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Kurzfassung

Magnetschienenbremsen sind vom Rad-Schiene Kontakt unabhängige Bremssysteme von
Schienenfahrzeugen, die im Falle von Schnellbremsungen aktiviert werden. Im Drehge-
stell eingebaute Elektromagnete werden auf die Schiene abgesenkt und erzeugen eine
magnetische Anzugskraft zwischen Bremse und Schiene. Dadurch entsteht im Magnet-
Schiene Kontakt eine Reibkraft, die durch die Struktur der Bremse auf das Drehgestell
übertragen wird. Um hohe Verzögerungsspitzen bei niedrigen Geschwindigkeiten zu ver-
meiden, wurden Magnetschienenbremsen bisher nicht bis zum Stillstand verwendet. Um
gerade bei niedrigen Rad-Schiene Kraftschlüssen die Bremswege zu verkürzen, sollen in
Zukunft Magnetschienenbremsen auch bis zum Stillstand aktiv bleiben. Im niedrigen
Geschwindigkeitsbereich wurden jedoch starke Vibrationen der Magnetschienenbremse
festgestellt, die zu hohen mechanischen Belastungen führen und damit den Einsatz bis
zum Stillstand verhindern.

Die vorliegende Dissertation beschäftigt sich mit der Identifikation von Selbsterregungs-
mechanismen, die für diese Vibrationen ursächlich sind. Den Beginn bilden Fahrversuche
unter realen Bedingungen, deren Analyse periodische Schwingungen in einem asymme-
trischen Schwingungsmode der Bremse zeigt, deren Auftreten mit hohen Bremskräften
korreliert.

Zur Erforschung des zugrunde liegenden Selbsterregungsmechanismus werden vereinfachte
und detailliertere dynamische Modelle der Magnetschienenbremse entwickelt, die sich aus
gekoppelten Teilmodellen in den elektrischen, magnetischen und mechanischen Domänen
zusammensetzen. Dafür erforderliche Modellparameter werden aus Fahrversuchen und
Laborversuchen ermittelt.

Durch Anwendung etablierter Methoden der linearen Stabilitätstheorie werden mit den
vereinfachten Modellen zwei Mechanismen identifiziert, die (in Kombination) selbster-
regte Schwingungen auslösen können. Einerseits führen negative Gradienten des Reib-
werts zwischen Polschuhen und Schiene bei niedrigen Geschwindigkeiten zu negativen
Dämpfungstermen der Systemgleichungen, wodurch eine Selbsterregung entsteht. Anderer-
seits besteht eine träge Wechselwirkung zwischen mechanischen und elektromagnetischen
Zustandsgrößen, die in ungünstigen Fällen ebenfalls zu oszillatorisch instabilem Sys-
temverhalten führt. Beeinflusst wird diese Wechselwirkung sowohl durch geometrische
Abmessungen, als auch durch den Betrag des Reibwerts, sowie Parameter des magne-
tischen Kreises. Bei Systemen mit mehreren Elektromagneten in Serienschaltung wird
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dieser Selbsterregungsmechanismus für asymmetrische Schwingungsformen zusätzlich
verstärkt. Durch Analysen im Zeitbereich werden die Energiequellen bestimmt, die für
die Aufrechterhaltung der entstehenden Grenzzykel verantwortlich sind.

Anhand eines detaillierteren Mehrkörperdynamik-Modells werden die mit den verein-
fachten Modellen gewonnenen Erkenntnisse überprüft sowie Bremsmanöver simuliert,
die mit Fahrversuchsdaten verglichen werden. Dabei wird gezeigt, dass selbsterregte
Schwingungen von Magnetschienenbremsen sowohl von Konstruktionsparametern, als
auch äußeren Einflüssen wie Materialansammlungen an Reibflächen, sowie den Magnet-
Schiene Kontaktbedingungen abhängen. Um in Zukunft selbsterregte Schwingungen bei
niedrigen Geschwindigkeiten zu vermeiden, werden Konstruktionsvorschläge entwickelt,
um damit das Bremsvermögen von Schienenfahrzeugen zu erhöhen.



Abstract

Magnetic track brakes are braking systems of railway vehicles independent of the wheel-
rail contact, which are activated in emergency braking manoeuvres. Electromagnets
installed in the bogie are lowered onto the rail and generate a magnetic attraction
force between the brake and the rail. This creates a frictional force in the magnet-rail
contact, which is transmitted to the bogie by the structure of the brake. To avoid high
deceleration peaks, magnetic track brakes are not used until standstill of the vehicle. To
reduce braking distances, especially in low wheel-rail adhesion conditions, magnetic track
brakes are to remain active until standstill in the future. However, severe vibrations of
a magnetic track brake were detected in vehicle tests at low velocities, leading to high
mechanical loads and thus impeding this target.

This dissertation focuses on identifying the self-excitation mechanisms causing these
vibrations. Vehicle tests performed under realistic operating conditions are the starting
point. The analysis of these tests shows periodic vibrations in an asymmetric vibration
mode of the brake correlating with high magnitudes of braking forces.

To investigate the underlying self-excitation mechanism, simplified and more detailed
dynamical models of a magnetic track brake are developed, which are assembled from
coupled sub-models in the electrical, magnetic and mechanical domains. Model parameters
required for the models are determined from vehicle tests and laboratory experiments.

By applying established methods of linear stability theory to the simplified models, two
mechanisms are identified which (in combination) may cause self-excited vibrations. On
the one hand, it is found that negative gradients of the coefficient of friction in the
magnet-rail contact lead to negative damping terms of the system equations, resulting
in self-excitation. On the other hand, an inertial coupling exists between mechanical
and electromagnetic state variables, which can also cause oscillatory unstable system
behaviour. This coupling is influenced both by geometric dimensions of the track brake
and by the magnitude of the coefficient of friction, as well as parameters of the magnetic
circuit. For systems with multiple magnets in series connection, this self-excitation
mechanism is amplified for asymmetrical oscillation modes. Time-domain analyses
determine the energy sources for maintaining the resulting limit cycles.

Using a more detailed multibody dynamics model, the findings obtained with the simplified
models are validated and braking manoeuvres are simulated, which are compared with
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vehicle test data. It is shown that self-excited vibrations of magnetic track brakes are
dependent on both design parameters and external influences such as accumulation of
material on friction surfaces, as well as the magnet-rail contact conditions. To avoid
self-excited vibrations at low velocities in the future, new designs are proposed to increase
the braking capacity of rail vehicles.
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CHAPTER 1
Introduction and state of the art

Braking systems of railway vehicles must be able to decelerate and stop trains within
specified distances. For mainline trains, stopping distances are given by distances between
signals which divide railway lines into controlled sectors in which only a single train may
operate at once. The length of a sector, and as a result the stopping distance of a train,
therefore limits the number of trains on a railway line. To guarantee safe operation,
it is most relevant to keep planned stopping distances in all occurring environmental
and operational conditions. However, most braking systems of railway vehicles depend
on the wheel-rail contact forces which vary with different types of contaminants of the
track such as moisture, dust, grease and leaves. Predicting and improving adhesion
coefficients in the wheel-rail contact has been an ongoing challenge for train operators,
manufacturers of braking systems and researchers for decades. Systems coping with
degraded adhesion conditions nowadays are the wheel-slide-protection (WSP), sanding
devices, friction enhancers and magnetic track brakes. In modern vehicles, the WSP
in combination with sanding can reliably restore wheel-rail adhesion values. Friction
modifiers can be applied at fixed locations in the known critical areas of railway tracks.
Finally, magnetic track brakes are additional braking systems of railway vehicles which
act directly on the rails instead of being dependent on the wheel-rail contact. On the one
hand, magnetic track brakes contribute to the overall brake force of the train. On the
other hand, magnetic track brakes have proven to enhance the wheel-rail adhesion values
of succeeding wheelsets. As a result, magnetic track brakes are mandatory in mainline
trains in many countries for velocities over 140 km/h. The design and application of
magnetic track brakes is regulated in UIC leaflet 541-06 [1] as well as in the European
standard EN16207 [2] and the Ergänzungsregelung Nr. B 012 [3] issued by the German
Federal Railway Authority. Studies on brake performance were published, for example,
by Arias-Cuevas and Li [4, 5] and the European Railway Research Institute [6].

It is known from the operation of magnetic track brakes that brake forces increase with
decreasing velocity resulting in high peak decelerations of the vehicle when applied until
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1. Introduction and state of the art

full stop. To avoid discomfort and injuries of passengers, track brakes for mainline
applications therefore were deactivated in the past at velocities lower than 25 km/h.
However, as demands on brake performance continuously increase, operators choose to
use the track brake until (nearly) full stop. To optimise braking systems and to add
additional safety margins in stopping distances, activation of track brakes until full stop
is increasingly becoming a standard customer requirement.

During field tests, severe vibrations of the magnetic track brake were measured at
velocities below 25 km/h causing discomfort, noise and also high loads on mechanical
components. As data analyses have shown that external excitations were unlikely, it is
assumed that they are of a self-exciting type. The mechanism that leads to unstable
system behaviour is however unknown. Thus, it is of great interest to analyse the
vibrations in detail and to explore the mechanisms causing them. To prevent self-excited
vibrations to occur in future designs of magnetic track brakes, it is essential to be able
to predict them using mathematical models. Subsequently, methods for stabilising the
system can be developed. This thesis focuses on analysing, modelling and mitigating
self-excited vibrations of magnetic track brakes.

This first chapter is aimed at providing an insight into the mechanical design and function
of magnetic track brakes. Furthermore, an overview of the methods used in this thesis
and relevant literature is given. Finally, the chapter defines the aims and objectives and
gives an overview on the structure of this thesis.
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1.1. Components and function principle of an electromagnetic track brake

1.1 Components and function principle of an
electromagnetic track brake

According to the European standard EN16207 [2], magnetic track brakes for mainline
trains are assembled as rectangular brake frames. In a brake frame, the braking magnets
are centred above the rail and linked by track rods. Figure 1.1 depicts a drawing of a
magnetic track brake of a mainline train. In the brake frame shown, the track brake
consists of four small magnets, two on each side. The rear and the front magnets are
linked by connecting beams. Further main components of a track brake are the actuating
cylinders, the mechanical stops and the centring devices.

Braking magnets of track brakes used for mainline applications are electromagnets as
shown in Figure 1.2. When the brake is activated, the magnets come into contact with
the rail, which creates a frictional force which is used for braking. As depicted, braking
magnets consist of a coil body and an open ferromagnetic core which is then closed to a
magnetic circuit by the rail.

The core of the magnet in the figure is subdivided into endpieces at both ends and three
intermediate elements. The endpieces are rigidly connected to the coil body whereas
the intermediate elements are designed moveable inside the coil body to compensate
irregularities of the rail. The bottoms of the endpieces and the intermediate elements are

track rod

actuating cylinder

braking magnet

centring device

mechanical stop

connecting beam

Figure 1.1: Electromagnetic track brake – overview
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coilendpiece intermediate elements coil body ferromagnetic core

Figure 1.2: Braking magnet

referred to as pole shoes and are designed to slide on the rails. Pole shoes can be made
from different materials including low carbon steel, spheroidal cast iron and sinter.

Mechanical stops transmit not only longitudinal forces but also lateral forces between
the track brake and the bogie. Therefore, the stops are positioned in longitudinal and
lateral directions. Longitudinal forces FB,i,x include brake forces as well as impact loads
at the beginning of a braking manoeuvre. Lateral forces FQ,i,y may occur during braking
manoeuvres on curved tracks and on crossings and switches. The mechanical stops are
designed to have several millimetres of clearance between the brake and the bogie. As a
result, the track brake can compensate small lateral movements of the train while staying
centred on the rail.

Track rods are used to couple the movements of the magnets on both sides. This
improves the travel of the magnets over crossings and switches. Track rods prevent
magnets from a rolling motion about the longitudinal axis and keep the magnets at a
constant lateral distance.

In most cases, track brakes only have two braking magnets. However, limited space
in modern bogies sometimes requires longitudinally split magnets which must then be
linked by connecting beams.

Actuating cylinders are single acting pneumatic cylinders with spring return. When
the track brake is activated, the actuating cylinders lower the track brake from the ready
position above the rail onto the rail. When deactivated, two compression springs inside
the actuation cylinders pull the track brake against the bogie. Figure 1.3 shows an
actuating cylinder. To compensate movements between the track brake and the rail,
actuating cylinders have built-in spherical elastic joints on both sides.

Centring devices are used to fix the track brake against the bogie when the track brake
is not active. They consist of a centring cone mounted on the brake frame and a form-fit
centring ring on the bogie. The centring ring is spring-mounted with an elastomer torus
to compensate deflections of the mounting points and mechanically decouple the brake
frame from the bogie.

Magnetic track brakes work independently of the wheel-rail contact. The function
principle of a magnetic track brake is based on friction between the rail and the braking
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1.1. Components and function principle of an electromagnetic track brake

compression springs track brake jointbogie joint compressed air piston rod

Figure 1.3: Actuating cylinder

magnets. This leads to wear of both the pole shoes and the rail. Therefore, magnetic track
brakes are only used in emergency brake events but not in service brake applications.

To avoid disturbances of track-side signalling equipment, railway regulations [2] require
track brakes to rest in a nominal distance of approximately 100 mm above the top of the
rail when deactivated. Therefore, two operational conditions, the ready position and the
braking position, must be distinguished.

In the ready position (see Figure 1.4), the track brake is fixed to the bogie as the
actuation cylinders are depressurised and no voltage is applied to the electromagnets.
Due to the prestressed springs inside the actuating cylinders, the cylinder force Fcyl

pulls the track brake against the centring devices. As a result, the reaction forces of the
centring devices Fcd occur. Because of the form-fit of the centring cone and the centring
ring, the track brake is secured to the bogie. In the ready position, the track brake is
mounted in a nominal distance above the rail of approximately 100 mm. However, this
distance may change due to spring deflection of the primary suspension of the bogie and
also wear of the wheels.

When braking (see Figure 1.5), the actuating cylinders are filled with compressed air.
The pressure pcyl increases up to a predefined steady state value. As a result, the track
brake moves towards the rail and touches down onto the rail. Depending on the actual
pressure and distance above the rail in the ready position, the brake frame is pressed
to the rail by the actuation cylinder force Fcyl. As a result, the rail closes the magnetic
cores of the brake magnets. Due to the applied voltage, a current i passes through the
coils and excites the magnetic circuit. Thus, magnetic forces FA between the rail and
the pole shoes evolve. As the pole shoes of the magnets slide on the rails, friction forces
FR = FN µG are generated. Here, µG is the coefficient of sliding friction and FN is the
actual normal force between the rail and the magnets and is calculated as the sum of
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vvcl

FcylFcyl
Fcd Fcd

Figure 1.4: Track brake in ready position.

the actuation cylinder force, the vertical component of the magnetic attractive forces
and the weight of the magnetic track brake (1.1). However, the weight mMGg and the
cylinder forces Fcyl are usually small compared to the attractive forces FA,z. Therefore,
the weight and the actuation cylinder forces are often neglected.

FN =
�

Fcyl +
�

FA,z + mMGg (1.1)

Friction forces are then transmitted by the mechanical stops to the bogie. Between the
track brake and the bogie, the brake force of the magnetic track brake FB,x evolves. When
the track brake is deactivated, the source voltage is turned off. As a result, magnetic
forces and brake forces decrease. The actuation cylinders are depressurised and the track
brake moves back to the ready position.

vvcl

pcylpcyl

i i

FA,z, FR,x

Fcyl

FA,z, FR,x

Fcyl
FB,x

Figure 1.5: Track brake in braking position.
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1.2. Known issues of magnetic track brakes

1.2 Known issues of magnetic track brakes
Despite their unquestioned capabilities as an emergency braking system, magnetic track
brakes nowadays are not used as a primary service braking system. The sliding contact
of the braking magnets on the rail obviously leads to undesirable wear. Subsequently,
typical known issues of track brakes are described.

Increasing brake forces at low velocities The brake forces of magnetic track brakes
increase with decreasing velocity with the steepest increase just before full stop of the
vehicle. This is known from the literature on track brakes ([7], [8],[9], [10]), studies on
braking performance ([4], [5], [6]), field tests and also passenger experience. Figure 1.6
shows a diagram of the brake force with respect to the vehicle velocity published by
Hendrichs [9].

The reason for the increase of brake force is credited to a rising coefficient of friction.
This coincides with results published from experiments on the velocity dependent sliding
friction behaviour of metal-metal pairings ([11], [12]) which will be discussed later. Due
to this behaviour, when the track brake is activated until full stop, resulting peaks
in deceleration of the vehicle lead to uncomfortable stopping jerks, best known from
emergency brakings of trams. Even though this behaviour is regarded acceptable in
trams, magnetic track brakes in mainline trains are usually deactivated at approximately
25 km/h (or even 50 km/h [7]).

Figure 1.6: Brake force characteristics with respect to the vehicle velocity [9]

To avoid dangerous signal overruns in low adhesion conditions, nowadays an increasing
number of operators demand the ability to use track brakes until (nearly) full stop of the
vehicle. Therefore, future track brakes must be designed to operate in the low velocity
range as well.

7



1. Introduction and state of the art

Accumulation of material on the pole shoes Especially when braking from high
velocities, track brakes with steel pole shoes tend to accumulate material from the
track. This material consists of dust and grease but also welded particles from the
rail and is therefore referred to as pick-up weldings. Figure 1.7 shows an example of
material adhering on the pole shoes. Pick-up weldings on steel pole shoes affect braking
performance negatively as they increase the effective air-gap between the magnet and
the rail. To restore brake forces, pick-up weldings must be removed periodically in
maintenance.

spot-on weldings

Figure 1.7: Pick-up weldings on pole shoes

Vibrations at low vehicle velocities New findings have shown that severe vibrations
of the track brake may evolve when approaching velocities v < 25 km/h. The vibrations
are characterised by oscillations of the interfacing forces FB,x between the track brake
and the bogie as well as of the bending moments of the connector beams and track rods,
Figure 1.8. As measurements did not show any excitation emanating from the vehicle in
the relevant frequency band, vibrations are assumed to be of a self-excited type.

610 615 620 625 630 635 640
0

25
50
75

100
125
150

-3000
-2000
-1000
0
1000
2000
3000

Figure 1.8: Measurements of vibrations at low velocity
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1.3 Aims and objectives
Structural vibrations at low velocities lead to high mechanical loads which impede the
use of the magnetic track brake until standstill of the vehicle. To maximise braking
performance this thesis aims to understand and predict structural vibrations of a magnetic
track brake and to prevent them in the future by appropriate methods. Assuming that
the vibrations are self-excited, the mechanism behind is to be studied. Based on this
hypothesis, the question is raised how the energy supplied to the system by external
sources is transformed to maintain the vibrations. Since vibrations of magnetic track
brakes are known to occur in only a limited number of designs, it can be assumed that
there are design parameters that favour their occurrence. These parameters are to be
identified with the aim to develop proposals for more favourable designs.

To address these problems, it is required in a first step to develop appropriate mathematical
models of the magnetic track brake. Since magnetic track brakes are electro-magneto-
mechanical systems and it is not clear which domains are relevant for the occurring
vibrations, a mathematical model has to cover all three domains. The models should be
suitable for investigating mechanisms in principle on the one hand and on the other hand
offer a sufficient level of detail to allow for qualitative statements on the stability behaviour
of the magnetic track brake. Measurement data from vehicle tests and laboratory tests
are to be used to identify model parameters and to validate calculation results.

Using established methods of stability analysis of dynamical systems, the key parameters
of influence are to be found within the scope of this thesis. Based on these parameters,
methods are to be developed to avoid vibrations in future magnetic track brakes even at
low speeds and thus improve the braking performance of trains.
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1.4 State of the art and fundamentals
Although self-excited vibrations of magnetic track brakes are a yet unexplored phe-
nomenon, it is possible to build on findings and established methods of various adjacent
fields of research. This includes the stability theory of dynamical systems, which in
particular offers methods for the analysis of self-excited systems. Further links exist to
the fields of tribology of sliding steel bodies, braking systems for rail vehicles as well
as to previous studies on magnetic track brakes. In this section, important sources of
literature and basic assumptions are presented.

1.4.1 Stability analysis of dynamical systems
Stability analyses of technical systems focus on their behaviour near to an unperturbed
state. In Leipholz’s comprehensive introduction to stability theory [13], several definitions
of stability are given. The stability concept of Lyapunov is widely referred to in assessing
the stability of the solutions of dynamical systems. According to the definition, a stable
system is able to remain within a defined region near to an initial state after small
perturbations.

Mack and Plöchl [14] give an overview on the stability of motion including a summary of
the concepts introduced in [13]. A system of n first order differential equations with the
generalised coordinates qi (i = 1 . . . n) and the parameters αk (i = 1 . . . m) is described
by its system equations

q̇i = Fi(q1, q2, . . . , qn, α1, α2, . . . , αm, t). (1.2)

The unperturbed state of (1.2) is given by the state variables q0
i and parameters α0

k. Let
a perturbation of this state be given by the state variables qs

i , the initial conditions be
specified by t = t0, ε > 0 and η(ε) > 0 be small positive numbers. The steady state of
the system is stable if for each

|q0
i (t0) − qs

i (t0)| ≤ η(ε) (1.3)

condition (1.4) holds:
|q0

i (t) − qs
i (t)| ≤ ε for t > t0 (1.4)

Moreover, the state is asymptotically stable, if

|q0
i (t) − qs

i (t)| → 0 for t → ∞. (1.5)

Figure 1.9 shows an example from [14] of a system in a two dimensional Euclidean
space. The example shows a steady state defined by q0

i ≡ 0. The three curves are
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unstable

stable

asymptotic
stable

t
q1

q2

t0

ε

η

Figure 1.9: Trajectories of perturbed motion, reproduced from Mack and Plöchl [14]

trajectories starting at perturbed initial states showing unstable, stable and asymptotic
stable behaviour.

