

Viscous layer dynamics of the Euler-Prandtl stage in marginal separation

Ivo Stojanovic, Stefan Braun

Institute of Fluid Mechanics and Heat Transfer, TU Wien

September 15th 2022, EFMC14

Transitional separation bubble (LSB) Experimental observations

Smoke flow visualisation of a LSB on an Eppler 387 airfoil at $\alpha = 2^{\circ}$ and Re $\approx 10^5$ [G. Cole, T. Mueller, 1990]

Viscous layer dynamics of the Euler-Prandtl stage in marginal separation

Transitional separation bubble (LSB) Experimental observations

Smoke flow visualisation of a LSB on an Eppler 387 airfoil at $\alpha = 2^{\circ}$ and Re $\approx 10^5$ [G. Cole, T. Mueller, 1990]

LSB in a laminar water tunnel: Λ -vortex generation cycle at Re $\approx 10^5$ (provided by U. Rist, M. Lang)

Viscous layer dynamics of the Euler-Prandtl stage in marginal separation

LSB, high-Re asymptotic structure

Early stages of the laminar-turbulent transition process [S. Braun, S. Scheichl, D. Kuzdas, 2021]

Finite-time blow-up of triple deck stage Self-similar blow-up structure as $x \to x_s, t \to t_s$ [J. Elliott, F. Smith, 1987]:

$$\frac{2}{5}\frac{\partial\hat{\Psi}}{\partial\hat{\eta}} + \frac{3}{5}\hat{x}\frac{\partial^{2}\hat{\Psi}}{\partial\hat{\eta}\partial\hat{x}} + \frac{1}{2}\hat{\eta}\frac{\partial^{2}\hat{\Psi}}{\partial\hat{\eta}^{2}} + \frac{\partial\hat{\Psi}}{\partial\hat{\eta}}\frac{\partial^{2}\hat{\Psi}}{\partial\hat{\eta}\partial\hat{x}} - \frac{\partial\hat{\Psi}}{\partial\hat{x}}\frac{\partial^{2}\hat{\Psi}}{\partial\hat{\eta}^{2}} = -\frac{\partial\hat{\mathcal{P}}}{\partial\hat{x}} + \frac{\partial^{3}\hat{\Psi}}{\partial\hat{\eta}^{3}} - \frac{\partial\hat{\Psi}}{\partial\hat{y}}\frac{\partial^{2}\hat{\Psi}}{\partial\hat{y}^{2}} = -\frac{\partial\hat{\mathcal{P}}}{\partial\hat{x}} + \frac{\partial^{3}\hat{\Psi}}{\partial\hat{\eta}^{3}} - \frac{\partial\hat{\Psi}}{\partial\hat{y}^{3}} + \frac{\partial\hat{\Psi}}{\partial\hat{y}^{3}} - \frac{\partial\hat{\Psi}}{\partial\hat{y}^{3}} + \frac{\partial\hat{\Psi}}{\partial\hat{y}^{3}} - \frac{\partial\hat{\Psi}}$$

$$x - x_s = (t_s - t)^{\frac{3}{5}} \hat{x}, \ y = (t_s - t)^{\frac{1}{2}} \hat{\eta}$$

Boundary conditions:

$$\begin{split} \hat{\Psi} &= \hat{\Psi}_{\hat{\eta}} = 0 \qquad \text{for} \qquad \hat{\eta} = 0, \\ \hat{\Psi} &\sim \hat{\mathcal{B}}(\hat{x})\hat{\eta} + \dots \qquad \text{as} \qquad \hat{\eta} \to \infty \end{split}$$

Relation between pressure $\hat{\mathcal{P}}$ and slip velocity $\hat{\mathcal{B}}$ (Bernoulli-equ.): $\hat{\mathcal{P}}' = 2\hat{\mathcal{R}}' + 2\hat{\mathcal{R}}' + \hat{\mathcal{R}}\hat{\mathcal{R}}'$

$$-\hat{\mathcal{P}} = 2\hat{\mathcal{B}}/5 + 3\hat{x}\hat{\mathcal{B}}/5 + \hat{\mathcal{B}}\hat{\mathcal{B}}$$

Finite-time blow-up of triple deck stage Self-similar blow-up structure as $x \to x_s, t \to t_s$ [J. Elliott, F. Smith, 1987]:

