material
behavior, the stress average rule needs to be complemented by relations pertaining to geometric
compatibility and (micro-)constitutive behavior. As regards the former, the virtual strain
rate average rule (2.23) naturally motivates to introduce an actual strain rate average rule of
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the format (Morin et al., 2018, 2021)

D(X) = 1
VRVE

�
VRVE

d(x, X) dV (x, X) , (2.46)

and temporal integration over an arbitrary succession of such strain rates allows for the repre-
sentation of any large strain deformation (Morin et al., 2018, 2021). As regards constitutive
modeling, Eq. (2.46) can be complemented by thermodynamically consistent, microscopic
hypoelasticity, where microscopic strain rates arise from the action of objective micro-stress
rates (Morin et al., 2018, 2021; Truesdell, 1955; Rajagopal and Srinivasa, 2009)

d = ρ
∂2Gρ

∂σ ∂σ
:

�
σ̇ + σ · ω − ω · σ

�
, (2.47)

with the spin tensor ω, the microscopic Gibbs potential per unit mass, Gρ, and the partial
temporal derivative of the stress tensor, σ̇. Based on the stress average rule (2.30), as well
as on kinematic compatibility (2.46) and (micro-)constitutive behavior (2.47), a complete
formalism for up and downscaling of stresses, strain rates, and spins can be derived (Morin
et al., 2018, 2021, 2015). This formalism allows for rigid body motions of microstructural
entities, which may evolve independently of the overall macroscopic deformation state. The
latter phenomenon is called non-affine microstructural deformation, and such deformation
patterns are repeatedly encountered, typically so in biological materials (Krasny et al., 2017).
In the more particular case of affine deformations where the overall elastic energy is fully
governed by the deformation gradient (linking the current to the reference configuration),
the Cauchy stresses can be transformed into Piola-Kirchhoff stresses, along with the very
popular hyperelastic formulations linking Piola-Kirchhoff stresses to Green-Lagrange-strains.
For this case, there exists a very rich scientific literature on stress and strain averaging rules,
as collected in pertinent review papers, such as the one provided by Saeb et al. (Saeb et al.,
2016).

2.5 Discussion and Conclusion
Widening the perspective on the classical stress average rule in micromechanics, beyond
Hashin’s idea (Hashin, 1983; Zaoui, 2002; Hashin, 1963, 1965) of an equilibrated RVE subjected
to homogeneous stress boundary conditions (so that the strain average rule becomes a mere
definition) and also beyond the straightforward identification of an RVE with a mechanically
tested sample on which average traction forces are measured (Hori and Nemat-Nasser, 1999),
we here derived the stress average rule from the principle of virtual power. In this context,
we note that we applied the PVP not only to the microscopically finite RVE itself, but also
to the macroscopic system consisting of infinitely many such RVEs seen as infinitesimal
volume elements. This way, our derivation does without prescribing (micro-)tractions at
the boundary of the RVE, be they related to homogeneous (macroscopic) stresses or to
experimental measurements. The main theoretical tool enabling this independence are the
relations (2.22) and (2.23), linking macroscopic and microscopic virtual velocities and their
symmetric gradients. In this sense, our derivation obviously extends the application range of
the stress average rule beyond the confines resulting from its classical derivation, and our new
derivation also upgrades the stress average rule from a “useful definition” to a theoretically
sound result arising from the most fundamental principle in continuum mechanics. This
gives further conceptual credibility concerning the use of this rule for many material systems
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described by classical Mori-Tanaka (Mori and Tanaka, 1973; Benveniste, 1987) or self-
consistent (Kröner, 1958; Zaoui, 2002) homogenization schemes. These schemes are based
on the stress average rule, and they are applied all the way from construction materials,
such as concrete or wood (Bernard et al., 2003; Pichler and Hellmich, 2011; Hofstetter et al.,
2005), to biological and biomedical materials, such as bone or ceramic tissue engineering
scaffolds (Hellmich and Ulm, 2002; Fritsch and Hellmich, 2007; Fritsch et al., 2009).

We are aware that both the stress average rule (2.30), and even the less classical volume
force relation (2.32) have been reported in the open literature, often in the context of the
so-called Hill’s lemma(Hill, 1963), and most clearly so by Nicot et al. (Nicot et al., 2017).
However, the key aspect of the present contribution is to not take the stress average rule as
granted (Nicot et al. (Nicot et al., 2017) introduce it as a definition), but to employ the PVP
as a theoretical means for exploring the (micro-)equilibrium of an RVE the virtual kinematics
of which is fully governed by two macroscopic quantities: the macroscopic virtual velocity
and its symmetric gradient (i.e. the macroscopic virtual Eulerian strain rate tensor). Then,
the stress average rule and the volume force average rule for a microscopically parallel volume
force field arise as results.

This use of the PVP to explore equilibrium conditions (or in the dynamic case, motion rules)
is the target already of the original paper of Germain (Germain, 1973), where he covered clas-
sical and second-order continua. This example has been followed by very many examples from
different branches of the rich field of mechanics and beyond, such as second-order fluid-solid
interaction or poromechanics (Eremeyev and Altenbach, 2014; Sciarra et al., 2007), structural
mechanics (Touratier, 1991; Höller et al., 2019; Zhang et al., 2017), bio-macromolecule ho-
mogenization (Kalliauer et al., 2020), or elastic parameter homogenization (Grédiac et al.,
2006).
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3.1 Introduction – Motivation and Scope
The main problem in the wide field of micromechanics of materials (Hill, 1963; Zaoui, 2002)
is to quantify the effect of mechanical property distribution throughout the microstructures
filling a so-called representative volume element (RVE), on the overall mechanical properties
of this RVE, i.e. the properties linking the macroscopic strains (being the average over the
microscopic strains inside the RVE) to the macroscopic stresses (being the average over the
microscopic stresses inside the RVE). Restricting the present contribution to the case of linear
elasticity, the problem comprises the following mathematical relations (Zaoui, 2002):

• geometrical boundary conditions prescribed at the boundary of the RVE, SRVE, in the
form proposed by Hashin (1983)

u(x) = E · x , ∀x ∈ SRVE , (3.1)

with x denoting the microscopic location vector, with u denoting the microscopic
displacement vector, and with E denoting the macroscopic strain tensor, which is
independent of the location x. Boundary conditions (3.1) imply the validity of the strain
average rule (Hashin, 1963, 1965, 1983)

E = 1
VRVE

�
VRVE

ε(x) dV (x) = ⟨ε⟩ , (3.2)

where ε denotes the microscopic linearized strain tensors, defined as the symmetric part
of the microscopic gradient of the displacement field u(x), i.e.

ε(x) = 1
2

�
gradx u(x) +



gradx u(x)

�T
�

= gradS
x u(x) ; (3.3)

• the microscopic elastic law being a function of the microstructural position vector x

σ(x) = c(x) : ε(x) , (3.4)

with the microscopic stress tensor σ and the microscopic stiffness tensor c;

• equilibrium conditions

∇x · σ(x) + f(x) = 0 , ∀x ∈ VRVE , (3.5)

where ∇x stands for the nabla operator and f denotes the volume forces;

• the equivalence of macroscopic and microscopic expressions for virtual power densities
of internal forces (Jiménez Segura et al., 2022b), which, together with (3.5), yields the
well-known stress average rule as (Hill, 1963; Zaoui, 2002)

Σ = 1
VRVE

�
VRVE

σ(x) dV (x) = ⟨σ⟩ ; (3.6)
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• the strain concentration (or downscaling) relation linking, in a multilinear way, the
macroscopic to the microscopic strain field (Zaoui, 2002; Hill, 1963)

ε(x) = A(x) : E , (3.7)

where A is the concentration (or downscaling) tensor;

• the macroscopic elastic law, which follows from (3.4), (3.6), and (3.7) as

Σ = Chom : E , (3.8)

with the homogenized stiffness tensor reading as (Zaoui, 2002; Hill, 1963)

Chom = 1
VRVE

�
VRVE

c(x) : A(x) dV (x) . (3.9)

The classical approach for making the problem (3.1)–(3.9) tractable is to restrict the discussion
to Nr homogeneous subdomains or phases within the RVE. Accordingly, the general microstiff-
ness distribution c(x) is replaced by a finite number of microstiffness tensors cr, r = 1, . . . , Nr,
which characterize phases of different shapes, typically represented by means of ellipsoids. The
strains in the latter are approximated from the solutions of Eshelby’s matrix-inhomogeneity
problem (Eshelby, 1957), and combination of these solutions with the strain average rule
specified for a finite number of phases leads to the well-known Mori-Tabaka or self-consistent
models (Kröner, 1958; Mori and Tanaka, 1973; Benveniste, 1987; Benveniste et al., 1991),
with many applications in a variety of disciplines, including construction and biomedical
engineering (Hofstetter et al., 2005; Bernard et al., 2003; Pichler and Hellmich, 2011; Hellmich
et al., 2004; Fritsch and Hellmich, 2007).

Still, there is interest in homogenizing over non-uniform stiffness distributions c(x); or
in other words, over micro-heterogeneous materials with complex microstructures, i.e. such
microstructures which cannot be satisfactorily represented by an assemblage of phases as
mentioned before. In this context, the most popular approach is based on the Finite Element
Method - FEM (Zienkiewicz et al., 2005). It involves discretizing the RVE into very many
finite elements, and subjecting it to suitable boundary conditions (Moës et al., 2003; Pahr
and Zysset, 2008; Scheiner et al., 2009; Grimal et al., 2011). The latter may be homogeneous,
as in (3.1), or periodic. The results of this type of so-called computational homogenization
depend on both the discretization level and the chosen boundary conditions, which requires
careful sensitivity analyses to be carried out when aiming at quantitatively reliable results.
Also, the computational effort increases with the square of the degrees of freedom, rendering a
detailed representation of the microstructure as computationally very expensive. As a remedy
to both the discretization and the CPU challenges, FFT-based homogenization schemes
based on the Lippmann-Schwinger equation (Lippmann and Schwinger, 1950) have emerged
as an interesting alternative to the FEM, in particular so when it comes to image-based
computational homogenization (Moulinec and Suquet, 1998; Brisard and Dormieux, 2010; Cai
et al., 2019). Such FFT methods are based on a voxel representation of the microstructure,
with the elastic properties being constant over one voxel.

Yet, directing our attention back to (3.1)–(3.9), we observe that both FEM and FFT-
based homogenization techniques primarily focus on the homogenized stiffness tensor Chom,
somewhat neglecting the concentration tensor field A. However, the latter quantity, giving
access to microsopic stress and strain fields, is of great interest as well, in particular so as
concerns upscaling of elasto-brittle material behavior (Fritsch et al., 2009; Sanahuja et al.,
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2010; Fritsch et al., 2013; Königsberger et al., 2018; Wolfram et al., 2022), or of eigenstrains
and eigenstresses (Levin, 1967; Rosen and Hashin, 1970; Wang et al., 2018).

This motivates the present paper, presenting a novel way to derive strain concentration
tensor fields A(x), from a given microstiffness distribution c(x) characterizing a complex
microstructure. For this purpose, we adopt a key idea underlying the classical phase-based
homogenization approaches such as the Mori-Tanaka or the self-consistent scheme, namely the
introduction of an auxiliary problem defined on an infinite elastic domain, and the suitable
combination of such an auxiliary problem with the strain average rule (3.2). In this way,
we can resort to fundamental elastic solutions in the form of Green’s functions, while also
circumventing the rather awkward dependence of homogenization results on the chosen bound-
ary conditions, as encountered with FEM- and FFT-based computational homogenization
approaches. Accordingly, the paper is organized as follows: Section 2 introduces an auxiliary
problem on an infinite elastic domain, and its relation to the strain average rule reflecting
the geometrical compatibility throughout the microscopically finite RVE. Section 3 covers a
Green’s function-based solution to the auxiliary problem of Section 2. After an illustrative
example for a microstructure with harmonically fluctuating bulk moduli, given in Section 4,
the paper is concluded in Section 5.

3.2 An auxiliary problem on an infinite domain, and its
relation to the RVE

(a)

C0
E0

+

(b)

τ (x) =�
c(x) − C0

�
: ε(x)

=

(c)

ε(x) =
A0(x) : E0

(d)

ε(x)
c(x)

VRVE

(f)

E
Chom

(e)
E = ⟨ε⟩ = ⟨A0⟩ : E0

ε(x) = A0(x) : ⟨A0⟩−1 : E = A(x) : E
σ(x) = c(x) : A0(x) : ⟨A0⟩−1 : E

Σ = ⟨c : A0⟩ : ⟨A0⟩−1 : E = Chom : E

Fig. 3.1. Illustration of elements making up the new homogenization scheme: (a) infinite
homogeneous elastic matrix of stiffness C0 subjected to background (auxiliary) strains E0; (b)
same matrix undergoing equilibrated (polarization) stresses which are equivalent to the effect
of fluctuations (c(x) − C0) in microstiffness, c(x), around the homogeneous stiffness C0, (c)
sum of load cases (a) and (b); (d) selection of corresponding microstrains and microstiffnesses
within a finite domain (RVE) characterizing the microheterogeneous material; (e) strain
averaging over RVE, with ⟨•⟩ = 1

VRVE

�
VRVE

•(x) dV (x), and corresponding concentration and
homogenization formulae; (f) macroscopic elastic representation of RVE.

Traditional phase-based micromechanical approaches, such as the Mori-Tanaka or the
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self-consistent estimates, are built on the solution of Eshelby’s matrix-inhomogeneity problem,
where an ellipsoidal inhomogeneity of a specific stiffness is embedded into an infinite matrix
of yet another stiffness. The latter matrix is remotely subjected to some auxiliary strains E0.
The solution of Eshelby (1957) then relates the auxiliary strains to the homogeneous strains
εI in the inhomogeneity, according to

εI = A0,I : E0 , (3.10)

with A0,I as the concentration tensor associated with inhomogeneity I embedded in an infinite
matrix subjected to E0. A0,I depends on the stiffness contrast between inhomogeneity and
matrix, as well as on the shape of the inhomogeneity and its orientation with respect to the
material directions of the matrix. In the traditional approach, εI is then associated to strains
in an ellipsoidal phase inside the RVE, and different inhomogeneities which are all embedded
in the same type of matrix are introduced so as to consider different phases within the RVE.

However, as we presently wish to go beyond phase assemblages, we need to extend the
auxiliary problem (3.10) beyond homogeneous ellipsoidal domain-related strain εI and, instead,
introduce a general strain field of the form

ε(x) = A0(x) : E0 , (3.11)

with A0 as a concentration tensor field associated with a complex microstructure represented
by a stiffness distribution c(x), spreading throughout an infinite domain, see Fig. 1(c). The
stiffness distribution is considered as fluctuation around a homogeneous stiffness C0. The
strains ε(x) then consist of two portions: (i) auxiliary strains E0 prevailing in the homogeneous
infinite domain of stiffness C0, see Fig. 1(a), and (ii) fluctuations around E0 which arise
from the fluctuations in the stiffness field, [c(x) − C0], see Fig. 1(b). These strains can be
derived from the Green’s functions known for elastic matrices, together with the concept of
polarization stresses introduced by Eshelby, as will be detailed in Section 3. We are left with
relating the new auxiliary problem (3.11) to the RVE. Therefore, we consider a finite domain
of c(x) which is statistically representative of the microstructure within the RVE, we identify
the volume of this domain with the volume of the RVE, see Fig. 1(d), and we then apply the
strain average rule (3.2), which yields in combination with (3.11) that

E =
�

1
VRVE

�
VRVE

A0(x) dV (x)
�

: E0 = M−1 : E0 =⇒ M =
�

1
VRVE

�
VRVE

A0(x) dV (x)
�−1

,

(3.12)
with M as the auxiliary-to-macroscopic strain conversion tensor. Multiplication from the left,
of (3.12) with M, and insertion of the corresponding result into (3.11), yields

ε(x) = A0(x) :
�

1
VRVE

�
VRVE

A0(x) dV (x)
�−1

: E , (3.13)

and comparison of (3.13) with (3.7) yields the strain concentration tensor as

A(x) = A0(x) :
�

1
VRVE

�
VRVE

A0(x) dV (x)
�−1

, (3.14)
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and when considering, in addition, (3.9), the homogenized stiffness tensor is eventually retrieved
as

Chom =
�

1
VRVE

�
VRVE

c(x) : A0(x) dV (x)
�

:
�

1
VRVE

�
VRVE

A0(x) dV (x)
�−1

, (3.15)

see Fig. 1(f). Reformulation of c(x) = C0 +


c(x) − C0�

yields

Chom = C0 +
�

1
VRVE

�
VRVE



c(x) − C0�

: A0(x) dV (x)
�

:
�

1
VRVE

�
VRVE

A0(x) dV (x)
�−1

. (3.16)

We are left with the determination of A0(x). Therefore, we will first link this property to the
elastic Green’s function (Section 3), before giving an illustrative example (Section 4).

3.3 Green’s function-based solution to the auxiliary problem
of the infinite matrix with a complex microstructure

In order to determine the concentration tensor field A0(x) of our new auxiliary problem,
we employ the method of Green’s functions (Fredholm, 1900; Ting and Lee, 1997). This
method is only applicable for homogeneous elastic spaces, which motivates us to adapt a
famous idea of Eshelby (1957), which concerns the equivalence of an inhomogeneous elasticity
distribution to a homogeneous elastic space subjected to inhomogeneous polarization stresses τ .
Mathematically speaking, the constitutive law (3.4) is re-cast into the format (Willis, 1977)

σ(x) = C0 : ε(x) + τ (x) . (3.17)

Equating (3.17) with (3.4) yields

τ (x) =
�
c(x) − C0

�
: ε(x) , (3.18)

see Fig. 1(b). Insertion of the displacement-to-strain conversion relation (3.3) into the
equivalent constitutive law (3.17), and of the corresponding result into the equilibrium
condition (3.5) yields

∇x ·
�
C0 : gradS

x u(x)
�

= −
�
f(x) + ∇x · τ (x)

�
. (3.19)

The solution of the linear partial differential equation (3.19), u(x), is the sum of the
homogeneous solution uh and the particular solution up,

u(x) = uh(x) + up(x) , (3.20)

whereby

• the homogeneous solution uh(x) satisfies the homogeneous linear partial differential
equation

∇x ·
�
C0 : gradS uh(x)

�
= 0 , (3.21)

with the inhomogeneous boundary conditions

uh(x) = E0(X) · x , ∀|x| → ∞ ; (3.22)
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• and the particular solution up(x) satisfies the inhomogeneous linear partial differential
equation

∇x ·
�
C0 : gradS up(x)

�
= −

�
f(x) + ∇x · τ (x)

�
, (3.23)

with homogeneous boundary conditions

up(x) = 0 , ∀|x| → ∞ . (3.24)

The homogeneous solution reads as

uh(x) = E0(X) · x , ∀x ∈ R3 . (3.25)

The particular solution can be given in the form

up(x) =
�
R3

G(x − y) ·


f(y) + ∇y · τ (y)



dV (y) , (3.26)

where G(x − y) denotes the displacement-related Green’s function tensor, satisfying the
differential equation

∇x ·
�
C0 : gradS

x G(x − y)
�

= −δ(x − y) , (3.27)

with boundary conditions
G(x − y) = 0 , ∀|x| → ∞ , (3.28)

In (3.27), δ denotes the second-order Dirac function tensor, with the following properties

δ(x) = 0 for x ̸= 0 , (3.29)

δ(x) = 0 for x = 0 , (3.30)�
R3

δ(x) dV (x) = 1 , (3.31)

with 1 denoting the second-order identity tensor. The last term in (3.26) can be transformed
by means of the chain rule, the divergence theorem, and boundary condition (3.28), yielding�

R3

G(x − y) · ∇y · τ (y) dV (y) = −
�
R3

�
gradyG(x − y)

�
: τ (y) dV (y) . (3.32)

Insertion of (3.32) into (3.26), adding the respective result to (3.25), and using the obtained
expression u(x) in (3.3) yield the microscopic strain field throughout the RVE as

ε(x) = E0 +
�
R3

G(x − y) · f(y) dV (y) −
�
R3

G(x − y) : τ (y) dV (y) . (3.33)

In (3.33), the following gradients of the Green’s functions were explicitly introduced

G(x − y) = gradS
x G(x − y) , (3.34)

G(x − y) = gradS
x gradyG(x − y) . (3.35)
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Considering cases where, in (3.33), the effect of polarization stresses clearly outweighs that of
volume forces, and insertion of the polarization stress expression (3.18) into (3.33) yields

ε(x) = E0 −
�
R3

G(x − y) :
�
c(y) − C0

�
: ε(y) dV (y) . (3.36)

(3.36) is an implicit integral equation for the microscopic strain field, as the latter appears
both as a separate term and part of an integrand in a volume integral over the infinite elastic
domain. More precisely, the microstrains are the solution of a Fredholm equation of the second
kind (Fredholm, 1900). The solution of (3.36) is found by means of an infinitely often repeated
substitution process concerning ε(y) in the last integral of (3.36). Accordingly, the term ε(y)
in the last integral of (3.36) is numbered in a way reflecting these insertion processes, namely
by ε(y(i)), i = 1, 2, . . . , ∞.

As a starting point, (3.36) is specified for y = y(1) in the last integral of (3.36), yielding

ε(x) = E0 −
�
R3

G(x − y(1)) :
�
c(y(1)) − C0

�
: ε(y(1)) dV (y(1)) . (3.37)

In order to come up with an expression for ε(y(1)) to be inserted into the last integral in
(3.37), we specify (3.37) for y(1) = y(2) and for x = y(1), yielding

ε(y(1)) = E0 −
�
R3

G(y(1) − y(2)) :
�
c(y(2)) − C0

�
: ε(y(2)) dV (y(2)) . (3.38)

Insertion of (3.38) into (3.37) yields

ε(x) =


I −
�
R3

G(x − y(1)) :
�
c(y(1)) − C0

�
dV (y(1))



: E0 (3.39)

+
�
R3

G(x − y(1)) :
�
c(y(1)) − C0

�
:

�
R3

G(y(1) − y(2)) :
�
c(y(2)) − C0

�
: ε(y(2)) dV (y(2)) dV (y(1)) ,

where I is the symmetric fourth-order identity tensor. We now generalize this idea, in order to
come up with the strain field for the (α)-th step of the substitution process, ε(y(α)). For this
purpose, we specify (3.37) for x = y(α) and y(1) = y(α+1). Repeating this process over and
over again gives access to a relation involving an auxiliary macrostrain concentration tensor
field A0(x) and a residual term comprising the implicit strain field R[x, ε(y(N))], reading as

ε(x) = A0(x) : E0 + R


x, ε(y(N))

�
. (3.40)

In more detail, the concentration tensor field reads as

A0(x) = I +
N*

n=1
(−1)n A0

n(x) , (3.41)

where
A0

1(x) =
�
R3

G(x − y) :
�
c(y) − C0

�
dV (y) , (3.42)
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and, for n > 1,

A0
n(x) =

�
R3

. . .

�
R3

G(x − y(1)) :
n#

i=2

�
c(y(i−1)) − C0

�
: G(y(i−1) − y(i))




:
�
c(y(n)) − C0

�
dV (y(n)) . . . dV (y(1)) , ∀n ∈ [2, ∞) . (3.43)

The residual term after N iterations reads as

R


x, ε(y(N))

�
=

�
R3

. . .