For a linear autonomous system of equations ẋ = Asysx of order n with the system matrix
Asys and a state vector x, the characteristic polynomial p(λ) is given by Equation (1.6).

p(λ) = det(Asys − λI) = λn + a1λn−1 + a2λn−2 + · · · + an−1λ + an (1.6)

Here, ai are the coefficients of the characteristic polynomial. The solutions of the
characteristic polynomial λ are the eigenvalues of the system. The non-trivial solutions
of the linear system of equations x(t) are asymptotically stable if all eigenvalues have
negative real parts Re(λ) < 0. If one or more eigenvalues have positive real parts, the
linear system is unstable. For a vanishing real part Re(λ) = 0, the stability limit is found
for the linear system. However, for linearised systems, no stability statement is possible
in this case.

Based on the coefficients of the characteristic polynomial, the Stodola criterion and the
Hurwitz criterion describe necessary as well as necessary and sufficient conditions for
asymptotic stability of linear systems, see e.g. Müller and Schiehlen [15].

Stodola criterion

A necessary condition for all eigenvalues to have negative real parts is that the coefficients
of the characteristic polynomial (1.6) are positive, see Equation (1.7).

ai > 0 for i = 1 . . . n (1.7)

11
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Hurwitz criterion

The coefficients of the characteristic polynomial ai are used to build the Hurwitz matrix
H:

H =



a1 1 0 · · · 0
a3 a2 a1 · · · ...
a5 a4 a3 · · · ...
...

...
... . . . ...

0 · · · · · · · · · an


(1.8)

A necessary and sufficient criterion for all eigenvalues to have negative real parts is that
all main principal minors of H are positive Hi > 0, with

H1 = a1, H2 = det
�
a1 1
a3 a2

�
, . . . , Hn = det H. (1.9)

Critical stability boundary

As stated by [15], the critical stability boundary of a linear system can be found as
follows: Beginning within the region of asymptotic stability, the parameters of the system
are varied until Equation (1.10) is satisfied.

Hn = anHn−1 = 0 (1.10)

If an = 0, the monotone marginal stability is found. This means, that a pure real
eigenvalue becomes zero λ = 0. If Hn−1 = 0 , the oscillatory marginal stability is
found. As a result, the real parts of a pair of conjugate complex eigenvalues become zero
λi,1,2 = ±iω with ω > 0.

Root locus and phase portraits

Phase portraits show state variable trajectories of solutions of differential equations in
state space.

Figure 1.10 shows trajectories in the vicinity of an equilibrium state of a two dimensional
linear system with a pair of conjugate complex eigenvalues λ1,2 = α ± iω. The left
diagram shows a stable focus for α < 0 with trajectories of periodic solutions x(t)
converging towards the equilibrium state. The centre diagram shows an unstable focus for
α > 0 where small perturbations from the equilibrium states lead to diverging (periodic)
solutions. For α = 0, periodic solutions are obtained with closed trajectories around the
equilibrium.

12
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α<0
stable

q1

q2

α>0
unstable

q1

q2

α=0
stable

q1

q2

Figure 1.10: stable/unstable focus in phase space, reproduced from [13]

In the case of a non-linear system linearised at a steady state, it must be noted that the
phase portraits of the linearised system only represent the system behaviour in a vicinity
around the linearisation point. Outside this vicinity, due to non-linear effects, both the
solutions and thus also the phase portraits of the linearised system can differ greatly from
those of the original system. The linearised system cannot characterise the behaviour of
a system after the loss of stability. In the case of non-linear systems, the occurrence of
limit cycles is an important special case where solutions near to an unstable focal point
converge to a stable (limited) periodic solution [13].

Hopf bifurcation

Figure 1.11 shows a pure real negative eigenvalue λk = αk and a pair of conjugate
complex eigenvalues λi,i+1 = αi ± iωi in the complex plane. When analysing eigenvalues
with respect to a system parameter ν, a Hopf bifurcation point is found as a pair of
conjugate complex eigenvalues crosses the imaginary axis. Kuznetsov [16] states that a
bifurcation represents a structural change in system behaviour, such as the birth/death
of an equilibrium or a switch from stable to unstable behaviour.

Im(λ)

Re(λ)

λi(ν)

λi+1(ν)

λk

Figure 1.11: Root locus of eigenvalues in the complex plane

As described in [17], "A Hopf bifurcation is the transformation of a focus-type equilibrium

13
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q1

q2

ν*
ν

q1

q2

ν*
ν

super-critical sub-critical

Figure 1.12: Hopf-bifurcation, reproduced from [17]

into a limit cycle". Figure 1.12 shows the phase portraits of the two types of Hopf
bifurcations with respect to the system parameter ν. The diagram on the left side shows
the super-critical case. For ν < ν∗, a stable focus point exists. When increasing ν,
the stable focus gets unstable and solutions converge to a stable limit cycle. The right
diagram on the other hand shows the sub-critical case with an unstable limit cycle with
diverging trajectories. For ν < ν∗, trajectories inside the limit cycle converge to the
equilibrium point which defines the basin of attraction. When increasing ν, an unstable
focus point is born – the bifurcation is catastrophic with infinitely increasing amplitudes.

1.4.2 Types of self-excited vibrations

Self-excited vibrations are wide-spread phenomena in technical, physical, economic but
also biological systems [18]. Self-excited vibrations may include cross-domain phenomena
such as aero-elastic or fluid-structure interactions. Even though often desired as in
bowed string musical instruments, self-excited vibrations are most often unwanted in
technical systems. Well-known examples of self-excited vibrations in technical systems
are squealing disc brakes and railway wheels in curves, chattering wiper blades and
clutches, and roaring rails. Paniciroli and Serge[18] give an overview on many further
examples. Mechanisms leading to self-excited vibrations are manifold. They include
friction vibrations, occurrence of non-conservative follower loads, mode coupling and
coupled vibrations. However, all types of self-excited vibrations have the existence of an
external energy source in common that provides the energy to generate and maintain
oscillations despite the obligatory damping effects [19]. Moreover, a mechanism is needed
that can transfer energy from the external source to the oscillating system. Subsequently,
a few types of self excited vibrations are introduced.

Friction-induced self-excited vibrations

Systems with friction-induced self-excited vibrations are systems where the self-excitation
mechanism results from a negative friction gradient with respect to the sliding velocity.
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m
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Figure 1.13: Simple friction oscillator, adapted from [20]

With such systems, it is typical for one single oscillation mode to become unstable. Such
systems are described, for example, by Popp [20], Chen [21], Ibrahim [22] and others.

Figure 1.13 shows a typical example of friction-induced vibrations. A mass m supported
by a spring-damper (c and d) slides on a belt with a constant conveying velocity ṽ.

The sliding friction coefficient is velocity dependent with typically decreasing characteris-
tics for increasing velocities – see Figure 1.13 on the right. In the linear(-ised) case, the
sliding friction coefficient is given by µG(v) = µ̃G + kµv, where kµ is the gradient with
respect to the relative sliding velocity. The equation of motion of the system is given by:

mẍ + (d + kµ)� �� �
damping term

ẋ + cx = mgµ̃G (1.11)

The system becomes unstable when the velocity dependent damping term in (1.11)
becomes negative. This is the case when the (negative) gradient kµ exceeds the internal
damping d of the system (1.12).

−kµ > d (1.12)

Mode-coupling induced vibrations

As stated by Hoffmann and Gaul [19], the coupling of two vibrational modes is another
well-known mechanism leading to oscillatory unstable systems. With this type of self-
excited vibrations typically two modes merge together and form a pair consisting of a
stable and an unstable mode. To study this type of self-excited vibrations, Hoffmann
et al. [23] use an expanded belt-conveyor model as seen in Figure 1.14. The model has
two degrees of freedom x and y and also two deflection modes. In contrast to the model
shown in Figure 1.13, the present model uses a constant friction coefficient µ.

Results show that the friction force FF acts as a cross-coupling link between the vertical
and the horizontal deflections. It is further shown that the coefficient of friction µ can
be used to control the eigenvalues. In Figure 1.15 Hoffmann et al. [23] show the ratio
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Figure 1.14: Model for analysing the mode-coupling mechanism, Hoffmann et al. [23]

of the occurring natural frequencies ω2
ω1

and their "growth rate" D with respect to the
coefficient of friction µ.

Figure 1.15: Results from Hoffmann et al. show the merging of natural frequencies in
the mode-coupling mechanism [23]

For small values of µ, there are two separate natural frequencies, both with a growth
rate of zero. For high values of µ however, the frequencies of the two modes merge into a
pair of an unstable and a stable mode.

Inertial self-excitation

Babitsky and Landa [24] describe a class of dynamical systems where self-excitation
may occur due to the inertial coupling between the variables. In their study, linearised
systems consisting of a second order and a first order coupled differential equation of the
form (1.13)-(1.14) are analysed.

ẍ + 2δẋ + ω2
0x = −ky (1.13)

ẏ + γy = ax + cẋ (1.14)

By applying the Hurwitz criterion to (1.13)-(1.14), criteria for oscillatory stability (1.15)
and monotone stability (1.16) are obtained:

0 < 2δ(ω2
0 + 2δγ + γ2) − k[a − c(2δ + γ)] (1.15)

0 < ak + ω2
0γ (1.16)

For a set of suitable parameters, the system (1.13)-(1.14) may become oscillatory unstable.
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1.4.3 Instantaneous and equivalent brake force
The braking performance of railway vehicles is assessed on the basis of measured braking
decelerations [25]. The technical literature distinguishes between instantaneous and
equivalent decelerations. Instantaneous decelerations avcl represent actual decelerations,
equivalent decelerations avcl,eq are a theoretical calculated value based on an assumed
uniformly decelerated motion. Following this definition, instantaneous brake forces FB,x

and equivalent brake forces FB,x,eq are derived. The equivalent force is derived through
(1.17) to (1.19).

PB,x(t) = FB,x(t)vvcl(t) (1.17)

WB,x =
t20�

t10

PB,x(t)dt (1.18)

FB,x,eq = WB,x

t20�
t10

vvcl(t)dt

(1.19)

Here, PB,x is the power of the brake force, WB,x the mechanical work evaluated over the
time of brake application t20 − t10 and vvcl(t) the vehicle velocity.

1.4.4 Velocity dependent coefficient of friction
As stated in Section 1.2, increasing brake forces of magnetic track brakes at low velocities is
a well-known phenomenon. The main reason for this behaviour is the rising sliding friction
coefficient with decreasing velocity. Assuming a (relatively) constant magnetic attraction
force FA,z between the magnet and the rail, this implies a negative friction gradient
∂µG
∂vvcl

< 0 with respect to the sliding velocity which may be a source of friction-induced
self-excited vibrations. To study possible self-excitation mechanisms of a magnetic track
brake, realistic friction characteristics are mandatory.

The materials of the friction partners of a track braking system are usually mild steel
S235 on the part of the pole shoes and hardened rail steel according to EN 13674-1 [26]
such as R260 and R350. For such material pairings considerable velocity dependent
sliding friction characteristics are found in different fields of engineering.

In the literature, general and application-based studies on friction characteristics of steel-
steel pairings, such as Montgomery’s pin-on-disc experiments [11] and the pad-on-disc
experiments of Desplanques et al. [12] are found. The studies focus on experimental
or analytical estimation of the friction coefficient under laboratory conditions of one
rotating and one fixed contact partner. In a rotating system, surface conditioning effects
due to repeated overtravel may occur. Due to the linear motion of the track brake over
the rail, such effects do not exist in practice. Therefore, it appears inconsistent to use
friction coefficient characteristics originating from tribometer tests.

17



1. Introduction and state of the art

In addition, there are numerous theoretical studies on the representation of friction at low
and high sliding speeds. Olsson et al. [27] gives an overview of dynamical and static models
close to static friction for dry and lubricated contacts. Here, special focus is put on effects
that are relevant in the transition between static and sliding friction. One representative
example for high sliding speeds is described by Ettles [28], in which the coefficient of
friction depends on the local temperature in the friction contact. For many of the models
however, it appears unfeasible to determine the necessary parameters for the case of the
magnetic track brake and the rail. Hale et al. [29] investigate phenomenologically the
velocity-dependent friction and wear between rails and sliding pads on a linear high-speed
testing facility for (very high) velocities in the range of 0-1530 m/s. With increasing
contact forces and speeds, decreasing friction values between the steel contact partners
are measured, which are by a factor > 2 higher than the brake force coefficients of the
magnetic track brake, see below.

A lot of effort has been made on analysing the wheel-rail contact parameters. Lewis and
Olofsson [30] give an overview on the friction characteristics in the wheel-rail contact
point, Godet [31] of the well-established third body layer model. It is assumed that
railheads are contaminated by materials such as grease and brake dust or foliage, which
act as an additional contact partner and therefore influence the friction parameters.
These influences may be intensified by environmental conditions. It can be assumed
that the sliding friction coefficient of a track brake on the rail surface may be influenced
similarly. Friction characteristics in the wheel-rail context are often described as creep-
friction or slip-coefficient of traction curves. Well established calculation methods for
the contact area as well as contact tangential forces with respect to the wheel creep
include Kalker’s CONTACT [32] and FASTSIM [33] as well as Polach’s algorithm [34].
Based on conclusions drawn from measurement data, Zhang et al [35] and Polach [36]
propose modifications to the models to include a friction coefficient reduction factor
for increasing friction velocity. Available published measurement data includes results
from vehicle tests by Logston and Itami [37] as well as from laboratory experiments
by Fletcher and Lewis [38]. Figure 1.16 shows typical characteristics of the friction
coefficient in longitudinal direction fx for wet and dry conditions with maximum values
between 3-10 %. For higher slip values, the coefficient of traction decreases, which implies
a negative friction gradient [36].

Negative friction gradients are associated with self-excited vibrations of wheelsets [39]. It
has been shown that due to different friction characteristics, environmental conditions
and lubrication have an impact on the occurrence of self-excited vibrations of wheelsets.

However, studies on the wheel-rail contact focus on a primarily rolling motion of the
wheel over the rail. High slip or creep leads to wear on both wheel and rail. Wheel slide
protection for both, traction and braking prevents high relative velocity in the contact
point between wheel and rail. As a result, relevant creep values found in the literature
are usually smaller than 10 %. This contrasts to the pure sliding motion of a track brake
on the rail. Although the wheel-rail contact problems have many similarities to the track
brake-rail contact, creep-friction curves from the literature cannot be used for this study.
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Figure 1.16: Friction of the wheel-rail contact [36]

Lastly, in the literature on magnetic track brakes ([7], [8], [40], [41], [42], [4], [5], [43],
[44], [6]) the brake force is FB,x(v) is defined as:

FB,x(v) = FAfMG(v) (1.20)

Here, FA is the magnetic attractive force and fMG(v) the brake force coefficient. Fig-
ure 1.17 shows the brake force coefficient with respect to the velocity according to a study
conducted by the European Rail Research Institute [6]. The data shows a steep increase
of brake force when approaching low velocities. Similar characteristics are found in the
paper from Jirout et al. [40], Cruceanu et al. [42] and also in the technical descriptions of
track brakes by Gfatter et al. [7].

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

Figure 1.17: Coefficient of brake force according to data from [6]

The characteristics found for magnetic track brakes, however, are to be understood
as coefficients of brake force rather than coefficients of friction. Coefficients of brake
force fMG(v) are used to predict the braking performance of railway vehicles in service,
considering an average value of contamination on both rail and pole shoes of the track
brake. The nominal attractive force is a test-bench value according to [2] and [3].
According to the standard, the attractive force is measured under ideal conditions on a
machined rail with a flat surface and therefore represents a theoretical maximum value of
the magnet. During braking, the area of contact between the track brake and the rail is
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most likely not ideal due to the curved railhead on the one side and pick-up weldings on
the other. The actual attractive force during braking will most likely be lower than the
nominal value. As a result, the actual friction coefficient µG will most often be higher
than the brake force coefficient fMG.

None of the friction characteristics available in the literature appears to be suitable for
the purposes of this thesis. Therefore, velocity-dependent friction characteristics for the
magnetic track brake are determined in vehicle tests within the scope of this thesis.

1.4.5 Mathematical modelling of electromagnets and magnetic track
brakes

Kallenbach et al. [45] give a comprehensive introduction to the mathematical charac-
terisation of electromagnets. Magnetostatic and dynamical problems are described and
guidelines for modelling are provided. This includes a comparison of state-of-the-art
modelling techniques such as the network method and the finite element method.

Darula and Sorokin [46] give an overview of modelling methods of electro-magneto-
mechanical actuators in general. They focus on the electrical part by comparing circuits
with and without capacitors. System models with 2 or 1.5 degrees of freedom are derived
which are used to analyse the transfer function in the frequency domain.

Jirout et al. [40] use an electro-magneto-mechanical model to simulate a track brake as
seen in Figure 1.18. The study addresses the simulation of impact forces between the
magnetic track brake and the bogie at the beginning of a braking manoeuvre, considering
the electromagnetic attraction process. The electric part of the model consists of a voltage
source and a coil, which is represented by an electrical resistance and an inductance. The
magnetic circuit is modelled by a ferromagnetic rail as well as a magnetic core and an
air-gap. The magnetic track brake is accelerated against a spring force by the resulting
magnetic force in vertical direction to the track. The frictional forces between the rail
and the brake magnet caused by normal forces lead to a deceleration of the magnet. By
applying a friction model that takes into account a transient progression of the friction
coefficient, impact forces between the bogie and the magnetic track brake are determined
that are qualitatively comparable with vehicle test data.

Döbrössy [41] builds on the electro-magneto-mechanical model for track brakes in low-
suspension from [40] and develops it further to include a look-up table for magnetic
forces from a previous magnetostatic finite element calculation. In the thesis, different
combinations of brake magnets and spring suspensions are simulated and the results are
validated with laboratory tests. The results show a strong dependence of the reaction
time of the magnetic track brake on the operating current and the size of the air-gap.

Using a multibody dynamics model of a magnetic track brake for mainline trains, Jirout
analyses in [8] structural dynamical phenomena occurring during mechanical testing.
Fatigue endurance tests as well as FMEA (failure mode and effects analysis) load cases
are simulated and compared with laboratory tests. Furthermore, the structural dynamical
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Figure 1.18: Electro-magneto-mechanical model of a track brake from [40]

model is used to simulate braking manoeuvres assuming a Hertzian contact between pole
shoes and rail as well as static magnetic forces.

The dynamics of the track brake in the ready position is further studied by Tippelt
[47]. Based on findings from [8], a parametric multibody dynamics model is used to
simulate a vibration test in the standby position according to the vibration standard
EN61373 [48]. In particular, the modelling of the centring device between the magnetic
rail brake and the bogie is considered. Simulations with the model show limitations of
excess amplification factors used in long-life tests.

Pötscher [49] measures nonlinear magnetic properties of various rail steel grades for varying
temeratures. Magnetic B–H characteristics are obtained, where B and H represent
the magnetic flux density and the magnetic field strength. Numerical analyses further
investigate the influence of temperature and steel quality on the magnetic attraction
force. The ferromagnetic permeability of the investigated materials decreases with
increasing temperature. Finite element models of the magnetic track brake are used to
validate measurement results of a test rig for measurement of magnetic forces, Figure 1.19.
Pötscher discusses the influence of an air-gap between the rail and the magnet on magnetic
attraction forces.

Galardi et al. [44] compare the dynamical activation process of an electromagnetic track
brake simulated by a network model and by application of the finite element method.
After calibration of the network model, the results show good agreement. Furthermore,
magnetostatic calculations of attraction forces are validated using a test rig similar to
the one described in [49].

Lu et al. [43] develop a detailed network model of the track brake by taking into account
fillet radii of the rail head. Considering non-linear B–H characteristics, magnetic forces
calculated with the network model show good agreement with finite element results.
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Figure 1.19: Magnetic flux density in a cross section of the track brake [49]

Tippelt et al. published in [50] and [51] first results on self-excited vibrations of a
magnetic track brake, which are part of this thesis.

1.5 Outline of this thesis
The starting point of this thesis are vehicle tests and laboratory tests with the aim of
studying the vibrations of the magnetic track brake, Chapter 2. Vibrations are measured
in an asymmetric deflection mode with a magnetic track brake applied with strain gauges,
force and current sensors and analysed using statistical methods. With experimental
and finite element modal analyses, eigenfrequencies and eigenmodes of the structure are
evaluated. Further data for determining velocity-dependent friction characteristics are
acquired from driving tests.

Chapter 3 deals with the modelling of a magnetic track brake in the mechanical, magnetic
and electrical domains. The modelling pursues two goals: On the one hand, simplified an-
alytical models are to be created with which self-excitation mechanisms can be intuitively
explored. On the other hand, models are to be created that are capable of qualitatively
comparable results with driving tests.

Chapter 4 aims to identify and understand self-excitation mechanisms using simple
electro-magneto-mechanical models. Established methods of linear stability analysis are
applied to determine the influence of individual model parameters on stability criteria.
Furthermore, the chapter aims to reveal energy sources that maintain vibrations of the
magnetic track brake by analysing limit cycles.

By analysing the more complex multibody dynamics model, Chapter 5 focuses on the
influence of magnet-rail contact conditions and vehicle velocity on stability. In addition,
the comparability of simulation results with measurements from vehicle tests is examined.