LD: Sublayer leading order

$$\frac{2}{5}\frac{\partial\hat{\Psi}}{\partial\hat{\eta}} + \frac{3}{5}\hat{x}\frac{\partial^{2}\hat{\Psi}}{\partial\hat{\eta}\partial\hat{x}} + \frac{1}{2}\hat{\eta}\frac{\partial^{2}\hat{\Psi}}{\partial\hat{\eta}^{2}} + \frac{\partial\hat{\Psi}}{\partial\hat{\eta}}\frac{\partial^{2}\hat{\Psi}}{\partial\hat{\eta}\partial\hat{x}} - \frac{\partial\hat{\Psi}}{\partial\hat{x}}\frac{\partial^{2}\hat{\Psi}}{\partial\hat{\eta}^{2}} = -\frac{\partial\hat{\mathcal{P}}}{\partial\hat{x}} + \frac{\partial^{3}\hat{\Psi}}{\partial\hat{\eta}^{3}} - \frac{\partial\hat{\Psi}}{\partial\hat{y}}\frac{\partial^{2}\hat{\Psi}}{\partial\hat{y}^{2}} = -\frac{\partial\hat{\mathcal{P}}}{\partial\hat{x}} + \frac{\partial^{3}\hat{\Psi}}{\partial\hat{y}^{3}} - \frac{\partial\hat{\Psi}}{\partial\hat{y}^{3}} - \frac{\partial\hat{\Psi}}$$

$$x - x_s = (t_s - t)^{\frac{3}{5}} \hat{x}, \ y = (t_s - t)^{\frac{1}{2}} \hat{\eta}$$

Boundary conditions:

$$\begin{split} \hat{\Psi} &= \hat{\Psi}_{\hat{\eta}} = 0 \qquad \text{for} \qquad \hat{\eta} = 0, \\ \hat{\Psi} &\sim \hat{\mathcal{B}}(\hat{x})\hat{\eta} + \dots \qquad \text{as} \qquad \hat{\eta} \to \infty \end{split}$$

Relation between pressure $\hat{\mathcal{P}}$ and slip velocity $\hat{\mathcal{B}}$ (Bernoulli-equ.):

$$-\hat{\mathcal{P}}' = 2\hat{\mathcal{B}}/5 + 3\hat{x}\hat{\mathcal{B}}'/5 + \hat{\mathcal{B}}\hat{\mathcal{B}}'$$

Numerical treatment

Spectral collocation method (Chebyshev polynomials)

Ansatz to capture singular behaviour as $\hat{\eta} \to \infty$

$$\hat{\Psi}(\hat{x},\hat{\eta}) = \hat{\mathcal{B}}(\xi) \frac{\eta_V}{d(\xi)} + \boldsymbol{f}(\xi,\eta_V)$$

with the blow-up coordinates and scaling function
$$\xi = \hat{x}, \eta_V = \hat{\eta} d(\xi), d(\xi) = (1 + \xi^2)^{-5/12}$$

Domain mapping

τU

$$\begin{aligned} x \in (-\infty; \infty), \ y \in (0; \infty) \Rightarrow s, r \in [-1; 1] & \text{Gauss-Lobatto points} \\ x (s) = x^* + B \tan\left(\frac{\pi s}{2}\right) & s_j = -\cos\left(\frac{j\pi}{m}\right), \ j = (0, ..., m) \\ y(r) = C \tan\left(\frac{\pi (r+1)}{4}\right) & r_i = -\cos\left(\frac{i\pi}{n}\right), \ i = (0, ..., n) \\ \text{Differentiation } f_i^{(m)} = \sum_j D_{ij}^{(m)} f_j \\ \text{J.P. Berrut and L.N. Trefethen, 2004]} & D_{ij}^{(1,x)} = s_x D_{ij}^{(1,s)}, \ D_{ij}^{(1,y)} = r_y D_{ij}^{(1,r)} \end{aligned}$$

Numerical treatment Spectral collocation method (Chebyshev polynomials)

Ansatz to capture singular behaviour as $\hat{\eta} \to \infty$

$$\hat{\Psi}(\hat{x},\hat{\eta}) = \hat{\mathcal{B}}(\xi) \frac{\eta_V}{d(\xi)} + f(\xi,\eta_V)$$

with the blow-up coordinates and scaling function $\xi = \hat{x}, \eta_V = \hat{\eta} d(\xi), d(\xi) = (1 + \xi^2)^{-5/12}$

Domain mapping

WIEN

$$\begin{aligned} x \in (-\infty; \infty), \ y \in (0; \infty) \Rightarrow s, r \in [-1; 1] & \text{Gauss-Lobatto points} \\ x (s) = x^* + B \tan\left(\frac{\pi s}{2}\right) & s_j = -\cos\left(\frac{j\pi}{m}\right), \ j = (0, ..., m) \\ y(r) = C \tan\left(\frac{\pi(r+1)}{4}\right) & r_i = -\cos\left(\frac{i\pi}{n}\right), \ i = (0, ..., n) \\ \mathbf{Differentiation} \ f_i^{(m)} = \sum_j D_{ij}^{(m)} f_j \\ \text{[J.P. Berrut and L.N. Trefethen, 2004]} & D_{ij}^{(1,x)} = s_x D_{ij}^{(1,s)}, \ D_{ij}^{(1,y)} = r_y D_{ij}^{(1,r)} \end{aligned}$$