�
R3

G(x − y(1)) :
N#

i=2

�
c(y(i−1)) − C0

�
: G(y(i−1) − y(i))



:

�
c(y(N)) − C0

�

: ε(y(N)) dV (y(N)) . . . dV (y(1)) . (3.44)

Note that for N → ∞, R[x, ε(y(N))] → 0, provided the following requirement is met:�
R3

Gijkℓ(y(α−1)−y(α))
�
ckℓmn(y(α))−C0

kℓmn

�
Gmnpq(y(α)−y(α+1)) dV (y(α)) < 1 , ∀y(α−1), y(α+1) ∈ VRVE ,

(3.45)
for an arbitrary α.

3.4 Illustrative example: microstructure with harmonically
fluctuating bulk moduli

3.4.1 Complex microstructure with harmonically fluctuating microscopic
bulk modulus

In order to illustrate the applicability of the novel integral expressions (3.41)–(3.43), we resort
to the Green’s function for an infinitely extended isotropic elastic body with bulk modulus k0
and Poisson’s ratio ν0; it reads as (Dvorak, 2012)

G(x−y) = (1 + ν0)
6π k0 (1 − 2ν0) 1 1

|x − y| − (1 + ν0)
24π k0 (1 − ν0) (1 − 2ν0)

�
gradx gradx |x − y|


, (3.46)

where, with respect to the actual formula (4.5.12) given on page 107 of (Dvorak, 2012), we
consider k0 = 2µ0 (1+ν0)

3 (1−2ν0) , being µ0 the shear modulus. Moreover, we consider a harmonic
stiffness distribution across this infinitely extended body, according to

c(x) = C0 + 3∆k sin
�2π

λ1
x1


sin

�2π

λ2
x2


sin

�2π

λ3
x3


Ivol , (3.47)

where x1, x2, and x3 are the components of location vector x with respect to an orthonormal
base frame e1, e2, e3, such that x = x1 e1 + x2 e2 + x3 e3, and Ivol stands for the volumetric
part of the symmetric fourth-order unity tensor I (Iijrs = 1/2 (δirδjs + δisδjr)), reading as
Ivol = 1/3 (1 ⊗ 1), with components Ivol

ijkℓ = 1/3 (δij δkℓ), where 1 is the second-order unity
tensor with the Kronecker delta δij as its components. ∆k is a parameter which scales the
stiffness variance and λi sets the size of one fluctuation in direction i.
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3.4.2 Normal strain-related components of A0(x)
The auxiliary strain downscaling tensor A0(x) is the result of the sum of an infinite series, see
(3.41). The first term of this series, A0

1(x), is defined through (3.42), so that consideration of
(3.47) yields the component 1111 of A0

1 as

A0
1,1111(x) =

3*
h=1

3*
ℓ=1

�
R3

G11hℓ(x − y)
�
3∆k sin

�2π

λ1
y1


sin

�2π

λ2
y2


sin

�2π

λ3
y3


Ivol

hℓ11
�

dV (y)

= ∆k
3*

ℓ=1

�
R3

G11ℓℓ(x − y) sin
�2π

λ1
y1


sin

�2π

λ2
y2


sin

�2π

λ3
y3


dV (y) . (3.48)

In order to retrieve the components G1111, G1122, and G1133, we start with the general
expression for the components of the Green’s function (3.46), reading as

Gij = (1 + ν0)
6π k0 (1 − 2ν0)

δij

|x − y| − (1 + ν0)
24π k0 (1 − ν0) (1 − 2ν0)

� ∂2

∂xi ∂xj
|x − y|


. (3.49)

The fourth-order Green’s function gradient (3.35) exhibits the following components

Gijkℓ = (1 + ν0)
12π k0 (1 − 2ν0)

� ∂2

∂xj ∂yℓ

δik

|x − y| + ∂2

∂xi ∂yℓ

δjk

|x − y|


−

(1 + ν0)
24π k0 (1 − ν0) (1 − 2ν0)

� ∂4

∂xi ∂xj ∂xk ∂yℓ
|x − y|


. (3.50)

In order to evaluate (3.50), it is useful to recall the following properties of the spatial derivatives
of the norm |x − y|. The first-order derivative of the aforementioned norm reads as

∂

∂xi
|x − y| = xi − yi

|x − y| , (3.51)

revealing the interesting property

∂

∂xi
|x − y| = − ∂

∂yi
|x − y| . (3.52)

The first derivative of the inverse of the norm |x − y| reads as

∂

∂xi

� 1
|x − y|


= − xi − yi

|x − y|3 , (3.53)

revealing the interesting property

∂

∂xi

1
|x − y| = − ∂

∂yi

1
|x − y| . (3.54)

(3.52) and (3.54) allow for re-writing (3.50) as

Gijkℓ = − (1 + ν0)
12π k0 (1 − 2ν0)

� ∂2

∂xj ∂xℓ

δik

|x − y| + ∂2

∂xi ∂xℓ

δjk

|x − y|


+

(1 + ν0)
24π k0 (1 − ν0) (1 − 2ν0)

� ∂4

∂xi ∂xj ∂xk ∂xℓ
|x − y|


, (3.55)
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so that the components occurring in (3.48) read as

G1111 = − (1 + ν0)
6π k0 (1 − 2ν0)

� ∂2

∂x2
1

1
|x − y|


+ (1 + ν0)

24π k0 (1 − ν0) (1 − 2ν0)
� ∂4

∂x4
1

|x − y|


, (3.56)

G1122 = (1 + ν0)
24π k0 (1 − ν0) (1 − 2ν0)

� ∂4

∂x2
1 ∂x2

2
|x − y|


, (3.57)

G1133 = (1 + ν0)
24π k0 (1 − ν0) (1 − 2ν0)

� ∂4

∂x2
1 ∂x2

3
|x − y|


. (3.58)

The sum of (3.56) to (3.58), to be calculated in (3.48), can be further simplified through an
identity which follows from deriving (3.51) with respect to the components of the location
vector,

∂2

∂x2
i

|x − y| =
+

k ̸=i(xk − yk)2

|x − y|3 . (3.59)

Namely, (3.59) entails the following identity

∂2

∂x2
1
|x − y| + ∂2

∂x2
2
|x − y| + ∂2

∂x2
3
|x − y| = 2 1

|x − y| , (3.60)

twofold derivation of which yields an identity comprising the derivatives of the norm |x − y|
occurring in (3.56) to (3.58) reading as

∂4

∂x4
1
|x − y| + ∂4

∂x2
1 ∂x2

2
|x − y| + ∂4

∂x2
1 ∂x2

3
|x − y| = 2 ∂2

∂x2
1

1
|x − y| . (3.61)

Insertion of (3.56)–(3.58) into (3.48), while considering (3.61), yields

A0
1,1111(x) = −∆k (1 + ν0)

12π k0 (1 − ν0)

�
R3

� ∂2

∂x2
1

1
|x − y|


sin

�2π

λ1
y1


sin

�2π

λ2
y2


sin

�2π

λ3
y3


dV (y) .

(3.62)
A change of variable to z = y − x results in

A0
1,1111(x) = −∆k (1 + ν0)

12π k0 (1 − ν0) (3.63)

�
R3

� ∂2

∂z2
1

1
| − z|


sin

�2π

λ1
(x1 + z1)

�
sin

�2π

λ2
(x2 + z2)

�
sin

�2π

λ3
(x3 + z3)

�
dV (z) .

Transforming (3.63) by means of

sin(a + b) = sin(a) cos(b) + cos(a) sin(b) , (3.64)

and considering the second derivative of the inverse of the norm of −z as

∂2

∂z2
1

� 1
| − z|


= 2(−z1)2 − (−z2)2 − (−z3)2

| − z|5 , (3.65)

as well as that the even and odd functions appearing as factors in the integral expression of
(3.63) imply

a�
−a

� ∂2

∂z2
1

1
| − z|


sin

�2π

λi
zi


dzi = 0 , ∀a ∈ R, i ∈ [1, 2, 3] , (3.66)
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we arrive at

A0
1,1111(x) = −∆k (1 + ν0)

12π k0 (1 − ν0) sin
�2π

λ1
x1


sin

�2π

λ2
x2


sin

�2π

λ3
x3


(3.67)

�
R3

� ∂2

∂z2
1

1
| − z|


cos

�2π

λ1
z1


cos

�2π

λ2
z2


cos

�2π

λ3
z3


dV (z) .

Noting that ∂
∂z1

1
|z′−z| = − ∂

∂z′
1

1
|z′−z| and ∂2

∂z2
1

1
|z′−z| = ∂2

∂z′ 2
1

1
|z′−z| , the integral in (3.67) can be

expressed by means of an auxiliary function in z′, according to�
R3

� ∂2

∂z2
1

1
|−z|


cos

�2π

λ1
z1


cos

�2π

λ2
z2


cos

�2π

λ3
z3


dV (z) = ∂2ϕ

∂z′2
1

(z′ = 0), (3.68)

where the auxiliary function ϕ(z′) stands for

ϕ(z′) =
�
R3

1
|z′ − z| cos

�2π

λ1
z1


cos

�2π

λ2
z2


cos

�2π

λ3
z3


dV (z). (3.69)

(3.69) exhibits two remarkable properties. Firstly, its format

ϕ(z′) =
�
R3

1
|z′ − z|f(z) dV (z) (3.70)

is the solution of the Poisson’s equation

∇2ϕ(z′) = −4π f(z′) . (3.71)

Secondly, (3.69) is symmetric in the sense of

ϕ(z′
1, z′

2, z′
3) = ϕ(z′

1, z′
3, z′

2) = ϕ(z′
2, z′

3, z′
1) = ϕ(z′

2, z′
1, z′

3) = ϕ(z′
3, z′

1, z′
2) = ϕ(z′

3, z′
2, z′

1)

→ ∂ϕ
∂z′

1
= ∂ϕ

∂z′
2

= ∂ϕ
∂z′

3
→ ∂2ϕ

∂z′ 2
1

= ∂2ϕ
∂z′ 2

2
= ∂2ϕ

∂z′ 2
3

. (3.72)

Use of the latter relations in (3.71), while accounting for the structure of f according to (3.69)
and (3.70), yields

∇2ϕ(z′) = 3 ∂2ϕ

∂z′2
1

= −4π cos
�2π

λ1
z′

1


cos
�2π

λ2
z′

2


cos
�2π

λ3
z′

3

, (3.73)

where we made use of (3.72). Solving the equation for ∂2ϕ
∂z′2

1
(z′ = 0) and inserting the corre-

sponding result into (3.67) yield

A0
1,1111(x) = 1

3

 ∆k (1 + ν0)
3 k0 (1 − ν0)


sin

�2π

λ1
x1


sin

�2π

λ2
x2


sin

�2π

λ3
x3


. (3.74)

The second term of the series for the auxiliary concentration tensor for the considered harmonic
isotropic micro-stiffness distribution follows from insertion of (3.47) into (3.43), so that its
component 1111 is obtained as

A0
2,1111(x) =

3*
h=1

3*
ℓ=1

3*
i=1

3*
j=1

�
R3

�
R3

G11hℓ(x − y)
�
3∆k sin

�2π

λ1
y1


sin

�2π

λ2
y2


sin

�2π

λ3
y3


Ivol

hℓij

�
3*

m=1

3*
n=1

Gijmn(y − y′)
�
3∆k sin

�2π

λ1
y′

1


sin
�2π

λ2
y′

2


sin
�2π

λ3
y′

3


Ivol
mn11

�
dV (y′) dV (y) . (3.75)
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Specification of (3.75) for (3.55), while considering identity (3.61), yields

A0
2,1111(x) =

 −∆k (1 + ν0)
12π k0 (1 − ν0)

2 �
R3

� ∂2

∂x2
1

1
|x − y|


sin

�2π

λ1
y1


sin

�2π

λ2
y2


sin

�2π

λ3
y3



∇2
� �
R3

� 1
|y − y′|


sin

�2π

λ1
y′

1


sin
�2π

λ2
y′

2


sin
�2π

λ3
y′

3


dV (y′)
�

dV (y) . (3.76)

Considering the last integral in (3.76) as the Green’s function solving the Poisson’s equation

∇2ϕ(y) = −4π sin
�2π

λ1
y1


sin

�2π

λ2
y2


sin

�2π

λ3
y3


(3.77)

yields

A0
2,1111(x) =

�−4π
� −∆k (1 + ν0)

12π k0 (1 − ν0)

2 �
R3

� ∂2

∂x2
1

1
|x − y|


sin2

�2π

λ1
y1


sin2

�2π

λ2
y2


sin2

�2π

λ3
y3


dV (y) .

(3.78)
Recalling from (3.62) and (3.74) that�

R3

� ∂2

∂x2
1

1
|x − y|


f(y) dV (y) = −4π

3 f(x) , (3.79)

for any f(y) with the symmetry properties of (3.72), the integral in (3.78) can be solved,
yielding

A0
2,1111(x) = 1

3

 ∆k (1 + ν0)
3 k0 (1 − ν0)

2
sin2

�2π

λ1
x1


sin2

�2π

λ2
x2


sin2

�2π

λ3
x3


. (3.80)

Repeating this derivation for the 1111-component of any other member of the series, i.e. for
A0

n,1111 with n > 2, one notices that

A0
n,1111(x) =

� − 1
�n 1

3

�
− ∆k (1 + ν0)

3 k0 (1 − ν0) sin
�2π

λ1
x1


sin

�2π

λ2
x2


sin

�2π

λ3
x3

�n

. (3.81)

Moreover, because of the symmetry of the considered micro-stiffness distribution, A0
n,1111(x) =

A0
n,2222(x) = A0

n,3333(x) are equal and given by (3.81). Furthermore, it can be straightforwardly
proved that (3.81) is the result of any component of the type A0

n,iiℓℓ.
The components of the auxiliary strain downscaling tensor A0(x) are calculated as an

infinite sum, see (3.41). Therefore, the explicit expression for the sum of an infinite geometric
series, reading as

∞*
i=0

αn = 1
1 − α

, for |α| < 1 , (3.82)

is applied to α = − ∆k (1+ν0)
3 k0 (1−ν0) sin

�
2π
λ1

x1


sin
�

2π
λ2

x2


sin
�

2π
λ3

x3

. This yields the normal strain

concentration tensor components as

A0
iiii(x) = 2

3 + 1
1 + ∆k (1+ν0)

3 k0 (1−ν0) sin
�

2π
λ1

x1


sin
�

2π
λ2

x2


sin
�

2π
λ3

x3
 , (3.83)

A0
iijj(x) = −1

3 + 1
1 + ∆k (1+ν0)

3 k0 (1−ν0) sin
�

2π
λ1

x1


sin
�

2π
λ2

x2


sin
�

2π
λ3

x3
 . (3.84)
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3.4.3 Shear strain-related components of A0(x)
Next, we turn to the shear-related components of the concentration tensor, i.e. to Aijkℓ with
i ̸= j or k ̸= ℓ. The concentration tensor is driven by the micro-stiffness fluctuation around the
base stiffness C0, see the expressions (3.41)–(3.43), so that the chosen harmonic micro-stiffness
distribution (3.47), where the shear stiffness does not fluctuate around the basic contribution,
implies that

A0
n,ijkℓ(x) = 0 , ∀n ∈ N , x ∈ VRVE , k ̸= ℓ . (3.85)

Combining (3.85) with (3.41) implies that

A0
ijij(x) = 1 , ∀x ∈ VRVE , i ̸= j , (3.86)

and
A0

ijkℓ(x) = 0 , ∀x ∈ VRVE , i ̸= j , k ̸= ℓ , i ̸= k , j ̸= ℓ . (3.87)
Let us now turn to the remaining non-vanishing shear-related components of the concen-

tration tensor, i.e. to A0
1,ijℓℓ(x), with i ≠ j. For the microstiffness distribution (3.47), the

respective first term in the series of (3.41), defined by (3.42), reads as

A0
1,ijℓℓ(x) =

3*
h=1

3*
k=1

�
R3

G11hk(x − y)
�
3∆k sin

�2π

λ1
y1


sin

�2π

λ2
y2


sin

�2π

λ3
y3


Ivol

hkℓℓ

�
dV (y)

= ∆k
3*

h=1

�
R3

G11hh(x − y) sin
�2π

λ1
y1


sin

�2π

λ2
y2


sin

�2π

λ3
y3


dV (y) . (3.88)

Insertion of (3.55) into (3.88), while considering the identity resulting from derivation of (3.60)
with respect to xi and xj , reading as

∂4

∂xi ∂xj ∂x2
1
|x − y| + ∂4

∂xi ∂xj ∂x2
2
|x − y| + ∂4

∂xi ∂xj ∂x2
3
|x − y| = 2 ∂2

∂xi ∂xj

1
|x − y| , (3.89)

yields

A0
1,ijℓℓ(x) =

 −∆k (1 + ν0)
12π k0 (1 − ν0)

 �
R3

� ∂2

∂xi ∂xj

1
|x − y|


sin

�2π

λ1
y1


sin

�2π

λ2
y2


sin

�2π

λ3
y3


dV (y) .

(3.90)
Introducing the variable z = y − x, using the relation (3.64), and considering

∂

∂zj


∂

∂zi ̸=j

� 1
| − z|


= 3(−zi) (−zj)

| − z|5 , (3.91)

and the corresponding consequence of even and odd functions
a�

−a

� ∂

∂zi

1
| − z|


cos

�2π

λi
zi


dzi = 0 , ∀a ∈ R , (3.92)

(3.90) can be transformed to

A0
1,ijℓℓ(x) =

 −∆k (1 + ν0)
12π k0 (1 − ν0)


cos

�2π

λi
xi


cos

�2π

λj
xj


sin

�2π

λk
xk ̸=i,j


(3.93)

�
R3

� 3 zi zj

| − z|5


sin
�2π

λi
zi


sin

�2π

λj
zj


cos

�2π

λk
zk


dV (z) .
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Introducing the microstructure-related variable change z′ =
�

2π
λ1

z1, 2π
λ2

z2, 2π
λ3

z3


into (3.93)
yields

A0
1,ijℓℓ(x) =

 −∆k (1 + ν0)
12π k0 (1 − ν0)


cos

�2π

λi
xi


cos

�2π

λj
xj


sin

�2π

λk
xk


(3.94)

�
R3

� 3 z′
i z′

j

| − z′|5


sin
�
z′

i

�
sin

�
z′

j

�
cos

�
z′

k

�
dV (z′) .

Considering
∞�

−∞

z′
i


(−z′
i)2 + (−z′

j)2 + (−z′
k)2�5/2 sin

�
z′

i

�
dz′

i =
2 K1

�$
(−z′

j)2 + (−z′
k)2


3

$
(−z′

j)2 + (−z′
k)2

, (3.95)

with K1 being the modified Bessel function of the second kind, (3.94) can be re-written as

A0
1,ijℓℓ(x) =

 −∆k (1 + ν0)
12π k0 (1 − ν0)


cos

�2π

λi
xi


cos

�2π

λj
xj


sin

�2π

λk
xk


(3.96)

∞�
−∞

∞�
−∞

 2 z′
j$

(−z′
j)2 + (−z′

k)2


K1

�$
(−z′

j)2 + (−z′
k)2


sin

�
z′

j

�
cos

�
z′

k

�
dz′

j dz′
k .

Applying a transformation towards polar coordinates, z′
j = ρ cos θ and z′

k = ρ sin θ, yields

A0
1,ijℓℓ(x) =

 −∆k (1 + ν0)
12π k0 (1 − ν0)


cos

�2π

λi
xi


cos

�2π

λj
xj


sin

�2π

λk
xk


(3.97)

2π�
0

∞�
0

2 ρ cos θ K1(r) sin
�
ρ cos θ


cos

�
ρ sin θ


dρ dθ .

Thanks to the trigonometric identity sin(a) cos(b) = 1
2 [sin(a + b) + sin(a − b)], (3.97) can be

reformulated as

A0
1,ijℓℓ(x) =

 −∆k (1 + ν0)
12π k0 (1 − ν0)


cos

�2π

λi
xi


cos

�2π

λj
xj


sin

�2π

λk
xk


(3.98)

2π�
0

cos θ

∞�
0

ρ K1(ρ)
�

sin
�
(cos θ + sin θ) ρ


+ sin

�
(cos θ − sin θ) ρ

�
dρ dθ .

Thus, integrating over ρ yields

A0
1,ijℓℓ(x) =

 −∆k (1 + ν0)
12π k0 (1 − ν0)


cos

�2π

λi
xi


cos

�2π

λj
xj


sin

�2π

λk
xk


(3.99)

2π�
0

cos θ

�
cos θ + sin θ

2 + 2 cos θ sin θ
+ cos θ − sin θ

2 − 2 cos θ sin θ
+ sinh−1(cos θ + sin θ)�

2 + 2 cos θ sin θ
�3/2 + sinh−1(cos θ − sin θ)�

2 − 2 cos θ sin θ
�3/2

�
dθ .

The integral remaining in (3.99) amounts to 4.188784. Thus, the first element of the series is

A0
1,ijℓℓ(x) = 4.1888

 −∆k (1 + ν0)
12π k0 (1 − ν0)


cos

�2π

λi
xi


cos

�2π

λj
xj


sin

�2π

λk
xk


. (3.100)
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The following element of the series A0
2,ijll(x) reads, after the introduction of the corre-

sponding Green’s functions from (3.55), as

A0
2,ijℓℓ(x) =

 −∆k (1 + ν0)
12π k0 (1 − ν0)

2 �
R3

� ∂2

∂xi ∂xj

1
|x − y|


sin

�2π

λ1
y1


sin

�2π

λ2
y2


sin

�2π

λ3
y3



∇2
� �
R3

� 1
|y − y′|


sin

�2π

λ1
y′

1


sin
�2π

λ2
y′

2


sin
�2π

λ3
y′

3


dV (y′)
�

dV (y) . (3.101)

After application of Poisson’s equation (3.71), (3.101) can be expressed as follows, when using
sin2(a) = 1

2 [1 − cos(2a)]

A0
2,ijℓℓ(x) =

 −∆k (1 + ν0)
12π k0 (1 − ν0)

2 �
R3

� ∂2

∂xi ∂xj

1
|x − y|


(3.102)

�
1 − cos

�
22π

λ1
y1

� �
1 − cos

�
22π

λ2
y2

� �
1 − cos

�
22π

λ3
y3

�
dV (y) .

Proceeding with an analogous process to the one carried out to obtain A0
1,ijll(x), i.e. variable

change to z = y − x, partial derivation with respect to zi and zj , change of the variable z′ =�
2π
λ1

z1, 2π
λ2

z2, 2π
λ3

z3

, integration over z′

i, change towards polar coordinate system (z′
j = ρ cos θ

and z′
k = ρ sin θ), integration over r and, lastly, integration over θ yield

A0
2,ijℓℓ(x) =

 −∆k (1 + ν0)
12π k0 (1 − ν0)

2
sin

�
22π

λi
xi


sin

�
22π

λj
xj

�
0.7854 − 0.5236 cos

�
22π

λk
xk

�
.

(3.103)
Similarly, the third element was computed as

A0
3,ijℓℓ(x) =

 −∆k (1 + ν0)
12π k0 (1 − ν0)

3�
1.767 sin

�2π

λi
xi


sin

�2π

λj
xj


cos

�2π

λk
xk


− (3.104)

0.482 sin
�
32π

λi
xi


sin

�2π

λj
xj


cos

�2π

λk
xk


− 0.482 sin

�2π

λi
xi


sin

�
32π

λj
xj


cos

�2π

λk
xk


−

0.161 sin
�2π

λi
xi


sin

�2π

λj
xj


cos

�
32π

λk
xk


+ 0.279 sin

�
32π

λi
xi


sin

�
32π

λj
xj


cos

�2π

λk
xk


+

0.093 sin
�
32π

λi
xi


sin

�2π

λj
xj


cos

�
32π

λk
xk


+ 0.093 sin

�2π

λi
xi


sin

�
32π

λj
xj


cos

�
32π

λk
xk



−0.065 sin
�
32π

λi
xi


sin

�
32π

λj
xj


cos

�
32π

λk
xk

�
.