Chapter 6 shows how changes in mechanical and electrical design may improve the
stability behaviour of magnetic track brakes. Based on findings of the previous chapters,
design recommendations are developed to increase brake performance and mitigate or
eliminate self-excited vibrations.
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CHAPTER 2
Vehicle and laboratory tests

To learn more about the phenomenon of vibrations of the magnetic track brake at low
velocities, vehicle (field-) tests and laboratory tests are performed and described in this
chapter. First, the measurement object and the quantities measured in the tests are
described. Then, vehicle tests on self-excited vibrations are presented including original
measurement data. These tests are the starting point of this study. Measurements
of selected braking tests performed during these vehicle tests are discussed to analyse
the vibrations of the magnetic track brake. Experimental and finite element modal
analyses complement the field test to extract the data required for the simulation models
described in Chapters 4 and 5. Data of another vehicle test is presented which focuses
on the measurement of the sliding friction coefficient between the pole shoes and the
rail. The outcome of this test are velocity dependent friction characteristics for different
environmental conditions. These characteristics are essential for the simulation models.

2.1 Measurement object and measured quantities
The laboratory experiments and field tests were conducted using a magnetic track
brake equipped with sensors to observe the state of the brake. Figure 2.1 shows the
electromagnetic track brake used for the field and laboratory experiments with all
measurement points applied. For the field tests, the track brake is installed in a bogie of
an electrical multiple unit (EMU) train. The measuring cables are routed from the sensors
to the inside of the carbody to the data acquisition system. The sensors measuring the
quantities svcl, vvcl and avcl are located inside the carbody.

All sensors as well as the measurement chain are described in appendix, Table A.1 and
Figure A.1. The measured quantities are grouped as followed:
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Figure 2.1: Measured quantities of the magnetic track brake

24



2.1. Measurement object and measured quantities

• Transmitting forces FB,i,x and FQ,i,y (field tests only):
The force transducers installed inside the mechanical stops measure longitudinal
and lateral forces between the bogie and the track brake. Signals of longitudinal
forces FB,i,x are intended, on the one hand, for direct measurement of the brake
force of the track brake and, on the other hand, for measurement of dynamical
forces such as impact loads during the brake activation process and loads induced
by vibrations. FQ,i,y may be used for measurement of lateral forces during passage
of crossings and switches.

• Bending moments of the longitudinal connectors MV,i,y, MV,i,z and the track rods
MS,i,x and MS,i,z:
Using strain gauges, bending strains are measured in several positions as seen in
Figure 2.1. Before the assembly of the track brake, signals of the bending strains are
referenced to signals of defined bending moments. Positions of the strain gauges are
chosen that various deflection modes of the track brake frame can be distinguished
from their signals. Strain gauges are applied to measure bending moments in
two directions of the beams. These are the y and z direction for the longitudinal
connectors, further x and z for the track rods.

• Electrical current i:
Clamp-on current transducers are applied to the electric power cables of each
magnet. As a result, the electrical activation process can be analysed in detail.

• Displacement with respect to the bogie si,y and si,z:
Lateral and vertical displacements of the magnets with respect to the position of
the bogie are measured using string potentiometers.

• Actuation cylinder forces Fcyl,i,z :
Forces produced by the pre-stressed actuation cylinders are measured indirectly
by measurement of the pressure inside the piston chamber pcyl and the vertical
displacements si,z of the track brake with respect to the bogie.

• Stopping distance svcl, velocity vvcl, and deceleration avcl of the vehicle:
These signals are measured directly on the vehicle using an accelerometer and a
speed-over-ground sensor. The quantities are cross-referenced by a GPS receiver.

• Accelerations of the bogie aDG,i and the track brake aMG,i:
Using accelerometers, vibrations occurring on the bogie and the track brake are
measured. These include vibrations during braking but also impact-accelerations
during the brake activation process.
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2. Vehicle and laboratory tests

2.2 Field tests on self-excited vibrations

Field tests are conducted on an actual railway line under operational conditions. The
trainset used in the tests is a four-car EMU with conventional motor bogies (MB1, MB5)
at both ends, 2 Jacobs motor bogies (JMB2, JMB4), and a Jacobs trailer bogie (JTB3)
between the two centre cars, Figure 2.2.

MB5 JMB4 JTB3 JMB2 MB1

Figure 2.2: Configuration of the train

The magnetic track brake is installed in JTB3, Figure 2.3. The positions of the measuring
points in the right connector are marked. In these tests, emergency brake activations are
conducted in the R+MG braking mode. This means that all available braking systems
of the train including the magnetic track brake are active. Tests are performed with
different initial velocities in the range of vvcl,0 ≈ 25-100 km/h and until full stop. The
track brake is active from the beginning of the braking manoeuvre. When the vehicle
velocity vvcl falls below 10 km/h, the track brake is deactivated automatically. Braking
tests are performed in varying environmental conditions and several railway lines over
straight and curved tracks as well as over switches and crossings.

In total, over a period of three days, 132 braking manoeuvres with the magnetic track
brake are performed. In approximately 1/10 of the brakings, severe vibrations occur.

MV,ri-fr,zMV,ri-mi,zMV,ri-re,zsD,y

sC,yMV,ri-fr,yMV,ri-re,yFB,C,x

Figure 2.3: Track brake during the field test
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2.2. Field tests on self-excited vibrations

Analysis of the measured signals

An example of a typical time history of a braking manoeuvre is discussed thoroughly,
Figure 2.4. In this manoeuvre, the direction of motion of the train is in negative x
direction. The rear side of the track brake is therefore leading in the direction of motion,
Figure 2.1. In Diagram (a), the velocity vvcl shows the deceleration of the vehicle from
an initial velocity of roughly 80 km/h until full stop. Further, the signal of the linear
transducer sA,z shows the vertical movement of the track brake. At the beginning of the
record, sA,z is zero as the track brake is in its ready position fixed towards the bogie by
the actuation cylinders and the centring devices. After brake activation, the brake frame
travels 0.1 m onto the rail. During braking, the signal is nearly constant. Finally, the
brake frame returns back to its ready position and the signal to 0.0 m.

Diagram (b) depicts signals of the pressure of the actuation cylinders pcyl and the electric
current iAD. At the beginning of the record, the pressure rises until 6.8 bar and is then
constant until deactivation. Kinks in the signal show the moments in time when the track
brake lifts off the bogie and touches down onto the rail. In these tests, the electromagnets
are activated with a delay with respect to the pressurization of the cylinders. Therefore,
the signal of the current begins to rise after the touch-down. Also note the build-up time
of the current due to the inductance of the electromagnets. After the delay and build-up
times, the signal of the current is nearly constant at approximately 10.2 A. The moment
of track brake deactivation at vvcl ≈ 10 km/h is clearly marked by a drop of iAD and a
kink in the signal of pcyl.

Diagram (c) shows the transmitting forces between the track brake and the bogie FB,B,x

and FB,D,x (at the rear side). After a build-up time, the transmitting forces increase
during braking with decreasing velocity and increasing sliding friction coefficient µG.
Until the recorded time index t ≈ 2405.5 s the brake forces show the expected behaviour
with only minor disturbances. At the end of the braking manoeuvre, vibrations with
high amplitudes evolve at a frequency of roughly 28 Hz. These vibrations continue until
the deactivation of the track brake.

The measured bending moments of the left and right connector beams with respect to the
vertical axis (MV,le−re,z, MV,le−mi,z, MV,le−fr,z, MV,ri−re,z, MV,ri−mi,z and MV,ri−fr,z)
can be seen in Figure 2.4 (d). The bending moments result from a lateral offset between
the lines of action of the friction forces µGFA,z and the transmitting forces FB,i,x. The
left and the right sides are shown with opposed signs to underline the symmetrical
behaviour of the left and right sides. The bending moments increase roughly linearly
with the transmitting forces. Interestingly, on both sides there is a gradient from the
front measuring points (MV,le−fr,z, MV,ri−fr,z) to the rear (MV,le−re,z, MV,ri−re,z) with
the highest amplitudes in the leading measurement points (note the direction of motion
in negative x direction). The vibrations can also be seen very clearly in these signals.

Diagram (e) depicts the bending moments of the front and rear track rods with re-
spect to the vertical axis (MS,fr−le,z, MS,fr−mi,z, MS,fr−ri,z, MS,re−le,z, MS,re−mi,z and
MS,re−ri,z). Until the evolvement of the vibrations, the signals show similar behaviour to
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Figure 2.4: Field test measurements, overview
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2.2. Field tests on self-excited vibrations

the transmitting forces and the bending moments of the connector beams with increasing
magnitudes during the braking manoeuvre.

Diagram (f) shows the bending moments of the left and right connector beams with
respect to the lateral axis (MV,le−re,y, MV,le−fr,y, MV,ri−re,y and MV,ri−fr,z). The signal
of MV,ri−fr,z is permanently zero as this measurement channel failed during the tests.
From the others it can be seen that there is a positive bending moment in the ready
position of the track brake when the actuation cylinders pull the track brake towards
the centring devices. When the brake moves down onto the rail the bending moments
are roughly zero. After the touch-down of the brake onto the rail, the bending moments
become negative. During braking, the bending moments vary in the range of ±500 Nm.
This indicates a change in the magnet-rail contact conditions. During the vibrations,
there are only minor amplitudes in the signals of the bending moments with respect to
the lateral axis. This indicates that the track brake oscillates generally in the x-y-plane
without a vertical component.

In the last diagram, the bending moments of the front and rear track rods with respect
to the longitudinal axis (MS,fr−le,x, MS,fr−mi,x, MS,fr−ri,x, MS,re−le,x, MS,re−mi,x and
MS,re−ri,x) are shown. The measuring point MS,fr−ri,x has failed during the tests,
therefore the signals are zero. At the beginning of the record the behaviour is similar
to the bending moments of the connector beams with respect to the lateral axis. The
bending moment is positive when the brake is pulled towards the centring devices and
zero while moving downwards. When braking however, the signals fluctuate around the
zero-line indicating dynamical brake-rail contact conditions. Also, vibrations show only
minor amplitudes at these measuring points.

Next, the activation of the track brake is analysed in more detail in the range of time
index t ≈ 2394-2397 s. This covers the whole activation process from the pressurisation
of the actuation cylinders until the full evolvement of the brake forces, Figure 2.5.

The process can be separated into in the following phases:

• Phase I, ready position, pressurisation:
The pressure pcyl rises in the actuation cylinders with a steep gradient, Diagram
(b). As a result, the bending moments MV,i,y and MS,i,x decrease to zero, Diagrams
(f) and (g). At the end of this phase, the track brake loses contact with the centring
devices.

• Phase II, track brake moves towards the rail:
The actuation cylinders extend, the track brake moves towards the rail and the
signal sA,z increases, Diagram (a). As Diagrams (d) to (g) show, all bending
moments are near zero as no external forces act on the structure of the brake frame.
pcyl rises with a flatter gradient until the touch-down of the magnets onto the rail.

• Phase III, track brake is contacting the rail (electrically still deactivated):
The track brake touches the rail, but no electrical voltage is yet applied to the
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Figure 2.5: Field test measurements, detail: brake activation process
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2.2. Field tests on self-excited vibrations

electromagnets. The vertical forces of the actuation cylinders increasingly push
the track brake onto the rail due to a further increase of pcyl. As a result, bending
moments of the connector beams with respect to the lateral axis MV,i,y become
negative, Diagram (f). The transmitting forces FB,i,x are still near zero, Diagram
(c).

• Phase IV, electrical activation:
Voltage is applied and therefore the current iAD evolves, Diagram (b). Magnetic
forces evolve and pull the magnet onto the rail. Friction forces between the pole
shoes of the magnets and the rail are transmitted to the bogie and FB,i,x increase.
Moreover, the bending moments with respect to the vertical axis MV,i,z and MS,i,z

increase. This phase ends when the current reaches a steady value.

Finally, the oscillations are regarded in greater detail. Figure 2.6 shows the respective
time frame at t = 2405.5-2406.5 s. From the transmitting forces it can be seen that the
track brake vibrates in an asymmetric mode as the signals of the forces FB,B,x and FB,D,x

oscillate in phase opposition.

This observation is confirmed by the signals of the bending moments with respect to the
z-axis of the left and right connector beams MV,i,z. The quasi-static symmetrical bending
moments of the left and right connectors are superimposed by an anti-symmetrical
oscillation. Moreover, the signals of the bending moments of one side are approximately
in phase with the brake forces of the same side (e.g. FB,B,x and MV,le−re-MV,le−fr).

From the signals of the bending moments with respect to the z-axis of the front and
rear track rods, the anti-symmetric vibration can also be detected. The signals of the
left (MS,fr−le,z and MS,re−le,z) and right (MS,fr−ri,z and MS,re−ri,z) measuring points
oscillate in phase opposition around the constant signal of the centre (MS,fr−mi,z and
MS,re−mi,z) measuring points.

Evaluation of the vibrations in the frequency domain

To observe the influence of velocity on both amplitude and frequency, analyses are
performed in the frequency domain. The diagrams in Figure 2.6 show that the signals of
the eccentric bending moments with respect to the vertical axis of the track rods (e.g.
MS,re−fr,z) are suitable indicators of occurring vibrations.

During braking, the signals of the bending moments are recorded for a broad band
of vehicle velocities. Subsequently, data sets are segmented and evaluated for discrete
velocity windows with a size of ∆v = 1 km/h. Figure 2.7 shows the power spectral density
(PSD) of a segment of MS,re−fr,z for a window of vvcl = 10-11 km/h. The diagram
clearly indicates a dominant single peak in the PSD level of the signal at a frequency of
f = 28.5 Hz.

To get an overall view on the occurrence of vibrations, the PSDs for all 132 braking tests
are averaged for the velocity windows to mean PSDs. By plotting the PSDs with respect
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Figure 2.6: Field test measurements, detail: oscillation at low velocities
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2.2. Field tests on self-excited vibrations
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Figure 2.7: Mean PSD of bending moment at 10 km/h

to vvcl, velocity dependent oscillations and possible frequency shifts can be recognised.
Figure 2.8 shows a diagram of the mean PSDs calculated for the different velocity windows.
The PSD values are represented as colour map over the horizontal frequency axis. The
vertical axis shows the velocity range from 0-100 km/h. The diagram indicates that the
dominant oscillation frequency of ≈ 28.5 Hz is constant for all velocities.

Figure 2.8: Mean PSD for 0-100 km/h

The root of the area below the PSD curve of one segment of a signal (as in Figure 2.7)
corresponds to the root mean square (RMS) for the evaluated velocity. By evaluating
all segments, the RMS value is obtained as a function of vehicle velocity as seen in
Figure 2.9.

In the diagram, the RMS values and therefore the amplitudes significantly rise for
velocities lower than 20 km/h. When approaching ≈ 10 km/h, the RMS values decrease
again. No conclusions can be drawn for velocities below 10km/h, as the brake was
deactivated at this velocity.
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Figure 2.9: RMS value of the bending moment with respect to vvcl

Correlation of vibrations and brake force

It is clear that the mechanisms leading to the vibrations cannot be identified by solely
evaluating the vehicle tests. Nevertheless, it has already been phenomenologically
observed that the vibrations are dependent on the vehicle speed while the dominant
frequency is not.

Next, the vehicle test data is used to investigate whether the occurrence of the vibrations
correlates not only with the velocity but also with the magnitude of the brake forces
(at approximately constant velocity). As already discussed in Section 1.2, the (velocity-
dependent) brake force may vary within broad bands of variation ([52],[9]), Figure 1.6.
On the one hand, the magnetic attraction force FA is strongly influenced by pick-up
weldings on the pole shoes. On the other hand, the sliding friction coefficient µG between
pole shoes and rail depends on the environmental conditions.

Figure 2.10 shows the equivalent brake force FB,x,eq (1.19) with respect to the initial
vehicle velocity vvcl,0. Each point in the diagram represents one braking manoeuvre
with an initial velocity of between 18 and 135 km/h. It can be seen that brake forces
generally increase with decreasing velocity. The two dashed lines show the 25 % and 75 %
percentiles during the tests. The large degree of variation observed can be explained
mainly by changing weather conditions during the test days and pick-up weldings observed
on the pole shoes, Figure 1.7.
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Figure 2.10: Normalised equivalent brake force vs. initial velocity
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2.2. Field tests on self-excited vibrations

For the correlation analysis between vibrations and brake force, it is intended to select
only braking manoeuvres with similar test parameters. To obtain comparable data, the
datasets are therefore selected using the following criteria:

1. The tests must have been conducted at a low initial velocity of under vvcl,0 ≈ 40 km/h.
It is assumed that no further pick-up weldings are added on the pole shoes at
low velocities. Therefore, contact conditions between rail and track brake are
assumed to be constant during one brake test. The remaining records are marked
in Figure 2.10 with bold dots.

2. The tests must have been performed in close succession. The remaining records are
marked in the diagram as bold black dots.

The braking tests selected are listed in Table 2.1.

Test time initial velocity
V1006 Day 1, 2:23 25.2 km/h
V1007 Day 1, 2:24 23.1 km/h
V1008 Day 1, 2:26 37.2 km/h
V1014 Day 1, 2:56 40.3 km/h
V1019 Day 1, 4:31 39.9 km/h

Table 2.1: Selected braking tests

Figure 2.11 shows the maximum RMS level of the bending moment in a track rod
MS,z,rms,max with respect to the equivalent brake force FB,x,eq. Again, every point
represents one braking test. The bold yellow and black dots mark the selected data points
considering the above criteria. Although the data points are generally highly scattered, a
correlation between FB,x,eq and MS,z,rms,max can be observed with the selection made.
It can therefore be assumed that the occurrence of vibrations is more probable with high
levels of brake force than with low levels. However, a systematic analysis of parameters
using mathematical models is required to make qualitative statements. Such mathematical
models are developed in Chapter 3.
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Figure 2.11: Correlation between brake force and RMS value of the bending moment
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2. Vehicle and laboratory tests

2.3 Modal analysis of the magnetic track brake
Experimental and finite element modal analyses are performed to determine whether
the measured vibrations correspond to an eigenmode of the structure. Any magnetic
forces between the magnet and the rail are neglected at this stage. Figure 2.12 shows the
first three eigenmodes of the structure obtained by the FE analysis. Here, the boundary
conditions are chosen to simulate the state of the track brake while braking. The magnets
are assumed to slide on the top surface of the rail. Therefore, the vertical displacements
of the pole shoes with respect to the horizontal plane are constrained. Mechanical stops
on both sides on the front of the track brake are assumed to have contact with the bogie
with displacements in the longitudinal and lateral directions of the mechanical stops
constrained. The frequency of the vibrations occurring in the vehicle tests corresponds
to that of the second asymmetric mode of the structure, Figure 2.12(c).

(a) First asymmetric mode
(8Hz).

(b) First symmetric mode
(16Hz).

(c) Second asymmetric mode
(28Hz).

Figure 2.12: First three eigenmodes of the track brake frame (FE modal analysis)

Subsequently, the associated eigenmode is verified using time histories of bending moments
from the vehicle tests as well as a laboratory experiment. From the finite element
modal analysis, the modal bending moments with respect to the z-axis are derived.
Figure 2.13 shows diagrams of the modal bending moments in the second asymmetric
mode individually for the longitudinal connectors and the track rods. In the diagrams,
the locations of the measurement points introduced in Figure 2.1 are highlighted. The
second asymmetric mode can be clearly identified from the signals using the following
criteria:

• The bending moments of the left and right connector beams point in opposite
directions.

• The bending moments of the rear and front track rods point in opposite directions.

• In both track rods, bending moments change signs at their geometrical centres.
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Figure 2.13: Bending moments of second asymmetric mode

To validate the results of the structural finite element model, a vibration test of the
track brake is performed. In this test, a track brake is mounted on a 6-DoF hydraulic
vibration test rig as seen in Fig 2.14. To simulate the boundary conditions of the finite
element analysis, the track brake is placed on an inclined plane on the test bench with
the mechanical stops fixed. The pole shoes can slide on the inclined plane. The vibration
test rig is excited around the rotated vertical axis zMG with a sine sweep of constant
angular acceleration amplitude. During the test, the frequency is varied in the range of
fsweep = 0-40 Hz.

The strain gauge measuring points applied to the track brake in this laboratory test
correspond to those from the vehicle test, Figure 2.1. At 8 Hz and 28 Hz, asymmetrical
eigenmodes were found. Figure 2.15 shows signals of bending moments with respect to
the vertical axis of the longitudinal connecting beams and of the track rods. In the left
diagrams, the excitation frequency of the sine sweep equals 8 Hz, in the right ones 28 Hz.

Diagrams (a), (b), (c) and (d) show the signals of the bending moments in the longitudinal
connector beams on the left (MV,le−fr, MV,le−mi, MV,le−re) and right (MV,ri−fr, MV,ri−mi,
MV,ri−re) sides of the brake. At both frequencies, bending moments of the left and right
connector beams oscillate in phase opposition. Therefore, asymmetric oscillation modes
are found for both frequencies.
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Figure 2.14: Vibration test of the magnetic track brake

In Figure 2.15 (e), (f), (g) and (h) the bending moments of the front (MS,fr−le,z,
MS,fr−mi,z, MS,fr−ri,z) and rear (MS,re−le,z, MS,re−mi,z, MS,re−ri,z) track rods are shown.
In all four diagrams, the centre track rod bending moments MS,fr−mi,z and MS,re−mi,z

(dash-dotted lines) are nearly zero. The (eccentric) bending moments on the left and
right sides oscillate in phase opposition. This proves that the modes are asymmetric.
When comparing the phases of the left (MS,fr−le,z, MS,re−le,z) and right (MS,fr−ri,z,
MS,re−ri,z) bending moments at the two frequencies, two different asymmetric modes
can be clearly identified. At 8 Hz, the right-eccentric bending moments MS,fr−ri,z and
MS,re−ri,z (dashed lines) of the two track rods oscillate in phase, Diagrams (e) and (g).
At 28 Hz, they oscillate in phase opposition, Diagrams (f) and (h). Obviously, the same
applies to the left-eccentric bending moments (solid lines). The vertical dashed lines
in the 28 Hz diagrams mark a moment in time in which a deflection occurs equal to
Figure 2.13. As shown, the measurements are consistent with the calculated modal
bending moments.