Finite-time blow-up $\hat{A}(0) = 0.6, \ \hat{A}'(0) = 0.6, \ (m \times n) = (160 \times 80)$

LD: Sublayer leading order

$$\frac{2}{5}\frac{\partial\hat{\Psi}}{\partial\hat{\eta}} + \frac{3}{5}\hat{x}\frac{\partial^{2}\hat{\Psi}}{\partial\hat{\eta}\partial\hat{x}} + \frac{1}{2}\hat{\eta}\frac{\partial^{2}\hat{\Psi}}{\partial\hat{\eta}^{2}} + \frac{\partial\hat{\Psi}}{\partial\hat{\eta}}\frac{\partial^{2}\hat{\Psi}}{\partial\hat{\eta}\partial\hat{x}} - \frac{\partial\hat{\Psi}}{\partial\hat{x}}\frac{\partial^{2}\hat{\Psi}}{\partial\hat{\eta}^{2}} = -\frac{\partial\hat{\mathcal{P}}}{\partial\hat{x}} + \frac{\partial^{3}\hat{\Psi}}{\partial\hat{\eta}^{3}}$$

Slope of separation/ reattachment streamline [K. Oswatitsch, 1958]: $\tan \theta_0 = -3\tau_{wx}/p_x$

Der Wissenschaftsfonds.

Euler-Prandtl stage

Prandtl layer

WIEN

FШF

Der Wissenschaftsfonds.

Unsteady Boundary Layer equation $\frac{\partial^2 \Psi}{\partial \bar{\eta} \partial \bar{t}} + \frac{\partial \Psi}{\partial \bar{\eta}} \frac{\partial^2 \Psi}{\partial \bar{x} \partial \bar{\eta}} - \frac{\partial \Psi}{\partial \bar{x}} \frac{\partial^2 \Psi}{\partial \bar{\eta}^2} = -\frac{\partial P}{\partial \bar{x}} + \frac{\partial^3 \Psi}{\partial \bar{\eta}^3}$

with the scalings: $\bar{x} \sim \operatorname{Re}^{1/2} \tilde{x} / \tilde{L}$, $\bar{\eta} \sim \operatorname{Re}^{3/4} \tilde{y} / \tilde{L}$, $\bar{t} \sim \operatorname{Re}^{1/2} \tilde{t} \tilde{u}_{\infty} / \tilde{L}$ Boundary conditions:

$$\begin{split} \Psi &= \Psi_{\bar{\eta}} = 0 & \text{for} & \bar{\eta} = 0, \\ \Psi &\sim B(\bar{x}, \bar{t}) \bar{\eta} + \dots & \text{as} & \bar{\eta} \to \infty \end{split}$$

Initial condition: $(\bar{t} \to -\infty)$

$$\Psi\left(\bar{x},\bar{\eta},\bar{t}\right) \sim |\bar{t}|^{1/10} \hat{\Psi}(\hat{x},\hat{\eta}) + |\bar{t}|^{-1/10} \hat{\Psi}_2(\hat{x},\hat{\eta}) + |\bar{t}|^{-3/10} \hat{\Psi}_3(\hat{x},\hat{\eta}) + \dots$$

with
$$\bar{x} = |\bar{t}|^{3/5} \hat{x}, \quad \bar{\eta} = |\bar{t}|^{1/2} \hat{\eta}$$

Relation between P and B (Bernoulli-equ.):

$$-P_{\bar{x}} = B_{\bar{t}} + BB_{\bar{x}}$$

Euler-Prandtl stage Prandtl layer dynamics, $(m \times n) = (120 \times 100)$

Viscous layer dynamics of the Euler-Prandtl stage in marginal separation

Conclusions and future work

- ▶ Early stages of laminar-turbulent transition
- Viscous layer dynamics of marginally separated boundary layer flow (TD and EP stages)
- ▶ Successfully calculated the finite-time blow-up profiles from the TD-stage

Future Work

- ▶ Inclusion of 3rd order TD blow-up profile as I.C.
- ▶ Refine spatial resolution of computational domain
- ▶ Prandtl layer: Improve transition from asymptotic regime to evolution at $\bar{t} \sim \mathcal{O}(1)$

Conclusions and future work

- ▶ Early stages of laminar-turbulent transition
- Viscous layer dynamics of marginally separated boundary layer flow (TD and EP stages)
- ▶ Successfully calculated the finite-time blow-up profiles from the TD-stage

Future Work

- ▶ Inclusion of 3rd order TD blow-up profile as I.C.
- ▶ Refine spatial resolution of computational domain
- ▶ Prandtl layer: Improve transition from asymptotic regime to evolution at $\bar{t} \sim \mathcal{O}(1)$