For the following terms A0
n,ijll(x), corresponding substitution of Green’s functions (3.55)

and reiterated application of Poisson’s equation (3.71) yield

A0
n,ijℓℓ(x) =

 −∆k (1 + ν0)
12π k0 (1 − ν0)

n �
R3

� ∂2

∂xi ∂xj

1
|x − y|


sinn

�2π

λ1
y1


sinn

�2π

λ2
y2


sinn

�2π

λ3
y3


dV (y) .

(3.105)
These terms can be computed in the same manner as the previous ones, converging rapidly
due to the factor

� −∆k (1+ν0)
12π k0 (1−ν0)

�n
.
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3.4.4 Tensorial link between auxiliary and real macrostrains
For the present case, the RVE is regarded as any assembly of a finite number of fluctuations
which are periodically repeated, i.e.

x ∈ VRVE = n3
λ λ1 λ2 λ3 ⇐⇒


nλ (−λ1/2) ≤ x1 ≤ nλ (λ1/2) ,
nλ (−λ2/2) ≤ x2 ≤ nλ (λ2/2) ,
nλ (−λ3/2) ≤ x3 ≤ nλ (λ3/2) .

(3.106)

The real concentration tensor associated with this microstructure, A(x), is related to the
auxiliary concentration tensor calculated in the previous sections, A0(x), according to (3.14).
Thus, this section is devoted to the derivation of the tensorial link M, see (3.12). For the
sake of simplicity, the inverse of M, M−1, will be calculated first, and in order to obtain the
auxiliary-to-RVE tensor as

M =
�
M−1

−1
. (3.107)

Like in the previous sections, the components of tensor M−1 will be obtained individually.
The first components studied are M−1

iiii . Insertion of (3.83) into the inverse of (3.12) yields

M−1
iiii = 2

3

�
1

VRVE

�
VRVE

dV (x)
�
+ 1

VRVE

�
VRVE

1
1 + ∆k (1+ν0)

3 k0 (1−ν0) sin
�

2π
λ1

x1


sin
�

2π
λ2

x2


sin
�

2π
λ3

x3
 dV (x) .

(3.108)
Clearly, the term in square brackets is equal to 1, while we must focus on the other integral
expression

I = 1
VRVE

nλ (λ1/2)�
nλ (−λ1/2)

nλ (λ2/2)�
nλ (−λ2/2)

nλ (λ3/2)�
nλ (−λ3/2)

1
1 + ∆k (1+ν0)

3 k0 (1−ν0) sin
�

2π
λ1

x1


sin
�

2π
λ2

x2


sin
�

2π
λ3

x3
 dx1 dx2 dx3

= 1
λ1 λ2 λ3

λ1/2�
−λ1/2

λ2/2�
−λ2/2

λ3/2�
−λ3/2

1
1 + ∆k (1+ν0)

3 k0 (1−ν0) sin
�

2π
λ1

x1


sin
�

2π
λ2

x2


sin
�

2π
λ3

x3
 dx1 dx2 dx3 . (3.109)

Proceeding with a change of variable x′ =
�

2π
λ1

x1, 2π
λ2

x2, 2π
λ3

x3


yields

I =
� 1

2π

3
π�

−π

π�
−π

π�
−π

1
1 + ∆k (1+ν0)

3 k0 (1−ν0) sin(x′
1) sin(x′

2) sin(x′
3)

dx′
1 dx′

2 dx′
3 . (3.110)

Solving the integral for x′
1 yields

I =
� 1

2π

3
π�

−π

π�
−π

2 tan−1
�

ψ(x′
2,x′

3)+tan(π/2)√
1−ψ2(x′

2,x′
3)


$

1 − ψ2(x′
2, x′

3)
dx′

2 dx′
3 −

� 1
2π

3
π�

−π

π�
−π

2 tan−1
�

ψ(x′
2,x′

3)+tan(−π/2)√
1−ψ2(x′

2,x′
3)


$

1 − ψ2(x′
2, x′

3)
dx′

2 dx′
3

=
� 1

2π

3
π�

−π

π�
−π

2π$
1 − ψ2(x′

2, x′
3)

dx′
2 dx′

3 , (3.111)
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where ψ(x′
2, x′

3) = ∆k (1+ν0)
3 k0 (1−ν0) sin(x′

2) sin(x′
3). Integrating I with respect to x′

2 yields

I = 4π
� 1

2π

3
π�

−π

�
K

�� ∆k (1 + ν0)
3 k0 (1 − ν0)

�2
sin2(x′

3)


(3.112)

+ 1&
1 −

�
∆k (1+ν0)
3 k0 (1−ν0)

�2
sin2(x′

3)
K

 �
∆k (1+ν0)
3 k0 (1−ν0)

�2
sin2(x′

3)

1 −
�

∆k (1+ν0)
3 k0 (1−ν0)

�2
sin2(x′

3)

�
dx′

3 ,

where K(a) is the complete elliptic integral of the first kind with parameter a. The value
of I, see (3.112), has been obtained numerically by means of different integration methods,
including the trapezoidal or Simpson’s rule (Horwitz, 2001; Whittaker and Robinson, 1967),
for several values of K =

�
∆k (1+ν0)
3 k0 (1−ν0)

�
. The value of I is equal to 1 for K = 0, and increases

non-linearly with increasing K, see Fig. 3.2. Thus, from (3.108),
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Fig. 3.2. Numerical value of I, see (3.112), obtained for several values of K =
�

∆k (1+ν0)
3 k0 (1−ν0)

�
.

M−1
iiii = 2

3 + I(K) . (3.113)

The next components to be considered are M−1
iijj , with i ̸= j. They read, from (3.84) and

(3.112), as
M−1

iijj = −1
3 + I(K) , ∀i ̸= j . (3.114)

The shear components read as

M−1
ijij = 1 , ∀i ̸= j , (3.115)

and
M−1

ijkℓ = 0 , ∀i ̸= j , k ̸= ℓ , i ̸= k , j ̸= ℓ . (3.116)
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3.4.5 Homogenized stiffness of harmonically fluctuating microstructure
From (3.16), the difference between the homogenized stiffness and the background stiffness C0

reads as

∆Chom = Chom − C0 =
�

1
VRVE

�
VRVE



c(x) − C0�

: A0(x) dV (x)
�

: M . (3.117)

One more time, the components of this tensor will be obtained individually. The only
non-vanishing components ∆Chom,ijkℓ are those with i = j, due to



cijkℓ(x) − C0

ijkℓ

�
= ∆k sin

�2π

λ1
x1


sin

�2π

λ2
x2


sin

�2π

λ3
x3


δij δkℓ . (3.118)

Moreover, noting (3.87), the components ∆Chom,iikℓ read as

∆Chom,iikℓ =
3*

p=1

3*
q=1

�
1

VRVE

�
VRVE

∆k sin
�2π

λ1
x1


sin

�2π

λ2
x2


sin

�2π

λ3
x3


A0

ppqq(x) dV (x)
�
Mqqkℓ .

(3.119)
Thus, inserting (3.83) and (3.84) into (3.119) and applying x′ = 2π

λ x yields

∆Chom,iikℓ =
�

9∆k

(2π)3

�
V ′

RVE

sin
�
x′

1
�

sin
�
x′

2
�

sin
�
x′

3
�

1 + ∆k (1+ν0)
3 k0 (1−ν0) sin

�
x′

1
�

sin
�
x′

2
�

sin
�
x′

3
� dV (x′)

� 3*
q=1

Mqqkℓ . (3.120)

Integrating (3.120) with respect to x′
1 from −π to π yields

∆Chom,iikℓ = 27k0 (1 − ν0)
(1 + ν0)(2π)3

� π�
−π

π�
−π

2π dx′
2 dx′

3 −
π�

−π

π�
−π

2π$
1 − ψ2(x′

2, x′
3)

dx′
2 dx′

3

� 3*
q=1

Mqqkℓ

= 27k0 (1 − ν0)
(1 + ν0)

�
1 − I(K)

� 3*
q=1

Mqqkℓ , (3.121)

whereby we have made use of (3.111). Clearly, for the stiffness field (3.47), the following
components vanish

∆Chom,ijkℓ = 0 , ∀i ̸= j . (3.122)

Moreover, components
∆Chom,ijkℓ = 0 , ∀k ̸= ℓ , (3.123)

since Miikℓ = 0, ∀k ̸= ℓ, see (3.107) and (3.116).

3.5 Discussion
It is worthwhile to discuss key characteristics of the convolution integral-type mathematical
relations for the concentration tensor fields introduced in the present paper. As it is well
known that the Green kernel occurring in this integral expressions is singular at the point
x = y, the corresponding convolutions need to be carried out with care, and it is therefore
interesting to compare the solution strategy based on the Poisson’s equation, as applied
throughout Section 3.4, with the more traditional way of evaluating such integrals, namely by
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introducing an infinitesimally small sphere around the singularity, and by transforming the
volume integral within that sphere to a surface integral across the sphere’s surface. This will
be covered in the first subsection of the present Discussion section.

It is also instructive to compare our approach to earlier suggestions for the use of a
Fredholm integral equation similar to (3.36), often referred to as the Lippmann-Schwinger
equation; in particular so concerning the domain over which the convolution integral is
evaluated, the type of polarization field considered, and the relation of the Fredholm integral
equation to the macroscopic strain associated with the RVE. This is topic of the second
subsection of the present Discussion section.

Finally, we discuss the range of validity of the Fredholm integral equation (3.36), and the
practical evaluation of the concentration tensor expressions in the case of microstructures
which are more general than that with the harmonically fluctuating microscopic bulk moduli
covered in Section 3.4. Corresponding deliberations conclude the present Discussion section.

3.5.1 Singular convolution integrals - alternative evaluation by means of
Cauchy principal value

All integral expressions defining concentration tensor fields, such as (3.14), (3.41)–(3.43),
(3.48), (3.62), and (3.67), exhibit singularities at x = y, i.e. at x − y = −z = 0. In Section 3.4,
we circumvented a direct treatment of this singularity, when evaluating (3.67) from the solution
of the Poisson’s equation, in combination with an auxiliary function in z′, which allowed for
“taking” the singularity “out of the integration domain”. In order to check the relevance of
this strategy, we here evaluate the integral in (3.67) by an alternative approach, sometimes
referred to as the Cauchy principal value analysis. Therefore, the integral in (3.67) is split
into two portions associated with two integration domains: The first one is a sphere around
the singular point (with a variable radius ϵ, eventually tending towards zero), and the second
one is the remaining (unbounded) three-dimensional space.

Denoting the small spherical domain as V ϵ, the integral in (3.67) can be recast as, see e.g.
Buryachenko (2007), p. 54,�

V ϵ

∂2

∂z2
1

� 1
|z|


f(z) dV (z) =

�
V ϵ

∂2

∂z2
1

� 1
|z|

 

f(z) − f(0)

�
dV (z) +

� �
V ϵ

∂2

∂z2
1

� 1
|z|


dV (z)

�
f(0) ,

(3.124)
whereby

f(z) = cos
�2π

λ
z1


cos

�2π

λ
z2


cos

�2π

λ
z3


, (3.125)

is fully in line with the developments of (3.69) and (3.70).
As stated before, we are interested in the limit case of ϵ → 0

lim
ϵ→0

�
V ϵ

∂2

∂z2
1

� 1
|z|

 

f(z) − f(0)

�
dV (z) = 0 , (3.126)

so that

lim
ϵ→0

�
V ϵ

∂2

∂z2
1

� 1
|z|


f(z) dV (z) = lim

ϵ→0

� �
V ϵ

∂2

∂z2
1

� 1
|z|


dV (z)

�
f(0) = lim

ϵ→0

� �
Sϵ

∂

∂z1

� 1
|z|


n1 dS(z)

�
f(0) ,

(3.127)
whereby we made use of the divergence theorem, with underline n standing for the outward
normal onto the spherical surface. Notably, the surface integral in (3.127) does not exhibit
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any singularity any more, since the radius ϵ, however small it may become, never actually
reaches zero, so that the integrand in the last integral of (3.127) always stays finite. Let us
evaluate the latter in more detail: Realizing that

ϵ = |x − y| = | − z| = |z| =
�
z2

1 + z2
2 + z2

3
�1/2

, (3.128)

the integrand in the surface integral of (3.127) can be transformed to

∂

∂z1

��
z2

1 + z2
2 + z2

3
�−1/2�

= −z1
�
z2

1 + z2
2 + z2

3
�−3/2 = −z1

ϵ3 . (3.129)

Then, the surface integral in (3.127) is preferably evaluated in spherical coordinates, where

z1 = ϵ cos ϕ sin θ , (3.130)

n1 = cos ϕ sin θ , (3.131)

dS = ϵ2 sin θ dϕ dθ . (3.132)

so that use of (3.129)–(3.132) in the surface integral of (3.127) yields an expression which
becomes independent of ϵ, and hence, of the limiting process. In mathematical detail, we have

lim
ϵ→0

� �
Sϵ

∂

∂z1

� 1
|z|


n1 dS(z)

�
f(0) =

�
−

π�
θ=0

sin3 θ dθ

� 2π

ϕ=0
cos2 ϕ dϕ

�
f(0) = −4π

3 . (3.133)

which proves the result obtained in (3.73) and (3.67); the latter turning out to be the Cauchy
principal value of the singular surface integral of (3.127).

Accordingly, the small spherical integration domain yields the solution of the entire volume
integral (spanning also the entire three-dimensional space outside the small spherical domain);
hence, the integral of (3.60), when evaluated over the three-dimensional space expect for the
small sphere enclosing the singularity at the origin z = 0, vanishes. This last statement can
also be found in the book of Buryachenko (2007), namely as the last equation of (3.29) in the
aforementioned reference.

The situation is totally different when it comes to the shear-related concentration tensor
components according to (3.90): there, the Cauchy principal value needed to multiplied by
sin(0) = 0 so that the integration over the small sphere delivers zero, and it is the domain
outside the small sphere, which solely contributes to the integral in (3.90). A procedure for
solving this regular integral was presented, see (3.91)–(3.100).

3.5.2 Use of the Lippmann-Schwinger equation: auxiliary problems,
integration domains, and macroscopic strains associated with the
RVE

From a terminological viewpoint, we note that equations of the format (3.36), irrespective of
the chosen integration domains or the format of the polarization stresses, are often referred to
as the Lippmann-Schwinger equation, as a similar equation has been proposed by Lippmann
and Schwinger (1950) in the field of quantum mechanics. In this context, it is interesting to
compare our present contribution to earlier micromechanical applications of the Lippmann-
Schwinger equation: A form which is virtually identical to (3.36) appears as Equation (9) in
(Molinari and El Mouden, 1996); except for a sign change stemming from the definition of the
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fourth-order Green operator as the twofold gradient with respect to x (which is differing from
our definition (3.35)). Mathematically speaking, the aforementioned sign change is due to

gradxgradxG(x − y) = −gradS
x gradyG(x − y) . (3.134)

However, the actual use of Equation (9) in (Molinari and El Mouden, 1996) is quite different
from our present use of (3.36), as Molinari and El Mouden (1996) introduce an infinite
number of uniform subfields of microscopic stiffnesses, representing strongly interacting
“elastic inclusions” within an RVE of a composite material. At the same time, as a certain
commonality of the approach of Molinari and El Mouden (1996) and our present contribution,
we note that the latter authors’ strain ε0 plays exactly the role of our auxiliary strain E0: it is
the strain applied to the auxiliary homogeneous, infinite matrix which undergoes polarization
stresses. However, different from our approach to solve this auxiliary problem so as to provide
the microscopic strains as a function of the auxiliary strains, Molinari and El Mouden (1996)
apply the strain average rule directly to the Fredholm integral equation, i.e. to their Equation
(9), and they discuss explicit solutions for finite numbers of inclusions within a periodically
repeating cubic cell. In this context, Molinari and El Mouden (1996) apply the strain average
rule to an infinite domain, as can be seen from their Equation (15), while our Eq. (3.12) is
clearly related to the (finite) RVE, and hence to the Hashin displacement boundary conditions
imposed onto the latter according to (3.1). We also note that neither Equation (9) nor
Equation (16) in (Molinari and El Mouden, 1996) give access to the concentration tensor
fields - so that the expression (3.14), together with (3.41)–(3.43), turn out as an interesting
original aspect of the present paper.

(3.36) of the present paper is also reminiscent of Equation (2.28) in (Torquato, 1997).
However, different from our approach, Torquato (1997) restricts a non-vanishing polarization
field to a finite domain within his infinitely large auxiliary problem subjected to some auxiliary
strain ε0, the role of which is comparable to our auxiliary strain E0. In this context, he
notes that the result of the corresponding convolution integral depends on the shape of the
aforementioned fintie domain, a situation which does not occur in our anaylsis in which the
convolution integrals are evaluated throughout the unbounded auxiliary matrix. Eventually,
Torquato (1997) lets his finite polarization domain coincide with the RVE of an anisotropic
two-phase composite, for which he identifies stiffness series expansions in powers of “elastic
polarizabilities”.

A further difference appears between (3.36) of the present contribution and the formally
similar Equation (4) of the famous paper of Moulinec and Suquet (1994), see also (Moulinec
and Suquet, 1998). The latter authors introduce the convolution integral directly on the
(finite) RVE, noting that a corresponding explicit Green’s function can only be given in the
case of periodic displacement boundary conditions imposed onto the RVE, and of correspond-
ing microscopic strains which fluctuate periodically around their average (i.e., around the
macroscopic strain). Namely, it is under this periodicity condition, that an explicit solution for
the convolution problem exists in the Fourier space, which, in turn, allows for the development
of a very efficient algorithm for the mechanical treatment of images made up of pixels or
voxels, with the polarization stress being constant throughout one pixel or voxel, respectively.

Green’s operators in convolution integrals over a finite volume (i.e. differing from our
present integration over an infinite auxiliary domain) have been already introduced in the
1970s: In this context, Zeller and Dederichs (1973) noted that the corresponding Green’s
functions read as G(x, y) = G(y, x), rather than G(x − y) = G(y − x), an aspect which was
overlooked by Korringa (1973). However, explicit expressions for the aforementioned Green’s
functions are not available, so that Zeller and Dederichs (1973) restricted their analysis to
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series expansions for small stiffness fluctations, while Kröner (1977) uses convolution integrals
over finite volumes for the derivation of bounds for the effective elastic moduli of disordered
materials.

Our iterative scheme for solving the Fredholm integral equation (3.36) also bears some
similarities with earlier contributions in the field: Kröner (1977) presents an iterative solution
for the Lippmann-Schwinger equation formulated directly on the RVE, and Torquato (1997)
proposes an iterative scheme which finally delivers the polarization stress as a function of the
homogeneous auxiliary strain ε0.

3.5.3 Range of validity of Lippmann-Schwinger equation
The practical relevance of the case where the polarization stresses in (33) outweigh the effect
microscopic volume forces, which is the prerequisite for the Lippmann-Schwinger equation
(3.36) to hold, deserves further discussion: Within the representative volume element (RVE),
the microscopic stresses σ fluctuate around their spatial average, which is the macroscopic
stress Σ, and the characteristic length scale d of this fluctuation is scale-separated from the
length of the RVE, ℓRV E , which reads mathematically as

∂(σ − Σ)
∂x

= ∂σ

∂x
, with ||σ||

||∂σ
∂x || = d . (3.135)

Due to the mathematical structure (5) of the microscopic equilibrium conditions, any micro-
scopic volume forces leading to microscopic stress fluctuation are required to change their sign,
i.e. their direction, over distances as small as d. Practically speaking, this is an exceptional
case: Even if in composites with high contrast in mass density, the corresponding gravita-
tional forces of varying magnitude would always share the same direction; or in other words,
practically relevant force fields are often parallel within the RVE. We note in passing, that
such micro-parallel force field, directly implying the validity of (36), even fulfill a force field
average rule (Jiménez Segura et al., 2022b).

3.5.4 Practical note concerning non-harmonic microstiffness fluctuations
Finally, we discuss which aspects of Section 3.4 hold beyond the restriction to harmonically
fluctuating microstiffnesses, and how the semi-analytical solutions presented in this section
may be generalized to non-harmonic microstiffness fluctuations. In this context, the key
generalization step would the representation of any, arbitrarily general continuous microstiffness
distribution across a finite RVE by a three-dimensional Fourier series. Generalizing, in this way,
the example distribution of (3.47) to an arbitrarily inhomogenous bulk modulus distribution
∆k(x1, x2, x3) yields

c(x) = C0 + 3
∞*
k

∞*
l

∞*
m

cklm exp
�
2πi

�kx1
λ1

+ lx2
λ2

+ mx3
λ3

�
, (3.136)

with i now standing for the imaginary unit, and with the Fourier coefficients cklm being
obtained from

cklm =
� a

−a

� a

−a

� a

−a
exp

�
− 2πi

�kx1
λ1

+ lx2
λ2

+ mx3
λ3

�
∆k(x1, x2, x3)dx1dx2dx3 (3.137)

In other words, sums of products of any three trigonometric functions, be they sine or cosine,
– rather than the product of three sine or three cosine terms – would occur throughout the
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convolution integrals. However, the effect on the corresponding modifications of Eq.(3.63) and
(3.90) are only minor: Thanks to (3.64) and

cos (a + b) = cos(a) cos(b) − sin(a) sin(b) , (3.138)

the structure of the integrals in (3.67) and (3.93) stay unaffected. This shows the considerable
potential of our method for material investigation based on Fourier-representation of images -
as an interesting complement to the popular voxel-based FFT schemes.

3.6 Conclusions
The effects of elastic behavior at the microscale are represented by means of the Green’s
function formalism, leading to Fredholm integral equations which provide novel, series-type
integral expressions for the concentration tensor field. The latter may be analytically solved
in special cases, providing an unprecedented direct access to macro-to-micro scale transition
relations, as expressed by the concentration tensor expressions (3.14), (3.41)–(3.43), (3.83),
(3.84), and (3.105). This opens new avenues for exploring the mechanical effect of eigenstrains
in hierarchical material systems with complex morphologies, as an interesting alternative to
classical computational homogenization. The new approach also provides semi-analytical access
to the homogenized stiffness, such as the calculated for a microstructure with harmonically
fluctuating bulk moduli, see (3.16) and (3.121). Since I(K) ≥ 1, see Fig. 3.2, the resulting
homogenized stiffness, Chom, is smaller than or equal to the average stiffness, C0. This is fully
consistent with the famous result of Voigt (1889) that average over the microstiffness is larger
the homogenized stiffness, in the sense that (Zaoui, 2002)

E :
�
⟨AT : c : A⟩ − Chom


: E ≥ 0 , ∀E . (3.139)
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4.1 Introduction
The strain concentration tensor, coined in a landmark paper of Hill (Hill, 1963), is a central
notion in the wide field of composite mechanics or continuum micromechanics (Zaoui, 2002).
In linear elastic media, it assigns the macroscopic strains E associated with the classical
macroscopically infinitesimal volume element of continuum mechanics, to the microscopic
strains εr, r = 1, . . . , Nr, associated to Nr subdomains or phases inside a microscopically finite
representative volume element (RVE) which coincides with the aforementioned macroscopic
volume element. Mathematically, this macro-to-micro linking is expressed as

εr = Ar : E , ∀r = 1, . . . , Nr , (4.1)

with Ar as the fourth-order strain concentration tensor of phase r, and Nr denoting the number
of phases. Equivalently, a stress concentration tensor links macroscopic and microscopic
stresses. The significance of these concentration tensors extends beyond the narrower field
of elasticity homogenization; as it also allows for upscaling of non-elastic properties, such
as eigenstrains/eigenstresses (Levin, 1967; Rosen and Hashin, 1970; Wang et al., 2018) or
strength properties of elasto-brittle materials (Fritsch et al., 2009; Sanahuja et al., 2010;
Fritsch et al., 2013; Königsberger et al., 2018).