The signals of the bending moments with respect to the vertical axis measured during
the shaker test are similar to those measured during the vehicle test, see Figure 2.6 (d)
and (e). Even though the signals are smaller in amplitude in the laboratory test, the
signals are equal in phase and frequency. However, the field test measurements are offset
due to the quasi-static deformation generated by the brake forces.
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Figure 2.15: Vibration test of the magnetic track brake
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2.4 Field tests on the coefficient of friction
As an engineering approach, for this study, the friction characteristics are measured in
a field test with a vehicle on a real track. During deceleration of the railway vehicle, a
track brake is pressed onto the rail only by the force of the actuation cylinders Fcyl,i,z

(i = A, B, C, D). The vertical force is calculated from the cylinder pressure measured.
Neglecting friction in the actuating cylinder, the force of the actuating cylinder Fcyl,i,z is
a function of pcyl, the piston area Acyl, the combined spring stiffness kcyl, the position of
the cylinder si,z as well as the installation and nominal length of the two springs ls,1 and
ls,2:

Fcyl,i,z = pcylAcyl − kcyl(si,z + ls,1 − ls,2) (2.1)

Further, the interfacing forces between the track brake and the bogie FB,x,i are measured.
The friction coefficient is calculated as the ratio of the two forces:

µG(v) =
�

i FB,i,x(v)�
i Fcyl,i,z(v) (2.2)

Figure 2.16 shows a diagram of the velocity-dependent friction coefficients obtained.
From the signals, a mean µG characteristics is determined, as well as an upper and a
lower limit, low µG and high µG, using a function fit (2.3) and parameters according to
Table 2.2. During the evaluation, it should be noted that short dips in brake force can
occur, which are filtered out if necessary. Reasons for this can be disturbances in the
track (e.g. switches and crossings) or local contamination.
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Figure 2.16: Coefficient of friction obtained from vehicle tests

kµG(v) = klevel

a1 ∗ (v0 + v) + a0
with k = (high, mean, low) (2.3)
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2.4. Field tests on the coefficient of friction

k klevel (-) a0 (-) a1 (h/km) v0 (km/h)
high 1.20 2 0.08 10
mean 1.00 2 0.08 10
low 0.833 2 0.08 10

Table 2.2: Parameters of the function fit of the velocity dependent friction characteristics
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CHAPTER 3
Modelling the electromagnetic

track brake

Several papers have already dealt with the dynamical modelling of electromagnetic track
brakes. This includes in particular the transient switch-on process investigated in the
x-z plane using electro-magneto-mechanical models, see Jirout et al. [40] and Galardi
et al. [44]. These studies clearly show that it is necessary to consider the electrical,
magnetic and mechanical domains as coupled subsystems, Figure 3.1. Electro-magnetic
coupling occurs in the coil of the electromagnets. Current excites a magnetic field, which
induces a magnetic flux through the ferromagnetic core, the rail and the (small) air-gap
in between. Vice-versa, voltage is induced in the coil by variations of the magnetic field.
Magneto-mechanical coupling occurs in the variable air-gap between the magnet and the
rail. Relative motion of the magnet opens or closes the air-gap and changes the magnetic
reluctance of the circuit. Magnetic forces between the rail and the magnet act on the
structure of the brake magnets.

The measurements from the field tests examined in the previous chapter have shown that
oscillation during braking occurs mainly in the x-y plane, which has not been addressed
in scientific publications so far. As the aim of this thesis is to understand self-excitation

Electric domain Magnetic domain Mechanical domain

electric circuit
voltage source
coil winding

magnetic excitation
ferromagnetic core
ferromagnetic rail
magnetic forces in the air-gap

elastic structure of the brake
brake-rail contact
force transmission to the bogie
magnetic forces

Figure 3.1: Physical domains of a mathematical model of a track brake
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3. Modelling the electromagnetic track brake

mechanisms and to explore ways of weakening or preventing them, dynamical models are
required for further analysis. To investigate the stability behaviour in the x-y plane and
further in 3D space, mathematical models of different complexity are developed in this
chapter.

Highly simplified models aim to explore excitation mechanisms and to gain a basic
understanding of the influence of individual model parameters in an intuitive way. The
models should be simple enough to allow a semi-analytical consideration of the terms of
the differential equations and will be addressed in Chapter 4 to investigate the mechanisms
that lead to self-excited oscillations using methods of linear system analysis.

With the aim of transferring the knowledge gained to future track brake designs, the
modelling complexity is then increased. With a more detailed system model, it should
be possible to obtain qualitatively comparable results with field tests and to investigate
the trajectories of solutions of the dynamical system with respect to individual design
features using methods of multibody dynamics simulation, Chapters 5 and 6. Therefore,
for each of the three physical domains, simplified and more complex models are described
which are subsequently assembled to overall system models of varying complexity.

3.1 Mechanical submodels of the track brake
The mechanical models of the track brake described in this section cover the structure of
its frame, the acting forces as well as the contact conditions between the brake magnets
and the rails. Figure 3.2(a) shows the forces acting on the elastic magnetic track brake
frame. The four corners of the brake are labelled j = A, B, C, D. At the mechanical stops
act longitudinal transmission forces FB,A,x and FB,C,x (front corners in the direction of
travel) as well as lateral guiding forces FQ,j,y. The actuation cylinder forces Fcyl,j,z act
on all four corners in vertical direction. Normal contact forces and the friction forces
act between the pole shoes of the magnets and the rail. Figure 3.2(b) shows a detailed
diagram of a magnetic segment. In this context, a magnetic segment may be either an
endpiece or an intermediate element of a braking magnet. The normal contact force FN,z

acts at the contact point between the rail and the pole shoe. Further, the diagram shows
the friction force with the components FR,x and FR,y pointing in opposite direction to
the relative sliding velocity vrel as well as the magnetic force with its components FA,z

and FA,y.

The longitudinal position of friction contact points on the underside of the pole shoes of
the brake magnets and the rail depend on the current operating and wear conditions.
Figure 3.3 shows a side view of a braking magnet A resting on a rail. In the case shown,
only one endpiece (A2) is in contact with the rail because a pick-up welding on the
underside of the intermediate element ZG1 lifts the coil body. There is a clear air-gap
and between endpiece A1 and the rail. With dynamical load states and variable positions
and thicknesses of pick-up weldings, contact points between the magnet and the rail must
be considered variable as well.
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Figure 3.2: Forces acting on a magnetic track brake

The mechanical models consider friction forces FR between the track brake and the rail.
In all models described, a Colomb friction model with a velocity-dependent coefficient of
friction µG(vrel) is used. Friction forces are therefore calculated by FR = µG(vrel)FN,z.

In this section, mechanical sub-models of the magnetic track brake of varying complexity
are presented. Starting with a 1-DoF planar model to investigate basic effects, the level of
detail is increased to a 3D multibody dynamics model to explore the influence of design
features.
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Figure 3.3: Contact points between the braking magnet and the rail
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3. Modelling the electromagnetic track brake

3.1.1 Mechanical model for linear system analysis
For linear system analysis, a planar (x-y) 1-DoF-mechanical model is developed, Figure 3.4.
The model represents one quarter of a track brake in the second asymmetric eigenmode
of the structure identified by modal analysis, see Section 2.3. To study the behaviour
of multiple coupled magnets and to be able to distinguish between symmetrical and
asymmetrical deflection modes, the model is subsequently extended by an additional
quarter model.

The model consists of a rigid lever with a point-mass mMG and a moment of inertia
IMG,0 with respect to a moved joint at 0, representing one magnet moving in longitudinal
direction x at constant velocity ṽ. The mechanical state variable α describes the deflection
of the structure under load. The distance a represents the lateral offset between the line
of action (of the longitudinal component) of the friction force FR and the transmission
link at 0. l describes the longitudinal distance of the contact point of the magnet on the
rail. At the force application point A, magnetic forces FA,y and FA,z, which are derived
in the magnetic submodel, and the corresponding friction force FR are applied. The
velocity ṽ is assumed to be large enough to neglect the lateral component of the friction
force, ṽ >> lα̇.

The rotational spring stiffness crot and IMG,0 are chosen to match the (undamped)
eigenfrequency ω0 of the second asymmetric mode of the brake frame with

ω0 =
�

crot

IMG,0
. (3.1)

Using the damping coefficient drot, the natural damping of the mechanical system is
defined with the damping ratio D following from

D = drot

2ω0
. (3.2)

The nonlinear characteristics of the velocity-dependent friction coefficient µG(vrel) are
linearised with respect to ṽ, µG(vrel) = µ̃G + kµvrel with vrel = v − ṽ and typically
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v~ v
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Figure 3.4: Mechanical model
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3.1. Mechanical submodels of the track brake

kµ ≤ 0, see Figure 3.4 on the right. ṽ is considered to change slowly enough to yield
time-independent system coefficients. For small angles α and small lateral velocities, the
equation of motion (3.3) is derived.

IMG,0α̈ + drotα̇ + crotα = aFA,z(µ̃G − kµaα̇) − lFA,y (3.3)

An expansion of the one quarter model is the double-magnet model, Figure 3.5. The
model is created by mirroring the single magnet model around the longitudinal axis
resulting in a mechanical model with the two DoFs αA and αB. The lateral levers are
extended by the length b to the symmetry axis of the model. Inertially fixed rotational
stiffnesses and rotational dampers are replaced by relative stiffnesses (b2cx and crot/2)
and relative dampers (b2dx and drot/2) between the rigid bodies.

The equations of motion of the double-magnet model result in (3.4) and (3.5).

IMG,0α̈A + drot

2 (α̇A+α̇B)� �� �
sym. damp.

+ b2dx(α̇A−α̇B)� �� �
asym. damp.

+ crot

2 (αA+αB)� �� �
sym. stiff.

+ b2cx(αA−αB)� �� �
asym. stiff.

=

aFA,A,z(µ̃G − kµaα̇A) − lFA,A,y

(3.4)

IMG,0α̈B + drot

2 (α̇A+α̇B) + b2dx(α̇B−α̇A) + crot

2 (αA+αB) + b2cx(αB−αA) =

aFA,B,z(µ̃G − kµaα̇B) − lFA,B,y

(3.5)

If b2cx = crot/2 and b2dx = drot/2, a special case occurs: Then, (3.4) and (3.5) equal the
equation of motion of the single magnet model (3.3).
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Figure 3.5: Double-magnet mechanical model
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3. Modelling the electromagnetic track brake

3.1.2 Mechanical model for multibody dynamics simulation
The mechanical model for multibody dynamics simulation is created using the multibody
dynamics software SIMPACK [53]. The model consists of a rigid body representing the
mass of the vehicle mDG and a flexible body (Craig-Bampton method, see [54], [55])
representing the track brake frame, Figure 3.6. mDG is connected to the inertial system
by either a rheonomic joint (with ẋDG = ṽ = const.) or a single degree of freedom
prismatic joint with the state variable xDG. The elastic structure of the track brake
covers the magnets at the four corners (A, B, C, D), the connecting beams on the two
sides and the two track rods in the front and the rear and is connected to the inertial
system by a 6 DoF joint with state variables αMG, βMG, γMG, xMG, yMG and zMG.

At the positions of the mechanical stops, unilateral spring-damper contact elements in
longitudinal (FB,A,x and FB,C,x) and lateral (FQ,A,y and FQ,C,y) directions are defined
between the two bodies. An additional braking/transmission force FB,vcl is applied to
mDG.

Figure 3.7 shows the side view of corner j of the brake frame in detail with the force
elements defined. The longitudinal transmission forces FB,j,x are applied in positive x
direction at the height of the mechanical stop of the track brake. The actuating cylinder
force Fcyl,j,z points in negative z direction at the position of the actuating cylinder
mounting point. Magnetic forces calculated in the magnetic submodel (Section 3.2.2)
with lateral and vertical components FA,j1,y and FA,j1,z are applied to the outward and
inward endpieces.

The track brake-rail contact is simulated by three unilateral spring-damper contact force
elements FN,j1,z, FN,j2,z (endpieces) and FN,jZG,z (intermediate element). The position
of the intermediate contact point is defined by the longitudinal distance ex and vertical
offset ez which is discussed in greater detail below.
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Figure 3.6: SIMPACK model – overview
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3.1. Mechanical submodels of the track brake
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Figure 3.7: SIMPACK model – detail magnet

Friction forces at the endpieces are defined acting at their contact points in x and y
directions:

FR,A1,x = vA1,x

|vA1|FN,A1,zµG(|vA1|) (3.6)

FR,A1,y = vA1,y

|vA1|FN,A1,zµG(|vA1|) (3.7)

Here, vA1 = [vA1,x vA1,y]T is the vector of the sliding velocity on the contact plane and
µG,A1(|vA1|) the velocity-dependent friction coefficient.

As intermediate elements are able to move freely in the lateral direction in the coil body
(within limits), only longitudinal friction forces are considered in the contact points, see
(3.8).

FR,AZG,x = FN,AZG,zµG(vAZG,x) (3.8)

For the velocity dependent friction coefficient µG(|vA1|) the characteristics (2.3) is used.
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3. Modelling the electromagnetic track brake

3.2 Magnetic submodels of the track brake
The magnetic submodels are used to calculate the magnetic forces between the magnetic
track brake and the rail dependent on their relative movement and the electrical excitation
of the coil. This results in the requirement to solve a non-stationary magnetic field
problem due to time-varying geometry and boundary conditions.

The finite element method (FEM) is currently the most widely developed and used calcu-
lation method to solve numerical field problems, Kallenbach [45]. A typical application of
the FEM is the calculation of static lifting force characteristics of electromagnets and is
also well established in the development of magnetic track brakes [7]. Both stationary and
non-stationary problems of arbitrary geometry can be solved with high accuracy. Pötscher
[49] describes the model creation and validation of a magnetic track brake including
non-linear material behaviour for the stationary case. Comparisons of calculations and
test results of magnetic forces show high agreement. The calculation of magnetic field
problems with time-variant geometry requires, however, great computational effort [45].
For dynamical multi-domain simulations with multiple degrees of freedom, in-the-loop
solving of transient magnetic FE models appears to be too computationally demanding.

The network method for calculating magnetic circuits is based on the physical analogy
between magnetic and electric fields. The magnetic circuit is approximated by a network
of concentrated elements including coils, constant or variable magnetic reluctances and
eddy current loss elements. The decisive disadvantage of this method is that in order
to construct the magnetic equivalent circuit, the basic field distribution must be known.
Although it is becoming less and less important for the (static) design of electromagnets
due to the use of FEM, the network method is still used for the rapid simulation of the
dynamical behaviour of electromagnets [45].

Both Jirout et al. [40] and Galardi et al. [44] combine the magnetic network technique and
the FEM for the dynamical calculation of magnetic forces. The models consider variable
magnetic circuits due to a vertical movement of the track brake with respect to the rail.
The ferromagnetic parts of the track brake are represented by a constant reluctance and
the air-gap by a variable reluctance. The reluctance of the air-gap varies linearly with
the vertical dimension of the air-gap. The magnetic resistances are determined using
magnetostatic FEM calculations.

The models discussed in this thesis consider relative movements of the brake magnets and
the rail in both vertical and lateral directions. Therefore, the network models described
in [40] and [44] are expanded to include a variable lateral displacement of the brake
magnet.
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3.2. Magnetic submodels of the track brake

3.2.1 Magnetic submodel for linear system analysis
Figure 3.8(a) shows a finite element cross-section model of the magnetic track brake for
calculating magnetic forces dependent on the relative coordinates to the centre of the
rail y and z. The circuit is excited by the magnetomotive force of the coil Θ = Ni with
the number of turns N and the electric current i. The main magnetic flux ϕ takes the
path from the ferromagnetic core through the pole shoes, through the air-gap and the
rail head. From results of magnetostatic analyses with the model, discrete values are
obtained for the magnetic flux ϕ(y, z) and the magnetic forces FA,y(y, z) and FA,z(y, z).

Figure 3.8(b) shows the approximated network model with constant reluctances for
the magnetic core of the magnet Rm,fe,Mg and the rail Rm,fe,Ra as well as a variable
reluctance representing the two air-gaps between the rail and the two poles of the magnetic
core Rm,ls(y, z) and the eddy-current loss element Lm. By applying Ampère’s law, the
differential equation for the magnetic flux ϕ is found, (3.9).

Ni����
excitation

= (Rm,fe,Mg + Rm,fe,Ra� �� �
Rm,fe=const.

+ Rm,ls(y, z))� �� �
var.

ϕ + Gϕ̇����
eddy losses

(3.9)

The reluctance of the two combined air-gaps Rm,ls depends on the calculated effective
air-gap s(y, z); µ0 represents the vacuum permeability and A the magnetic cross-section
of the air-gap (3.10).

Rm,ls(y, z) = s(y, z)
µ0A

(3.10)

y

φ

Ni

Rm,fe,Mg

Rm,fe,Ra
Rm,ls
Lmz

(a) Cross-section of track brake

N Ni(t)

φ(t)
Rm,fe,Mg

Lm

R m
,ls
(t)

i(t)

FA,z(t)

FA,y(t)

Rm,fe,Ra
Rm,fe

(b) Magnetic network model

Figure 3.8: Modelling of the magnetic circuit

For the magnetostatic case (ϕ̇ = 0), s can be directly expressed from (3.9) and (3.10)
and is chosen as a function of y and z (3.11) to approximate the finite element results of
ϕ with the network model (3.9).

s(y, z) =
ahyp

�
b2

hyp + y2

bhyp
+ 2z + a0 (3.11)
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3. Modelling the electromagnetic track brake

Figure 3.9(a) shows the evaluated Equation (3.11) for z = z0 with respect to the lateral
displacement y (red line). Moreover, the diagram depicts the corresponding magneto-
static flux calculated with (3.9) (continuous black line) along with the finite element results
(circles). The magnetic flux ϕ relates inversely proportional to the lateral displacement
and the air-gap with a maximum when the magnet is centred.

The magnetic forces FA,y and FA,z are defined as the partial derivatives of the magnetic
co-energy W ∗

m,ls [45] with respect to y and z, see (3.12) to (3.14).

W ∗
m,ls(y, z) = ϕVm

2 = ϕ2 Rm,ls(y, z)
2 = ϕ2 s(y, z)

2µ0A
(3.12)

FA,y(y, z) = ∂Wm,ls

∂y (y, z) = ϕ2

2µ0A

∂s

∂y
(y, z) (3.13)

FA,z(y, z) = ∂Wm,ls

∂z (y, z) = ϕ2

2µ0A

∂s

∂z
(y, z) (3.14)

Figure 3.9(b) depicts the magnetic forces (3.13) and (3.14) of the network model (3.9)
assuming ϕ̇ = 0 compared to the finite element results. Similar to the magnetic flux ϕ,
the vertical force FA,z reaches its maximum when the magnet is centred above the rail.
The lateral force FA,y acts opposite to the displacement y and thus has a centring effect.

For the linear system analysis it is assumed that the magnet always rests on the rail.
Therefore, the vertical displacement is constant z = z0, s (3.11) thus varies with y only.
z = z0 depends on the assumed state of the pole shoes. Pick-up weldings increase z0 and
thus also the effective air-gap s. Appendix B.2 describes a method to determine realistic
values of s based on field tests and laboratory tests.
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Figure 3.9: Function fit and finite element results
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3.2. Magnetic submodels of the track brake

3.2.2 Magnetic submodel for multibody dynamics simulation
For the multibody dynamics model, a distribution of magnetic forces for each of the four
brake magnets (j = A, B, C, D) along their longitudinal axis is considered. It is assumed
that the magnetic forces are concentrated in the endpieces only. The magnetic network
model consists of two parallel magnetic circuits which, as in Section 3.2.1, consist of a
constant reluctance Rm,fe for the iron parts and variable reluctances Rm,ls,j1 and Rm,ls,j2
as well as eddy current loss elements Lm,j1 and Lm,j2, Figure 3.10.

The coil of brake magnet j with the current ij excites two parallel magnetic circuits,
with the magnetic fluxes ϕj1 and ϕj2 and the combined flux ϕj = ϕj1 + ϕj2.

One magnetic circuit jk (with k = 1, 2) is represented by (3.15) with the same structure
as (3.9) of the linear system model.

ijN = ϕjk(Rm,fe + Rm,ls(yjk, zjk)) + Gϕ̇jk (3.15)

Since the multibody dynamics model considers lateral but also vertical displacements,
the air gap is dependent on y and z. The magnetic forces are then calculated by (3.16)
and (3.17), with vacuum permeability µ0 and magnetic cross-section A.

FA,A1,y(ϕA1, yA1, zA1) = ϕ2
A1

2µ0A

∂sA1
∂yA1

(yA1, zA1) (3.16)

FA,A1,z(ϕA1, yA1, zA1) = ϕ2
A1

2µ0A

∂sA1
∂zA1

(yA1, zA1) (3.17)
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φ

N φj

Rm,fe Rm,ls,j2(yj2,zj2) Lm,j2
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ij
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Figure 3.10: Magnetic network model of the multibody dynamics model
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3. Modelling the electromagnetic track brake

3.3 Electrical submodels of the track brake
Magnetic track brakes are electrically supplied by the battery of the vehicle. In the track
brake described, two diagonally positioned magnets (A+D and B+C) are connected
in series. The two pairs are then connected in parallel to the supply voltage. A brake
control unit activates the track brake by applying the voltage from the battery to the
track brake.

The mathematical models of the magnetic track brake discussed in this thesis contain
one, two or four electromagnets. With each multiplication of the number of magnets, the
possibilities of parallel and/or in series connection arise – the influence of the type of
electrical connection on the system behaviour is investigated in the following Chapter 4
using the electrical submodels presented below.

3.3.1 Electrical submodel for linear system analysis

For the linear system analysis, one coil is considered for the single magnet model and two
for the double-magnet model. The electric system of the single magnet model consists
of the voltage source usrc, an electrical resistance Rel and the coil with the number of
windings N , see Figure 3.11.

uSRC N Ni

φ
Rel

i

Figure 3.11: Electric single magnet model

The electrical system is described using Kirchhoff’s law and Faraday’s law:

usrc = Reli + Nϕ̇ (3.18)

For the double-magnet model, the electrical system is expanded. The two coils of
the double-magnet model are electrically connected either in series or in parallel, Fig-
ure 3.12 (a) and (b).

With the in series configuration, there are two coils in one loop. The electrical resistance
doubles to 2Rel. To generate the same electric current i as in the single magnet model,
the source voltage is doubled as well to 2usrc. In (3.19), the derivatives of the magnetic
fluxes of both magnets A and B appear - the two magnetic fluxes are coupled over the
electric circuit.

2usrc = iAB2Rel + N(ϕ̇A + ϕ̇B) (3.19)
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N Ni

φA2Rel
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iAB
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uSRC N NiA

φARel

NiB

φB

N

iB Rel

iA

(b) connected in parallel

Figure 3.12: Electric double-magnet models

The circuit of the electrical submodel for the in parallel configuration is described by
(3.20) to (3.21). It is noted that here the derivatives of the magnetic fluxes from the
circuits connected in parallel do not appear.

usrc = iARel + Nϕ̇A (3.20)

usrc = iBRel + Nϕ̇B (3.21)

3.3.2 Electrical submodel for multibody dynamics simulation
The electrical submodel for the multibody dynamics model corresponds to the circuit
of the real magnetic track brake, Figure 3.13. The electric source voltage usrc supplies
two parallel circuits whereas the diagonally located electromagnets A+D and B+C are
connected in series, (3.22) and (3.23).

usrc = iADRel + N(ϕ̇A1 + ϕ̇A2 + ϕ̇D1 + ϕ̇D2) (3.22)

usrc = iBCRel + N(ϕ̇B1 + ϕ̇B2 + ϕ̇C1 + ϕ̇C2) (3.23)

The time derivatives of the magnetic fluxes of the loops connected to each other in series
appear in the equations. There follows that all magnetic fluxes in a loop are coupled over
the electrical circuit.
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Figure 3.13: Electric circuit for the multibody dynamics model
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3.4. Coupled system models

3.4 Coupled system models
From the mechanical, magnetic and electrical sub-models, three system models of the
magnetic track brake are assembled for different research objectives.

3.4.1 Single-magnet system model
To create basic understanding, a minimal system model is assembled from the 1 DoF
mechanical submodel from Section 3.1.1, the magnetic submodel presented in Section 3.2.1
and the electrial from Section 3.3.1. Figure 3.14 shows the schematic of the resulting
coupled electro-magneto-mechanical system. The coil couples the electric and magnetic
subsystems, whereas the magnetic and mechanical subsystems are coupled through the
reluctance of the air-gap Rm,ls.

uSRC N Ni

φ
Rel Rm,fe

Lm

R m
,ls
(α
)

i

electro-magnetic magneto-mechanical
coupling coupling

FR

FA,y
a

α

drot

yl

crot

FA,z

0
v~

A IMG,0

Figure 3.14: Coupled electro-magneto-mechanical system

Assuming y = lα for small angles, the coupled non-linear system of equations (3.24)-(3.25)
is obtained, by inserting (3.13) and (3.14) to (3.3) and by inserting (3.10) and (3.9) to
(3.18).

IMG,0α̈ +
�

drot + a2kµ

µ0A
ϕ2

�
α̇ + crotα =

�
aµ̃G

2µ0A

∂s

∂z
− 1

2µ0A

∂s

∂α

�
ϕ2 (3.24)

�
N2

Rel
+ G

�
ϕ̇ +

�
Rm,fe + s(α, z)

µ0A� �� �
Rm,ls

�
ϕ = N

Rel
usrc (3.25)
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3. Modelling the electromagnetic track brake

3.4.2 Double-magnet system model
With the double-magnet model, symmetrical and asymmetrical oscillation modes are
investigated, as well as the influence of the electrical connection of the magnets on the
stability of the system. With the mechanical double-magnet submodel (Section 3.1.1),
the magnetic submodel (Section 3.2.1) and the two electrical double-magnet submodels
described in Section 3.3.1, two variants of the double-magnet system models are created,
Figures 3.15(a) and 3.15(b).
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Figure 3.15: Double-magnet models

As each of the two magnets A and B has one mechanical degree of freedom, the resulting
model has two mechanical DoFs αA and αB. The states of the magnetic circuits are
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3.4. Coupled system models

defined by the magnetic fluxes ϕA and ϕB. By inserting (3.13) and (3.14) into (3.4) the
mechanical system equation (3.26) for αA of the double-magnet model is obtained for both
electrical configurations. The system equation for αB is equal, but, with interchanged
indices A and B.

IMG,0α̈A + a2kµ

µ0A
ϕ2

Aα̇A + drot

2 (α̇A+α̇B) + dxb2(α̇A−α̇B) + crot

2 (αA+αB) + cxb2(αA−αB) =�
aµ̃G

2µ0A

∂sA(αA, z)
∂z

− 1
2µ0A

∂sA(αA, z)
∂αA

�
ϕ2

A

(3.26)

Inserting (3.10) and (3.9) to (3.19) yields the electro-magnetic system equation of ϕA

(3.19) for the in series configuration. Again, the system equation for ϕB is equal, but,
with interchanged indices A and B.

ϕ̇A

�
N2

Rel
+G

�
+ ϕA

�
N2

2GRel
+1

��
Rm,fe+sA(αA, z)

µ0A

�
− ϕB

N2

2GRel

�
Rm,fe+sB(αB, z)

µ0A

�
� �� �

cross-coupling of ϕB

= N

Rel
usrc

(3.27)

The magnetic fluxes ϕA and ϕB are coupled as ϕB appears in (3.27).

Inserting (3.10) and (3.9) to (3.20) yields the electro-magnetic system equation of ϕA

(3.28) for the in parallel configuration.

ϕ̇A

�
N2

Rel
+G

�
+ϕA

�
Rm,fe+sA(αA, z)

µ0A

�
= N

Rel
usrc (3.28)

In the parallel connected configuration no cross-coupling of the two magnetic fluxes is
present. (3.28) is identical to the electromagnetic system equation of the single magnet
model (3.25).
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3. Modelling the electromagnetic track brake

3.4.3 Multibody dynamics model
The multibody dynamics model of the track brake is assembled from the mechanical,
magnetic and electrical submodels described in Sections 3.1.2, 3.2.2 and 3.3.2. Fig-
ure 3.16(a) shows a schematic of the model tree in SIMPACK with the bogie as a rigid
body with mass mDG and the brake frame as a flexible body. The force elements defined
between the bodies and the inertial system are depicted. The positions of the brake
frame fixed end pieces are transferred to the magnetic sub-model for the calculation
of the magnetic forces which are transferred to the structure by control elements. The
electrical and magnetic submodels are calculated internally in SIMPACK by means of
algebraic expressions and numerical integration.

Figure 3.16(b) shows the electrical connection of the two pairs of diagonal in series
connected magnets (A + D and B + C). The pairs are then connected in parallel to the
source voltage usrc. One coil per corner excites two magnetic circuits with the magnetic
fluxes ϕj,k with j = A, B, C, D and k = 1, 2.
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Figure 3.16: Multibody dynamics model
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CHAPTER 4
Linear stability analysis of a

magnetic track brake

This chapter investigates mechanisms that can lead to self-excited vibrations of a magnetic
track brake. The measurement results presented in Chapter 2 indicate that the vibrations
consistently occur at low speeds, but the reason for their occurrence is yet unexplored.

With the simplified system models described in Chapter 3, analytical models of the
magnetic track brake are available in order to investigate this question with the help
of established methods of linear stability analysis. In order to find out which model
parameters have a "stabilising" or self-exciting effect; the stability limit is examined
with the linearised single magnet model using the Hurwitz criterion. It is of particular
interest to find parameters that can be influenced by design in order to subsequently
develop vibration-preventing magnetic track brakes. Closely linked to the reason for
the development of vibrations is the question where the energy comes from to maintain
the vibrations. For this purpose, the energy balance is calculated for the simplified
(non-linear) model in its limit cycle.

Finally, the results with the single-magnet model are compared with the double-magnet
model to investigate the influence of the electrical circuit on the stability behaviour.
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4. Linear stability analysis of a magnetic track brake

4.1 Linearisation and stability border
To determine the stability border of the single magnet system model (3.24) and (3.25),
the Hurwitz criterion [15] is applied to the linearised system. With α̈ = α̇ = ϕ̇ = 0, a
steady state for linearisation α = α̃ and ϕ = ϕ̃ is derived numerically from

crotα̃ = ϕ̃2aµ̃G
1

µ0A
− ϕ̃2 1

2µ0A

∂s

∂α
(α̃, ϕ̃) (4.1)

ϕ̃

�
Rm,fe + s(α̃, ϕ̃)

µ0A

�
= N

Rel
ũsrc (4.2)

A linear 1.5 DoF system results due to the coupling of a second-order with a first-order
system. The system matrix A of the state-space representation ẋ = Ax+bu is established,
with x = [∆α ∆α̇ ∆ϕ]T, input vector b and the input u = ∆usrc. Here, the variations of
the state variables around the equilibrium state are prefixed with ∆, e.g. ∆α = α − α̃.

A =

 0 1 0
−a21 −a22 −a23
−a31 0 −a33

 , b =

 0
0
b3

 (4.3)

The derived system is similar to the auto-oscillation systems with inertial self-excitation
described by Babitsky and Landa [24]. The coefficients aij and bi are determined as:

stiffness term: a21 =
crot+ ϕ̃2

2µ0A
∂2s
∂α2

��
0

IMG,0
> 0 (4.4)

damping term: a22 =
drot+ ϕ̃2a2kµ

µ0A

IMG,0
≶ 0 (4.5)

cross-coupling term: a23 =
ϕ̃

µ0A

�
∂s
∂α

��
0−2aµ̃G

�
IMG,0

≶ 0 (4.6)

cross-coupling term: a31 =
ϕ̃

µ0A
∂s
∂α

��
0

N2
Rel

+ G
> 0 (4.7)

inertia term: a33 =
Rm,fe + s(α̃,z0)

µ0A

N2
Rel

+ G
> 0 (4.8)

excitation term: b3 = N

RelG + N2 > 0 (4.9)

From the factors of the stiffness term a21, the cross-coupling term a31, the inertia term
a33 and the excitation term b3 can be seen that these terms are always positive. However,
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4.1. Linearisation and stability border

the damping term a22 may become negative:

a22 < 0 if drot < − ϕ̃2a2kµ

µ0A
(4.10)

Moreover, the cross-coupling term a23 may become negative as well:

a23 < 0 if ∂s

∂α

��
0 < 2aµ̃G (4.11)

The linear system (4.3) is stable if all eigenvalues have negative real parts Re(λi) < 0
which is analysed next by applying first the Stodola criterion [15] and then the Hurwitz
criterion. According to the Stodola criterion, for asymptotically stable system behaviour,
the coefficients of the characteristic polynomial must be positive (1.7). The characteristic
polynomial (4.12) is derived by det(A − λI) = 0:

λ3 + (a22 + a33)� �� �
a1≶0

λ2 + (a33a22 + a21)� �� �
a2≶0

λ + a33a21 − a31a23� �� �
a3≶0

= 0 (4.12)

Depending on the coefficients of the system matrix (4.4) to (4.8) all three coefficients
a1-a3 of (4.12) may be either positive or negative.

To determine the stability border, the Hurwitz criterion is applied. Hurwitz matrix is
obtained by inserting the coefficients of (4.12) to (1.8):

H =

a1 1 0
a3 a2 a1
0 0 a3

 (4.13)

with the main principal minors:

H1 = a1, H2 = det
�
a1 1
a3 a2

�
(4.14)

The critical stability boundary is found, if

a3H2 = 0. (4.15)

If a3 = 0, the monotone marginal stability is found. If H2 = 0, the oscillatory marginal
stability is found. The system is asymptotically stable if both criteria (4.16) and (4.17)
are satisfied.

a3 : 0 < a21a33 − a23a31 (4.16)
H2 : 0 < a23a31� �� �

cross-coupling

+ a22����
damping

(a21 + a22a33 + a2
33) (4.17)
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4. Linear stability analysis of a magnetic track brake

The system is oscillatory unstable if (4.17) becomes negative. The first addend is the
product of the two cross-coupling terms a23a31, whereas the second one is determined by
the damping term a22. Thus, two mechanisms that may lead to self-excited vibrations
can be identified. These are a negative product of the cross-coupling terms on the one
hand and a negative damping term on the other hand.

The damping term becomes negative if condition (4.10) applies. This applies for large
values of negative gradients of the friction characteristics kµ. As a23 is always positive
(4.6), the product of the cross-coupling terms is negative if condition (4.11) applies.

To determine the stability of steady states with respect to individual model parameters,
further investigations are required. However, both the equilibrium conditions (4.1),
(4.2) and the coefficients of the linearised system equations (4.4)-(4.8) are non-linear
expressions of the model parameters. Therefore, analytical studies of the individual
parameters do not appear to be practical. Numerical analysis of the terms will be
performed in Section 4.2.

Special cases It has been shown that the stability of steady system states of the
simplified model depends on the cross-coupling and on the derivative of the friction
coefficient with respect to the relative sliding velocity. To study the two effects separately,
two special cases are investigated.

Case 1: The electro-magnetic dynamical behaviour is neglected. Dynamic effects of the
electromagnetic differential equation (3.25) is discarded by setting (N2

R + G) = 0. As a
result, (3.25) becomes an algebraic equation. Then, the moments due to the magnetic
forces MF,Ay and MF,Az vary with ∆α only. Thus, the magnetic forces correspond to the
magneto-static forces as shown in Figure 3.9(b). The linear 1.5-DoF system degenerates to
a second order 1-DoF system with the state-space representation ẋ = Adegenx + bdegenu,
with x = [∆α ∆α̇]T and:

Adegen =
�

0 1
−a21 + a23

a31
a33

−a22

�
, bdegen =

�
0

−b3
a23
a33

�
(4.18)

The system becomes unstable when a22 is negative. This is the case if condition (4.10)
applies.

Case 2: Assuming µG = const., the derivative of the coefficient of friction with respect
to the relative velocity vanishes kµ = 0 and as a result, a22 > 0 (4.5). The system still
becomes oscillatory unstable for sufficiently large (negative) values of the product of the
cross-coupling terms a23a31 (4.17).
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4.2. Numerical stability analysis

4.2 Numerical stability analysis
To study the influence of individual model parameters, the stability of steady states of the
simplified system (3.24)-(3.25) presented in Section 3.4.1 is explored further numerically.
The aim is on the one hand to be able to predict self-excited vibrations depending on the
model parameters and on the other hand to identify parameters that can be influenced
by design to manipulate the stability behaviour.

With the model parameters from Table 4.1, the eigenvalues of the linearised system
(4.3) are evaluated in the steady state (4.1)-(4.2). Three roots are found: one pure real
eigenvalue λ1 and one pair of conjugate complex eigenvalues λ21, λ22. Figure 4.1 shows
the roots of the system in the complex plane. The real eigenvalue is negative whereas the
conjugate complex pair has positive real parts. With the parameters chosen, the system
therefore is unstable.

-50 -40 -30 -20 -10 0 10
-200

-100

0

100

200

Figure 4.1: Roots of the linear system model

Important influencing variables that occur in the coefficients of the system matrix aij

(4.4)-(4.8) are evaluated numerically. Assuming that the mechanical stiffness can be
modified, the investigated variables are plotted as a function of the latter. Figure 4.2
shows the variables with respect to the relative stiffness Crot = crot/crot,0. The damping
ratio D of the mechanical system is assumed constant, therefore drot varies with crot

(4.19). Here, ω0 (4.20) is the undamped natural frequency of the mechanical sub-system.

drot = 2ω0D (4.19)

ω0 =
�

crot

IMG,0
(4.20)

Figure 4.2 (a) and (b) show the steady state system variables α̃ and ϕ̃ with respect to
Crot. With increasing stiffness, the steady state deflection α̃ decreases. As a result, the
reluctance of the air-gap gets smaller and the magnetic flux ϕ̃ increases slightly.

Diagram (c) and (d) depict the air-gap s and the variation of the air-gap with respect to
the deflection ∂s

∂α . Due to the decrease in α̃, the air-gap s closes. The air-gap influences
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4. Linear stability analysis of a magnetic track brake

the inertia term a33 (4.8). The variation of the air-gap ∂s
∂α is of great interest as it appears

in both cross-coupling terms a23 and a31. As seen, its value is positive and decreases
with increasing stiffness.

Diagram (e) of Figure 4.2 shows the mechanical damping coefficient drot. As discussed
before, the damping ratio D is held constant in this analysis. Therefore, drot increases
with Crot.

Diagram (f) shows the criterion for monotone stability (4.16) and Diagram (g) the
criterion for oscillatory stability (4.17). (4.16) is > 0 for the whole parameter range and
therefore the criterion for monotone stability is satisfied. The fulfilment of the criterion
for oscillatory stability depends on the mechanical stiffness. (4.17) changes its sign with
negative values for relative stiffnesses smaller than 1.64 and positive values above. The
system can therefore be stabilised by increasing the stiffness.

Next, the coefficients of the linear system equations aij (4.4)-(4.8) are analysed along
with the stability criteria (4.16) and (4.17). Figure 4.3 shows the coefficients as well
as the addends of the monotone and oscillatory stability criteria with respect to Crot.
Diagram (a) shows that the stiffness term a21 increases with Crot.

The damping term a22 (4.5) is plotted in Diagram (b). a22 increases with the relative
stiffness as the damping ratio is held constant, see (4.19) and (4.20). For small values of
Crot < 0.62, a22 is negative due to the negative friction slope kµ.

Diagram (c) and (d) show the cross-coupling terms a23 (4.6) and a31 which are of
particular interest as their product occurs in both the criteria for monotone stability
(4.16) and for oscillatory stability (4.17). For the parameters chosen, a23 is negative with
increasing absolute value with increasing stiffness whereas a31 is positive and decreasing.

Figure 4.3(e) depcits the interia term (4.8) which is approximately constant.

In Diagram (f) the products a21a33 and −a23a31 are plotted which are added in the
criterion for monotone stability (4.16), Figure 4.2. As both addends are positive the
criterion is satisfied.

Figure 4.3(g) shows the product a23a31 and the expression a22(a21 + a22a33 + a2
33) which

are added in the criterion for oscillatory stability (4.17). The product of the cross-coupling
terms a23a31 is negative which causes the criteria of oscillatory stability to fail for values
of Crot < 1.64, see Figure 4.2(g).

Stability maps It has been shown that the gradient of the coefficient of friction with
respect to the sliding velocity kµ is a key parameter occurring in the criterion of oscillatory
stability (4.17). A high negative value of kµ may cause the damping term a22 to vanish
or even become negative, see (4.10). This is especially relevant for low velocities when
friction coefficients steeply increase, see Figure 2.16. Next, the stability of steady states is
analysed with respect to kµ and additional parameters using stability maps, as shown in
Figure 4.4. In the diagrams, the green area represents stable system behaviour, whereas
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4. Linear stability analysis of a magnetic track brake
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4.2. Numerical stability analysis

the red area marks unstable behaviour. The continuous vertical line in the diagrams
represents the standard values of the parameters as listed in Table 4.1.

Between kµ and drot, a linear relationship can be observed, Figure 4.4(a). As expected,
the stability map shows that small damping coefficients or negative values of friction
slope may cause the stability criterion to fail.

Figure 4.4(b) shows the stability border with respect to kµ and the relative stiffness. The
system is stabilised by increasing the stiffness.

A strong non-linear behaviour is observed between the geometrical parameter l and kµ,
Figure 4.4(c). The longitudinal coordinate l defines the position of the contact point,
Figure 3.4. In a vicinity of the standard value of l (see Table 4.1), a shift of the contact
point closer to the rotation centre stabilises the system.

The parameter a defines the lateral distance of the rotation centre to the rail. Furthermore,
the moment of inertia of the mechanical system IMG,0 varies with a. Figure 4.4(d) shows
that a small value of a stabilises the system.

Figure 4.4(e) shows the marginal stability with respect to the constant part of the
coefficient of friction µ̃G. The cross-coupling coefficient a23 varies with µ̃G (4.6). The
diagram shows that both highly negative kµ and also high values µ̃G lead to unstable
behaviour; for different reasons: As discussed, negative values of kµ cause a reduction (or
even negative values) of the damping term a22 (4.5), whereas high values of µ̃G increase
the cross-coupling effects.