A particularly popular and versatile method for estimating the strain concentration tensors
Ar of composites consisting of one matrix phase and one or several inclusion phases is the
so-called Mori-Tanaka homogenization scheme (Mori and Tanaka, 1973; Benveniste, 1987;
Benveniste et al., 1991; Zaoui, 2002), where the phase strains are approximated by the strains
in one Eshelbian inhomogeneity (Eshelby, 1957) embedded into an infinite matrix (with the
elastic properties of the matrix phase). This infinite matrix is subjected to remote (auxiliary)
strains, with the latter arising from the fulfillment of the strain average rule (Hashin, 1983)

Nr*
r=1

fr εr = E , (4.2)

whereby fr stands for the volume fraction of phase r.
However, depending on the chosen shapes and elastic properties of the inclusion phases, the

Mori-Tanaka estimates of the homogenized stiffness may violate the symmetry requirements
for elasticity tensors, so that the Mori-Tanaka scheme is only physically relevant if at least
one of the following three conditions is met:

1. all phases and the overall composite behave isotropically (Sevostianov and Kachanov,
2014; Ferrari, 1991);

2. all inclusion phases have the same stiffness (Benveniste et al., 1991; Sevostianov and
Kachanov, 2014);

3. all inclusion phases have the same shape and the same orientation (Benveniste et al.,
1989, 1991; Sevostianov and Kachanov, 2014).

While these limitations have been classically deplored, Sevostianov and Kachanov (2014)
took a radically different perspective on the topic, by actively symmetrizing the Mori-Tanaka-
derived non-symmetric elastic stiffness tensors. This interesting approach motivates the present
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paper; proposing a scheme which is still based on Eshelby’s inhomogeneity problem as a good
tool for the approximation of inclusion phase strains, while overcoming the aforementioned
limitations. In more detail, we will show that the source of these limitations is the classical
assumption of the matrix phase strains to coincide with the auxiliary remote strains of Eshelby’s
inhomogeneity problem. As a remedy, we will not require this coincidence, and instead, we will
explicitly introduce a multilinear relation between macroscopic strains and Eshelby problem-
related auxiliary strains, defined through a newly introduced fourth-order RVE-to-remote
strain conversion tensor whose form will be derived from the actively symmetrized form of
the multiphase Mori-Tanaka estimate. The corresponding mathematical derivations are found
in Section 2 of the present paper, and complemented by a numerical benchmark example, see
Section 3, followed by Conclusions, see Section 4.

4.2 Mathematical derivation of elastic symmetry-preserving
concentration tensors

Our starting point is the famous idea of Mori and Tanaka (Mori and Tanaka, 1973; Benveniste,
1987) to relate the macroscopic strains E imposed onto the boundary of the RVE to strains E∞
associated with Eshelby’s inhomogeneity problem (Eshelby, 1957), consisting of an ellipsoidal
domain of stiffness ci (the inhomogeneity), which is embedded into an infinite matrix with
stiffness cm, see Fig. 4.1. The latter matrix is subjected to uniform strains E∞ at infinity.
For this problem, classical analytical solutions (Eshelby, 1957; Laws, 1977) link E∞ to the

uniform strains at infinity:
ε(x → ∞) = E∞

infinite 3D matrix:
stiffness: cm

ellipsoidal (3D) inclusion:
stiffness: ci

Fig. 4.1. Two-dimensional sketch illustrating Eshelby’s three-dimensional matrix-
inhomogeneity problem: E∞ denotes the remote strain, x is the position vector, while
cm and ci, respectively, are the stiffness tensors of the matrix, and of the ellipsoidal inhomo-
geneity.

uniform strains in the inhomogeneity; and these solutions are repeatedly used for estimating
the microscopic strains within the RVE, in particular so the strains in Ni = (Nr − 1) inclusion
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phases which are all surrounded by a matrix phase, according to

εi = A∞
i : E∞ , ∀i = 1, . . . , Ni , (4.3)

where
A∞

i =
�
I + Pi :

�
ci − cm

��−1
, ∀i = 1, . . . , Ni . (4.4)

In (4.4), I stands for the symmetric fourth-order identity tensor, the morphology tensor Pi

accounts for the shape and orientation of the inclusion, while cm and ci, respectively, are the
stiffness tensors of the matrix, and of the ellipsoidal inhomogeneity. However, different from
the traditional approach (Mori and Tanaka, 1973; Benveniste, 1987), we do not apply (4.3) to
the matrix phase itself, i.e. we do not actively impose εm = E∞, but we introduce a general
multilinear form linking E∞ and E, reading as

E∞ = M : E , (4.5)

with a fourth-order RVE-to-remote strain conversion tensor M. Insertion of (4.5) into (4.3) and
comparison with (4.1) yields

Ai = A∞
i : M . (4.6)

The format of M is now derived from the required symmetry of the homogenized stiffness
tensor. Standardly, the latter arises from introduction of phase elasticity tensors cr linking
microscopic phase strains to microscopic phase stresses σr,

σr = cr : εr . (4.7)

Insertion of (4.1) into (4.7), and subsequent averaging over the microscopic stresses according
to the stress average rule (Hori and Nemat-Nasser, 1999; Jiménez Segura et al., 2022b),

Σ =
Nr*
r=1

fr σr , (4.8)

leads to a macroscopic elastic law of the format

Σ = Chom : E , (4.9)

with the homogenized stiffness tensor Chom reading as (Hill, 1963; Laws, 1973; Zaoui, 2002)

Chom =
Nr*
r=1

fr cr : Ar . (4.10)

In addition, the average condition for strain concentration tensors follows from (4.1) and (4.2)
as

Nr*
r=1

fr Ar = I . (4.11)

Expressing, via (4.11), the matrix phase concentration tensor in terms of the concentration ten-
sors of all other phases, and insertion of the corresponding result into (4.10), while considering
the newly introduced conversion tensor M, yields

Chom = cm +
Ni*
i=1

fi (ci − cm) : A∞
i : M , (4.12)
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whereby the second term on the right-hand side of (4.12) may be referred to as inclusion-related
stiffness contribution tensor (Sevostianov and Kachanov, 2014). Symmetry of the homogenized
stiffness tensor expression, in the sense of Chom,ijkℓ = Chom,kℓij , requires symmetry of the
inclusion-related stiffness contribution tensor, which mathematically reads as

Ni*
i=1

fi
�
ci − cm

�
: A∞

i : M =
 Ni*

i=1
fi

�
ci − cm

�
: A∞

i : M
T

, (4.13)

whereby the transpose operator T refers to the operation XT
ijkℓ = Xkℓij . In order to identify

the conversion tensor M, we adopt the 2014 proposition of Sevostianov and Kachanov (2014) to
straightforwardly symmetrize the results from conventional Mori-Tanaka multiphase homoge-
nization theory. According to the latter, the homogenized stiffness tensor reads as (Benveniste
et al., 1991)

Chom = cm +
 Ni*

i=1
fi (ci − cm) : A∞

i


:


fmI +

Ni*
i=1

fiA
∞
i

−1
. (4.14)

When employing the tensor operation rules X : Y−1 =
�
Y : X−1�−1, with X = +Ni

i=1 fi (ci −cm) :
A∞

i and Y−1 =
�
fmI + +Ni

i=1 fiA∞
i

�−1, (4.14) can be transformed to

Chom = cm +


fm

� Ni*
i=1

fi (ci − cm) : A∞
i

�−1
+

� Ni*
i=1

fi A∞
i


:

� Ni*
i=1

fi (ci − cm) : A∞
i

�−1
−1
.

(4.15)
We observe that both cm and (ci − cm) : A∞

i are symmetric; the latter term exhibits this
symmetry because of

(ci − cm) : A∞
i =

�
(ci − cm)−1 + Pi

�−1
, (4.16)

with the Hill tensor Pi being symmetric. Accordingly, symmetrization SYM(X) = 1
2X + 1

2XT

of the second term in the curly brackets of (4.15) yields

SYM
� � Ni*

i=1
fi A∞

i


:

� Ni*
i=1

fi (ci − cm) : A∞
i

�−1
�

= (4.17)

1
2

� Ni*
i=1

fi A∞
i


:

� Ni*
i=1

fi (ci − cm) : A∞
i

�−1

+ 1
2

� Ni*
i=1

fi (ci − cm) : A∞
i

�−1
:

� Ni*
i=1

fi (A∞
i )T


,

and since the inverse of a symmetric tensor is again a symmetric tensor, the symmetrized
form of (4.15) reads as

Chom,sym = cm +


fm

� Ni*
i=1

fi (ci − cm) : A∞
i

�−1
+ 1

2
� Ni*

i=1
fi A∞

i


:

� Ni*
i=1

fi (ci − cm) : A∞
i

�−1

+ 1
2

� Ni*
i=1

fi (ci − cm) : A∞
i

�−1
:

� Ni*
i=1

fi (A∞
i )T


−1
, (4.18)
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whereby we have made use of (4.17). Comparing expression (4.18) with the format (4.12)
yields the RVE-to-remote strain conversion tensor as

M =


fm I +
� Ni*

i=1
fi A∞

i


− 1

2

� Ni*
i=1

fi A∞
i


:

� Ni*
i=1

fi (ci − cm) : A∞
i

−1
(4.19)

−
� Ni*

i=1
fi (ci − cm) : A∞

i

−1
:

� Ni*
i=1

fi (A∞
i )T


:

� Ni*
i=1

fi (ci − cm) : A∞
i


−1
,

while the concentration tensors for the inclusion phases follow from insertion of (4.19) into
(4.6) as

Ai = A∞
i :


fm I +

� Ni*
i=1

fi A∞
i


− 1

2

� Ni*
i=1

fi A∞
i


:

� Ni*
i=1

fi (ci − cm) : A∞
i

−1
(4.20)

−
� Ni*

i=1
fi (ci − cm) : A∞

i

−1
:

� Ni*
i=1

fi (A∞
i )T


:

� Ni*
i=1

fi (ci − cm) : A∞
i


−1
.

Eventually, use of the average condition for strain concentration tensors (4.11) allows for
deriving the concentration tensor for the matrix phase as

Am = 1
fm

�
I −

Ni*
i=1

fi Ai


. (4.21)

4.3 Benchmark example
A benchmark example is used to illustrate features of the novel concentration tensors. It refers
to a matrix-inclusion composite with two types of inclusions. The specific materials of the
example are a Ti3Al matrix, one carbon spherical phase (index 1, aspect ratio ω1 = 1) and one
steel prolate phase (index 2, aspect ratio ω2 = 3, major axis aligned with the 3-direction), see
Fig. 4.2 and Table 4.1 for the volume fractions and the isotropic elastic stiffness constants of
the three material phases. The chosen benchmark example is problematic from the viewpoint

Table 4.1
Volume fractions and isotropic elastic stiffness constants of the three material phases of the
benchmark material, illustrated in Fig. 4.2.

property matrix phase inclusion phase 1 inclusion phase 2
volume fraction fm = 0.60 f1 = 0.25 f2 = 0.15
bulk modulus km = 80.63 GPa k1 = 19.29 GPa k2 = 160.0 GPa
shear modulus µm = 37.10 GPa µ1 = 14.30 GPa µ2 = 79.30 GPa
phase shape – spherical prolate
aspect ratio – ω1 = 1 ω2 = 3

of the classical Mori-Tanaka scheme, because the homogenized composite is neither isotropic,
nor do the inclusion phases have the same stiffness, nor do the inclusion phases have the same
shape and orientation, see (Benveniste et al., 1989; Ferrari, 1991; Sevostianov and Kachanov,
2014).
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matrix phase: m

prolate inclusion: 2

spherical inclusion: 1

x2

x3

Fig. 4.2. Benchmark material: matrix-inclusion composite with two types of inclusions,
one spherical phase (index 1, aspect ratio ω1 = 1) and one prolate phase (index 2, aspect
ratio ω2 = 3, major axis aligned with the 3-direction), see Table 4.1 for the volume fractions
and the isotropic elastic stiffness constants of the three material phases; two-dimensional
representation showing qualitative properties of a three-dimensional RVE.

The isotropic stiffness tensors of the phases are obtained as

cj = 3kj Ivol + 2µj Idev, (4.22)

where Ivol and Idev denote the volumetric and deviatoric part of the symmetric fourth-order
identity tensor. Their components read as Ivol

ijkℓ = 1
3 δij δkℓ and Idev

ijkℓ = 1
2 [δik δjℓ + δiℓ δjk] −

1
3 δij δkℓ, with δij denoting the Kronecker delta which is equal to 1 for i = j and equal to 0
otherwise. The components of a tensor Xijkℓ with so-called minor symmetries Xijkℓ = Xjikℓ

and Xijkℓ = Xijℓk can be represented in Kelvin-Mandel-Walpole notation (Walpole, 1984;
Rychlewski, 1984; Cowin, 2003; Helnwein, 2001) as a 6 × 6 matrix:

X =



X1111 X1122 X1133
√

2 X1123
√

2 X1131
√

2 X1112
X2211 X2222 X2233

√
2 X2223

√
2 X2231

√
2 X2212

X3311 X3322 X3333
√

2 X3323
√

2 X3331
√

2 X3312√
2 X2311

√
2 X2322

√
2 X2333 2 X2323 2 X2331 2 X2312√

2 X3111
√

2 X3122
√

2 X3133 2 X3123 2 X3131 2 X3112√
2 X1211

√
2 X1222

√
2 X1233 2 X1223 2 X1231 2 X1212


. (4.23)

The morphology tensor of a spherical inhomogeneity in an isotropic matrix with bulk
modulus k0 and shear modulus µ0 reads as (Hill, 1965a; Dvorak, 2012)

Psph = Pvol Ivol + Pdev Idev , (4.24)

with Pvol = 1
3k0+4µ0

and Pdev = 3(k0+2µ0)
5µ0(3k0+4µ0) . Insertion of the numerical values from Table 4.1

into (4.24) yields the morphology tensor of inclusion phase 1, reading as

P1 =



+5.1312 −1.2845 −1.2845 0 0 0
−1.2845 +5.1312 −1.2845 0 0 0
−1.2845 −1.2845 +5.1312 0 0 0

0 0 0 +6.4157 0 0
0 0 0 0 +6.4157 0
0 0 0 0 0 +6.4157


× 10−3 GPa−1 . (4.25)
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The morphology tensor of a prolate inclusion with aspect ratio ω > 1 embedded in the
same isotropic matrix reads, in Walpole notation, as (Ponte-Castañeda and Willis, 1995;
Dvorak, 2012)

Ppro = 2Kp W1 + Lp
�
W2 + W3

�
+ Hp W4 + 2Mp W5 + 2Pp W6 , (4.26)

with Kp = µ0(7h−2ω2−4ω2 h)+3k0(h−2ω2+2ω2 h)
8µ0(1−ω2)(4µ0+3k0) , Lp = (2ω2−2ω2 h−h)(µ0+3k0)

4µ0(1−ω2)(4µ0+3k0) , Hp = µ0(6−5h−8ω2+8ω2 h)+3k0(h−2ω2+2ω2 h)
2µ0(1−ω2)(4µ0+3k0) ,

Mp = µ0(15h−2ω2−12ω2 h)+3k0(3h−2ω2)
16µ0(1−ω2)(4µ0+3k0) , and Pp = 2µ0(4−3h−2ω2)+3k0(2−3h+2ω2−3ω2 h)

8µ0(1−ω2)(4µ0+3k0) , where h =
ω ω

√
ω2−1−acosh ω

(ω2−1)
√

ω2−1 . The Walpole base, in Kelvin-Mandel-Walpole notation, reads as (Walpole,
1984):

W1 = 1
2



1 1 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, W2 =



0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, W3 =



0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,(4.27)

W4 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, W5 = 1

2



1 −1 0 0 0 0
−1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 2


, W6 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0


.

Insertion of the numerical values from Table 4.1 into (4.26), together with (4.27), yields the
morphology tensor of inclusion phase 2, reading as

P2 =



+6.0532 −1.9863 −0.6416 0 0 0
−1.9863 +6.0532 −0.6416 0 0 0
−0.6416 −0.6416 +2.1187 0 0 0

0 0 0 +6.1880 0 0
0 0 0 0 +6.1880 0
0 0 0 0 0 +8.0395


× 10−3 GPa−1 . (4.28)

The Eshelby problem-related auxiliary strain concentration tensors of the inclusion phases
are computed from (4.4), yielding

A∞
1 =



+1.5731 +0.1596 +0.1596 0 0 0
+0.1596 +1.5731 +0.1596 0 0 0
+0.1596 +0.1596 +1.5731 0 0 0

0 0 0 +1.4135 0 0
0 0 0 0 +1.4135 0
0 0 0 0 0 +1.4135


, (4.29)

A∞
2 =



+5.9261 −0.0315 −0.5855 0 0 0
−0.0315 +5.9261 −0.5855 0 0 0
+0.0547 +0.0547 +8.1750 0 0 0

0 0 0 +6.5692 0 0
0 0 0 0 +6.5692 0
0 0 0 0 0 +5.9576


× 10−1 , (4.30)
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the RVE-to-remote strain conversion tensor is computed from (4.19), yielding

M =



+9.3326 −0.2574 −0.1607 0 0 0
−0.2574 +9.3326 −0.1607 0 0 0
−0.4982 −0.4982 +8.8409 0 0 0

0 0 0 +9.5064 0 0
0 0 0 0 +9.5064 0
0 0 0 0 0 +9.5900


× 10−1, (4.31)

and the strain concentration tensors of the inclusion and the matrix phases are computed
from (4.20) and (4.21), respectively, yielding

A1 =



+1.4560 +0.1005 +0.1132 0 0 0
+0.1005 +1.4560 +0.1132 0 0 0
+0.0664 +0.0664 +1.3856 0 0 0

0 0 0 +1.3438 0 0
0 0 0 0 +1.3438 0
0 0 0 0 0 +1.3556


, (4.32)

A2 =



+5.5605 −0.1528 −0.6123 0 0 0
−0.1528 +5.5605 −0.6123 0 0 0
−0.3576 −0.3576 +7.2257 0 0 0

0 0 0 +6.2449 0 0
0 0 0 0 +6.2449 0
0 0 0 0 0 +5.7134


× 10−1, (4.33)

Am =



+9.2097 −0.3804 −0.3187 0 0 0
−0.3804 +9.2097 −0.3187 0 0 0
−0.1874 −0.1874 +9.0868 0 0 0

0 0 0 +9.5064 0 0
0 0 0 0 +9.5064 0
0 0 0 0 0 +9.5900


× 10−1. (4.34)

Because the chosen example is a “problematic case” where the classical Mori-Tanaka approach
does not provide appropriate results, M and Am are different, compare (4.31) with (4.34).
Finally, the symmetric homogenized stiffness tensor is computed from (4.10), yielding

Chom =



+1.0570 +0.3972 +0.3985 0 0 0
+0.3972 +1.0570 +0.3985 0 0 0
+0.3985 +0.3985 +1.0947 0 0 0

0 0 0 +0.6679 0 0
0 0 0 0 +0.6679 0
0 0 0 0 0 +0.6598


× 102 GPa . (4.35)

Source code available in Appendix A.

4.4 Conclusions
Great efforts have been undertaken to clearly delineate the potentials and limitations of the
multiphase Mori-Tanaka scheme when it comes to the violation of the symmetry requirements
of the homogenized elasticity tensor (Benveniste et al., 1989, 1991; Ferrari, 1991) and this
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violation was traditionally assigned to some type of physical deficiency of the Mori-Tanaka
scheme. However, after presenting a very concise and comprehensive account of all the
cases where the Mori-Tanaka scheme delivers non-symmetric homogenized stiffness tensors,
Sevostianov and Kachanov (2014) take a radically different approach, by making the statement
that

“the symmetry can be - in fact must be eliminated by imposing symmetrization:
if one is interested in the linear elastic properties then the existence of the elastic
potential must be enforced.”

In the present paper, we have explored the theoretical consequences of such an imposed
symmetrization, by not only “correcting” homogenized stiffness estimates, but by also providing
mathematical expressions for the basic physical properties from which such stiffness estimates
arise: the concentrations tensors linking macroscopic strains to microscopic phase strains
encountered within an RVE representing a multiphase composite material. It is indeed possible
to derive concentration tensors which are fully consistent with the explicit symmetrization
procedure proposed by Sevostianov and Kachanov (2014), see (4.20) and (4.21).

Our novel Eshelby problem-based composite material model overcomes all the limitations of
the Mori-Tanaka scheme regarding multiphase-multiform composites, while naturally reducing
to the very latter scheme whenever this scheme provides physically reasonable, i.e. symmetric,
homogenized stiffness estimates. This opens new avenues for exploring the mechanical effects
of microstrains and microstresses, as well as the upscaling features of eigenstresses and
eigenstrains, in hierarchical material systems with complex matrix-inclusion morphologies,
such as wood (Bader et al., 2010), shale (Gruescu et al., 2007), fired clay (Kiefer et al., 2020),
bituminous mixes (Somé et al., 2022), fiber-reinforced composites including soft biological
tissues (Guilleminot et al., 2008; Morin et al., 2018, 2021), or nanoclay composites (Cauvin
et al., 2007). Deeper scrutiny into the multiscale mechanics of eigenstrains would involve the
extension of the present developments to the concept of transformation field anaylsis (Dvorak,
1992), where influence tensors linking microscopic eigenstrains and total eigenstrains are
intimately related to the concentration tensors dealt with herein (Pichler and Hellmich, 2010;
Franciosi, 2022). However, corresponding developments are beyond the scope of the present
paper.