In Diagram (e), the velocity dependent friction characteristics is plotted (dashed line),
described by Cruceanu and Craciun [42]. At the beginning of a braking manoeuvre, µG

and also the derivative with respect to the vehicle velocity ∂µG
∂v , start at a low level, see

the left (stable) area of the diagram. During braking, µG increases and ∂µG
∂v becomes more

negative with decreasing velocity. The intersection point of the friction characteristics
and the stability border marks the critical velocity where the system behaviour changes
from stable to unstable.
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4. Linear stability analysis of a magnetic track brake

(a) kµ vs. drot (b) kµ vs. rel. stiffness

(c) kµ vs. l (d) kµ vs. a

(e) kµ vs. µ̃G

Figure 4.4: Stability maps
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4.2. Numerical stability analysis

Parameter Symbol (Unit) Value
Eddy current loss factor G ( 1

Ω) 3000
Electric resistance Rel (Ω) 10
Number of windings N (-) 300
Lateral distance a (m) 0.15
Friction gradient w.r.t. rel. vel. kµ ( s

m) −0.02
Const. magnetic reluctance Rm,0 ( A

Vs) 455000
Rotational spring constant crot,0 (Nm/rad) 50000
Relative stiffness Crot (-) 1
Longitudinal distance l (m) 0.33667
Const. kinetic friction coefficient µ̃G (-) 0.3
Coefficient of the magnetic air-gap model ahyp (m) 0.0021
Coefficient of the magnetic air-gap model bhyp (m) 0.01
Offset of the magnetic air-gap model ahyp,0 (m) −0.002
Source voltage usrc (V) 100
Magnetic cross-section A (m2) 0.003
Vacuum permeability µ0 ( N

A2 ) 1.2566e-6
moment of inertia of the 1/4 track brake IMG,0 (kgm2) 2.25
Damping ratio D (-) 0.025
Const. velocity ṽ (m

s ) 2

Table 4.1: Model parameters
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4. Linear stability analysis of a magnetic track brake

4.3 Analysis in the time domain and energy considerations
The previous analyses have shown that the solutions of the linearised system can be
oscillatory unstable. However, it is unclear how non-linear effects influence the vibration
amplitudes of the state variables in a time series. Furthermore, it is of interest where
energy is fed into the system to excite and maintain the vibrations.

In this section, time integrations are performed and discussed. The non-linear system
equations (3.24)-(3.25) are implemented and solved in MATLAB/Simulink [56]. The
mechanism of self-excitation is analysed in the time domain using simulated time signals
of the state variables as well as system output variables. To illustrate the energy paths
within the system, energy variables are calculated from the time signals and balanced
over a period of a limit cycle.

4.3.1 Time integration results

A braking manoeuvre is simulated including the activation of the track brake by numeri-
cally solving the non-linear system equations (3.24)-(3.25) of the single magnet system
model. The time integration starts at an initial state with no voltage applied usrc = 0 V
and with all state variables equal to zero α = α̇ = ϕ = 0. At t = 0.3 s, voltage is applied
to the system.

Figure 4.5 shows variables of interest evaluated during time integration. Diagrams (a),
(b) and (c) show the state variables α, α̇ and ϕ. Diagrams (d), (e) and (f) show the
friction force FR, the magnetic restoring force FA,y as well as the actual brake force FB,x

in the bogie-track brake interface, Figure 4.9. Figure 4.5 (g) shows the electric current i.

After the track brake is activated, all variables shown in the diagrams increase and reach
a quasi-static state. Then, oscillations evolve around the steady state and, after a section
of rising amplitudes, the increase flattens until the system approaches a limit cycle.

The time frame of increasing amplitudes is of particular interest, as here the self-
excitation mechanism becomes apparent by studying the state variables and forces
involved, Figure 4.6. A phase shift between the state variables becomes visible with ϕ
leading in phase with respect to α. The leading in phase is also observed in the friction
force FR which varies with the coefficient of friction and the magnetic attractive force
FR = µG(α̇)FA,z(ϕ, α). The phase shift of FR with respect to α allows energy to be
transferred from the friction contact to the oscillating system.

The magnetic restoring force FA,y is nearly in phase with α, Figure 4.6 (e).

Diagram (f), again, shows the actual brake force between the track brake and the bogie
FB. The oscillation amplitudes are large with respect to those of the friction force FR.
The signal is approximately in phase with α and therefore with the elastic deformation
of the structure. Similar behaviour can be observed from the measurements of the field
tests, see Figure 2.6. Bending moments measured at the longitudinal connector beams
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4.3. Analysis in the time domain and energy considerations

MV,j,z and the track rods MS,j,z are proportional to the deflection of the structure. The
brake forces FB,j,x are as well in phase with the bending moments.

In the last diagram, the oscillation of the current i is shown. The amplitudes are very
small with respect to its steady state value which is also the case for the measurements
in the vehicle tests.

Figure 4.7(a) shows a phase trajectory of the three state variables α, α̇ and ϕ. The
diagrams show projections of the phase space in the α̇–ϕ, α–ϕ and α–α̇ planes as well as
a 3D view. The trajectory shows increasing amplitudes in all state variables after the
electrical activation. In the diagrams, the phase shift between α and ϕ becomes even
more apparent.

The trajectories approach a stable limit cycle which appears as a closed trajectory in the
phase space diagrams, Figure 4.7(b). An equilibrium is reached between the energy fed
into the system and the energy dissipated which is studied below.
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Figure 4.5: Time integration results of the linear model
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4.3.2 Energy balance of the limit cycle
The energy balance of a limit cycle is analysed to determine energy paths through
the system. The system (3.24)-(3.25) consists of elements that either conserve energy,
transfer energy between the subsystems or inject or dissipate energy through the system
boundaries. Figure 4.8 shows an energy flow chart for the three subsystems.

Electric subsystem Magnetic subsystem Mechanical subsystem

Pel,src

Pel,R

Pel,coil

Pmag,fe Pmag,ls

Pmag,eddy

Pmech,ls

Pmech,B

Pmech,R Pmech,diss

Pmech,kin Pmech,pot

Figure 4.8: Energy flow in the coupled system

In the electric subsystem, electric energy is fed by the voltage source at the rate Pel,src

and is dissipated through the system boundary by the resistor at a rate of Pel,R. Moreover,
energy can be transferred to the magnetic subsystem by the electro-magnetic converter
at the rate Pel,coil.

In the magnetic subsystem, magentic field energy is conserved by the magnetic reluctances
of the steel parts and the air-gap. A change of magnetic field energy is indicated by
Pmag,fe and Pmag,ls. Further, energy is dissipated by the eddy current loss element at
a rate of Pmag,eddy. Finally, mechanical work is performed inside the air-gap by the
magnetic restoring force at a rate of Pmech,ls.

In the mechanical subsystem, power of the brake force Pmech,B feeds mechanical energy
to the system over time as the system is moved at a constant velocity ṽ. Kinetic energy
of the mass of the brake and potential energy of the rotational spring is conserved. Their
energy flow rates are indicated by Pmech,kin and Pmech,pot. Energy is dissipated by the
friction force at a rate of Pmech,R and the rotational damper at a rate of Pmech,diss.

Mechanical subsystem

The energy balance of the mechanical subsystem is analysed in greater detail. Figure 4.9
shows the free-body diagram of the mechanical system. As the rotational centre of the
mechanical subsystem is driven by the velocity ṽ, the external forces FB,x and FR transfer
energy by means of mechanical work through the system boundaries. The magnetic
restoring force FA,y acts in the opening and closing directions of the air-gap. As a result,
energy is transferred between the magnetic and the mechanical subsystems.

In the mechanical subsystem, energy is conserved in the form of kinetic energy of the
track brake Ekin and potential energy of the rotational spring Epot. The rotational
damper drot dissipates energy from the mechanical subsystem. The magnetic attraction
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Figure 4.9: Free-body diagram of the mechanical system

force FA,z as well as the lateral transmission force FQ,y do not contribute to the energy
balance.

The energy balance of the mechanical system over one period of the limit cycle τ is
derived by the time integral over the power-energy equation (4.21).

0 =
�
τ

Pmech,Bdt

� �� �
∆Emech,B

+
�
τ

Pmech,Rdt

� �� �
∆Emech,R

+
�
τ

Pmech,lsdt

� �� �
∆Emech,ls

+
�
τ

Pmech,dissdt

� �� �
∆Emech,diss

+
�
τ

Pmech,kindt

� �� �
∆Ekin=0

+
�
τ

Pmech,potdt

� �� �
∆Epot=0

(4.21)

Here, Pmech,B represents the power of the transmitting force, Pmech,R the power of the
friction force, Pmech,ls the power of the magnetic restoring force acting on the air-gap,
Pmech,diss the power of the rotational damping moment, Pmech,kin the rate of kinetic
energy of the mass and Pmech,pot the potential energy rate of the rotational spring.

Pmech,B = F T
B,xṽ =

�
µGFA + amMGα̈ 0 0


 ṽ
0
0

 (4.22)

Pmech,R = F T
Rvrel =

�
µGFAα̈ 0 0


 
ṽ

0
0

 +

0 −α̇ 0
α̇ 0 0
0 0 0


−l

a
0


 (4.23)

Pmech,ls = F T
A,yvA,rel =

�
0 −FA,y 0


 0 −α̇ 0
α̇ 0 0
0 0 0


 −l

a − αl
0

 (4.24)

Pmech,diss = drotω
T ω =

�
drotα̇ 0 0


 α̇
0
0

 (4.25)
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4.3. Analysis in the time domain and energy considerations

For one period of the limit cycle τ , the change in kinetic ∆Epot and potential energy
∆Epot equals zero. Figure 4.10(a) shows the evaluated energy balance over τ from the
time integration. On the left side, the energy is injected to the mechanical system, on the
right side the energy dissipated and transferred to other subsystems. It can be seen that
all the work injected to the mechanical system is provided by the transmission force FB,x.
Most of the energy is dissipated by the friction force FR and the rotational damping
moment drotα̇. However, Figure 4.10(b) shows that a small part of the mechanical work
is transferred to the magnetic subsystem by the magnetic restoring force FA,y.
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Figure 4.10: Energy balance of the mechanical subsystem for one period of the limit cycle

Magnetic subsystem

The magnetic reluctances of the iron core Rm,fe and the air-gap Rm,ls store energy by
means of magnetic field energy. Further, mechanical work at the air-gap, produced
by the restoring force FA,y, causes a transfer of energy between the mechanical and
the magnetic subsystems. Moreover, the coil acts as an energy converter between the
electric and the magnetic systems. Finally, eddy current losses dissipate energy inside
the magnetic circuit. The energy balance over one period of the limit cycle is derived by
integration over τ of the electric power transferred by the coil Pel,coil, the derivatives of
the magnetic field energy of the iron parts Pmag,fe and the air-gap Pmag,ls, the power
of the mechanical force in the air-gap Pmech,ls and the power dissipated through eddy
current losses Pmag,eddy:

0 =
�
τ

Pel,coildt

� �� �
∆Eel,coil

+
�
τ

Pmag,fedt

� �� �
∆Emag,fe=0

+
�
τ

Pmag,lsdt

� �� �
∆Emag,ls=0

+
�
τ

Pmech,lsdt

� �� �
∆Emech,ls

+
�
τ

Pmag,eddydt

� �� �
∆Emag,eddy

(4.26)

with:

Pel,coil = Niϕ̇ (4.27)

81



4. Linear stability analysis of a magnetic track brake

Pmag,fe = d

dt
Emag,fe = d

dt

Rm,fe

2 ϕ2 = Rm,0ϕϕ̇ (4.28)

Pmag,ls = d

dt
Emag,ls = d

dt

Rm,ls

2 ϕ2 = Rm,lsϕϕ̇ (4.29)

Pmag,eddy = Geddyϕ̇2 (4.30)

Over one period of a limit cycle, the change of the magnetic field energy over one
period equals zero, ∆Emag,fe = ∆Emag,ls = 0, see (4.26). Figure 4.11 shows the energy
balance of the injected and dissipated energies from the time integration. The mechanical
force FA,y injects energy ∆Emech,ls to the subsystem. One part is dissipated through
eddy current losses ∆Emag,eddy and another part transferred to the electrical subsystem
through the coil ∆Eel,coil.
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Figure 4.11: Energy balance of the magnetic subsystem for one period of the limit cycle

Electric subsystem

The electric subsystem includes a voltage source, a resistor and a coil which acts as an
electromagnetic converter, Figure 3.8(b). The voltage source injects energy to the system
and the resistor dissipates electric energy. As in the magnetic subsystem, the coil acts
as an electro-magnetic converter. The energy balance for the limit cycle is derived by
integrating the power balance over τ :

0 =
�
τ

Pel,srcdt

� �� �
∆Eel,src

+
�
τ

Pel,Rdt

� �� �
∆Eel,R

+
�
τ

Pel,coildt

� �� �
∆Eel,coil

(4.31)

In (4.31), Psrc equals the power induced by the voltage source, Pel,R the power dissipated
by the resistor and Pel,coil the power transferred through the coil to or from the magnetic
subsystem, see (4.32) to (4.27).

Pel,src = usrci (4.32)
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4.3. Analysis in the time domain and energy considerations

Pel,R = Reli
2 (4.33)

Figure 4.12 shows the energy balance evaluated: Most of the energy injected to the
electric subsystem is provided by the voltage source. However, in the limit cycle, a small
amount of energy is transferred through the coil from the magnetic subsystem.
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Figure 4.12: Energy balance of the electric subsystem for one period of the limit cycle

Coupled system

The energy balance of the full coupled model derives from the energy balances of the
subsystems. Removing the zero energy terms in Equations (4.21), (4.26) and (4.31), the
energy balance over one period of the limit cycle is obtained:

0 =
�
τ

Pmech,Bdt

� �� �
∆Emech,B

+
�
τ

Pmech,Rdt

� �� �
∆Emech,R

+
�
τ

Pmech,dissdt

� �� �
∆Emech,diss

+
�
τ

Pmag,eddydt

� �� �
∆Emag,eddy

+
�
τ

Pel,srcdt

� �� �
∆Eel,src

+
�
τ

Pel,Rdt

� �� �
∆Eel,R

(4.34)

Figure 4.13 shows the evaluated total energy injected and dissipated. Electric energy from
the voltage source ∆Eel,src and mechanical work from the interfacing force between track
brake and bogie ∆Emech,B is injected to the system. Most of the energy is dissipated in
the electric resistance ∆Eel,R and the mechanical friction ∆Emech,R. Small amounts of
energy are as well dissipated through the rotational damper ∆Emech,diss and the eddy
currents ∆Emag,eddy.

Obviously, two energy sources maintain the self-excited vibrations of the model. On the
one hand kinetic energy of the train: As long as the train is in motion, the interfacing
force between the track brake and the bogie constantly feeds energy to the mechanical
system through the system boundary. On the other hand, the electric voltage source
continuously feeds the electric circuit. It is now quantifiable how energy that is fed
into the system is dissipated or converted during a braking manoeuvre with self-excited
vibrations.
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Figure 4.13: Energy balance of the coupled system model for one period of the limit
cycle.
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4.4. Linear analysis of the double-magnet model

4.4 Linear analysis of the double-magnet model

To study the influence of the electrical connection of multiple magnets on the stability of
the system, this section analyses the double-magnet model in two configurations: The
electrical in series and in parallel connection. The models (3.26)-(3.27) and (3.26)-(3.28)
are linearised at the steady state [αA = αB = α̃; ϕA = ϕB = ϕ̃]T and eigenvalues
calculated with respect to stiffness parameters. For both configurations, stability criteria
for steady system states are established and evaluated by applying the Hurwitz criterion.

The state space representation of the electrically in series connected double-magnet model
is defined by ẋd = Ad,sxd + bdu with the system matrix Ad,s (4.35), the state-vector xd

and the input vector bd (4.36).

Ad,s =

0 1 0 0 0 0
−a21+ crot−2cxb2

2mMGa2 −a22+ drot−2dxb2

2mMGa2 −a23
−crot+2cxb2

2mMGa2
−drot+2dxb2

2mMGa2 0
−a31(1+e) 0 −a33(1+e) a31e 0 a33e

0 0 0 0 1 0
−crot+2cxb2

2mMGa2
−drot+2dxb2

2mMGa2 0 −a21+ crot−2cxb2

2mMGa2 −a22+ drot−2dxb2

2mMGa2 −a23
a31e 0 a33e −a31(1+e) 0 −a33(1+e)


(4.35)

bd =



0
0
b3
0
0
b3


; xd =



∆αA

∆α̇A

∆ϕA

∆αB

∆α̇B

∆ϕB


(4.36)

The coefficients aij and bi are identical to those of the single magnet model, (4.4)−(4.9).
In (4.35), the magnetic fluxes ∆ϕA and ∆ϕB are coupled by the coefficient e (4.37).

e = N2

2GRel
> 0 (4.37)

The state space model ẋd = Ad,pxd + bdu represents the linearised in parallel connected
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4. Linear stability analysis of a magnetic track brake

system with the system matrix Ad,p:

Ad,p =

0 1 0 0 0 0
−a21+ crot−2cxb2

2mMGa2 −a22+ drot−2dxb2

2mMGa2 −a23
−crot+2cxb2

2mMGa2
−drot+2dxb2

2mMGa2 0
−a31 0 −a33 0 0 0

0 0 0 0 1 0
−crot+2cxb2

2mMGa2
−drot+2dxb2

2mMGa2 0 −a21+ crot−2cxb2

2mMGa2 −a22+ drot−2dxb2

2mMGa2 −a23
0 0 0 −a31 0 −a33


(4.38)

The system matrices Ad,s (4.35) and Ad,p (4.38) are identical except for the coupling
coefficient e which does not appear in Ad,p. Magnetic fluxes ∆ϕA and ∆ϕB are coupled
for the in series configuration but not for the in parallel configuration.

Eigenvalues The eigenvalues λi of the two system matrices Ad,s and Ad,p are calculated
with varying values of the asymmetrical stiffness b2cx (3.4). With crot = constant, the
ratio of the asymmetrical and the symmetrical stiffnesses 2cxb2/crot is varied between
0.5-2. Figures 4.14(a) and 4.14(c) show the root loci of the in series and the in parallel
configurations. Both systems have two pure real negative eigenvalues (λ1, λ3) and two
pairs of conjugate complex eigenvalues (λ21,2 and λ41,2). The associated mode shapes
are symmetrical for λ21,2 and asymmetrical for λ41,2, Figure 4.15. The real parts of the
conjugate complex eigenvalues Re(λi) are shown in Figures 4.14(b) (in series) and 4.14(d)
(in parallel). By connecting the magnets in series (instead of in parallel), the real parts
of the eigenvalues with associated asymmetric eigenmodes are increased.

Stability The Hurwitz stability criterion is applied to the system matrices (4.35) and
(4.38), assuming 2cxb2/crot = 1. For the electrically in series connected configuration,
the decisive criteria (4.39) and (4.40) for stability are obtained. For the in parallel
configuration, the criteria (4.41) and (4.42) are determined. Obviously, the stability
criteria of the in parallel configuration may also be derived by setting the coupling
coefficient e to zero. (4.41) and (4.42) are identical to the stability criteria of the single
magnet (4.16) and (4.17).

in series:
0 < (2e + 1)(a21a33 − a23a31) (4.39)
0 < a23a31 + a22(a21 + a22a33 + a2

33)
+4a22a2

33e2 + (2a31a23 + 2a2
22a33 + 4a22a2

33)e (4.40)
in parallel:

0 < a21a33 − a23a31 (4.41)
0 < a23a31 + a22(a21 + a22a33 + a2

33) (4.42)
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Figure 4.14: Eigenvalue analysis of the double-magnet model
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Figure 4.15: Eigenmodes corresponding to the complex eigenvalues
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4. Linear stability analysis of a magnetic track brake

Similarly to Section 4.2, steady state system variables and stability criteria are fur-
ther studied numerically with respect to the relative stiffness parameter Crot. With
2cxb2/crot = 1, Figure 4.16 shows diagrams of the steady state values of α̃ and ϕ̃, the
coupling coefficient e, real parts of the conjugate complex eigenvalues λ21,2 and λ41,2 as
well as the criteria for oscillatory instability.

Diagrams (a) and (b) show the steady state variables α̃ and ϕ̃ which are identical to
those of the single magnet model (Figure 4.3). Diagram (c) shows a constant value of
the cross-coupling coefficient of the magnetic fluxes e.

Diagram (d) shows the real parts of the eigenvalues λ21,2 (associated to the symmetrical
mode) and λ41,2 (associated to the asymmetrical mode) of both system matrices Ad,s

(in series) and Ad,p (in parallel). The real parts of λ21,2 of both matrices and of λ41,2 of
the in parallel configuration are identical with negative values for Crot > 1.66. The real
parts of λ41,2 of the in series configuration are negative for Crot > 2.38.

Diagram (e) shows the values of the right-hand sides of the inequalities of (4.40) for the in
series configuration and of (4.42) for the in parallel configuration. For the parameter range
analysed, the values for the in series configuration are smaller than those of the in parallel
configuration. Both configurations may be stabilised by increasing the stiffness. However,
a higher stiffness is required to stabilise the magnets connected in series (Crot > 2.38)
than to stabilise the magnets connected in parallel (Cred > 1.66).

The in series connection of the left and right magnets leads to a coupling of the two
magnetic fluxes ϕA and ϕB. For the in parallel connection of the two magnets, this
coupling is not present. In the asymmetric oscillatory mode, the coupling of fluxes re-
enforces the self-exciting mechanisms. As a result, the in series connection de-stabilises the
asymmetric mode. For the symmetric oscillatory mode, the type of electrical connection
is not relevant.
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CHAPTER 5
Analysis of the multibody

dynamics model of the track brake

Using simplified models, possible self-excitation mechanisms of the magnetic track brake
were identified in the previous chapter. Compared to the simplified models, the multibody
dynamics model has a significantly increased degree of detail. This applies in particular to
the elastic structure of the brake frame, which allows deformations in all three dimensions,
the magnet-rail friction contact model, and the extension to four magnets with two
magnetic circuits each. This chapter now aims to determine whether the conclusions
drawn from the simplified models can be transferred to the multibody dynamics model
to subsequently obtain qualitatively comparable results to vehicle tests.