It is noteworthy that our novel concentration tensor estimates do not require any mi-
crostructural information which goes beyond that needed for the classical Mori-Tanaka scheme;
and we regard this as particularly practically useful when compared with the probably best-
known approach to overcome the symmetry-related limitations of the Mori-Tanaka scheme,
namely the Ponte-Castañeda-Willis estimate (Ponte-Castañeda and Willis, 1995; Franciosi,
2022), which necessitates additional information on the spatial distribution of inclusion phases
- the latter is not always accessible in real life applications. This may underline the practical
relevance of the present contribution.
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5.1 Introduction
Cement hydration (Neville, 1995) comprises a number of chemical reactions between water
and different clinker components (with the most prominent ones being tricalcium silicate or
alite, with chemical formula (CaO)3(SiO2) or, in short, C3S, and dicalcium silicate or belite,
with chemical formula (CaO)2(SiO2) or, in short, C2S), leading to the formation of hydration
products (with the most prominent ones being calcium-silicate-hydrate, with chemical formula
(CaO)x(SiO2)(H2O)y or, in short, solid C-S-H, and calcium hydroxide or portlandite, with
chemical formula Ca(OH)2 or, in short, CH). More explicitly, when not differentiating between
the individual reactants and the individual products, a single chemical equation appears as
appropriate, reading as

clinker + water → hydration products . (5.1)

The kinetics of this reaction is traditionally monitored by means of the degree of hydration,
ξ, a standard definition of which is the following (Mouret et al., 1997; Acker, 2001; Bernard
et al., 2003; Feng et al., 2004; Hellmich and Mang, 2005; Königsberger et al., 2016)

ξ(t) = 1 − mclin(t)
mclin(t=0) , (5.2)

with mclin standing for the mass of clinker and t denoting the age of the material.
However, Eq. (5.1) conceals that the chemical reactions between clinker and water, resulting

in the formation of hydration products falls into (at least) two processes (Bullard et al., 2011;
Scrivener and Nonat, 2011; Ioannidou et al., 2016; Powers, 1935; Hua et al., 1997): (i) the
(exothermic) dissolution of clinker, providing an ionic solution; and (ii) the precipitation of
the hydration products (mainly calcium-silicate-hydrate and calcium hydroxide) out of the
aforementioned ionic solution. When focusing on the latter precipitation process, a radically
simple chemical reaction equation may be adopted, namely

HHM → HLM , (5.3)

with H standing for the hydrogen atoms, highly mobile (HM) in the ionic solution, and bound
(and hence with low mobility - LM) in solid C-S-H or CH. A particularly interesting feature
of the precipitation equation (5.3) is that its kinetics can be followed from proton nuclear
magnetic resonance relaxometry (proton NMR). This technique delivers T2 relaxation times
which quantify the decay of a magnetic signal associated with the movement of hydrogen
atoms. In more detail, hydrogen atoms in cement paste fall into four mobility classes associated
with four typical relaxation times: (i) stronger chemical bonding in crystals such as calcium
hydroxide, (ii) weaker chemical bonding in calcium-silicate-hydrate building blocks (solid
C-S-H), (iii) stronger confinement in gel pores, and (iv) weaker confinement in capillary
pores. As regards terminology, the composite made of solid C-S-H building blocks and gel
pores is referred to as the “C-S-H gel” (Brough et al., 1994; Jennings et al., 2008; Jennings,
2008). In the existing literature, water bound in solid C-S-H is also referred to as “interlayer
water” (McDonald et al., 2010), gel pores as “intra-C-S-H pores” (McDonald et al., 2010),
and capillary pores as “inter-C-S-H pores” (McDonald et al., 2010) as well as “interhydrate
pores” (Muller et al., 2013a), respectively. The essential result of one proton NMR test are
four signal intensities. Their sum is referred to as the “total signal intensity”.

The evolution of the total signal intensity depends on the storage conditions. It is constant
under sealed conditions (Muller, 2014; Muller et al., 2013a), because no hydrogen enters
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or leaves the tested specimen, see Fig. 5.1 for pastes with different w/c ratios. As regards
cement pastes curing under water, however, the total signal intensity increases with increasing
material age (Gajewicz, 2014; Gajewicz-Jaromin et al., 2019), because of uptake of water, see
Fig. 5.2 for pastes cured at different temperatures. This water fills the space which emerges
as the hydration products fill a smaller volume than the reactants (clinker and water) they are
made of. The latter phenomenon is usually referred to as chemical shrinkage (Le Châtelier,
1900; Tazawa et al., 1995). Under sealed conditions, in turn, chemical shrinkage results in
a progressively increasing hydrostatic tension of the porewater. This tension causes water
to cavitate (Lura et al., 2009), which leads to the creation of voids filled by water vapor.
Their volume fraction increases with increasing material maturation (Powers, 1935; Hua et al.,
1997).

The experimental data illustrated in Figs. 5.1 and 5.2 are the basis for the present analysis,
dealing with the quantification of the precipitation process in terms of differently mobile
hydrogen fractions. As a naturally emerging quantity describing exactly this precipitation
in the context of proton NMR data, we resort to the amount of solidly bound hydrogen (i.e.
that with relaxation times of T2 ≈ 100 µs and smaller (Valori et al., 2013)), and relate it
to the overall hydrogen (irrespective of its mobility). Accordingly, we here coin the term of
“precipitation degree” η as

η = HLM

HHM + HLM
= aH,CH + aH,sCSH

aH
, (5.4)

with aH,CH and aH,sCSH standing for the amounts of hydrogen bound into calcium hydroxide
(CH) and into solid C-S-H (sCSH), respectively, and with aH as the total amount of hydrogen
found in the tested sample at the time of testing, including both solidly bound hydrogen and
hydrogen in liquid form, the latter filling either the gel (gpor) or the capillary pores (cpor):
aH = aH,CH +aH,sCSH +aH,gpor +aH,cpor. As a function of this newly introduced precipitation
degree, we will study paste composition, reaction kinetics, as well as the evolution of the mass
density of solid C-S-H, and we will finally link all the insight gained here to the key quantity
of traditional cement chemistry: the degree of hydration according to Eq. (5.2). Accordingly,
the remainder of the present paper is organized as follows: Section 5.2 covers the evolution
of the amounts of differently bound hydrogen portions; and then elucidates characteristics
which are independent of initial composition, curing temperature, and storage conditions. The
temperature-independent aspects of the precipitation kinetics are quantified in Section 5.3,
in terms of an affinity function depending on a normalized precipitation degree only, while
temperature intervenes through an Arrhenius-type activation term. Section 5.4 translates
the molar fractions of hydrogen into masses, linking the precipitation degree to the classical
hydration degree. Section 5.5 translates these masses into phase-evolution diagrams, providing
volume fractions of gel and capillary porosities, calcium hydroxide, and solid C-S-H, together
with the ones of clinker and vapor-filled voids as functions of the precipitation degree. Then,
Section 5.6 (Conclusions) puts the novel results in context with the current state-of-the-art.
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Fig. 5.1. Proton NMR signal fractions as function of material age, obtained from white
cement paste samples of 8 mm diameter and 10 mm height, with w/c=0.32 (red), w/c=0.40
(blue), and w/c=0.48 (green) cured under sealed conditions at T =20◦C (Muller, 2014; Muller
et al., 2013a): normalized signal intensities of hydrogen (a) in capillary pores (cpor), (b) in
gel pores (gpor), (c) in solid C-S-H (sCSH), and (d) in calcium hydroxide (CH).
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Fig. 5.2. Proton NMR signal fraction as function of material age, obtained from white
cement paste samples of 8 mm diameter and 10 mm height, with w/c=0.40 cured under water
at different temperatures (Gajewicz, 2014; Gajewicz-Jaromin et al., 2019): T =10◦C (red),
T =20◦C (blue), T =30◦C (green), T =40◦C (pink), T =50◦C (orange), and T =60◦C (yellow):
normalized signal intensities of hydrogen in (a) capillary pores (cpor), (b) gel pores (gpor),
(c) solid C-S-H (sCSH), and (d) calcium hydroxide (CH).
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5.2 Temperature-, storage-, and mix-invariant relations
between molar fractions of differently mobile hydrogen
portions and the precipitation degree η

5.2.1 Normalized NMR signals, molar fractions of differently mobile
hydrogen portions, and the precipitation degree

Muller et al. (Muller, 2014; Muller et al., 2013a) and Gajewicz et al. (Gajewicz, 2014; Gajewicz-
Jaromin et al., 2019) published normalized NMR signals intensities:

Ij(t) := SH,j(t)
SH(t=0) , j ∈ [CH, sCSH, gpor, cpor] , (5.5)

see Figs. 5.1 and 5.2. SH,j stands for the signal intensity associated with hydrogen in calcium
hydroxide, solid C-S-H, gel pores, and capillary pores, SH for the total signal intensity, t for
the time, and t=0 for the time instant of the first NMR measurement. SH,j is proportional to
the amount of hydrogen in material domain j, while SH is proportional to the total amount
of hydrogen in the tested sample of cement paste. Therefore, Eq. (5.5) can be re-written in
terms of amounts of hydrogen:

Ij(t) = aH,j(t)
aH(t=0) , j ∈ [CH, sCSH, gpor, cpor] . (5.6)

Eq. (5.6) allows for expressing η according to Eq. (5.4) as:

η(t) = ICH(t) + IsCSH(t)
ICH(t) + IsCSH(t) + Igpor(t) + Icpor(t) . (5.7)

Notably, the precipitation degree according to Eq. (5.4) relates the amount of solidly bound
hydrogen, at any time t, to the total amount of hydrogen which is in the system at that time,
rather than to the initial amount of hydrogen. This provides the motivation to introduce the
molar fractions of the differently bound hydrogen portions

FH,j(t) := aH,j(t)
aH(t) , j ∈ [CH, sCSH, gpor, cpor] , (5.8)

where, differing from the situation encountered in Eqs. (5.5) and (5.6), aH(t) rather than
aH(t=0) appears in the denominator. Therefore, the sum of all four different hydrogen molar
fractions is, at any time t, equal to 1:

1 = FH,CH(t) + FH,sCSH(t) + FH,gpor(t) + FH,cpor(t) . (5.9)

The corresponding expression for the precipitation degree η as a function of the molar fractions
of the differently mobile hydrogen portions is obtained from inserting Eq. (5.8) into Eq. (5.4),
yielding

η(t) = FH,CH(t) + FH,sCSH(t) . (5.10)

Insertion of Eq. (5.10) into Eq. (5.9) allows one to express the molar fraction of hydrogen in
liquid form, as function of the precipitation degree:

1 − η(t) = FH,gpor(t) + FH,cpor(t) . (5.11)
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5.2.2 Identification of mix-invariant relations between hydrogen molar
fractions and precipitation degree; obtained from NMR data of
samples cured under sealed conditions

Sealed samples are closed systems. The total amount of hydrogen is constant over time,
and equal to the initial amount: aH(t) = aH(t=0), and the same holds for the total NMR
signal intensity: SH(t) = SH(t=0). Therefore, the molar fractions of the differently mobile
hydrogen portions according to Eq. (5.8) are equal to the normalized NMR signals according
to Eqs. (5.5) and (5.6), see Fig. 5.1 for experimental data:

FH,j(t) = Ij(t) , j ∈ [CH, sCSH, gpor, cpor] . (5.12)

A parametric plot showing the molar fraction of hydrogen in solid C-S-H over the precipitation
degree, produced from the normalized NMR signal intensities from Fig. 5.1, in combination
with Eqs. (5.7) and (5.12), underlines that FH,sCSH increases overlinearly with increasing η,
independently of the initial water-to-cement mass ratio, see Fig. 5.3. This overlinear trend
can be quantified by means of a power law:

FH,sCSH = π1 ηπ2 , (5.13)

with the numerical values of the constants π1 and π2 being listed in Table 5.1. The mathemati-

Table 5.1
Factorial, exponential, and proportionality constants quantifying mix-, storage-, and
temperature-independent precipitation characteristics, identified from the NMR data of
Fig. 5.1.

context value of the constant references
precipitation of solid C-S-H π1 = 0.6419 Eq. (5.13), Fig. 5.3
precipitation of solid C-S-H π2 = 1.3000 Eq. (5.13), Fig. 5.3
development of gel and capillary pores π3 = 1.9095 Eq. (5.19), Fig. 5.4

cal relation between the molar fraction of hydrogen in calcium hydroxide and the precipitation
degree is obtained from inserting Eq. (5.13) into Eq. (5.10), and from solving the resulting
expression for FH,CH :

FH,CH = η − π1 ηπ2 . (5.14)

In order to differentiate, within the total water-filled pore space, between gel and capillary
pores, volume fractions of gel and capillary pores with respect to the total pore volume are
introduced as:

φgpor(t) = FH,gpor(t)
FH,cpor(t) + FH,gpor(t) , (5.15)

φcpor(t) = FH,cpor(t)
FH,cpor(t) + FH,gpor(t) , (5.16)

such that φgpor(t)+φcpor(t) = 1. Illustrating φgpor(t) and φcpor(t) according to Eqs. (5.15) and
(5.16) over η(t), based on NMR signals from Fig. 5.1 as well as Eqs. (5.7) and (5.12), evidences
a virtually linear dependence of both φcpor and φgpor, on the precipitation degree, with
decreasing and increasing trends, respectively, and independent of the initial water-to-cement
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Fig. 5.3. Molar fraction of hydrogen in solid C-S-H, FH,sCSH , as function of the precipitation
degree η: the points are derived from NMR data of Fig. 5.1, the solid line refers to the
power-law of Eq. (5.13), with constants listed in Table 5.1.

mass ratio, see Fig. 5.4. The point-wisely resolved relationship is reproduced by means of the
following bilinear functions:

φgpor =
�

π3 η. . . η ≤ 1/π3 ,
1 . . . . η > 1/π3 ,

(5.17)

φcpor =
�

1 − π3 η. . . η ≤ 1/π3 ,
0 . . . . . . . . η > 1/π3 ,

(5.18)

with the numerical value of the constant π3 being listed in Table 5.1. The mathematical
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Fig. 5.4. Trends of gel and capillary pore fractions, with the precipitation degree: the
points are derived from NMR data of Fig. 5.1, the solid line refers to the bilinear function of
Eqs. (5.17) and (5.18), see also Table 5.1.
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relation between FH,gpor, the molar fraction of hydrogen in gel pores, and η is obtained
from solving Eq. (5.15) for FH,gpor and from inserting Eqs. (5.11) and (5.17) into the resulting
expression, yielding

FH,gpor =
�

(1 − η) (π3 η). . . η ≤ 1/π3 ,
1 − η . . . . . . . . . . η > 1/π3 .

(5.19)

Similarly, the mathematical relation between FH,cpor, the molar fraction of hydrogen in
capillary pores, and η follows as

FH,cpor =
�

(1 − η) (1 − π3 η). . . η > 1/π3 ,
0 . . . . . . . . . . . . . . . . . η > 1/π3 .

(5.20)

Eqs. (5.13), (5.14), (5.19), and (5.20) quantify the four different molar fractions of hydrogen,
as functions of the precipitation degree, independently of the initial water-to-cement mass
ratio, see Fig. 5.5. In order to check whether Eqs. (5.13), (5.14), (5.19), and (5.20) are also
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Fig. 5.5. Cumulative molar fractions of hydrogen found in capillary pores (cpor), gel pores
(gpor), solid C-S-H (sCSH), and calcium hydroxide (CH), as functions of the precipitation
degree: the data points refer to NMR data from sealed-cured cement pastes with different
initial water-to-cement mass ratios (Muller, 2014; Muller et al., 2013a): w/c = 0.32 (circles),
w/c = 0.40 (crosses), and w/c = 0.48 (triangles); the shaded domains refer to hydrogen in
calcium hydroxide (CH, pink), solid C-S-H (sCSH, green), gel pores (gpor, purple), and
capillary pores (cpor, blue); the boundaries between the shaded domains refer to Eqs. (5.13),
(5.14), (5.19), and (5.20), together with the constants of Table 5.1.

independent of curing temperature and storage conditions, the NMR data of Gajewicz et
al. (Gajewicz, 2014; Gajewicz-Jaromin et al., 2019) will be analyzed next.

5.2.3 Testing temperature- and storage-invariance of the relations between
hydrogen molar fractions and the precipitation degree: evaluation of
NMR data from samples cured under water at six different
temperatures

Samples cured under water are open systems. Driven by chemical shrinkage, water is sucked
into the open porosity of the samples. This results in a progressive increase of the total
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amount of hydrogen in the sample, as indicated by the total NMR intensity. Under these
conditions, the molar fractions of hydrogen according to Eq. (5.8) are equal to normalized
signal intensities according to Eqs. (5.5) and (5.6), divided by the sum of all four normalized
signal intensities:

FH,j(t) = Ij(t)
ICH(t) + IsCSH(t) + Igpor(t) + Icpor(t) , j ∈ [CH, sCSH, gpor, cpor] . (5.21)

Inserting the NMR data from Fig. 5.2 into Eqs. (5.21) and (5.7) allows for illustrating the
evolution of molar fractions of hydrogen as a function of the precipitation degree, see the
points in Fig. 5.6. The obtained chains of data points referring to NMR data of under water
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Fig. 5.6. Exemplary model validation: cumulative molar fractions of hydrogen as function
of the precipitation degree: the data points refer to NMR data from under water cured
cement pastes stored at different temperatures (Gajewicz-Jaromin et al., 2019; Gajewicz,
2014): T = 10◦C (circles), T = 20◦C (squares), T = 30◦C (triangles), T = 40◦C (crosses),
T = 50◦C (diamonds), and T = 60◦C (stars); the shaded domains refer to hydrogen in
calcium hydroxide (CH, pink), solid C-S-H (sCSH, green), gel pores (gpor, purple), and
capillary pores (cpor, blue); the boundaries between the shaded domains are model-predictions
according to Eqs. (5.13), (5.14), (5.19), and (5.20), together with the constants of Table 5.1.

cured samples agree well with the model predictions derived from samples cured under sealed
conditions, according to Eqs. (5.13), (5.14), (5.19), and (5.20), together with the constants of
Table 5.1; these predictions being indicated through the boundaries between the differently
shaded domains in Fig. 5.6.

Notably, the boundaries between the differently shaded phase domains in Figs. 5.5 and
5.6 are the same. The data points, in turn, come from two different laboratories and refer to
two different NMR testing devices, two different cements, three different values of the initial
water-to-cement mass ratio, six different values of the curing temperature, and two different
types of storage conditions. Thus, Figs. 5.5 and 5.6 corroborate the remarkable “universality”
of the Eqs. (5.13), (5.14), (5.19), and (5.20), see also Table 5.1. These relations are independent
of initial composition, curing temperature, and storage conditions.
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5.2.4 Water and hydrogen uptake characteristics of cement pastes cured
under water

Cement pastes cured under water suck in water in order to fill the space provided by chemical
shrinkage (Le Châtelier contraction). It is instructive to plot the corresponding hydrogen
uptake normalized by the initial hydrogen amount, ∆IH , which reads, under consideration of
Eq. (5.6), as

∆IH(t) = aH(t) − aH(t=0)
aH(t=0) = Itot(t) − Itot(t=0)

Itot(t=0) , (5.22)

with Itot(t) = ICH(t) + IsCSH(t) + Igpor(t) + Icpor(t), as function of the precipitation degree,
see Fig. 5.7. One observes that also the hydrogen-uptake of cement pastes cured under water
turns out as a temperature-independent linear precipitation characteristic, which can be
mathematically quantified as

∀t : ∆IH(t) = π4 η(t) , → ∆IH = π4 η = aH(η) − aH(η =0)
aH(η =0) , (5.23)

with the numerical value of the constant π4 being listed in Table 5.2.

Table 5.2
Temperature-independent binary variable π4 distinguishing between two types of curing
conditions: (i) sealed storage (= closed system), and (ii) underwater storage (= open system),
leading to the increase of the total amount of hydrogen resulting from uptake of water driven
by chemical shrinkage.

curing conditions value of the binary variable
sealed storage π4 = 0.0000
underwater storage π4 = 0.1880
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Fig. 5.7. Relative increase of the total NMR intensity (reflecting water uptake by cement
pastes cured under water) as function of the precipitation degree; the points are derived from
the NMR data of Fig. 5.2, the solid line refers to the linear function of Eq. (5.23), see also
Table 5.2.



Precipitation characteristics in white cement paste 66

5.3 Precipitation kinetics

5.3.1 Precipitation evolutions governed by curing temperature, derived
from NMR data

Translating, by means of Eq. (5.7), the NMR data of Fig. 5.2 into values of the precipitation
degree, and illustrating them as a function of the age of the material, provides quantitative
insight into remarkable features, as can be seen from Fig. 5.8: (i) at early age, the precipitation
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Fig. 5.8. Temporal evolution of the precipitation degree of cement pastes with w/c = 0.40
cured under water and isothermally at: T = 10◦C (red), T = 20◦C (blue), T = 30◦C (green),
T = 40◦C (pink), T = 50◦C (orange), and T = 60◦C (yellow); the points were obtained from
insertion of the data of Fig. 5.2 into Eq. (5.7).

process is the faster, the higher the curing temperature, (ii) at mature material ages, the
reaction kinetics decays by orders of magnitude, such that the precipitation degree reaches a
virtually constant value, and (iii) the “eventually” attained “maximum” precipitation degree,
ηmax, decreases with increasing curing temperature, in a virtually linear fashion, see Fig. 5.9.1
The corresponding best linear regression function reads as

ηmax(T ) = π5 T + π6 , (5.24)

with the numerical values of the constants π5 and π6 being listed in Table 5.3. The “eventually”
attained “maximum” precipitation degrees of Fig. 5.9 suggests the introduction of a normalized
precipitation degree, η̃, which increases from zero to one:

η̃ = η

ηmax(T ) , 0 ≤ η̃ ≤ 1 . (5.25)

It is important to note that the termination of the precipitation degree evolution at an ever
lower value for increasing temperatures does not reflect kind of a premature termination
of a chemical reaction, but rather a smaller amount of water in the same amount of solid
C-S-H, as was evidenced by scanning electron microscopy, X-ray diffraction, and Si29 NMR

1The words “eventually” and “maximum” were put under quotation marks, because, strictly speaking,
hydration does never stop completely.
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Fig. 5.9. “Eventually” reached “maximum” precipitation degree of cement pastes with
w/c=0.40 cured under water at different temperatures; the points refer to the rightmost data
points in Fig. 5.8, the line refers to the best linear regression function, see Eq. (5.24) and
Table 5.3.

Table 5.3
Constants quantifying the influence of temperature on the precipitation kinetics.
context / quantity value of the constant reference
slope in Fig. 5.9 π5 = −1.425 × 10−3 ◦C−1 Eq. (5.24)
intercept in Fig. 5.9 π6 = 0.5240 Eq. (5.24)
reference water-to-silica ratio [(H2O)/(SiO2)](T =20◦C) = 1.8 (Allen et al., 2007; Muller et al., 2013a)
activation energy Ea = 33.260 kJ/mol (Hellmich et al., 1999b; D’Aloia and Chanvillard, 2002)
universal gas constant R = 8.3145 J/(mol ◦C)
chemical affinity function A0 = 6.124 s−1 Eq. (5.28)

spectroscopy applied to cement paste samples cured at different temperatures (Gallucci et al.,
2013). Considering, accordingly, a water-to-silica ratio of 1.8 at T = 20◦C (Allen et al., 2007;
Muller et al., 2013a), the maximum precipitation degree of Eq. (5.24) proposes the former to
decrease with increasing temperature in the form

[(H2O)/(SiO2)](T ) = [(H2O)/(SiO2)](T =20◦C) ηmax(T )
ηmax(T =20◦C) = 3.6327

�
π5 T + π6

�
,

(5.26)
whereby we have made use of Eq. (5.24) and Table 5.3. The corresponding trend, illustrated
in Fig. 5.10, agrees well with an independent testing campaign on oil-well cement, comprising
X-ray diffraction with Rietveld analysis and thermogravimetry (Bahafid et al., 2017); see
Fig. 5.10. An even more “perfect” match between the solid line and the series of five data
points in Fig. 5.10 is not necessarily expected, since the line and the points refer to different
cements (white Portland cement versus oil-well cement), different hydration periods (100
versus 28 days), and different initial composition (w/c = 0.40 versus w/c = 0.44). Still, the
accordance of trends seen in Fig. 5.10 strongly motivates the development of a kinetics model
on the normalized precipitation degree according to Eq. (5.25), as described next.
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Fig. 5.10. Water-to-silica ratio of solid C-S-H: line computed from Eq. (5.26); data points
from independent thermogravimetry (Bahafid et al., 2017).

5.3.2 Identification of Arrhenius-type precipitation kinetics law
In line with pertinent hydration modeling on the basis of the degree of hydration (Hellmich
et al., 1999b; Ulm and Coussy, 1996; Hellmich et al., 1999a; Termkhajornkit and Barbarulo,
2012), the evolution of η̃ is represented by an Arrhenius law (Arrhenius, 1889)

dη̃

dt
= A(η̃) exp


− Ea

R


T (t) + 273.15◦C

�
, (5.27)

where A(η̃) denotes the chemical affinity function, Ea = 33.260 kJ/mol stands for the activation
energy (Hellmich et al., 1999b; D’Aloia and Chanvillard, 2002), and R = 8.3145 J/(mol ◦C)
the universal constant for ideal gases. T (t) is the temporal evolution of the curing temperature
in degrees centigrade. Analyzing isothermal NMR experiments, T (t) becomes a constant.

As regards properties of A(η̃), Fig. 5.8 suggests that the chemical affinity function is positive
for small values of η̃, and that it monotonously decreases with increasing η̃, approaching zero
as η̃ approaches 1. From classical physical chemistry (Atkins et al., 2014), a linear function is
used:

A(η̃) = A0
�
1 − η̃

�
, 0 ≤ η̃ ≤ 1 , (5.28)

where A0 is a constant which needs to be identified from experimental data. In order to
derive a closed-form-solution for the time-evolution of η̃, Eq. (5.28) is inserted into Eq. (5.27).
This delivers (under consideration of isothermal curing: T = const.) a linear, inhomogeneous,
ordinary, first-order differential equation with constant coefficients. Its solution reads as

η̃ = 1 − exp


− t

t0


, (5.29)

where t0 denotes a temperature-dependent characteristic time depending on A0 and T , reading
as

t0 = 1
A0

exp


Ea

R


T + 273.15◦C

�
. (5.30)

A closed-form expression for the precipitation degree η as a function of the age of the material
and of the curing temperature is obtained from insertion of Eq. (5.30) into Eq. (5.29), from
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insertion of the resulting expression for η̃ together with Eq. (5.24) into Eq. (5.25), and from
solving the obtained equation for η:

ηmod =

1 − exp


− t A0 exp


− Ea

R


T + 273.15◦C

�
× (π5 T + π6) , (5.31)

where the subscript mod stands for “modeling”.
For the identification of a value for A0, and the subsequent checking of the significance

of this value, we perform the following steps: First, we consider the NMR data associated
with the experiments performed under the highest curing temperature: 60◦C. The following
root-mean-square error function is minimized:

ϵ(T ) =

())' 1
nT

nT*
i=1

�
ηmod(T, ti; A0) − ηexp(T, ti)

�2
, (5.32)

where nT denotes the number of available experimental data points referring to curing
temperature T , and where ηexp(T, ti) denotes experimental values resulting from insertion of
NMR data of Fig. 5.2 into Eq. (5.7). The smallest attainable value of ϵ(60◦C) amounts to
0.0182, and it is obtained for

A0 = 6.124 s−1 , (5.33)

see also the yellow graph and data points in Fig. 5.11.
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Fig. 5.11. Temporal evolution of the precipitation degree of cement pastes with w/c = 0.40
cured under water and isothermally at: T = 10◦C (red), T = 20◦C (blue), T = 30◦C (green),
T = 40◦C (pink), T = 50◦C (orange), and T = 60◦C (yellow); the points were obtained from
insertion of the data of Fig. 5.2 into Eq. (5.7), the solid lines were obtained from Eq. (5.31)
and constants listed in Table 5.3.

Next, we evaluate Eq. (5.31) for the affinity value given in Eq. (5.33), together with
the kinetics constants of Table 5.3, for the remaining curing temperatures of 10, 20, 30, 40,
and 50◦C, see Fig. 5.11. The corresponding model curves agree remarkably well with the
experimental data depicted in Figs. 5.8 and 5.11. Corresponding prediction errors according
to Eq. (5.32) are satisfactorily small: even for the two smallest curing temperatures (10◦C
and 20◦C, respectively) they are smaller than 1.5 × ϵ(60◦C), see Table 5.4. This underlines
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Table 5.4
Root-mean-square errors according to Eq. (5.32), referring to the differences between experi-
mental data points and Arrhenius-type kinetics model predictions of Fig. 5.11.

T 10◦C 20◦C 30◦C 40◦C 50◦C 60◦C
ϵ(T ) 0.0223 0.0260 0.0185 0.0171 0.0182 0.0182

that one value of A0, see Eq. (5.33), is sufficient for an appropriate description of the reaction
kinetics, for curing temperatures ranging from 10◦C to 60◦C.

The NMR data, together with the validated kinetics model, provide a quantitative
description of the following precipitation characteristics: the higher the curing temperature,
the faster the reaction kinetics, but the smaller the finally attained precipitation degree
(Verbeck, 1968), see Fig. 5.12. While the paste composition is solely governed by the
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Fig. 5.12. Precipitation degree reached after t = 1 day (blue), t = 2 days (green), t = 3 days
(yellow), and t = 28 days (red), as a function of curing temperature, according to the predictions
of Eq. (5.31) and Table 5.3.

precipitation degree, see Figs. 5.5 and 5.6, and while the precipitation kinetics can be
described by one temperature-invariant chemical affinity function, see Eqs. (5.28) and (5.33)
as well as Fig. 5.11, the “eventually” attained “maximum” precipitation degree does depend
on the curing temperature. More precisely, it decreases with increasing curing temperature,
see Figs. 5.11 and 5.12.

5.4 Precipitation-driven constituent masses in the cement
paste system, and corresponding degree of hydration

Having identified the precipitation degree as mix-, storage-, and temperature-invariant driver
of all the hydrogen portions within a hydrating cement paste system, together with its
temperature-dependent evolution characteristics, it is now time to relate the aforementioned
hydrogen portions to all the constituents or phases which make up the investigated material
system, as well as to the classical hydration degree. Starting with the hydrogen-containing
phases, and denoting by nH,j the number of hydrogen atoms in one molecule of phase j, the
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mass of hydrogen-containing phase j amounts to

mj(t) = FH,j(t)
nH,j

Mj aH(t) , j ∈ [CH, sCSH, gpor, cpor] , (5.34)

with Mj as the molar mass of phase j, i.e. the mass of one mole of phase j. The number of
hydrogen atoms per molecule is constant in the case of calcium hydroxide and of the water
filling the gel and capillary pores (see Table 5.5), while it depends on the curing temperature in
the case of solid C-S-H, with the water-to-silica ratio [(H2O)/(SiO2)](T ) following Eq. (5.26).
This leads to

nH,sCSH(T ) = nH,H2O × 3.6327
�
π5 T + π6

�
. (5.35)

Accordingly, the molar mass of solid C-S-H is temperature-dependent as well, in the following
way,

MsCSH(T ) = MCS + MH2O × 3.6327
�
π5 T + π6

�
, (5.36)

see also Table 5.5.

Table 5.5
Physical properties of water, calcium-silicate in C-S-H, and calcium hydroxide (Allen et al.,
2007; Muller et al., 2013a; Gallucci et al., 2013).

water calcium-silicate in C-S-H calcium hydroxide
chemical formula H2O (CaO)1.7SiO2 Ca(OH)2
hydrogen atoms per molecule [–] nH,H2O = 2 – nH,CH = 2
molar mass [g/mol] MH2O = 18.01 MCS = 155.4 MCH = 74.09

Turning to the only constituent which is free of hydrogen, namely clinker, we consider the
beginning of the dissolution-precipitation reaction, with η =0, where the initial water-to-cement
mass ratio, (w/c), gives access to the mass of clinker, through

mclin(η =0) = mH2O(η =0)
(w/c) = FH,H2O(η =0)

(w/c)
MH2O

nH,H2O
aH(η =0) = 1

(w/c)
MH2O

nH,H2O
aH(η =0) ,

(5.37)
whereby we have made use of Eq. (5.34) with j = H2O, and of FH,H2O(η =0) = 1. At η =0,
the system consists only of water and clinker, so that the mass of overall cement paste follows
as

mcp(η =0) =
�
1 + 1

(w/c)


mH2O(η =0) =
�
1 + 1

(w/c)
 MH2O

nH,H2O
aH(η =0) . (5.38)

Under sealed conditions, mcp remains constant over time, so that Eq. (5.38) stays relevant also
for any value η beyond zero. However, when submerged under water, the cement paste system
absorbs additional water molecules, as quantified in Section 5.2.4 in terms of the normalized
hydrogen increase ∆IH(η), see Eq. (5.23). Accordingly, the mass of cement paste is composed
of its initial value (at zero precipitation degree) and the mass resulting from the water uptake,

mcp(η) = mcp(η =0) + ∆IH(η) MH2O

nH,H2O
aH(η =0) . (5.39)

The initial amount of hydrogen can be expressed in terms of the mass of clinker and the initial
water-to-cement mass ratio, by means of solving Eq. (5.37) for aH(η =0):

aH(η =0) = mclin(η =0) × (w/c)nH,H2O

MH2O
. (5.40)
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Insertion of Eq. (5.38) into Eq. (5.39), while considering Eq. (5.40), yields

mcp(η) =
�
1 + (w/c)

�
1 + ∆IH(η)

��
mclin(η =0) , (5.41)

with ∆IH(η) according to Eq. (5.23), see also Table 5.2 for values of π4 as a function of
storage conditions. The mass of cement paste is also equal to the sum of the masses of all its
constituents,

mcp(η) = mclin(η) + mgpor(η) + mcpor(η) + msCSH(η) + mCH(η) , (5.42)

whereby the masses of hydrogen-containing phases can be readily retrieved from the their
specific masses according to Eq. (5.34), via

mj(η) = FH,j(η)
nH,j

Mj × aH(η =0) × �
1 + ∆IH(η)

�
, j ∈ [CH, sCSH, gpor, cpor] . (5.43)

Insertion of Eq. (5.40) into Eq. (5.43), and of the corresponding result and of Eq. (5.41), into
Eq. (5.42) yields an equation for the mass of clinker, the solution of which yields

mclin(η) = mclin(η =0)
�

1 −
��

η − π1 ηπ2
� MCH

nH,CH

nH,H2O

MH2O
+ (5.44)

�
π1 ηπ2

�� 1
3.6327

�
π5 T + π6

� MCS

MH2O
+ 1


− η

�
(w/c)

�
1 + π4 η

�	
,

whereby we have made use of Eqs. (5.35), (5.36), and (5.26), Table 5.5, and Eq. (5.23), see
also Table 5.2 for values of π4 as a function of storage conditions. Insertion of Eq. (5.44) into
Eq. (5.2) delivers the hydration degree as a function of the precipitation degree, in the format

ξ(η) = (w/c)
�
1+π4 η

���
η −π1 ηπ2

�� MCH

MH2O

nH,H2O

nH,CH
−1


+ π1 ηπ2

3.6327
�
π5 T + π6

� MCS

MH2O

�
, (5.45)

with π4 = 0 for the sealed case and with π4 = 0.1880 for under water curing, according
to Table 5.2. For any specific value of the precipitation degree, the associated value of the
hydration degree is the larger, the larger the initial water-to-cement mass ratio and the larger
the curing temperature, see Fig. 5.13 and note that π5 in Eq. (5.45) is negative, see Table 5.3.
Also, the associated value of the hydration degree is larger in under water cured samples than
in sealed-cured samples, and this difference increases with decreasing initial water-to-cement
mass ratio.

5.5 Precipitation-driven constituent volumes of the cement
paste system, and corresponding mass density of solid
C-S-H

5.5.1 Volumes of invariably dense material constituents and of overall
cement paste

Determination of volumes from masses require the knowledge of mass densities. The latter
are constant for all phases except solid C-S-H, the mass density of which has been reported to
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Fig. 5.13. Hydration degrees as functions of the precipitation degree, according to Eq. (5.45),
for cement pastes with initial water-to-cement mass ratios w/c = 0.15 (red), w/c = 0.24
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depend on temperature and maturity (Bahafid et al., 2017; Gajewicz-Jaromin et al., 2019).
Thus, the volumes occupied by every phase except solid C-S-H are obtained from dividing
their masses mj(t), from Eqs. (5.43) and (5.44), by their mass densities ρj :

Vj(η) = mj(η)
ρj

, j ∈ [clin, CH, gpor, cpor] , (5.46)

where ρgpor = ρcpor = ρH2O, see Table 5.6 for numerical values.

Table 5.6
Mass densities of water, calcium hydroxide, and clinker (Muller et al., 2013a).

water calcium hydroxide clinker
mass density [g/cm3] ρH2O = 1.00 ρCH = 2.24 ρclin = 3.15

In cement pastes stored both under water and sealed, the total volume of cement paste
Vcp may be treated as being virtually constant throughout hardening, because bulk volume
changes at the macroscopic scale of cement paste are by two orders of magnitude smaller
than chemical shrinkage (Lura et al., 2003; Abuhaikal et al., 2018). Thus, Vcp is set equal to
the initial volume of cement paste, i.e. to the sum of the initial volumes of water and clinker.
Under consideration of Eqs. (5.46) and (w/c) = mH2O(η =0)/mclin(η =0), this yields

Vcp = Vcp(η =0) = VH2O(η =0) + Vclin(η =0) = mclin(η =0)
�(w/c)

ρH2O
+ 1

ρclin

�
. (5.47)

The constituent volumes according to Eq. (5.46), together with Eqs. (5.44) and (5.43), and
the volume of cement paste according to Eq. (5.47) give access to the volume fractions of the
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phases with invariable mass density, fj = Vj/Vcp, in the form

fclin =
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, (5.49)

fgpor =
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. . . η ≤ 1/π3 ,�

1 − η
��

1 + π4 η
��
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�−1
. . . . . . . . η > 1/π3 ,

(5.50)

fcpor =


�
1 − η

��
1 − π3 η

��
1 + π4 η

��
1 + ρH2O

(w/c)ρclin

�−1
. . . η ≤ 1/π3 ,

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . η > 1/π3 .
(5.51)

The remaining volume fraction, complementing the sum of Eqs. (5.48) to (5.51) to one, is
associated to solid C-S-H and vapor-filled voids in the case of sealed curing, and by solid
C-S-H only in the case of under water curing.

5.5.2 Determination of mass density of solid C-S-H, from under water
cured samples

For under water cured samples, the total volume of cement paste is made up of the volumes
of clinker, of calcium hydroxide, of gel pores and capillary pores, and of solid C-S-H. Hence,
the latter volume can be computed from

VsCSH(η, T ) = Vcp −
�
Vclin(η, T ) + VCH(η) + Vgpor(η) + Vcpor(η)

�
. (5.52)

This volume allows for determination of both the volume fraction of solid C-S-H in under
water cured samples, as

fsCSH = VsCSH

Vcp
= 1 −

�
fclin + fCH + fgpor + fcpor

�
, (5.53)

see Fig. 5.15, and of the mass density of solid C-S-H, ρsCSH = msCSH
VsCSH

, as

ρsCSH =


MsCSH(T )
nH,sCSH(T )π1 ηπ2
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MH2O

nH,H2O

 1
ρH2O
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+ η − 1


− η
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+
 1

ρclin
− 1

ρCH


MCH

nH,CH

�
η − π1 ηπ2

�
+ 1

ρclin

MsCSH(T )
nH,sCSH(T )π1 ηπ2


−1
, (5.54)

where π4 was set equal to 0.188, and whereby we have made use of Eqs. (5.52), (5.47), (5.46),
(5.44), (5.43), (5.13), (5.14), (5.19), and (5.20), see Fig. 5.14. We note that the mass density of
solid C-S-H decreases with increasing precipitation degree and with decreasing temperature,
while being independent of the initial water-to-cement mass ratio; and the corresponding range
of values agrees very well with the range of values reported in the open literature (Muller
et al., 2013a; Gajewicz-Jaromin et al., 2019; Gallucci et al., 2013; Allen et al., 2007; Bahafid
et al., 2017; Taylor, 1986; Constantinides and Ulm, 2004).



Precipitation characteristics in white cement paste 75

0 0.2 0.4 0.6 0.8 12.4

2.5

2.6

2.7

2.8

2.9

precipitation degree η [–]

m
as

s
de

ns
ity

of
so

lid
C

-S
-H

ρ
s

C
S

H
[g

/
cm

3 ]

T =10◦C
T =20◦C
T =30◦C
T =40◦C
T =50◦C
T =60◦C

Fig. 5.14. Density of solid C-S-H in cement pastes cured under water and isothermally at:
T = 10◦C (red), T = 20◦C (blue), T = 30◦C (green), T = 40◦C (pink), T = 50◦C (orange),
and T = 60◦C (yellow); from Eq. (5.54).

5.5.3 Volume fractions in cement paste precipitating under sealed
conditions

When considering that the precipitation- and temperature-dependence of the mass density of
solid C-S-H according to Fig. 5.14 and Eq. (5.54) holds also for sealed curing conditions, the
volume occupied by solid C-S-H is obtained as

VsCSH(η, T ) = msCSH(η, T )
ρsCSH(η, T ) , (5.55)

with the mass of solid C-S-H following Eq. (5.43), with π4 = 0, expressing sealed conditions,
see Table 5.2; and with the mass density of solid C-S-H following Eq. (5.54), expressing that
the mass density of solid C-S-H does not depend on storage conditions. This yields

VsCSH(η, T ) = mclin(η =0)(w/c)
 1
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� 1
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+ 1
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� 1
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MH2O
+ 1


π1 ηπ2


. (5.56)

We are left with the determination of the volume filled by voids resulting from chemical
shrinkage under sealed conditions, based on representing the overall cement paste volume
as the sum of the volumes of all phases, and solving this volume balance equation for Vvoid.
Mathematically, this reads as

Vvoid(η) = Vcp −
�
Vclin(η, T ) + VCH(η) + VsCSH(η, T ) + Vgpor(η) + Vcpor(η)

�
, (5.57)

whereby the volume expressions on the right-hand side of Eq. (5.57) follow from Eqs. (5.47),
(5.46), (5.56), (5.44), (5.43), (5.13), (5.14), (5.19), and (5.20), and the temperature dependence
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vanishes. Thus, the volume fractions of calcium hydroxide, gel and capillary pores, and clinker
in sealed samples follow from Eqs. (5.48)–(5.51), for π4 = 0, see Table 5.2. The volume fraction
of solid C-S-H, in turn, follows from diving Eq. (5.56) by Eq. (5.47) as

f seal
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 1
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 1
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� MCS
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+ 1


π1 ηπ2

 1
ρH2O

+ 1
(w/c)ρclin

−1
, (5.58)

where ρsCSH(η, T ) was taken from Eq. (5.54). Lastly, the volume fraction of voids reads as

fvoid = 1 −
�
fclin + fCH + fgpor + fcpor + f seal

sCSH

�
, (5.59)

see Fig. 5.15.

5.6 Conclusions
We have presented a new cement hydration model which explicitly accounts for the increasing
evidence that hydration is a combined dissolution-precipitation process (Bullard et al., 2011;
Scrivener and Nonat, 2011; Ioannidou et al., 2016; Powers, 1935; Hua et al., 1997). Accordingly,
the formation of calcium hydroxide and C-S-H is quantified through a precipitation degree
quantified, from proton NMR data (Muller et al., 2013a; Gajewicz-Jaromin et al., 2019), as
the amount of bound hydrogen over the total amount of hydrogen found in a hydrating cement
paste sample. As the only functional argument, fully independent of mix proportions, storage
characteristics (sealed versus under water curing), and curing temperature, the precipitation
degree governs the hydrogen molar fractions associated with the gel and capillary porosities,
as well as with calcium hydroxide and solid C-S-H. Moreover, the precipitation degree provides
temperature-independent linear water uptake characteristics, as driven by chemical shrinkage
of cement pastes.

Apart from these mix-, storage-, and temperature-invariances, the precipitation degree
also provides an interesting complement to pertinent hydration degree-based kinetics model-
ing (De Schutter and Taerwe, 1995; Ulm and Coussy, 1995; Hellmich et al., 1999a); namely
through consideration of the temperature-driven stoichiometry of solid C-S-H, a characteristic
which has become more and more evident in recent years (Gallucci et al., 2013; Bahafid et al.,
2017): Hydration products arising in pastes cured isothermally under different temperature
exhibit a water-to-silica ratio which decreases with increasing temperature; and such a loss of
water bound to calcium-silicate is even recorded when changing the temperature of cement
pastes at a constant maturation state, resulting in water redistributions towards the gel and
capillary porosities (Wyrzykowski et al., 2017), as well as to the vapor-filled voids in the context
of hygrothermal effects (Wang et al., 2018). Accordingly, we have normalized the precipitation
degree by its temperature-dependent maximum, and this normalized quantity turns out to
be governed by thermally activated Arrhenius-type reaction. The latter is characterized
by a simple, linear affinity function, as normally expected in standard physical chemistry
application. We note that pertinent kinetics modeling approaches based on the degree of
hydration required the introduction of a more complex, non-linear affinity function (Ulm and
Coussy, 1996; Hellmich et al., 1999b,a), indicating the presence of quite distinct chemical
processes having been, somewhat arbitrarily, lumped together.
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Fig. 5.15. Evolution of phase assemblage of cement pastes with (1) w/c = 0.32 and
(2,3) w/c = 0.40; cured at (1,2) T = 20◦C and (3) T = 60◦C; stored (a) under sealed
conditions and (b) under water, as functions of the precipitation degree.
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Finally, mass and volume balancing shows that the mass density of solid C-S-H is dependent
on both the precipitation degree and the curing temperature, spanning over a range of numerical
values which is fully consistent with the variations known between earlier estimations provided
in the open literature, encompassing values from 2.5 g/cm3 (Bahafid et al., 2017; Constantinides
and Ulm, 2004), via 2.6 g/cm3 (Allen et al., 2007; Taylor, 1986) to 2.7 g/cm3 (Muller et al.,
2013a; Gajewicz-Jaromin et al., 2019); and similar balancing considerations provide also
links between the precipitation degree introduced in the present paper, and the classical
hydration degree, as well as the volume fractions of material constituents. The latter allow
for linking the novel developments presented herein with the rich world of micromechanical
modeling (Bernard et al., 2003; Hellmich and Mang, 2005; Sanahuja et al., 2007; Pichler and
Hellmich, 2011; Königsberger et al., 2018); especially to models accounting for different pore
structures and hydrate densification (Bahafid et al., 2018; Königsberger et al., 2020). Over
the last two decades, such models have become major theoretical and computational tools for
innovative concrete design.
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6.1 Introduction
In the existing literature, “C-S-H” is used in many different contexts. This provides the
motivation to explain the terminology used in the present paper. Calcium-silicate-hydrates
(C-S-H) with chemical formula (CaO)x(SiO2)(H2O)y, also referred to as poorly crystalline
“solid C-S-H” (MacTavish et al., 1985) and calcium hydroxide (CH) with chemical formula
(CaO)(H2O), are the main products resulting from the hydration of ordinary Portland clinkers
including tricalcium silicate or alite, with chemical formula (CaO)3(SiO2), and dicalcium
silicate or belite, with chemical formula (CaO)2(SiO2), (Richardson, 1999). Water which is
part of the molecular structure of solid C-S-H is referred to as “interlayer water” (McDonald
et al., 2010). Solid C-S-H interacts with two types of pore families: gel and capillary pores.
Gel pores are also referred to as “intra-C-S-H pores” (McDonald et al., 2010). Together with
solid C-S-H and they form a composite called “C-S-H gel” (Brough et al., 1994; Jennings et al.,
2008; Jennings, 2008). The next larger type of pores, the capillary pores, are also referred to
as “inter-C-S-H pores” (McDonald et al., 2010) as well as “interhydrate pores” (Muller et al.,
2013a), respectively. Together with hydration products they form a composite called “hydrate
foam” (Pichler and Hellmich, 2011).

The water content of solid C-S-H (see y in the chemical formula) is variable rather than a
universal constant.

• Curing cement paste isothermally results in the precipitation of solid C-S-H with a
temperature-specific water-to-silica ratio which is the larger, the smaller the curing
temperature (Bahafid et al., 2017; Jiménez Segura et al., 2022a).