To study the stability of steady system states, eigenvalue analyses of the locally linearised
system are conducted, dependent on the vehicle velocity ṽ and corresponding coefficient
of friction. Time integration is used to simulate a braking manoeuvre which is then
compared with data of vehicle tests.
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5. Analysis of the multibody dynamics model of the track brake

5.1 Brake-rail contact and steady state analysis
Linearisation points are required to perform eigenvalue analyses with the nonlinear
multibody dynamics model of the magnetic track brake. Particular knowledge of the
contact status is needed for each contact force element (at the positions j1, j2 and
jZG for j = A, B, C, D) between the braking magnets and the rails, Figure 3.7. Due to
increasing friction coefficients µ̃G(ṽ), the loads on the brake frame change with decreasing
ṽ, which can lead to changes in the contact status. Also, the placement of the centre
contact point jZG by the coordinates ex and ez influences the deformation of the frame.

With µ̃G = 0.08-0.32 (see Figure 2.16) and ez = 0-1 mm (see Appendix B.1), steady state
analyses are performed. Steady state values are marked by "~". Parameters used for the
model are listed in Table 5.1.

Parameter Symbol (Unit) Value
Electric resistance Rel (Ω) 10
Number of windings N (-) 300
Const. magnetic reluctance Rm,0 ( A

Vs) 380000
Coefficient of the magnetic air-gap model 1 ahyp (m) 0.0021
Coefficient of the magnetic air-gap model 2 bhyp (m) 0.01
Offset of the magnetic air-gap model ahyp,0 (m) −0.002
Source voltage usrc (V) 120
Magnetic cross-section A (m2) 0.0036
Vacuum permeability µ0 ( N

A2 ) 1.2566e-6
Actuation cylinder force FCyl (N) 3000
Longitudinal position of the centre contact point ex (cm) 31
Vertical position of the centre contact point ex (mm) 0-1
Coefficient of friction µ̃G (-) 0.08-0.32

Table 5.1: Model parameters for the steady state analyses

Figure 5.1 shows the change of contact status with respect to µ̃G and ez. Diagram (a)
depicts the number of force elements with closed contact (=contact force elements are
in contact) status per side. The associated contact points for one side (left) are listed
in Table 5.2. For a fixed value of ez, the number of closed contacts can change during
braking when µ̃G increases, see the two horizontal lines ez = 0.80 mm and ez = 0.47 mm.
For ez = 0.80 mm and small values of µ̃G, four contacts per side j1 and jZG (j = A . . . D)
are closed. With µ̃G > 0.3, the contact of the centre contact points of the forerunning
magnets (AZG, CZG) is opened. For ez = 0.47 mm, the number of closed contacts per
side decreases from six to four with a transition zone at µ̃G = 0.16-0.22 as contacts of
the inside endpieces (j2) open.

Diagram (b) of Figure 5.1 shows the overall vertical force for one side F̃N,z = �
F̃N,jk,z

(j = A, B) with respect to the coefficient of friction µ̃G for ez = 0.47 mm and ez = 0.80 mm.
For ez = 0.47 mm, F̃N,z decreases when µ̃G rises.
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Figure 5.1: Steady state analysis of the brake-rail contact points
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5. Analysis of the multibody dynamics model of the track brake

Area
Contacts
(per side)

Contact points
left

Contact points
right

yellow 6 A1, A2, AZG, B1, B2, BZG C1, C2, CZG, D1, D2, DZG
blue 5 A1, AZG, B1, B2, BZG C1, CZG, D1, D2, DZG
orange 4 A1, AZG, B1, BZG C1, CZG, D1, DZG
green 3 A1, B1, BZG C1, D1, DZG

Table 5.2: Contact points with respect to µ̃G and ez

This is plausible as the magnet moves in lateral direction under load due to the elastic
deformation of the brake frame leading to a widening of the effective air-gap s̃. As
a result, the magnetic attractive forces F̃A,i,z decrease, resulting in decreasing normal
forces. For ez = 0.80 mm, attractive forces F̃A,z are smaller than for ez = 0.47 mm and
approximately constant.

Diagrams (c) to (f) in Figure 5.1 give a more detailed view on the contact forces between
the magnets and the rails for ez = 0.47 mm. The diagrams show the normal forces of all
four corners A, B, C, D. With µ̃G increasing, normal forces in the magnet-rail contact
F̃N,jk,z distribute from the centre outwards. In the transition zone, normal forces F̃N,j2,z

become zero as the contact of the inside endpieces opens. Open contacts lead to a vertical
distance between the magnet segments and the rail, which reduces the magnetic forces.
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5.2 Stability analysis
Since the vehicle tests have shown a strong relation between vibrations and velocity, the
study of its influence on the stability of solutions of the dynamical system is particularly
relevant.

The (linear) stability of steady states of the system is determined by analysing the real
parts of its eigenvalues. Considering friction-dependent linearisation points (Section 5.1),
modal analyses at vehicle velocities ṽ between 100 km/h and 0 km/h are performed with
the model parameters from Table 5.3. The mode shapes associated to the relevant
eigenvalues λ1-λ4 are depicted in Figure 5.2. The first mode shape (of λ1) describes a
lateral rigid body motion, the others correspond to the first asymmetric (λ2), the first
symmetric (λ3) and the second asymmetric (λ4) deflection mode of the structure.

(a) Eigenmode corresponding to λ1 (b) Eigenmode corresponding to λ2

(c) Eigenmode corresponding to λ3 (d) Eigenmode corresponding to λ4

Figure 5.2: Characteristic eigenmodes of the multibody dynamics model

Figure 5.3 shows plots of results of the analyses with respect to ṽ. Diagram (a) shows the
applied friction characteristics (2.3) and its derivative with respect to ṽ, k̃µ. Diagram (b)
depicts the frequencies and Diagram (c) the real parts of the first four pairs of conjugate
complex eigenvalues λ1-λ4. As seen from the diagram, the frequencies are nearly constant
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5. Analysis of the multibody dynamics model of the track brake

Parameter Symbol (Unit) Value
Eddy current loss factor G ( 1

Ω) 1500
Friction characteristics µ̃G (-) mean µG

Damping ratio D (-) 0.01
Vehicle velocity ṽ (km/h) 100-0
Vertical position of the centre contact point ez (mm) 0.47

Table 5.3: Additional model parameters for the stability analyses

for a broad velocity range, directly before standstill, however, the frequencies of λ1 and
λ2 drop. With decreasing velocity, λ4 has the largest real parts (compared to λ1-λ3) with
positive values Re(λ4) > 0 for ṽ < 70 km/h. Re(λ4) increases until a maximum is reached
at approximately 20 km/h. At this velocity, severe vibrations were detected in the second
asymmetric deflection mode (Figure 5.2(d)) during the vehicle tests (Section 2.2). For
velocities below 10 km/h, Re(λ4) decreases and becomes negative again. Also Re(λ3)
increases with decreasing velocity and becomes positive for ṽ < 35 km/h. At speeds
ṽ < 8 km/h values reach a maximum with Re(λ3) > Re(λ4). It can be assumed that at
such low speeds self-excited vibrations also occur in the symmetrical deflection mode
(Figure 5.2(c)). However, as the magnetic track brake was deactivated during vehicle
tests at 10 km/h, these did not evolve.

Diagrams (d) to (g) of Figure 5.3 show plots of the contact forces for the contact points
between the track brake and the rails. The diagrams are very similar to those discussed
in the steady state analysis, see Figure 5.1.

Stability maps In addition to the vehicle velocity, the characteristics of the coefficient
of friction in the magnet-rail contact is of key importance for the analysis of stability
behaviour. Since friction is velocity-dependent, a simultaneous study of the friction
characteristics and velocity seems appropriate. Figure 5.4 shows stability maps and
Re(λ4) (positive values in red, negative values in green) with respect to steady system
states of the (locally linearised) multibody dynamics model (for ex = 310 mm and
ez = 0.47 mm) and parameters µ̃G and k̃µ for six velocities ṽ.

It becomes clear that the area of stable steady states expands with decreasing velocity.
This is plausible as dampening effects due to friction forces in lateral direction increase
with decreasing velocity. Further, two friction characteristics, high µG and low µG (see
Figure 2.16) are depicted. The point on the respective friction characteristics that
corresponds to the actually considered velocity is marked by a distinctive dot. The
sequence of subplots for different actual velocities illustrates that this dot moves from the
upper left corner (small values of µ̃ and k̃µ) to the bottom right when velocity decreases
with braking. The braking manoeuvre is started in the green area with all eigenvalues
negative, indicating asymptotic stability of first order of the steady state solutions. Then
the real parts of the eigenvalues increase with decreasing velocities, with transition to the
unstable (red shaded) areas until about 6 m/s, when real parts start to decrease again.
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Figure 5.3: Modal analysis with respect to the steady state velocity
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Figure 5.4: Stability maps of the multibody dynamics model with respect to the friction
parameters

Considering high µG characteristics and µ̃G < 0.22, real parts of eigenvalues increase
with increasing µ̃G. This corresponds to the results of the simplified system model,
Figure 4.4(e). The higher µ̃G and the more negative k̃µ, the more likely unstable self-
excited vibrations may appear. For µ̃G > 0.22, the inward endpieces lose contact with
the rail. Notice the corresponding spikes in all subplots of Figure 5.4. With respect to
the simplified system model, this behaviour may be interpreted as a displacement in the
contact point to the front and therefore as a decrease of distance l. Then the stable area
expands as well, Figure 4.4(c). For small velocities and large friction coefficients, friction
in lateral direction adds considerable damping to the system, and vibrations may be
attenuated.
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5.3 Analysis in the time domain
To further examine the dynamical behaviour around the unstable equilibrium states, as
well as during braking, time integrations are performed. Complete braking manoeuvres
are simulated, starting with the electrical activation of the brake until the vehicle reaches
full stop. For an initial velocity of v0 = 43.2 km/h, Figure 5.5 shows results of a time
integration. Diagram (a) shows the approximately linear decrease in velocity from v0
until 0 km/h over a simulation time of 7.5 s. During the braking manoeuvre, the friction
coefficient µG continually increases (red coloured plot in the diagram). The track brake
is activated at 0.5 s which is indicated by the signals of the actuating cylinder force Fcyl

and the current iAD, Diagram (b). With the activation of the brake, the brake forces
FB,A,x and FB,C,x increase, Diagram (c). Diagrams (d) to (g) in Figure 5.5 show the
values of the normal contact forces FN,jk,z for each corner (j = A, B, C, D) and contact
point (k = 1, 2, ZG) separately.

It can be seen from the signals of the brake forces FB,jk,x that vibrations begin to evolve
at a time of t ≈ 4 s a vehicle velocity of roughly vvcl ≈ 20 km/h and a sliding friction
coefficient of µG ≈ 0.22. Simultaneously, the inner end pieces lose contact with the rail.
This behaviour is consistent with the analysis of contact points in the steady state, see
Figure 5.1.

Figure 5.6 depicts the time frame between 4.5 s and 5.5 s, when the vibration amplitudes
of the brake forces FB,A,x and FB,C,x reach their maxima. Diagram (c) clearly displays the
asymmetric vibration of the left and right brake forces. As the brake force transmission
link between the bogie and the track brake is designed as a mechanical stop, only positive
brake forces can be transmitted. This is observed by a periodic loss of contact with the
bogie, see marker FB = 0.

For a simulation time t > 6 s and a velocity of vvcl < 10 km/h, the vibration amplitudes
in Figure 5.5 become smaller, which may be attributed to the dampening effect of the
increasing lateral friction force component. At t = 7 s, the track brake is deactivated in
the simulation and the signals of Fcyl and iAD return to zero, Diagram (b).
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Figure 5.5: Simulated braking manoeuvre – overview
100



5.3. Analysis in the time domain

0
12.5

25
37.5

50

0
0.1
0.2
0.3
0.4

0
1
2
3
4

0
3.5
7
10.5
14

0
0.6
1.2
1.8
2.4

0
10
20
30
40

0
10
20
30
40

0
10
20
30
40

4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5
0

10
20
30
40
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5. Analysis of the multibody dynamics model of the track brake

Influence of the friction characteristics and comparison with vehicle tests To
determine if the multibody dynamics simulations are qualitatively comparable to the
vehicle tests, simulations of a braking manoeuvre are performed and compared with
vehicle test data. Since the actual friction forces in the magnet-rail contact are unknown
during the measurements, simulations with different friction coefficient characteristics
are performed and their influence on the vibration amplitudes examined.

The basis of this analysis is a representative measurement of a braking manoeuvre from
the vehicle tests (V1008 ) with an initial velocity of vvcl ≈ 35 km/h. Figure 5.7 (a) and
(b) show the measured velocity vvcl, the current iAD as well as the brake forces FB,A,x

and FB,C,x.

Simulation results with the different levels of friction show a significant influence on
both the average brake force and the amplitudes of the vibrations, Diagrams (c) and
(d). While vibrations at large amplitudes develop with high µG, the simulation with
low µG enters a limit cycle with very small amplitudes. Although the measured brake
forces generally show similar behaviour to the simulations, variations in the amplitudes
are clearly visible. The differences may be attributed to not modelled, varying contact
conditions between magnet and rail.

The differences between measurements and simulations can be reduced by adjusting
the friction coefficient characteristics, as shown in Diagrams (e)-(f). The characteristics
ALT µG is generated (freely chosen) by oscillation of the friction value around the
characteristics mean µG within the boundaries of low µG and high µG, Figure 5.7(f).
Qualitatively comparable results with vehicle tests can be obtained using the model,
however better knowledge of the magnet-rail contact conditions is required.
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Figure 5.7: Comparison of time integration results with field test measurements
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CHAPTER 6
Mitigation of self-excited

vibrations

To reduce the mechanical loads on components of the magnetic track brake and the
bogie, the aim of this chapter is to propose designs in which self-excited vibrations of
the track brake frame do not occur or are mitigated. Simultaneously, the optimisation
of the achievable brake forces is considered an important secondary target. Based on
the findings of the previous chapters, new design concepts are developed. Based on the
findings of the linear stability analysis of the simplified models, specific design features
of the Original Design are modified to improve the stability behaviour of the system.
To validate the quality of the proposed designs, assessments of the brake force, stability
analyses and time integrations are performed in accordance with Chapter 5.
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6. Mitigation of self-excited vibrations

6.1 Alternative design concepts
Based on the results of the stability analyses with the linear system models in Chapter 4,
design proposals for future magnetic track brakes are developed. The following observa-
tions made from the study of the criteria for oscillatory stability of the single magnet
model (4.17) and the double-magnet model (4.40) contribute to the development of these
proposals:

• The electro-magneto-mechanical coupling and negative values of the damping term
are the cause of the self-excited vibrations.

• The analysis of the electrical circuits of double-magnet models has shown that
in series connection of magnets increases this coupling for asymmetric oscillation
modes (4.40), Section 4.4.

• Increasing the mechanical stiffness "stabilises" the simplified system model.

These findings are revisited in the following three track brake designs which are subse-
quently presented:

Design 1: Increased stiffness

Increasing the stiffness of the track brake frame has already been taken up as an
intuitive measure for the simplified models. The numerical evaluation of the criterion
for oscillatory stability has shown that this countermeasure has a positive effect on the
stability behaviour, Section 4.2.

The stiffness, however, is limited by external constraints such as mass limitations, available
installation space and normative requirements. Economic considerations require light
weight designs of brake components, excluding large cross sections [57]. The European
standard for magnetic track brakes EN16207 [2] includes load cases with enforced
displacements applied to the brake frame, which favours flexible structures. For the
following analyses, it is assumed that the stiffness of the brake frame can be increased by
20% at constant mass. The increase of stiffness is implemented by scaling the stiffness
matrix of the finite element model of the brake frame.
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6.1. Alternative design concepts

Design 2: Repositioned track brake-bogie interface

Reducing the lateral distance a between the force transmission and the rail was identified
as an effective measure to stabilise the system for the simplified model, Figure 4.4(d).
This is plausible because the geometric parameter a influences the coupling terms of
the mechanical and electro-magentic system equations. Repositioning the mechanical
stops outwards, as seen in Figure 6.1, reduces the bending moment in the longitudinal
connectors during braking. The resulting reduced deflection of the brake frame is expected
to decrease the coupling of the mechanical and the electro-magnetic system.

(a) Original: inside (b) Design 2: outside

Figure 6.1: Repositioning the track brake-bogie interface
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6. Mitigation of self-excited vibrations

Design 3: Interchanged electrical connections

In Section 4.4, the influence of the electrical connection on the stability behaviour of
the double-magnet model has been studied. It has been shown that in the asymmetrical
oscillation mode, the electro-magneto-mechanical coupling of two magnets is increased by
their in series connection. The electro-magneto-mechanical coupling of the symmetrical
oscillation mode remains unchanged compared to a single magnet model. This can
result in the symmetrical mode being stable while the asymmetrical mode is unstable,
Figure 4.16.

The magnetic track brake studied consists of two pairs of magnets electrically connected in
series. In the original configuration, the diagonally located magnets (A+D and B+C) are
connected in series, Figure 3.13. In the second asymmetric oscillation mode, the diagonally
located magnets perform an opposed relative motion to the rail, see Figure 5.2(d). It is
assumed that the in series connection of the diagonally located magnets in the asymmetric
vibration mode creates an amplification of the electro-magneto-mechanical coupling.

The magnets located behind each other perform a symmetric motion relative to the rail.
Assuming that the coupling can be mitigated, the magnets located behind each other
(A+B and C+D) are therefore connected in series in Design 3, Figure 6.2.
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Figure 6.2: Design 3: Interchanged electric connections
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6.2 Comparison of the designs
All proposed design variants must be robust regarding different operational and envi-
ronmental conditions. Vibrations should be suppressed in a wide range of operational
parameters. This includes variable coefficients of friction in the brake-rail contact, as
well as pole shoe wear or contaminated friction surfaces due to pick-up weldings. Besides,
braking performance must not be influenced negatively. Steady state normal forces are
investigated to compare the achievable brake force of the Original Design and the three
new design proposals. Stability maps of the designs are determined from real parts of all
eigenvalues of the locally linearised systems. To investigate the influence of the design
variants on structural loads, braking manoeuvres are simulated in the time domain.

6.2.1 Comparison of brake forces
To determine the influence of the designs on the brake force, steady state normal forces
between the brake magnets and the rail are calculated. The summarised normal forces�

F̃N,j,z are compared for a velocity range below 72 km/h. With decreasing velocity
ṽ, the coefficient of friction µ̃G increases, with (2.16) and the mean µG characteristics.
To consider different degrees of pole shoe contamination due to pick-up weldings, the
parameter ez is varied from 0-1 mm, Figure 6.3.

Figure 6.3 (a) to (d) shows �
F̃N,j,z for the Original Design and for Designs 1, 2 and

3 with respect to ṽ and ez as a colour map. It can be seen that the normal force is
particularly dependent on ez. In the range of ez = 0.4-0.6 mm a steep decrease of the
normal contact force is noticeable. This is attributed to the loss of contact of the inner
end pieces, compare Figure 5.1. The increased stiffness of the brake frame in Design 1
causes a poorer vertical alignment of the magnets to the rail. When ez is increased, this
leads to an earlier loss of contact and lower normal forces than with the Original Design.

With deceleration, rising coefficient of friction µ̃G and thus higher lateral deflection of the
magnets, a decrease of �

F̃N,j,z is observed from diagrams (a), (b) and (d). This is due
to the reduction of the magnetic attraction forces F̃A,j,z with lateral deflection, compare
Figure 3.9(b). This reduction is not observed with Design 2, as the lateral deflection is
lower than with the Original Design and Design 1.

The type of electrical connection does not lead to any change in the steady state of the
system. The quasi-static normal forces of the Original Design and Design 3 are identical,
Diagrams (a) and (d).

The results are compared for velocities 64.8 km/h, 46.8 km/h, 28.8 km/h and 10.8 km/h
as indicated in the diagram. Assuming µ̃G equal for all design variants, Figure 6.4 shows
the relative brake forces of the three design variants with respect to the Original Design
and ez. Thus, the Original Design (O) as well as Design 3 (D3) have a constant value of 1.
Design 2 (D2) yields to the highest relative brake forces in the considered parameter range.
Design 1 (D1) leads to reduced brake forces, except for low speeds and ez < 0.4 mm.
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6.2.2 Comparison of the stability behaviour
To examine the influence of the three design proposals on the stability behaviour, stability
maps are compared for the same parameter range as in Section 6.2.1 (ez = 0-1 mm
and ṽ = 72-0 km/h). As in Chapter 5, the stability maps are based on the analysis of
the real parts of the eigenvalues of the locally linearised models in their steady states.
Figure 6.5 shows the maximum real parts of the first four conjugate complex eigenvalues
max(Re(λi)) (i = 1-4) for the Original Design and Designs 1, 2 and 3 with respect
to vehicle velocity ṽ and the vertical position of the contact point ez. The stability
maps correspond to those presented in Section 5.2, Figure 5.4, green shading represents
negative real parts, red shading positive real parts. The transition between green and
red represents the stability border. Figure 6.5 shows stability maps for steady states of a
braking manoeuvre with varying ṽ and ez, assuming the mean µG friction characteristics
(2.3).

For the Original Design as well as Designs 1, 2 and 3, the eigenmodes associated to the
first four eigenvalues correspond to those shown in Figure 5.2:
λ1: lateral rigid body motion
λ2: first asymmetric deflection mode of the structure
λ3: first symmetric deflection mode of the structure
λ4: second asymmetric deflection mode of the structure

For the Original Design, there is a large non-stable region with maximum real parts at
ez = 0.45 mm, Figure 6.5 (a). For this value, Figure 6.7 shows the analysed eigenvalues
in detail with associated frequencies f(λi) nearly constant across the velocity range. For
all velocities considered, λ4 (f(λ4) = 28 Hz) has positive real parts. Also, the real part of
λ3 (f(λ3) = 18 Hz) becomes positive at low velocities. The eigenvalues λ1 and λ2 have
only negative real parts.

The stability map of Design 1 (increased stiffness) demonstrates similiar system behaviour
as the Original Design but with a smaller unstable parameter region and maximum real
parts at ez = 0.375 mm, Figure 6.5 (b). The detailed eigenvalue results seen in Figure 6.7
also show similar results, albeit at larger frequencies for λ2-λ4. This result corresponds
with the studies on stability in Section 4.2, which demonstrated that increasing the
stiffness can stabilise the (simplified) system, Figures 4.2 and 4.4(b).

For Design 2 (repositioned track brake-bogie interface), all eigenvalues calculated have
negative real parts, Figure 6.5 (c). The detailed results for ez = 0.45 mm presented in
Figure 6.8 show increased frequencies and negative real parts of λ3 and λ4. This indicates
stable system behaviour across the entire parameter range analysed.

For Design 3 (interchanged electrical connections), the area of positive real parts is
significantly smaller than for the Original Design, Figure 6.5 (d). Still, for ez > 0.4 mm
and ṽ < 25 km/h an area with small positive real parts remains. In the detailed analysis
it is most noticeable that the real part of λ4 (asymmetrical mode) is reduced significantly
(compared with the Original Design) and becomes negative, Figure 6.9. The real part
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of λ3 (symmetrical mode) remains unchanged. This behaviour is comparable to the
findings in the analysis of the double-magnet models electrically connected in series and
in parallel, Figure 4.14 (b) and (d).
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6.2.3 Comparison of the designs in the time domain
The quasi-static analysis has shown that the proposed designs may affect brake forces
(positively or negatively), Section 6.2.1. The modal analysis has shown that the design
changes discussed may be able to stabilise the system, Section 6.2.2. To investigate how
the designs affect vibration amplitudes of the magnetic track brake during a braking
manoeuvre, time integration results are compared.

For parameters ez = 0.45 mm (Original Design and Designs 2 and 3) and ez = 0.375 mm
(Design 1), time integrations of braking manoeuvres are performed, Figure 6.10. For
these values of ez, the maximum real parts of eigenvalues were determined before,
Figure 6.5. Over a simulation time of 8 s the model is decelerated from an initial velocity
of vvcl = 43.2 km/h until full stop, Figure 6.10 (a). The track brake is activated at a
simulation time of t = 0.5 s and deactivated at t = 7 s at vvcl = 3 km/h. During the
deceleration, the coefficient of friction µG increases continuously. Figure 6.10 (b)-(e) show
the longitudinal transmission forces FB,j,x, with j = A, C. The results are referenced
with respect to the equivalent brake force (1.19) of the Original model.

The results obtained for the Original Design and ez = 0.45 mm are similar to those
reported in Chapter 5.3 and show severe vibrations at low velocities, Diagram (b). At
12 km/h the mechanical stops of the brake frame and the bogie lose contact in longitudinal
direction, which leads to impact loads between the bogie and the magnetic track brake.

Diagram (c) depicts the time integration results for Design 1 with asymmetric oscillations
of FB,j,x evolving. At t = 6.5 s and vvcl = 5 km/h however, a limit cycle is reached. For
v < 5 km/h, amplitudes of FB,j,x decrease again.

Design 2 is superior with stable behaviour over the entire braking manoeuvre and
increased brake forces, Diagram (d).

Although in the locally linearised model of Design 3, λ3 has positive real parts Re(λ3) > 0
at low velocities vvcl < 25 km/h, no vibration amplitudes are visible in Diagram (e). This
is because a limit cycle with only very small amplitudes arises in the time integration,
which are irrelevant for the loads on the structure. Thus, Design 3 also represents a
technically preferable variant compared to the Original Design, which can be easily
implemented.
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CHAPTER 7
Conclusions and Outlook

7.1 Conclusions
To reduce mechanical loads on magnetic track brakes at low velocities and subsequently
apply them also in the low velocity range, the aim of this thesis was to investigate
self-excited vibrations of magnetic track brakes and how to reduce them in future designs.
To develop efficient methods of mitigation, research was focused on the underlying
self-excitation mechanisms and to identify the source of energy which maintains the
vibrations of the brake frame. Engineering measures based on the findings of this thesis
should help to avoid vibrations in future track brakes.

During vehicle tests, severe self-excited structural vibrations of a magnetic track brake
were measured at low vehicle velocities. The analysis of measurement data in Chapter 2
showed that the vibrations correspond to an asymmetric deflection mode of the brake
frame at a constant frequency, and high vibration amplitudes correlate with high brake
forces. Since the analysis of data could not explain the origin of the self-excited vibrations,
the following chapters focused on the modelling and simulation of self-excited vibrations
of a magnetic track brake.

Because previous mathematical models of magnetic track brakes from the literature [40]
and [46] are unsuitable to examine the stability behaviour, new electric, magnetic and
mechanical sub-models were developed and subsequently assembled to system models,
Chapter 3. For the study of the self-excitation mechanisms, simplified analytical planar
models were developed considering the lateral deformation of the magnetic track brake
frame. To obtain simulation results that are qualitatively comparable with vehicle tests,
a 3D multibody dynamics model of the magnetic track brake including a flexible brake
frame and multiple brake magnets was developed.

The stability of the simplified and locally linearised models was analysed in Chapter 4 by
applying the Hurwitz criterion. The evaluation of the criterion for oscillatory stability
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showed that, on the one hand, the rising coefficient of friction during braking leads to
small (or negative) damping terms which de-stabilises the system. This self-excitation
mechanism corresponds to the type of friction-induced self-excited vibrations discussed
in [20] and [21]. On the other hand, it was found that the coupling of the equation of
motion and the electro-magnetic differential equation results in a 1.5 DoF system which
is capable of self-excitation. This mechanism is similar to the inertial self-excitation type
described in [24]. For multiple magnet configurations, the coupling is amplified with
the electrical in series connection of two magnets for asymmetric deflection modes. By
analysing stability maps, design parameters were identified which can be modified to
improve stability.

Obviously, the system is fed by two energy sources:
On the one hand, a permanent supply of electrical energy from the voltage source is
provided to the electrical circuit. On the other hand, the moving train provides kinetic
energy to the mechanical sub-system.
Over one period of the limit cycle, the energy flow of the electrical, magnetic and
mechanical sub-models, as well as the overall system model, was studied. Time signals
show a phase shift between the magnetic attraction force as well as the friction force
and the relative lateral motion of the magnet and the rail which allows energy to be
transferred from the friction contact to the oscillating system. The magnetic restoring
force acting in the lateral direction performs work at the air-gap and transfers energy
from the mechanical system to the magnetic system. Kinetic energy of the train allows
the work of braking, the work in the air-gap and to overcome the dissipative losses in the
mechanical and magnetic systems.

With the more complex multibody dynamics model, it was shown in Chapter 5 that
self-excited vibrations are not only dependent on the design, but also on operational
parameters and environmental influences. It was demonstrated that the contact points
between the pole shoes and the rail are variable during braking and depend on the size of
pick-up weldings and the coefficient of friction. The increase in the coefficient of friction
at low velocities can result in abrupt changes in the contact status between the magnet
and the rail and in the stability behaviour. Stability analyses showed that the stability
depends on both friction and velocity. A comparison with vehicle test data showed that
time-integration results obtained with the multibody dynamics model are qualitatively
comparable with vehicle tests.

Aiming at the reduction of the electromagnetic-mechanical coupling, three design propos-
als were developed to mitigate self-excited vibrations, Chapter 6. In Design 1, the stiffness
of the brake frame was increased by 20% which leads to smaller vibration amplitudes
but also to a reduction in brake force due to a less adaptable brake frame. In Design
2, the mechanical stops between the track brake and the bogie were relocated in order
to minimise bending moments induced by transmission forces. As a result, self-excited
vibrations were eliminated, and brake forces increased. Mitigation of vibrations with
minimal design changes was achieved in Design 3, where the electrical connections of the
magnets were changed.
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7.2 Outlook
During the progress of this thesis, major research questions on self-excited vibrations of
magnetic track brakes have been addressed. However, new questions and further ideas
arose which have not been examined in this thesis. Since the area of interest is relatively
new, there is a wide field of activity for further research.

Measures presented so far to prevent vibrations are exclusively of a passive type. The
development of active systems such as anti-vibration controllers will be considered in
a following research project. Intuitively, the electrical voltage or current, but also the
pressure applied to the actuating cylinders, could be used as control variables. Feedback
controllers with electrical control variables require a more detailed modelling of the
electrical power supply present on trains. If the actuation cylinder pressure is used, the
model must be extended by a pneumatic sub-model.

With the locally linearised basic and more detailed multibody dynamics models, parameter
areas of asymptotically stable equilibrium positions were determined. A next step to
deepen the understanding would be non-linear stability analyses of the discussed models.
To specify regions of perturbations in which trajectories tend towards stable solutions,
bifurcation analyses [16] can be performed using continuation algorithms. The study
of structural changes of non-linear solutions as a function of input parameters such as
vehicle speed and source voltage, will describe the behaviour of the system beyond the
present findings. This includes the detection of Hopf bifurcations and the evaluation of
amplitudes of the resulting (stable) limit cycles. This is particularly relevant as in the
development of engineering solutions with the aim of reducing loads, periodic vibrations
with limited amplitudes can also represent permissible operating states.

Velocity-dependent friction has so far been considered phenomenologically. The underlying
contact mechanical problem however, has not been considered in detail and is also a
starting point for further studies. This includes the analysis and modelling of the local
three-dimensional pole shoe-rail contact area and the calculation of the normal forces, as
well as the friction law, considering multi-physical influences such as third-body layers,
adhesion and contamination.

The dynamical coupling between magnetic forces, frictional forces and the relative motion
between the magnet and the rail is responsible for the "inertial" self-excitation mechanism.
The study of so far neglected effects such as non-linear, hysteretic ferromagnetic behaviour,
as well as dynamical characteristics of the sliding friction contact between pole shoes and
rail, will advance the understanding of this mechanism.

Magnetic track brakes are components of railway vehicles that are under high mechanical
loads, often indispensable for operation and safety-relevant. The design, development and
optimisation of magnetic track brakes therefore requires a high degree of accuracy and a
precise understanding of their behaviour in operation. Continuing application-oriented
basic research on magnetic track brakes is relevant, useful and highly recommended to
advance technical progress in the field of braking systems for .
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APPENDIX A
Measurement channels

The physical quantities are measured by sensors applied to the brake, the bogie or the
carbody. Depending on the measuring principle, the signals are acquired by bridge and
differential amplifiers or bus (NMEA, CAN) and recorded by three synchronised data
loggers, Figure A.1. Table A.1 gives an overview of the signals measured during the
vehicle tests, compare Figure 2.1.
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Figure A.1: Data acquisition
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A. Measurement channels

Table A.1: List of measurement channels

Pos. Symbol Sensor type Long name DAQ
1 FB,A,x full bridge brake force left, front bridge
2 FB,B,x full bridge brake force left, rear bridge
3 FB,C,x full bridge brake force right, front bridge
4 FB,D,x full bridge brake force right, rear bridge
5 FQ,A,x full bridge lateral force left, front bridge
6 FQ,B,x full bridge lateral force left, rear bridge
7 FQ,C,x full bridge lateral force right, front bridge
8 FQ,D,x full bridge lateral force right, rear bridge
5 MV,le−fr,y half bridge connector bending y left, front bridge
6 MV,le−re,y half bridge connector bending y left, rear bridge
7 MV,ri−fr,y half bridge connector bending y right, front bridge
8 MV,ri−re,y half bridge connector bending y right, rear bridge
9 MV,le−fr,z half bridge connector bending z left, front bridge
10 MV,le−mi,z half bridge connector bending z left, centre bridge
11 MV,le−re,z half bridge connector bending z left, rear bridge
12 MV,ri−fr,z half bridge connector bending z right, front bridge
13 MV,ri−mi,z half bridge connector bending z right, centre bridge
14 MV,ri−re,z half bridge connector bending z right, rear bridge
15 MS,fr−le,x half bridge track rod bending x front, left bridge
16 MS,fr−mi,x half bridge track rod bending x front, centre bridge
17 MS,fr−ri,x half bridge track rod bending x front, right bridge
18 MS,re−le,x half bridge track rod bending x rear, left bridge
19 MS,re−mi,x half bridge track rod bending x rear, centre bridge
20 MS,re−ri,x half bridge track rod bending x rear, right bridge
21 MS,fr−le,z half bridge track rod bending x front, left bridge
22 MS,fr−mi,z half bridge track rod bending z front, centre bridge
23 MS,fr−ri,z half bridge track rod bending z front, right bridge
24 MS,re−le,z half bridge track rod bending z rear, left bridge
25 MS,re−mi,z half bridge track rod bending z rear, centre bridge
26 MS,re−ri,z half bridge track rod bending z rear, right bridge
27 Fcyl,j,z pressure pcyl actuation cylinder force left front diff
28 sA,y linear transducer lateral displacement left front diff
29 sB,y linear transducer lateral displacement left rear diff
30 sC,y linear transducer lateral displacement right front diff
31 sD,y linear transducer lateral displacement right rear diff
32 sA,z linear transducer vertical displacement left front diff
33 sB,z linear transducer vertical displacement left rear diff
34 sC,z linear transducer vertical displacement right front diff
35 sD,z linear transducer vertical displacement right rear diff

Continued on next page
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Table A.1 – continued from previous page
Pos. Symbol Sensor type Long name DAQ
36 aDG,x piezo ICP bogie, dynamic accerleration x diff/ICP
37 aDG,y piezo ICP bogie, dynamic accerleration y diff/ICP
38 aDG,z piezo ICP bogie, dynamic accerleration z diff/ICP
39 aMG,x piezo ICP track brake, dynamic accerleration x diff/ICP
40 aMG,y piezo ICP track brake, dynamic accerleration y diff/ICP
41 aMG,z piezo ICP track brake, dynamic accerleration z diff/ICP
42 iA hall current probe current, left front diff
43 iB hall current probe current, left rear diff
44 iC hall current probe current, right front diff
45 iD hall current probe current, right rear diff
46 avcl,x capacitive acceleration vehicle diff
47 vvcl,x optical velocity vehicle CAN
48 svcl,x optical distance travelled CAN
49 GPS GPS antenna position NMEA
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APPENDIX B
Identification of system

parameters

B.1 Identification of contact parameters

Analyses with the multibody dynamics model aim to calculate simulation results that are
comparable with vehicle tests, Chapter 5. To reproduce the behaviour of the magnetic
track brake, knowledge of the contact conditions of the magnets on the rail is relevant.
These are determined by the geometric tolerances of the intermediate elements and the
coil body, Figure 3.3. Pick-up weldings on the pole shoes, as well as external forces, can
cause the positions of the contacts to shift during braking which makes the identification
more difficult. This section presents a method to estimate the contact parameters of the
multibody dynamics model based on vehicle test data.

In the multibody dynamics model, the contact points between the magnet and the rail are
simulated by three contact points, Figure 3.7. The position of the intermediate contact
point is defined by the coordinates ex and ez. In Section 2.2, the track brake activation
process is analysed and split into different phases, Figure 2.5. In Phase III, the track
brake comes into contact with the rail but electric voltage is not yet applied. The brake
is pressed onto the rail only by the force of the actuation cylinders Fcyl.

Figure B.1 shows the state of a brake magnet at the beginning of Phase III, assuming
a pick-up welding at the centre intermediate element. The position and height of the
pick-up welding is defined by ex and ez. In the figure, neither the inward, nor the outward
endpiece is in contact with the rail yet. The actuation cylinder force Fcyl increases with
the pressure pcyl, which causes a bending moment in the connecting beam MV,y. The
connector beam is bent about the intermediate contact point until contact is established
between the outward end piece and the rail.
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B. Identification of system parameters

Fcyl

ex

MV,y

x
y

z

e z

Figure B.1: Track brake-rail contact

ez and ex are evaluated from the MV,y–Fcyl diagram, Figure B.2(a). Starting at Fcyl = 0,
MV,y = 0, MV,y increases roughly linearly with Fcyl. The slope of the linear regression
(dashed line) equals the longitudinal distance ex between the contact point and the line
of action of Fcyl, (B.1).

ex = ∆MV,y

∆Fcyl
(B.1)

A kink in the MV,y–Fcyl characteristics marks an increase of stiffness at the moment the
endpiece comes into contact with the rail. Again, the characteristics are roughly linear.
With the distance ex and the cylinder force Fcyl, the deformation of the track brake
is calculated in a finite element analysis, Figure B.2(b). The vertical deflection of the
outward endpieces in the figure equals to ez.

The method is used to evaluate ex and ez for the selected measurements V1008 and
V1014, Table B.1. For both measurements, a longitudinal distance of ex ≈ 31 cm is
derived which corresponds to the position of the centre intermediate element. As a result,
the inward endpieces are not in contact with the rail.
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(a) bending moment vs. cylinder force (b) vertical deformation under cylinder load

Figure B.2: Analysis of contact conditions between the track brake and the rail
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B.1. Identification of contact parameters

Test ID ex ez Comment
V1008 31 cm 0.47 mm vibrations, high brake force
V1014 31 cm 0.80 mm no vibrations, low brake force

Table B.1: Coordinates of intermediate contact points during field tests
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B. Identification of system parameters

B.2 Identification of the effective air-gap
The magnetic forces derived from the magnetic sub-model strongly depend on the effective
air-gap s, Section 3.2. s influences both the reluctance of the air gap Rm (3.10) and as a
result the magnetic flux ϕ (3.9). A (small) effective air gap between the pole shoes and
the rail is always present during braking due to imperfections of the contacting geometries.
The assumption of a realistic values for s is required to qualitatively investigate the
behaviour of the magnetic track brake.

This section presents a method to determine s by comparing normalised magnetic attrac-
tion forces derived from laboratory tests and the vehicle tests presented in Section 2.2.

Measurement of magnetisation curves

Assuming the magnetic attraction force FA can be calculated from (B.2), the magnetic
flux ϕ through the pole shoes of a brake magnet is measured in a laboratory experiment
for varying air-gaps s.

FA = ϕ2

2µ0A
(B.2)

A setup based on [58] is used to measure ϕ–i magnetisation curves, Figure B.3(a). A
magnetic track brake with a secondary winding on a pole shoe is placed on a rail. Different
dimensions of the air-gap between the magnet and the rail are simulated by sheets of
non-magnetic material. The magnetic circuit is excited by the coil of the electromagnet
with the number of windings N and the current i. The magnetic flux ϕ near the air-gap,
is measured by evaluating the voltage induced in the secondary winding u2 (B.3).

u2 = N2ϕ̇ (B.3)

With the number of turns N2 and s = 0.0-1.2 mm, ϕ–i characteristics are determined,
Figure B.3(b). For s = 0.0 mm, the ferromagnetic saturation of the magnetic circuit is
clearly visible for i > 4 A. The saturation shifts towards higher excitation currents as the
distance between the magnet and the rail increases.

From the measured data, FA(s, i) is calculated by (B.2) and normalised using reference
values for each air gap FA,ref (s, i = iref ), with iref = 10 A:

FA(s, i)
FA,ref (s, iref ) =

ϕ(s,i)2

2µ0A

ϕref (s)2

2µ0A

= ϕ(s, i)2

ϕref (s)2 (B.4)

The characteristics of the resulting normalised attraction force FA
FA,ref

with respect to i

vary with the air gap, Figure B.4(a).
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B.2. Identification of the effective air-gap

(a) Measurement of ϕ̇
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Figure B.3: Measurement of the magnetic flux

Comparison of magnetisation curves and field tests

To determine the effective air gap at the beginning of a braking manoeuvre, measurements
from vehicle test are compared with the normalised magnetic attraction forces. As the
pole shoes were not equipped with secondary windings during the driving tests, instead
of ϕ the signals of the brake forces are used. Assuming the velocity vvcl ≈ const. and the
coefficient of friction µG ≈ const during the electric activation, the magnetic attraction
force FA in (B.4) can be substituted by the brake force FB,x, Equation (B.5):

FB,x

FB,x,ref
= µGFA

µGFA,ref
= ϕ2

ϕ2
ref

(B.5)

The relevant data is extracted from the track brake activation process described in
Section 2.2. In Phase IV of the activation process, the track brake is electrically
activated, see Figure 2.5. At the beginning of this phase, the track brake is in contact
with the rail and pressed towards the rails by the actuation cylinders but the electric
voltage is not yet applied. During the build-up phase of ≈ 0.5 s, the current and the
brake forces increase from zero to a "steady" value.

Figure B.4(b) shows the normalised brake force with respect to the current i for mea-
surement V1008. By comparing the characteristics of the normalised attraction forces
(Figure B.4(a)) and the brake forces (Figure B.4(b)), the effective air gap s is estimated
for the beginning of each braking manoeuvre.

For selected braking manoeuvres, Figure B.5 shows the effective air gaps determined
using this method. The records V1006, V1007 and V1008 form a group in the range of
s = 0.6-0.9 mm. For V1014 and V1019 effective air gaps of s > 3 mm are identified which
indicates severe pick-up weldings.
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B. Identification of system parameters

0 2 4 6 8 10 12
0

0.2
0.4
0.6
0.8

1

(a) Normalised attraction forces

0 2 4 6 8 10 12
0

0.2
0.4
0.6
0.8

1

(b) normalised brake force (V1008 )

Figure B.4: Normalised forces

0.15 0.2 0.25
0

1

2

3

4

5

Figure B.5: Effective air gaps during the field tests
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