• Increasing the temperature of mature cement paste results in a release of water by
solid C-S-H. This phenomenon was found in molecular dynamics simulations coupled
with a Grand Canonical Monte-Carlo approach (Bonnaud et al., 2013). Experimental
evidence was provided by proton nuclear magnetic resonance relaxometry (Wyrzykowski
et al., 2017), clarifying that solid C-S-H releases water upon heating and takes up water
upon cooling in a quasi instantaneous and reversible manner. This water migration
phenomenon results in changes of (i) the internal relative humidity (RH), as well
as (ii) effective porewater underpressures acting on the solid skeleton, and the latter
mechanism provides a microporomechanical explanation for the anomalous macroscopic
thermal expansion of mature cement paste (Wang et al., 2018). Returning to molecular
simulations, water release by solid C-S-H upon heating was described for different
calcium-to-silica ratios using a reactive molecular simulation model (Zhang et al., 2021).

• Isothermal drying and re-wetting of cementitious materials have the potential to change
the water content of solid C-S-H. Desorption-induced drying of solid C-S-H, however,
requires internal relative humidities lowered to values smaller than 20% (Feldman, 1968;
Muller et al., 2013b; Pinson et al., 2015). Provided that such an advanced desorption
(= drying) is followed by adsorption (= re-wetting), the interlayer spaces are considered
to be progressively re-filled by water along the entire RH range back to full saturation
(Feldman, 1968; Muller et al., 2013b; Pinson et al., 2015).

The present paper refers to yet another interesting feature of solid C-S-H: volume changes
under isothermal conditions and constant water content.

The porosity in cement pastes ranges from the micrometer scale down to pores in the order
of the nanometer. As in other porous materials, changes in relative humidity (RH) produce
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changes in water content and volume in mature cement paste (Powers and Brownyard, 1946;
Feldman, 1968). These changes are produced by the following time-dependent effects:

• water transport from the ambient environment to the open porosity of the sample due
to capillary condensation, or vice versa, (Camuffo, 1984)

• water transport from the solid C-S-H to the porosity of the sample, or vice versa, (Wang
et al., 2018; Wyrzykowski et al., 2017)

• creep resulting from change of mechanical stress acting on the solid skeleton.

The porosity of a material sample can be characterized based on measurements of the water
content as a function of RH (Hagymassy et al., 1972; Baroghel-Bouny, 2007; Jennings et al.,
2015). However, the following issues need to be considered when calculating the pore-size
distribution from sorption water content:

(a) Pore-blockage/ bottle-necks/ pore-network effects, i.e. pores which would be expected
to be empty are full because they are not in contact with the vapor phase due to pore
connectivity (Brunauer et al., 1967).

(b) Around RH = 30 − 40%, a sudden drop in water content results from the evaporation of
water in pores larger than a threshold radius (even behind the bottle-necks) (Feldman,
1968; Maruyama et al., 2018).

(c) In desorption, water content in the interlayer spaces of C-S-H and/or in very small spaces
is considered to remain mainly unchanged until very low RH (typically RH < 20%)
(Feldman, 1968; Muller et al., 2013b; Pinson et al., 2015).

(d) In adsorption, emptied interlayer spaces and/or small spaces are considered to be filled
along the entire RH range (Feldman, 1968; Muller et al., 2013b; Pinson et al., 2015).

Calculating the pore-size distribution from the desorption branch would not be affected by (c)
but it would produce misleading results because of (a). Calculating the pore-size distribution
from the (classical) adsorption branch after severe drying (oven-drying/ RH 0%) would not
be affected by (a) but the effects of (d) must be considered. This is not an easy task as the
mechanisms behind this behavior are not fully understood. Therefore, a less common practice
is here proposed considering all (a)(b)(c)(d): the pore-size distribution can be then calculated
from isothermal adsorption starting at RH = 20%. Because of (b), studying samples dried to
RH = 20% would avoid (a). Moreover, as the samples have not been dried severely (below
RH = 20%), the interlayer water will not be altered (c), hence avoiding (d).

Successfully validated multiscale models of mature cement paste (Ulm et al., 2004; Pichler
et al., 2008; Koichi et al., 2009; Pichler and Dormieux, 2010; Pichler and Hellmich, 2011)
brought the motivation to study volume changes induced by changes in relative humidity
(RH) under a multiscale framework. The present study is focused on the swelling of mature
cement pastes observed during isothermal adsorption experiments by Maruyama (Maruyama,
2010). The increase in water content is used to characterize the porosity of the sample. The
test data refer to a sequence of equilibrium states, i.e. to the final water content and to the
final macroscopic deformation, which are both reached once the time-dependent effects such
as water transport and creep have decayed to insignificant intensities.
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6.2 Model development

6.2.1 Experimental measurements: water content and uniaxial swelling
during isothermal adsorption

The experimental measurements from (Maruyama, 2010) are analyzed. Ordinary Portland
cement was mixed as a paste with initial water-to-cement mass ratios of w/c = 0.40 and
w/c = 0.55 (notation N40 and N55 respectively). The specimens were cured under water at a
temperature of T = 293.15 K for 91 days before the tests commenced. The dimensions of the
specimens were V = 3 × 13 × 300 mm3.

The specimens were stored in a chamber with controlled relative humidity (RH) for 56
days at each targeted relative humidity at T = 293.15 K in order to get reasonably close to
equilibrium. It is important to emphasize that a sequence of equilibrium states is analyzed,
i.e. temperature and RH are prescribed around an unsealed specimen and kept constant,
targeting the ’final’ deformation which is reached as late as all time-dependent effects have
come to an end (or have decayed to insignificant intensities). The specimens were stored at
RH = 98%, 95%, 90%, 80%, 70%, 60%, 50%, 40%, and 30%, then dried to RH = 20%, and
after that they were stored under higher relative humidities RH = 30%, 40%, 50%, 60%, 70%,
80%, 90%, and 95%. The current study is focused on the isothermal adsorption in the range
of capillary condensation, from RH = 20% to RH = 90%.

The water content of each sample was measured and normalized using the mass of a
different oven-dried sample, mdry

exp, as

wexp(RH) =
mexp(RH) − mdry

exp

mdry
exp

, (6.1)

where mexp(RH) is the mass of the sample at a RH, see Fig. 6.1. The uniaxial volume change
Euni during the isothermal re-wetting was measured with a contact displacement meter, see
Fig. 6.2. Then, the macroscopic strain tensor of the sample is Ecp = Euni 1, where 1 is the
second-order unity tensor with the Kronecker delta δij as its components.

In order to interpret the experimental data, the mass of the oven-dried sample mdry
exp must

be calculated. The normalized value of the mass of water in the saturated sample wsat
exp and

the density of cement paste ρcp provided in Table 6.1 yield

mdry = ρcp

wsat
exp + 1V. (6.2)

The resulting masses of the oven-dried samples with initial water-to-cement mass ratios of
w/c = 0.40 and w/c = 0.55 are mdry

exp(w/c = 0.40) = 26.30 g and mdry
exp(w/c = 0.55) = 23.70 g.

Table 6.1
Densities and water contents of saturated mature cement pastes (Maruyama, 2010).

w/c = 0.40 w/c = 0.55
density (ρcp) [g/cm3] 2.67 2.56

water content in saturated sample (wsat
exp) [g/g-dry] 0.188 0.264

The poromechanical model will be developed using the data obtained from the samples
with initial water-to-cement mass ratio of w/c = 0.40. Afterwards, the model will be used to
predict the macroscopic expansion of the samples of mature cement paste with w/c = 0.55.
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Fig. 6.1. Experimentally measured water content wexp(RH) during isothermal adsorption
(Maruyama, 2010) of partially-dried (red) mature cement pastes with (a) w/c = 0.40 and (b)
w/c = 0.55. The values are normalized using the mass of the dried sample, see Eq. (6.1). The
water content of the (initial) saturated sample, in blue.
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Fig. 6.2. Experimentally measured isothermal swelling (Maruyama, 2010) of partially-dried
(red) mature cement pastes with (a) w/c = 0.40 and (b) w/c = 0.55. The reference is the
(initial) saturated sample, in blue.
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6.2.2 Hierarchical organization of mature cement paste
Mature cement paste consists of unhydrated clinker grains, calcium hydroxide, solid C-S-H,
and pores with different sizes (Wang et al., 2018; Pichler et al., 2008; Pichler and Hellmich,
2011). Cement paste (cp) is modeled by means of four matrix-inclusion composites at different
scales, see Fig. 6.3:

1. The microstructure of cement paste consists of spherical clinker grains (uc) embedded
in a hydrate foam (hf) matrix.

2. The microstructure of the hydrate foam consists of spherical calcium hydroxide (CH)
embedded in a C-S-H foam (CSHf) matrix.

3. The microstructure of the C-S-H foam consists of spherical capillary pores (cpor)
embedded in a C-S-H gel (CSHg) matrix.

4. The microstructure of the C-S-H gel consists of spherical gel pores (gpor) embedded in
a solid C-S-H (sCSH) matrix.

The pores are considered to be interconnected. The pore-size distributions of the pore
families are described mathematically as exponential distributions (Koichi et al., 2009), i.e.
the pore-size probability distribution function reads as

ϕpdf
k (r) = 1

Rk
exp

�
− r

Rk


, k ∈ {gpor, cpor}, (6.3)

where Rgpor and Rcpor are the characteristic radii which describe the gel and capillary porosities,
respectively. ϕpdf

k dr represents the fraction of pores with radii ranging from r to r + dr.

cement paste

unhydrated clinker

hydrate foam

calcium hydroxide

C-S-H foam

capillary pores

C-S-H gel

solid C-S-H

gel pores

Fig. 6.3. Hierarchical representation of mature cement pastes. Two-dimensional sketches of
three-dimensional representative volume elements.

The volume fractions of the constituents of the cement paste are defined by the precipitation
model developed in (Jiménez Segura et al., 2022a), as a function of the initial water-to-cement
mass ratio (w/c) and the precipitation degree (η), associated to a hydration degree (ξ). The
volume fractions of the different material phases relative to cement paste are calculated
considering the hydration degree associated to the precipitation degree reached after 90 days
(Jiménez Segura et al., 2022a), i.e. ξ = 0.86, see Table 6.2.

The pore-size distribution of the total porosity of cement paste can be expressed from the
gel and capillary pore-size distributions, see Eq. (6.3) as

ϕpdf (r) = fpor
gpor ϕpdf

gpor(r) + fpor
cpor ϕpdf

cpor(r). (6.4)
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Table 6.2
Volume fractions of material phases relative to cement paste derived from precipitation model
(for ξ = 0.86).

material phase w/c = 0.40 w/c = 0.55
unhydrated clinker (f cp

uc) 0.06 0.05
calcium hydroxide (f cp

CH) 0.27 0.24
capillary pores (f cp

cpor) 0.02 0.12
gel pores (f cp

gpor) 0.29 0.30
solid C-S-H (f cp

CSH) 0.37 0.28

Therefore, it is also interesting to get the volume relations of the porosity. The volume of
pores per unit volume of cement paste is

f cp
por = f cp

gpor + f cp
cpor. (6.5)

The volume fractions of the capillary pores and the gel pores relative to the entire porosity
read as

fpor
cpor =

f cp
cpor

f cp
por

, fpor
gpor = 1 − fpor

cpor , (6.6)

see Table 6.2.

6.2.3 Status of individual pores of partially saturated cement paste
Pores are either filled by air or by water. In both cases there is a layer of water physically
adsorbed at the electrostatically charged pore surface, see Fig. 6.4. The thickness of the

solid

ad
so

rb
ed

wa
te

r

2r < 2rK

bulk water

2r > 2rK

air

Fig. 6.4. Representation of pore status under partial saturation. The Kelvin radius rK

distinguishes air-filled and water-filled pores, see Eq. (6.10). A layer of water is adsorbed on
the pore surface. Two-dimensional sketch of three-dimensional configurations.

adsorbed layer of water is quantified empirically as (Badmann et al., 1981)

t = 0.388 nm − ln [− ln (RH)] × 0.191 nm. (6.7)

The difference between gas and liquid pressures is defined as the capillary pressure pc. The
Young-Laplace equation describe the capillary pressure, from hydrostatic force balance between
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liquid and vapor phases, in terms of the curvature of the meniscus b, and for hemispherical
meniscus (|tr b| = 2 cos θ

rm
) it reads as (Laplace, 1805; Young, 1805)

pc = pg − pl = γlg 2 cos θ

rm
, (6.8)

where γlg stands for the surface tension of interfaces between liquid and gas, θ is the contact
angle between the liquid and the solid, and rm is the radius of the meniscus, see Fig. 6.5.

rm

θ

θ

Fig. 6.5. Representation of a spherical meniscus in a cylinder. Two-dimensional sketch of
three-dimensional configuration.

Assuming the vapor phase is an ideal gas and the liquid is incompressible (bulk modulus
several orders of magnitude larger than shear modulus), the Kelvin equation results from
thermodynamic equilibrium: (Thomson, 1871; Rowlinson and Widom, 1982)

ln(RH) = − νm

RT
pc, (6.9)

where R = 8.21446 J mol−1 K−1 denotes the universal gas constant, and vm is the molar
volume. Note the − sign for concave radius curvature.

The Kelvin radius, rK = rm + t, is a threshold which determines whether a pore is filled
by air or water. Combining Eqs. (6.8) and (6.9), the Kelvin radius depends on the ambient
conditions according to

rK = −2γlgvm cos θ

ln (RH)RT
+ t. (6.10)

For water γlg = 0.073 N m−1 (Vargaftik et al., 1983), vm = 1.805 × 10−5 m3 mol−1, and θ is
so small for cement-based materials that it is set equal to zero (Hua et al., 1995). Both the
Kelvin radius and the thickness of the adsorbed layer monotonically increase with increasing
relative humidity, see Fig. 6.6.

6.2.4 Characterization of porosity: identification of characteristic radii
Rgpor and Rcpor

The mass of pore water at a certain relative humidity mH2O(RH) is obtained by subdividing
the volume of the total porosity f cp

por into water-filled fpor
H2O and air-filled fpor

air subvolumes,
such that fpor

H2O + fpor
air = 1. The water-filled subvolume accounts for the water-filled pores and

the water layers adsorbed on the surface of air-filled pores. The air-filled fraction is related to
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Fig. 6.6. Kelvin radius, see Eq. (6.10), and thickness of adsorbed layer, see Eq. (6.7), for
different values of internal relative humidity.

the pore-size distribution ϕpdf (r), see Eq. (6.4), by means of the following integral over the
air-filled pores

fpor
air (RH) =

� ∞

rK(RH)

�
r − t(RH)

r

�3

ϕpdf (r) dr. (6.11)

The mass of water at any specific relative humidity can be calculated as

mH2O
mod (RH) = ρH2O f cp

por fpor
H2O(RH) V = ρH2O f cp

por [1 − fpor
air (RH)] V. (6.12)

The increase of water content during isothermal adsorption is associated with an increase
of both adsorbed and bulk water in the pores, i.e. the changes in interlayer water content is
negligible compared to it. This assumption is supported by the fact that the samples were
dried only partially (down to RH = 20%), and therefore the interlayer water content remains
almost unchanged (Feldman, 1968; Muller et al., 2013b; de Burgh et al., 2016).

The modeled content of water at a certain RH can be compared with the experimental,
see Eq. (6.1), for a given pair Rgpor and Rcpor defining

wmod(RH) = wexp(RH = 20%) + mH2O
mod (RH) − mH2O

mod (RH = 20%)
mdry

exp

. (6.13)

Then, a function which quantifies the difference between the modeled adsorption curve for
certain Rgpor and Rcpor, wmod(Rgpor, Rcpor), and the experimental curve, wexp, is developed.

ϵ(Rgpor, Rcpor) =
90%*

RH=20%
[wmod(RH, Rgpor, Rcpor) − wexp(RH)]2 . (6.14)

The optimal combination of Rgpor and Rcpor are found numerically with a shift-and-shrink
algorithm, as detailed in (Irfan-ul Hassan et al., 2016).

The characteristic radii obtained for the sample with w/c = 0.55 are Rgpor = 3 nm and
Rcpor = 9 nm, and the characteristic radius of the gel porosity obtained for the sample with
w/c = 0.40 is Rgpor = 4 nm. The amount of capillary pores in the sample with w/c = 0.40
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is not large enough to quantify the characteristic radius of the capillary porosity with the
available data. As a remedy, the proportion between the gel and the capillary characteristic
radii is assumed to be similar in both samples, i.e. the capillary characteristic radius in the
sample with w/c = 0.40 is Rcpor = 11 nm. The modeled water contents for these pairs of
characteristic radii are in good agreement with the experimental measurements, see Fig. 6.7.
The values of the characteristic radii are comparable to the ones reported in similar analyses
(Huang et al., 2015; Wang et al., 2018).
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Fig. 6.7. Experimentally measured water content wexp(RH) (Maruyama, 2010) and modeled
water content wmod(RH) during isothermal adsorption of partially-dried mature cement pastes
with (a) w/c = 0.40 (for identified Rgpor = 4 nm and Rcpor = 11 nm) and (b) w/c = 0.55 (for
identified Rgpor = 3 nm and Rcpor = 9 nm). The values are normalized using the mass of the
dried sample, see Eqs. (6.1) and (6.13).

6.3 Multiscale homogenization of mature cement paste

6.3.1 Microscopic input
Homogenization techniques are used to calculate the macroscopic properties of a representative
volume element (RVE) given the microscopic properties of the subvolumes in which the RVE
is divided. In matrix-inclusion composites, such as mature cement paste, see Fig. 6.3, the
RVE consists of a matrix phase and an inclusion phase, occupying the subvolumes Vm and
Vi, respectively. The material phases are characterized by an elastic stiffness tensor Ck, an
eigenstress σE

k , and a volume fraction fk = Vk/VRVE, such that

∀x ∈ Vk :
�

C(x) = Ck

σE(x) = σE
k ,

k ∈ {m, i}. (6.15)

The stiffness tensors of the solid constituents are considered to be isotropic. They are
expressed in terms of their bulk moduli k and sear moduli µ, see Table 6.3:

Ck = 3kk Ivol + 2µk Idev, k ∈ {uc, sCSH}, (6.16)
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where Ivol and Idev stand for the volumetric and the deviatoric parts of the symmetric
fourth-order unity tensor I (Iijrs = 1/2 (δirδjs + δisδjr)), respectively. Ivol = 1/3 (1 ⊗ 1)
and Idev = I − Ivol. Air and pore water are fluids. Their solid stiffness is equal to zero
Ccpor = Cgpor = 0.

Table 6.3
Elastic constants of solid constituents of mature cement paste (Ulm et al., 2004).

material phase bulk modulus kk shear modulus µk

clinker (k = uc) 116.7 GPa 53.8 GPa
calcium hydroxide (k = CH) 33.3 GPa 14.5 GPa

solid C-S-H (k = sCSH) 31.8 GPa 19.1 GPa

The solid skeleton of cement paste is subjected to effective pore pressures p. These effective
pore pressures account for the pressure of the fluid filling the pore, see Fig. 6.4, and for the
surface tension, which depends on the pore radius. The effective pressure in a pore of radius
r with liquid pressure pl and gas pressure pg reads as (Pichler and Dormieux, 2010)

p(r) =
�

pl − 2γsl

r−t if r < rK ,

pg − 2γsg

r−t if r ≥ rK ,
(6.17)

where γsl and γsg stand for surface tension at solid-liquid and solid-gas interfaces, respectively.
The surface tensions γsl and γsg can be related by means of Young’s equation, see Appendix 6.A,

γsl + γlg cos θ − γsg = 0, (6.18)

and the equation of state obtained through Berthelot’s averaging rule, see Appendix 6.B,

γlg + γsg − γsl = 2
$

γsg γlg, (6.19)

and therefore expressed in terms of γlg, considering θ ≈ 0. As the difference between gas and
liquid pressures is defined as the capillary pressure, see Eq. (6.8), and gas pressure is set as
a reference pressure pg ≡ 0, the effective pressure in a pore of radius r can be expressed as
follows:

p(r) =
�

ln(RH)RT
vm

if r < rK ,

−2γlg

r−t if r ≥ rK .
(6.20)

In order to upscale these pressures to the macroscopic scale, the average effective pressures
over the pore families pgpor and pcpor are meaningful. The average effective pressure of a pore
family is calculated through an integral over its pore-size distribution, see Eq. (6.3),

pk =
� ∞

0
p(r)ϕpdf

k (r)dr, k ∈ {gpor, cpor}. (6.21)

6.3.2 Bottom-up homogenization of pore pressures
The homogenization of matrix-inclusion composites is usually implemented by means of
the Mori-Tanaka-Benveniste scheme (Mori and Tanaka, 1973; Benveniste, 1987). The Mori-
Tanaka-Benveniste scheme provides analytic expressions for the strain concentration tensors
(Benveniste, 1987)

Ak =


I + P : (Ck − Cm)

�−1 :
� *

j=m,i

fj


I + P : (Ck − Cm)

�−1�−1
, k ∈ {m, i}, (6.22)
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where P is the morphology tensor, or Hill tensor, which accounts for the shape and orientation
of the inclusion (Hill, 1963). In the particular case of spherical inclusions in an isotropic
matrix, P reads as (Eshelby, 1957)

P = (SvolIvol + SdevIdev) : C−1
m , (6.23)

Svol = 3km

3km + 4µm
, (6.24)

Sdev = 6(km + 2µm)
5(3km + 4µm) . (6.25)

The strain concentration tensors Ak are used as link between the microscopic and the macro-
scopic properties.

The homogenized macroscopic stiffness Chom and the homogenized eigenstress ΣE
hom are

calculated as follows (Zaoui, 2002; Levin, 1967)

Chom = fmCm : Am + fiCi : Ai, (6.26)

ΣE
hom = fmσE

m : Am + fiσ
E
i : Ai. (6.27)

Thus, the generalized Hooke’s law of the homogenized macroscopic material reads as

Σ = Chom : E + ΣE
hom, (6.28)

where Σ is the macroscopic stress, and E the macroscopic strain.
The macroscopic swelling due to changes in effective pore pressures induced by changes

in relative humidity is homogenized from the smallest scale up to the macroscopic level, see
Table 6.4. The outcome of one homogenization step is used as an input in the following
step. The volume fractions are obtained from Table 6.2 (Jiménez Segura et al., 2022a). The
eigenstresses assigned to the pore families come from the average effective pore pressures,
see Eq. (6.21), σE

gpor = pgpor 1 and σE
cpor = pcpor 1. In order to study the effect of changes in

effective pore pressures, no eigenstress in the solid C-S-H is considered σE
sCSH = 0.

Table 6.4
Step-by-step homogenization of mature cement paste from the smallest scale to the macroscopic
application scale (cement paste).

homogenization
scale constituents volume

fraction stiffness eigenstress homogenized
stiffness

homogenized
eigenstress

C-S-H gel
solid C-S-H fhg

sCSH CsCSH σE
sCSH CCSHg ΣE

CSHggel pores fCSHg
gpor Cgpor = 0 σE

gpor = pgpor 1

C-S-H foam
C-S-H gel fCSHf

CSHg CCSHg σE
CSHg = ΣE

CSHg CCSHf ΣE
CSHfcapillary pores fCSHf

cpor Ccpor = 0 σE
cpor = pcpor 1

hydrate foam
C-S-H foam fhf

CSHf CCSHf σE
CSHf = ΣE

CSHf Chf ΣE
hfcalcium hydroxide fhf

CH CCH σE
CH = 0

cement paste
hydrate foam f cp

hf Chf σE
hf = ΣE

hf Ccp ΣE
cpunhydrated clinker f cp

uc Cuc σE
uc = 0
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The volume change of cement paste occurred under stress-free conditions (Σcp = 0), which
means that the macroscopic deformation is a result of an eigenstress

Ecp = −C−1
cp : ΣE

cp. (6.29)

The modeled deformation produced by changes in effective pore pressures explains the
experimental measurements only partially, see Fig. 6.8. Consequently, there is another source
of deformation. A RH-dependent volume change of the solid C-S-H, i.e. an eigenstrain, is
proposed here.
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Fig. 6.8. Modeled volume deformation in mature cement pastes with (a) w/c = 0.40 and (b)
w/c = 0.55 produced due to changes in effective pore pressures induced by changes of relative
humidity (blue) and macroscopic measured deformation (Maruyama, 2010) (red).

6.3.3 Top-down identification of eigenstrain of solid C-S-H
In order to identify the volume change of the solid C-S-H, the sample with w/c = 0.40 is used
as a benchmark. The deformation of the solid C-S-H is identified in a way that for each RH,
the modeled macroscopic deformation equals the measured deformation.

The top-down identified microscopic eigenstrain εE
sCSH increases with increasing RH, see

Fig. 6.9. The values obtained are fitted by a linear and a third order polynomials, resulting in
εE

sCSH = 0.004 (RH) − 0.006 and εE
sCSH = 0.027 (RH)3 − 0.043 (RH)2 + 0.025 (RH) − 0.009,

respectively. The eigenstrain can be transformed into an eigenstress using the stiffness tensor

σE
sCSH = −CsCSH : εE

sCSH . (6.30)

6.3.4 Bottom-up prediction of macroscopic swelling
In order to test the universality of the identified microscopic swelling of the solid C-S-H, the
sample with w/c = 0.55 is studied. Thus, the macroscopic swelling of the sample is predicted
considering the volume change produced due to changes in effective pore pressures and the
identified microscopic swelling of solid C-S-H. Therefore, the macroscopic deformation of
cement paste is calculated according to Table 6.4, where the RH-dependent microscopic



Swelling of nanoscopic solid C-S-H during isothermal adsorption 92

0 0.2 0.4 0.6 0.8 1−8

−6

−4

−2

0
·10−3

(a)

relative humidity [-]

m
ic

ro
sc

op
ic

un
ia

xi
al

ei
ge

ns
tr

ai
n

of
so

lid
C

-S
-H

[m
/m

]

linear fit
third order fit

eigenstrain of solid C-S-H

0 0.2 0.4 0.6 0.8 1−8

−6

−4

−2

0
·10−3

(b)

relative humidity [-]

m
ac

ro
sc

op
ic

un
ia

xi
al

st
ra

in
of

ce
m

en
t

pa
st

e
[m

/m
]

linear fit
third order fit

experiment

Fig. 6.9. (a) Top-down identified eigenstrain of the solid C-S-H as a function of relative
humidity. (b) The value of the eigenstrain was calculated based on the sample with w/c = 0.40.

swelling of the solid C-S-H identified in the sample with w/c = 0.40 is introduced (as an
eigenstress) in the smallest scale .

The prediction of macroscopic strain is in good agreement with the experimental measure-
ments, see Fig. 6.10. This suggests that the microscopic eigenstrain of the solid C-S-H is a
material property of solid C-S-H, see Fig. 6.9.
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Fig. 6.10. Sample with w/c = 0.55. Prediction of macroscopic expansion produced due
to changes in effective pore pressures and microscopic swelling of solid C-S-H (linear fit in
green,mthird order fit in blue). Macroscopic measured deformation (Maruyama, 2010) in red.
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6.4 Conclusions
A new material property is quantified at the nanoscale in cement pastes: the microscopic
swelling of solid C-S-H induced by increasing RH. This swelling is introduced as a RH-
dependent eigenstrain at the smallest scale and quantified through a top-down analysis. The
macroscopic volume change of cement paste with different w/c during isothermal adsorption
was predicted considering the changes in effective pore pressures induced by changes in RH
and the microscopic swelling of solid C-S-H with satisfactory result.

The identification of these microscopic volume changes of solid C-S-H leads to an interesting
discussion: what are the mechanisms behind them? A possible source of swelling could be
the uptake of small amounts of water by the solid C-S-H with increasing RH. Another
source of deformation could be the disjoining pressure caused by adsorbed water within the
microstructure of the solid C-S-H. The decrease (in magnitude) of the capillary pressure (due
to the increase of RH) may influence the water within the solid C-S-H, producing swelling.
The presented eigenstrain of solid C-S-H accounts for all the effects occurring in a smaller
within their microstructure.

Appendix 6.A Young’s equation
Young’s equation is a result of static equilibrium between the three phases: solid, liquid, and
gas. The equilibrium of the surface tensions in a plane parallel to the pore surface yields, see
Fig. 6.11,

γsl + γlg cos θ − γsg = 0. (6.A.1)

solid

liquid
gas

γslγsg

γlg

θ

Fig. 6.11. Representation of a liquid droplet wetting a plain surface. Two-dimensional sketch
of three-dimensional configuration.

Appendix 6.B The equation of state through Berthelot rule
The free energy of adhesion of a pair liquid-solid is calculated as the energy required to
separate the gas from the interface and create a solid-liquid interface, i.e.

Wsl = γlg + γsg − γsl. (6.B.1)

The value of Wsl can be calculated by analogy with Berthelot average rule for admixture of
gases (Berthelot, 1898; Li and Neumann, 1992) through a geometric mean combining the free
energy of adhesion of pairs solid-solid and liquid-liquid

Wsl =
%

Wss Wll, (6.B.2)
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where the free energy of adhesion of a pair solid-solid and a pair liquid-liquid are Wss = 2γsg

and Wll = 2γlg, respectively. Thus, the following relation for the surface tensions can be
obtained

γlg + γsg − γsl = 2
$

γsg γlg. (6.B.3)

Berthelot average rule is reliable if Wss ≈ Wll, i.e. γsg ≈ γlg. As the contact angle in
cementitious materials is close to zero, such that cos θ ≈ 1, Eq, (6.B.3) can be used as a state
equation.



Chapter7
Summary, conclusions, and outlook
7.1 Summary of the micromechanics modeling
One of the pillars of micromechanics modeling is the stress average rule. The fundamentals
of the stress average rule are revisited in Chapter 2. While this well-known average rule
was typically introduced as a definition, a different approach is here taken to obtain it as a
derivation. The mechanical equilibrium of microheterogeneous representative volume elements
subjected to homogeneous (macroscopic) kinematic boundary conditions was reviewed and
re-evaluated in the framework of the principle of virtual power, leading to the stress average
rule, and to a less frequently discussed volume force average rule.

Thereafter, the stress average rule and the equilibrium conditions, together with other
fundamental relations such as the geometrical boundary conditions and the micro- and
macroscopic elasticity laws allows to develop a novel scheme to study complex microstructures,
see Chapter 3. To this end, the effects of elastic behavior at the microscale are represented by
means of the Green’s function formalism in an infinite medium, leading to Fredholm integral
equations which provide novel, series-type integral expressions for the auxiliary concentration
tensor field. The latter are related to the RVE-related concentration tensor field by comparing
the auxiliary strain to the average strain in the RVE. In special cases, such as a microstructure
with harmonically fluctuating bulk moduli, it is possible to solve these expressions analytically,
which yields explicit macro-to-micro relations.

The case of materials with a microstructure consisting of several inclusion phases embedded
in a matrix phase is faced in Chapter 4. The traditional Mori-Tanaka-Benveniste scheme (Mori
and Tanaka, 1973; Benveniste, 1987) exhibits well-known limitations. Namely, when applied to
composites with multiple inclusion phases of different shapes, the corresponding homogenized
stiffness estimates remain symmetric only if at least one of the following conditions is fulfilled
(Benveniste et al., 1989; Ferrari, 1991; Sevostianov and Kachanov, 2014):

1. all material constituents and the homogenized composite are isotropic,

2. all the inclusion phases have the same stiffness, and

3. all the inclusion phases have the same shape and the same orientation.

For all other cases, Sevostianov and Kachanov (2014) proposed to symmetrize the unsym-
metric result delivered by the Mori-Tanaka-Benveniste scheme. In the present thesis, the
general consequences of such a symmetrization are explored. The symmetrization process
implies mathematical expressions for the concentration tensors in the case of elastic composites
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different than those derived in the classical Mori-Tanaka-Benveniste scheme. The aforemen-
tioned concentration tensors overcomes all the limitations of the Mori-Tanaka-Benveniste
scheme, yielding symmetric homogenized stiffness estimates in multiphase-multiform compos-
ites.

These developments open new avenues for exploring the mechanical deformations in
hierarchical material systems with complex morphologies, such as shale (Gruescu et al., 2007),
wood (Bader et al., 2010), or fired clay (Kiefer et al., 2020).

7.2 Summary of their application to cementitious materials

7.2.1 Conclusions drawn from the study of precipitation in cement paste
The hydration degree is focused on cement clinker. Defined as the mass of dissolved clinker
divided by its initial mass, it is the most popular variable used for the description of the
microstructural phase evolution of hydrating cementitious materials. This way, it is one
essential prerequisite for quantitative upscaling of microstructural properties to corresponding
macroscopic homogenized material properties. Related “hydration models” (Powers and
Brownyard, 1946; Powers, 1958; Hansen, 1986; Acker, 2001) provide closed-form expressions
for the volume fractions of the microstructural constituents (clinker, hydration products,
and pores) as functions of the initial water-to-cement mass ratio and the hydration degree.
These models were derived mainly from studies on water vapour sorption isotherms and
chemically bound water in hydrating cement pastes. Water was classified into free capillary
water, physically bound gel water (0.19 g water per gram of clinker consumed), and chemically
bound “nonevaporable” water (0.23 g water per gram of clinker consumed). Because of the
proportionality between the two types of bound water and the consumed clinker, related
phase volume fractions evolve linearly with increasing hydration degree. Another interesting
property described by the hydration models is that the ratios of the volume fractions of
capillary pores and gel pores as well as of capillary pores and solid hydrates depend on the
initial water-to-cement mass ratio. This dependence is challenged by the results of the present
study, developed in Chapter 5.

The newly introduced precipitation degree is focused on the hydrogen-containing material
phases. It is defined as the sum of hydrogen bound solidly into calcium hydroxide and solid
C-S-H, divided by the total amount of hydrogen in the two solids as well as in water-filled
gel and capillary pores. In other words, the precipitation degree refers to the subsystem of
cement paste, which is equal to the total material minus the clinker and the air-filled voids.
This hydrogen-containing subsystem was comprehensively characterized by means of proton
NMR testing, see (Muller et al., 2013a; Muller, 2014) and (Gajewicz-Jaromin et al., 2019;
Gajewicz, 2014), respectively. The presented analysis was based on measurements taken from
these two studies:

1. 51 measurements by Muller (2014) who characterized sealed samples, cured at 20◦C,
with initial water-to-cement mass ratios, w/c, ranging from 0.32 to 0.48, and

2. 131 measurements by Gajewicz (2014) who characterized samples stored under water,
with w/c=0.40, cured at constant temperatures ranging from 10 to 60◦C.

Using this proton NMR database for studying the evolution of the relative amounts of the
four hydrogen-containing material phases as functions of the precipitation degree, it was
demonstrated that these functions are independent of the initial composition of cement paste,
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the curing temperature, and the the storage conditions (sealed or underwater), see Eqs. (5.13),
(5.14), (5.19), and (5.20), Table 5.1, and Figs. 5.5 and 5.6. This underlines the significance of
the precipitation degree as a new variable for the description of the microstructural phase
evolution. Notably, also the ratios of volume fractions of capillary pores and gel pores as well
as of capillary pores and solid hydrates are independent of the initial water-to-cement mass
ratio. This sheds an interesting light on the role of clinker. It dissolves provided that it is in
contact with undersaturated porewater, but this dissolution merely represents the supply for
the continued formation of hydrates, while precipitation of calcium hydroxide and solid C-S-H
as well as the subdivision of the total water-filled porosity into gel and capillary pores follow
universal laws inside the system of the four hydrogen-containing material phases.

As regards the influence of the curing temperature on the precipitation-induced maturing
of cement paste, the following conclusions are drawn:

• The influence of curing temperature on the precipitation kinetics can be modeled based
on the Arrhenius equation, see Eq. (5.27), and a chemical affinity function which decreases
linearly with increasing precipitation degree, as expected in classical physical chemistry,
see Eq. (5.28).

• One value of the chemical affinity constant and one value of the activation energy allow
for reproducing the precipitation kinetics in the studied range of temperatures from 10
to 60◦C, see Eq. (5.31), as well as Table 5.3 and Fig. 5.12.

• The “finally” reached precipitation degree decreases linearly with increasing curing
temperature, see Eq. (5.24) and Fig. 5.9. This is related to the temperature-dependent
water-to-silica ratio, see Fig. 5.10.

The masses and volumes of clinker, solid C-S-H, and chemical-shrinkage-related voids
(= phases that do not contain hydrogen), can be determined by means of mass and volume
balance. This allows to calculate the mass density of solid C-S-H, which depends on the curing
temperature and the precipitation degree, see Fig. 5.14. Results obtained from modeling of
the phase volume fractions as a function of the initial water-to-cement mass ratio w/c and
the precipitation degree η yields the following conclusions:

• The uptake of water in samples cured underwater is virtually proportional to the
precipitation degree. It counteracts the creation of air-filled voids, which is driven by
chemical shrinkage and e.g. in sealed samples.

• One set of formulae, see Eqs. (5.48)–(5.51), (5.53), (5.58), and (5.59), is sufficient to
describe the evolution of phase assemblage for both types of curing conditions: sealed
curing and underwater storage, respectively, see Fig. 5.15. This is possible because of a
binary variable π4, see Table 5.2.

• The relation between the precipitation degree η and the hydration degree ξ depends on
the initial water-to-cement mass ratio w/c and the curing conditions, see Eq. (5.45) and
Fig. 5.13.

The here reported results become directly applicable in the context of multiscale modeling.
As an example, they were applied in the context of adsorption-induced swelling of cement
paste.
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7.2.2 Conclusions drawn from the study of swelling C-S-H
Chapter 6 studies a set of experiments by Maruyama (2010). In these experiments, the
deformation of cement paste samples with different initial compositions is measured while
they are subjected to isothermal adsorption.

The precipitation model developed in Chapter 5 was used to obtain the phase assemblage of
the samples. Then, the Mori-Tanaka scheme was applied to calculate the expected deformation
resulting from changes in pore pressures. These changes in effective pore pressures explained
the measured deformation only partially. Therefore, the microscopic swelling of solid C-S-H
induced by increasing RH was considered as an additional source of macroscopic deformation.
This swelling is introduced as a material property, described as a RH-dependent eigenstrain at
the smallest scale and quantified through a top-down analysis. The changes in effective pore
pressures, together with the microscopic swelling of solid C-S-H, were upscaled to predict the
macroscopic volume change of cement pastes with different w/c during isothermal adsorption.
The result was satisfactory.

7.3 Perspectives
The present thesis included fundamental theoretical developments regarding homogenization
methods of continuum micromechanics and selected applications of such methods to the
hierarchically organized microstructures of cementitious materials at early and mature ages.
The presented research results open the door to the following future perspectives:

• The novel scheme of Chapter 3 was applied to a complex microstructure with harmonically
fluctuating bulk moduli. In the future, it will be interesting to study also microstructures
with harmonically fluctuating shear moduli. This will complete a new toolbox of
fundamental solutions. It will open the door to homogenization of general complex
microstructures with any distribution of isotropic microstiffnesses, noting that the latter
can be developed into trigonometric Fourier series.

• In Chapter 4, the investigation of multiform multiphase matrix-inclusion microstructures
was focused on strain concentration tensors. In the future, it will be interesting to extend
these developments towards eigenstressed media by means of the transformation field
analysis. This extension will also include influence tensors which relate the eigenstress
in one phase to the microstrain that it induces in another phase. This will open the door
to stress and strain downscaling also in the context of poromicromechanics, temperature
changes, and elasto-plastic phase behavior.

• The NRM study of Chapter 5 was focused on white cement paste. In the future it will
be interesting to develop similar models also for other cementitious binders, noting that
the cement and concrete industry addresses the urgent pressure to reduce CO2 emissions
by the development of binder systems in which significant amounts of Portland cement
clinker are replaced by supplementary cementitious materials.

• In the context of sorption-induced volume changes of solid C-S-H, Chapter 6 is focused on
adsorption-induced nanoscopic swelling of solid C-S-H. In the future, it will be interesting
to study also desorption problems. This will make it necessary to tackle the challenge
of the bottle-neck-effect also known from Mercury Intrusion Porosimetry. Additional
open research questions regard irreversible microstructural processes associated with
the first drying process as well as sequences of drying and rewetting including severe
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drying to relative humidities significantly lower than 20%, such that the water content
of solid C-S-H is also significantly decreased.

• The physical mechanisms standing behind the nanoscopic deformation of solid C-S-H
also deserve future exploration. It will be interesting to study the interaction between
capillary underpressure in the porewater and the “effective pressure” experienced by
water inside solid C-S-H. In addition, also disjoining pressure which is caused by
adsorbed water within the microstructure of the solid C-S-H and which may also result
in nanoscopic volume changes deserves future attention.
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AppendixA
Numerical computation of strain
concentration and homogenized
stiffness tensor of multiphase
matrix-inclusion composites
Computer routine for MATLAB
%
%1matrix phase +(1 spherical inclusion, 1 prolate inclusion)
%volume fractions and elastic constants (k=bulk modulus; mu=shear modulus)
fm=.6; km=80.634e9; mum=37.1e9;
f1=.25; k1=19.29e9; mu1=14.3e9;
f2=.15; k2=160e9; mu2=79.3e9;

% stiffness tensors
Cm=stiffness_tensor_kmu(km,mum);
C1=stiffness_tensor_kmu(k1,mu1);
C2=stiffness_tensor_kmu(k2,mu2);

% Hill tensors
Pm=Hill_tensor_sphere(km,mum);
P1=Hill_tensor_sphere(km,mum);
P2=Hill_tensor_prolate(km,mum,3);

% AUXILIARY strain concentration tensors
Aminf=aux_strain_concentration(Cm,Cm,Pm); %=I
A1inf=aux_strain_concentration(Cm,C1,P1);
A2inf=aux_strain_concentration(Cm,C2,P2);

% corrected RVE-TO-AUXILIARY STRAIN LINK
M_sym=real_to_aux_macrostrain_sym_2(Cm, 1-fm,

f1/(1-fm), C1, A1inf, f2/(1-fm), C2, A2inf);
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% STRAIN CONCENTRATION TENSORS INCLUSION PHASES
A1_sym=A1inf*M_sym;
A2_sym=A2inf*M_sym;

% STRAIN CONCENTRATION TENSOR MATRIX PHASE
Am_sym=(eye(6)-(f1*A1_sym+f2*A2_sym))/fm;

% HOMOGENIZED STIFFNESS TENSOR
Chom_sym=fm*Cm*Am_sym+f1*C1*A1_sym+f2*C2*A2_sym;

Functions used in this computer routine

Computation of isotropic stiffness tensor
function [C] = stiffness_tensor_kmu(k, mu)

%k,mu bulk, shear moduli of the phase

%volumetric and deviatoric identity tensors
Ivol=zeros(6,6);
Ivol(1:3,1:3)=ones(3,3)/3;
Idev=eye(6)-Ivol;

C=3*k*Ivol+2*mu*Idev;

end

Computation of Hill tensors for spherical and prolate inclusions
function [P] = Hill_tensor_sphere(k0, mu0)

%Hill tensor of sphere in Isotropic matrix
%k,mu bulk, shear moduli of the Eshelby matrix

alpha=1/(3*k0+4*mu0);
beta=3*(k0+2*mu0)/5/mu0/(3*k0+4*mu0);

Ivol=zeros(6,6);
Ivol(1:3,1:3)=ones(3,3)/3;
Idev=eye(6)-Ivol;

P=alpha*Ivol+beta*Idev;

end

function [P] = Hill_tensor_prolate(k0,mu0,omega)
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%Hill tensor of prolate in Isotropic matrix
%k,mu bulk, shear moduli of the Eshelby matrix
%omega: aspect ratio (>1)

h=omega*(omega*sqrt(omega*omega-1)-acosh(omega))/(sqrt(omega*omega-1)*(omega*omega-1));

%P=(2kp,lp,lp,np,2mp,2pp) Walpole notation
kp=((7*h-2*omega*omega-4*omega*omega*h)*mu0+

3*(h-2*omega*omega+2*omega*omega*h)*k0)/(8*(1-omega*omega)*mu0*(4*mu0+3*k0));
lp=((mu0+3*k0)*(2*omega*omega-h-2*omega*omega*h))

/(4*(1-omega*omega)*mu0*(4*mu0+3*k0));
np=((6-5*h-8*omega*omega+8*omega*omega*h)*mu0+

3*(h-2*omega*omega+2*omega*omega*h)*k0)/(2*(1-omega*omega)*mu0*(4*mu0+3*k0));
mp=((15*h-2*omega*omega-12*omega*omega*h)*mu0+3*(3*h-2*omega*omega)*k0)

/(16*(1-omega*omega)*mu0*(4*mu0+3*k0));
pp=(2*(4-3*h-2*omega*omega)*mu0+3*(2-3*h+2*omega*omega-3*omega*omega*h)*k0)

/(8*(1-omega*omega)*mu0*(4*mu0+3*k0));

%Walpole basis
W1=zeros(6);W1(1:2,1:2)=ones(2); W1=W1/2;
W2=zeros(6);W2(1,3)=1;W2(2,3)=1;
W3=zeros(6);W3(3,1)=1;W3(3,2)=1;
W4=zeros(6);W4(3,3)=1;
W5=zeros(6);W5(1,1)=1;W5(2,2)=1;W5(1,2)=-1;W5(2,1)=-1;W5(6,6)=2;W5=W5/2;
W6=zeros(6);W6(4,4)=1;W6(5,5)=1;

P=2*kp*W1+lp*W2+lp*W3+np*W4+2*mp*W5+2*pp*W6;

end

Computation of auxiliary concentration tensors
function [A_inf_i] = aux_strain_concentration(C0, C_i,P_i)

%Calculate strain concentration tensor for auxiliar macrostrain
%(infinite matrix Eshelby problem)
%0=matrix phase;i=inclusion phase

A_inf_i=eye(6)+P_i*(C_i-C0);
A_inf_i=inv(A_inf_i);

end

Computation of the RVE-to-auxiliary macrostrain link (for composites with
2 inclusion phases)

function [M] = real_to_aux_macrostrain_sym_2(C_0, c, f_1, C_1, A_inf_1,
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f_2, C_2, A_inf_2)

%E0=M*(E)
%c volume fraction of inclusions
%f_i normalized volume fraction of inclusion i (/c)
%A_inf_i auxiliar strain concentration tensor for inclusion i
%C_0 stiffness tensor of matrix
%C_i stiffness tensor of inclusion i

N_1=(C_1-C_0)*A_inf_1;
N_2=(C_2-C_0)*A_inf_2;

sum_N=f_1*N_1+f_2*N_2;

M=(1-c)*eye(6)+c*( (f_1*A_inf_1) + (f_2*A_inf_2) ) - c/2*( (f_1*inv(C_1-C_0)*N_1) +
(f_2*inv(C_2-C_0)*N_2) ) + c/2*( inv(sum_N)*( (f_1*N_1*inv(C_1-C_0)) +
(f_2*N_2*inv(C_2-C_0)) )*sum_N);

M=inv(M);

end
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